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Abstract

Circadian cycles in humans are an important health indicator in cardiovascular disease. With 

recent developments in ventricular assist devices (VADs), continuous recording of cardiac 

circadian cycles in cohorts of heart failure patients is now possible for the entire life of the 

implant. Specifically, VADs continuously record multivariate data on blood flow and device 

status providing a unique longitudinal view of circadian cycles in these cohorts.

Our statistical challenge is to simultaneously model the cohort average pump output (PO) 

and pulsatility (PI) circadian cycle measurements and patient specific longitudinal evolution 

of his/her circadian cycle. While functional principal components analysis (FPCA) methods 

exist for the analysis of univariate longitudinal functional data with this structure, these 

techniques do not address bivariate functional data.

We first divide time into two time scales: “fast” (circadian) and “slow” (longitudinal). 

We assume that the data are generated by smooth functions of time and extend FPCA to 

include both time scales. Use of a marginal model separates the estimation and inference for 

the two time scales. On the circadian time scale, we use wavelet based FPCA to estimate 

the cohort mean cycle and subject specific cycles. Confidence bands for the cohort mean 

and other estimates are calculated with a bootstrap. On the longitudinal time scale, a 

second FPCA step captures the subject specific longitudinal evolution. Furthermore, using 

data from VAD patients, we implement our method to characterize the population circadian
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cycle and identify regions of high between-subject variability in both the fast and slow time

scales.

Our model provides a novel approach for analyzing multivariate circadian cycles. This

work opens new avenues to understand the relationship between circadian cycles in simul-

taneously recorded cardiovascular measurements. The public health significance is that care

can be improved with better understanding of the longitudinal course of these patients.

Keywords: Functional Data Analysis, Discrete Wavelet Transformation, Marginal Covari-

ance Kernel, Physiological Signal Analysis, Circadian Cycle, Chronobiology.
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1.0 INTRODUCTION

Multivariate cardiac signals measured over a circadian (daily) cycle are frequently encoun-

tered in the study of the long term health of heart failure patients. In previous chrono-

biological studies, both blood pressure and heart rate show circadian variation in healthy

humans (Millar-Craig et al., 1978; Lombardi et al., 1992; van de Borne et al., 1992; Takeda

and Maemura, 2011). In cardiovascular disease (CVD), including all types of CVD from mild

hypertension to end stage heart failure (HF) and myocardial infarction (MI), disruption of

the circadian cycle is associated with both increased risk of CVD as well as a symptom of

CVD itself (Millar-Craig et al., 1978; Lombardi et al., 1992; Takeda and Maemura, 2011).

During recovery from a MI, the amplitude of circadian variation in heart rate is depressed

(Lombardi et al., 1992). The same pattern is seen in both heart rate and blood pressure

circadian cycles in HF patients. Van de Borne et al. (1992) demonstrate that a blood pres-

sure circadian cycle returns to normal in heart transplant patients within seven months post

transplant. Due to the recent increase in use of left ventricular assist devices (VADs), a need

for understanding the circadian cycles in these patients has arisen.

A VAD is a life-saving medical device consisting a pump implanted in a patient’s chest

(Slaughter et al., 2010). Blood flows into the pump through an inflow cannula in the left

ventricle and out into the ascending aorta and to the rest of the body. Blood is pumped

using a continuously spinning impeller pump. The blood flow depends on both the pump

speed and the patients heart function.

With the appearance of continuous logging of multiple device and hemodynamic param-

eters (power, pump output [PO], pulsatility [PI], speed) in modern VADs, the ability to

simultaneously study the daily evolution of the circadian cycle in these variables becomes

possible. The two variables of clinical interest here are PO and PI. PO is a measure of
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blood flow through the VAD. PI is a measure of blood flow variability. In patients with

a VAD, both the characteristic shape and longitudinal evolution of the circadian cycles in

PO, PI, and power are hypothesized to be important markers of long term health (Slaughter

et al., 2010; Suzuki et al., 2014). However, no studies have yet linked this circadian variation

to health outcomes. In one of the earliest studies of circadian cycles in VADs, Slaughter

et al. (2010) shows that a circadian cycle in VAD power is present in VAD patients by end

the of the first month post implant. Suzuki et al. (2014) report monthly variation in VAD

power circadian cycle parameters such as amplitude and phase. These studies have analyzed

changes in the circadian cycle by comparing an estimated parameter or sample means across

several time points. Despite this recent research, the clinical meaning of these cycles in VAD

patients is poorly understood.

As part of a larger study of circadian waveform behavior and its continuous longitudinal

evolution in VAD patients, we propose a new functional data analysis method, multivariate

multiscale functional principal component analysis (MMFPCA). Analyzing a small pilot

dataset, our goal is to formulate answers to the clinical questions about a cohort of patients

with VAD data such as: “Does a circadian cycle exist for VAD patients?” “If so, what

is its shape?” “How do PO and PI jointly vary across a day?” Our pilot data consist of

VAD clinical log files for nine patients sampled from a larger database at a major academic

medical center. Each log file contains bivariate measurements of PO and PI recorded every

15 minutes for the entire life of the VAD implant. Data are downloaded at clinic visits but

contains missing periods as data is only stored for 30 days before being over written. In our

cohort, the length of follow-up ranged from 20 to 79 days after gaps were excluded.

Example data from a single patient are presented in Figure 1. This figure shows 20 days

of data on the PO and PI waveforms with visually strong and correlated circadian cycles.

For this patient, the daily minimum of PO is about 5000 mL/min, and the daily maximum

is over 7000 mL/min. Similarly, the PI circadian variation ranges from 4000 mL to 9000 mL.

Appendix A contains plots of the remaining eight patients. Circadian variation is seen in

the other patients.
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Figure 1: Example VAD log file data.

 Sample profile for 20 days of pump output and pulsatility for a representative patient.
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Traditionally, the data are often analyzed using spectral or frequency domain methods

such as periodograms and extensions. In the study of circadian cycles (chronobiology), the

cosinor model, a parametric model that assumes the circadian cycle takes on a cosine shape,

is often used. An excellent review by Refinetti et al. (2007) covers both the spectral analysis

and cosinor approach in depth. While frequency domain approaches are briefly covered, this

dissertation focuses mainly on the analysis of the functional aspects of our motivating data.

Our statistical approach begins by viewing the VAD data as noisy observations on mul-

tivariate functions of the two scales of time, the important features of these data occur over

two independent time scales: the circadian cycle defining a “fast” time scale, t, and its longi-

tudinal evolution defining a “slow” time scale s. However, the data are originally collected as

a function, F (τ), of a single time variable, τ, requiring a transformation onto the two time

scales, (t, s). We introduce a novel statistical framework to jointly model both fast and slow

time scales and the multivariate structure by modeling F (τ) using a function F (t) for the

fast time cycles that is repeatedly observed over a range of days. The longitudinal evolution

over s is modeled with a function G(s). This multiple scale approach was motivated by the

two time solution method used in solving non-linear ordinary differential equations (ODE)

(Fink et al., 1974; Strogatz, 1994). This framework formalizes the intuitively appealing

approach dividing a continuously recorded signal into one period long blocks.

Instead of the challenging estimation of F (τ) for the entire cohort, the multiple time

scale changes the estimation problem to the tractable analysis of repeated observations of

F (t). Several recent papers address the modeling of repeatedly observed functions. These

methods are based on the functional extension of principal component analysis, FPCA,

which models random functions using an empirical basis function expansion. The longitudi-

nal functional principal component analysis (LFPCA), introduced by Greven et al. (2010),

models the repeatedly observed functions using the FPCA equivalent of a linear mixed model,

the longitudinal evolution is required to be linear. Park and Staicu (2015) extend LFPCA

to the case when the longitudinal evolution follows an unknown function. This approach

is effective when the longitudinal follow-up information is sparsely observed. LFPCA is

one specific model that uses the marginal FPCA approach discussed in Chen et al. (2016).

Another approach is repeated function functional principal component analysis (RF-FPCA)
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introduced by Chen and Müller (2012). RF-FPCA models the univariate repeated functional

observations by correlated conditional FPCA for each time unit of longitudinal follow-up.

RF-FPCA also uses a non-parametric form for the effect of longitudinal time.

In order to model our VAD data, LFPCA and RF-FPCA must be both extended to

multivariate observations that are densely sampled on both fast and slow time scales. Ac-

cordingly, our proposed method is inspired by RF-FPCA’s approach for dense longitudinal

data and LFPCA’s marginal decomposition of the covariance structure (Chen et al., 2016;

Park and Staicu, 2015; Greven et al., 2010). The marginal covariance model is used as a

starting point as it easily extends to the multivariate case, unlike the conditional covariance

model used in RF-FPCA.

1.1 RESEARCH QUESTIONS

The following research aims will be addressed in this dissertation:

1. Develop a multivariate functional principal component analysis (MFPCA) to analyze the

daily cyclic and long term behavior of a population of VAD patients when all patients

show a daily cycle.

2. Characterize the performance of the new method using large sample theory and finite

sample simulation studies.

3. Analyze the motivating VAD cohort with the new technique.
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2.0 EXPLORATORY DATA ANALYSIS OF THE VENTRICULAR ASSIST

DEVICE CIRCADIAN PATTERNS

In this chapter, we present results from an exploratory data analysis of the waveforms seen

in the ventricular assist device (VAD) data presented in Figure 1. Throughout this chapter,

consider the sample grid for each patient τℓ with ℓ = 1, 2, . . . , n × Ji. Here, n is the total

number of samples per day and Ji is the numbers of that each patient i is observed. Our

exploration of the patterns in the VAD clinical log files consists of using periodograms to

search for signals with a period of one day. Also, we break both PO and PI into day long

blocks. Then, surface plots of the raw data aid the visualization of any circadian pattern,

and its longitudinal evolution. In addition, both the daily marginal patient specific means

and the marginal patient specific longitudinal evolution are examined.

2.1 PERIODOGRAM ANALYSIS OF THE VAD DATA

Because one of the motivating clinical questions is to characterize the presence of a circadian

pattern in the VAD patient population, we use a periodogram to examine the strength of any

periodic signal in each patients data. At each frequency, ωg, a periodogram P̂i(ωg) represents
the sample amplitudes of sine and cosine functions oscillating at ωg (Shumway and Stoffer,

2011). If a patient has a circadian cycle, a strong peak is expected a 1 cycle/day.
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Unless the circadian cycle is represented by a pure cosine signal, peaks at the higher

order harmonic frequencies will also be present. A harmonic frequency is any frequency that

is an integer multiple of fundamental frequency, 1 cycle/day, in our case. Visual examination

of the harmonics aids in deciding if spectral analysis of repeated functional data analysis is

appropriate for out VAD data.

As P̂i(ωg) is an inconsistent estimate of the power spectrum, a smoothed estimate is

needed. In our case, we used a Welch periodogram, which smooths P̂i(ωg) by sub-setting

Fi(τℓ) into non-overlapping blocks (Welch, 1967). Then a periodogram is estimated for each

block. Finally, these are averaged together yielding a smoothed estimate.

The Welch periodograms of PO and PI are shown in Figure 2 for a representative patient.

Additional periodograms for the other eight patients can be found in Appendix B. In

Figure 2, a peak at 1 cycle/day in both PO and PI shows that both PO and PI have a

circadian cycle. As the periodogram contains significant peaks at harmonics of 1 cycle/day,

the circadian cycle has a shape that cannot be accurately captured as a linear combination

of only sine and cosine functions with daily periods. Additionally, an increase of power (≈ 80

dB) in the very low frequency end of the spectrum indicates that the random process is likely

non-stationary. The other eight patients show a similar pattern.
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Figure 2: Welch Periodogram from a representative patient showing circadian behavior.

2.2 TIME DOMAIN EXPLORATORY DATA ANALYSIS

As each patient has a circadian cycle, the data is now split into non-overlapping day long

blocks. Figure 3 presents 20 days pump output plotted in one day long blocks for the same

patient as in Figure 1. In Figure 3, different colors represent different days. For this patient,

circadian variation is seen in each seen for all 20 days. Also, we observed that the average

PO is lower during the days 10-15 than during the first ten days or last five days. Figure 1

also shows that measurement error has two major regimes (low during sleep and high during

the day). Therefore, level-dependent noise is present in the data.

Even without any smoothing, both the circadian cycle and its longitudinal evolution can

be simultaneously visualized. The PO circadian cycle consists of two potentially smooth

regions, sleeping and waking, with an abrupt change during the morning hours. Examining
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the patient’s raw average circadian cycles for both PO and PI, see Figures 4 and 5, circadian

variation is clearly seen in all patients. While there may exist a smooth circadian cycle for

any patient, abrupt jumps are seen in most patients, e.g., the time period from 0700h-1100h

in the bottom center patients shows a rapid increase in PO, then decrease. The PI circadian

cycle, see Figure 5, shows a similar and mostly likely correlated pattern. Also, all patients

have a rapidly changing PO and PI during the morning wake-up period. Outside of this

period, the PO and PI levels change slower. In Figures 6 and 7, each days average PO or

PI is plotted against calendar day. In the top left plot of Figures 6 and 7, both PO and PI

are seen to decline from their highest level at day 1 to their lowest level at day 12. During

these 12 days, PO declines by approximately 1000 mL/min and PI by 2000 mL. Then both

sharply rebound by day 15. Several other patients show day-to-day fluctuations of a similar

magnitude. In contrast, the plots in the lower right show little longitudinal variation in flow.

Therefore, we focus on introducing estimation that are able to model functions with

multiple types of smoothness and does not fail is the presence of non-white noise. Several

candidate estimation techniques include the use of wavelet basis functions and varying band-

width smoothers. We use wavelet basis functions throughout the rest of this dissertation to

address these features of the data as the use of a wavelet basis has better performance in

data with regions of rapid and slow variation.
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Figure 7: Raw mean puslatility longitudinal evolution for nine patients.
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3.0 CURRENT FPCA METHODS AND THEORY

Before reviewing the existing FPCA methods, we introduce several important sampling

schemes on both the fast and slow time scales. On the fast time scale, all methods discussed

and developed assume that the data points are equally spaced and have the same number

of samples each day. Therefore, the observed fast time data points form a dense regular

grid tl with l = 1, . . . , n. The slow time sampling can take on several types of sampling.

It is worth exploring four different types of longitudinal sampling encountered in LFD. If

we denote each repeated observation time of sij for the ith subject, sij’s fall into one of

several main cases. The first case is dense regular follow-up where the sij are sampled for

all values of j ∈ [0, Ji]. In this case, each subject can have the same length of follow-up, i.e.,

J1 = J2 = · · · = JN = J (balanced design) or unbalanced follow-up with no missing data. In

both of the these cases, the total number of observations, N×J or
∑

i Ji diverges as Ji → ∞.

A third case is dense regular follow-up with missing data. Alternatively, the follow-up can

have sparse irregular sampling with subjects having different lengths of follow-up Ji and

random gaps between each sij. Here,
∑

i Ji < ∞ as Ji → ∞. Equipped with the sampling

schemes, we now embark on an overview of existing FPCA techniques for both cross-section

(single observation) functional data and longitudinal (repeated observation) functional data.

3.1 CROSS-SECTIONAL FUNCTIONAL DATA ANALYSIS WITH FPCA

Before illustrating analysis of longitudinal FPCA, we overview FPCA for a single observation

of univariate or multivariate functions on N subjects. We term this analysis cross-section

FPCA to distinguish it from longitudinal or repeated FPCA. The observed data consist of
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functions yi(t) observed on i = 1, . . . , N subjects at equally spaced time points tl = t1, . . . , tn.

For example, a study may be interested in asking what is the population average VAD PO

curve during the first day post hospitalization and how PO varies betweens patients.

These data are modeled assuming that they are generated by a smooth function and

observed with noise (Ramsay and Silverman, 2005). Therefore, we start all FDA with the

model

yi(t) = Fi(t) + ǫi(t), (3.1)

where Fi(t) is a subject specific random function with mean function µ(t) and covariance

function K(t, t′), and noise process ǫi(t). Defining centered subject specific random functions

as Xi(t) = Fi(t) − µ(t), the covariance function is the expectation of product of centered

random functions,

K(t, t′) = cov(Xi(t), Xi(t
′)) = E

[
Xi(t)Xi(t

′)
]
. (3.2)

This formulation leads to the model

yi(t) = µ(t) +Xi(t) + ǫi(t). (3.3)

At the observed time points tl, Ramsay and Silverman (2005) argue that the sample

mean vector

µ̂(tl) =
1

N

N∑

i=1

yi(tl) (3.4)

and sample covariance matrix

K̂(tl, tl′) =
1

N − 1

N∑

i=1

(
yi(tl)− µ̂(tl)

)(
yi(tl′)− µ̂(tl′)

)
(3.5)

are reasonable but noisy estimators for the population mean and covariance. These estimates

are used in FPCA. As both (3.4) and (3.5) still contain noise, a regularization step is included

in FPCA. While the data can be pre-smoothed, we recommend that regularization takes place

during FPCA to both prevent over-smoothing and reduce to the computational burden.

Details of several smoothing procedures are discussed in Chapter 4.

In this dissertation, all unknown functions such as µ(t) can be accurately represented

by a basis function expansion. If φp(t) form a set of P orthogonal basis functions on the

domain t ∈ [0, T ], then µ(t) =
∑P

p=1 ξpφp(t) where ξp are fixed basis coefficients. Similarly,
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a random function Xi(t) has the approximate expansion Xi(t) ≈
∑P

p=1 ξipφp(t) where the ξip

are random basis coefficients. If the basis functions are known functions such as B-splines

or trigonometric functions, the coefficients are estimates using techniques such as smoothing

or p-splines, kernel density estimators, or wavelets, see Ramsay and Silverman (2005). If

the basis functions are unknown, FPCA is used to determine a set of basis functions that

minimizes the square error of the approximation of X̂i(t). As FPCA forms the basis of

several important LFDA methods, we provide an in-depth review of FPCA.

The condition of least square approximation error implies that a FPCA basis can be found

using the least square objective function, (Ramsay and Silverman, 2005). For a population

of N subjects, the objective function is

H =
N∑

i=1

‖Xi(t)− X̂i(t)‖22

=
N∑

i=1

∥∥∥∥∥Xi(t)−
∞∑

p

ξipφp(t)

∥∥∥∥∥

2

2

, (3.6)

where ‖ · ‖2 is the L2-norm for functions defined on L
2. This norm has the integral represen-

tation

‖Xi(t)‖22 =
∫

T

Xi(t)
2 dt,

for a function Xi(t) defined on a domain, T . Ramsay and Silverman (2005) show that the

set of basis functions that minimizes (3.6) has the additional property that it maximizes the

amount of variation explained in the random functions Xi(t).

