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Drinking water is far from a sterile environment and hosts a complex microbial community, 

including bacteria, eukaryotes, and viruses. Previous research regarding drinking water 

microbiology has been focused on bacteria. Fungi are commonly found microorganisms in 

drinking water; however, fungal ecology in drinking water is poorly understood, because of both 

limited amount of studies and methodological limitations of culture methods. Centralized water 

treatment processes, which may include coagulation-sedimentation, media filtration, and 

disinfection, has been suggested as a threshold shaping bacterial community structure in treated 

drinking water. In addition, a holistic knowledge of microbial ecology within the centralized 

drinking water treatment process could enable updated water microbiological quality control. 

On-site addition of secondary disinfectant to premise plumbing has been used to eliminate 

opportunistic pathogens, primarily Legionella. However, the effect of disinfection on fungal 

ecology has not been evaluated in detail, hindering the holistic understanding of drinking water 

microbial ecology. 

 This dissertation is focused on fungal ecology in relation with centralized drinking water 

treatment process and premise plumbing secondary disinfection; free chlorine and 

monochloramine disinfection kinetics of waterborne fungi were also evaluated. In the current 

study, fungal abundance and community structure change along drinking water treatment 

processes were evaluated using culture-independent methods including qPCR and next 

FUNGAL ECOLOGY AND DISINFECTION IN DRINKING WATER SYSTEMS 

Xiao Ma, Ph.D. 

University of Pittsburgh, 2016

 



 v 

generation sequencing (NGS). Fungal abundance and community structure was found to be 

significantly affected by the media filtration step, but the disinfection step did not demonstrate 

significant effects on fungal ecology. NGS was also applied to evaluate fungal community 

structure change in a hospital premise plumbing system treated with on-site monochloramine 

disinfection. No significant change in the fungal community structure was observed before and 

after the initiation of on-site disinfection, although the on-site disinfection was previously found 

to shift bacterial community structure. Fungal community was found to be dominated by phyla 

Ascomycota, with Penicillium and Aspergillus were the most frequently detected genera.  

 Free chlorine and monochloramine disinfection kinetics of Penicillium and Aspergillus 

were evaluated. The tested Penicillium and Aspergillus strains were found to be disinfection 

resistant. The observed inactivation data were fitted to the delayed Chick-Watson model, and the 

required Ct values (product of disinfectant concentration C × contact time t) for 3-log10 

inactivation of the tested fungi ranged 48.99 mg•min/L to 194.7 mg•min/L for free chlorine; and 

ranged from 90.33 mg•min/L to 531.3 mg•min/L for monochloramine. The 3-log10 inactivation 

Ct values for fungi are within the similar range for Legionella and Mycobacterium, which are 

common waterborne, disinfection resistant bacteria. The resistance to disinfection by Penicillium 

and Aspergillus could facilitate the survival in treated municipal drinking water. 
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1.0  DISSERTATION INTRODUCTION 

1.1 MOTIVATION AND OBJECTIVES 

1.1.1 Drinking water as an ecological niche for fungi 

The drinking water system, from treatment plant to premise plumbing, is highly complex and 

hosts a diverse microbial community. Fungi are common waterborne microorganisms, but little 

is known about the drinking water fungal diversity and community dynamics in drinking water 

systems. Previous culture-dependent research demonstrated wide occurrence of fungi in drinking 

water [1-3]; however, the fungal ecology in drinking water is still poorly understood, due to both 

a limited amount of research and previous methodological limitations [4]. 

Diverse fungal species inhabit natural surface and ground water [5, 6], previous research 

has also shown that fungi can pass through sand filtration and free chlorine disinfection [7], and 

diverse fungal species have also been previously isolated from treated drinking water and water 

pipe biofilm samples [2, 3, 8, 9]. Previous studies of drinking water fungi have been primarily 

culture-based, limiting the number of fungal isolates that may be identified [4]. The culture-

based identification of fungi depends on morphological identification, which relies on 

researchers’ knowledge and experience, and the fact that many fungi that cannot grow or 

sporulate under laboratory conditions make morphological identification impossible [4]. 
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Isolation procedures also vary from study to study, causing differential detection sensitivity [4, 

5]. The variation in medium and culture temperature has also been found to cause difference in 

detection sensitivity and selectivity towards certain species [4, 5]. These challenges have limited 

the full evaluation of the fungal ecology in drinking water.  

Next generation sequencing (NGS) has vastly expanded researchers’ ability to investigate 

complex microbial ecology in the environment [10, 11], most commonly using amplicon 

sequencing of the 16S rRNA gene region to investigate bacterial communities [12-15]. Due to its 

culture-independent nature, NGS enables researchers to overcome limitations posed by culture 

methods such as unintended selection by culture media [4, 16]. Although inherently limited by 

being not able to differentiate viable and non-viable microorganisms [15, 17], NGS enables high-

throughput and high-resolution characterization of the microbial community including viable but 

non-culturable microorganisms, which are the majority of environmental microbial community, 

making it suitable for evaluating complex microbial community structure dynamics in 

environment such as drinking water [15, 16, 18]. Amplicon sequencing of the 18S rRNA gene 

region has been previously used to investigate the ecology of drinking water eukaryotes [19, 20]. 

The internal transcribed spacer (ITS) has been suggested as the primary gene marker for fungi, 

enabling more detailed fungal ecology study [21, 22].  

Opportunistic pathogens in drinking water have emerged as a public health issue. 

Although generally not a risk for healthy individuals, opportunistic pathogens may infect 

immunocompromised persons and result in significant morbidity and mortality, currently posing 

the greatest infectious risk from drinking water in the industrialized countries [18]. As total 

elimination of microorganisms from drinking water is unrealistic using current technologies, a 

holistic understanding of drinking water microbial ecology is imperative for updating the current 
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waterborne infectious risk control [12, 16, 18, 23]. Pathogenic fungi, such as Aspergillus spp. 

and Fusarium spp., have also been found in drinking water systems [24, 25]; however, drinking 

water as a potential route of transmission for pathogenic fungi has not yet been widely 

recognized and evaluated. Currently there is no regulation regarding drinking water fungi in the 

United States. Researchers have suggested that nosocomial fungal infection can be waterborne 

and precautionary measures should be taken [24, 26], while others argued that further studies are 

needed [4, 27, 28]. The ecology of drinking water fungi is poorly understood, and a major source 

of controversy in interpreting the role of drinking water fungi in opportunistic fungal infections 

[4]. 

1.1.2 Drinking water treatment shapes the microbial community 

Generally, drinking water is first treated by a centralized water treatment process, which includes 

coagulation-sedimentation, media filtration, and disinfection, before distributing to end-point 

users [16]. Research has shown that centralized drinking water treatment processes, particularly 

the media filtration step, acts as a threshold shaping bacterial community structure in treated 

drinking water [15, 29]. Disinfection was also shown as a factor shaping bacterial community 

[14, 30] (Figure 1.1). It has been suggested that the treatment process controls microbial ecology 

in drinking water, and knowledge of each treatment step’s effect on microbial community 

structure could enable updated water microbiological quality control, in ways such as managing 

microbial community structure to minimize opportunistic pathogen risk [15, 16].  

Addition of secondary disinfection to premise plumbing has been adopted as an approach 

to minimize opportunistic pathogen infections such as Legionella spp. [31, 32] (Figure 1.1). 
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Currently, the effect of disinfection on waterborne microbial ecology has only been evaluated to 

a limited degree [12, 31]. Studies found that secondary disinfection shifted the bacterial 

community structure, enriching the relative abundance of bacterial groups such as Firmicutes, 

Alphaproteobacteria, and Gammaproteobacteria [12, 31]. 
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Figure 1.1 Conceptual overview of microbial community structure change from raw water to premise 

plumbing system 
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Despite the fact that fungi are widely occurring microorganisms in drinking water and 

potentially contain notable opportunistic pathogens, fungal diversity and community structure 

dynamics in drinking water are poorly understood. The diversity of fungi in drinking water has 

been evaluated by a limited amount of research, and fungal community dynamics during 

centralized drinking water treatment and in relation to secondary disinfection in premise 

plumbing system are still unknown. Disinfection kinetics are essential to estimate microbial 

survival in treated drinking water and associated risks [33]. The resistance of waterborne fungi to 

disinfection has been investigated by a limited number of studies [34-36], but detailed evaluation 

of disinfection kinetics of fungi is still lacking.  

The current dissertation research is aimed to investigate fungal diversity and community 

structure associated with centralized drinking water treatment and premise plumbing secondary 

disinfection, as well as the disinfection kinetics of fungi to expand the body of knowledge 

relevant to drinking water microbiology. 

1.2 DISSERTATION ORGANIZATION 

The objectives of this presented research are accomplished through four research projects, which 

are incorporated in four manuscripts for journal publication. The dissertation research is 

presented in the following chapters. 
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Chapter 2: Literature Review of Fungal Diversity in Drinking Water Systems 

Chapter 2 presents a literature review of fungal ecology in drinking water systems. The 

scope of the literature review was commonly isolated fungal species, emerging culture-

independent techniques for studying fungal ecology in drinking water, disinfection of fungi, and 

potential human health significance of drinking water fungi. By comparing different studies 

evaluating presence of fungi in drinking water, this chapter summarized that Penicillium, 

Aspergillus, Cladosporium, Fusarium, Acremonium, and Trichoderma were the most commonly 

isolated fungal genera. The study also found the spectrum of commonly isolated fungi contains 

several opportunistic fungal pathogens, including Aspergillus fumigatus, Aspergillus terreus, 

Aspergillus flavus, Fusarium solani, and Fusarium oxysporum. Current knowledge gaps 

regarding lack of evaluation of fungal ecology and disinfection kinetics in drinking water were 

also identified. 

 

Chapter 3: Drinking Water Fungal Community Structure Shaped By Centralized Drinking 

Water Treatment Unit Operations 

 Chapter 3 evaluates the fungal community structure along a conventional centralized 

drinking water treatment process, which is composed of coagulation-sedimentation, media 

filtration, and free chlorine disinfection. Bulk water samples were collected from each treatment 

step over an eight-month period. qPCR targeting the universal fungal ITS gene was conducted to 

evaluate the fungal abundance along the treatment process, and a decreasing trend of fungal 

abundance was observed. Next generation sequencing targeting the ITS1 gene region was 

applied to investigate the fungal community dynamics. The study found the phyla Ascomycota 

dominated the fungal community, Basidiomycota and Zygomycota were the second and third 
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most abundant fungal phyla; the genera Penicillium and Aspergillus persisted through the 

treatment process train, with increasing relative abundance. Fungal alpha-diversity, as measured 

by the number of genera, decreased along the treatment process. Fungal beta-diversity, a measure 

of microbial community structure variation between sampling sites, was evaluated through the 

water treatment process. It was found that fungal community structure was significantly shifted 

by the media filtration step, but disinfection did not have an apparent effect on the fungal 

community structure. This project represents the first detailed analysis of fungal community 

dynamics along a conventional drinking water treatment process, demonstrating the selection 

effect posed by drinking water treatment process on waterborne fungi. 

 

Chapter 4: Fungal Diversity in a Hospital Premise Plumbing System Treated with On-Site 

Monochloramine 

Chapter 4 evaluates fungal community structure dynamics before and after secondary 

disinfection in a hospital premise plumbing system. Sequencing of the fungal ITS1 gene region 

was utilized to investigate the fungal diversity in the premise plumbing system and the potential 

community structure variation in response to initiation of on-site monochloramine disinfection. 

The results demonstrate that the genera Penicillium, Aspergillus, Peniophora, Cladosporium and 

Rhodosporidium comprised the core fungal biome of the hospital hot water system. Penicillium 

dominated the fungal community with an average relative abundance of 88.89% (± 6.37%). ITS1 

sequences of fungal genera containing potential pathogens such as Aspergillus, Candida, and 

Fusarium were also detected in this study. No significant change in the fungal community 

structure was observed before and after the initiation of on-site monochloramine water treatment, 

consistent with the results of Chapter 3 that free chlorine disinfection did not clearly shift fungal 
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community. This work represents the first report of the effects of on-site secondary water 

disinfection on fungal ecology in premise plumbing system, and demonstrates the necessity of 

considering opportunistic fungal pathogens during the evaluation of secondary premise plumbing 

disinfection systems. This chapter has been published as: Ma X, Baron JL, Vikram A, Stout JE, 

Bibby K. Fungal Diversity and Presence of Potentially Pathogenic Fungi in a Hospital Hot Water 

System Treated with On-Site Monochloramine. Water Research, 2015. 71(15): p. 197-206 [37]. 

 

Chapter 5: Inactivation Kinetics of Aspergillus and Penicillium by Free Chlorine and 

Monochloramine in Drinking Water 

Chapter 5 investigates the disinfection kinetics of Aspergillus and Penicillium by free 

chlorine and monochloramine. Aspergillus fumigatus, Aspergillus versicolor, and Penicillium 

purpurogenum were tested in this study. Bench-top experiments were conducted to evaluate 

inactivation rate of tested fungal strains when exposed to free chlorine and monochloramine. 

Inactivation of fungal strains was quantified using culture plate count method. The observed data 

were then fit to the delayed Chick-Watson model, which is a modified version of Chick-Watson 

model accounting for an initial lag phase of microbial cell die-off. Based on the observed data, 

the Ct values (product of disinfectant concentration C × contact time t) for 99.9% inactivation of 

the tested fungal strains ranged from 48.99 mg•min/L to 194.7 mg•min/L for free chlorine; and 

ranged from 90.33 mg•min/L to 531.3 mg•min/L for monochloramine. The required 99.9% 

inactivation Ct values for the tested fungal strains are higher than E. coli, which is commonly 

monitored indicator bacteria; and within the similar range for notable disinfection resistant 

bacteria such as Mycobacterium spp. and Legionella spp. [38-40] 
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Chapter 6: Summary and Conclusions 

Chapter 6 summarizes the main findings and contributions of the dissertation work, 

including key conclusions and implications for practice. 



10 

 

2.0  CURRENT STATE OF KNOWLEDGE OF FUNGAL ECOLOGY IN DRINKING 

WATER 

This work is being prepared for publication as: 

Ma X, Bibby K., Fungal Ecology in Drinking Water Systems. 

2.1 INTRODUCTION 

Drinking water has been recognized as a non-sterile environment hosting a diverse microbiome 

including both bacteria and eukaryotic microorganisms, as the total elimination of 

microorganisms from drinking water is impractical with current technologies [1, 2]. Previous 

research regarding the microbiological quality of drinking water has also found the presence of 

fungi [3-17]. The bacterial ecology in drinking water has been extensively evaluated [18, 19]. 

However, research on drinking water fungi is relatively scarce, a limited number of studies have 

investigated the presence and diversity of fungi in drinking water, and a knowledge gap still 

exists regarding the fungal ecology in drinking water systems [20]. 

Drinking water is also an important route of transmission for opportunistic pathogens 

such as Legionella pneumophila and nontuberculous mycobacteria [21-24]. Notable fungal 

opportunistic pathogens, such as Aspergillus fumigatus and Fusarium spp., have been recovered 
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from drinking water systems [25, 26], and it has been suggested that drinking water is potentially 

a route of transmission for pathogenic fungi [26, 27]. Thus, understanding the drinking water 

fungal ecology is important for updating the opportunistic pathogen risk assessment and control 

[18].  

In the current chapter we review the current state of knowledge of fungi in drinking water 

systems. As the number of studies regarding fungi in municipal treated drinking water is 

relatively limited, we comprehensively reviewed published studies using the Web of Science and 

Google Scholar focusing on fungi in municipal treated drinking water. The scope of the review is 

commonly recovered fungal isolates from drinking water, results from emerging culture-

independent molecular techniques for studying fungal ecology, disinfection of fungi in water 

systems, and the potential human health significance of drinking water fungi. 

2.2 COMMONLY ISOLATED FUNGAL GENERA 

Culture isolation is the most frequently used method to investigate fungi in drinking water [3-10, 

12-15, 20]. Previous culture-dependent studies have aimed to identify the taxonomy of fungal 

strains isolated from drinking water, the isolation frequency of each identified fungus (the 

number of positive samples/total number of samples), and the abundance of identified fungi [4-

12, 25, 26, 28-30]. Among all reviewed studies regarding fungi in drinking water, twenty-four 

studies used culture isolation to evaluate fungal diversity in municipal drinking water or premise 

plumbing systems receiving municipal drinking water. The identified fungal taxa in these studies 

were compared and ranked based on the number of studies reported.  
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Previous culture-based studies have found diverse fungi in drinking water with wide 

ranges of isolation frequency and abundance. More than twenty different fungal genera have 

been isolated, and the majority of isolated fungi belong to the Ascomycota phylum [3-16, 25, 26, 

28-37]. Among fungal taxa previously isolated by culture, six fungal genera were found in more 

than half of the reviewed studies that focused on fungal diversity in municipal treated drinking 

water: Penicillium, Aspergillus, Cladosporium, Fusarium, Acremonium, and Trichoderma [3-15, 

25, 26, 28, 29, 31, 36]. Fungal genera isolated by more than two studies include Alternaria, 

Paecilomyces, Phialophora, Phoma, Aureobasidium, Candida, Mucor, Chaetomium, 

Rhodotorula, Beauveria, and Verticillium [4-8, 11-16, 28, 32, 33, 35-37] (Table 2.1). 

