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Humans have the great ability to adapt their walking to different situations imposing 

distinct motor demands. However, people suffering from neurological disorders often adopt 

asymmetric walking pattern, affecting their mobility. It has been proposed that people can adapt 

spatial and temporal gait features independently when exposed to new environmental conditions. 

For example, previous work indicates that subjects can adapt when they step (i.e., step timing) 

without changing where they step (i.e., step position). New environments can be recreated using a 

split-belt treadmill that moves their legs at different speeds. Interestingly, this independent 

adaptation of spatial and temporal gait features has only been observed when subjects voluntarily 

modify the adaptation of spatial walking features (e.g., step position).  

 This raises the question of whether temporal gait features (e.g., step timing) can be also 

altered voluntarily without affecting the adaptation of spatial ones. To address this question, we 

contrasted the adaptation of spatial and temporal gait features when subjects walked on a split-belt 

treadmill under two conditions: 1) temporal feedback condition and 2) control condition. The 

temporal feedback group received visual feedback indicating when to step to prevent the 

adaptation of step timing during split-belt walking, while the control group walked without 

receiving any visual feedback. Kinematic and kinetic data was recorded during the entire duration 

of the experiment.  

We found that subjects in the temporal feedback group could modulate their step timing in 

order to maintain a stepping rhythm similar to tied walking. In addition to this, modifying subjects’ 

step times reduces the impact of the perturbation, and therefore reduces the spatial adaptation. 
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Independently of the feedback, all subjects experienced the same belt speeds on the treadmill. We 

show that despite being exposed to the same conditions, subjects are actually able to adapt in a 

way that they feel less perturbed.  

This study shows promising result on the possibility of establishing a relationship between 

spatial and temporal gait features, and therefore being able to help develop rehabilitation processes. 

For patients who show asymmetries in only one domain, this could be particularly useful since it 

could allow to target specific motor outputs.                                                                   
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1.0  INTRODUCTION 

 

 

Humans can easily navigate distinct terrains without falling and it has been proposed that this 

is achieved by adapting spatial and temporal gait features. In the laboratory, this has been studied 

using a split-belt treadmill, which has two belts that can be moved at different speeds. This device 

allows us to create novel environmental conditions. It has been shown that people can adapt their 

gait and store new walking patterns when step asymmetry is perturbed (Reisman et al. 2005). It 

has been proved that spatial and temporal gait features contribute to recovering step length 

asymmetry when perturbed (Finley et al. 2015). It has also been suggested that this is achieved by 

independently controlling step position step time (Malone and al. 2012). However, this 

independence has only been shown by modulating the spatial features of gait. It is yet unknown if 

the adaptation of step time can be altered without affecting the adaptation of spatial features.  

We are interested to whether humans can control explicitly temporal gait features. Central 

Pattern Generators (CPG) are neural networks that regulate temporal gait features, and they can be 

found encoded in low levels of the spinal cord (Marigold and al, 2015). Conscious corrections of 

gait have been observed in the spatial domain (Malone and Bastian, 2010). However, it is unknown 

if the stepping time, which are regulated by deep levels of the neural system, can be voluntarily 

altered. 

Step length asymmetry is often considered to be a parameter highly influenced by the spatial 

control of limb, while temporal control often isn’t. Stroke patients present spatial and/or temporal 

asymmetries (Malone and Bastian, 2014), but it has been shown that most of the reported 

asymmetries are found in the temporal domain (Peterson and al, 2010). It has been proved that 

step length asymmetry could be recovered by targeting only one gait parameter, i.e. spatial or 

temporal features (Finley, 2015). Patients with hemiparesis are asymmetric in spatial and temporal 

aspects of gait. Thus, we want to know if it is possible to specifically target one of them, and how. 

To summarize the questions addressed in this study, we want to first know if humans are able 

to control their step timing voluntarily, and if so, we are interested in knowing if the adaptation of 
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step position is independent from that of step time. We will also see if it is possible to prevent the 

adaptation of step time in a split-belt environment. If so, we will find out if the adaptation of step 

position alone can fully recover step length asymmetry. 
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2.0      METHODS AND EXPERIMENTAL PROTOCOL 

2.1 EXPERIMENTAL PARADIGM 

 

2.1.1 Subjects 

 

Fourteen young healthy subjects participated in this study, forming two groups of seven 

subjects. The first group called “control group” was exposed to the speed profiles with no 

instructions or target, allowing subjects to adapt completely on their own. The second group, called 

“temporal hold” group, was given a visual feedback during certain trials, with special targets to 

reach. Table 1 summarizes the demographics who participated in the study, 

 

Table 1: Description of the participating population 

SUBJECTS 
TEMPORAL HOLD 

GROUP 
CONTROL GROUP 

NUMBER N 7 7 

AGE 23 (+/- 3) 24 (+/- 3) 

MALE/FEMALE 4/3 3/4 

 

 

2.1.2 Protocol 

 

Each group was asked to perform the same four trials: baseline, familiarization, adaptation 

and post-adaptation. The first two trials were tied belt trials, with a set baseline speed of 0.75 m/s 

for 150 strides (about 3 minutes). Adaptation was a split belt trial, where the speed for the dominant 
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leg was 1 m/s and the non-dominant leg 0.5m/s, for 600 strides (about 13 minutes). Dominant leg 

is commonly determined by which foot they would place forward first when tripping, or which 

foot they would use to kick a ball. For the last trial, post-adaptation, belts were tied again and set 

at a speed of 0.75 m/s for 450 strides (about 10 minutes). The control group performed all four 

trials with no feedback or instruction, therefore they represent “natural” adaptation to the 

paradigm. The temporal hold group was given a visual temporal biofeedback during 

familiarization and adaptation. We ran a familiarization trial for subjects in the temporal feedback 

group to get habituated to using the feedback to control their step time. Both groups went through 

familiarization trial since we wanted subjects from both group to go through the same extent of 

walking. The speed profiles are illustrated in Figure 1. 

 

 

 

Figure 1: Speed profiles for both control and temporal hold groups. The blue line represents the 

dominant leg (which is always the fast leg while the red line is the non-dominant leg. The pink 

rectangle indicates when the subjects were given visual feedback 
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2.1.3 Visual Temporal Biofeedback 

 

It has been shown that subjects reach an asymmetric step timing when walking in split belt 

condition (Finley JM, Long AW, Bastian AJ and Torres-Oviedo G, 2015). In this study, we aimed 

to use a visual feedback to reduce this asymmetry to baseline behavior, as illustrated in Figure 2. 

 

 

Figure 2: Graphic representation of the temporal feedback's objectives. The pink rectangle 

indicates a condition receiving feedback. "*" indicated significant difference, "ns" a non-

significant difference. 

 

 

As represented in Figure 2, we can know subject’s step time asymmetries when they don’t 

receive any feedback. The baseline behavior – tied belt condition – is be very close to zero, since 

this is a natural, symmetrical way of walking. In the split-belt condition, subjects will have large 

step time asymmetries, due to difference in belt speeds (“known” bar). The objective of the 

feedback is to force subjects to reach a step time asymmetry in the split belt walking with feedback 
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(∆𝑡) that is not different from the one of baseline. Accordingly, it will also be significantly different 

from the split belt condition without feedback. (“objective” bars).  