3.2 THEORECTICAL SUPPORT OF FPCA VIA THE

KARHUNEN-LOÈVE THEOREM AND MERCER’S THEOREM

The theoretical support for FPCA is the Karhunen-Loève expansion and Mercer’s theorem

(Happ and Greven, 2015). Mercer’s theorem allows for the eigen-decomposition of a covari-

ance function K(t, t′) into eigenvalues λp and eigenfunctions φp(t). Under the assumption
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that K(t, t′) is square integrable, Mercer’s Theorem states that

K(t, t′) =
∞∑

p=1

λpφp(t)φp(t
′), (3.7)

with the eigenvalues and eigenfunctions being solutions to

∫

T

K(t, t′)φp(t
′) dt′ = λpφp(t). (3.8)

When Mercer’s theorem holds, the Karhunen-Loève theorem states that a random function

has a basis expansion

Xi(t) =
∞∑

p=1

ξipφp(t), (3.9)

where the basis coefficient or principal component (PC) scores are

ξip =

∫

T

Xi(t)φp(t) dt (3.10)

with ξip ∼ N(0, λp) that are uncorrelated for different p. For a subject i, the predicted

response function is

yi(t) = µ(t) +
∑

p

ξipφp(t).

For multivariate functions, the case when yi(t) consists of D simultaneous observations

instead of 1 observation, analysis the mean function µ(t) is unchanged and is conducted in a

component-wise fashion. However, analysis of multivariate random functions Xi(t) requires

an adjustment to the covariance function K(t, t′), Karhunen-Loève theorem and Mercer’s

theorem. For multivariate data, the covariance function changes to

K(t, t′) = E
[
Xi(t)X

t
i (t

′)
]
. (3.11)

Accordingly, the eigenfunctions from equations (3.7) and (3.9) change to φp(t). However,

the eigenvalues and the PC scores remain scalars. This small change in the theory will

cause challenges in FPCA estimation, discussed in Section 5.2.1. These theorems provide

a firm foundation for the creation of a data driven basis set that has minimal least square

approximation error.
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3.3 LONGITUDINAL FUNCTIONAL DATA ANALYSIS WITH FPCA

Often, the function of interest is observed not just once, but repeatedly observed over multiple

days, weeks, years. For example, the VAD power circadian cycle is recorded for each day that

the patient has a VAD implanted. Therefore, we introduce both how functions are observed

longitudinally and detail theory and application of two useful existing models: LFPCA and

RF-FPCA. While both LFPCA and RF-FPCA are able to analyze longitudinal functional

data (LFD), they differ in approach, interpretation, and computing time.

Both methods start with the idea that the LFD form a two-dimensional surface on the

domain (t, s). They model the cohort mean surface µ(t, s) and provide two different FPCA

models for the random functions Xi(t, s). For both RF-FPCA and LFPCA, the basic model

for LFD when both t and s are continuous variables is

yi(t, s) = Fi(t, s) + ǫi(t, s)

= µ(t, s) +Xi(t, s) + ǫi(t, s), (3.12)

where yi(t, s) are the observed data, Fi(t, s) is a random surface with mean surface µ(t, s)

and mean zero subject specific surface Xi(t, s) = Fi(t, s) − µ(t, s) with covariance function

K(t, t′, s, s′) = cov
[
Xi(t, s), Xi(t

′, s′)
]
, and ǫi(t, s) is the error which is specified for each

model. In (3.12), the random functions have a two dimensional Karhunen-Loève expansion

Xi(t, s) =
∞∑

p=1

ξipφp(t, s) (3.13)

where φp(t, s) are the eigensurfaces of

K(t, t′, s, s′) = cov
[
Xi(t, s), Xi(t

′, s′)
]
=

∞∑

p=1

λpφp(t, s)φp(t
′, s′) (3.14)

with eigenvalues, λ1 > λ2 > · · · > λ∞. The PC scores are found with the double integral

ξip =

∫

S

∫

T

Xi(t, s)φp(t, s) dt ds.
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Conducting FPCA on the full covariance, K(t, t′, s, s′), is challenging as a four dimensional

smoothing step is required. Instead both RF-FPCA and LFPCA conduct a two step analysis

of the covariance.

As the mean surface is estimated by well accepted techniques, both LFPCA and RF-

FPCA focus on modeling the random processes Xi(t, s), see details in Section 4.2. RF-FPCA

models the conditional stochastic processes Xi(t|s) with a set of conditional FPCA models

that depends upon the longitudinal observation. These expansions and the associated basis

functions are dependent on longitudinal time. The longitudinal dependence in the Xi(t|s) is
modeled through a second stage FPCA. In contrast, LFPCA uses a longitudinally constant

set of basis functions for Xi(t, s) with the longitudinal dependence induced through time

varying coefficients, ξip(sij) when sij form a sparse sample (case 4).

3.3.1 Repeated Function FPCA

Chen and Müller (2012) model Xi(t|s) by a two step Karhunen-Loève expansion instead

where the function X(t, s) is observed repeated for fixed s leading to the conditional repre-

sentation X(t|s). For the ith subject,

Fi(t|s) = µ(t|s) +
∞∑

p=1

ξip(s)φp(t|s) (3.15)

where for fixed s, φp(·|s) are the eigenfunctions of the covariance function K(t, t′|s) =

cov
[
X(t|s), X(t′|s)

]
and ξip(s) are the corresponding PC scores which are random functions

of s with mean zero and var
[
ξip(s)

]
= λp(s) for fixed s.

Now a second Karhunen-Loève expansion is applied to the ξip(s) representing these func-

tions as

ξip(s) =
∞∑

q=1

ζiqpψqp(s) (3.16)

where ψqp(s) are the “second level” eigenfunctions and the mean zero ζiqp are “second level”

PC scores. The associated covariance operator has kernel K(s, s′) = cov
[
ξip(s), ξip(s

′)
]
.
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Then, they combine the Karhunen-Loève expansions in Equation (3.15) and Equation

(3.16) leading to the final model

Fi(t|s) = µ(t|s) +
∞∑

p=1

∞∑

q=1

ζiqpψqp(s)φp(t|s) (3.17)

= µ(t|s) +
∞∑

p=1

∞∑

q=1

ζiqpϕqp(t|s)

where ϕqp(t|s) = ψqp(s)φp(t|s). The surfaces, ϕqp(t|s),describe how the FPCA basis varies

over time.

In order to use the model in (3.17), we need to both truncate the infinite sums as well

as estimate a smooth mean function, µ̂(t|s), and covariance functions K̂(t, t′|s). Chen and

Müller (2012) recommend setting the size of each FPCA basis is determined using fraction

of variance explained (FVE), although both AIC and BIC also give reasonable results. The

estimation of the mean and covariance depends upon both the sampling in both t and s.

Chen and Müller (2012) assume that sampling in the t−direction to be on a dense regular

grid. All cases of longitudinal sampling can be analyzed with RF-FPCA by changing the

FPCA algorithm.

3.3.2 Longitudinal Functional Principal Component Analysis

When the subjects have sparse longitudinal sampling, LFPCA can be used instead of RF-

FPCA. In contrast to RF-FPCA, LFPCA uses a longitudinally constant set of basis functions,

φp(t), with time varying coefficients, ξip(sij), where sij are the subject specific longitudinal

observations, (Park and Staicu, 2015; Greven et al., 2010). Park and Staicu (2015) introduce

a modified version of (3.12) for sparse follow-up:

yi(t, sij) = µ(t, sij) +Xi(t, sij) + ǫi(t, sij), (3.18)

where all terms are defined as previously but evaluated at the time points sij. However, the

random functions, Xi(t, sij), have different Karhunen-Loève expansion,

Xi(t, sij) =
∞∑

p=1

ξip(sij)φp(t),
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with a marginal covariance K(t, t′) =
∫ ∫

K(t, t′, s, s′) ds ds′. Chen et al. (2016) refers to this

type of covariance kernel as a marginal kernel. Using the same strategy of a double FPCA,

the full LFPCA model is

yi(t, sij) = µ(t, sij) +
∞∑

p=1

∞∑

q=1

ζiqpψqp(sij)φp(t) + ǫi(t, sij), (3.19)

where ψqp(sij) are the eigenfunctions of the longitudinal covariance function

Kp(sij, s
′
ij) =

∑

q

λqpψqp(sij)ψqp(s
′
ij),

ζiqp =

∫
ξip(sij)ψqp(sij) ds,

ǫi(t, sij) is the error term, and all else is defined as previous. In any application, the infinite

sums are truncated using FVE or another method.

As these models consist of three parts, mean function (surface), a random function for

the domain T , and a longitudinal random function on S, the estimation methods considered

in Section 4.4 are broken down in the same fashion. For both RF-FPCA and LFPCA,

the mean surface estimation and both FPCA estimation steps are estimated with existing

algorithms. However, both methods introduce new techniques to handle the estimation of

the ξip(s). These topics are the focus of the next Chapter.
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4.0 CURRENT FPCA ESTIMATION ALGORITHMS

In Chapter 3, we introduced several models for analyzing longitudinal functional data and

the theoretical backing. Before any of these techniques are useful for analyzing data, an

estimation procedure is needed. This chapter consists of three main sections: function esti-

mation with a spline basis, function estimation with a wavelet basis and FPCA estimation.

Splines are introduced as they are commonly used and necessary for understanding exist-

ing techniques. In addition, wavelets are introduced as they are used for the estimation

algorithm of the new method, see Chapter 5.

4.1 ESTIMATION WITH A SPLINE BASIS

A popular functional estimation approach for estimating an unknown function such as µ(t)

uses a B-spline basis. We first discuss spline estimation for functions of one domain variable

before moving on to functions of two domain variables and tensor product splines. In this

section, we discuss estimation of a mean curve µ(t) of data Yi(tl) = µ(tl) + ǫi(tl) observed

on i = 1, . . . , N subjects and at time points tl where l = 1, . . . , n. Here, ǫi(t) are mean zero

normally distribute random variables. The covariance structure is discussed separately for

each estimation method.

B-spline basis functions are a set of known polynomial functions, eg(t), of degree m with

compact support that form an orthonormal basis for L
2 on an interval [t0, tmax] (de Boor,

1972; Schumaker, 2007). To represent a function µ(tl) observed at time points tl ∈ [t0, tmax]
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using a spline basis, first partition of [t0, tmax] into G intervals such that each interval is

Ig = [tg, tg+1), g = 1, 2, . . . , G+ 1.

The points, tg, are called knots, and successive basis functions are joined at a knot (Schu-

maker, 2007). The basis functions, eg(tl), havem−1 continuous derivatives. Using a B-spline

basis, a smooth function such as µ(t) is represented by

µ(t) =
G∑

g=1

ageg(t), (4.1)

where ag are the basis coefficients, eg(t) are B-spline basis functions, and G is the number

of functions.

The first step in estimating (4.1) is to select the number and location of the knots must be

determined. One option is to pick a small number of knots yielding a very smooth estimate

of µ(t). However, this approach fails to capture interesting behavior of the data. To make

sure that the data are well described, a knot can be placed at every time point tl for a

total of n knots. However, this approach may lead to the over-fitting of the data with the

estimated function µ̂(tl) passing through every Ȳi(tl) =
∑

i Yi(tl)

N
. To prevent this over-fitting,

some type of regularization or penalty on the size of the spline coefficients must be used.

Two common types of penalties are continuous penalties, often on the second derivative,

that lead to smoothing splines and discrete or differencing penalties, often on the second

difference, that lead to the P-spline solution (Ramsay and Silverman, 2005; Eilers and Marx,

1996). Both of techniques penalize have a similar effect to penalize the fit if the estimated

function µ̂(tl) has a large global curvature measure.

To fit this spline model of the data, the least squares objective function in Equation (4.3)

is minimized with respect to the coefficients ag in (4.1)

SSE =
1

N

N∑

i=1

n∑

l=1

[
Yi(tl)−

G∑

g=1

ageg(tl)

]2
(4.2)

Following the approach of Ramsay and Silverman (2005), equation (4.2) is re-expressed in

matrix notation

SSE =
1

N

N∑

i=1

(Yi −EA)t(Yi −EA), (4.3)
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where Yi is a data column vector, E is a matrix of basis functions, and A is a matrix of

coefficients. The weighted least squares criteria can also be used if the error structure is

believed to not be i.i.d normal with a covariance matrix, Σ, leading to the addition of a

weight, W = Σ−1, to (4.3),

SSEw =
1

N

N∑

i=1

(Yi −EA)tW−1(Yi −EA).

The smoothing spline model is a common choice for fitting (4.3). A smoothing spline

sets the number of basis functions equal to the number of observations, G = n, and places

a knot at each time point tl. If this model is directly applied to (4.3), this spline model is

over-parametrized as the number of basis coefficients equals the number of data points. To

prevent over-fitting of the model, roughness penalties are incorporated into the least squares

objective function (Silverman, 1985). The penalized least squares criteria is

SSEPEN =
1

N

N∑

i=1

(Yi −EA)tW−1(Yi −EA) + λAtDA (4.4)

Here, λ is a smoothing parameter that controls how much impact the penalty term AtDA

has on the fit and D is a matrix of derivatives of eg(tl). Often the 2nd derivatives are used

leading to a cubic smoothing spline model. When λ = 0, the spline fit by (4.4) interpolates

the data, and when λ→ ∞, the spline fit by (4.4) is a linear least squares regression of the

data Y . (4.4) has the effect of shrinking the coefficients ag towards a linear fit while allowing

for important curvature in µ(t). Ramsay and Silverman (2005) provide a solution to (4.4) in

terms of a smoothing matrix

S(λ) = E
(
EtWE + λD

)−1
EtW . (4.5)

For observations, Yi, the underlying smooth function µ(tl) is estimated by

µ̂λ = S(λ)
1

N

N∑

i=1

Yi.

Notice that µ̂λ is still a function of the unknown smoothing parameter λ. Estimation of λ̂

depends on the type of error process ǫi(tl). We consider two types of error structures, white

noise and colored noise. We also discuss estimation of λ̂ in each case.
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4.1.1 Smoothing Parameter Estimation

Since all of the above estimation techniques depend on a tuning parameter, λ, the parameter

must either be set by hand or estimated from the data using a pre-specified criterion. As

manual control of the tuning parameter is impractical, automated techniques are used. These

techniques are based on minimizing the mean square error (MSE) E‖µ̂λ(tl)− µ(t)‖ = ǫi(tl)

for the spline estimation. An estimate λ̂ that minimizes the MSE is considered optimal.

If the error process ǫi(tl) is assumed to be a white noise process, the MSE can be estimated

using the leave one observation out cross validation estimator (CV). The CV estimator of

the MSE is

CV (λ) =
1

N

N∑

i=1

1

n

n∑

l=1

[
Yi(tl)− µ̂

(−l)
λ (tl)

]2

=
1

N

N∑

i=1

1

n

n∑

l=1

[
Yi(tl)− µ̂λ(tl)

]2
[
1− S(λ)ll

]2 , (4.6)

where ȳl is the observed data and µ̂
(−l)
λ (tl) is the estimated value of the µ̂ estimated without

the lth observed point (Hastie et al., 2009; Gu, 2013).

The quantity in (4.6) can also estimated by generalized cross-validation (GCV) intro-

duced by Craven and Wahba (1979). Unlike CV score, GCV is invariant to orthonormal

transformations of the data (Gu, 2013; Craven and Wahba, 1979). The GCV criteria is a

function of the smoother matrix S(λ) and for n points is computed by

GCV (λ) =
1

N

N∑

i=1

nY t
i [I − S(λ)]2Yi{
tr[I − S(λ)]

}2 . (4.7)

Because (4.7) only depends on the trace of S(λ), the GCV score is slightly more efficient to

compute than the CV score. GCV smoothing parameter estimation assumes that the ǫi(tl)

are independent and identically distributed mean zero normal random variables, ǫi(tl) ∼
N(0, σ2). GCV fails in the case of colored noise because ǫi(tl) is not i.i.d. N(0, σ2).
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4.2 ESTIMATION WITH A TENSOR PRODUCT SPLINE BASIS

In the analysis of longitudinal functional data, an important step is the estimation of the

unknown mean surface, ȳ(t, s) = µ(t, s) + ǫ(t, s). Basis functions of t and s are needed.

One choice is the thin-plate spline (TPS); however, the penalty that leads to the TPS is

complicated and time intensive to evaluate for bivariate splines, and practically intractable

in higher dimensions. Therefore, the tensor product spline basis is introduced represent

functions of multiple variables. A tensor product spline represents µ(t, s) by observed on a

regular grid in t, s by

µ(t, s) =
∑

1≤g≤G
1≤h≤H

ag,heg(t)eh(s) (4.8)

where eg(t) are the G B-splines in the t direction, eh(s) are the H B-splines in the s direction,

and ag,g are the spline coefficients (Xiao et al., 2013). Similar to the single variable smoothing

case, a penalized estimation procedure is used to prevent over fitting. The fitting criteria is

1

N

N∑

i=1

n∑

l=1

J∑

j=1

[
yijl −

G∑

g=1

G∑

g=1

ag,heg(tl)eh(sj)

]2
+ Pen(λt, λs), (4.9)

where the first term is the multiple variable sum of squares and the second term is a multi-

variable penalty term (Park and Staicu, 2015). Any penalty consists of at least a t direction

penalty and a s direction penalty (Xiao et al., 2013; Park and Staicu, 2015). In Park and

Staicu (2015), they use a t−direction penalty

Pent = λt

∫ ∫ {
∂2µ(t, s)

∂t2

}
dt ds

and a s−direction penalty

Pens = λs

∫ ∫ {
∂2µ(t, s)

∂s2

}
dt ds.

Alternatively, Xiao et al. (2013) introduce the sandwich smoother, a multivariable extention

of P-spline smoothers Eilers and Marx (2003); Xiao et al. (2013). P-splines differ from

smoothing splines as the penalty matrix is directly calculated as the 2nd difference of the

basis instead of the 2nd derivatives. To use the sandwich smoother for estimating a mean
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surface, first define Ȳ = 1
N

∑N
i=1 yijl as the data matrix. Xiao et al. (2013) proposes to

estimate

µ̂ = StȲ Ss = (Ss ⊗ St)Ȳ (4.10)

where

Sk = Ek(E
t
kEk + λkD

t
kDk)

−1Et
k

is smoother matrices for the kth direction, Ȳ is the data matrix, Dk is a differing matrix of

order mk, ⊗ is the tensor product, and all other terms defined as previous. For two domain

variables, this formulation leads to the penalty term

P = λtE
t
sEs ⊗Dt

tDt + λsE
t
tEt ⊗Dt

sDs + λtλsD
t
sDs ⊗Dt

tDt.

By minimizing

‖Ȳ −EtAEs‖2F + vec(A)tP vec(A),

where the norm is the Frobenius matrix norm, Xiao et al. (2013) introduced a fast algorithm

for estimating µ̂(t, s). The smoothing parameters are selected using GCV.