Published data shows that the isolation frequency of Penicillium spp. among drinking 

water samples ranged from 3.03% to 70.2%, with abundance ranging from 2.6 CFU/L to 288 

CFU/L [4-12, 28, 29]. Aspergillus spp. has been frequently isolated from drinking water with 

published isolation frequency ranged from 6% to 42.1% and abundance ranging from 1.9 CFU/L 

to 101.3 CFU/L [4-11, 25, 26, 28, 29]. The isolation frequency of Cladosporium spp. was found 

in 1.6% to 74.6% of samples, with published abundance ranging from 3 CFU/L to 140 CFU/L [5, 

7-11, 28]. Fusarium spp. was recovered from drinking water with published isolation frequencies 

from 0.6% to 57% and abundance ranging from 1 CFU/L to 105 CFU/L [4, 7, 8, 11, 26, 28, 30]. 

Acremonium spp. was found in drinking water systems with reported isolation frequency ranging 

from 0.4% to 25.6%, and the abundance of Acremonium spp. was reported to range from 2 

CFU/L to 260 CFU/L [4, 5, 7, 8, 10, 28, 29]. Trichoderma spp. was reported with a range of 

isolation frequency from 0.4% to 36.9%, and abundance range from 2.2 CFU/L to 120 CFU/L [4, 

5, 7, 8, 11, 16, 28]. Figure 2.1 and 2.2 show boxplots of isolation frequency and abundance for 

these genera commonly found in municipal drinking water summarized from published data. 
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Table 2.1 List of fungal genera isolated by more than two studies 

Isolated fungal 

phylum 

Isolated fungal 

genera 

References 

Ascomycota 

 

Penicillium [3-12, 14-16, 28, 29, 31-36] 

Aspergillus [3-12, 14-16, 25, 26, 28, 29, 31, 32, 35, 

36] 

Cladosporium [3, 5, 7-12, 14-16, 28, 31, 32, 34-37] 

Acremonium [4, 6-8, 10, 12-16, 28, 29, 32-36] 

Fusarium [3, 4, 7, 8, 11-16, 26, 28, 30, 33, 35] 

Trichoderma [3-5, 7, 8, 11, 14-16, 28, 31, 35] 

Alternaria [4, 5, 7, 8, 12, 14, 16, 32, 33, 36, 37] 

Paecilomyces [4, 7, 8, 12-16, 32, 35] 

Phoma [7, 10, 15, 16, 32, 33] 

Phialophora [3, 10, 15, 34, 36, 37] 

Candida [32, 33, 35] 

Aureobasidium [11, 28, 32, 35] 

Verticillium [6, 15] 

Beauveria [28, 33] 

Chaetomium [15, 36] 

Basidiomycota Rhodotorula [10, 32, 35] 

Zygomycota Mucor [4, 11, 16, 32] 
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Figure 2.1 Isolation frequency (= number of positive samples/total number of samples) of the top six most 

commonly isolated fungal genera; data summarized from published research, number of studies with reported 

isolation frequency was 14, 12, 10, 9, 8, and 8, respectively for Penicillium, Aspergillus, Cladosporium, Fusarium, 

Acremonium, and Trichoderma [4-12, 16, 25, 26, 28-30] 
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Figure 2.2 Abundance of the top six most commonly isolated fungal genera; data summarized from 

published research, number of studies with reported isolation frequency was 9, 10, 5, 7, 4, and 5, respectively for 

Penicillium, Aspergillus, Cladosporium, Fusarium, Acremonium, and Trichoderma [4-12, 16, 25, 26, 28-30] 

 

 

 

Biofilms, agglomerated microbial growth attached to surfaces, can be widely found in 

drinking water systems and have been suggested as one important source of planktonic phase 

microorganisms [21, 38]. Biofilms also provide protection against water disinfection enabling 

better survival of microorganisms in drinking water [18, 21, 39]. Fungal hyphae and spores have 

previously been detected in drinking water distribution system biofilm samples using in-situ 

Calcofluor white M2R staining, indicating that biofilms also provide a survival niche to fungi, in 

addition to bacteria and other microorganisms [40, 41]. A previous study evaluated the 

abundance and diversity of fungi in biofilm samples collected from a drinking water distribution 

system and determined that the total fungal abundance ranged from 8.9 CFU/cm2 to 31.8 

CFU/cm2 in the biofilm [32]. This study also found Penicillium and Aspergillus represented the 

most abundant fungal genera in the biofilm [32]. Evidence shows drinking water system biofilms 
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also provides ideal niche for free living amoeba (FLA), which harbor and promote survival of 

pathogenic bacteria, such as Legionella spp., in drinking water [42]. Similar interaction between 

common waterborne FLA and fungi were also observed by recent research, demonstrating that 

survival of Aspergillus fumigatus, Candida spp., and Fusarium oxysporum were enhanced in tap 

water when co-cultured with FLA [43-45].  

As fungi are typically dilute in drinking water, fungal isolation requires the culture of 

concentrated water samples on nutrient media. Membrane filtration has been commonly used for 

fungal concentration [3, 25, 26]. Centrifugation has also been used for concentrating fungal cells 

in water samples, but has been suggested to be limited when processing high-volume samples 

[26, 31]. Direct plating of 0.1 mL to 1 mL water samples on nutrient media has also been used 

for fungal isolation and enumeration [31]. Thus, isolation of fungi has been performed using 

variable volumes of water in individual studies, resulting in different detection limits, and 

subsequently limiting cross-study comparisons [20].  

The selection of cultivation media also varies among studies. Commonly used media 

includes malt extract agar [3, 17], sabroud dextrose agar [25], potato dextrose agar [6], and 

Czapek-Dox agar [6]. Chloramphenicol was often used as the antibiotic spiked in isolation media 

to inhibit bacterial growth [3, 6, 25]. Dichloran was also used as an additive to prevent 

overgrowth of fast-growing fungal species [28]. A previous study comparing different culture 

media for fungal isolation from drinking water has demonstrated that sabroud dextrose agar 

recovered more species from Penicillium spp., and Aspergillus spp.; while media such as half-

strength corn meal agar recovered more species from other genera [31]. Therefore, it is 

impossible to isolate all fungal species using only one or a few combinations of culture media, 

limiting the output when using culture isolation to evaluate fungal diversity in drinking water 
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[20, 31]. Also, culture techniques are challenged for detecting viable but nonculturable 

microorganisms, including fungi, in drinking water [18, 46]. Given these limitations of culture 

techniques, additional methods are necessary to reach a holistic understanding of fungal ecology 

in drinking water. Research opportunities exist regarding the evaluation of fungal diversity in 

drinking water and to identify the universal core fungal community members in drinking water, 

as well as to determine a representative range of fungal abundance in drinking water. 

2.3 EMERGING CULTURE-INDEPENDENT TOOLS FOR INVESTIGATING 

FUNGAL ECOLOGY 

Drinking water contains highly complex microbial communities, of which the majority are viable 

but nonculturable [1, 2, 18]. Culture isolation provides confirmation of viability of fungi in 

drinking water, but has a limited ability to reveal diversity and community structure change 

among different stages of drinking water systems. High-throughput next generation sequencing 

of fungal gene markers supplements this limitation, providing a more detailed analysis of fungal 

diversity and community structure change in correlation with environment [47]. 

Recent studies have used culture-independent next generation sequencing of the 18S 

rRNA gene to assess eukaryotic diversity, including fungi, in drinking water [22, 48-50]. 

Sequencing of the 18S rRNA gene was applied to investigate fungal diversity in drinking water 

used in a dental unit waterline [49]. This study showed the fungal community was dominated by 

fungal phyla Ascomycota and Basidiomycota; on the genus level Mrakia spp. and Candida spp. 

were found to be the dominant genera [49]. Another study utilized 18S rRNA sequencing to 
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investigate the fungal community in both bulk water and the biofilm of a drinking water 

distribution system, showing that Aspergillus spp., Rhexocercosporidium spp., and 

Plectosphaerella spp. were detected in all samples [48]. The bulk water fungal community 

structure and biofilm fungal community were also observed to be distinct [48]. A study utilizing 

16S rRNA and 18S rRNA sequencing to evaluate both the bacterial and eukaryotic community 

along a drinking water treatment process also found Ascomycota as the dominant fungal phylum 

in drinking water, and a change in eukaryotic community structure along the drinking water 

treatment process was found [50]. 

The internal transcribed spacer (ITS) gene region, which is more hypervariable in fungi 

than the 18S rRNA gene, has been proposed as a universal gene marker for fungi [51]. Culture-

independent ITS gene sequencing has been applied to assess fungal diversity in soil and air [52-

54], but research utilizing ITS sequencing to assess fungal ecology in drinking water is still 

limited. A recent study, included in this dissertation as Chapter 4, evaluated fungal ecology in a 

hospital water system using fungal ITS sequencing, and demonstrated the fungal community was 

dominated by Penicillium spp., with Aspergillus spp. also frequently detected [55]. In addition, 

the total fungal community structure did not demonstrate a significant change in response to 

addition of monochloramine as supplemental disinfection to this water system [55].  

Drinking water systems from treatment, distribution, to premise (building) plumbing are 

a highly complex environment. Each stage of the drinking water system provides a unique 

survival niche for microorganisms, potentially shaping the microbial community structure [18]. 

Recent studies using culture-independent approach demonstrated relations between fungal 

community structure and engineering factors of drinking water system, such as centralized water 

treatment process and premise plumbing disinfection [50, 55]. However, research regarding 
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fungal community dynamics in drinking water is still limited. With the recent development of 

high-throughput next generation sequencing, research opportunities exist to evaluate the fungal 

communities within drinking water systems. It should be noted that the current culture-

independent sequencing methods are inherently limited by the lack of clear differentiation 

between viable and non-viable cells [18, 47]; further development of viability-specific 

sequencing approaches are needed [18]. 

2.4 DISINFECTION OF FUNGI IN DRINKING WATER 

Disinfection, generally the last step of drinking water treatment, is critical to minimize pathogens 

and infectious risks from drinking water by maintaining a disinfectant residual in treated water 

[18, 56]. Knowledge of microbial inactivation kinetics is important for quantifying pathogen 

inactivation and the estimation of microbial risks from drinking water [57]. The resistance of 

fungi to water disinfectants has only been studied to a limited degree. An early study compared 

the free chlorine sensitivity of Aspergillus fumigatus, Aspergillus niger, Cladosporium spp., 

Penicillium oxalicum, and coliform bacteria [58]. The study found that the evaluated fungi 

survived up to 60 minutes exposure to free chlorine residual level ranged from 0.64 mg/L to 6.7 

mg/L; where no survival of coliform bacteria was observed [58]. However, disinfection kinetics 

and disinfection dose for certain log10 inactivation levels following Ct (concentration-time) 

concept were not measured in this study because of limited data [58]. A previous study also 

compared the survival of Aspergillus calidoustus, Penicillium spinulosum, Trichoderma viride, 

and Fusarium solani in water when exposed to commonly used water disinfectants, 
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demonstrating that the resistance of fungi to disinfection is species dependent [59]. A recent 

study evaluated free chlorine inactivation of waterborne fungi in post sedimentation water 

collected from a drinking water treatment plant, and found 60 mg•min/L of Ct (product of 

concentration C × contact time t) was needed to inactivate 80% fungi in the settled surface water 

[60]. However, the Ct values in this study were estimated based on aimed initial disinfectant 

concentration but not measured real-time disinfectant concentration, therefore more detailed 

evaluations of fungal disinfection kinetics following Ct concept are still needed [60]. Inactivation 

of Aspergillus spp. in water by ultraviolet (UV) radiation was also previously evaluated; 4-log10 

inactivation for A. fumigatus, A. niger, and A. flavus were achieved at UV doses of 12.5 mJ/cm
2
, 

16.6 mJ/cm
2
, and 20.8 mJ/cm

2
, respectively, and the required UV doses were higher than the 

dose for 4-log10 inactivation of Legionella pneumophila, which was 11 mJ/cm
2
 [61]. Currently, 

disinfection of fungi in drinking water has only been investigated by a limited number of studies 

[58-61], and detailed evaluation of disinfection kinetics for many fungi is still lacking. 

2.5 POTENTIAL HUMAN HEALTH SIGNIFICANCE OF DRINKING WATER 

FUNGI 

Among the most commonly isolated drinking water fungi, Aspergillus spp. and Fusarium spp. 

have been recognized as prevalent opportunistic pathogens among immunocompromised patients 

[62-64]. Studies reviewing invasive fungal infection data have showed that Aspergillus spp. is 

the second most prevalent cause of opportunistic fungal infections after Candida spp., 

accounting for 29% of infections among transplant patients [62, 65]; and published data indicate 
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the infection has a high mortality rate of 62% to higher than 85% [62, 63, 65-68]. Aspergillus 

infections are most frequently caused by Aspergillus fumigatus, followed by A. flavus, A. niger, 

A. terreus, and A. nidulans [62, 63, 68]. Meanwhile, the most commonly found Aspergillus 

species from drinking water were A. niger [3, 5-8, 11, 25, 28, 35], A. fumigatus [5-9, 25, 26, 28], 

A. terreus [3, 5, 6, 10, 25, 26, 35], and A. flavus [3, 5, 7, 8, 11, 25, 26]. Other species less 

commonly recovered include A. ustus, A. clavatus, A. penicillioides, A. carbonarius, A. glaucus, 

A. nidulans, A. ostianus, A. parasiticus, A. restrictus, A. ochraceus, A. sydowii, and A. versicolor 

[3, 5, 6, 8, 28, 31, 35]. The spectrum of Aspergillus species in drinking water includes 

pathogenic species, and hospital drinking water has previously been suggested to potentially be 

one of the transmission paths for opportunistic Aspergillus infections [25]. Genetic similarity 

between A. fumigatus strain isolated from patients and A. fumigatus strain isolated from hospital 

tap water samples were previously revealed using an amplified fragment length polymorphism 

(AFLP), suggesting the possibility that patients might had contracted waterborne A. fumigatus 

[69].  

The Fusarium genus is another important opportunistic fungal pathogen, and common 

species causing infections include F. solani, F. oxysporum, and F. moniliforme [62, 70]. 

Fusarium spp. were frequently recovered from drinking water [4, 7, 8, 11, 26, 28, 30], and F. 

solani and F. oxysporum were the most frequently identified species. Other less commonly 

identified species included F. dimerum and F. sporotrichioides [4, 11, 26, 28]. Studies also 

demonstrated genetic similarity between clinical F. oxysporum isolates and F. oxysporum 

isolates from a drinking water supply using a common translation elongation factor 1α gene 

(TEF1) and ribosomal intergentic spacer (IGS) [71, 72]. This genetic match further supports the 

hypothesis that drinking water might be a source of Fusarium infection [26, 71, 72].  
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Acremonium spp. and Trichoderma spp., which were also commonly isolated from 

drinking water, were not initially recognized as major opportunistic fungal pathogens; however, 

more recent research has suggested Acremonium spp. and Trichoderma spp. as emerging 

opportunistic pathogens because of reported cases of infection [73-76].  

Previous research had recovered diverse fungal species from drinking water, and the 

spectrum of waterborne fungi contains multiple opportunistic fungal pathogens (Aspergillus spp., 

Fusarium spp., Acremonium spp., and Trichoderma spp.). As previously suggested, drinking 

water has potential to be one route of transmission for these opportunistic fungal pathogens [26]. 

Genetic similarity between tap water isolated fungal strains and infected patient isolated strains 

has been revealed and suggests drinking water to be an environmental source of fungal 

pathogens [26, 69, 71, 72]. However, the mechanisms regarding how patients contracted these 

fungal pathogens from water have not been demonstrated. The hypothesis has been raised that 

drinking water fungi may contribute to indoor airborne fungi through aerosolization of tap water, 

and subsequently cause secondary-inhalation [26, 77]. Further research is needed to fill this 

knowledge gap and will potentially benefit updated risk assessment of waterborne pathogen and 

control of nosocomial fungal infection. 

2.6 SUMMARY AND CONCLUSIONS 

Published research shows drinking water contains diverse fungal species, and Penicillium, 

Aspergillus, Cladosporium, Fusarium, Acremonium, and Trichoderma compose the most 

commonly isolated fungal genera from drinking water. The spectrum of drinking water fungi 
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also contains several notable opportunistic fungal pathogens, such as Aspergillus fumigatus and 

Fusarium spp. However, studies of drinking water fungi are limited. A holistic understanding of 

fungal diversity and community structure change within the drinking water system is still 

lacking, due to both the limited number of studies and the methodological limitation of culture-

dependent methods. Next-generation sequencing of fungal marker genes enables a more detailed 

analysis of fungal ecology in drinking water systems. A major knowledge gap exists regarding 

fungal community structure dynamics in drinking water systems and the potential relation with 

engineering factors, such as centralized drinking water treatment process and addition of 

disinfectants to premise plumbing systems. Further research is also needed to evaluate the 

disinfection kinetics of fungi in drinking water. 
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3.0  DRINKING WATER FUNGAL COMMUNITY STRUCTURE SHAPED BY 

CENTRALIZED DRINKING WATER TREATMENT OPERATIONS 

This work is being prepared for publication as: 

Ma, X., Vikram, A., Casson, L., Bibby, K., Centralized Drinking Water Treatment Operations 

Shape Bacterial and Fungal Community Structure 

3.1 INTRODUCTION 

Centralized drinking water treatment processes are designed as a barrier to remove potential 

pathogens from the raw water and greatly reduced the burden of waterborne infectious diseases 

[1, 2]. Although drinking water treatment processes greatly reduce the microbial abundance, the 

treated drinking water is far from a sterile environment and carries diverse microbial 

communities [1, 3]. Studies have estimated the total bacterial cell abundance in drinking water 

ranges from 10
3
 to 10

5
 cells/mL [3-5]. Microbial eukaryotes such as fungi and free-living 

amoeba have also been frequently isolated from drinking water [6-8]. Within this post-treatment 

drinking water microbiome, opportunistic pathogens have emerged as a public health issue, 

posing the greatest infectious disease risk associated with drinking water in the industrialized 
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countries [3, 9]. Members of the drinking water microbiome also have potential to cause other 

negative impacts such as nitrification and biocorrosion [1, 3]. 