 

 

 The feedback, displayed on a monitor in from of the treadmill, shows two step time targets 

that the subjects are asked to reach, as well as real time feedback on their current step time. Since 

we try to prevent them from having any temporal asymmetries the targets are the same, putting the 

boxes at the same height. At the end of each step they get a yellow bar to indicate the step time 

they took, and if they reached target (i.e. the yellow bar hits the box), then the box turns green.  

 

 

Figure 3: Screenshots of the visual temporal feedback. The red and blue boxes are the step time 

targets that the subject is trying to hit. Grey bar is real time feedback of the current step time; 

yellow bar is the step time from the contralateral leg. On the left image, the subject overshot the 

right leg’s target, reaching a step time slightly longer than asked, and he is currently standing on 

his left foot (the grey bar would be going up). On the right image, the subject has reached target 

for the left leg and will reach it with the right leg if he switches to the next step at this instant. 

 

The temporal biofeedback was coded in Python, using Wizard Software. Python was 

chosen over MATLAB for speed purposes, since we needed a real time “stride-by-stride” 

feedback. The control computer is connected to an external monitor placed in front of the subject 

during the trials. Two boxes appeared on the screen at a same height, representing the step time 

target, and moving bars represent the step time – step from ipsilateral Heel Strike (HS) to 

contralateral HS. The subject gets a real life feedback of the time spend on each leg, by seeing this 

bar going up towards the target box, as well as a “final” feedback for each step, indicated by a 
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small yellow bar i.e. your total step time for each leg. If the target is reached the box turns green 

to indicate that the task has been rightfully executed. The boxes have a height equivalent to 0.05 

s, which is the tolerance we arbitrarily decided for the target. Screenshots of the feedback can be 

seen in Figure 3. 

 

The temporal biofeedback target was calculated from measured parameters in the first trial; 

at the end of baseline, we run a quick MATLAB program that computes the mean step times for 

each leg. Those two values are typically very close, since healthy subjects walk symmetrically. 

The target given was then the mean those two means. Note that both legs are given the same target, 

since we are trying to prevent subjects from adapting temporally, i.e. forcing them to have equal 

step times. 

 

𝑇𝑎𝑟𝑔𝑒𝑡 =
1

2
(𝑚𝑒𝑎𝑛 𝑠𝑡𝑒𝑝 𝑡𝑖𝑚𝑒𝑟𝑖𝑔ℎ𝑡 + 𝑚𝑒𝑎𝑛 𝑠𝑡𝑒𝑝 𝑡𝑖𝑚𝑒𝑙𝑒𝑓𝑡) 

 

2.2  DATA COLLECTION 

 

2.2.1 Markers and anatomical landmarks 

 

Since our study was solely focused on gait, only lower limb movement was recorded. All 

subjects were asked to wear skin-fitted shorts or pants, reducing the movement of the clothes with 

respect to the skin as much as possible, and comfortable sports shoes. Then, markers were carefully 

placed on their lower limbs, on specific bony landmarks. The markers are circular reflective 

surfaces, picked up by the infrared cameras in the lab. Before collecting data, we make sure that 

these markers are the only reflective elements picked up by the cameras. Shiny sneakers or clothing 

elements worn by subjects had to be covered in black duct tape. Table 2 summarizes the markers 

of interest for this study, the marker name is the anatomical landmark abbreviation used in the data 

collection software.. Previous gait studies have established parameters that we will compute from 

those four markers. 
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Table 2: Makers list and anatomical landmarks.  

MAKER # MARKER NAME ANATOMICAL LANDMARKS 

5 RGT Right Greater Trochanter 

9 RANK Right Ankle 

10 LGT Left Greater Trochanter 

16 LANK Left Ankle 

 

 

2.2.2 Experimental set-up 

 

The testing room is equipped with a split belt custom built treadmill (BERTEC 

Corporation, OH), mounted on four force plates (sampling rate 1000 Hz). In front of the treadmill, 

a custom built safety handrail is also mounted on force plates, recording forces to monitor holding 

or touching during the trials. Around the room, 14 infrared cameras (VICON, sampling rate 100 

Hz) are soundly installed to record any motion on or around the treadmill. Figure 4 is a picture of 

the experimental setup and Table 3 describes the main components of the testing equipment.  
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Figure 4: Picture of the experimental set up  

Table 3: Experimental setup main components 

# DESCRIPTION 

1 One of the 14 infrared VICON cameras 

2 BERTEC treadmill – Left belt 

3 BERTEC treadmill – Right belt 

4 Monitor for visual biofeedback 

5 Safety handrail 

6 Safety belt separator 

7 Safety harness hook 

6

2 3

5

4

7

1
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During calibration we make sure that the system is aware of all reflective surfaces in the 

room, so that it can ignore them all, and only pick up the reflection on the 18 markers positioned 

on the subject. The cameras are controlled by NEXUS, a data collection support software 

distributed by VICON. The treadmill belts are controlled though a MATLAB custom built Graphic 

User Interface (GUI), which acts a remote for the BERTEC software. In NEXUS, a trigger is also 

defined so that the activation of the MATLAB GUI automatically sets the cameras to start 

recording. 

After a subject specific calibration of the system, and according labeling, NEXUS builds a 

functional skeleton of the subject, recording all the kinematic data for each marker. Identically, 

after calibration of the force plates, all ground reaction forces are recorded. 

Subjects were asked to wear a safety harness during the experiment, and the treadmill has 

a safety handrail in front of the belts. Since walking patterns can be altered while holding to a 

handrail, subjects were asked to touch the handrail only if they felt like they were going to fall. 

The handrail is mounted on force plates and reaction forces were recorded throughout the 

experiment. 

  Another safety feature is the presence of a Plexiglas separator between the two belts, in 

order to make sure that subject could not step on the wrong belt. This was necessary since all 

subjects were asked not to look at their feet during the whole experiment, and to look straight 

ahead.   
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2.3 DATA PROCESSING 

 

2.3.1 Stride cycle decomposition 

 

 

Figure 5: Gait cycle decomposition. On full stride is represented here, from heel strike to the next 

heel strike. All the different stride phases, as well as the % of cycle at which they occur are also 

represented. (Source: Journal of AAOS) 

 

As illustrated in Figure 5, walking is a periodic activity, each period being called a stride 

cycle. A stride is the sum of two steps, which are defined by ipsilateral HS to contralateral HS. 

Therefore, a stride cycle is simply defined as HS to the next HS of the same leg. Strides cycles 

have two “states”: double support, when the two feet are touching the ground, and single support 

when only feet is on the ground. Looking at individual legs, the phase during which the foot is 

touching the ground is called stance, while the phase where the foot is in the air is called swing. 
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2.3.2 Event detection  

 

 

We used both kinetic and kinematic data for event detection in this study. Kinetic data was 

processed since it is a more accurate technique for event detection (heel strike and toe off); it is 

also consistently used in walking studies. Kinematic data has been most commonly used in split-

belt studies as well as to describe step length asymmetries. Therefore, to be able to compare our 

results with the ones from the literature, we processed both sets of data in this study.  