While smoothing splines and P-splines are commonly used for FDA, we do not use them

as basis functions for the analysis of our VAD waveform data because of the noise structure

and regions of rapid change. Our exploration of splines provides a gentle introduction into

functional data analysis with basis functions that is expanded in the discussion of wavelets.

Additionally, these spline estimators are used in LFPCA and explanation of LFPCA esti-

mation is clarified by a clear understanding of both smoothing and P-splines.

4.3 ESTIMATION WITH A WAVELET BASIS

Another important class of basis functions is the wavelet multi-resolution basis. A wavelet

basis differs from the spline basis in Section 4.1 in that it has two types of basis functions

that capture the behavior µ(tl) at multiple resolutions. Scale functions eg(tl) at scale level

g describe the average behavior of µ(tl) and wavelets egh(tl) that reflect the variation at

location h on the gth scale (Donoho and Johnstone, 1994; Mallat, 1999; Nievergelt, 2001).
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We illustrate a wavelet basis using Haar wavelets inspired by the approach of Nievergelt

(2001).

On the interval [0, 1), the father Haar wavelet is defined as

e[0,1)(t) =




1 if 0 ≤ t < 1

0 o.w.

. (4.11)

Nievergelt (2001) extends this definition to a half-open interval of arbitrary length 1/g on

the gth scale. For g = 2, these intervals form a partition P2 =
{
0, 1/2, 1

}
of [0, 1). Therefore,

the Haar scale functions for Pg are defined by

eg(t) =




g if (h− 1)/g ≤ t < h/g

0 o.w.

for h = 1, 2, . . . , g. At the gth scale, the scale functions approximate a function µ(t) on

[0, 1/g) by its average value

µ∗
g = g

∫ h/g

(h−1)/g

µ(t)eg(t) dt.

While the scale functions capture the average of µ(t), they ignore any changes in µ(t)

on the interval h on the gth scale. Wavelet functions capture the change in µ(t) for the hth

interval on the gth. The Haar wavelet, egh(t), is defined as

egh(t) = e[(h−1)/g,(h−1)/g+1/2g)(t)− e[(h−1)/g+1/2g,h/g)(t). (4.12)

The change in µ(t) at scale g and location h is

µ∗
gh = g

∫ h/g

(h−1)/g

µ(t)egh(t) dt. (4.13)

By constructing wavelets for any scale g, a Haar Wavelet basis can be constructed to ap-

proximate µ(t) to any desired detail level. While Haar wavelets are the simplest wavelets,

many other wavelet functions exist. Two important wavelet bases are Daubechies wavelets

and Daubechies’ least asymmetric wavelets, “symlets” (Mallat, 1999). These wavelets do

not exist in closed form but can be calculated recursively. In addition, the coefficient vector,

µ∗
gh, is sparse if µ(t) is a smooth function (Mallat, 1999; Johnstone, 2013).
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The basic plan for wavelet estimation of an unknown function is to first use the discrete

wavelet transform (DWT). The DWT transforms a vector of data Ȳ from the time domain

into the wavelet basis functions defined above (wavelet domain) via a linear transformation,

Ȳ ∗ =WȲ (4.14)

where W is the transform matrix defined by the integral transformation in (4.13) and Ȳ ∗

is the vector of wavelet coefficients. When the Ȳ are modeled as noisy observations of an

unknown function, µ(tl) with errors ǫ(tl), the wavelet domain model is

Ȳ ∗
gh = µ∗

gh + ǫ∗gh

where µ∗
gh is the vector of wavelet coefficients for the unknown function, ǫ∗gh is the wavelet

transform of the noise, and all else is defined as previous (Johnstone, 2013). Assuming

that ǫ ∼ N(0,Σ), it is easily seen that ǫ∗ ∼ N(0,WΣW t). When Σ = σ2I, Donoho and

Johnstone (1995) show that the coefficient µ̂∗
gh is estimated well with a threshold estimator,

η(Ȳ ∗
gh, ̟). A threshold estimator keeps all Ȳ ∗

gh that are large and sets all other Ȳ ∗
gh following

a threshold rule. Many types of thresholds exist in the literature; however, we focus on

the soft threshold, ηS(Ȳ
∗
gh, ̟) = sgn(Ȳ ∗

gh)(|Ȳ ∗
gh| −̟)+, and the hard threshold ηH(Ȳ

∗
gh, ̟) =

Ȳ ∗
ghI(|Ȳ ∗

gh| ≥ ̟). Here, sgn(·) takes on the sign of its argument, (·)+ is non-zero when its

argument is positive, and I(·) is the indicator function.

Several techniques estimate ˆ̟ from the data. The universal threshold ˆ̟ U = σ̂
√
2 log n

is the simplest choice. However, ˆ̟ U requires the noise to be i.i.d. normal. A more general

threshold rule is derived using Stein’s unbiased risk estimator (SURE) (Donoho and John-

stone, 1995; Johnstone and Silverman, 1997). The SURE method is based on finding the τ̂

that minimizes mean square error and selects the value ˆ̟ that minimizes

Ĥ(̟) = σ̂2n+
∑

g

∑

h

(Ȳ ∗,2
gh ∧̟2)− 2σ̂2I{|Ȳ ∗

gh| ≤ ̟} (4.15)

and

ˆ̟ = arg minĤ(̟). (4.16)

ˆ̟ is used with either threshold estimator types.
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In the presence of colored noise, Johnstone and Silverman (1997) modifies (4.16) to have

a different threshold at each wavelet decomposition level, g. Colored or non-white noise is

any case when Σ 6= σ2I. For example, the soft threshold estimator takes the form

µ̂∗
gh = η(Ȳ ∗

gh, ̟g) = sgn(Ȳ ∗
gh)(|Ȳ ∗

gh| −̟j)+, (4.17)

where ̟g is the threshold at the g scale, and all else is defined as previous. Johnstone and

Silverman (1997) adjust the threshold such that

ˆ̟ g = σg ˆ̟ (Ȳ
∗
g /σg)

for the levels in the specific wavelet decomposition. The modification of the threshold is the

only adjustment needed for using a wavelet threshold estimator with colored noise because

threshold estimation is a coordinate-wise operation (Johnstone and Silverman, 1997).

4.4 CROSS-SECTIONAL FPCA ESTIMATION

Estimation algorithms for FPCA fall into one of two categories: those that smooth the

estimated covariance function, K̂(tl, tl′), or those that smooth the eigenfunctions, φ̂p(tl).

Since both methods are used in the estimation of our new methods, we discuss both. The

estimation algorithms are introduced assuming that ǫi(tl) ∼ N(0, σ2I). In each case, we

comment on the robustness of each algorithm to violations of the white noise assumption as

physiological signals often violate the white noise assumption.
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4.4.1 FPCA via smoothed covariance functions

This section follows the approached for covariance smoothed FPCA outlined in Yao et al.

(2005). Recalling from (3.5) that

K̃ = (N − 1)−1

N∑

i=1

XiX
t
i

is a raw estimate of K(tl, tl′) at the observed times tl with the column vector Xi = Xi(tl).

Here, Xi(tl) = yi(tl) − µ̂(tl). Because E(K̃) = K + σ2I, Yao et al. (2005) recommend

estimating the smoothed covariance K̂ by replacing the diagonal elements Kll with Ǩll =

1/2
(
Kl−1,l+Kl,l+1

)
, where the Kl−1,l and Kl,l+1 are the nearest off diagonal elements. At this

point, Ǩll have n−2 elements lacking elements K11 and Knn. Therefore, linear extrapolation

is used to calculate these elements. Any surface estimator such as the sandwich smoother is

used to smooth the matrix, K̃, to yield a smoothed estimate, K̂.

Because K̂ is a discretized estimate of K(t, t′), the integral eigenvalue equation (3.8) with

a matrix eigenvalue equation

K̂φp = λpφp, (4.18)

where K̂ is a discrete version of smoothed covariance, φp is the p
th eigenfunction evaluated

at the same points as K̂, and λp is the p
th eigenvalue. Ramsay and Silverman (2005) state

that (4.18) can be solved using any matrix PCA or eigenvalue software. However, the results

must be converted back to the functional data form using interpolation. This approach to

FPCA is relativity straight forward to implement provided that K̂ is easy to estimate. In

the case of white noise, this is true. However, if this step is challenging such as with non-

white noise error structures or non-smooth regions of K(t, t′), it is more fruitful to apply

regularization to the eigenfunctions instead.

4.4.2 FPCA via smoothed eigenfunctions

While many methods exist for FPCA with smoothed eigenfunctions, see Ramsay and Silver-

man (2005), we focus attention on adaptive sparse PCA (ASPCA) introduced by Johnstone

and Lu (2009) both for computation efficiency and robustness to violations of white noise
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and smoothness in the eigenfunctions. These are always concerns in physiological signal

analysis. Considering a covariance matrix, K, with eigenvectors, φp, and eigenvalues, λp,

ASPCA estimates the P eigenvectors φp by transforming the PCA algorithm from the data

basis where K is not sparse to one where K∗ = WKW t is sparse, where W is a trans-

formation matrix. Orthonormal basis vectors, eg, represent both the data Xi and PCs as:

Xi =
∑

gX
∗
g,ieg, where X

∗
g,i is the g

th basis coefficient andXi and eg are defined as previous;

φp =
∑

g φ
∗
g,peg, where φ

∗
g,p is the g

th basis coefficient and all other terms defined as previous.

Johnstone and Lu (2009) enforce sparsity not on K but via φp. When only a small number

of the φ∗
g,p are non-zero, K and φp have a sparse representation on the basis eg. Specifically,

the basis coefficients are required to decay at rate

|φ∗
g,p| ≤ Cg−1/q, g = 1, 2, . . . .

Often, a wavelet basis provides the needed sparse basis as the wavelet coefficients decay same

rate for smooth functions (Johnstone, 2013).

Johnstone and Lu (2009) outline an algorithm that can be applied to estimate φ̂. The

algorithm is outlined below for a wavelet basis with basis functions, eg, with all data observed

at times, tl.

1. Transform the data. For random functions, Xi(tl),

Xi(tl) =
G∑

g=1

X∗
i,geg.

2. Select coefficients. Calculate G variances, σ̂2
g = var(x∗i,g), for each coefficient. Find a

subset, Gv, of the v largest variances using one of the selection methods introduced in

Johnstone and Lu (2009).

3. PCA Estimate the v eigenvectors the φ̃∗
p where v is size of the reduced set of coefficients.

4. Filter the PCs. Johnstone and Lu (2009) recommend that a hard threshold to estimate

φ̂∗
g,p = ηH(φ̃

∗
g,p, ̟p) for g ∈ Gv to remove any remaining noise. Here, ̟p is an appropriate

threshold for the pth eigenvector that is based on the noise structure.

33



5. PC reconstruction. Transform the PCs back to the data domain by

φ̂p(tl) =
∑

g∈Gv

φ̂∗
g,peg.

6. Selection of P . Determine the number of PCs using fractional of variance explained

(FVE), see Section 4.7.

Johnstone and Lu (2009) provide two data driven approaches for finding v. The first approach

selects all coordinates where σ̂2
g ≥ σ̂2(1 + α) where 0 < α < 1, σ2 is a measure of the total

variability in x∗i,g, and σ2
g is defined previously. The second approach selects v by finding

the number of coordinates g with a variance σ2
g greater than the expected variance without

any signal (Johnstone and Lu, 2009). Johnstone and Lu (2009) recommend estimating

σ̂2 = median(σ̂2
g) for each of the p PCs.

4.5 ESTIMATION OF RF-FPCA

RF-FPCA is started by estimating the mean surface µ̂(t|s) from (3.15). Chen and Müller

(2012) suggest two different estimation procedures for RF-FPCA depending on the longitu-

dinal sampling. For dense, balanced longitudinal design, the raw mean estimate is

µ̃(tl|sj) =
1

N

N∑

i=1

yi(tl|sj), (4.19)

and raw covariance estimate is

K̃(tl, tl′ |sj) =
1

N

N∑

i=1

yi(tl|sj)yi(tl′ |sj)− µ̃(tl|sj)µ̃(tl′ |sj). (4.20)

In the presence of high measurement error, the estimates, µ̃(tl|sj) and K̃(tl, tl′ |sj), can be

smoothed with any of surface estimators from Section 4.2 can be used. In the case of

sparse, irregular longitudinal designs, Chen and Müller (2012) recommends use a smoothing

procedure for both µ̂(t|s) and K̂(t, t′|s). The estimates K̂(t, t′|s) are fed into the smoothed

covariance FPCA method from Section 4.4.1. Estimates of the PC and PC scores φ̂p(t|s)
and λp are obtained. A working random process ξ̂ip(sj) =

∫
Xi(t|sj)φ̂p(t|sj) dt is estimated
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by numerical integration. When the longitudinal is dense and regular, further smoothing is

needed for the ξ̂ip(sj) when σ2 is high. ψ̂qp(s) and λqp are estimated by solving K̂pψqp =

λqpψqp, where K̂p = (N − 1)−1
∑

i ξ̂ip(sj)ξ̂ip(sj′). In the sparse case, other FPCA algorithms

such as PACE introduced by Yao et al. (2005) is used. PACE uses conditional expectation

to calculate ζiqp (Yao et al., 2005).

4.6 ESTIMATION OF LFPCA

The estimation algorithm for LFPCA is similar to RF-FPCA. However, LFPCA estimates

a marginal covariance K̂(t, t′) for the t direction instead of max(Ji) conditional covariances

as in RF-FPCA. Park and Staicu (2015) proposes

K̂(t, t′) =

∑
i

∑
j

[
yi(tl, sij)− µ̂(tl, sij)

][
yi(tl′ , sij)− µ̂(tl′ , sij)

]
∑

i Ji
.

Estimation of all other quantities for LFPCA follows the same algorithm as RF-FPCA.

4.7 DETERMINING THE SIZE OF A FPCA THE BASIS

The size of each FPCA basis can be selected in multiple ways, e.g., via AIC, BIC, or FVE

(Yao et al., 2005). AIC and BIC are based on the likelihood of the data. In FPCA, we

use FVE as it is easily calculated and interpreted. All quantities needed to calculate FVE

are estimated during FPCA. The number of PCs is selected as the smallest number of

components that explains a predetermined level of variance explained. For example, the

number of PCs, P, for a FPCA is found by

FVEp =

∑p
r=1 λr∑L
r=1 λr

,

where λr is the r
th eigenvalue of K(t, t′), and L is the total number of eigenvalues.
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5.0 NEW METHODOLOGY

5.1 DEVELOPMENT OF THE MULTISCALE FRAMEWORK AND

MODEL

Assume that τ , t and s are continuous time variables and that the observed D−dimensional

multivariate data, Ỹi(τ), is a vector of noisy measurements on the underlying functional

process, F̃i(τ), that has a periodic component of period T , for i = 1, . . . , N subjects that

are followed for Ji periods. The observed data is modeled as

Ỹi(τ) = F̃i(τ) + ǫ̃i(τ) (5.1)

where ǫ̃i(τ) ∼ N(0, Σ̃), Σ̃ is the noise covariance matrix, τ is the argument of F̃ (·), and
everything else is defined above. We assume that Σ̃ can either be white noise, Σ̃ = σ̃2I or

take on a colored noise structure where the correlations between two time points τ1 and τ2

decay at |τ2 − τ1|−α, where α ∈ (0, 1), or faster. Johnstone and Silverman (1997) term this

power law decay of correlation as “long-range” dependence. We provide more details later

on the structure of Σ̃ on the transformed time domain.

Taking inspiration from the two-time solutions to non-linear ODEs, we formally define

two new variables: slow time, s = ⌊τ/T ⌋ , which counts the number of periods observed,

and fast time, t = τ − s ∗ T (Fink et al., 1974; Strogatz, 1994). Here, t ∈ T = [0, T )

and s ∈ S = [0, Ji]. In this dissertation, we focus on the case where T is known yielding a

conditional version of (5.1),

Yi(t, s|T ) = Fi(t, s|T ) + ǫi(t, s|T ), (5.2)
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where Fi(t, s|T ) is the same function as F̃i(τ) but transformed on a two dimensional domain

and ǫi(t, s|T ) ∼ N
[
0,Σ(t, t′, s, s′|T )

]
. Period detection can be accomplished using either a

scientific motivation or using data driven statistical methods. After selection of the dominate

period, we drop the (·|T ) for notation simplicity.

Under the assumption of colored noise and for Ji = 2 and D = 2, we assume that

Σ(t, t′, s, s′) =


Σ(t, t′) 0

0 Σ(t, t′)


 , (5.3)

where

Σ(t, t′) =


Σ11(t, t′) 0

0 Σ22(t, t′)


 .

Finally, we require the correlations between an two time points t1 and t2 to decay at |t2−t1|−α.
This covariance structure assumes that noise is not correlated across days or across outcome

components.

The two-time solution to a non-linear ODE approximates the solution by assuming the

solution consists of a periodic fast time function, F (t), and a slow time function, G(s),

that governs how F (t) evolves across multiple periods (Strogatz, 1994). For ODEs, periodic

solutions for F (t) are represented as a sum of sines and cosines. G(s) is found by solving

the averaged equations, which are the average of ODE and the sine/cosine solution of F (t)

over one period. In the next section, we propose a statistical multiscale model analogous to

the two-time solution of ODEs.

5.1.1 Multiscale Decomposition and Marginal FPCA

The analysis of Fi(t, s) focuses on two key features: the patient specific marginal fast time

function, Fi(t), and patient specific marginal slow time evolution, Gi(s). Before building the

full model, we introduce the patient specific average fast time random function

Fi(t) =
1

Ji

∫

S

Fi(t, s) ds, (5.4)
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with mean function E
[
Fi(t)

]
= µ(t) and random effect Xi(t) = Fi(t) − µ(t). In addition,

we define the patient specific marginal slow time process as

Gi(s) =
1

T

∫

T

[
Fi(t, s)− Fi(t)

]
dt, (5.5)

with mean function E
[
Gi(s)

]
= ν(s) and random effect Ui(s) = Gi(s)−ν(s). The marginal

processes, Fi(t) and Gi(s) are connected to the full random function, Fi(t, s), through the

marginal FPCA model introduced in Chen et al. (2016). For multivariate functional data,

marginal FPCA assumes that

Fi(t, s) = µ(t, s) +
∞∑

p=1

θip(s)φp(t), (5.6)

where µ(t, s) is the mean surface, θip(s) is a random function of slow time, and φp(t) are the

multivariate eigenfunctions.

To link (5.4),(5.5) and (5.6), we first represent Fi(t) in terms of the marginal kernel.