Total elimination of microorganisms from drinking water is impossible with current 

technologies [9, 10]. On the other hand, recent studies have demonstrated that the drinking water 

treatment process alters microbial community structure [10, 11], suggesting a potentially 

beneficial opportunity to manage drinking water microbial community structure [3, 9]. Only a 

limited number of studies have investigated the bacterial community structure variations within 

drinking water treatment processes [10-12]. A notable previous study demonstrated that bacteria 

colonizing filter media governed the downstream bacterial community structure, suggesting this 

process to be a primary driver of downstream microbial community structure [10].   

Holistic evaluation of fungal community structure variations within drinking water 

treatment process has not been conducted, despite the fact that drinking water microbiome also 

contains diverse fungal species, including potential opportunistic pathogens such as Aspergillus 

spp. and Fusarium spp. [13-15]. A knowledge gap still exists regarding the dynamics of 

microbial community structure along the treatment process and operational factors that affect the 

microbial community structure. Further studies are still needed to generalize a universal pattern 

of drinking water microbial community dynamics considering more groups of microorganisms 

and more engineered processes [3].  

The present study evaluates the fungal and bacterial community along a conventional 

drinking water treatment process which uses media filtration and free chlorine disinfection. The 

goal of this study was to investigate the influence of drinking water unit operations, including 

media filtration and disinfection, on fungal community structure in the context of centralized 

water treatment. Bacterial community structure was also evaluated to enable a holistic 
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comparison of observed results to previous studies. Next generation sequencing targeting the 

ITS1 gene region was used to characterize the fungal community, while 16S rRNA sequencing 

was used to characterize the bacterial community. Fungal and bacterial abundance, as well as the 

presence of Acanthamoeba spp. and Aspergillus fumigatus were evaluated using PCR. Culture 

enumeration was also conducted to evaluate the culturable heterotrophic bacterial abundance and 

filamentous fungal abundance. 

3.2 MATERIALS AND METHODS 

3.2.1 Sampling Site 

An anonymous surface water U.S. drinking water treatment plant was selected as the study site. 

The treatment process is outlined in Figure 3.1. The treatment plant uses conventional surface 

water treatment process unit operations similar to many treatment plants around the U.S. River 

water is pumped into the plant as raw water, and ferric chloride and cationic polymer 

(approximately 25 mg/L and 1 mg/L, respectively) are added for coagulation. The water then 

passes through the clarifier for sedimentation, and is settled for an additional 24 hours in a 

secondary sedimentation basin. The settled water passes through a media filter composed of coal, 

sand, and support gravel. Free chlorine disinfection using sodium hypochlorite is the last step of 

treatment, and a free chlorine residual ranging from 0.4 to 1.0 mg/L was maintained during the 

study period. 
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3.2.2 Sample Collection  

Bulk water samples were collected from four locations at the treatment plant (Figure 3.1): (1) 

raw water at the pump to the treatment plant; (2) post-sedimentation water, the effluent from the 

secondary sedimentation basin; (3) post-filtration water, the effluent from the rapid sand filter; 

(4) post-disinfection water, the effluent from the disinfection clear well. Eight duplicate monthly 

water samples were collected from these four locations on January, February, March, April, 

May, June, July, and September 2014. Samples were collected in duplicate using 1-L sterile 

Nalgene polypropylene sampling bottle without preservative. 
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Figure 3.1 Sampling locations along the surface water treatment unit processes; post-sedimentation 

samples represent water after 24 hours sedimentation 

 

 

 

Water samples were immediately transported on ice to the laboratory. Upon arrival, 500– 

1900 ml of each water sample was filtered through 0.2 µm Supor® 200 Polyethersulfone 

membranes (Pall Corporation) housed in sterile Nalgene analytical filter funnels (Thermo 

Scientific; Fisher) within a class II biological safety cabinet. The filter membrane with biomass 
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was then stored in a sterile 10 mL tube at -80◦C until DNA extraction. The remaining subset of 

the water samples were measured for conductivity (Accument conductivity meter, Fisher 

Scientific), pH (Russell RL 060P pH meter, Thermo Scientific), and free chlorine (Hach 

colorimeter, Hach) following manufacturer’s protocols.  

Two additional weekly sample sets from the described sampling locations were collected 

during June and July 2014. These additional samples were analyzed for heterotrophic plate count 

(HPC) and total filamentous fungal colony count to confirm with qPCR results of the current 

study. Detailed methods for HPC and total filamentous fungal colony count analysis are listed in 

Appendix A. 

3.2.3 DNA Extraction, PCR, and Sequencing 

Frozen filter membranes with biomass collected were thawed at 4ºC, and subjected to DNA 

extraction using a RapidWater DNA Isolation Kit (MO BIO Laboratories, Inc., CA) following 

the manufacturer’s protocol. All duplicate samples were subjected to PCR targeting the fungal 

ITS1 gene region using fungal ITS gene specific primers ITS1F and ITS2 modified for Illumina 

multiplex sequencing as previously described [16]. One replicate for each sample were subjected 

to PCR of 16S rRNA gene using previously described primers 515F and 806R [17]. A detailed 

description of PCR conditions for ITS1 and 16S rRNA PCR can be found in Appendix A. DNA 

extraction negative controls with blank filter membrane were included to ensure no 

contamination introduced by DNA extraction kit and no-template PCR negative controls were 

included in all PCR runs to ensure reagents and equipment were not contaminated. All controls 

were negative for contamination. Two pure culture fungal DNA sample, Penicillium 
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chrysogenum (CAES PC-1) and Aspergillus fumigatus (ATCC 34506), were included in the 

ITS1 PCR as positive controls. The PCR products of the two pure culture fungal DNA were 

included in the ITS1 library to confirm the accuracy of fungal taxonomy classification. 

PCR products were then purified with Agencourt AMPure XP magnetic beads (Beckman 

Coulter), purity confirmed by gel visualization, the purified PCR products were then quantified 

by Qubit 2.0 Fluorometer with Qubit dsDNA HS Assay Kit (Invitrogen), and normalized and 

pooled based on equal molarity to construct fungal ITS and bacterial 16S rRNA amplicon 

libraries. One additional purification step was performed for each pooled library with Agencourt 

AMPure XP magnetic beads. Then the ITS and 16S rRNA libraries were sequenced on Illumina 

Miseq Sequencer (Illumina) in two separate runs. 

3.2.4 Bioinformatics 

Raw sequence data of the 16S rRNA library was demultiplexed and trimmed based on a quality 

score of 20 using QIIME 1.8.0 [18]. Sequences after trimming were grouped into operational 

taxonomic units (OTUs) at 97% similarity and classified from phylum to genus level using 

closed reference OTU picking strategy and Greengenes 13.5 as reference database [19]; 

sequences classified as chloroplast were removed. As previous study demonstrated that grouping 

fungal ITS sequencing reads into OTUs limits taxonomy classification accuracy of fungal 

community [20], raw sequencing data of the ITS1 library was trimmed and demultiplexed based 

on a quality score of 20 using QIIME 1.8.0 [18] and compared directly against reference ITS 

database [21] using BLAST ver. 2.2.19  [22]. The BLASTn output was further sorted using 

FHiTINGs [23].  
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Unweighted and weighted UniFrac matrices were calculated to evaluate the degree of 

bacterial community structure similarities between each sample [24]. As UniFrac, which relies 

on global alignments, is infeasible for the ITS gene region [25], Jaccard and Bray-Curtis matrices 

were calculated using the R package Ecodist based on fungal taxonomy classification at the 

genus level [26, 27]. Principal coordinate analysis (PCoA) was performed to evaluate community 

structure variations between each sampling group and pairwise ADONIS analysis (permutational 

multivariate analysis of variance) [28] implemented within QIIME [18, 29] was used to further 

assess the statistical significance of difference in community structure among sampling groups. 

The raw sequencing data are publically available on MG-RAST under accession number of 

4723108.3 and 4723110.3.  

3.2.5 qPCR of Total Fungi, Total Bacteria, Acanthamoeba spp., and PCR of Aspergillus 

fumigatus 

qPCR based on SYBR Green was conducted to quantify the abundance of total fungi, total 

bacteria, and Acanthamoeba spp. qPCR targeting total fungi was conducted with previously 

described fungal universal primers ITS1FI2 and ITS2 targeting ITS1 region of rDNA [30, 31]. 

qPCR targeting total bacteria was carried out by using previously described primers targeting the 

universal bacterial 16S rRNA gene region [32]. qPCR for Acanthamoeba spp. quantification was 

performed by using previously described primers AcantF900 and AcantR1100 [33]. Detailed 

qPCR conditions can be found in Appendix A. No-template qPCR negative controls were 

included in all qPCR runs to ensure reagents and equipment were not contaminated 
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A standard curve for fungal ITS qPCR was constructed using serial dilutions of a cloned 

TOPO plasmid with Aspergillus fumigatus (ATCC 34506) ITS1 amplicon inserted. The standard 

curve for bacterial 16S rRNA qPCR was constructed directly using serial dilution of genomic 

DNA extracted from pure culture of Pseudomonas fluorescens (ATCC 13525). Standard curves 

of Acanthamoeba spp. qPCR was constructed by using cloned TOPO plasmid containing 

Acanthamoeba castellanii (ATCC 30010D) 18S rRNA amplicon. Plasmids for fungal and 

Acanthamoeba spp. qPCR were cloned using a TOPO TA cloning kit (Invitrogen). Insertion of a 

single copy of amplicon was verified by Sanger sequencing conducted at Genomic Research 

Core, University of Pittsburgh. Inhibition testing was performed by spiking sample DNA into 

known amount of standard; no inhibition of qPCR was observed. Previous studies have shown an 

average genome size of 6,745,279 bp for P. fluorescens [34, 35]; an average 55 ITS copies per 

genome of A. fumigatus [36]; and 600 18S copies per genome of A. castellanii [37]. Thus qPCR 

results in the current study were presented as genome equivalents/mL accordingly. Based on the 

standard curves and volume of sample filtered, the bacterial qPCR lower detection limit in water 

sample was 0.54 P. fluorescens genome equivalents/mL; the lower detection limit of fungal 

qPCR was 0.22 A. fumigatus genome equivalents/mL (12.1 ITS copies/mL); and the lower 

detection limit of Acanthamoeba spp. was 0.002 A. castellanii genome equivalents/mL (1.4 18S 

copy/mL). 

The presence of Aspergillus fumigatus was screened using previously described PCR 

primers targeting the A. fumigatus alkaline protease gene [38, 39]. Positive controls using 

genomic DNA extracted from pure A. fumigatus culture (ATCC 34506) as template, and no-

template negative controls were included. PCR results were analyzed using a 1% agarose gel. 

Detailed PCR conditions can be found in Appendix A. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Sampling and Analysis Overview 

In total, 64 samples (duplicate samples of four locations over eight months) were collected from 

a single anonymous drinking water treatment plant. All duplicate samples were subjected to 

universal fungal ITS1 PCR, with 61 out of 64 samples resulting in positive amplification. The 

sequencing results of the two positive ITS1 amplicon controls indicated high accuracy to genus 

level fungal classification as 99.9% of sequences of Aspergillus fumigatus ITS1 PCR products 

were assigned to Aspergillus spp. and 99.9% of sequences of Penicillium chrysogenum ITS1 

PCR products were accurately assigned to Penicillium spp. These results are consistent with 

previous observations of ITS1 classification [40]. No significant community structure variation 

between ITS1 sequencing results of replicate samples was observed (ADONIS p-values based on 

Jaccard and Bray-Curtis matrices > 0.05). Additionally, previous research demonstrated high 

reproducibility of 16S rRNA sequencing results between replicate samples [41] and technical 

replicates [16]. Thus, one replicate of each sample (32 samples) was subjected to universal 16S 

rRNA PCR, with all resulting in positive amplification. In total, 446,902 ITS1 sequence reads 

and 548,098 16S rRNA sequence reads were used for taxonomic classification after 

demultiplexing and quality trimming. Statistics of trimmed sequences are listed in Appendix A-

Table A1. All negative controls were PCR negative indicating no contamination of reagents and 

equipment. 
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3.3.2 qPCR of Total Fungi, Total Bacteria, Acanthamoeba spp., and PCR of Aspergillus 

fumigatus 

The average fungal abundance was 3.4±0.5 log genome equivalents/mL in raw water, 1.6±0.5 

log genome equivalents/mL post-sedimentation, 0.9±0.4 log genome equivalents/mL post-

filtration, and 0.2±0.4 log genome equivalents/mL post-disinfection (Table 3.1). A significant 

decrease in fungal abundance was observed post-sedimentation and post-filtration (p-values < 

0.05). The average post-disinfection fungal abundance was lower than post-filtration, yet without 

a statistically significant change (p > 0.05). The average total bacterial abundance was 5.5±0.4 

log genome equivalents/mL in raw water, 3.4±0.4 log genome equivalents/mL post-

sedimentation, 2.9±0.3 log genome equivalents/mL post-filtration, and 1.2±0.3 log genome 

equivalents/mL post-disinfection (Table 3.1). Bacterial abundance significantly decreased after 

each unit operation (p-values < 0.05). The inability to discriminate DNA from viable cells and 

dead cells by the applied molecular methods may inflate observed fungal and bacterial 

abundance, especially in the post disinfection samples. To confirm with the trend of the observed 

results, we collected additional samples and analyzed culturable heterotrophic bacteria and 

filamentous fungi. The culture analysis showed similar decreasing trend through the treatment 

process train for both heterotrophic plate count and filamentous fungal colony count (Table 3.1). 

Both the qPCR and subsequent culturing results suggest the treatment process reduced bacterial 

and fungal abundance, agreeing with previous culture-based studies [42, 43]. 

As Acanthamoeba spp. is an important human pathogen [44] and may host other 

opportunistic pathogens such as Legionella spp. [45, 46], qPCR was conducted to evaluate the 

presence and abundance of Acanthamoeba spp. Six out of eight raw water samples and one out 
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of eight post filtration samples had detectable level of Acanthamoeba spp., with average 

abundances of -1.36±1.61 log genome equivalents/mL and -1.51 log genome equivalents/mL, 

respectively. None of the post sedimentation and post disinfection samples had detectable 

Acanthamoeba spp. Previous studies demonstrated the presence of Acanthamoeba spp. in treated 

drinking water [8, 47] and isolation of Acanthamoeba spp. from post filtration water samples of 

water treatment plant was also previously reported [48]. Our results indicated the presence of 

Acanthamoeba spp. in raw water and post filtration water, in agreement with previous research. 

Further study investigating the association of Acanthamoeba spp. with filter media would be 

helpful for understanding the role of media filtration in Acanthamoeba spp. survival during water 

treatment. Similarly, as Aspergillus fumigatus is among the most notable human fungal 

pathogens and has previously been isolated from drinking water [14], we conducted PCR 

targeting A. fumigatus. No sample had detectable A. fumigatus. 

3.3.3 Microbial Diversity through the Water Treatment Processes 

We applied both alpha- and beta-diversity measures to explore the influence of drinking water 

unit operations on the bacterial and fungal communities. Beta-diversity is a measure of microbial 

community structural variation between sampling sites. A dissimilarly index approach was used 

to evaluate the microbial beta diversity through the water treatment process.  

The Jaccard matrix was calculated based on presence/absence of each fungal genera, 

since UniFrac, a commonly used dissimilarity matrix for bacterial beta-diversity evaluation, is 

not feasible for the fungal ITS gene region [25]. The mean dissimilarity level of fungal 

community across water treatment unit operations was statistically significant higher than the 
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overall average dissimilarity level across all samples and the mean dissimilarity level across 

different months (p-values < 0.05) (Figure 3.2-A). It indicates the fungal community structure 

change is mainly driven by water treatment unit processes. The PCoA plot based on the Jaccard 

matrix indicated fungal community structure shifted following sedimentation and media 

filtration. Post-disinfection samples clustered strongly with post-filtration samples, indicating 

that the fungal community structure in post-disinfection samples was similar to post-filtration 

samples, suggesting no further community structural variation occurred following disinfection 

(Figure 3.3-A). The pairwise ADONIS based on the Jaccard matrix further indicated that the 

fungal community structure significantly shifted after sedimentation and media filtration (p-

values < 0.05, Appendix A Table A2), but no significant change occurred post disinfection (p > 

0.05, Appendix A Table A2). PCoA and ADONIS based on the Bray-Curtis matrix, accounting 

for both presence/absence and relative abundance of each fungal taxa, demonstrated the same 

pattern of community structural variation that media filtration was the last treatment step that 

significantly shifted fungal community structure (Appendix A Figure A1-A, Appendix A Table 

A2).  

For the bacterial community, the mean community dissimilarity level across water 

treatment unit operations was statistically significant higher than the overall average dissimilarity 

level across all samples and the mean dissimilarity level across different months (p-values < 

0.05) (Figure 3.2-B). It indicates the bacterial community structure change is mainly driven by 

water treatment unit processes, similar to fungal community. the PCoA plot based on unweighted 

UniFrac, a dissimilarity matrix accounting for presence/absence and phylogenetic relationship 

between each bacterial taxa, indicated samples clustered within each sampling site and suggested 

bacterial community structure shifted following each unit operation (Figure 3.3-B). The 
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statistical significance of the community structure shift following each unit operation was further 

confirmed with pairwise ADONIS analysis (p-values < 0.05, Appendix A Table A3). PCoA and 

ADONIS based on weighted UniFrac, a dissimilarity matrix similar to unweighted UniFrac but 

also accounting for relative abundance of each taxa, demonstrated the same pattern of 

community structure variation, except that the community structural variation between post-

sedimentation and post-filtration samples was not statistically significant (Appendix A Figure 

A1-B, Appendix A Table A3). 
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Figure 3.2 Mean community dissimilarity level of (A) fungal community and (B) bacterial community; 

higher dissimilarity level indicates less similar community structure 
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Figure 3.3 PCoA plots based of (A) fungal Jaccard dissimilarity matrix and (B) bacterial unweighted 

UniFrac dissimilarity matrix; each point in the figure represents one sample, points clustered closer indicate more 

similar community structure; post-sedimentation samples represent water after 24 hours sedimentation 

 

 

 

We also explored alpha-diversity variation through the treatment processes via 

examination of community richness (total number of taxonomic units). The trend in richness for 

both bacterial and fungal communities was similar to the trend of bacterial and fungal abundance 

through the treatment process (Table 3.1). The number of bacterial OTUs significantly decreased 

through each step of the treatment process (p-values < 0.05) (Table 3.1). The number of fungal 

genera significantly decreased post-sedimentation and post-filtration (p-values < 0.05), but no 

significant decrease occurred post disinfection (p > 0.05) (Table 3.1). The finding that bacterial 

species richness decreased through the water treatment process agrees with previous study [11]. 