 

Kinematic data was interpolated when markers of interest were occulted using built-in NEXUS 

tools. Once the gaps are filled, we look for any other reflective surface or parasite that could have 

been picked up during the data collection, and delete them. We now have clean files of the markers 

complete kinematics, as well as all the recorded ground reaction forces. Using a custom built 

MATLAB program we transform those files into MATLAB files, defining a long list of gait 

parameters, calculated from the events detected. Four types of events are defined in one stride 

cycle: SHS (heel strike of the slow leg), FHS (heel strike of the fast leg), STO (toe off of the slow 

leg) and FTO (toe off of the fast leg). However, since we have two set of data, kinetics and 

kinematics, we have two ways to calculate these events detection. 

 

In order to understand the difference between computing parameters using kinetics or 

kinematics for event detection, it is useful to understand the details of a stride cycle and identify 

its phases. Figure 6 illustrates how the step times are computed for each set of data, showing the 

transverse amplitude of the ankle marker with respect to the hip position. Of course, this is a 

simplified model for graphic representation; the actual angle data may have different periods and 

amplitudes, as well as an evolution through time. We can see an offset in time between the events, 

the kinetic events (HS) occurring slightly later than the kinematic event. This delay is simply due 

to biomechanical constrains, in the sense that your feet do not land on the ground when your lower 

limb angle is at its maximum. After reaching maximum angle, the foot “retracts” towards the body, 

allowing the knee to bend, and this is when heel strike happens. This time will be called retraction 

time. A simplified representation of how events are computed, using both sets of data, as well as 

the retraction times, can be found in Figure 6. 
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Figure 6: Simplified decomposition of event detection. The sinusoidal signals represent the 

transverse amplitude relative to the hip position. In the green and blue boxes, we describe how 

step times are computed when using kinematic and kinetic data, respectively. Actual ground 

contact i.e. heel strike always has a small delay with respect to the ankle maximum forward 

position (SHS kin and SHS), due to what we called retraction time. 

 

The first way to detect event is using kinetic i.e. ground reaction forces recorded from the 

force plates. This is perhaps the most intuitive method, since it is easy to detect heel strikes (HS) 

and toe offs (TO) establishing a force threshold (in our case threshold is 30 N). Once we find the 

time and position of each HS and TO, it is now easy to calculate step times, step lengths, or any 

other parameter of interest. These kinetic events are represented in the blue box in Figure 6. 

 

Another way to detect events is using kinematic data. The way we do this is taking leg 

angles (hip to ankle segment with respect to vertical) and finding the minimas and maximas. 

Therefore, the maximum forward position of the ankle with respect to the hip will be defined as 

the HS, and the maximum backwards position of the ankle with respect to the hip will be defined 

as the TO. These kinematic events are represented in the blue box in Figure 6. 
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As one may think that those two methods of detecting events would yield the same results, it 

is not that simple. This difference is not only due to the sampling difference between kinetics and 

kinematics (10 times higher for kinetics), but rather to some biomechanics constraints that become 

obvious once decomposition a stride cycle. We will discuss those differences in the results section. 

 

 

 

2.3.3 Statistical analysis 

 

A repeated measures two-way ANOVA was used to compare the effects of groups (i.e., 

control vs. temporal feedback) and condition (i.e., TM base, EarlyAdapt, TM steady, 

AfterEffects) on our outcome measures (e.g., all four contributions). Fisher’s post-hoc testing was 

used when significant model effects where found from the two-way ANOVA. A significance 

level P = 0.05 was used for all analysis. Stata was used to perform all statistical analysis 

(StataCorp LP, College Station, TX). All the figures and plots presented in the results were done 

in MATLAB.   
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3.0  DATA ANALYSIS 

3.1 PARAMETERS COMPUTATION 

  

3.1.1 Parameters of interest 

  

In order to interpret the data, and present coherent results, a list of parameters were 

computed. Let’s establish a few definitions of the most basic ones, since they are arbitrary, and 

their definition can differ from study to study. All temporal parameters, which represent a time, 

expressed in (s), and spatial parameters, which represent a distance, expressed in (mm). Let’s recall 

the important events from which all parameters will be computed: SHS, FHS, STO, FTO, and 

sometimes going to the next cycle, SHS2, FHS2, STO2 and FTO2. Ultimately, what we are 

interested in comparing is the subjects’ asymmetry, since the rehabilitation processes work hard 

to get them back to symmetrical walking patterns. We define parameters to quantify temporal 

components, as well as spatial components. Step time of the fast leg (or stepTimeFast), is defined 

as the time from SHS to FHS, while step time of the slow leg – stepTimeSlow – is the time from 

FHS to SHS2. The sum of stepTimeFast and stepTimeSlow is therefore the stride time (SHS to 

SHS2). Step length of the fast leg (called stepLengthFast), is defined as the distance between ankle 

markers at FHS, and step length of the slow leg, or stepLengthSlow, is the distance between ankle 

markers at SHS2.  
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3.1.2 Step Length Asymmetry  

 

It has been shown and widely accepted that gait can be decomposed in three main 

contributions. We will use the established definition of the parameter netContribution representing 

(𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑎𝑠𝑡 𝑙𝑒𝑔 –  𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑜𝑤 𝑙𝑒𝑔) as a sum of three components, 

according to the literature.  In order to be consistent with the literature, this will be called “Step 

Length Asymmetry”. 

 

𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

= 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 + 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

Where  

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐹𝑎𝑠𝑡 − 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑙𝑜𝑤 = ∆𝑆 

where spatialFast is the distance between ankle position of the fast leg at FHS and ankle 

position of the slow leg at SHS. spatialSlow is the distance between ankle position of the slow leg 

at SHS and ankle position of the fast leg at FHS 

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐹𝑎𝑠𝑡 = 𝛼𝐹 − 𝛼𝑇 

 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑙𝑜𝑤 = 𝛼𝑆 − 𝛼𝐹 

Where  

 𝛼𝐹 is the maximum forward position of the fast leg at FHS 

 𝛼𝑇 is the maximum forward position of the slow leg at SHS 

 𝛼𝑆 is the maximum forward position of the slow leg at SHS2 

 

Note: all positions are computed with respect to the hip position. 

 

In order to be consistent with the literature, this will be called “Step Position” 
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 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = ∆𝑡 ∗ 𝑣̅ 

Where ∆𝑡 = 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡 − 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤 = 𝑡𝑖𝑚𝑒(𝐹𝐻𝑆 𝑡𝑜 𝑆𝐻𝑆) −  𝑡𝑖𝑚𝑒(𝑆𝐻𝑆2 𝑡𝑜 𝐹𝐻𝑆), 

and 𝑣̅ =
1

2
(𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤 + 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡), where stepSpeedSlow and stepSpeedFast are the 

ankle speeds with respect to the hip, from ipsilateral HS to contralateral HS for the slow leg and 

the fast leg, respectively. In order to be consistent with the literature, this will be called “Step 

Time” (this will be used throughout the study, not to be confused with stepTimeFast and 

stepTimeSlow which are simply the time to take a step). 