Let µ(t) = 1
Ji

∫
S
µ(t, s) ds and ξip =

∫
S
θip(s) ds, the marginal fast time process has the

representation

Fi(t) =
1

Ji

∫

S

[
µ(t, s) +

∞∑

p=1

θip(s)φp(t)

]
ds

=
1

Ji

∫

S

µ(t, s) ds+
1

Ji

∫

S

∞∑

p=1

θip(s)φp(t) ds (5.7)

= µ(t) +
1

Ji

∞∑

p=1

ξipφp(t).

Now, we identify Xi(t) =
∑∞

p=1 ξipφp(t) with E
[
Xi(t)

]
= 0 and associated covariance

operator with square integrable kernel, cov
[
Xi(t),Xi(t

′)
]

= K(t, t′). By application of

Mercer’s Theorem, the covariance kernel has the singular value decomposition, K(t, t′) =
∑

p=1 λpφp(t)φ
t
p(t

′), where λp is the p
th eigenvalue and φp(t) is the p

th eigenfunction. Further-

more, the Karhunen-Loève theorem states that PC scores have distribution, ξip ∼ N(0, λp).

Also, over one period, the fast time function has constant mean value

µ+Xi =
1

T

∫

T

[
µ(t) +

∞∑

p=1

ξipφp(t)

]
dt, (5.8)
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where µ and Xi are D × 1 columns vectors.

The slow time marginal process is linked to marginal FPCA by

Gi(s) =
1

T

∫

T

{
Fi(t, s)−

[
µ(t) +Xi(t)

]}
dt

=
1

T

∫

T

[
µ(t, s)− µ(t)

]
dt+

1

T

∫

T

∞∑

p=1

[
θip(s)− ξip

]
φp(t) dt (5.9)

To identify the model in (5.9), we must assume structures for both µ(t, s) and θip(s). At

this point, we assume that both the mean structure, µ(t, s), and θip(s) have an additive

structure. Accordingly, we assume that µ(t, s) = µ(t) + ν(s) implying that
∫
S
ν(s) ds = 0.

If
∫
S
ν(s) ds 6= 0, then the marginal process in (5.4) does not result from the integral over

s. In the case of our VAD circadian cycle data, we make the additional assumption that

ν(s) = 0. The zero slow time mean assumption is reasonable because a stable patient is

believed to have no slow time variation in his/her circadian cycle. Similarly, we assume

that θip(s) = ξip+Uip(s), where Uip(s) is a mean zero random process with covariance kernel

Kp(s, s
′) and ξip is defined as previously. Also, we assume that ξip and Uip(s) are independent,

and Uip(s) is restricted such that
∫
S
Uip(s) ds = 0. Note that the random functions Uip(s)

contain all information about how the circadian cycles evolve in slow time.

Therefore, both the fast time and slow time components are modeled with

Fi(t, s) = µ(t) +

∞∑

p=1

[
ξip + Uip(s)

]
φp(t), (5.10)

where all terms are defined as previous. The
∑

p ξipφp(t) term models the subject specific de-

viation circadian cycle from the mean circadian cycle, and the term
∑

p Uip(s)φp(t) describes

the longitudinal evolution of the circadian cycle.

The slow time functions, Uip(s), are modeled with a second FPCA expansion such that

Kp(s, s
′) = E

[
Uip(s)Uip(s

′)
]
=
∑

q λqpψqp(s)ψqp(s
′) and

Uip(s) =
∞∑

q=1

ζiqpψqp(s), (5.11)

where ψqp(s) are the eigenfunctions of Kp(s, s
′), Q is the number of terms in the basis

expansion, and ζipq ∼ N(0, λqp) where λqp are the ordered eigenvalues of Kp(s, s
′) with

λ1p > λ2p > · · · > λ∞,p > 0.
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Combining equations (5.10) and (5.11), the complete data is modeled as

Yi(t, s) = µ(t) +
∞∑

p=1

ξipφp(t) +
∞∑

p=1

∞∑

q=1

ζipqψpq(s)φp(t) + ǫi(t, s), (5.12)

where all terms have been previously defined. In practice, the infinite sums are truncated to

P terms for the fast time scale FPCA and Qp terms for each of the slow time scale FPCAs

using FVE. Here, P and Qp are small positive integers often less than 10.

5.2 ESTIMATION AND INFERENCE

Fitting of a MMFPCAmodel proceeds in a different manner compared to the existing models,

RF-FPCA, LFPCA and the marginal FPCA, because of the noise structure (Chen et al.,

2016; Chen and Müller, 2012; Park and Staicu, 2015). We first estimate a fast time marginal

random function, its mean, µ̂(tl), and covariance structure, K̂(tl, tl′). After then conducting

MFPCA on K̂(tl, tl′), we obtain both estimated marginal fast time PC scores and estimated

daily fast time PC scores. At this stage, these daily fast time scores are used to estimate

the slow time FPCA models.

For the ith patient, suppose we observe data, Yi(tl, sij), sampled at times (tl, sij) where

l = 1, . . . , n, and n is number of samples/day. Also, j = 1, . . . , Ji, where Ji is numbers days

observed for patient i, with i = 1, . . . , N. For a given day, sij, Yi(tl, sij) is a Dn × 1 vector

with each outcome component stacked vertically. The next step entails defining the patient

specific marginal observation vector as Zi(tl) =
∑Ji

s=1 Yi(tl,sij)

Ji
.

Assume that

Zi(tl) = Fi(tl) + ǭi(tl)

= µ(tl) +Xi(tl) + ǭi(tl) (5.13)

where Fi(tl) is the underlying process at time point, tl, and ǭi(t) is the measurement error

process averaged across days. Furthermore, it is easily seen that E
[
Zi(tl)

]
= µ(tl). Under

the assumption of white noise, the vector, Xi(tl) = Zi(tl)− µ(tl), has distribution,

Xi(tl) ∼ N

[
0,K(tl, tl′) +

1

Ji
Σ(tl, tl′)

]
.
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Here, K(tl, tl′) is the marginal fast time covariance kernel evaluated at the sample times, tl,

and Σ(tl, tl′) is the error covariance matrix. The slow time information is contained in the

daily PC scores

Uip(sij) =

∫

T

[
Yi(tl, sij)− Fi(tl)

]
φ̂p(tl) dt, (5.14)

where Yi(tl, sij) is the observed data, Fi(tl) is the underlying fast time marginal process and

φp(tl) is the pth eigenfunction of K(tl, tl′). With the new random functions, the estimation

procedure is organized into eight main steps as outlined below.

1. Calculate Ẑi(tl) =

∑Ji
sij=1 Yi(tl, s)

Ji
from the raw data.

2. Estimate µ̂(tl) using non-parametric regression. (Details are in Section 5.2.1.)

3. Calculate X̂i(tl) = Ẑi(tl)− µ̂(tl).
4. Conduct FPCA on X̂i(tl) and estimate F̂i(tl) = µ̂(tl) +

∑
p ξ̂ipφ̂p(tl). (Details in Section

5.2.1.)

5. Calculate Ûip(sij) =

∫

T

[
Yi(tl, sij)− F̂i(tl)

]
φ̂p(t) dt.

6. Conduct FPCA on Ûip(sij). (Details in Section 5.2.2.)

7. Reconstruct Ŷi(tl, sij).

8. Estimate confidence bands on estimates with functional bootstrap. (Details in Section

5.2.4.)

5.2.1 Estimating the Average Circadian Cycles - Fast Time Functions

The first step to apply MMFPCA to a dataset such as the VAD circadian cycle application,

is to estimate both the population average circadian cycle µ̂(tl) and the subject specific

circadian cycles, F̂i(tl), along with the additional model parameters for the fast time FPCA.

Because we assume that the noise structure may have long-range dependence, we use wavelets

for the fast time scale estimation as wavelets easily handle this type of noise structure

(Johnstone and Silverman, 1997). Additionally, wavelets are optimal for any jumps in the

data, which may happen as these patients are quite ill. This desirable property stems from

the nature of the wavelet multi-resolution basis.

A multi-resolution basis represents the dth component, d = 1, 2, of a multivariate function,

X
(d)
i (tl), at a set of scale functions, eg, and wavelets, egh. The scale functions capture the
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average behavior of X
(d)
i (tl) at the gth scale. At the gth scale, a wavelet, egh, captures the

changes in X
(d)
i (tl) at an interval around the hth location. This construction isolates any

pathological point in X
(d)
i (tl) to the wavelet coefficients in a small neighborhood around its

location. Finally, all smoothing is conducted on the mean and covariance estimates to reduce

the amount of smoothing needed and the computational burden (less smoothing steps), and

to ensure that the covariance estimates are improved.

The wavelet domain fast time objective function and “raw” estimates. We chose to use

symlets with four vanishing moments for the wavelet basis. On this basis, smooth functions

Xi(tl) have a sparse coefficient vector X∗
i = WXi(tl) where W is the discrete wavelet

transformation (DWT) matrix that is applied to each of the D = 2 components separately.

Also, its covariance K∗ = WK(tl, tl′)W
t assumed to sparse on the wavelet domain. The

transformed noise covariance is Σ∗ = WΣ(tl, tl′)W
t. For the data observed at points tl,

we define the following quantities on the wavelet domain: the transformations of the data,

Z∗
i = WZi(tl), the mean functions, µ∗ = Wµ(tl), and the transformed eigenfunctions

φ∗
p =Wφp(tl). Now, estimates on the wavelet domain are obtained by minimizing the least

squares objective function,

Hft =
N∑

i=1

[
Z∗
i −

(
µ∗ +

P∑

p=1

ξipφ
∗
p

)]t [
Z∗
i −

(
µ∗ +

P∑

p=1

ξipφ
∗
p

)]
, (5.15)

where P is determined by fraction of variance explained (FVE), see 5.2.3. Using standard

normal theory, Hft, is minimized with the estimates

µ̂∗
raw =

1

N

N∑

i=1

Ẑ∗
i , (5.16)

and

K̂∗ =W

[
K(tl, tl′) +

1

J̄
Σ(tl, tl′)

]
W t =

1

N

N∑

i=1

X∗
i

(
X∗

i

)t
, (5.17)

where X∗
i = Y ∗

i − µ∗ and J̄ is the average slow time follow-up length across all patients

(Anderson, 2003).
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Smoothing the population average circadian cycles. To smooth the mean estimates, the

threshold wavelet regression estimator introduced in Johnstone and Silverman (1997) is used

on each component separately. First, the empirical mean estimate from (5.16) is modeled as

µ̂∗
raw = µ∗ + ρ, (5.18)

where ρgh ∼ N
[
0, K∗

gh,g′h′/N + Σ∗
gh,g′h′/(NJ̄)

]
is the wavelet transform of the noise. In

(5.18), all the columns vectors have dim µ̂∗
raw = dimµ∗ = dimρ = Dn∗, where n∗ is the

total number of wavelet coefficients. As K∗/(N) +Σ∗/(NJ̄) is not a diagonal matrix, the

variances of the wavelet coefficients µ∗
g are not guaranteed to be equal for any two levels. In

this case, the level-dependent threshold estimator of Johnstone and Silverman (1997) can be

directly applied to estimate µ̂(tl). We follow their recommendation and estimate the mean

functions with a soft threshold estimator, µ̂∗
gh = sgn(µ̂∗

gh,raw)(|µ̂∗
gh,raw| − ̟g)+, where ̟g is

the level dependent threshold, sgn(·) takes the sign of its argument, and (·)+ = 0 when its

argument is negative and takes on the value of its argument otherwise. On the time domain,

the estimated circadian cycles are found by back transforming the µ̂∗
gh such that

µ̂(tl) =W
tµ̂∗. (5.19)

FPCA expansion of the circadian cycles. Next, we consider estimation of the fast time

eigenfunctions φp(tl), eigenvalues λp, and PC scores ξip. Unlike the mean estimation, the

estimation of covariance of the multivariate data is quite challenging. A solution is to combine

the multivariate FPCA (MFPCA) algorithm introduced by Happ and Greven (2015) with

adaptive sparse PCA (ASPCA) of Johnstone and Lu (2009). Compared to other algorithms

that estimate the multivariate FPCA in a single step, the advantage of using MFPCA is it

provides a rigorous approach to combine univariate FPCA without requiring the same type

of regularization on each of the univariate FPCAs. For our motivating data, MFPCA allows

us to focus on the selection of appropriate univariate FPCA algorithm, ASPCA. The rest of

this section briefly overviews MFPCA and ASPCA, applies them to MMFPCA, considers

selection of P , and the estimation of the PC scores.

For each of the d components, the estimates, K̂∗,(d), are noisy as the X
∗,(d)
il are not

smoothed. Therefore, the univariate FPCA algorithm should be able to filter out the noise
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and be robust to violations of the white noise assumption. Also, since each FPCA problem is

high dimensional, the chosen algorithm needs to regularize the estimates (Johnstone and Lu,

2009). In the case when K has a sparse representation in a basis, ASPCA both regularizes

the estimates by conducting PCA on a covariance matrix of the basis coefficients with the

largest variance (Johnstone and Lu, 2009). Additional filtering can be on the resulting

eigenvectors. In the case of MMFPCA, the wavelet basis provides a basis on which K∗,(d) is

sparse. Therefore, ASPCA is used to estimate φ
(d)
p (tl) and λ

(d)
p .

MFPCA uses the structure of K(tl, tl′) = E
[
Xi(tl)X

t
i (tl′)

]
to efficiently solve the multi-

variate eigenvalue that determines φp(tl) (Happ and Greven, 2015). MFPCA combines the

results of D univariate FPCA through the correlation of the univariate PC scores. Happ

and Greven (2015) purpose to estimate the multivariate eigenfunctions and PC scores by

weighting the respective univariate estimates by the eigenvectors of κ̂. κ̂ is the PC score

covariance matrix. Here, κ̂ = N−1Ξ̂tΞ̂ where dim(Ξ) = N × ∑d Pd with the rows of

Ξi =
(
ξ̂
(1)
i1 , ξ̂

(1)
i2 , . . . , ξ̂

(1)
iP1
, . . . , ξ̂

(D)
i1 , ξ̂

(D)
i2 , . . . , ξ̂

(D)
iPD

)
. The the PC scores can be reordered by

permuting columns to match the ordering of the eigenvalues output from our eigenvalue

software. Because this column permutation is conducted via right multiplication with a

permutation matrix, the MFPCA method can proceed without other changes as long as

the new order is carried throughout the algorithm (Happ and Greven, 2015). Now, the

multivariate eigenfunctions and FPCA scores are given by φ
(d)
p (tl) =

∑Pd

r=1[ĉp]
(d)
r φ

(d)
r (tl) and

ξ̂ip =
∑D

d=1

∑Pd

r=1[ĉp]
(d)
r ξ̂

(d)
ir (Happ and Greven, 2015), where [ĉp]

(d)
r is a subset of the pth eigen-

vector of κ̂ associated with the dth outcome component. For each subject, i, the multivariate

predicted fast time function is F̂i(tl) = µ(tl)+
∑P

p=1 ξ̂ipφp(tl), and univariate component-wise

predictions are F̂
(d)
i (tl) = µ(d)(tl) +

∑Pd

p=1 ξ̂
(d)
ip φ

(d)
p (tl).

5.2.2 Slow Time Scale Estimation

After obtaining the fast time model, the next step is to estimate the slow time random func-

tions Uip(sij) for each subject and multivariate principal component φp(tl). These estimates

are found by adapting the univariate score combiner from Happ and Greven (2015). For each

component, d, an estimate of the working random process at observed days, sj, is obtained

44



by numerical integration of

Û
(d)
ip (sj) =

∫

T

[
y
(d)
i (tl, sj)− F̂

(d)
i (tl)

]
φ̂p(tl) dt (5.20)

for each day, sj. At this stage, the D random processes are correlated so one calculates the

multivariate daily FPCA score

Ûip(sj) =
D∑

d=1

Pd∑

r=1

[ĉp]
(d)
r Û

(d)
ir (sj). (5.21)

These estimates are now used to estimate the P multivariate slow time random process.

Armed with estimates, Ûip(sij), the slow time model is estimated using one of several

FPCA algorithms depending on the slow time sampling of the follow-up. Assuming that

Ûip(sij) = Uip(sij)+ǫip(sij) where ǫip(sij) ∼ N(0, σ2
p), the choice of FPCA algorithms depends

on the longitudinal sampling. We present four important cases of the longitudinal sampling.

The first case is dense regular follow-up, i.e. J1 = J2 = · · · = JN = J, and measurements

are observed at the same time points. The second case is dense irregular follow-up with no

missing data. The third case is dense regular or irregular follow-up with missing data. The

final case is sparse irregular follow-up when subjects have different lengths of follow-up Ji

and random gaps between each sij. This dissertation focuses on the dense regular case as the

sparse irregular case is not present in the motivating data. When a sparse irregular case is

encountered, we recommend application of the PACE algorithm following the work of Yao

et al. (2005); Park and Staicu (2015).

In the dense regular case with slow time observations
{
sj
}J
j=1

, each subject has p data

vectors of length J, Ûip(sj) =
[
Ûip(s1), Ûip(s2), . . . , Ûip(sJ)

]t
. For these data, the observed

slow time objective functions are

Hst
p =

N∑

i=1

[
Ûip(sj)−

Qp∑

q=1

ζipqψpq(sj)

][
Ûipj −

Qp∑

q=1

ζipqψpq(sj)

]t
, (5.22)

where all functions are evaluated at the observed days sj and Qp is number of basis compo-

nents as determined by FVE.
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Each Hst
p is minimized when ψ̂pq(sj) are the eigenfunctions of Kp = Kp(sj, sj′) and

ζ̂ipq =
∫
Ûip(sj)ψ̂pq(sj) ds where the integral is evaluated with numerical integration Ram-

say and Silverman (2005, Chapter 8). An estimate of Kp is the raw covariance K̃p =

(N − 1)−1
∑

i ÛipÛ
t
ip, which has expectation E(K̃p) =Kp+σ

2I. Following the discussion of

covariance smoothing in Yao et al. (2005), we exclude the diagonal elements before smooth-

ing. A 2-D Gaussian kernel density estimator is then used to obtain smooth estimates K̂p.

ψ̂qp(s) and λ̂qp are estimated using a standard software for finding eigenvalues and eigen-

vectors a matrix. Since the sj’s are one unit apart, no weighting to convert back to the

functional space is needed. The ζ̂ipq are found using numerical integration. As part of signal

reconstruction, predict Ũip(s) =
∑

q ζ̂ipqψqp.