These results also identify a similar trend for fungal richness but no change was found post-

disinfection. The observed trend in bacterial and fungal community richness also correlates with 

the observed trend for beta-diversity. 
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Table 3.1 Bacterial and fungal diversity and abundance and water quality parameters. Detection limits were -0.27 log genome equivalent/mL for 

bacterial qPCR and -0.66 log genome equivalent/mL for fungi. 

 

Raw water Post- sedimentation* Post-filtration Post-disinfection 

Fungal community 

    Total number of genera 980 585 315 294 

Average number of genera per sample 396.5±173.4 188.9±60.8 91.1±51.5 91.5±28.6 

Average fungal abundance (log genome equivalent/mL) 3.4±0.5  1.6±0.5 0.9±0.4 0.2±0.4  

Average total filamentous fungal colony (CFU/L) 17750±13081.5 52.5±31.8 7.8±1.1 3.3±1.1 

Bacterial community 

    Total number of OTUs 6152 3736 2207 995 

Average number of OTUs per sample 1744.5±482.6 968.3±364.9 546.4±238.1 192.1±68.7 

Average bacterial abundance (log genome equivalent/mL) 5.5±0.4  3.4±0.4 2.9±0.3 1.2±0.3  

Average heterotrophic plate count (CFU/mL) 501.7±120.2 0.5±0.7 ND ND 

pH 7.5±0.4 7.5±0.5 7.6±0.4 7.6±0.2 

Conductivity (µS/cm) 279.7±79.7 304.5±97.8 311.9±66.0 303.1±75.8 

Free chlorine residual (mg/L) ND ND ND 0.5±0.3 

ND: not detected 

*Post-sedimentation samples represent water after 24 hours sedimentation 
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In summary, our results demonstrated that disinfection shaped both the final bacterial 

alpha- and beta-diversity, while the final fungal alpha- and beta-diversity was shaped by the 

media filtration. Previous research identified a similar trend with the bacterial community 

structure changing in response to addition of secondary disinfection in a premise plumbing 

system [49], but no change in fungal community structure of the same study site was found after 

starting secondary disinfection [50].  

3.3.4 Fungal Taxonomy 

Fungal ITS1 sequences were classified to 1043 fungal genera across all samples. Three phyla 

were detected with 100% positivity: Ascomycota, Basidiomycota, and Zygomycota. These three 

phyla represented an average relative abundance of 98.4±1.4%, dominating the fungal 

community. Fungal taxonomy results for these phyla are shown in Figure 3.4. 

The average relative abundance of the Ascomycota phylum was 66.2±19.3% in raw 

water, 55.9±16.8% post-sedimentation, 56.5±19.8% post-filtration, and 70.7±23.9% post-

disinfection, with no statistically significant change through the water treatment process (p-

values > 0.05). Within the Ascomycota phylum, the most abundant genera were Penicillium, 

Aspergillus, Alatospora, Taphrina, and Tuber, with 100% positivity. Penicillium spp. 

represented an average relative abundance of 1.5±1.8% in raw water, 9.3±13.5% post-

sedimentation, 25.2±32.5% post-filtration, and 41.3±38.3% post-disinfection, with a significant 

increasing trend comparing raw water to post-disinfection water (p < 0.05) (Figure 3.4). The 

average relative abundance of Aspergillus spp. was 0.6±0.8% in raw water, 1.2±1.1% post-

sedimentation, 1.2±1.2% post-filtration, and 3.6±2.1% post-disinfection. Similar to Penicillium 

spp., the relative abundance of Aspergillus spp. significantly increased from raw water to post-
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disinfection water (p < 0.05); including a significant increase in relative abundance was observed 

after disinfection (p < 0.05) (Figure 3.4). Alatospora spp. and Taphrina spp., with overall 

average relative abundance of 2.1±3.9% and 2.8±5.8% respectively, did not show significant 

change in relative abundance through the treatment processes (p-values > 0.05). A decreasing 

trend of Tuber spp. relative abundance was observed from 19.0±24.5% in raw water to 8.0±7.0% 

post-disinfection, yet without statistical significance (p-values > 0.05). 

The average relative abundance of the Basidiomycota phylum was 23.1±19.2% in raw 

water, 33.9±19.1% post-sedimentation, 35.7±20.1% post-filtration, and 22.0±17.1% post-

disinfection, with no significant change through the treatment process (p-values > 0.05). Mrakia 

and Peniophora were the two genera within the Basidiomycota phylum detected with 100% 

positivity and no significant change of relative abundance across the water treatment process was 

observed for these two genera (p-values > 0.05), mirroring the trend on phylum level (Figure 

3.4). Peniophora spp., a soil fungus belongs to Basidiomycota [51], was previously detected in 

tap water samples [50, 52]. 

The average relative abundance of the Zygomycota phylum was 8.4±7.1% in raw water, 

8.6±8.7% post-sedimentation, 6.7±10.5% post-filtration, and 6.1±7.8% post-disinfection. No 

statistically significant change was observed through the treatment process (p-values > 0.05). 

The Schizangiella and Basidiobolus genera belonging to Zygomycota were detected with 100% 

positivity, and relative abundance significantly decreased through the treatment processes (p-

values < 0.05). 
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Figure 3.4 Boxplot of core fungal taxa relative abundance through the water treatment processes train; 

post-sedimentation samples represent water after 24 hours sedimentation 

 

 

 

Isolation of the fungal phyla Ascomycota, Basidiomycota, and Zygomycota from 

untreated surface water has previously been reported [53-55]. However, the effect of centralized 

water treatment process on the fungal community structure in drinking water had not been 

previously evaluated. Penicillium spp. and Aspergillus spp. have been widely isolated from 

drinking water [6, 13, 56, 57]. Our results demonstrated that the relative abundance of 

Penicillium spp. and Aspergillus spp. significantly increased through the water treatment process, 

especially post-disinfection, suggesting that these two genera were less efficiently removed by 

the conventional water treatment process, or more persistent to the selection pressure posed by 

water treatment processes. Previous studies have suggested Penicillium and Aspergillus produce 
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unicellular spores with relatively small size (1.8-6 µm × 2-4.5 µm as L × W) [58-60]. The small 

spore size may facilitate the passage of Penicillium and Aspergillus through sedimentation and 

media filtration while other fungal groups with larger spore sizes were removed. Further research 

are needed to investigate the role of fungal cell size in the fungal community structure change 

along the drinking water treatment process. Different fungal species demonstrate varying 

resistance to chlorine disinfection [61]. Chlorine inactivation of species belonging to Aspergillus, 

Penicillium, Cladosporium, and Phoma genera in water were previously compared and the 

evaluated species of Aspergillus and Penicillium demonstrated higher chlorine resistance than 

the other genera [62]. It has been suggested that Penicillium and Aspergillus, which belong to the 

family Trichocomaceae, might be more resistant to chlorine inactivation and less effectively 

removed during disinfection; however, only a limited number of fungal species had been 

compared for resistance to water disinfection [61, 62]. Further investigations of disinfection of 

different waterborne fungal species are still needed to inform better control of fungi in drinking 

water. 

In addition to fungi previously abundantly found in water systems, soil-associated fungal 

taxa were likely introduced to raw water through soil sediments and plant debris, and remained 

through the treatment process. Specifically, Alatospora spp. was previously isolated from 

decaying leaves and described as an aquatic hyphomycetes genus [63]; Taphrina spp., Tuber 

spp., Mrakia spp., and Basidiobolus spp., which were previously found in soil [64-69], were 

detected in the present study as core taxa. 
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3.3.5 Bacterial Taxonomy 

Bacterial taxonomy was included in this evaluation to enable comparison of observed trends to 

previous results. 16S rRNA sequences were classified to 58 bacterial phyla and three archaeal 

phyla. Five bacterial phyla were detected in all samples (100% positivity): Proteobacteria, 

Bacteroidetes, Cyanobacteria, Actinobacteria, and Firmicutes. The Nitrospirae phylum was 

detected in all samples except one post filtration sample, also representing 100% post-

disinfection positivity. These six phyla represented an average relative abundance of 97.0±2.7%, 

dominating the bacterial community. The abundance of core taxa throughout the treatment 

process is shown in Figure 3.5.  

Proteobacteria, which had been widely detected in drinking water as a core taxon [3, 10, 

70], dominated the bacterial community in all samples, representing an average relative 

abundance of 57.6±11.4% in raw water, 55.1±10.3% post sedimentation, 66.2±19.9% post 

filtration, 63.3±19.4% post disinfection, with no statistically significant change in relative 

abundance through the treatment process (p-values > 0.05). Within Proteobacteria, Alpha-, Beta-, 

and Gammaproteobacteria were the most abundant classes and were detected with 100% 

positivity. The average relative abundance of Alphaproteobacteria was 9.5±2.7% in raw water, 

10.4±7.1% post sedimentation, 30.5±30.1% post filtration, and 25.6±25.4% post disinfection. 

Alphaproteobacteria was previously found to be a dominant bacterial class within filter media, 

suggesting media filtration may provide potential survival niche for Alphaproteobacteria, or 

conversely that Alphaproteobacteria are less efficiently removed by the filtration process [10, 

12]. In this study Sphingomonas spp. was the most abundant genus affiliated to 

Alphaproteobacteria. Previous research demonstrated the wide occurrence of Sphingomonas spp. 

in drinking water system biofilms and its important role in biofilm formation [71-73], suggesting 
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that Sphingomonas spp. had potential in filtration media biofilm formation and subsequently 

influenced the post filtration bacterial community structure. Betaproteobacteria had an average 

relative abundance of 41.1±10.1% in raw water, 35.5±11.9% post sedimentation, 31.3±15.8% 

post filtration, and 19.6±15.0% post disinfection, with a significant decreasing trend comparing 

raw water to post disinfection water (p < 0.05) (Figure 3.5). The average relative abundance of 

Gammaproteobacteria was 5.2±2.4% in raw water, 8.5±11.2% post sedimentation, 4.1±4.2% 

post filtration, and significantly increased to 17.1±11.3% post disinfection (p < 0.05), indicating 

a selection effect favoring Gammaproteobacteria posed by disinfection. Acinetobacter spp. was 

found to be the most abundant Gammaproteobacteria affiliated genus with increased relative 

abundance post disinfection. Several strains of Acinetobacter spp. were previously found to be 

able to survive without significant inactivation when exposed to 4 mg/L free chlorine up to 2 

minutes [74]. Previous study also demonstrated higher resistance by Gammaproteobacteria than 

Alpha- and Betaproteobacteria to the same level of free chlorine [75]. The differential resistance 

to free chlorine likely drove the shift in the composition of the Proteobacteria phylum during the 

disinfection step. 

The average relative abundance of the Actinobacteria phylum was 18.5±10.3% in raw 

water, 12.7±8.6% post sedimentation, 6.7±4.9% post filtration, and 7.1±5.6% post disinfection. 

The Actinobacteria class was the dominant class and detected with 100% positivity, with an 

average relative abundance of 17.0±9.4% in raw water, 12.3±8.6% post sedimentation, 6.5±4.8% 

post filtration, and 6.5±5.4% post disinfection. A significant trend of decreasing relative 

abundance was observed comparing raw water to post disinfection water (p-values < 0.05) 

(Figure 3.5). Previous studies also found decreased relative abundance for the Actinobacteria 

phylum comparing treated drinking water to raw water [10, 11]. 
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The Bacteroidetes phylum represented average relative abundance of 15.4±2.7% in raw 

water, 24.7±8.9% post sedimentation, 23.8±15.8% post filtration, and 2.0±2.7% post 

disinfection. A trend of decreasing relative abundance, similar to Actinobacteria, was found 

comparing raw water to post disinfection water (p < 0.05). Additionally, Bacteroidetes had 

significantly increased relative abundance post sedimentation (p < 0.05), and significantly 

decreased relative abundance post disinfection (p < 0.05). Cytophagia and Saprospirae were the 

most abundant bacterial classes within the Bacteroidetes phylum and reflected similar trend of 

relative abundance with phylum level.  

The Cyanobacteria and Firmicutes phyla shared similar trends that represented low 

relative abundance without a statistically significant change (p-values > 0.05) before 

disinfection, but significantly increased after disinfection (p-values < 0.05). The average relative 

abundance of Cyanobacteria was 1.0±1.3% in raw water, 3.3±4.9% post sedimentation, 

0.7±1.1% post filtration, and statistically significantly increased to 10.7±10.4% post disinfection 

(p < 0.05). 4C0d-2 was the most abundant class within Cyanobacteria, and showed a similar 

trend of relative abundance with phylum level. The Firmicutes phylum represented an average 

relative abundance of 1.1±0.9% in raw water, 1.0±1.3% post-sedimentation, 0.4±0.7% post-

filtration, and statistically significantly increased to 10.8±7.5% post-disinfection (p < 0.05). 

Within the Firmicutes phylum, Bacilli and Clostridia were the most abundant classes and a 

statistically significant increase in relative abundance was observed for Bacilli and Clostridia 

following disinfection (p-values < 0.05), mirroring the phylum level trend (Figure 3.5). The high 

resistance to chlorine of Bacilli and Clostridium spp., the most abundant Clostridia affiliated 

genus in this study, was demonstrated by previous studies [76, 77], and likely favored the 

survival of these species during the disinfection step. 
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The Nitrospirae phylum, represented entirely by the Nitrospira class, represented an 

average relative abundance of 0.1±0.1% in raw water, 0.2±0.1% post sedimentation, 0.5±0.7% 

post filtration, and 5.1±6.7% post disinfection. Increased average relative abundance post 

disinfection was found, yet without statistical significance (p-values > 0.05) (Figure 3.5). 

Leptospirillum spp. was identified in all eight post-disinfection samples but were only detected in 

10 out of 24 (41.7%) of pre-disinfection samples, suggesting Leptospirillum spp. may have had 

survival niche within the disinfection unit operation. The Leptospirillum genus, which contains 

iron-oxidizing species [78], was previously found in cast iron water pipe biofilm and suggested 

to contribute to iron pipe corrosion [79]. Further evaluating resistance of Leptospirillum spp. to 

disinfectant might help to explain and inform its presence and control in post-disinfection water. 
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Figure 3.5 Boxplot of core bacterial taxa relative abundance through the water treatment processes train; 

post-sedimentation samples represent water after 24 hours sedimentation 
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3.4 SUMMARY AND CONCLUSIONS 

In the current study we applied molecular approaches to investigate microbial abundance, 

diversity, and taxonomy following drinking water treatment plant unit operations. Both bacterial 

and fungal abundance were observed to decrease following each treatment step, with the 

exception of fungal abundance following disinfection. A similar trend was observed for alpha- 

and beta-diversity for both bacteria and fungi, where each treatment operation decreased 

microbial community richness and altered microbial community beta-diversity, with the 

exception of disinfection for the fungal community. The bacterial community was dominated by 

phyla Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria, Firmicutes, and Nitrospirae. 

The fungal community was dominated by phyla Ascomycota, Basidiomycota, and Zygomycota. 

Penicillium spp. and Aspergillus spp., which have been previously isolated from drinking water, 

were detected in samples through the treatment process and had increasing relative abundance. 

Ultimately, disinfection by free chlorine shaped the bacterial community entering the distribution 

system. Unlike bacteria, the fungal community in the treated drinking water was more 

significantly affected by media filtration. These results demonstrate the role of drinking water 

unit operations in shaping both the fungal and bacterial communities, indicating the potential of 

influencing microbial communities in downstream water distribution systems. The results also 

highlighted the difference in structure variation between bacterial and fungal communities. More 

studies evaluating impact to microbial community structure by different water treatment 
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approaches, such as different disinfectants, may further inform the generalization of engineering 

approaches’ impact to drinking water microbiome. 
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4.0  FUNGAL DIVERSITY IN A HOSPITAL PREMISE PLUMBING SYSTEM 

TREATED WITH ON-SITE MONOCHLORAMINE 

This work has been published as: 

Ma X, Baron JL, Vikram A, Stout JE, Bibby K. Fungal Diversity and Presence of Potentially 

Pathogenic Fungi in a Hospital Hot Water System Treated with On-Site Monochloramine. Water 

Research, 2015. 71(15): p. 197-206 

4.1 INTRODUCTION 

Fungi are common but poorly understood inhabitants of drinking water treatment and 

distribution systems. Reports have previously detailed the occurrence of diverse fungal 

communities in drinking source water [1], the passage of fungi through conventional water 

treatment [2], and the isolation of fungi from downstream water distribution systems [3-6]. 