 

 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = ∆𝑣 ∗ 𝑡̅ 

Where ∆𝑣 = 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤 − 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡 and 𝑡̅ =
1

2
(𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡 + 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤). 

We define step speeds (ankle speed with respect to the hip) the following way: 

 

 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤 =
𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤

𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡
 

 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡 =
𝑑𝑖𝑠𝑝𝐹𝑎𝑠𝑡

𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤
 

Where  

 𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤 = |(𝑠𝑙𝑜𝑤 𝑎𝑛𝑘𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝐹𝐻𝑆) − (𝑠𝑙𝑜𝑤 𝑎𝑛𝑘𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑆𝐻𝑆)| 

 𝑑𝑖𝑠𝑝𝐹𝑎𝑠𝑡 = |(𝑓𝑎𝑠𝑡 𝑎𝑛𝑘𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑆𝐻𝑆2) − (𝑓𝑎𝑠𝑡 𝑎𝑛𝑘𝑙𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝐹𝐻𝑆)| 

 

In order to be consistent with the literature, this will be called “Step Velocity”. 

 

If we use the same names used in the literature to quantify step asymmetry,  

𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 + 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 +

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 now becomes  

𝑆𝑡𝑒𝑝 𝐿𝑒𝑛𝑔𝑡ℎ 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 𝑆𝑡𝑒𝑝 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑆𝑡𝑒𝑝 𝑇𝑖𝑚𝑒 + 𝑆𝑡𝑒𝑝 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
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Since we are interested in studying the stride-by-stride evolution of those parameters, and 

each stride length is different, we normalize these parameters by the sum of step lengths. This new 

parameter is: 

𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 =
𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

∑(𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑙𝑜𝑤 + 𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑎𝑠𝑡)
=

𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

∑ 𝑆𝐿
 

 

And of course the sum is also normalized, and becomes: 

 

𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2

= 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 + 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2

+ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 

                                             =  
∆𝑆

∑ 𝑆𝐿
+

∆𝑡 ∗ 𝑣̅

∑ 𝑆𝐿
+

∆𝑣 ∗ 𝑡̅

∑ 𝑆𝐿
 

 

 

Figure 7: Schematics for Step Length Asymmetry decomposition. The blue and red legs represent 

the slow and fast legs, respectively; and  𝑙𝑓 and  𝑙𝑠 are the step lengths of the fast and slow leg, 

respectively. The yellow box shows the step position contribution (where to step); the black box 

shows the step time contribution (when to step) and the red box shows the step velocity 

contribution. 
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3.1.3 Leg velocities 

 

 

Figure 8: Schematic explanation of how step times can be modified. Amplitudes are represented 

as lines, to point out that we are talking about speeds (in reality they are sinusoidal signals). Hip 

position is represented as a straight line for simplification – in reality it is a sinusoidal signal with 

very small amplitude. 

 

Figure 8 is a schematic representation of how step times are computed, representing the 

ankle amplitude in the transverse plane as a function of time. The fast leg is the leg corresponding 

to the fast belt, i.e. the dominant leg (in orange). Its amplitude is clearly larger than the small leg, 

since it’s speed is twice as fast. The horizontal dotted line represents the mid-hip position. As 

defined earlier, we can see stepTimeFast (time from SHS to FHS), as well as stepTimeSlow (time 

from FHS to SHS2). Because of how it is defined, stepTimeFast is equal to the stance time of the 

slow leg minus the double support time (time from FHS to STO). The slow leg is being moved at 

half the speed of the fast leg. Therefore, the stance time of the slow leg is constantly larger than 

the stance time of the fast leg (more time spent on the leg that moves slower), which leads to 

stepTimeFast being larger than stepTimeSlow. Therefore, any temporal asymmetry is due to this 
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step time difference. Figure 8 helps understanding how these two parameters can be modified 

during gait by changing four newly defined parameters.  

 𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤: Distance difference of the slow leg’s ankle marker between SHS and 

STO, divided by the time from SHS to STO. In this figure, corresponds to slope 1. 

 𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡: Distance difference of the fast leg’s ankle marker between FHS and 

FTO2, divided by the time from FHS to FTO2. In this figure, corresponds to slope 2. 

 𝑠𝑤𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤: Distance difference of the slow leg’s ankle marker between STO and 

SHS2, divided by the time from STO to SHS2. In this figure, corresponds to slope 4. 

 𝑠𝑤𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡: Distance difference of the fast leg’s ankle marker between FTO and 

FHS, divided by the time from FTO to FHS. In this figure, corresponds to slope 3. 

 

3.2  EPOCHS OF INTEREST 

 

The goal of the familiarization trial was only to get subjects used to the visual biofeedback. 

Since the target given was the mean of their normal walking pattern at baseline speed, subjects of 

the temporal feedback group showed the same behavior during baseline and familiarization. For 

the control group, the behavior was obviously the same, since the trials were identical. Along the 

results interpretation, we define four area of interest that we will compare to each other, in order 

to best assess the subject’s behaviors.  

 

3.2.1 Baseline steady state 

 

Baseline represents the subject’s most natural way of walking at the given speed (in our 

case 0.75 m/s). Given the temporal feedback group’s ability to reach targets accurately during 

familiarization, and recalling that the control group’s familiarization trial was simply the same as 

baseline, we consider that at the end of familiarization, both groups have reached steady state for 

a tied-belt condition.  Throughout the whole study, this symmetrical walking pattern will be 

considered as the subjects’ walking reference. To quantify it, we take the last 50 strides of 
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familiarization, to which we subtract the last 5 strides, in order to remove any effect due to the 

stopping of the belts. The mean of these 45 strides will be called TM base. 

 

3.2.2 Early adaptation 

 

Since different domains adapt at different speeds, it is important to find a way to quantify 

the first response to the introduced perturbation, at the beginning of adaptation. Since the first step 

tends to be very noisy (almost tripping, very small step length, etc.) across subjects, we remove 

the first stride. Since the temporal domain tends to adapt really fast to the perturbation, we only 

take the following 5 strides. The mean all those five strides will be used throughout the study to 

quantify the first reaction to split-belt condition, and will be called EarlyAdapt. 

 

3.2.3 Adaptation steady state 

 

During a split-belt trial, subjects have to learn a new walking pattern. Therefore, the steady 

state is only reached after being exposed to the perturbation for a long time. While the baseline 

steady state could be considered after 150 strides (since no adaptation is needed), the adaptation 

steady state is considered to be reached after only 600 strides. Just like in baseline, we quantify 

the steady state by taking the mean of the last 50 strides, after subtracting the last 5 strides. As in 

baseline’s steady state, this value will be called TM steady. 