Subject Specific Prediction. After estimating both the fast time and slow time models,

subject specific predicted circadian cycles and evolution are estimated as

Ŷi(tl, s) = µ̂(tl) +
∑

p

[
ξ̂ip +

∑

q

ζ̂iqpψ̂qp(sj)

]
φ̂p(tl). (5.23)

5.2.3 Selection of Number of Principal Components

The size of each FPCA basis can be selected in multiple ways, e.g., via AIC, BIC, or FVE

(Yao et al., 2005). In MMFPCA, FVE is used as it is easily calculated and interpreted. The

number of PCs is selected as the smallest number of components that explains a predeter-

mined level of variance explained. For example, the number of PCs, Pd, for d
th fast time

FPCA is found by

FVE(d)
p =

∑p
r=1 λ

(d)
r∑L

r=1 λ
(d)
r

,

where λ
(d)
r is the rth eigenvalue of K(d)(tl, tl′), and L is the total number of eigenvalues. All

other P ’s and Q’s are determined in the same manner.
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5.2.4 Bootstrap Confidence Intervals for the Fast Time Functions

In any study of repeated circadian cycle data, it is of scientific importance to determine the

statistical significance of the fast time estimates. Slow time statistical inference contains

several additional complications due to the number of slow time FPCA estimation steps and

is discussed in future work. We declare that a circadian cycle is statistically significant if

a global confidence band around the estimate has any region that does not overlap another

region.

Both point-wise and global (100 − α)% confidence intervals are estimated using a non-

parametric bootstrap (Crainiceanu et al., 2012). The N subjects are resampled with replace-

ment B times creating the bootstrap samples. Here, a subject either contributes all of his/her

data for both functional components or none. For the fast time mean functions, the point-

wise bootstrap CI’s are found using the normal confidence intervals, µ(tl)±z1−α×SD(µ(tl))

on the wavelet domain. The time domain CI is found by transforming the CIs back to the

time domain. In functional data, global CIs are not found as simply as the point-wise CIs.

An adjustment for the number of observed time points must be made using any multiple

comparison method (Pini and Vantini, 2016; Krafty and Collinge, 2013). In the case of our

VAD data, we adjust the α−level using the Bonferroni correction for simplicity leading to an

α = α0/n where n is the number of fast time observations and α0 point-wise α−level. A sim-

ilar approach is followed for the φp(tl). However, we recommend the use the quantile based

CIs on the time domain because normality is not guaranteed. However, the calculations are

conducted on the time domain.
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6.0 SIMULATION STUDIES

We evaluated performance of MMFPCA using a simulation study designed to provide insight

into the behavior of MMFPCA in capturing both periodic fast time behavior such as circadian

cycles and assess the variability of this behavior over the slow time component. Several

combinations of sample size, longitudinal follow-up, sampling rate per day, mean functions,

and covariance parameters were considered. The first simulation scenario was designed to

mimic our VAD data in shape of population average function as fast time sampling. In further

simulations the number of subjects, fast time sampling rate, and length of longitudinal follow-

up were increased to understand how MMFPCA depends on samples sizes. Additionally,

the measurement error was simulated with both low noise and high noise. All simulations

were conducted with C = 250 replications.

The stimulated data was generated with the following parameter values: 128 and 256

fast time sample time points, longitudinal follow-up of 30 and 250 days, two outcome compo-

nents, with each component having a two-dimensional fast time basis, and a one dimensional

slow time basis. Because P1 = P2 = 2, the multivariate fast time basis has P = 4. The mea-

surement errors were simulated from normal distributions with variances, σ̃, 0.001, 0.5, 1,

and 1.5. The population average function was

µ(t) =


 −5 sin

(
2πt
T

)

−2.5 sin
(
2πt
T

)


 . (6.1)

A two dimensional fast time orthonormal basis consisting of two functions functions was gen-

erated as seen in Figure 8. A one dimensional slow time orthonormal basis was generated as
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ψ(s) = −s/J+0.5. The fast FPCA scores were generated from bivariate normal distribution

with

Λ1 =


4 1

1 2


 , Λ2 =


 3 0.5

0.5 1


 ,

with Λp defined to be the correlation matrix of the pth principal component. For example,

the first principal component has a correlation magnitude of 1. The slow time scale FPCA

scores were sampled from N(0, λpq) with λ1p = 16. Furthermore, both fast PC components

have the same slow time evolution. For each combination of these simulation parameters,

sample size of 30, 100, and 250 subjects were considered.

The data was simulated via the procedure outline below.

1. Simulate the mean functions in (6.1) for all J days and N subjects.

2. Simulate the fast time random functions, X
(d)
i (tl) =

P∑

p=1

ξ
(d)
ip φ

(d)
p (tl). First, we draw N

random samples from N(0,Λ1) and N(0,Λ2) for the (ξ
(1)
i1 , ξ

(2)
i1 )t an (ξ

(1)
i2 , ξ

(2)
i2 )t PC scores

respectively. Then, the dth component of Xi(tl) is calculated by

X
(d)
i (t) =

2∑

p=1

ξ
(d)
ip φ

(d)
p (tl). (6.2)

3. Simulate the four slow time random functions, Ui(sj) =
1∑

q=1

ζiqψq(s). Again, we draw

N random variables, ζi from N(0, 16). Then, we calculate the N slow time functions

Ui(sj) = ζiψ(s). Next,
2∑

p=1

Ui(sj)φ
(d)(tl) (6.3)

mixes the fast and slow time scales.

4. Add measurement error by drawing ǫi(tl, sj) from N(0, σ̃2).

5. Simulated data for the ith patient, Yi(tl, sj), is calculated by summing (6.1), (6.2), (6.3),

and the noise from item 4.

Estimator performance is measured with Monte Carlo mean integrated square error

RMISE(θ(t)) = C−1
∑

c

∫
T

[
θ̂c(t)− θ(t)

]2
dt

∫
T

[
θ(t)

]2
dt
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Figure 8: The fast time scale basis functions for the simulation studies.
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for any function θ(t) and mean square error of the eigenvalues λ

RMSE(λ) = C−1
∑

c

(λ̂c − λ)2

λ2
.

Table 1: 1000 RMISE for simulated fast time mean with 128 fast time samples.

µ(1)(t) µ(2)(t)
N = 30 N = 100 N=250 N = 30 N = 100 N=250

J = 30

σ̃ = 0.001 0.1571 0.0523 0.0221 0.3003 0.0856 0.0340
σ̃ = 0.5 0.2706 0.0804 0.0367 0.3647 0.1255 0.0544
σ̃ = 1 0.6607 0.1824 0.0794 0.7747 0.2240 0.0938
σ̃ = 1.5 1.3172 0.3710 0.1463 1.4226 0.4190 0.1588

J = 250

σ̃ = 0.001 0.1463 0.0460 0.0213 0.2311 0.0868 0.0335
σ̃ = 0.5 0.1590 0.0525 0.0248 0.2496 0.0854 0.0362
σ̃ = 1 0.2089 0.0665 0.0306 0.3261 0.0876 0.0400
σ̃ = 1.5 0.2684 0.0909 0.0380 0.3587 0.1211 0.0546

Table 2: 1000 RMISE for simulated fast time mean with 256 fast time samples.

µ(1)(t) µ(2)(t)
N = 30 N = 100 N=250 N = 30 N = 100 N=250

J = 30

σ̃ = 0.001 0.0877 0.0409 0.0251 0.1351 0.0545 0.0326
σ̃ = 0.5 0.2039 0.0669 0.0367 0.2522 0.0796 0.0434
σ̃ = 1 0.5945 0.1743 0.0684 0.6540 0.1904 0.0765
σ̃ = 1.5 1.2203 0.3750 0.1438 1.2575 0.3967 0.1529

J = 250

σ̃ = 0.001 0.0887 0.0372 0.0256 0.1436 0.0586 0.0307
σ̃ = 0.5 0.0936 0.0405 0.0267 0.1482 0.0608 0.0318
σ̃ = 1 0.1361 0.0527 0.0309 0.1718 0.0674 0.0377
σ̃ = 1.5 0.2108 0.0685 0.0377 0.2639 0.0849 0.0448

Table 3: RMSE for fast time eigenvalues simulated with 128 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

λ1

σ̃ = 0.001 0.0597 0.0182 0.0086 0.0695 0.0170 0.0077
σ̃ = 0.5 0.1012 0.0199 0.0106 0.0745 0.0193 0.0085
σ̃ = 1 0.2324 0.0665 0.0354 0.0693 0.0221 0.0100
σ̃ = 1.5 0.6726 0.2629 0.1654 0.0931 0.0233 0.0097

λ2

σ̃ = 0.001 0.0469 0.0170 0.0071 0.0507 0.0206 0.0069
σ̃ = 0.5 0.0509 0.0161 0.0097 0.0454 0.0159 0.0083
σ̃ = 1 0.0876 0.0557 0.0440 0.0642 0.0186 0.0081
σ̃ = 1.5 0.1709 0.2016 0.2389 0.0454 0.0218 0.0086

λ3

σ̃ = 0.001 0.0516 0.0183 0.0081 0.0469 0.0249 0.0068
σ̃ = 0.5 0.0633 0.0184 0.0093 0.0595 0.0236 0.0068
σ̃ = 1 0.0722 0.0426 0.0296 0.0513 0.0196 0.0087
σ̃ = 1.5 0.2075 0.1364 0.1377 0.0544 0.0204 0.0104

λ4

σ̃ = 0.001 0.0861 0.0179 0.0081 0.0821 0.0220 0.0084
σ̃ = 0.5 0.0723 0.0193 0.0089 0.0815 0.0200 0.0077
σ̃ = 1 0.0830 0.0442 0.0484 0.0727 0.0201 0.0078
σ̃ = 1.5 0.3231 0.2302 0.2409 0.0672 0.0196 0.0104
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Table 4: RMSE for fast time eigenvalues simulated with 256 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

λ1

σ̃ = 0.001 0.0796 0.0190 0.0078 0.0717 0.0199 0.0091
σ̃ = 0.5 0.1093 0.0281 0.0119 0.0740 0.0225 0.0077
σ̃ = 1 0.2714 0.0776 0.0429 0.0621 0.0210 0.0103
σ̃ = 1.5 0.8181 0.3712 0.2045 0.0936 0.0262 0.0119

λ2

σ̃ = 0.001 0.0500 0.0157 0.0069 0.0481 0.0159 0.0101
σ̃ = 0.5 0.0465 0.0222 0.0122 0.0478 0.0205 0.0070
σ̃ = 1 0.1041 0.0643 0.0598 0.0416 0.0161 0.0082
σ̃ = 1.5 0.1656 0.2271 0.2957 0.0520 0.0210 0.0098

λ3

σ̃ = 0.001 0.0572 0.0178 0.0077 0.0471 0.0239 0.0077
σ̃ = 0.5 0.0583 0.0190 0.0089 0.0560 0.0190 0.0107
σ̃ = 1 0.0762 0.0438 0.0409 0.0530 0.0194 0.0077
σ̃ = 1.5 0.2322 0.1786 0.1570 0.0512 0.0205 0.0093

λ4

σ̃ = 0.001 0.0784 0.0218 0.0078 0.0761 0.0194 0.0086
σ̃ = 0.5 0.0646 0.0215 0.0098 0.0836 0.0192 0.0080
σ̃ = 1 0.1177 0.0629 0.0670 0.0723 0.0189 0.0095
σ̃ = 1.5 0.4233 0.2688 0.3048 0.0679 0.0236 0.0110

Table 5: RMSE for slow time eigenvalues simulated with 128 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

λ11

σ̃ = 0.001 1.8469 0.9701 0.7379 13.5768 13.5665 13.4992
σ̃ = 0.5 1.6686 1.0896 0.8517 7.1455 10.3077 11.6714
σ̃ = 1 9.4758 1.2103 0.9237 7.1752 2.5418 5.3711
σ̃ = 1.5 101.5555 13.2640 1.6906 93.1677 14.1322 2.9325

λ12

σ̃ = 0.001 3.2060 1.7327 1.6657 13.9818 13.8625 13.8385
σ̃ = 0.5 2.5918 1.9239 1.7003 7.2557 10.3525 11.8293
σ̃ = 1 4.5779 0.9343 1.3764 6.4043 2.6763 5.0598
σ̃ = 1.5 44.1457 7.7889 1.2926 85.9401 10.5846 2.8056

λ13

σ̃ = 0.001 10.0330 11.1214 11.5982 15.2329 15.4110 15.4244
σ̃ = 0.5 7.8444 10.5320 11.1692 11.2733 13.6319 14.4772
σ̃ = 1 2.6649 7.1636 9.2670 4.1145 8.6352 10.8284
σ̃ = 1.5 9.3609 2.9624 5.8956 12.6877 3.1402 6.9233

λ14

σ̃ = 0.001 9.4094 8.9353 8.7059 15.0593 14.9770 14.9317
σ̃ = 0.5 7.7153 8.3966 8.4274 12.1963 14.0439 14.5229
σ̃ = 1 4.0956 6.6006 7.4362 5.3223 9.4466 11.7963
σ̃ = 1.5 4.1188 3.6551 5.4942 3.6915 4.5963 7.9345
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Table 6: RMSE for slow time eigenvalues simulated with 256 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

λ11

σ̃ = 0.001 21.5886 19.9446 20.2506 1.9667 1.8395 1.8251
σ̃ = 0.5 32.0266 21.7969 20.5811 2.1799 0.5359 0.9050
σ̃ = 1 166.4864 44.5541 28.2084 112.6337 18.6524 5.8308
σ̃ = 1.5 963.2846 195.6753 64.1047 716.2971 161.2565 55.0395

λ12

σ̃ = 0.001 12.2839 13.4573 12.9574 2.2926 2.0729 2.0667
σ̃ = 0.5 20.9164 15.4030 13.5757 2.2290 0.5145 0.8951
σ̃ = 1 87.5505 34.9205 19.2723 105.9230 23.6959 6.3190
σ̃ = 1.5 324.3976 122.8017 53.0486 540.3350 187.0776 54.6870

λ13

σ̃ = 0.001 2.1327 0.8575 0.7884 3.2959 3.4773 3.5505
σ̃ = 0.5 2.3996 0.5990 0.5763 1.1035 1.8939 2.5808
σ̃ = 1 16.6741 1.1821 0.2602 19.0014 1.3945 0.6535
σ̃ = 1.5 116.9901 12.9054 1.9962 119.6293 17.7660 3.6761

λ14

σ̃ = 0.001 1.2111 0.3092 0.1415 3.1895 3.2126 3.1993
σ̃ = 0.5 1.3044 0.5372 0.2472 1.0192 2.1258 2.6460
σ̃ = 1 8.7832 1.8256 0.7698 7.3652 0.6683 0.8487
σ̃ = 1.5 26.2824 7.8890 2.4394 70.0516 8.8245 1.0884

Table 7: RMISE for fast time eigenfunctions simulated with 128 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

φ1(t)

σ̃ = 0.001 0.5678 0.3718 0.3306 0.5171 0.3814 0.3225
σ̃ = 0.5 0.5851 0.4225 0.3365 0.5158 0.3906 0.3234
σ̃ = 1 0.6203 0.5049 0.3692 0.5255 0.3964 0.3274
σ̃ = 1.5 0.9212 0.5276 0.4298 0.5625 0.4058 0.3402

φ2(t)

σ̃ = 0.001 1.5721 1.7621 1.8375 1.5728 1.7596 1.8398
σ̃ = 0.5 1.6279 1.7212 1.8012 1.5924 1.7250 1.8239
σ̃ = 1 1.6389 1.7478 1.7968 1.5652 1.7281 1.8109
σ̃ = 1.5 1.6268 1.7121 1.7605 1.5874 1.7200 1.8135

φ3(t)

σ̃ = 0.001 1.0258 0.9265 0.8915 1.0241 0.9220 0.8956
σ̃ = 0.5 1.0611 0.9194 0.8943 1.0812 0.9122 0.8885
σ̃ = 1 1.1184 0.9522 0.9255 1.0353 0.9374 0.8945
σ̃ = 1.5 1.3510 1.0428 0.9701 1.0586 0.9321 0.9019

φ4(t)

σ̃ = 0.001 0.3004 0.1539 0.1167 0.2756 0.1467 0.1182
σ̃ = 0.5 0.2948 0.1527 0.1179 0.3185 0.1448 0.1170
σ̃ = 1 0.4307 0.1752 0.1303 0.3052 0.1520 0.1176
σ̃ = 1.5 1.0265 0.2512 0.1365 0.3104 0.1577 0.1172
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Table 8: RMISE for fast time eigenfunctions simulated with 256 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

φ1(t)

σ̃ = 0.001 0.5384 0.4233 0.3221 0.5085 0.3683 0.3268
σ̃ = 0.5 0.5742 0.4016 0.3314 0.5265 0.4032 0.3137
σ̃ = 1 0.7212 0.4569 0.3356 0.5468 0.3876 0.3233
σ̃ = 1.5 0.9560 0.5950 0.4183 0.5673 0.3899 0.3169

φ2(t)

σ̃ = 0.001 1.5898 1.7308 1.8302 1.5263 1.7273 1.8072
σ̃ = 0.5 1.6042 1.7466 1.7982 1.6240 1.7615 1.8374
σ̃ = 1 1.5674 1.7044 1.7780 1.6018 1.7193 1.8047
σ̃ = 1.5 1.6424 1.6655 1.7120 1.6216 1.6941 1.8192

φ3(t)

σ̃ = 0.001 0.9872 0.9116 0.8865 1.0385 0.9269 0.8874
σ̃ = 0.5 1.0423 0.9097 0.8927 1.0665 0.9052 0.8990
σ̃ = 1 1.1705 0.9442 0.9218 1.0487 0.9045 0.8882
σ̃ = 1.5 1.3437 1.0742 0.9612 1.0669 0.9116 0.9046

φ4(t)

σ̃ = 0.001 0.2657 0.1374 0.1160 0.2480 0.1485 0.1178
σ̃ = 0.5 0.2868 0.1336 0.1126 0.2822 0.1306 0.1194
σ̃ = 1 0.5846 0.1531 0.1102 0.2836 0.1443 0.1112
σ̃ = 1.5 1.1807 0.3160 0.1301 0.3031 0.1400 0.1146

Table 9: RMISE for slow time eigenfunctions simulated with 128 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

ψ11(s)

σ̃ = 0.001 0.0060 0.0060 0.0060 0.0146 0.0047 0.0079
σ̃ = 0.5 0.1945 0.0507 0.0232 0.9610 0.8600 0.5791
σ̃ = 1 0.8713 0.4234 0.1682 1.2011 1.0863 1.0585
σ̃ = 1.5 1.2228 0.9873 0.6393 1.2059 1.2188 1.1164

ψ12(s)

σ̃ = 0.001 0.0060 0.0060 0.0060 0.0239 0.0107 0.0077
σ̃ = 0.5 0.2731 0.0642 0.0276 1.0354 0.8845 0.7421
σ̃ = 1 0.9084 0.4830 0.2257 1.1813 1.1610 1.0988
σ̃ = 1.5 1.2056 1.0122 0.7225 1.2072 1.1776 1.1016

ψ13(s)

σ̃ = 0.001 0.0062 0.0060 0.0061 0.0902 0.1592 0.2807
σ̃ = 0.5 0.4089 0.2069 0.0699 1.1049 1.0026 0.9126
σ̃ = 1 0.9164 0.5701 0.3687 1.1388 1.1697 1.1260
σ̃ = 1.5 1.1225 0.8600 0.6186 1.1880 1.1503 1.1928

ψ14(s)

σ̃ = 0.001 0.0061 0.0060 0.0060 0.1024 0.1747 0.3256
σ̃ = 0.5 0.2399 0.0508 0.0221 1.0187 0.8305 0.6234
σ̃ = 1 0.7715 0.2999 0.1110 1.1916 1.0849 1.0899
σ̃ = 1.5 1.0946 0.7102 0.3058 1.1532 1.1564 1.1236
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Table 10: RMISE for slow time eigenfunctions simulated with 256 fast time samples.