Potentially pathogenic fungi such as Aspergillus spp., Candida spp., and Fusarium spp. have 

been identified in hospital water systems [7-10] and drinking water may function as a mode of 

transmission for fungi [9]. Fungi in healthcare facility premise plumbing systems are of greater 

concern as these facilities usually have immunocompromised residents, including transplant 

patients, which are more susceptible to infection from pathogenic fungi [11]. As the number of 

immunocompromised, susceptible patients increases, large facilities (especially hospitals) have 
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begun to adopt secondary water disinfection systems in order to control opportunistic pathogens. 

The effect of these treatments on the fungal ecology of the drinking water system remains 

unknown. There have been a limited number of studies investigating the fungal ecology of hot 

water systems [4, 9, 12], and no previous studies investigating the influence of on-site 

disinfection systems on fungal ecology.  

Previous studies of fungal ecology in municipal drinking water have been primarily 

culture based, limiting throughput and potentially biasing results based upon selection of culture 

media or isolation approach [13]. Next generation sequencing methods have dramatically 

expanded researchers’ ability to evaluate microbial diversity in environmental samples. Studies 

sequencing the fungal internal transcribed spacer (ITS) region have been conducted to 

investigate fungal ecology in soil [14, 15] and aerosols [16, 17]. Additionally, it is desirable to 

move towards higher-throughput sequencing approaches (e.g. Illumina) for fungal ITS1 

sequencing, enabling greater sampling depth, breadth, and economy. 

In the current study, we examined fungal diversity in a hospital hot water system, located 

in Pittsburgh, PA, that initiated on-site monochloramine treatment as secondary disinfection to 

control Legionella spp. colonization. The primary goal of this study was to investigate the fungal 

diversity within the hospital premise plumbing hot water system and the response of the fungal 

community to monochloramine treatment. Additionally, the accuracy of fungal identification by 

Illumina sequencing of the ITS1 gene region was evaluated by sequencing the ITS1 region of 

five fungal pure cultures. 
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4.2 MATERIALS AND METHODS 

4.2.1 Sample collection and DNA extraction 

The study site was a 12-floor, 495-bed tertiary care hospital complex that receives chlorinated 

municipal cold water. The hot water system was treated with monochloramine injected by an on-

site monochloramine generation system (Sanipur, Lombardo, Flero, Italy). Monochloramine 

concentration (mg/L as Cl2) was measured during the sampling with a Hach DR/890 colorimeter, 

and detailed description of the system and measurement of other physical parameters were 

described in earlier study [18, 19]. The monochloramine injection was initiated on September, 

2011. Baseline water samples were taken three months prior to and immediately prior to the 

introduction of on-site monochloramine injection, and samples were also taken monthly for the 

first 6 months of treatment. These monthly samples were collected in June (baseline), September 

(baseline), October, November, and December in 2011, January, February, and March in 2012. 

Each month, 27 hot water outlets throughout the hospital were used for hot water sample 

collection (4 standard faucets on Floors 3-5; 7 sensor faucets on Floors 6-7; 7 standard faucets 

and showers on Floors 6-7, 6 standard faucets on Floors 8-12, and 2 hot water tank outlets and 

the hot water return line outlet). Before DNA extraction, all water samples were grouped into 5 

pools for each month: Pool 1 (standard faucets from Floors 3-5), Pool 2 (sensor faucets from 

Floors 6-7), Pool 3 (standard faucets/shower from Floors 6-7), Pool 4 (standard faucets from 

Floors 8-12), and Pool 5 (hot water tanks and hot water return line). The sampling strategy is 

summarized in Table 4.1. In total, 40 pooled samples were generated in this manner for the 8 

months of sampling. Genomic DNA was then extracted from each of the pooled samples. This 

study builds upon environmental samples from a previous investigation which focused on 
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monochloramine’s effect bacterial ecology; a detailed description of sampling, water quality 

testing and DNA extraction procedures can be found in the previous study [18]. Due to the 

nature of the sampling method, absolute quantification was not possible. 

In addition to environmental sampling, DNA was analyzed from five pure cultures of 

fungi with known identities: Alternaria alternata (PEM 01043), Aspergillus fumigatus (ATCC 

34506), Cladosporium cladosporioides (ATCC 16022), Epicoccum nigrum (TU BL-3), 

Penicillium chrysogenum (CAES PC-1), to test the accuracy of the sequencing method of fungal 

identification described in this study. Pure culture fungal DNA was obtained from the Lab of Dr. 

Jordan Peccia (Yale University, CT). 

4.2.2 PCR and Illumina sequencing 

The ITS1 region of the extracted DNA was amplified using forward primer ITS1FI2 and reverse 

primer ITS2 [14, 20]. A previously described combinatorial primer labeling approach [21] was 

used to label samples for multiplex sequencing on the Illumina MiSeq platform. The complete 

sequence of forward and reverse primers are summarized in Appendix B Table B1. 

PCR reactions were performed in 20 µL reaction mixtures containing 1 µL of sample 

DNA, 10 µL of 2x DreamTaq Master Mix polymerase (Thermo Scientific), and 0.25 µM of each 

of the combinatorial ITS1FI2 and ITS2 primers. Temperature condition was 15 minutes 

denaturation at 95°C, followed by 40 cycles of 30 seconds denaturation at 95°C, 30 seconds 

annealing at 60°C, and 30 seconds extension at 72°C, and a final elongation at 72°C for 5 

minutes. PCR reaction for each sample includes three replicates, and replicates of each reaction 

were pooled after PCR amplification and purified with Agencourt AMPure XP magnetic beads 

(Beckman Coulter). Negative controls in which the template DNA was replaced with 1 uL sterile 



 54 

molecular biology grade water were included in each PCR run to ensure reagents and equipments 

were not contaminated. Gel visualization of AMPure XP beads purified PCR products were 

performed for quality inspection. 

The purified PCR products of environmental samples were quantified by Qubit 2.0 

Fluorometer with Qubit dsDNA HS Assay Kit (Invitrogen), and then normalized and pooled 

based on equal molarity. One additional purification was performed for the final pool of PCR 

products from environmental samples with Agencourt AMPure XP magnetic beads. Then the 

purified library was loaded to Illumina MiSeq Desktop Sequencer (Illumina) for sequencing by 

using customized sequencing primers. Sequences of the sequencing primers were summarized in 

Appendix B. 

For PCR products of pure culture fungal DNA, the purified products were purified by gel 

extraction again, then normalized and pooled based on equal molarity to form the final pure 

culture sequencing library and loaded to Illumina MiSeq Desktop Sequencer using the same 

customized sequencing primers described above in another sequencing run. 

4.2.3 Bioinformatics 

Raw ITS1 sequence data were demultiplexed and trimmed to remove primer sequences and 

sequences below quality score of 20 utilizing QIIME 1.7.0 [22]. The trimmed sequences were 

compared to a named fungal ITS sequences database [23] using BLASTn ver. 2.2.19 [24], the 

database was manually amended to remove teleomorphs and suspected misannotated sequences, 

and trimmed sequences are listed in Appendix B Table B1. BLASTn outputs were then subjected 

to fungal taxonomic identification tool FHiTINGS [25] to sum and sort results based on 
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taxonomic ranks from kingdom to species. Sequences are available under MG-RAST [26] 

accession number 4583532.3. 

Persistence across all samples (= Npositive/Ntotal; Npositive: number of positive samples, Ntotal: 

total number of samples) was computed for each assigned genus. A Persistence-Abundance plot 

was drawn by plotting the persistence against the maximum relative abundance of the genus in 

any one sample. We utilized a previously suggested threshold of ≥50% persistence [27-30] to 

define the core fungal genera in this hospital hot water system. The accuracy of pure culture 

sample annotation, true identification ratio (TIR) which is the fraction of sequences assigned to 

correct taxonomy, was calculated based on pure culture fungal ITS1 DNA sequencing outputs 

(TIR = Ntrue/Ntotal, Ntrue: number of sequences assigned to the correct taxonomy, Ntotal: total 

number of sequences) [31]. To assess the alpha-diversity of the fungal community, the 

Shannon’s equitability index was calculated based on the assigned genera and associated relative 

abundance [32]. One-way ANOVA was used to compare genera number before and after 

monochloramine treatment.  To assess the beta-diversity of the environmental fungal 

community, Bray-Curtis dissimilarity based on taxonomy identities and relative abundances was 

computed using the R package Ecodist, and principal coordinate analysis based on Bray-Curtis 

dissimilarity was performed [33, 34]. 
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4.3 RESULTS  

4.3.1 PCR and sequencing results of environmental samples 

PCR amplifications were performed for each sample pool. Pool 1 through Pool 4 samples were 

positive for PCR amplification, except Pool 2 December 2011 and Pool 3 March 2012. Pool 5 

(hot water tank samples) was negative for all PCR reactions, potentially due to PCR inhibitors, 

such as calcium from hot water tank calcium residual [35], or higher temperature within the hot 

water tank inhibiting fungal growth [4]. No-template, negative controls were used in the PCR to 

ensure reagents and equipments were not contaminated and all negative controls were negative 

for amplification. In total, 119,300 sequence reads were used for taxonomic classification after 

quality trimming (Table 4.1). 

 

 

 
Table 4.1 Sequencing results after quality trimming 

Sampling 

pool 

Sample Description Number 

of 

samples 

Total Number 

of Reads 

Average Read 

Per Sample 

Median 

Read 

Length  

Pool 1 Standard faucets (Floors 3-5) 8 12378 1547 251 

Pool 2 Sensor faucets (Floors 6-7) 7 25257 3608 251 

Pool 3 Standard faucets and Showers 

(Floors 6-7) 

7 41535 5934 251 

Pool 4 Standard faucets (Floors 8-12) 8 16314 2039 251 
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4.3.2 Sequencing accuracy  

Pure culture fungal DNA was sequenced to evaluate the accuracy of taxonomy assignments. The 

method used in this study had high true identification ratios at the genus rank; however, the true 

identification ratios at the species rank were lower (Table 4.2, details of error rate calculation in 

Appendix B Table B2 & 3). The high true identification ratio on genus rank indicate the fungal 

taxonomy identification results based on ITS1 region is reliable to the genus level, consistent 

with previous work on the annotation accuracy of ITS1 sequences [31]. 

 

 

 

Table 4.2 True identification ratio (TIR) of the present ITS1 sequencing method on genus level and species 

level 

Tested Fungi Genus rank TIR (%) Species rank TIR (%) 

Alternaria alternata 96.91 1.40 

Aspergillus fumigatus 99.76 0.79 

Cladosporium cladosporioides 95.76 0.68 

Epicoccum nigrum 99.77 99.77 

Penicillium chrysogenum 99.61 0.39 
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4.3.3 Fungal community taxonomic assignment and core genera 

Taxonomic assignment results indicated that Penicillium was the dominant fungal genus, with an 

average relative abundance of 88.89% (± 6.37%) (Figure 4.1, Table 4.3). The fungal community 

in the building hot water system was highly diverse, with 202 different fungal genera being 

identified (Appendix B Table B4). The core fungal genera were identified based upon the 

percentage of positive identifications (persistence). We adopted a previously suggested 50% 

persistence threshold to identify core and occasional genera within the fungal community [27]. 

The core fungal biome, as indicated by persistence, consisted of the genera Penicillium (100%), 

Aspergillus (90%), Peniophora (56.67%), Cladosporium (50%), and Rhodosporidium (50%) 

(Figure 4.2). Two genera were found to have persistence close to but lower than 50%: 

Aureobasidium (43.33%), and Fusarium (40%)  (Figure 4.2).  
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Figure 4.1 Relative abundance of fungal genera within sample Pools 1 through 4: Pool 1-Standard faucets 

on Floor 3-5 (Panel a); Pool 2-Sensor faucets on Floor 6-7 (Panel b); Pool 3-Standard faucets and showers on Floor 

6-7 (Panel c); Pool 4-Standard faucets on Floor 8-12 (Panel d). Columns on the left side of dashed lines represent 

samples collected before on-site monochloramine treatment; Pool 2 December and Pool 3 March samples are 

excluded due to negative PCR amplification. 

 

 

 

The majority of genera detected were with low persistence (< 40%) and low relative 

abundance (0.003% - 3.80%). The sole exception was the genus Pichia, whose maximum 

relative abundance was 19.78%  (Pool 2, March 2012). However, the average relative abundance 

of Pichia spp. was 0.87% with a 30% persistence; thus Pichia was classified as an occasional 

genus. 
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Table 4.3 Core fungal genera and genera with persistence between 40-50% detected in this work with 

previous isolation report and/or potential pathogenicity 

Genus Sequences 

Detected in This 

Work 

Average Relative 

Abundance (± 

Standard 

Deviation) 

Previously Reported Isolation From 

Water System 

Previously Reported 

Pathogenicity 

Penicillium 88.89±6.37% Isolated from municipal water 

distribution system biofilm and treated 

drinking water [4, 6, 7, 36-38]  

Some species are 

reported pathogenic 

[39, 40] 

Aspergillus 0.71±1.13% Isolated from biofilm within 

municipal water distribution system 

and treated drinking water; presence in 

hospital water system is also reported 

and suggested as a potential source of 

nosocomial Aspergillus infection [4, 

6, 7, 36, 38, 41] 

Some Aspergillus 

species cause 

invasive aspergillosis 

[7, 39, 42, 43] 

Peniophora 0.29±0.62% 18S gene sequences of Peniophora 

was previously detected in tap water 

[12] 

N/A 

Cladosporium 0.16±0.28% Isolated from biofilm within 

municipal water distribution system 

and treated drinking water [4, 6, 36, 

38] 

Reported infection 

case [44] 

Rhodosporidium 

 

0.18±0.30% Isolated from raw source water [45] Rhodosporidium 

toruloides was 

suggested as 

opportunistic 

pathogen [46] 

Aureobasidium 0.25±0.90% Isolated from biofilm within 

municipal water distribution system 

and treated drinking water [4, 6, 38] 

Aureobasidium 

pullulans is reported 

to cause phaeo-

hyphomycosis [39] 

Fusarium 0.14±0.34% Isolated from treated drinking water, 

including hospital water system [4, 7, 

37, 38, 47] 

Contains 

opportunistic 

pathogens [39] 

N/A: Not available 
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Figure 4.2 Persistence-Abundance plot of fungal genera detected. The dashed line represents the 50% cut 

off point used to determine core fungal genera; symbols to the right of this line represent the core fungal genera 

found in our samples 

 

 

 

4.3.4 Alpha- and beta-diversity of the fungal biome 

The fungal community structure was highly uneven due to the consistent high abundance of 

Penicillium. The equitability index values for all samples ranged from 0.06 to 0.46 with an 

average of 0.19 ± 0.10 (Appendix B Table B5), where a value of 1 would indicate an ideally 

even community with all members in equal abundance [32]. The number of genera identified 

before and after monochloramine addition did not change significantly (p-value = 0.795) (Figure 
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4.3). As the genus Aspergillus contains many pathogenic species, which can cause nosocomial 

infections and be transmitted through water [7, 43], we investigated the relative abundance of 

Aspergillus. We found no statistically significant difference in the relative abundance of 

Aspergillus before and after monochloramine treatment (p-value = 0.258) (Figure 4.4). 
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Figure 4.3 Average number of genera detected (blue columns) and monochloramine concentration in hot 

water as mg/L of Cl2 (red line); monochloramine addition began September 26th 2011 (Appendix B Table B6) 
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Figure 4.4 Average relative abundance of Aspergillus spp. Columns on the left side of dashed lines 

represent baseline samples collected before on-site monochloramine treatment 

 

 

 

Bray-Curtis dissimilarity was calculated based on genus taxonomy assignments and 

associated relative abundance data of each sample. Principal coordinate analysis based on Bray-

Curtis dissimilarity was used to visualize sample beta-diversity (Figure 4.5). Samples taken 

before monochloramine treatment cluster together with samples taken after monochloramine 

treatment, and further ADONIS analysis (permutational multivariate analysis of variance) [48] 

indicated there was no significant difference between fungal community structure before and 

after monochloramine treatment (p > 0.05). This result suggests that monochloramine addition 

did not impact fungal community structure in the hospital hot water system. 
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Figure 4.5 Principal Coordinate Analysis based on Bray-Curtis dissimilarity. Outliers represent samples 

with a larger percentage of occasional genera. 

 

 

 

4.4 DISCUSSION 

The number of fungal genera identified in the present work was higher than previous culture-

based drinking water fungal ecology studies [4, 6]. This may be due to the large fraction of 

waterborne fungi that are not culturable [49]. The study hospital’s hot water system was supplied 

by municipally treated surface river water, where a large and diverse fungal community can be 

found [2, 4]. Non-viable fungal DNA fragments may also be analyzed using a sequencing based 

approach, inflating the number of fungal genera identified. Thus, an approach based on 
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persistence was utilized to identify fungi that are likely colonizing the premise plumbing hot 

water system.  

4.4.1 Core hot water fungal genera and potential pathogenicity 

As the fungal community was highly dominated by Penicillium spp. and other genera only 

represented a small fraction of the whole community, we chose to identify core fungal genera 

relying on persistence rather than abundance. We chose a persistence threshold of ≥50% based 

upon the data distribution (Figure 4.2) [27-30].  

Penicillium spp. and Aspergillus spp. have been isolated from drinking water by many 

studies [4, 6, 7, 36, 38, 41]. A previous culture-based isolation study suggested that the fungal 

biome in a Norwegian drinking water supply system was dominated by Penicillium spp., while 

Aspergillus spp. was also frequently isolated [4]. Trichoderma spp. was also reported as a major 

fungal genus in the Norwegian drinking water study, as it was frequently isolated from cold tap 

water but was less frequently detected in hot tap water [4]. In the present study Trichoderma spp. 

were also detected but with low persistence and low relative abundance (3.33% persistence, 

classified as occasional genus), consistent with the analysis of hot water in the Norwegian study 

[4]. Another study investigated the fungal biofilms in a municipal (cold) water distribution 

system in Missouri; it found Penicillium and Aspergillus to be the most common fungal genera 

in terms of both abundance and persistence [6]. Penicillium spp. and Aspergillus spp. were also 

found to be the two most common fungi recovered in a prospective study targeting pathogenic 

fungi in hospital water based on culture isolation [9]. In our study, Penicillium was found to be 

the dominate fungal genus present in hot water samples and Penicillium spp. and Aspergillus 
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spp. were the two most frequently detected fungi in the hot water supply system (Figure 4.1 & 

4.2). 