 

3.2.4 Early post-adaptation   

 

The adaptation trial allows us to recreate new walking environments, and observe how 

subjects react to them. Therefore, during the post adaptation trial we can observe subjects’ behavior 

right after being exposed to the perturbation. Since post adaptation is again a tied-belt trial, subjects 

should theoretically present the same behavior as observed during baseline. However, since they 

adapted to the split-belt condition, this tied-belt condition now feels like a new environment. The 
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first few steps of post adaptation allow us to quantify the effects of the perturbation on the initial 

pattern, comparing how different they are from baseline. This could represent the amount of 

“learning” that the subject retrained from the experiment. Similarly, we take mean of the first 5 

strides after removing the very first stride. This value will be called AfterEffects. 

 

3.3  SAFETY HANDRAIL  

 

All subjects were asked not to touch or hold the handrail, unless they felt like they were 

going to fall. As the experimental paradigm includes two sudden changes from tied belt to split 

belt condition and back, it can be hard to stay balanced without holding yourself. However, 

walking patterns can be significantly affected when adding an external reference.  

 

 

3.3.1 Holding  

 

 Holding can simply be defined as any touching with a recorded force higher than the light-

touching threshold. Since all step with recorded light-touching were considered as bad, it seems 

obvious that step with recorded holding were considered bad as well. Studies have shown that 

holding (applied force > 5 N) significantly modifies stride time and stride length parameters. 

Therefore, all steps where subjects were holding on to the handrail were remove from the 

analysis in the post processing of the data. 

 

3.3.2 Light-touch  

 

Light-touch is defined as applying a low force on a solid, static reference, with an arbitrary 

threshold set between 1 and 5 N. Some studies show that when setting the threshold at 5 N, light-

touching doesn’t affect stride time or stride length. Other studies set a lower threshold of 1 N, 

showing that light-touching can affect step duration, as opposed to no touching at all.  
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In order to remove effects due to light-touching, files were post processed, taking into 

consideration the force applied to the handrail. Computing the mean force (all three directions), 

each step with a recorded force superior to 1 N was considered as a light-touch step, labeled as 

bad, and therefore was removed from the analysis. This allows us to attribute all changes and 

adaptation patterns to the studied motor outputs, removing external factors. 

Table 4 summarizes the step that were removed due to holding or light touching. The mean 

is high because one of the first subjects (ST05) had a large number of steps removed (152). This 

was in the early stage of testing when we had not yet identified the negative effect of holding. All 

subjects after this one had less than 10 steps removed. Mean* is the mean of all subjects minus 

ST05 – much lower. 

 

 

Table 4: Count of steps removed due to light touching or holding throughout all 4 trials.  

COUNT OF STEPS REMOVED DUE TO LIGHT-TOUCHING / HOLDING 

SUBJECTS MEAN MEDIAN MEAN* 

14 18.7 7 5.6 
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4.0  RESULTS 

4.1 STEP TIME 

 

4.1.1 Temporal feedback group adapts back to baseline behavior 

 

The first noticeable and perhaps most important observation is that the temporal feedback 

group adapts its temporal contribution back to baseline behavior. In Figure 9 we can see that “TM 

base” and “TM steady” are non-significantly different (P=0.45) for the temporal feedback group. 

This is what we wanted to achieve using the temporal feedback, meaning we removed the temporal 

asymmetry. Let’s note that the control group reaches a steady state at the end of adaptation 

statistically different from its baseline steady state (P=0.001). This finding shows that once 

subjects have adapted to the perturbation, they can actually reach perfectly symmetrical step 

timing, if given the right instructions. In addition to this, we can see that the control group shows 

none significantly difference between “EarlyAdapt” and “TM steady”, suggesting that without the 

help of the temporal feedback, subjects don’t really adapt in the temporal domain. In other words, 

step timing can be voluntarily and consciously modified in a new environment, to counteract the 

fact that your legs are forced to move at different speed. 
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Figure 9: Step Time results. Figure A shows Step Time (stepTimeContributionNorm2) for both 

groups, through all conditions. Figure B is a statistical analysis of all conditions, within groups. 

"ns" indicates no significant different between conditions. 

 

4.1.2 No lasting AfterEffects are observed 

 

Another interesting finding is the absence of temporal aftereffect. We can see from Figure 

9 that “TM base” and “AfterEffects” are not statistically different for Step Time, in both the 

temporal feedback and the control group. Figure 10 presents a zoom on the last steps of adaptation 

and the first steps of post-adaptation. Arguably, a small transient behavior could be observed, 

however the baseline behavior is reached again in less than 6 steps (since AfterEffects are not 

statistically different from baseline). Seeing how short the aftereffects are, and based on statistical 

analysis, we will consider from now on that there are no temporal aftereffects. 

 

 

Figure 10: Step Time at the end of adaptation and beginning of post-adaptation zoom 

 

Interestingly, this finding contradicts previous studies who quantify temporal aftereffects.  Gait 

parameters are most commonly computed using kinematic data. We show here that when such 
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parameters are computed using kinetic data, we find no aftereffects in the temporal domain. This 

suggests that even though the perturbation forces subjects to learn new walking patterns, their step 

timing is not altered when going back to baseline. Large aftereffects observed in other studies 

would therefore be due to kinematic adaptation rather than an actual time stepping adaptation. In 

other words, temporal aftereffects are not a “rhythm” re-adaptation (i.e. when the heel strikes 

actually happen), but rather a walking pattern re-adaptation (i.e. their rhythm is the same but the 

legs move differently during swing time). We verified these findings by computing parameters 

using both kinetic and kinematic data sets.    Just like previous studies, we observed large 

aftereffects in the temporal domain when using the kinematic data. We will talk later in this section 

how there can be such a big difference between results, and how it can be explained. However, 

since our main analysis uses kinetic data recorded from the force plates, we can consider form now 

on that there are no aftereffects in the temporal domain.  

 

Another very important conclusion to be drawn from Figure 9 and Figure 10 is the fact that the 

temporal aftereffects observed are the same for both groups (P=0.542). Changing step times in the 

temporal feedback group, we would have expected to see an influence on the aftereffects.  

From these two findings, we can establish two important conclusions. Firstly, subjects present 

the same behavior at the end of adaptation and in post-adaptation, suggesting that nothing that they 

learned temporally in the new walking environment stayed when going back to a tied-belt 

condition. Secondly, no matter what the behavior at the end of adaptation was, the aftereffects are 

the same, confirming that there is no learning from one trial to another. 

 

4.1.3 How do temporal contributions go down to zero?  

 

If we consider baseline, a tied belt condition where no asymmetry can be observed, the 

steady state of this variable tends to zero. As discussed previously, we have shown that the 

temporal feedback allows to adapt back to baseline behavior during adaptation. Therefore, the 

steady state of the temporal feedback group during adaptation tends to zero as well. Let’s recall a 

previously established definition: 
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𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 =
∆𝑡 ∗ 𝑣̅

∑ 𝑆𝐿
 

From this equation, we see that if  

 

lim
𝑛→𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒

𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 = 0 

 

Therefore, it means that  

      lim
𝑛→𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒

∆𝑡 = 0                                                  (1)       

 

Note: 𝑣̅ 𝑜𝑟 ∑ 𝑆𝐿 might change the value of 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 but they won’t bring 

it down to zero. The mean step speed 𝑣̅ has values ranging between 650 and 700 mm/s, and the 

sum of step length ∑ 𝑆𝐿 has values ranging between 350 and 500 mm, therefore the ratio 
𝑣̅

∑ 𝑆𝐿
 is 

between 1 and 2 during the whole experiment. This confirms the veracity of equation (1). 