J = 30 J = 250
N = 30 N = 100 N=250 N = 30 N = 100 N=250

ψ11(s)

σ̃ = 0.001 0.0060 0.0060 0.0060 0.0003 0.0002 0.0002
σ̃ = 0.5 0.2154 0.0551 0.0234 1.0569 0.8181 0.5783
σ̃ = 1 0.8706 0.4191 0.1562 1.2118 1.0816 1.0866
σ̃ = 1.5 1.2322 0.8602 0.6202 1.1920 1.1637 1.1416

ψ12(s)

σ̃ = 0.001 0.0060 0.0060 0.0060 0.0003 0.0002 0.0002
σ̃ = 0.5 0.2636 0.0663 0.0291 1.0691 0.9073 0.6803
σ̃ = 1 0.9038 0.5198 0.2158 1.1370 1.1251 1.1159
σ̃ = 1.5 1.2003 0.9480 0.7476 1.1827 1.1877 1.1303

ψ13(s)

σ̃ = 0.001 0.0060 0.0060 0.0060 0.0079 0.0002 0.0002
σ̃ = 0.5 0.4195 0.1702 0.0689 1.0989 1.0333 0.8771
σ̃ = 1 0.8499 0.6229 0.3354 1.1913 1.1316 1.1637
σ̃ = 1.5 1.1288 0.8867 0.6025 1.1805 1.1718 1.1377

ψ14(s)

σ̃ = 0.001 0.0060 0.0060 0.0060 0.0003 0.0002 0.0002
σ̃ = 0.5 0.2670 0.0559 0.0228 1.0054 0.8078 0.6038
σ̃ = 1 0.8385 0.2922 0.1124 1.1289 1.0452 1.0081
σ̃ = 1.5 1.2323 0.6734 0.3153 1.1856 1.1686 1.1831

Simulation studies show that MMFPCA is effective in estimating the fast time mean

functions and the slow time eigenfunctions for many situations. In Tables 1 and 2, the RMISE

of µ(t) is presented for all of the simulated cases. The RMISE in Table 1 is calculated for

128 observations per period, and in Table 2 is calculated for a higher within period sampling

rate of 256 samples per period. The RMISE declines as the within period sampling frequency

increases. As the number of subjects increases from N = 30 to N = 250, the RMISE of µ(t)

declines. When the subjects are followed for longer time frames, J increases, the precision

of the mean estimates increases. As excepted, the RMISE increase with increasing σ̃.

The RMSE of fast time eigenvalues, Tables 3 and 4, has a similar dependence on the

simulation parameters to the fast time mean functions. However, the RMSE does not de-

crease with increasing n. However, MMFPCA has difficulty in estimation of the slow time

eigenvalues which have much larger RMSE compared to the fast time eigenvalues, see Tables

5 and 6. As the slow time estimation depends a smoothing bandwidth, these results may be

due to bandwidth choice.

The fast time eigenfunctions have two classes of estimation error. In Tables 7 and 8, φ1(t)

and φ4(t) have increasing RMISE when σ̃ increases. Also, the RMISE decreases for increasing

sample size. However, there is little dependence on either n or J. For φ2(t) and φ3(t), the

RMISE has no dependence on any of the simulation study parameters. Further investigation

indicated that one or more of PCA estimation steps was not correctly identifying the sign of
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eigenfunction. Attempts to match the sign of the estimates failed to completely correct this

problem.

The slow time eigenfunctions show the same patterns in RMISE as the mean functions,

see Tables 9, and 10. The RMISE of the slow time eigenfunctions is lower when the fast

time density increases from n = 128 to n = 256. In addition, the RMISE increases as

the simulated noise σ̃ increases. The precision of the estimates improves with increasing

longitudinal follow-up J and number of subject N. In the slow time eigenfunctions, ψqp,

RMISE shows the same dependence on N, n, and σ̃. However, the dependence on J shows a

no clear pattern, see Tables 9 and 10.
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7.0 VENTRICULAR ASSIST DEVICE WAVEFORM ANALYSIS

We analyzed our motivating VAD waveform data using our proposed method, MMFPCA.

We added two more types of descriptive plots, heat map and surface plot of smoothed data,

to the previously presented Figures 1, 3, 4, and 5. Starting from the point after breaking the

data into day long blocks, both heat maps, Figure 9, and surface plots, Figure 10, were used

to visualize the circadian cycle and its longitudinal evolution. Before plotting, the data for a

single subject was smoothed using a tensor product smoothing splines with ad hoc smoothing

parameters (Ramsay and Silverman, 2005). In Figure 9, the heat map shows high PO in

orange and yellow with low PO in blue. PO is lower in sleeping hours (2200h - 0700h) than

during the waking hours (0800h - 2000h). The heat map presentation highlights the PO

level and shows the magnitude changes over time. In Figure 9, the example patient can be

seen to be waking up at a later time during the 30 plus days of follow-up because the PO

rises at 0700h at day one to 0830h by day thirty. In Figure 10, the same data is presented

using a surface plot, which has the same color scheme as the heat map. The surface plot

focuses attention on the shape of the circadian cycle instead of the level. Figure 10 shows

the same pattern as in Figure 9 of low PO during the hours of 2200h - 0700h with a rise

during the day. Both heatmaps and surface plots are used because they visually highlight

different aspects of the data.
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Figure 9: Heat map of pump output surface from one subject.

Thirty days of data plotted showing change of circadian behavior. Surface estimated 

with a smoothing spline and ad hoc smoothing parameter.
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Figure 10: Surface plot of pump output surface from one subject.

Thirty days of data plotted showing change of circadian behavior. Surface estimated 

with a smoothing spline and ad hoc smoothing parameter.
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7.1 APPLICATION OF MMFPCA

Conducting MMFPCA on the pilot cohort, we demonstrated that our method successfully

modeled the VAD circadian cycles, fast time scale, and their evolution, slow time scale, at

both the population and patient levels. In Figure 11, population average circadian cycles

are plotted with a 95% global confidence interval. Neither the PO or PI circadian cycle was

statistically significant because of the small sample size. The circadian cycle shows a similar

shape to the cycle observed in Figure 10, but differences were observed between PO and PI

circadian cycles.

The fast time scale FPCA described important variability modes in the circadian cycles,

plotted in Figure 12. Using FVE, we found that one eigenfunction explained 59% of the

variability between the patient’s average circadian cycle, two eigenfunctions explained 92%

of the variability and three eigenfunctions explained 97% of variability. In Figure 12, the

top row displays the first three PO eigenfunctions, and the bottom row displays the same

three eigenfunctions for PI. The first eigenfunction shows variability in overall shape of the

circadian cycle varying from a typical circadian cycle with the highest PO during midday

to an atypical circadian variation with the lowest PO during the midday hours. The corre-

sponding variation mode for PI indicates that a strong PI circadian cycle is correlated with

the typical PO cycle. A weaker PI circadian cycle is associated with an atypical PO cycle.

The second eigenfunction explained variation in average level of the PO which is associated

with variation in the shape of the PI circadian cycle. Finally, the third eigenfunction ex-

plains variability in the patients’ sleep-wake timing. For “morning larks,” both PO and PI

rise earlier than the cohort average cycle and decline earlier in the day as well. “Night owls”

show the opposite pattern with both PO and PI lower in the morning hours and higher in

the afternoon to early evening. Focusing on the third eigenfunction, PI appears to increase

before PO implying that blood flow variability increases before mean flow level increases. As

the physiological mechanism for this is not understood, MMFPCA provides also a method

for generating new hypotheses about circadian cycles in VAD patients.

A regular dense subsection of the longitudinal follow-up, 20 days, was analyzed. In

Figure 13, the important modes of variation over slow time are seen for the first three fast
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Figure 11: Estimated VAD cohort average pump output and pulsatility.

Top plot presents the population average mean pump output, solid line, with a 95% global

confidence band, dashed line. Bottom plot presents the population average mean daily

pulsatility, solid line, with a 95% global confidence band, dashed line.
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Figure 12: Fast time eigenfunctions for the VAD cohort.

Population average fast time functions are plotted as solid lines for pump output in top 

row and pulsatility in bottom row. The heavy dashed line plots plus an eigenfunction and

the light dashed line plots minus an eigenfunction.
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time eigenfunctions. The upper two plots show how the mean level and overall shape of

the circadian cycles evolve over days. The third eigenfunction, describing wake-up time

variability, contains a weak weekly variation. The weekly signal seen in these longitudinal

eigenfunctions show that even though these patients are very ill, the social jet lag component

seen in healthy circadian cycles shows up in these patients as well but too a smaller extent.

Patient multiple predictions are calculated for the nine analyzed patients on both the

fast time scale in slow time scale. On the fast time scale, patient level predicted circadian

cycles are shown in Figure 14 and Figure 15. The MMFPCA model predicts the PO and

PI circadian cycles in patients who have a minimum in both components at around 6am.

The model struggles to predict circadian cycles in patients with earlier or later nadirs in

the circadian cycles. Twenty days of the multivariate signal is reconstructed for the nine

patients on the slow time scale. In Figure 16, the predicted PO for all patients shows the

varied longitudinal evolution of the VAD patient population. For PI, the same signals are

presented in Figure 17. The upper left surface plot in both Figures is the same patient as

seen in Figure 1, Figure 10, and Figure 9. The decline and subsequent in both PO and PI

circadian cycles from days 10-14 is clearly seen in the predicted surfaces while only hinted at

in Figure 10. The patient in the bottom right corner is unique as little longitudinal variation

in the circadian cycles is seen.
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Figure 14: Subject specific predicted pump output circadian cycle.

Predicted pump output for each subject with a circadian cycle. The solid blue lines are

estimated subject specific circadian cycles and the red dots are the observed data. Patient 1,

upper left, is well predicted; however, several other patients are not as the dots and solid lines

do not coincide.
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Figure 15: Subject specific predicted pulsatility circadian cycle.

Predicted pulsatility for each subject with a circadian cycle. The solid blue lines are subject

specific circadian cycles and the red dots are the observed data. Patient 1, upper left, is well

predicted; however, several other patients are not as the dots and solid lines do not coincide.
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Figure 16: The predicted patient specific pump output surfaces for VAD cohort.
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Figure 17: The predicted patient specific pulsatility surfaces for VAD cohort.
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8.0 DISCUSSION

We introduce a new approach to the analysis of non-stationary functions motivated by inten-

sively multivariate measured physiological data collected on patients with a VAD. Because

the non-stationarity of these data presented a challenge for analysis of the entire time series,

we decomposed the original time scale into two new independent time variables (one contain-

ing any periodic component, the second containing all changes in the periodic component).

This decomposition was motivated by the two-timing solution from non-linear ODEs (Stro-

gatz, 1994). Via the decomposition of the time scales, the estimation for each time scale

can be separated into two simpler estimation problems - the complex optimization reduces

to a single FPCA analysis of each time scale. The proposed estimation method extends

both the RF-FPCA method introduced by Chen and Müller (2012) and the marginal FPCA

method introduced in Chen et al. (2016); Park and Staicu (2015) for univariate functions to

the multivariate case. The proposed method also differed from RF-FPCA as the covariance

K(t, t′, s, s′) is decomposed using a marginal formulation instead of the conditional formu-

lation in Chen and Müller (2012); Chen et al. (2016). Also, the proposed method differs

from LFPCA is several critical ways: MMFPCA is built to handle multivariate data with

dense observations in both directions, a different mean structure is proposed (fast time mean

only), and the covariance model has an additional assumption on its structure (an explicit

fast time marginal model). Finally, MMFPCA can be shown to converge to the multivariate

extension of LFPCA in the sparse longitudinal sampling case.

We found that MMFPCA allowed for robust fast time scale analysis regardless of the

specifics of slow time scale model. The proposed method uses a well accepted technique,

FPCA, to analyze the between subject variability. While our application involved using bi-

variate data, the method can extend to any arbitrary dimension. All inference is conducted
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using a functional bootstrap with re-sampling conducted on each subject. While this ap-

proach to statistical inference is time consuming, it requires minimal assumptions and easily

handles the complex dependence on sample sizes seen in these data.

Our development of MMFPCA has several limitations. First, the proposed method

currently requires equal longitudinal follow-up in the slow time scale. Also, all functional

correlation between outcome components is required to be on the fast time scale. Future

work includes extending MMFPCA to incorporate covariate adjustment that can model

datasets with patients containing both a circadian cycle and no circadian cycle. In addition,

MMFPCA requires that both the fast time functions have all important features aligned in

time, in phase. If a patient’s circadian cycle is out of phase with the population average

circadian cycle, MMFPCA poorly predicts the subjects profile. As well, the population mean

function is attenuated in its amplitude variation. A potential future solution to this problem

is to integrate function registration into the model. Also, future directions are development

of techniques to cluster subjects based on fast time FPCA and slow time FPCA.
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APPENDIX A

PLOTS OF VAD PATIENT RAW DATA

In this section of the supplementary materials, we present additional patient data from the

cohort of nine patients. All patients are referred to by a study number, 1-9, with 20 days

of data for patient 1 presented in main article. The eight patients’ data shown in this

supplement shows a wider range of behavior in PO and PI compared to patient 1 (see main

article). While patient 1 had a strong circadian cycle in both PO and PI that changed

slightly from day-to-day, patient 4, Figure 20, does not show any circadian rhythms in the

first ten days of follow-up. Around day 12, a circadian cycle starts in the PI waveform but

not in the PO waveform. By day eighteen, both PO and PI waveforms show a circadian

cycle. Patient 7, Figure 23, has two qualitatively different types of behavior. From day zero

until day eight, the patient shows a weak circadian cycle in both PI and PO that is declining

in amplitude and ending at day eight. At day eight, both PO and PI suddenly jump levels

and all circadian cycles stop. Furthermore, there is a sharp drop in PO and PI in the early

morning of day nine. After day nine, patient 8 show some variability in PO and PI, but

no circadian cycle is seen by visual inspection. Patient 3, Figure 19, has a circadian cycle

throughout the twenty days of follow-up but a drop in both amplitude and mean level is

observed during the tenth day. A similar event is seen in patient 5, Figure 21, at during

days three and four. Patient 6 shows the loss and restoration of the circadian cycle in the

period from day fifteen to eighteen. The clinical significance of these events is currently

being investigated. Finally, patients 2 (Figure 18), 8 (Figure 24), and 9 (Figure 25) have a

stable circadian for the entire twenty day follow-up.
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Figure 18: Sample profile for 20 days of pump output and pulsatility for patient 2.
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Figure 19: Sample profile for 20 days of pump output and pulsatility for patient 3.
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Figure 20: Sample profile for 20 days of pump output and pulsatility for patient 4.
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Figure 21: Sample profile for 20 days of pump output and pulsatility for patient 5.
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Figure 22: Sample profile for 20 days of pump output and pulsatility for patient 6.
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Figure 23: Sample profile for 20 days of pump output and pulsatility for patient 7.
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Figure 24: Sample profile for 20 days of pump output and pulsatility for patient 8.
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Figure 25: Sample profile for 20 days of pump output and pulsatility for patient 9.
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APPENDIX B

ADDITION PERIODOGRAMS FOR VAD COHORT
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Figure 26: Periodogram from patient 2.
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Figure 27: Periodogram from pateint 3.
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Figure 28: Periodogram from patient 4.
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Figure 29: Periodogram from patient 5.
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Figure 30: Periodogram from patient 6.
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Figure 31: Periodogram from patient 7.
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Figure 32: Periodogram from patient 8.
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Figure 33: Periodogram from patient 9.
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APPENDIX C

MATLAB CODE FOR FITTING MMFPCA

These functions are the primary MATLAB code for running MMFPCA.