In addition to Penicillium spp. and Aspergillus spp., other genera within the core fungal 

microbiome have previously been isolated from drinking water. Although not previously 

cultured, 18S rRNA sequences belonging to Peniophora spp., a plant pathogen, were identified 

in tap water [12]. Cladosporium spp. has been isolated from drinking water and a municipal 

water distribution system biofilm [4, 6, 9]. Isolation of Rhodosporidium in untreated drinking 

water sources has been previously reported [45]. The two fungal genera (Aureobasidium and 

Fusarium) with persistence between 40% and 50% have been isolated from treated drinking 

water, including taps and showers in a hospital as well as a biofilm within drinking water 

distribution networks [4, 6, 36, 38, 47].  

Many species within the genus Aspergillus are known opportunistic human pathogens 

causing aspergillosis [7, 50-53], and previous long term studies have suggested that water should 

be considered a potential source of nosocomial aspergillosis [7, 9]. Some Rhodosporidium 

species, such as R. toruloides, may cause invasive infection [46]. Most of the core fungal genera 

we found in this study have been detected in water systems previously and may contain 

potentially pathogenic species (Table 4.3). Residents of the hospital, including an 

immunocompromised persons, may be exposed directly to potentially pathogenic fungi when 

using water, or may receive respiratory exposure via fungal spores and hyphal fragment 

aerosolization through water taps and showers [4]. 

Several fungal genera such as Cladosporium, Aureobasidium, Fusarium, Alternaria, 

Acremonium, Candida, Cryptococcus and Paecilomyces contain reported pathogenic species [11, 

39, 43, 44, 47, 54]. These genera were detected among the occasional group (<50% persistence 
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across all samples), and their isolation was previously reported from drinking water [4, 6, 9, 36-

38, 41, 47]. Although the occasional fungal genera had relatively low persistence across samples 

and low relative abundance, the potential for pathogenic fungal exposure to 

immunocompromised patients may still exist.  

The studied hot water system receives cold municipal drinking water from a drinking 

water treatment plant treating surface water. Surface water contains many diverse 

microorganisms, including fungi. Many fungi may survive the municipal water treatment 

processes and reach distribution network distal sites [4]. We believe that the core fungal genera, 

especially Penicillium and Aspergillus, likely colonize the premise plumbing system as members 

of biofilms on inner pipe surfaces [4, 6]. As the core fungal genera has an increased likelihood of 

growing in the hospital’s premise plumbing system, patients (especially immunocompromised or 

those undergoing immunosuppression treatment) have a higher likelihood of exposure to these 

potentially pathogenic fungi through contact with water. These results demonstrate that hospital 

hot water system could potentially be a source of diverse opportunistic fungal pathogens. 

4.4.2 On-site monochloramine addition did not alter fungal community structure  

Fungal community alpha- and beta- diversity remained constant following monochloramine 

addition (Figures 4.3 & 4.4). A study at the same sampling site focusing on bacterial ecology 

showed a high level of bacterial community response to monochloramine [18]. Dominant 

bacterial phyla shifted from Betaproteobacteria to Firmicutes, Alphaproteobacteria, 

Gammaproteobacteria, Cyanobacteria, and Actinobacteria during on-site monochloramine 

addition [18]. Contrary to the results for bacterial community structure, the fungal community in 

this hospital hot water system did not show a significant response to monochloramine, higher 
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disinfection resistance of core fungal genera observed in the system likely facilitated the lack of 

significant fungal community structure change. Chapter 5 of the dissertation shows that 

commonly found waterborne fungi such as Aspergillus and Penicillium are resistant to 

monochloramine disinfection, with 3-log10 inactivation Ct values (product of monochloramine 

residual concentration, C and contact time, t) ranging from 90.33 mg•min/L to 531.3 mg•min/L, 

which are similar to disinfection resistant bacteria Legionella pneumophila and Mycobacterium 

spp. [55-60]  

As the studied hospital premise plumbing hot water system is a complex engineered 

system, other engineering factors may also be shaping the fungal microbiome such as pipe 

material, water age, water chemistry, and water temperature. A previous study based on 18S 

rRNA gene T-RFLP analysis suggested that disinfectant type, pipe material, and water age 

interact with each other to shape the water microbiome, and the effect of disinfectant type on 

eukaryotic microbiome was not apparent [61]. The present study further demonstrates that 

application of monochloramine as secondary disinfection did not alter the fungal community 

structure. Future studies using deep sequencing targeting the ITS region would bring additional 

insights to the effect of engineering controls on the fungal microbiome. Additionally, further 

controlled studies focusing on fungal ecology in water distribution systems are necessary to 

understand the factors driving fungal ecology in water systems, and to ultimately engineer a 

control strategy for opportunistic fungal pathogens. 
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4.5 SUMMARY AND CONCLUSIONS 

Multiple fungal species, including potential opportunistic pathogens, have previously been 

identified in drinking water based on culture isolation [4, 6, 9]. However, previous studies have 

been challenged by the limited throughput with which the fungal ecology was examined and 

potential bias by culture isolation [13]. In the present study, the fungal ecology of a hospital hot 

water system water was analyzed prior to and following the application of secondary 

monochloramine disinfection utilizing Illumina sequencing of the fungal ITS1 region. This study 

represents the first evaluation of the fungal ecology of the hospital hot water system in response 

to application of secondary water disinfection. The fungal community was dominated by 

Penicillium spp. with an average relative abundance of 88.89% (±6.37%). The core fungal biome 

contained the genera Penicillium, Aspergillus, Peniophora, Cladosporium and Rhodosporidium. 

Many of these genera detected contain known opportunistic pathogens and can pose a risk to 

hospitalized patients. As measured by alpha- and beta-diversity, the fungal community structure 

remained constant prior to and following on-site secondary water disinfection using 

monochloramine. An increasing number of facilities, containing immunocompromised and 

susceptible populations, are moving towards on-site secondary water disinfection systems to 

control opportunistic pathogens, such as Legionella species. This necessitates the consideration 

of disinfectant efficacy on a broad suite of opportunistic pathogens to verify the effectiveness of 

these systems. Our study demonstrates that waterborne fungi are present in many hot water 

samples, and remain despite monochloramine disinfection with potential implications for 

opportunistic pathogen management and transmission. 
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5.0  DISINFECTION KINETICS OF ASPERGILLUS AND PENICILLIUM BY FREE 

CHLORINE AND MONOCHLORAMINE IN DRINKING WATER 

This work is being prepared for publication as: 

Ma, X., Bibby, K., Free Chlorine and Monochloramine Inactivation Kinetics of Aspergillus and 

Penicillium in Drinking Water 

5.1 INTRODUCTION 

Fungi are widely occurring microorganisms in drinking water [1-4]. Chapter 2 of the dissertation 

reviewed previous studies and demonstrated Penicillium spp. and Aspergillus spp. are the two 

most commonly culture isolated fungal genera from drinking water [1-19]. Potential 

opportunistic pathogens belonging to Aspergillus spp., such as A. fumigatus, are also frequently 

isolated from drinking water; and drinking water has been suggested as a potential environmental 

source of  Aspergillus infections [2, 6-8, 10, 11, 17, 18]. By using amplified fragment length 

polymorphism (AFLP), previous study has demonstrated the genetic similarity between A. 

fumigatus clinical isolates and A. fumigatus strains isolated from hospital tap water, suggesting 

the possibility that the A. fumigatus was transmitted through tap water [20]. Aspergillus spp. is 

also the second most common cause of nosocomial opportunistic fungal infections, with A. 

fumigatus as the major cause of invasive Aspergillus infection among immunocompromised 
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patients [21, 22]. Invasive aspergillosis is often associated with high mortality; published data 

show that from 62% to higher than 85% of infections are fatal [21, 23, 24].  

Chlorination is the required approach in United States for maintaining a disinfectant 

residual in drinking water distribution systems [25-27]. Free chlorine is the most frequently used 

disinfectant, and the use of monochloramine to maintain a disinfectant residual in treated 

drinking water is expected to increase [25, 26, 28]. Additionally, monochloramine is of growing 

interest and has been suggested as an effective secondary disinfectant for on-site premise 

plumbing disinfection [29-31]. However, the efficacy of free chlorine and monochloramine 

disinfection against waterborne fungi has not been well evaluated. An early study has 

demonstrated that waterborne fungi are resistant to chlorination but did not evaluate the 

disinfection kinetics because of limited data [32]. A previous study demonstrated species-

dependent resistance to common water disinfection approaches by waterborne fungi, but did not 

evaluate the kinetics of disinfection [33]. Another study evaluated the free chlorine inactivation 

of waterborne fungi in settled surface water and estimated 60 mg•min/L of Ct (product of 

concentration C × contact time t) was needed to inactivate 80% fungi in the settled surface water 

[34]. However the Ct values estimation of this study was based on aimed initial disinfectant 

concentration but not measured real-time concentration, which could cause overestimation of the 

Ct values [34]. The current research regarding the disinfection efficiency of waterborne fungi is 

limited; there is still a lack of a detailed evaluation for the inactivation kinetics of waterborne 

fungi by free chlorine and monochloramine. 

The present study was carried out to evaluate the free chlorine and monochloramine 

inactivation kinetics of type and clinical strains of Aspergillus fumigatus, as well as Aspergillus 

versicolor and Penicillium purpurogenum isolated from drinking water. These fungal species 
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have all previously been found in drinking water [1, 3, 16]. Disinfection of fungal spores was 

determined by culture in a laboratory study in phosphate buffered deionized water with the 

chlorine residual measured. Bayesian statistics based Markov Chain Monte Carlo method 

(MCMC) was used to fit observed data to the delayed Chick-Watson model, which is a modified 

version of the Chick-Watson model accounting for an initial lag phase of inactivation, to 

describe the disinfection kinetics based on experimental data [35-37]. Finally, observed 

disinfection kinetics were compared with values for other relevant drinking-water 

microorganisms. 

5.2 MATERIALS AND METHODS 

5.2.1 Fungal isolates and spore suspension preparation 

An Aspergillus fumigatus type strain (ATCC 1022), Aspergillus fumigatus clinical isolate, 

Aspergillus versicolor tap water isolate, and Penicillium purpurogenum tap water isolate were 

each tested in the present study. The Aspergillus fumigatus clinical strain was kindly supplied by 

the Nguyen-Clancy Laboratory at University of Pittsburgh. Aspergillus versicolor and 

Penicillium purpurogenum were both isolated from laboratory cold tap water of Benedum Hall, 

University of Pittsburgh. For isolation, a 1 L water sample was filtered through a sterile 0.2 µm 

filter membrane (Pall) housed in a sterile filter funnel. The membranes were cultured on potato 

dextrose agar spiked with 100 mg/L chloramphenicol. Fungal colonies with light to dark green 

color were sub-cultured on potato dextrose agar. To confirm colony identity, DNA of the sub-

cultured colonies was extracted using Powersoil DNA isolation kit following the manufacturer’s 



 73 

protocol. The ITS1 region of the extracted DNA was amplified using the previously described 

primer pair ITS1FI2 and ITS2 [38, 39]. PCR products were purified using Ampure XP beads 

(Beckman Coulter), and then sent for Sanger sequencing at the Genomic Research Core at 

University of Pittsburgh. The ITS1 sequences of isolated strains were compared against the 

UNITE database using BLASTn [40, 41], identifying the two isolated strains to be Aspergillus 

spp. and Penicillium spp. Species identifications were further confirmed with previously 

described morphological features and then sub-cultured for spore harvesting [42-44]. ITS1 

amplicon sequences of the two tap water isolates are listed in Appendix C. 

All tested fungal strains were sub-cultured on potato dextrose agar medium individually 

at 25ºC until sporulation. Spores were harvested by flooding the culture plates with 50 mL sterile 

0.01 M PB buffered deionized water to form the original spore suspension solution. The original 

spore suspension was then washed three times with sterile 0.01 M PB buffered deionized water 

by centrifugation at 10,000×g for 3 minutes, and re-suspended in sterile 0.01 M PB buffered 

deionized water. The purified spore suspension was then stored in the dark at 4ºC for no more 

than two days before use.  

5.2.2 Free chorine and monochloramine stock solution preparation 

A commercially purchased 5% sodium hypochlorite solution (Acros Organics) was used as the 

free chlorine stock solution. A 10 mg/L monochloramine stock solution was prepared by mixing 

5% sodium hypochlorite solution (Acros Organics) and 0.1 M ammonium chloride solution 

based on a Cl2:N weight ratio of 3:1 in 0.01 M PB buffered deionized water (pH adjusted to 8) as 

previously described [33]. All stock solutions were freshly prepared before each inactivation 

experiment. 
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5.2.3 Free chlorine and monochloramine inactivation experiment  

Before all experiments, glassware was soaked in a 0.5 g/L sodium hypochlorite solution 

overnight and washed with deionized water to remove any chlorine demand, and then autoclaved 

at 121ºC for 15 minutes. For the inactivation experiments, 5% sodium hypochlorite (Acros 

Organics) or freshly prepared 10 mg/L monochloramine stock solution was further diluted in 

0.01 M PBS buffered DI water to achieve target concentration. Inactivation of Aspergillus 

fumigatus type strain and clinical strain were tested using target disinfectant concentrations of 1 

mg/L and 4 mg/L. Aspergillus versicolor and Penicillium purpurogenum were tested using a 

target disinfectant concentration of 1 mg/L. Control experiments without disinfectant (0 mg/L) 

were conducted for all tested strains. All experiments were completed in duplicate. 

Prior to experiments, the spore concentration of all tested fungal spore suspensions was 

enumerated by microscopy and normalized to approximately 6 log10 spores/mL, and then 3 mL 

of the normalized spore suspension was spiked into 147 mL of the disinfectant dilutions to 

achieve an initial spore concentration of approximately 4.3 log10 cells/mL. All spore suspensions 

were vortexed briefly before enumeration and spiking in the disinfectant solution. 5 mL samples 

for quantifying viable cells were collected at contact time 0, 5, 15, 30, 60 minutes, in a sterile 

tube containing 1 mL sterile 10% sodium thiosulfate solution to neutralize residual disinfectant. 

For A. fumigatus type strain and clinical strain inactivation experiments using 4 mg/L 

disinfectant concentration, samples were collected at contact time 0, 5, 10, 15, 30 minutes. 

Disinfectant concentration was monitored using a Hach colorimeter at each sampling time point 

following the manufacturer’s protocol. The Ct value at each sampling time point was determined 

as the area under the disinfectant residual vs. time curve (Appendix C Figure C1) as previously 

described [45, 46]. Flasks for the inactivation experiments were constantly stirred with a sterile 
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magnetic stir bar at 300 rpm. The pH was adjusted to 7.0 for free chlorine assays, and 8.0 for 

monochloramine assays according to described protocols [47], as these two pH levels were 

widely tested for free chlorine and monochloramine disinfection [33, 34]. All experiments were 

conducted at room temperature (22.5ºC). Temperature and pH were monitored during the 

experiment, and no change of temperature or pH was observed. 

5.2.4 Estimation of disinfection kinetic parameters  

To evaluate the disinfection kinetics, observed spore inactivation data were fit to the delayed 

Chick-Watson model, which is a modified version of the Chick-Watson model incorporating an 

initial lag phase [35-37]. A model fitting method based on Bayesian Markov Chain Monte Carlo 

(MCMC) derived from previous studies was used [28, 48]. The delayed Chick-Watson model 

considering random measurement errors is:  

                                                                            (1) 

                                                                             (2) 

                                                                             (3) 

Where N is the number of viable cells, N0 is the initial number of viable cells at time 0, εi 

is the error with mean of 0 and variance σ
2
, k is the inactivation rate constant, Ct is the product of 

disinfectant concentration (C) and contact time (t), and Ctlag is the lag coefficient as previously 

described [36]. Equation (2) and (3) describe an initial lag phase followed by pseudo-first-order 

inactivation; if the Ctlag equals zero the delayed Chick-Watson model is in the form of classical 

Chick-Watson model [28, 36]. The Bayesian MCMC estimation of model parameters was 

conducted using the software WinBUGS [49]. Six parallel chains were used for simulation; an 

initial simulation of 10,000 iterations was used as a burn-in phase, and 30,000 further iterations 
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𝜇𝑖 = 𝑘  𝐶𝑡 𝑖 − 𝐶𝑡𝑙𝑎𝑔  , 𝑤ℎ𝑒𝑛 (𝐶𝑡)𝑖 > 𝐶𝑡𝑙𝑎𝑔  
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were used to obtain the posterior distributions of model parameters. Trace plots and Gelman and 

Rubin diagnostics implemented in WinBUGS were used to determine the convergence of 

simulations. As previously described, a non-informative prior distribution was used for the 

MCMC estimation in this study [48]: diffuse inverse-gamma (0.001, 0.001) prior distribution 

was used for the variance σ
2
; a normal distribution (0, 10

-6
) was used as prior for rate constant k; 

in the present study, it is assumed that the lag coefficient Ctlag can occur anywhere between Ct 

equals zero and the Ct value corresponding to the first observed cell inactivation, thus a uniform 

prior distribution between 0 and the Ct value corresponding to 10% of the maximum observed 

inactivation. Ct values for 2-log10 (99%), 3-log10 (99.9%), and 4-log10 (99.99%) inactivation 

were then calculated using a Bayesian MCMC method, based on the estimated disinfection 

kinetics parameters [48]. Detailed WinBUGS programming code is listed in Appendix C. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Experimental overview 

Duplicate free chlorine and monochloramine disinfection experiments were conducted for A. 

fumigatus type strain (ATCC 1022), A. fumigatus clinical strain, tap water isolate of A. 

versicolor, and P. purpurogenum. Control experiments without spiking any disinfectant (0 mg/L) 

were carried out for each tested fungal strain and disinfectant. No apparent inactivation was 

observed during all control experiments (data shown in Appendix C Figure C2), indicating there 

was no inactivation caused by the experimental set-up. The observed inactivation data 

demonstrated an apparent lag phase for the two A. fumigatus strains and the P. purpurogenum 
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tap water isolate (Figure 5.1 and 5.2). Numerous studies have demonstrated the delayed Chick-

Watson model is appropriate for fitting disinfection data with an apparent lag phase [28, 48, 50, 

51]. The delayed Chick-Watson model is also consistent with the Ct (concentration-time) 

concept, which is widely used to evaluate water disinfection efficacy against different 

microorganisms and used by USEPA to regulate water disinfection practices [28, 34, 52]. Thus 

the delayed Chick-Watson model was used to describe the disinfection kinetics in the present 

study. A classical Chick-Watson model without an initial lag phase was also used to fit observed 

disinfection data in this study (data not shown). By comparing the model predicted Ln(N/N0) 

against measured Ln(N/N0) at the same Ct values, the delayed Chick-Watson model 

demonstrated better fitting to linear relation with higher coefficients of determination (Appendix 

C Figure C3); therefore, in the present study the delayed Chick-Watson model was used to 

describe disinfection kinetics for all tested fungal strains.  