 

Figure 11 shows that in order to adapt back to a baseline behavior, subjects minimize their 

step time difference (note that there are actual step times, defined as ipsilateral HS to contralateral 

HS, not to be confused with stepTimecontributionNorm2 also called Step Time), which is exactly 

what we were trying to achieve with the temporal feedback given. We can see that as expected, 

subjects will reduce their 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡, and increase their 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤, in order to equalize 

them, reducing ∆𝑡. The bar plot on the right side of Figure 11 shows the steady states of each 

parameter at the end of adaptation, proven to be non-significantly different (P=0.414).  
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Figure 11: Step times evolution during adaptation for the temporal feedback group, in seconds. 

Bar plot indicates the steady state of adaptation with standard error. 

 

4.1.4 Early adaptation  

 

From Figure 9 we can see that temporal EarlyAdapt are slightly higher for the temporal 

feedback group than for the control group. This comes from a difference in step times at the 

between of adaptation between both groups. The temporal feedback group reduces stepTimeFast 

and increases stepTimeSlow, while the control group slowly increases both, keeping the difference 

constant. Therefore, for the first few steps, the step time difference is larger for the temporal 

feedback group, before a same steady state is reached. However, this difference only lasts for 8 

strides, and EarlyAdapt values are not statistically different between groups (P=0.066), so this was 

not further considered. 
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4.2 STEP VELOCITY 

 

4.2.1 How do velocities affect step times? 

 

We have shown that we managed to successfully achieve one of our main objectives of this 

study, namely making subjects voluntarily change their stepping times. From 3.1.3 we have seen 

that the step time difference can be altered changing leg velocities.  

 

 

Table 5: Velocity parameters used to modify stepping times. Each of these parameter’s variations 

(↗: increase, ↘: decrease, with the use of the temporal feedback) would reduce the step time 

difference in one stride cycle 

 STANCE SPEED SWING SPEED 

FAST LEG 𝒔𝒕𝒂𝒏𝒄𝒆𝑺𝒑𝒆𝒆𝒅𝑭𝒂𝒔𝒕 ↘ 𝒔𝒘𝒊𝒏𝒈𝑺𝒑𝒆𝒆𝒅𝑭𝒂𝒔𝒕 ↗ 

SLOW LEG  𝒔𝒕𝒂𝒏𝒄𝒆𝑺𝒑𝒆𝒆𝒅𝑺𝒍𝒐𝒘 ↗ 𝒔𝒘𝒊𝒏𝒈𝑺𝒑𝒆𝒆𝒅𝑺𝒍𝒐𝒘 ↘ 

 

Table 5 presents a summary of the available options to reduce the step time difference, 

which we is defined as ∆𝑡 = 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡 − 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤. Therefore, in order to achieve 

∆𝑡 = 0, subjects can either make 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡 shorter, or 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤 longer. For example, 

if 𝑠𝑤𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡 increases then FHS occurs sooner and then 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡 would be 

shorter. Similarly, if 𝑠𝑤𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤 decreases then SHS2 would occur later, 

lengthening 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤.  

 

 

 

 

 

 



30 

 

4.2.2 Only the slow leg velocities are affected 

 

Now that we have identified how subjects reduced their step time differences, we computed 

and plotted the four parameters discussed in section 4.2.1. A summary of the speeds of interest 

during adaptation can be found in Figure 12. On the right side of Figure 12, the bar plots show the 

steady states of each parameter and each group, as well as the standard error and P-values. The 

two groups only reach significantly different steady states for 𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤. Even though 

steady states are not significantly different for 𝑠𝑤𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤, we can also see a small 

difference on the time plot.  

 

 

Figure 12: Swing and stance speeds for slow and fast legs during adaptation. Bar plot indicates the 

steady state of adaptation with standard error. 

 

An interesting finding observed here is the fact that the fast leg speeds are not affected by 

the temporal feedback. Therefore, the temporal feedback only affects the slow leg’s speeds. It’s 

important to note that these velocities are computed for each leg independently, for the swing and 

stance phase.  
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4.2.3 Temporal feedback allows to internally reduce the perturbation 

 

We have established that the temporal feedback leads to a change of stance and swing 

velocities. While it could be easy to assume that step speeds and stance speeds are the same 

quantities, they are not. Step speed represents the speed from ipsilateral heel strike to contralateral 

heel strike, while stance speed is actually the speed from ipsilateral heel strike to ipsilateral toe 

off. Therefore, the distances covered during these events are not the same. On top of that, step 

speeds are computed during step times, while stance speeds are computed during stance times. 

Stance time represents step time plus the double support time until toe off. We can see in Figure 

13 that TM steady for Step Velocity is significantly lower for the temporal feedback. Since both 

groups are walking at the same belt speeds, exposed to the same perturbation, we were not 

expecting to see a difference here. Let’s study how the temporal feedback affected Step Velocity. 

 

 

 

Figure 13: Step Velocity results. Figure A shows Step Velocity (velocityContributionNorm2) for 

both groups, through all conditions. Figure B is a statistical analysis of all conditions, within 

groups. "ns" indicates no significant different between conditions. 

 

The first step to studying 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 is making sure that the changes 

are actually due to ∆𝑣, and not due to the 
𝑡̅

∑ 𝑆𝐿
 ratio. When examining this ratio’s steady state at the 

end of adaptation, we see no statistical difference between groups (P=0.438). 
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Therefore can consider that the changes in 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚2 from one group 

to another are entirely due to ∆𝑣. Let’s note that ∆𝑣 is the step speed difference between legs, 

which essentially represents the induced perturbation. The spit-belt conditions have the objective 

of altering this speed difference. Hence, ∆𝑣 is actually the best way to quantify the “amount of 

perturbation” that we introduced to the subjects. In the literature, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 is often 

referred to as “perturbation”. 

Figure 14 shows step speeds plotted for both groups, along with statistical analysis between 

steady states, and we can appreciate the predicted changes. For both 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤 and 

𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡, steady states are significantly different between groups. 

 

 

 

Figure 14: Step speeds for both legs and both groups. Bar plot indicates the steady state of 

adaptation with standard error with P-values. 

 

Looking at Figure 14, we see that the  increase in 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤, and decrease in 

𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠t lead to a reduction of ∆𝑣. Considering the fact that ∆𝑣 is the amount of 

perturbation introduced, what does this mean? This means subjects adapt their stepping speeds to 
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“counteract” the perturbation, in order to feel like they are less perturbed. We could talk of an 

“internal” speed adaptation, since all subjects were exposed to the same belt speeds. 