1 % Andrew Potter - 9/30/2016

% MMFPCA master function

3 % ’Y’ = observed data matrices (rows: within day , columns: days) organized

% ’nday ’ = number of slow time observation in each subject

5 % into a cell array with rows as outcome components and columns as subjects

% ’wnam ’ = wavelet name for the wavelet domain steps - must be one of the

7 % wavelets in the matlab wavelet toolbox

% ’thrRule ’ = wavelet threshold rule for ’wden ’ - must match matlab names

9 % ’theType ’ = hard ’h’ or soft ’s’ threshold

% ’varScal ’ = ’sln ’ or ’mln ’ - noise level model for wden

11 % ’w’ = constant for ASPCA

% ’thrFT_flag ’ = 1 puts a hard threshold on the fast time eigenfunctions

13 % ’fveThr ’ = FVE cutoff for number of eigenfunctions

% ’sSparse ’ = sparse follow -up in ST , use PACE

15 % ’sMax ’ = max slow time follow up if all slow time follow -up is not equal

% ’sBW ’ = smoothing bandwidth for slow time covariance

17 % ’sims ’ = 1 indicates that the data is simulated

% FT denotes fast time

19 % ST denotes slow time

21 function [outFT , outST , outPred] = MMFPCA(Y,wnam ,thrRule ,thrType ,varScal ,w,thrFT_flag ,fveThr

,sSparse , sBW , sims)

23

D = size(Y,1); % number of outcome components

25 N = size(Y,2); % number of subjects

n_t = size(Y{1 ,1} ,1);

27 n_lev = wmaxlev(n_t ,wnam); % number of levels in wavelet decomp

[~,l] = wavedec(Y{1 ,1}(: ,1),n_lev ,wnam); %

29 n_wav = sum(l(1:(end -1)));

31 Y_wav = Y; % wavelet transform of the data

Z = cell(D,N); % subject specfic means

33 FTmuW_raw = cell(1,D); % raw population average FT means on wavelet domain

FTmuW = cell(1,D); % thresholded FT means on wavelet domain

35 FTmu = cell(1,D); % thresholded FT means on time domain

subj_dev = cell(1,D); % subject specific FT deviations

37 FTvecW = cell(1,D); % FT wavelet domain eigenvector

FTval = cell(1,D); % FT eigenvalues

39 FTk = cell(1,D); % FT number of eig vecs

FTvec = cell(1,D); % FT time domain eigenvector

41 FTfve = cell(1,D); % FT FVE
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xbar = cell(1,D); % subject deviation data matrix

43 uFTfveCut = cell(1,D); % FVE cutoff for each fast time dimension

uFTsc = cell(1,D); % univariate FT scores xi

45 uFThat = cell(1,D); % univariate FT hat

uFTpred = cell(1,D); % univariate FT prediction

47 mvFTpred = cell(1,D); % multivariate FT prediction

uFTs = cell(1,D); % univariate observation cut to a regular grid

49 FTdevS = cell(1,D); % the daily subject specific deviations

uFTscS = cell(1,D); % the daily specific scores

51 nday = zeros(1,N);

53 for kk = 1:N

nday(kk) = size(Y{1,kk},2);

55 end

if length(unique(nday)) > 1

57 sMax = min(nday) -2;

else

59 sMax = unique(nday);

end

61 for jj = 1:D

for kk = 1:N

63 Y_wav{jj,kk} = thr_bys(Y{jj,kk}, thrRule , thrType ,varScal ,wnam ,1); % period by

period wavelet transform

Z{jj,kk} = mean(Y_wav{jj,kk},2); % subject specfic means on wavelet domain

65 end

FTmuW_raw{jj} = mean(cell2mat(Z(jj ,:)) ,2); % raw mean

67 [FTmu{jj},FTmuW{jj}] = wden(FTmuW_raw{jj},l,thrRule ,thrType ,varScal ,n_lev ,wnam); %

thresholded mean

subj_dev{jj} = bsxfun(@minus ,cell2mat(Z(jj ,:)), FTmuW{jj}); % raw subject deviation

69 [~, FTvecW{jj},FTval{jj},FTk{jj}] = sparPCA_1d(subj_dev{jj}, w,thrFT_flag); % ASPCA

FTvec{jj} = zeros(n_t , FTk{jj});

71 % time domain eigenfunctions

for kk = 1:FTk{jj}

73 FTvec{jj}(:,kk) = waverec(FTvecW{jj}(:,kk), l, wnam); % univariate phi on time

domain

end

75

FTfve{jj} = cumsum(FTval{jj})/sum(FTval{jj}); %FVE criteria

77 xbar{jj} = zeros(n_t , N);

for kk = 1:N

79 xbar{jj}(:,kk) = waverec(subj_dev{jj}(:,kk),l,wnam); % time domain fast time dev

matrix

end

81 uFTfveCut{jj} = find(FTfve{jj} <= fveThr ,1,’last’); %number of eigenfunctions

[uFTsc{jj}, uFThat{jj}] = sparSC(xbar{jj},FTvec{jj},uFTfveCut{jj},1); % s constant FT

scores

83 uFTpred{jj} = bsxfun(@plus ,FTmu{jj},uFThat{jj}); % FT subject specific predictions

uFTs{jj} = zeros(n_t ,N,sMax); % empty cell array for observed

85

87 %fix this block of code to handle both equal length and unequal length

%data.

89 % adds zeros to the end of short records.

for kk = 1:N

91 if length(unique(nday)) == 1

uFTs{jj}(:,kk ,:) = Y{jj,kk};

93 else

temp = Y{jj ,kk}(: ,2:(sMax +1));

95 uFTs{jj}(:,kk ,:) = temp;

end

97 end

FTdevS{jj} = bsxfun(@minus ,uFTs{jj}, uFTpred{jj}); % calculates the daily residual

function

99 %

for kk = 1:N

101 for ll = 1:sMax

uFTscS{jj}(kk,ll ,:) = sparSC(uFTs{jj}(:,kk,ll),FTvec{jj},uFTfveCut{jj},0);

103 end
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end

105 end

107 % at the moment , set the number of eigenfunctions to the minimum across all

% components

109 neig = min(cell2mat(uFTfveCut));

% cut the univariate score and vector matrices to size for MFPCA

111

Xi = zeros(N,neig*D);

113 Phi = zeros(n_t ,neig*D);

uniSc = zeros(N,sMax ,neig*D);

115 ii = 1;

for kk = 1:2:2* neig

117 for jj = 1:D

offset = jj -1;

119 Xi(:,kk+offset) = uFTsc{jj}(:,ii);

Phi(:,kk+offset) = FTvec{jj}(:,ii);

121 uniSc(:,:,kk+offset) = uFTscS{jj}(:,:,ii);

end

123 ii = ii+1;

end

125

%% multivariate FPCA

127

n_eig = neig*ones(D,1);

129 [mEvec , mEval ,uMSc , ~ ,cm] = mFPCA(Xi,n_eig , D, Phi);

%%

131 mFVE = cumsum(mEval)/sum(mEval);

neM = find(mFVE <= fveThr ,1,’last’);

133

%% Fast Time MV Predictions

135

Temp = zeros(2*n_t , N,neM);

137

for kk = 1:neM

139 for jj = 1:N

Temp(:,jj,kk) = uMSc(jj,kk) .* mEvec(:,kk); %% look into here

141 end

end

143 %%

hatMV = sum(Temp ,3);

145 for ii = 1:D

mvFTpred{ii} = bsxfun(@plus ,hatMV(1+n_t*(ii -1):ii*n_t ,:), FTmu{ii});

147 end

149

%% Daily mv scores

151

mvSc_s = zeros(N, sMax , neM);

153 for ii = 1:N

for rr = 1:neM

155 tempSc = bsxfun(@times ,permute(uniSc(ii ,:,:), [2 3 1]) , cm(:,rr) ’);

mvSc_s(ii ,:,rr) = sum(tempSc ,2);

157 end

end

159 %% ST FPCA

[~,Kv_s ,Ke_s ,FVE_s ,trace_p ,FVEcuts ,~] = stFPCA(mvSc_s ,sBW ,[],sMax ,[],1,fveThr ,0); %modify

these inputs

161

163 %% Complete Signal reconstruction

neS = min(FVEcuts);

165 hat_stSC = zeros(N,neS , neM);

hat_stpred = zeros(sMax ,N,neM);

167 for pp = 1:neM

[hat_stSC(:,:,pp), hat_stpred(:,:,pp)] = sparSC(mvSc_s(:,:,pp)’, Kv_s{pp},neS ,1);

169 end

%%
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171 means = cell2mat(FTmu);

meanFT = means(:);

173 for ii = 1:N

for kk = 1:sMax

175 for jj = 1:neM

predFS(:,jj) = hat_stpred(kk,ii,jj).*mEvec(:,jj);

177 end

Y_mvpred(:,kk,ii) = meanFT + hatMV(:,ii) + sum(predFS ,2);

179 end

end

181

183 outFT = struct(’dimension’,D,’meanRaw’,FTmuW_raw ,’meanThr ’,FTmu , ’subjDev ’,subj_dev ,...

’univarFTeigVectorW ’,FTvecW ,’univarFTeigValue’,FTval ,’univarFTk’,FTk ,’univarFTeigVector’

,FTvec ,...

185 ’univarFTfve’,FTfve ,’xbar’,xbar ,’FTfveCut’,uFTfveCut ,’uFTsc’,uFTsc ,’uFTscS’,uFTscS ,...

’Xi’, Xi,’Phi’,Phi ,’mvFTeigVector’,mEvec ,’mvFTeigValue’,mEval , ’mvFTpred’, ...

187 mvFTpred , ’mvScoresS’,mvSc_s);

outST = struct(’STeigVector’,Kv_s , ’STeigValue’,Ke_s , ’FVE_ST’,FVE_s ,...

189 ’STtrace ’,trace_p ,’FVE_ST_coff’,FVEcuts);

outPred = Y_mvpred;

191 end

MMFPCA.m

% Andrew Potter 4/28/2015

2 % Multivariate Sparse FPCA

% Implements the method of Happ and Greven only looking at the multivariate

4 % part of the FPCA decomp. 2-d only

6 % Inputs: appropriately formatted univariate score matrix (rows -

% observations , columns - scores), vector of number of univariate FPCA

8 % components , total number of functions , matrix of univariate

% eigenfunctions (rows - time points , columns - eigenfunctions)

10

% Outputs: multivariate eigenvectors , multivariate eigenvalues , Z_hat ,

12 % multivariate scores

14 function [mEvec , mEval , mScore , Z_hat ,cm] = mFPCA(Xi , n_eig , dim , Phi)

n = size(Xi ,1);

16 M_max = size(Xi ,2);

t = size(Phi ,1);

18 Z_hat = Xi ’*Xi/(n-1);

[Kv , Ke] = eig(Z_hat ,’vector’);

20 [mEval ,eI] = sort(Ke,’descend ’);

cm = Kv(:,eI);

22

% estimate the multivariate eigenfunctions

24 mEvec = zeros(2*t, M_max);

mScore = zeros(n,M_max);

26 odd = 1:2:2* n_eig;

even = 2:2:2* n_eig;

28 for ll = 1: M_max

for jj = 1:dim

30 m_j = n_eig(jj);

if jj == 1

32 c_temp = cm(odd ,ll);

u_temp = Phi(:,odd);

34 else

c_temp = cm(even ,ll);

36 u_temp = Phi(:,even);

end

38 temp = bsxfun(@times , u_temp , c_temp ’);

mEvec(((jj -1)*t+1):jj*t,ll) = sum(temp ,2);

40 end
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tempSc = bsxfun(@times , Xi, cm(:,ll) ’);

42 mScore(:,ll) = sum(tempSc ,2);

end

44 return

end

mFPCA.m

1 % Andrew Potter - 4/21/2016

% Implimentation of Sparse PCA of Johnstone and Lu 2009

3

function [S,evec , eval , k] = sparPCA_1d(X,w,thr)

5 % takes in transform domain data and returns matrix eigenvectors on the

% transformed domain.

7 % X is the data on the transform domain with mean 0, rows are coefficient and columns are

subjects.

% w is a constant

9 % thr is a threshold flag: 0 no threshold on eigenfunctions , 1 threshold on

% eigenfunctions.

11 p = size(X,1);

n = size(X,2);

13 S_n = zeros(p,n);

15 for ii = 1:n

S_n(:,ii) = X(:,ii).^2;

17 end

sig_n = mean(S_n ,2); %PA covariance on the transform domain

19 %S=sig_n;

sig_hat = median(sig_n);

21

[sig_sort , sig_I] = sort(sig_n , ’descend’);

23

chi_ptile = chi2inv(sig_I./(p+1),n-1);

25 eta_temp = [sig_sort - sig_hat .* chi_ptile./(n-1) zeros(p)];

eta2 = max(eta_temp ,[] ,2);

27

eta_max = w*sum(eta2);

29 eta_tally = 0;

k = 0;

31

while eta_tally <= eta_max

33 k = k+1;

eta_tally = eta_tally+eta2(k);

35 end

37 ind_sm = sig_I(1:k);

X_sm = X(ind_sm ,:);

39 S_sm_temp = zeros(k,k,n);

for ii = 1:n

41 S_sm_temp(:,:,ii) = X_sm(:,ii) * X_sm(:,ii)’;

end

43

S = mean(S_sm_temp ,3);

45

% do PCA on S

47 [Kv, Ke] = eig(S,’vector’);

49 [eval ,eI] = sort(Ke,’descend ’);

51 Kv = Kv(:,eI);

evec = zeros(p,k);

53 for ii = 1:k

evec(sig_I(ii) ,:) = Kv(ii ,:);

55 end

% hard threshold on K_v to get evec
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57 if thr == 1

md = mad(Kv ,1); %MAD for each eigenvector

59 thrK = (md ./0.6745)*sqrt (2*log(k));

Kvthr = Kv;

61 for ii = 1:k

sumy = sum(abs(Kv(:,ii))>thrK(ii));

63 Kvthr(:,ii) = Kv(:,ii).*(abs(Kv(:,ii))>thrK(ii));

if sumy == 0

65 normy = 1;

else

67 normy = norm(Kvthr(:,ii));

end

69 Kvthr(:,ii) = Kvthr(:,ii)/normy;

end

71

evec = zeros(p,k);

73 for ii = 1:k

evec(sig_I(ii) ,:) = Kvthr(ii ,:);

75 end

end

77 end

sparPCA 1d.m

% Andrew Potter 4/28/2015

2 % SparFPCA scoring function

% Inputs: Univariate observed functions , eigenfunctions , on time domain ,

4 % number of eigenvectors , the observation time vector , and if return Xhat.

% Returns: FPCA scores for each observed subject , FPCA estimate for each

6 % subject

8 function [xi, X_hat] = sparSC(X,evec , n_eigen , rXhat)

n = size(X,2); % number of subject

10 n_s = size(X,1); % vector of observation times

xi = zeros(n,n_eigen); % stores the scores

12 X_temp = zeros(n_s ,n, n_eigen); % temp storage of the weighted eV for each subject

if n_eigen == 1

14 evec = evec(:,1);

prod_temp = bsxfun(@times , X,evec);

16 for jj = 1:n

xi(jj) = trapz(prod_temp(:,jj)); % eigen score for the

18 if rXhat == 1

X_temp(:,jj) = xi(jj) .* evec; %% look into here

20 end

end

22 else

for kk = 1: n_eigen

24 prod_temp = bsxfun(@times , X,evec(:,kk));

for jj = 1:n

26 xi(jj ,kk) = trapz(prod_temp(:,jj)); % eigen score for the

if rXhat == 1

28 X_temp(:,jj ,kk) = xi(jj ,kk) .* evec(:,kk); %% look into here

end

30 end

end

32 end

34 if rXhat == 1

X_hat = sum(X_temp , 3);

36 end

end

sparSC.m
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1 % slow time FPCA

function [Cov_s , Kv_s , Ke_s ,FVE_s ,trace_p ,FVEcuts ,Pooled] = stFPCA(mvSc_s ,bws ,stPCbasis ,n_s ,

Q,pooled ,FVE_thr ,sims)

3 P = size(mvSc_s ,3);

Cov_s = cell(P,1);

5 Kv_s = cell(P,1);

Ke_s = cell(P,1);

7 FVE_s = zeros(n_s ,P);

trace_p = zeros(1,P);

9 FVEcuts = zeros(1,P);

for ff = 1:P

11 cov_temp = cov(mvSc_s(:,:,ff));

d_temp = .5*diag(cov_temp ,-1) +.5* diag(cov_temp ,1);

13 d_temp2 = interp1 (1:n_s -1,d_temp ,1:n_s ,’linear’,’extrap’);

cov_temp2 = cov_temp - diag(diag(cov_temp)) + diag(d_temp2);

15 Cov_s{ff} = imgaussfilt(cov_temp2 ,bws); %need to smooth for higher noise

17 [Kv_s{ff},Ke_temp] = eig(Cov_s{ff});

Ke_s{ff} = diag(Ke_temp);

19 [Ke_s{ff},I] = sort(Ke_s{ff},’descend ’);

Ke_s{ff} = Ke_s{ff}.* bsxfun(@ge , Ke_s{ff},0);

21 Kv_s{ff} = Kv_s{ff}(:,I);

FVE_s(:,ff) = cumsum(Ke_s{ff})/sum(Ke_s{ff});

23 if sims == 1

FVEcuts(ff) = Q;

25 else

FVEcuts(ff) = find(FVE_s(:,ff) <= FVE_thr ,1,’last’);%%% have an issue here in

parfor. Not sure wy !!!!

27 end

Kv_s{ff} = Kv_s{ff}(: ,1:FVEcuts(ff));

29 trace_p(ff) = sum(Ke_s{ff}(1: FVEcuts(ff)));

if ~isempty(Q)

31 if FVEcuts(ff) <= Q

for ii = 1: FVEcuts(ff)

33 Kv_s{ff}(:,ii) = signchk(Kv_s{ff}(:,ii), stPCbasis ’);

end

35 end

end

37 end

if pooled == 1

39 cov_p = zeros(n_s ,n_s);

for pp = 1:P

41 cov_p = cov_p + Cov_s{pp};

end

43 d_temp = .5*diag(cov_p ,-1) +.5* diag(cov_p ,1);

d_temp2 = interp1 (1:n_s -1,d_temp ,1:n_s ,’linear’,’extrap’);

45 cov_p2 = cov_p - diag(diag(cov_p)) + diag(d_temp2);

Cov_pooled = imgaussfilt(cov_p2 ,bws); %need to smooth for higher noise

47 [Kv_pooled ,Ke_temp] = eig(Cov_pooled);

Ke_pooled = diag(Ke_temp);

49 [Ke_pooled ,I] = sort(Ke_pooled ,’descend ’);

Ke_pooled = Ke_pooled.* bsxfun(@ge , Ke_pooled ,0);

51 Kv_pooled = Kv_pooled(:,I);

FVE_pooled = cumsum(Ke_pooled)/sum(Ke_pooled);

53 if sims == 1

FVEcuts_pooled = Q;

55 else

FVEcuts_pooled = find(FVE_pooled <= FVE_thr ,1,’last’);%%% have an issue here in

parfor. Not sure wy!!!!

57 end

Kv_pooled = Kv_pooled(:,1: FVEcuts_pooled);

59 trace_pooled = sum(Ke_pooled(1: FVEcuts_pooled));

if ~isempty(Q)

61 if FVEcuts_pooled < Q

for ii = 1: FVEcuts_pooled

63 Kv_pooled(:,ii) = signchk(Kv_pooled(:,ii), stPCbasis ’);

end

65 end
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end

67 Pooled = {Cov_pooled , Kv_pooled ,Ke_pooled ,FVE_pooled ,FVEcuts_pooled ,trace_pooled};

end

69 return

end

stFPCA.m

function [C_th , l] = thr_bys(Y,th_rule , th_type , th_scal , wnam_t , nodn)

2 % a function that does a level dependent threshold de-noising on data

% for each observed s value. returns an array of size n_tXn_sXN of

4 % de-noised wavelet coefficients and an index vector.

6 n_t = size(Y,1);

n_s = size(Y,2);

8 N = size(Y,3);

n_level = wmaxlev(n_t ,wnam_t); % number of levels

10 if nodn == 0

[~,c,l] = wden(Y(:,1,1), th_rule , th_type ,th_scal ,n_level , wnam_t);

12 C_th = zeros(length(c), n_s ,N);

for i = 1:N

14 for j = 1:n_s

[~, C_th(:,j,i)] = wden(Y(:,j,i), th_rule , th_type ,th_scal ,n_level , wnam_t);

16 end

end

18 end

if nodn == 1

20 [c,l] = wavedec(Y(:,1,1),n_level , wnam_t);

C_th = zeros(length(c), n_s ,N);

22 for i = 1:N

for j = 1:n_s

24 C_th(:,j,i) = wavedec(Y(:,j,i), n_level , wnam_t);

end

26 end

end

28 end

thr bys.m

Code for recreating the simulation studies presented in this dissertation. This code

implements MMFPCA as a script instead of a function. We made this decision to prevent

errors in FVE in the lowest noise level.