5.3.2 Free chlorine and monochloramine disinfection kinetic parameters 

Free chlorine disinfection experiments were conducted in a laboratory at room temperature 

(22.5ºC) and a pH of 7. Inactivation was observed for all tested fungi, but rates varied between 

isolates. At a free chlorine Ct of 60 mg•min/L, the observed inactivation level was 2.9-log10 (6.6-

ln), 4.6-log10 (10.6-ln), 1.9-log10 (4.3-ln), and 0.9-log10 (2.2-ln) for A. fumigatus type strain and 

clinical strain, A. versicolor, and P. purpurogenum, respectively (Figure 5.1).  

The delayed Chick-Watson model was applied to describe free chlorine disinfection 

kinetics (Figure 5.1). Both the A. fumigatus type and clinical strain demonstrated apparent lag 

phases prior to inactivation. The inactivation data demonstrated that the A. fumigatus type strain 

had a lag coefficient (Ctlag) of 13.71 ± 2.04 mg•min/L, and A. fumigatus clinical strain had a lag 
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coefficient (Ctlag) of 14.67 ± 5.66 mg•min/L. A. versicolor and P. purpurogenum demonstrated a 

shorter lag phase than the two A. fumigatus strains. Ctlag of A. versicolor was 2.62 ± 1.15 

mg•min/L, and Ctlag of P. purpurogenum was 2.14 ± 1.22 mg•min/L (Table 5.1). The present 

study observed an apparent initial lag phase for the free chlorine inaction of A. fumigatus type 

strain and clinical strain, during which no apparent inactivation was occurred before pseudo-first 

order disinfection reaction. Shorter lag phase were estimated for A. versicolor and P. 

purpurogenum, with lower 95% credible bounds close to 0 (Table 5.1). This result indicates the 

presence of initial lag phase during fungal disinfection may be species-dependent. A. fumigatus 

showed a higher inactivation rate than the other two species, with rate constants (k) of -0.15 ± 

0.01 L/mg•min and -0.22 ± 0.05 L/mg•min for type strain and clinical strain, respectively. 

Slower free chlorine inactivation rates were observed for A. versicolor, with rate constant (k) of  

-0.08 ± 0.007 L/mg•min. P. purpurogenum demonstrated the slowest free chlorine inactivation, 

with inactivation rate constant (k) of -0.04 ± 0.004 L/mg•min. A two sample t-test was 

conducted using Minitab indicated inactivation rate constants of each tested fungi are statistically 

significantly different (p-values < 0.05). This result demonstrates that inactivation rate constants 

of fungi varied between species, consistent with previous study [33]. Detailed free chlorine 

disinfection kinetic parameters estimations are listed in Table 5.1. 

Monochloramine disinfection experiments were conducted in the laboratory at room 

temperature (22.5ºC) and a pH of 8. At pH 8, monochloramine is the dominant chloramine 

species, thus the results are presented as monochloramine disinfection kinetics [28, 33]. At a 

monochloramine Ct of 60 mg•min/L, the observed inactivation level was 1.9-log10 (4.3-ln), 1.8-

log10 (4.1-ln), 0.3-log10 (0.8-ln), and 1.1-log10 (2.5-ln) for A. fumigatus type strain and clinical 

strain, A. versicolor, and P. purpurogenum, respectively (Figure 5.2). A shorter lag phase was 
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observed during monochloramine disinfection reaction, except for P. purpurogenum. The 

experimental results demonstrated that A. fumigatus type and clinical strain, and A. versicolor 

had shorter initial lag phase during monochloramine disinfection comparing to free chlorine, 

with Ctlag of 5.61 ± 2.11 mg•min/L, 1.41 ± 1.21 mg•min/L, and 1.85 ± 1.17 mg•min/L, 

respectively (Table 5.2). P. purpurogenum demonstrated a longer lag phase for monochloramine 

disinfection compared to free chlorine, with a Ctlag of 10.91 ± 1.43 mg•min/L.  

Previous studies suggested intrinsic resistance by cell wall acting as barrier for the entry 

of chemical agents contributes to fungal resistance to disinfection; and this resistance is linked to 

fungal cell wall porosity and thickness, which are affected by cell wall chemical composition 

[53]. The variation of cell wall porosity and thickness likely contributed to the variation of Ctlag 

among fungal isolates. Cell aggregation was also suggested as a potential cause of the initial lag 

phase during disinfection [54]. However, in the present study no apparent cell aggregation was 

observed during microscopic enumeration before spiking spore suspensions into disinfectant 

solutions, suggesting that cell aggregation was less likely to cause the initial lag phase. 

For monochloramine disinfection, A. fumigatus also demonstrated the highest 

inactivation rate, with a rate constant of -0.07 ± 0.004 L/mg•min and -0.08 ± 0.006 L/mg•min for 

type strain and clinical strain, respectively. The inactivation rate constant of A. versicolor was -

0.01 ± 0.002 L/mg•min and the inactivation rate constant of P. purpurogenum was -0.05 ± 0.003 

L/mg•min. Similar to free chlorine inactivation, a statistically significant difference of 

inactivation rates among different fungal strains were observed for monochloramine (p-values < 

0.05). 
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Figure 5.1 Free chlorine inactivation of tested fungal strains (pH = 7, temperature = 22.5ºC) 

 

 

 
Table 5.1 Summary of inactivation kinetic parameters of free chlorine inactivation (pH = 7, temperature = 

22.5ºC) 

 k, mean±sd 

(L/mg·min) 

k, 95% credible 

interval  

Ctlag, mean±sd 

(mg·min/L) 

Ctlag, 95% 

credible interval 

A. fumigatus  

type strain 

-0.15 ± 0.01 (-0.17, -0.12) 13.71 ± 2.04 (8.69, 16.73) 

A. fumigatus 

clinical strain 

-0.22 ± 0.05 (-0.32, -0.14) 14.67 ± 5.66 (3.02, 25.05) 

A. versicolor -0.08 ± 0.007 (-0.1, -0.07) 2.62 ± 1.15 (0.26, 4.21) 

P. purpurogenum -0.04 ± 0.004 (-0.04, -0.03) 2.14 ± 1.22 (0.11, 4.2) 
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Figure 5.2 Monochloramine inactivation of tested fungal strains (pH = 8, temperature = 22.5ºC) 

 

 

 
Table 5.2 Summary of inactivation kinetic parameters of monochloramine inactivation (pH = 8, 

temperature = 22.5ºC) 

 k, mean±sd 

(L/mg·min) 

k, 95% credible 

interval  

Ctlag, mean±sd 

(mg·min/L) 

Ctlag, 95% credible 

interval 

A. fumigatus  

type strain 

-0.07 ± 0.004 (-0.08, -0.07) 5.61 ± 2.11 (1.45, 9.75) 

A. fumigatus 

clinical strain 

-0.08 ± 0.006 (-0.09, -0.06) 1.41 ± 1.21 (0.04, 4.54) 

A. versicolor -0.01 ± 0.002 (-0.02, -0.009) 1.85 ± 1.17 (0.08, 3.97) 

P. purpurogenum -0.05 ± 0.003 (-0.05, -0.04) 10.91 ± 1.43 (7.05, 12.29) 
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For all free chlorine and monochloramine disinfection assays, the delayed Chick-Watson 

model predicted Ln(N/N0) were compared against the measured Ln(N/N0) at the same Ct levels 

(Figure 5.3 & 5.4). The model predicted spore survival ratio correlated to the measured survival 

ratio following linear relationship, with a slope ranging from 0.87 to 0.97 for free chlorine and 

ranging from 0.87 to 0.99 for monochloramine; the coefficients of determination (R2) ranged 

from 0.75 to 0.95 for free chlorine and 0.75 to 0.97 for monochloramine. Apparent outlier points, 

where measured Ln(N/N0) values were higher than predicted values, were observed for the A. 

fumigatus free chlorine inactivation, causing lower coefficient of determination comparing to 

other fungi (Figure 5.1 & 5.3). These outlier points were observed during inactivation 

experiment using 4 mg/L free chlorine; the more rapid cell die-off rate may contribute to the 

error during sample processing. 
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Figure 5.3 Comparison of delayed Chick-Watson model predicted Ln(N/N0) and measured Ln(N/N0) for 

free chlorine inactivation 
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Figure 5.4 Comparison of delayed Chick-Watson model predicted Ln(N/N0) and measured Ln(N/N0) for 

monochloramine inactivation 
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5.3.3 Ct values for target inactivation levels 

Required Ct values for 2-log10 (99%), 3-log10 (99.9%), and 4-log10 (99.99%) inactivation of each 

tested fungal isolate were calculated by using the disinfection kinetic parameters presented in the 

previous section. Under the tested conditions, P. purpurogenum demonstrated the highest 

required Ct values for target inactivation levels, followed by A. versicolor, and A. fumigatus. To 

achieve 3-log10 inactivation by free chlorine, the mean values of estimated Ct for A. fumigatus 

type strain, clinical strain, A. versicolor, and P. purpurogenum are 61.42 mg•min/L, 48.99 

mg•min/L, 84.72 mg•min/L, and 194.7 mg•min/L, respectively. The required Ct values of 3-log10 

monochloramine inactivation for A. fumigatus type strain, clinical strain, A. versicolor, and P. 

purpurogenum are 103.9 mg•min/L, 90.33 mg•min/L, 531.3 mg•min/L, and 153.2 mg•min/L, 

respectively. Detailed estimations including standard deviation and 95% credible bounds of 

required Ct values for target inactivating levels are listed in Table 5.3 and 5.4. 

Figures 5.5 and 5.6 show required Ct values for 3-log10 inactivation of the tested fungi in 

the current study and other microorganisms derived from previous research. For both free 

chlorine and monochloramine, Ct values for 3-log10 inactivation of all tested fungi are higher 

than Adenovirus, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae, and 

within the similar range of Ct for 3-log10 inactivation of Mycobacterium spp. and Legionella 

pneumophila [55-60] (Figure 5.5 & 5.6). The current data show the tested fungi are generally 

resistant to free chlorine and monochloramine disinfection. For free chlorine, the Ct for 3-log10 

inactivation of all the tested fungi are also higher than the USEPA recommended Ct for 3-log10 

inactivation of Giardia, which is 37 mg•min/L [61]; while for monochloramine the USEPA 

recommended Ct for 3-log10 inactivation of Giardia is 1100 mg•min/L [61]. Further field-scale 
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evaluations are needed to assess disinfection efficacy of fungi in water treatment utilities 

following USEPA suggested disinfection conditions. 

 

 

 
Table 5.3 Ct value (mg·min/L) estimation for 2-log10, 3-log10, and 4-log10 inactivation by free chlorine (pH 

= 7, temperature = 22.5ºC) 

 Ct2-log, mean ± sd Ct3-log, mean ± sd Ct4-log, mean ± sd 

A.  fumigatus type strain 45.52 ±3.506 61.42 ±4.741 77.33 ±6.06 

A. fumigatus clinical strain 37.55 ±8.665 48.99 ±11.36 60.43 ±14.3 

A. versicolor 57.35 ±4.648 84.72 ±6.853 112.1±9.081 

P. purpurogenum 130.5 ±14.43 194.7 ±21.6 258.9 ±28.78 

 

 

 
Table 5.4 Ct value (mg·min/L) estimation for 2-log10, 3-log10, and 4-log10 inactivation by monochloramine 

(pH = 8, temperature = 22.5ºC) 

 Ct2-log, mean ± sd Ct3-log, mean ± sd Ct4-log, mean ± sd 

A.  fumigatus type strain 71.15 ±4.702 103.9 ±6.644 136.7 ±8.661 

A. fumigatus clinical strain 60.69 ±4.867 90.33 ±7.174 120 ±9.506 

A. versicolor 354.8 ±58.08 531.3 ±87.11 707.8 ±116.1 

P. purpurogenum 105.8 ±6.14 153.2 ±9.071 200.6 ±12.03 
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Figure 5.5 Comparison of free chlorine Ct values required for 3-log10 inactivation for the tested fungi and 

other microorganisms; 3-log10 Ct values for other microorganisms were directly derived or calculated based on 

inactivation rate constant from previous studies under similar experiment conditions (22.5ºC, pH 7) [55-59, 61] 
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Figure 5.6 Comparison of monochloramine Ct values required for 3-log10 inactivation for the tested fungi 

and other microorganisms; 3-log10 Ct values for other microorganisms were directly derived or calculated based on 

inactivation rate constant from previous studies under similar experiment conditions (22.5ºC, pH 8) [57-61]  

 

 

 

 

5.4 SUMMARY AND CONCLUSIONS 

This chapter presents the disinfection kinetics of Aspergillus fumigatus, Aspergillus versicolor, 

and Penicillium purpurogenum by free chlorine and monochloramine. An apparent initial lag 

phase was observed for A. fumigatus during free chlorine disinfection and P. purpurogenum 

during monochloramine disinfection. A delayed Chick-Watson model was used to fit the 

measured data and estimate the disinfection kinetic parameters. The results show P. 

purpurogenum was more resistant to free chlorine than A. versicolor, followed by A. fumigatus. 
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Regarding monochloramine disinfection, A. versicolor was the most resistant species, followed 

by P. purpurogenum and A. fumigatus. Resistance to free chlorine and monochloramine of the 

tested fungal strains, represented by Ct values for achieving 3-log10 inactivation, was found to be 

within a similar range of Mycobacterium spp. and Legionella pneumophila, which are known as 

disinfection resistant microorganisms. The current study shows that the tested fungi, including 

Aspergillus fumigatus, are resistant to free chlorine and monochloramine disinfection, potentially 

facilitating persistence and survival through drinking water treatment and distribution systems. 
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6.0  DISSERTATION SUMMARY AND CONCLUSIONS 

6.1 SUMMARY 

Drinking water treatment and distribution systems contain highly complex microbial 

communities, among which fungi are widely occurring microorganisms. Fungal ecology in 

drinking water systems has only been evaluated to a limited degree, hindering the holistic 

understanding of drinking water microbial ecology. Particularly, centralized drinking water 

treatment is the very beginning point of the whole drinking water system, and is critical to 

control the drinking water microbiological quality. Evidence shows centralized drinking water 

treatment processes shift waterborne bacterial community structure, but little is known regarding 

fungal community dynamics within this process. In addition, on-site secondary disinfection has 

been used to supplement disinfectant residual in premise plumbing system, and the knowledge of 

on-site disinfection’s impact on microbial ecology is necessary for evaluating potential side 

effects but is currently limited. The objectives of this research were to: (1) review and summarize 

the current knowledge of fungal ecology in drinking water; (2) investigate fungal community 

dynamics within centralized drinking water treatment process; (3) investigate effect of premise 

plumbing on-site disinfection on fungal community structure; (4) evaluate the disinfection 

kinetics of common waterborne fungi. 
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 In this research, a comprehensive literature review (Chapter 2) was conducted to 

summarize the current state of knowledge and identify needs for research regarding fungal 

ecology in drinking water. A field sampling study (Chapter 3) was conducted to evaluate fungal 

community structure dynamics within a conventional drinking water treatment process. The 

water treatment process posed a significant selection effect on the fungal community that was 

different from the observed effect on bacteria. Media filtration was found as the major threshold 

to shift fungal community structure regarding both diversity and absolute abundance. Study was 

carried out to investigate the effect of on-site secondary disinfection on fungal community 

structure dynamics (Chapter 4). This study found that the on-site disinfection did not shift the 

fungal community structure, and a diverse fungal community including potential opportunistic 

pathogens such as Aspergillus spp. was detected. The dissertation research also includes lab 

scale experiments to evaluate disinfection kinetics of Aspergillus and Penicillium, which are 

common waterborne fungal genera (Chapter 5). Detailed evaluation of free chlorine and 

monochloramine disinfection kinetics for waterborne fungal strains was conducted, and the 

tested fungal strains were found to be resistant to disinfection. Such data was unavailable before 

this study. Main findings of each study are summarized below: 

6.1.1 Literature Review of Fungal Diversity in Drinking Water Systems 

By comprehensively reviewing published literature regarding drinking water fungi, six fungal 

genera were found as the most commonly culture isolated fungi in drinking water, namely 

Penicillium, Aspergillus, Cladosporium, Fusarium, Acremonium, and Trichoderma. Published 

data suggests abundance of these genera ranges from 1 CFU/L to more than 3-log10 CFU/L. Due 

to previous methodological challenges and the limited amount of research conducted, knowledge 
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gaps were identified regarding the overall fungal diversity in drinking water, the effects of water 

treatment on fungal ecology, and the disinfection efficiency of fungi in drinking water.  