 

Note: it can be surprising that even though we established that the temporal feedback had an effect 

only on the slow leg’s velocities, we can see a change for 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡. This comes from the 

fact that 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡 is computed from parameters from both legs (𝑑𝑖𝑠𝑝𝐹𝑎𝑠𝑡 and 

𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤). Since the temporal feedback doesn’t affect 𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤 and increases 

𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤, 𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑠𝑡 decreases (see definition). Similarly, the temporal feedback 

forces 𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤 to increase, while decreasing 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡, leading to a decrease in 

𝑠𝑡𝑒𝑝𝑆𝑝𝑒𝑒𝑑𝑆𝑙𝑜𝑤.  

 

 

4.3 STEP POSITION AND STEP ASYMMETRY 

 

4.3.1 How does the temporal feedback affect the spatial domain? 

 

We have established that the temporal feedback reduces subject’s step speed difference in 

the previous section. As seen in Figure 11, at the end of adaptation, step times are the same for 

each leg in the temporal feedback group. Since the step speeds are different, we can therefore 

predict that the temporal feedback induces a spatial change as well.  

We can see from  Figure 15 that spatial contributions (step lengths) are affected by the 

temporal feedback. Similarly to the velocity contributions, however, we observe changes between 

groups only for the slow leg. Subjects from the temporal feedback group do not see a change in 

their fast leg’s step lengths, however they consistently take longer steps with their slow leg. 

 

 

 



34 

 

 

Figure 15: step lengths vs strides during adaptation trial, for both temporal feedback and control 

groups. 

 

4.3.2 Temporal feedback group spatially adapts back to baseline behavior in adaptation 

 

 

 

Figure 16: Step Position results. Figure A shows Step Position (spatialContributionNorm2) for 

both groups, through all conditions. Figure B is a statistical analysis of all conditions, within 

groups. "ns" indicates no significant different between conditions. 
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We now know that subjects from the temporal feedback group will voluntarily take longer 

steps (spatially) with their slow leg. In other words, their maximum forward amplitude is larger 

for the slow leg, i.e. the temporal feedback increases 𝛼𝑆 𝑎𝑛𝑑 𝛼𝑇. The forward amplitude of the 

fast leg is consistently larger than the one of the slow leg, i.e. 𝛼𝐹 is larger than 𝛼𝑆 𝑎𝑛𝑑 𝛼𝑇. On top 

that, the temporal feedback doesn’t change the fast leg’s step lengths, therefore 𝛼𝐹 stays constant 

across groups. Given their definition, we can conclude that the use of the temporal feedback will 

decrease 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐹𝑎𝑠𝑡 (𝛼𝐹 doesn’t change, 𝛼𝑇 increases), and increase 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑙𝑜𝑤 (𝛼𝑆 increases, 𝛼𝐹> 𝛼𝑆). Therefore, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 steady state at the end of 

adaptation is lower for the temporal feedback group than for the control group. Step Position is 

even lower since we normalize by the sum of step lengths, which is higher for the temporal hold 

feedback. 

 

These changes in step lengths explain how the temporal feedback indirectly affects the spatial 

domain to adapt back to baseline behavior (as seen in Figure 16). 

 

Note: Computed parameters 𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤, 𝑑𝑖𝑠𝑝𝐹𝑎𝑠𝑡, 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑙𝑜𝑤 𝑎𝑛𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐹𝑎𝑠𝑡 may seem 

very specific but they have been defined and accepted in the literature. 𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑙𝑜𝑤 and 

𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑎𝑠𝑡 are the general definition of step length; 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑙𝑜𝑤 𝑎𝑛𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐹𝑎𝑠𝑡 are the 

ankle distance forward with respect to the hip position; and 𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤 and 𝑑𝑖𝑠𝑝𝐹𝑎𝑠𝑡 are the 

distance covered by each individual ankle during a step. Figure 17 graphically illustrates how each 

spatial parameter in this study is computed, using limb angles.  
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Figure 17: Graphical representation of the computed spatial parameters. Red and blue curves are 

the trajectories of the fast and slow leg respectively. Each plot illustrate how a parameter is 

computed. Plot A: 𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑙𝑜𝑤 and 𝑠𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑎𝑠𝑡. Plot B:  𝛼𝑓 is what we call 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝐹𝑎𝑠𝑡. 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑆𝑙𝑜𝑤 is not represented but would simply be 𝑥𝑠(𝑆𝐻𝑆2) − 𝑥𝑓(𝐹𝐻𝑆1). Plot 

C: 𝑣𝑠𝑡𝑠 is what we call 𝑑𝑖𝑠𝑝𝑆𝑙𝑜𝑤. 𝑑𝑖𝑠𝑝𝐹𝑎𝑠𝑡 is not represented but would simply be 𝑣𝑓𝑡𝑓. (Source: 

Finley and al., 2015) 

 

 

 

 

4.3.3 Temporal feedback significantly reduces spatial aftereffects 

 

In the control group, each change in belt speeds is perceived as a new perturbation. The 

subjects actually feel like they are exposed to two different perturbations: the first one being the 

adaptation split-belt trial, the second one being the post-adaptation tied-belt trial.  
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The temporal feedback’s main effect is to suppress step time differences between legs, and 

as seen in 4.1.3 it leads to subjects walking symmetrically in the temporal domain. Another indirect 

effect is that it reduces the spatial contributions, making subjects walk symmetrically in the spatial 

domain. In both the spatial and the temporal domain, we observed an adaptation back to baseline 

behavior as a response to the temporal feedback, “counteracting” the perturbation. In other words, 

the perturbation is suppressed and subjects behave just like during baseline. Therefore, the change 

back to a tied belt trial doesn’t present aftereffects, since it won’t be perceived as a new 

perturbation. 

 

4.3.4 Step Length Asymmetry 

 

 

 

 

Figure 18: Step Length Asymmetry results. Figure A shows Step Length Asymmetry 

(netContributionNorm2) for both groups, through all conditions. Figure B is a statistical analysis 

of all conditions, within groups. "ns" indicates no significant different between conditions. Figure 

C shows statistics between groups for each condition. “*” indicates a significant difference. 
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From the definition of Step Length Asymmetry (𝑛𝑒𝑡𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) we know that this 

parameter is the sum of all three previous parameters and represents the subject’s step length 

asymmetry. From Figure 18B, we can see that the control group was able to adapt Step Length 

Asymmetry back to baseline. The temporal feedback, though, disrupts this adaptation and subjects 

from the temporal feedback group reach a TM steady different from TM base. However, from 

Figure 18C we can see that TM steady is not significantly different between groups (P=0.104). 

This leaves the effect of temporal feedback on Step Length Asymmetry rather inconclusive for 

now.  

One clear finding however is the face that the temporal feedback allows to significantly 

reduce the amount of aftereffects (P=0.01). 