%% Andrew Potter 12/11/2016

2 %

% edit 7/13/16 to fix the normalizations

4 % simulates MMFPCA to estimate ISE , MISE , MSE for model parameters.

6

8 %% The simulation parameters

%

10 % $n_t = 96$

% $n_s = 50$

12 % $N = 30$

% $f(t) =-sin(2 \pi t /T)$, $T=24$

14 %

% a scalar valued function.

16 %

%clear
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18 addpath(genpath(’/Users/andrewpotter/Documents/MATLAB/’));

boundary=’reflection’;

20 reps = 3;%250; %number of replicates at each level of rho and tau

n_t = 2^7; % number of fast time samples within one period

22 n_sA = [30 250]; % number of observed periods

bws = [2 15];

24 P = 2 ; % number of fast time eigenfunctions

Q = 1; % number of slow time eigenfunctoins

26 N_all = [30 100 250]; %number of subjects

T = n_t;

28 t = linspace(0,n_t ,n_t);

30 sig = [0.001 0.5]% 1 1.5]; % noise error

32 wnam = ’sym8’; % wavelet names

%%

34 hat_mu1 = cell(size(sig ,2) ,1); % fast time est 1

hat_mu2 = cell(size(sig ,2) ,1); % fast time est 2

36 hat_ke1 = cell(size(sig ,2) ,1); % fast time eigenvalues 1

hat_ke2 = cell(size(sig ,2) ,1); % fast time eigenvalues 2

38 hat_kv1 = cell(size(sig ,2) ,1); % fast time eigenfuns 1

hat_kv2 = cell(size(sig ,2) ,1); % fast time eigenfuns 2

40 hat_fve1 = cell(size(sig ,2) ,1); % fast time FVE 1

hat_fve2 = cell(size(sig ,2) ,1); % fast time FVE 2

42 hat_mv = cell(size(sig ,2) ,1); % multivar eigenFun

hat_me = cell(size(sig ,2) ,1); % multivar eigenVal

44 hat_fve = cell(size(sig ,2) ,1); % multivar FVE

hat_kvs = cell(size(sig ,2) ,1); % slow time eigenfuns

46 hat_kes = cell(size(sig ,2) ,1); % slow time eigenvals

hat_fves = cell(size(sig ,2) ,1); % slow time FVE

48 hat_trace_st = cell(size(sig ,2) ,1);

hat_FVEcuts = cell(size(sig ,2) ,1);

50 hat_covs = cell(size(sig ,2) ,1);

% the data

52 % look at multiple values for the random effect. Need to improve the re

% and eigenfunction to make sure it is from a K-L expansion of a covariance

54 %Simulation: Continuous functions in s of level 5 detail and approx coefs

56 %%

58

60 %%

X_ft_true1 = -5*sin(2*pi*t/T);

62 X_ft_true2 = -2.5*sin(2*pi*t/T);

64

rho = linspace(5, 3, P);

66 rhoQ = 4;

cor = linspace(2, 0, P);

68 % ftPCbasis = fourier(t, P, T,0); % fast time basis

% for pp = 1:P

70 % ftPCbasis(:,pp) = ftPCbasis(:,pp)/sqrt(trapz(ftPCbasis(:,pp).^2));

% end

72

%

74 ftPCbasis = zeros(n_t ,P);

76 %

for pp = 1:P

78 if pp == 1

for ii = 1:n_t

80 if ii >floor(.65*n_t) && ii <floor (.85*n_t)

ftPCbasis(ii,pp) = -(ii -floor (.75*n_t))^2 + 150;

82 else

ftPCbasis(ii,pp) = 0;

84 end

end
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86 elseif pp == 2

for ii = 1:n_t

88 if ii >floor(.15*n_t) && ii <floor (.35*n_t)

ftPCbasis(ii,pp) = (ii-floor(.25*n_t))^2 -150;

90 else

ftPCbasis(ii,pp) = 0;

92 end

end

94 end

ftPCbasis(:,pp) = ftPCbasis(:,pp)/sqrt(trapz(ftPCbasis(:,pp).^2));

96 end

%%

98 mu = [0 0];

% sigma_true = zeros(2 ,2, P);

100 % for ii = 1:P

% sigma_true(:,:,ii) = [rho(ii) cor(ii); cor(ii) rho(ii) -.5];

102 % end

104 sigma_true = [4 1; 1 2];

sigma_true(:,:,2) = [3 .5 ; .5 1];

106 %sigma_true(:,:,3) = [3 0 ; 0 .5];

ztrue = blkdiag(sigma_true(:,:,1),sigma_true(:,:,2))

108 %%

ztrue = ztrue([1 3 2 4], [1 3 2 4 ])

110

[cmTru , nuTru] = eig(ztrue);

112 [nuTrue , ind] = sort(diag(nuTru), ’descend ’);

cmTrue = cmTru(:,ind)

114 %%

mvPCbasis = zeros(2*n_t , 2*P);

116 mvPCbasis(:,1) = [ftPCbasis(:,1)*cmTrue(1,1); ftPCbasis(:,1)*cmTrue(3,1)];

mvPCbasis(:,2) = [ftPCbasis(:,2)*cmTrue(2,2); ftPCbasis(:,2)*cmTrue(4,2)];

118 mvPCbasis(:,3) = [ftPCbasis(:,1)*cmTrue(1,3); ftPCbasis(:,1)*cmTrue(3,3)];

mvPCbasis(:,4) = [ftPCbasis(:,2)*cmTrue(2,4); ftPCbasis(:,2)*cmTrue(4,4)];

120

%% Plot the ft PC basis

122

subplot (4,2,1)

124 plot( mvPCbasis(1:n_t ,1),’LineWidth’ ,2)

axis ([0 128 -.3 .3])

126 title({’1^{st} Component:’; ’\phi_1(t)’},’FontWeight’,’normal’)

128 subplot (4,2,3)

plot(mvPCbasis(1:n_t ,2),’LineWidth’ ,2)

130 axis ([0 128 -.3 .3])

title(’\phi_2(t)’,’FontWeight’,’normal’)

132 subplot (4,2,5)

plot(mvPCbasis(1:n_t ,3),’LineWidth’ ,2)

134 axis ([0 128 -.3 .3])

title(’\phi_3(t)’,’FontWeight’,’normal’)

136 subplot (4,2,7)

plot(mvPCbasis(1:n_t ,4),’LineWidth’ ,2)

138 axis ([0 128 -.3 .3])

title(’\phi_4(t)’,’FontWeight’,’normal’)

140 % 2nd comp

subplot (4,2,2)

142 plot( mvPCbasis(n_t+1:end ,1),’LineWidth’ ,2)

axis ([0 128 -.3 .3])

144 title({’2^{nd} Component:’; ’\phi_1(t)’},’FontWeight’,’normal’)

subplot (4,2,4)

146 plot(mvPCbasis(n_t+1:end ,2),’LineWidth’ ,2)

axis ([0 128 -.3 .3])

148 title(’\phi_2(t)’,’FontWeight’,’normal’)

subplot (4,2,6)

150 plot(mvPCbasis(n_t+1:end ,3),’LineWidth’ ,2)

axis ([0 128 -.3 .3])

152 title(’\phi_3(t)’,’FontWeight’,’normal’)

subplot (4,2,8)
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154 plot(mvPCbasis(n_t+1:end ,4),’LineWidth’ ,2)

axis ([0 128 -.3 .3])

156 title(’\phi_4(t)’,’FontWeight’,’normal’)

%print(’ftPC.eps ’,’-depsc ’)

158

%% Get DWT by days for all patients.

160 n_lev = wmaxlev(n_t ,wnam);

%W = Get_DWT(wnam , n_t , boundary , 1, n_lev);

162

164 %%

parpool(’local’)

166 %% Simulation loop

168 tic

parfor_progress(size(sig , 2));

170 %g=1

parfor g = 1:size(sig , 2)

172 % Report current estimate in the waitbar ’s message field

parfor_progress;

174

sigl = sig(g);

176 hat_mu1_temp = zeros(n_t ,reps ,size(N_all ,2),size(n_sA ,2)); % fast time est 1

hat_mu2_temp = zeros(n_t ,reps ,size(N_all ,2),size(n_sA ,2)); % fast time est 2

178 hat_ke1_temp = zeros(P,reps ,size(N_all ,2),size(n_sA ,2)); % fast time eigenvalues 1

hat_ke2_temp = zeros(P,reps ,size(N_all ,2),size(n_sA ,2)); % fast time eigenvalues 2

180 hat_kv1_temp = zeros(n_t ,P,reps ,size(N_all ,2),size(n_sA ,2)); % fast time eigenfuns 1

hat_kv2_temp = zeros(n_t ,P,reps ,size(N_all ,2),size(n_sA ,2)); % fast time eigenfuns 2

182 hat_fve1_temp = zeros(P,reps ,size(N_all ,2),size(n_sA ,2)); % fast time FVE 1

hat_fve2_temp = zeros(P,reps ,size(N_all ,2),size(n_sA ,2)); % fast time FVE 2

184 hat_mv_temp = zeros(2*n_t ,2*P,reps ,size(N_all ,2),size(n_sA ,2)); % multivar eigenFun

hat_me_temp = zeros(2*P,reps ,size(N_all ,2),size(n_sA ,2)); % multivar eigenVal

186 hat_fve_temp = zeros(2*P,reps ,size(N_all ,2),size(n_sA ,2)); % multivar FVE

hat_kvs_temp = cell(reps ,size(N_all ,2),size(n_sA ,2)); % slow time eigenfuns

188 hat_kes_temp = cell(reps ,size(N_all ,2),size(n_sA ,2)); % slow time eigenvals

hat_fves_temp = cell(reps ,size(N_all ,2),size(n_sA ,2)); % slow time FVE

190 hat_trace_temp = cell(reps ,size(N_all ,2),size(n_sA ,2)); %

hat_FVEcuts_temp = cell(reps ,size(N_all ,2),size(n_sA ,2));

192 hat_covs_temp = cell(reps ,size(N_all ,2),size(n_sA ,2));

for aa = 1:size(N_all ,2)

194 N = N_all(aa);

for cc = 1:size(n_sA ,2)

196 n_s = n_sA(cc);

for bb = 1:reps

198

% Slow Time FPCA

200 s = linspace(0,n_s -1,n_s);

stPCbasis = -s/n_s + .5; % slow time basis

202 stPCbasis = stPCbasis/trapz(stPCbasis.^2);

% stPCbasis = fourier(s, Q, n_s ,0); % slow time basis

204 % for qq = 1:Q

% stPCbasis(:,qq) = stPCbasis(:,qq)/sqrt(trapz(stPCbasis(:,qq).^2));

206 % end

208 X = zeros(n_t ,n_s ,N);

X_sim1 = zeros(n_t ,n_s ,N);

210 X_sim2 = zeros(n_t ,n_s ,N);

212 for i = 1:N

for j = 1:n_s

214 X_sim1(:,j,i) = X_ft_true1;

X_sim2(:,j,i) = X_ft_true2;

216 end

end

218 % Fast Time FPCA

220 ftSC = zeros(N,2,P);

for jj = 1:P
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222 ftSC(:,:,jj) = mvnrnd(mu,sigma_true(:,:,jj),N);

end

224

226 stSC = bsxfun(@times ,randn(N,Q,P),rhoQ);

228 % The simmed data

230 tempF1 = zeros(n_t ,P);

tempF2 = zeros(n_t ,P);

232 ftDev1 = zeros(n_t ,N);

234 stDev = zeros(n_s ,N,P);

Y_sim1 = X_sim1;

236 ftDev2 = zeros(n_t ,N);

238 Y_sim2 = X_sim2;

tempS = zeros(n_s ,Q);

240 tempFS = zeros(n_t ,P);

for ii = 1:N

242 for jj = 1:P

244 tempS = stSC(ii ,1,jj).* stPCbasis;

246 stDev(:,ii, jj) = tempS;

tempF1(:,jj) = ftSC(ii ,1,jj).* ftPCbasis(:,jj);

248 tempF2(:,jj) = ftSC(ii ,2,jj).* ftPCbasis(:,jj);

end

250 ftDev1(:,ii) = sum(tempF1 ,2);

ftDev2(:,ii) = sum(tempF2 ,2);

252 for kk = 1:n_s

for jj = 1:P

254 tempFS(:,jj) = stDev(kk,ii,jj).* ftPCbasis(:,jj);

end

256 Y_sim1(:,kk,ii) = X_sim1(:,kk,ii) + ftDev1(:,ii) + sum(tempFS ,2);

Y_sim2(:,kk,ii) = X_sim2(:,kk,ii) + ftDev2(:,ii) + sum(tempFS ,2);

258 end

end

260

262 % add noise

sz = size(Y_sim1);

264 noise1 = sigl.* Y_sim1.* randn(sz);

noise2 = sigl.* Y_sim2.* randn(sz);

266 Y1 = Y_sim1 + noise1;

Y2 = Y_sim2 + noise2;

268

[~,l] = wavedec(Y1(:,1,1),n_lev ,wnam);

270 n_wav = sum(l(1:(end -1)));

%

272

z1 = zeros(n_wav ,n_s ,N);

274 z2 = zeros(n_wav ,n_s ,N);

zbar1 = zeros(n_wav ,N);

276 zbar2 = zeros(n_wav ,N);

for k = 1:N

278 z1(:,:,k) = thr_bys(Y1(:,:,k), ’rigrsure’,’s’,’sln’,wnam ,1);

z2(:,:,k) = thr_bys(Y2(:,:,k), ’rigrsure’,’s’,’sln’,wnam ,1);

280 zbar1(:,k) = mean(z1(:,:,k) ,2);

zbar2(:,k) = mean(z2(:,:,k) ,2);

282 end

284 % unsmoothed MME for mean

alpha_hm1 = mean(zbar1 ,2);

286 alpha_hm2 = mean(zbar2 ,2);

288 % thresholded means
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[hat_mu1_temp(:,bb,aa,cc),hat_alpha1] = wden(alpha_hm1 , l,’rigrsure’,’s’,’

mln’,n_lev ,wnam);

290 [hat_mu2_temp(:,bb,aa,cc),hat_alpha2] = wden(alpha_hm2 , l,’rigrsure’,’s’,’

mln’,n_lev ,wnam);

292

% covariance matrix

294 ss_dev1 = bsxfun(@minus , zbar1 , hat_alpha1);

ss_dev2 = bsxfun(@minus , zbar2 , hat_alpha2);

296

% Adaptive Sparse PCA univariate

298

[~, Kv1 ,ke1 ,k1] = sparPCA_1d(ss_dev1 , 0.999 ,1);

300 [~, Kv2 ,ke2 ,k2] = sparPCA_1d(ss_dev2 , 0.999 ,1);

hat_ke1_temp(:,bb ,aa) = ke1(1:P);

302 hat_ke2_temp(:,bb ,aa) = ke2(1:P);

Kv1_ft = zeros(n_t , k1);

304 Kv2_ft = zeros(n_t , k2);

306 for jj = 1:min(k1 ,k2)

Kv1_ft(:,jj) = waverec(Kv1(:,jj), l, wnam);

308 Kv2_ft(:,jj) = waverec(Kv2(:,jj), l, wnam);

end

310

FVE1 = cumsum(hat_ke1_temp(:,bb,aa))/sum(hat_ke1_temp(:,bb ,aa));

312 hat_fve1_temp(:,bb,aa) = FVE1 (1:P);

FVE2 = cumsum(hat_ke2_temp(:,bb,aa))/sum(hat_ke2_temp(:,bb ,aa));

314 hat_fve2_temp(:,bb,aa) = FVE2 (1:P);

% get sign agreement between sim and est phi

316 ne = P;

for jj = 1:ne;

318 hat_kv1_temp(:,jj,bb,aa,cc) = signchk(Kv1_ft(:,jj), ftPCbasis(:,jj));

hat_kv2_temp(:,jj,bb,aa,cc) = signchk(Kv2_ft(:,jj), ftPCbasis(:,jj));

320 end

322 % time domain fast time data matrix

ybar1 = zeros(n_t , N);

324 ybar2 = zeros(n_t , N);

326 for jj = 1:N

ybar1(:,jj) = waverec(ss_dev1(:,jj),l,wnam);

328 ybar2(:,jj) = waverec(ss_dev2(:,jj),l,wnam);

end

330

332 % univariate FPCA scores

334 [sc1 , hat1] = sparSC(ybar1 ,hat_kv1_temp(:,:,bb,aa ,cc),ne ,1);

[sc2 , hat2] = sparSC(ybar2 ,hat_kv2_temp(:,:,bb,aa ,cc),ne ,1);

336

Xi = [sc1 sc2];

338

Phi = [hat_kv1_temp(:,:,bb ,aa ,cc) hat_kv2_temp(:,:,bb,aa,cc)];

340

pred1 = bsxfun(@plus ,hat1 , hat_mu1_temp(:,bb ,aa));

342 pred2 = bsxfun(@plus ,hat2 , hat_mu2_temp(:,bb ,aa));

344

346 % multivariate FPCA

348 n_eig = [ne,ne];

[mv , me ,mSc , Z_hat ,cm] = mFPCA(Xi,n_eig , 2, Phi); %%% add a signchk

step to the mFPCA function.

350 hat_mv_temp(:,:,bb,aa,cc) = mv(: ,1:2*P);

hat_me_temp(:,bb ,aa ,cc) = me (1:2*P);

352 %

mFVE = cumsum(hat_me_temp(:,bb,aa,cc))/sum(hat_me_temp(:,bb,aa,cc));
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354 hat_fve_temp(:,bb,aa,cc) = mFVE (1:2*P);

356 %

v1 = bsxfun(@minus ,permute(Y1 ,[1 3 2]), pred1);

358 v2 = bsxfun(@minus ,permute(Y2 ,[1 3 2]), pred2);

360 % get the daily FPCA scores

362 sc1_s = zeros(N, n_s , ne); %subject , day , eigen vector

sc2_s = zeros(N, n_s , ne); %subject , day , eigen vector

364 for ii = 1:N

for jj = 1:n_s

366 sc1_s(ii ,jj ,:) = sparSC(v1(:,ii,jj),Kv1_ft ,ne ,0);

sc2_s(ii ,jj ,:) = sparSC(v2(:,ii,jj),Kv2_ft ,ne ,0);

368 end

end

370 uniSc = cat(3,sc1_s , sc2_s);

% Daily mv scores

372 %

mvSc_s = zeros(N, n_s , 2*P);

374 for ii = 1:N

for ll = 1:2*P

376 tempSc = bsxfun(@times ,permute(uniSc(ii ,:,:), [2 3 1]) , cm(:,ll

) ’);

mvSc_s(ii ,:,ll) = sum(tempSc ,2);

378 end

end

380 % Slow time FPCA

MSAsims jasaapps.m
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