 

4.4 KINETICS VERSUS KINEMATICS: RETRACTION TIME ADAPTATION 

 

4.4.1 EarlyAdapt and AfterEffects are different depending on the type of data used 

 

As mentioned earlier in the discussion, we computed our parameters of interest with both 

kinetic and kinematic data. We noticed significant differences in the temporal domain between the 

two data sets. Findings from 4.1.2 show that there were no temporal aftereffects when using 

kinetics for event detection. As reported in the literature, we found significant temporal aftereffects 

when using the kinematic data to compute parameters. Time course of all contributions, for each 

group, can be found in Figure 19. 
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Figure 19: Contributions for the control group using both kinetic and kinematic data 

 

 

 

In theory, these two methods of collecting data and computing parameters should yield the 

same results, since the same parameters are being measured. However, although the spatial and 

velocity contributions are the same, significant differences can be found between the two methods 

in the temporal domain. Adding them up to compute Step Length Asymmetry, we realize that they 

are not significantly different across groups. Still, this difference is important to understand and 

quantify, since it presents a major aspect of understanding how the temporal domain function, in 

both the kinetics and the kinematic domains. The statistic for these comparisons can be found in 

Figure 20. 
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Figure 20: Statistical summary of all contributions for all conditions. We compare the kinetic and 

kinematic data sets, for the control group, used as a reference. 

 

The next section addresses why there is a difference between those two data set, and why 

the contributions are only different in the temporal domain. 

 

4.4.2 Retraction time 

 

Figure 5 shows a summary of how parameters are computed using kinematics and kinetic 

data. In the green box, stride times are decomposed for each leg, to show step times calculation 

using kinematics (heel strikes defined as maximum forward ankle position with respect to hip 

position). In the blue box, we show step time calculation using kinetic (heel strike is the actual 
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time when the foot hits the ground) time. 𝑅𝑆 and 𝑅𝑓 are the retraction times for the slow leg and 

the fast leg, respectively.  

 

 

 

Now that we have decomposed how step times are computed, and defined the retraction 

time parameter, let’s try to establish a mathematical model to explain how the two data sets differ. 

Let’s call ∆𝑡𝐾 the step time difference for the kinematic data, and ∆𝑡 the step time difference for 

the kinetic data.  

 

∆𝑡𝐾 = 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡𝐾 − 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤𝐾 

        = (𝑅𝑓 + 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡 − 𝑅𝑠) − (𝑅𝑠 + 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤 − 𝑅𝑓) 

        = (𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡 − 𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤) − 2 ∗ 𝑅𝑓 + 2 ∗ 𝑅𝑠 

        =  ∆𝑡 + 2 ∗ (𝑅𝑠 − 𝑅𝑓) 

∆𝑡𝐾  =  ∆𝑡 + 2 ∗ ∆𝑅 

 

 

We can see that if 𝑅𝑠 is constantly larger than 𝑅𝑓, then ∆𝑡𝐾 will consistently be larger than 

∆𝑡, and inversely. Our model suggests that this is where the difference between EarlyAdapt and 

AfterEffects comes from. The perturbations force a kinematic adaptation, which suggests to be 

represented by this model. Therefore, the retraction time of the fast leg, 𝑅𝑓, is larger than the one 

of the slow leg, 𝑅𝑠, during early adaptation, which explains why EarlyAdapt is higher using kinetic 

data. During the early post-adaptation, on the contrary, 𝑅𝑠 is larger than 𝑅𝑓, leading to higher 

aftereffects when using kinematic data. Figure 21 is a plot of these time differences and retraction 

time difference that validates the model established. 
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Figure 21: Graphic representation of the model explaining the difference between kinetic and 

kinematic data sets. Blue and orange curves are the evolution of the step time difference 

(throughout the last three trials) for the kinetic and kinematic data sets, respectively. The yellow 

curve is the evolution of the retraction time difference (multiplied by a 2 factor to satisfy the 

established model). Therefore, the orange curve is the sum of the blue and yellow curve. 

 

 

 

Note: An important limitation to this simplified model, is the fact that the retraction times are not 

always the same. If we consider SHS to SHS2 to be an 𝑛𝑡ℎ stride cycle, then an more accurate 

model would be the following one. 

 

(∆𝑡𝐾)𝑛 = (𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡𝐾)𝑛 − (𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤𝐾)𝑛 

              = ((𝑅𝑓)𝑛 + (𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡)𝑛 − (𝑅𝑠)𝑛+1) − ((𝑅𝑠)𝑛 + (𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤)𝑛 − (𝑅𝑓)𝑛) 

              = ((𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝐹𝑎𝑠𝑡)𝑛 − (𝑠𝑡𝑒𝑝𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑤)𝑛) − 2 ∗ (𝑅𝑓)𝑛 + (𝑅𝑠)𝑛 + (𝑅𝑠)𝑛+1 

              = (∆𝑡)𝑛 + ((𝑅𝑠)𝑛 + (𝑅𝑠)𝑛+1 − 2 ∗ (𝑅𝑓)𝑛) 

(∆𝑡𝐾)𝑛  = (∆𝑡)𝑛 + (∆𝑅̃)𝑛 
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Where  

(∆𝑅̃)𝑛 = (𝑅𝑠)𝑛 − 2 ∗ (𝑅𝑓)𝑛 + (𝑅𝑠)𝑛+1 

 

Although we will not study this model further, it is important to acknowledge that this 

recurrence is a better representation of what actually happens. 
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5.0  DISCUSSION AND FUTURE WORK 

 

This study was conducted to establish if the spatial and temporal contributions of gait can be 

controlled independently, using a specific condition of split-belt walking. The first question we 

had to answer was whether it was possible or not for humans to adapt their stepping times 

voluntarily. We showed that with the use of a visual temporal feedback, subjects were perfectly 

capable of reaching the targets they were given, adapting their step times. Therefore, the nervous 

system is able to be voluntarily manipulated to change step timing patterns. With the use of this 

temporal feedback, we also showed that we could “clamp” the temporal gait features, forcing 

subjects to suppress all step time asymmetries they would normally show in a split-belt condition, 

as seen in the control group. In other words, we were able to prevent subjects from adapting in the 

temporal domain, bringing the step time contribution to zero.  

While modulating subject’s step times, we wanted to see if the spatial contributions would be 

affected. We prove that the use of the temporal feedback affects subjects leg speeds, in order to 

“internally” reduce the felt perturbation. The subjects from the temporal feedback group adapted 

in order to feel less perturbed than the ones who were not given any feedback, which had the 

impact of lowering step position. When forcing subjects to reduce their stepping asymmetry with 

the use of the feedback, the slow leg counteracted by taking longer steps, and therefore reducing 

the step position contribution. This leads us to the conclusion that temporal gait features cannot be 

controlled independently from the spatial ones.  

Regarding step symmetry, we proved that suppressing the temporal asymmetry leads the 

subjects to a larger step length asymmetry, showing that the spatial domain cannot compensate for 

the perturbation alone. 

 

Future work that could be done would be to determine if it possible to set subjects’ step time 

asymmetry to an arbitrary value for which the spatial gait features would be able to recover the 
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step length asymmetry. Now that we know that humans are able to voluntarily change they step 

times, we could also test the visual temporal feedback on hemiparetic patients who present large 

temporal asymmetries. If they are able to complete this task – possible for humans – this could 

lead to promising rehabilitation processes to help recover temporal symmetry in gait. 
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