6.1.2 Drinking Water Fungal Community Structure Shaped By Centralized Drinking 

Water Treatment Unit Operations  

Within the studied full-scale drinking water treatment process, fungal abundance was 

significantly reduced after media filtration, but no further significant reduction was found after 

disinfection. Culturable fungi were isolated from post disinfection water. Both media filtration 

and disinfection significantly reduced bacterial abundance. The media filtration step also shaped 

the final fungal community structure - the number of fungal genera was reduced while the 

relative abundance of Penicillium and Aspergillus was found to increase in post media filtration 

water. Fungal community structure in post media filtration water and post disinfection water 

were similar to each other, indicating no significant community structure change during the 

disinfection step of water treatment. 

6.1.3 Fungal Diversity in a Hospital Premise Plumbing System Treated with On-Site 

Monochloramine 

A diverse fungal community, with 202 different fungal genera, was found in the studied hospital 

premise plumbing system. The core fungal biome was found to include Penicillium, Aspergillus, 

Peniophora, Cladosporium, and Rhodosporidium identified in more than 50% of samples. No 

significant change in community structure was found fungal community structure before and 

after on-site premise plumbing disinfection. Additionally, fungal genus level identification 
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accuracy by next-generation ITS amplicon sequencing ranged from 95.76% to 99.77%, 

consistent with previous research. 

6.1.4 Inactivation Kinetics of Aspergillus and Penicillium by Free Chlorine and 

Monochloramine in Drinking Water 

Free chlorine and monochloramine disinfection kinetics of Aspergillus fumigatus, Aspergillus 

versicolor, and Penicillium purpurogenum spores were evaluated. Initial lag phase during 

disinfection was found, potentially caused by an intrinsic fungal resistance to disinfectant. By 

fitting measured inactivation data to the delayed Chick-Watson model, which is consistent with 

Ct (concentration-time) concept, disinfection rate constants of tested fungi were found to range 

from -0.22 L/mg•min to -0.04 L/mg•min for free chlorine, and from -0.01 L/mg•min to -0.08 

L/mg•min for monochloramine. The estimated Ct (disinfectant concentration × contact time) for 

3-log10 inactivation of tested fungal strains ranged from 49.0 mg•min/L to 194.7 mg•min/L for 

free chlorine, and from 90.3 mg•min/L to 153.2 mg•min/L for monochloramine. The required Ct 

for 3-log10 inactivation of tested fungi were higher than previously evaluated virus such as 

Adenovirus and common waterborne bacteria, and within the similar range for 3-log10 

inactivation of Mycobacterium spp. and Legionella pneumophila, indicating fungi are resistant to 

water disinfection using free chlorine or monochloramine. 
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6.2 CONCLUSIONS AND IMPLICATIONS FOR PRACTICE 

The overall research conclusions from this dissertation work are: 

1. Fungi are common within the drinking water environment. Studies using culture isolation 

widely found the occurrence of fungi in drinking water. Notable opportunistic pathogens, 

Aspergillus fumigatus, Aspergillus terreus, Aspergillus flavus, Fusarium solani, and Fusarium 

oxysporum, were frequently found within the spectrum of drinking water fungi, indicating the 

drinking water could be an environmental source of pathogenic fungi. Further field-scale 

investigation regarding presence and transmission mechanisms of waterborne opportunistic 

fungal pathogens could benefit further reducing opportunistic infectious risks in facilities with 

concerns for nosocomial fungal infections. 

 

2. Media filtration within centralized drinking water treatment process is the primary 

threshold to control fungal abundance and community structure. The study conducted in a 

full scale drinking water treatment process demonstrates that media filtration significantly 

reduced fungal abundance and acted as the threshold to shape fungal community structure in 

drinking water. Combined with the findings that disinfection does not pose a significant effect on 

fungal community structure, it indicates media filtration is the primary factor affecting fungal 

ecology in drinking water.  

 

3. Waterborne fungi are resistant to free chlorine and monochloramine disinfection. Results 

from Chapter 3 and 4 demonstrate that water disinfection did not significantly affect fungal 

community structure. Chapter 5 demonstrates that common waterborne fungi such as Penicillium 

and Aspergillus are resistant to water disinfection by free chlorine and monochloramine, which 
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could facilitate the survival of fungi in treated drinking water. Further field-scale studies are 

needed to evaluate disinfection efficacy of fungi in full scale water treatment utilities. 

6.3 KEY CONTRIBUTIONS 

This study highlighted that the physical processes, such as sedimentation and media filtration, 

within centralized drinking water treatment significantly shifted the fungal community structure, 

while free chlorine disinfection as well as on-site monochloramine disinfection did not pose 

significant effect on the drinking water fungal community structure. This study also highlighted 

the significant increase of relative abundance of Penicillium along the centralized drinking water 

treatment processes. The selection effect towards Penicillium by centralized water treatment 

could explain its dominance in treated drinking water. The shifting of fungal and bacterial 

community structure in correlation with centralized drinking water treatment processes 

highlighted in this study also indicates possibilities to artificially manage drinking water 

microbiome. The disinfection kinetics of Penicillium and Aspergillus by free chlorine and 

monochloramine highlighted in this study could be used by water industry to further evaluate 

disinfection processes’ efficiency to remove fungi from water.  
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 3 

A.1 Heterotrophic plate count and total filamentous fungal colony count 

Heterotrophic plate count (HPC) analysis was conducted to evaluate the total culturable 

heterotrophic bacterial abundance through the water treatment processes train. 1 mL original 

water sample was plated by pour-plate method using Difco plate count agar (BD), 0.1 mL ten-

fold serial dilutions (10
-1

 to 10
-4

) of the original sample were plated by spread-plate method 

using Difco plate count agar (BD). Plating of each original sample and serial dilution was 

conducted in triplicate. All plates were incubated at 37ºC for 48 hours before analysis. 

Enumeration of heterotrophic plate counts was based on the average of highest countable 

dilution plated, and presented as colony forming units (CFU)/mL. The lower detection limit was 

1 CFU/mL. During each experiment, one agar plate without plating anything and one agar plate 

plated with 1 mL sterile deionized water used for serial dilution were included as negative 

controls. All negative controls showed negative. 

Total filamentous fungal colony count analysis was conducted to evaluate the total 

culturable filamentous fungal abundance through the water treatment processes train. 1 mL, 10 

mL, 100 mL, and 1 L of each original water sample was filtered in duplicates through 0.2 µm 
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sterile Supor® 200 Polyethersulfone membranes (Pall Corporation) housed in sterile Nalgene 

analytical filter funnels (Thermo Scientific; Fisher). The filter membranes were then directly 

plated on potato dextrose agar (DB) supplemented with 100 mg/L of chloramphenicol. All plates 

were incubated at 25ºC for two weeks and checked every 2 days during incubation. Enumeration 

of total filamentous fungal colony counts was based on the average of highest volume of sample 

filtered and plated, and presented as colony forming units (CFU)/L. The lower detection limit 

was 1 CFU/L. During each experiment, one agar plate without plating anything and one agar 

plate plated with new filter membrane were included as negative controls. All negative controls 

showed negative. 

 

A.2 ITS1 PCR 

Triplicate PCR reactions were performed in 20 µL reaction mixtures containing 1 µL of sample 

DNA, 10 µL of 2x DreamTaq Master Mix polymerase (Thermo Scientific), and 0.5 µL of each 

10 µM primer. Temperature condition was 15 minutes denaturation at 95°C, followed by 40 

cycles of 30 seconds denaturation at 95°C, 30 seconds annealing at 60°C, and 30 seconds 

extension at 72°C, and a final elongation at 72°C for 5 minutes. 

 

A.3 16S rRNA PCR 

Duplicate PCR reactions were performed in 25 µL reaction mixtures containing 1 µL of sample 

DNA, 12.5 µL of 2x DreamTaq Master Mix polymerase (Thermo Scientific), and 0.2 µL of each 

10 µM primer. Temperature condition was 3 minutes denaturation at 96°C, followed by 40 

cycles of 45 seconds denaturation at 96°C, 1 minute annealing at 50°C, and 1 minute extension 

at 72°C, and a final elongation at 72°C for 10 minutes. 
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A.4 qPCR 

All qPCR reactions were performed in triplicate. Each reaction was in 20 µL of total volume, 

included 1 µL of sample DNA, 10 µL of SsoAdvanced Universal SYBR Green Supermix (BIO-

RAD), and 0.5 µL of each 10 µM primer. All reactions were carried out on CFX Connect Real-

Time PCR system (Bio Rad), temperature condition for fungal qPCR was 3 minutes initial 

denaturation at 98ºC, followed by 40 cycles of 15 seconds denaturation at 98ºC and 1 minute 

annealing and extension at 60ºC. The temperature condition for both bacterial qPCR and 

Acanthamoeba spp. qPCR was 3 minutes initial denaturation at 98ºC, followed by 40 cycles of 

10 seconds denaturation at 98ºC and 30 seconds annealing and extension at 60ºC. Melt-curve 

analysis was conducted with 5 seconds at 65ºC and 5 seconds at 95ºC ensured samples and 

standard curve had same melt curve values. 

 

A.5 Aspergillus fumigatus alkaline protease gene PCR 

Duplicate PCR was conducted in 20 µL of total volume including 1 µL of sample DNA, 0.5 µL 

of each primer (10 mM), and 10 µL 2X DreamTaq PCR Master Mix (Thermo Fisher Scientific). 

The thermo cycling condition was 95ºC for 3 minutes, followed by 40 cycles of 95ºC for 30 

seconds, 60ºC for 1 minute, and 72ºC for 1 minute and final elongation at 72ºC for 5 minutes. 

The PCR results were analyzed on 2% agarose gel stained by Sybr Safe DNA gel stain (Thermo 

Fisher Scientific). 
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Table A1 Statistics of trimmed sequencing results 

 Total number 

of sequences  

Average number of 

sequences per sample 

Standard 

deviation 

Median sequence 

length (bp) 

ITS1  446902 7326 7866 251 

16S 548098 17128 6181 251 
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Figure A1 PCoA plots based on (A) fungal Bray-Curtis dissimilarity matrix and (B) bacterial weighted UniFrac 

dissimilarity matrix  

 

 

 
Table A2 Pairwise ADONIS analysis results of fungal community 

Based on Jaccard distance 

  

 

RW P-S P-F 

P-S 0.001 (0.115) 

  P-F 0.001 (0.184) 0.001 (0.075) 

 P-D 0.001 (0.194) 0.001 (0.083) 0.225 (0.038) 

Based on Bray-Curtis distance 

  

 

RW P-S P-F 

P-S 0.003 (0.093) 

  P-F 0.001 (0.184) 0.015 (0.066) 

 P-D 0.001 (0.217) 0.002 (0.112) 0.115 (0.054) 

Significant p-values are shown in bold (p < 0.05) 
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Table A3 Pairwise ADONIS analysis results of bacterial community 

Unweighted UniFrac 

  

 

RW P-S P-F 

P-S 0.001 (0.146) 

  P-F 0.001 (0.247) 0.006 (0.122) 

 P-D 0.001 (0.357) 0.001 (0.285) 0.001 (0.199) 

Weighted UniFrac 

  

 

RW P-S P-F 

P-S 0.017 (0.153) 

  P-F 0.001 (0.220) 0.13 (0.120) 

 P-D 0.001 (0.388) 0.001 (0.365) 0.001 (0.258) 

Significant p-values are shown in bold (p < 0.05) 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 4 

B.1 Complete sequence of primers 

All primers written 5’-3’. 

Complete sequence of forward primer (Illumina forward adapter, primer pad, primer linker, 

ITS1-FI2):  

AATGATACGGCGACCACCGAGATCTACAC-TATGGTAATT-GT-

GAACCWGCGGARGGATCA.  

Complete sequence of reverse primer (Illumina reverse adapter, Golay barcode, primer pad, 

primer linker, ITS2):  

CAAGCAGAAGACGGCATACGAGAT-NNNNNNNNNNNN-AGTCAGTCAG-CC-

GCTGCGTTCTTCATCGATGC  

Complete sequence of customized read 1 primer: 

TATGGTAATT GTGAACCWGCGGARGGATCA 
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Complete sequence of customized read 2 primer: 

AGTCAGTCAGCCGCTGCGTTCTTCATCGATGC 

Complete sequence of customized index primer: 

GCATCGATGAAGAACGCAGCGGCTGACTGACT 

B.2 PCR condition and sequencing procedure 

PCR reactions were performed in 20 µL reaction mixtures containing 1 µL of sample DNA, 10 

µL of 2x DreamTaq Master Mix polymerase (Thermo Scientific), and 0.25 µM of each of the 

combinatorial ITS1FI2 and ITS2 primers. Temperature condition was 15 minutes denaturation at 

95°C, followed by 40 cycles of 30 seconds denaturation at 95°C, 30 seconds annealing at 60°C, 

and 30 seconds extension at 72°C, and a final elongation at 72°C for 5 minutes. PCR reaction for 

each sample includes three replicates, and replicates of each reaction were pooled after PCR 

amplification and purified with Agencourt AMPure XP magnetic beads (Beckman Coulter). 

Negative controls in which the template DNA was replaced with 1 uL sterile molecular biology 

grade water were included in each PCR run. Gel visualization of AMPure XP beads purified 

PCR products were performed for quality inspection. 

The purified PCR products of environmental samples were quantified by Qubit 2.0 

Fluorometer with Qubit dsDNA HS Assay Kit (Invitrogen), and then normalized and pooled 

based on equal molarity. One additional purification was performed for the final pool of PCR 

products from environmental samples with Agencourt AMPure XP magnetic beads. Then the 

purified library was loaded to Illumina MiSeq Desktop Sequencer (Illumina) for sequencing by 

using customized read 1, read 2, and index primers. 
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For PCR products of pure culture fungal DNA, the purified products were purified by gel 

extraction again, then normalized and pooled based on equal molarity to form the final pure 

culture sequencing library and loaded to Illumina MiSeq Desktop Sequencer using the same 

customized sequencing primers described above in another sequencing run. 

 

 

 

Table B1 Teleomorphs trimmed from reference database 

Sequence ID Fungal name 

  GU981618 Eupenicillium abidjanum 

 GU981617 Eupenicillium reticulisporum 

GU981616 Eupenicillium meridianum 

 GU981615 Eupenicillium brefeldianum 

 GU981614 Eupenicillium javanicum 

 GU981613 Eupenicillium javanicum 

 GU981607 Eupenicillium levitum 

 GU981605 Eupenicillium Javanicum var melofor 

 GU981582 Eupenicillium abidjanum 

 GU981581 Eupenicillium zonatum 

 GU981580 Eupenicillium brefeldianum 

 GU981579 Eupenicillium javanicum var lineola 

 GU981578 Eupenicillium ehrlichii 

 GU981568 Eupenicillium limosum 

 AB369900 Neosartorya fischeri 

 AY354240 Eupenicillium pinetorum 

 AY373895 Neosartorya fischeri 

 AY373894 Neosartorya fischeri 

 AM992114 Eupenicillium meridianum 

 AM992113 Eupenicillium crustaceum 

 AM992112 Eupenicillium baarnense 

 AM992111 Eupenicillium terrenum 

 HM036591 Eupenicillium idahoense 

 GU966506 Eupenicillium javanicum 

 GU966493 Neosartorya fischeri 

 GQ221148 Eupenicillium molle 

 GQ461906 Neosartorya hiratsukae 

 FJ231014 Eupenicillium hirayamae 

 FJ231013 Eupenicillium hirayamae 

 FJ624264 Neosartorya fischeri 
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Table B1 (Continued)  

EF669995 Neosartorya fennelliae 

 EF669994 Neosartorya fennelliae 

 EF669988 Neosartorya spinosa 

 EF669984 Neosartorya stramenia 

 EF669983 Neosartorya fischeri 

 EF669982 Neosartorya tatenoi 

 EF669980 Neosartorya aurata 

 EF669979 Neosartorya aurata 

 EF669976 Neosartorya quadricincta 

 EF669975 Neosartorya fischeri 

 EF669973 Neosartorya spinosa 

 EF669972 Neosartorya fischeri 

 EF669966 Neosartorya pseudofischeri 

EF669965 Neosartorya spinosa 

 EF669964 Neosartorya glabra 

 EF669963 Neosartorya quadricincta 

 EF669962 Neosartorya otanii 

 EF669961 Neosartorya otanii 

 EF669960 Neosartorya fennelliae 

 EF669959 Neosartorya spinosa 

 EF669955 Neosartorya spinosa 

 EF669952 Neosartorya aureola 

 EF669950 Neosartorya aureola 

 EF669949 Neosartorya quadricincta 

 EF669948 Neosartorya glabra 

 EF669947 Neosartorya quadricincta 

 EF669946 Neosartorya pseudofischeri 

EF669945 Neosartorya aureola 

 EF669944 Neosartorya spathulata 

 EF669943 Neosartorya spathulata 

 EF669941 Neosartorya pseudofischeri 

EF669940 Neosartorya spinosa 

 EF669939 Neosartorya pseudofischeri 

EF669938 Neosartorya glabra 

 EF669937 Neosartorya pseudofischeri 

EF669936 Neosartorya fischeri 

 EF669935 Neosartorya pseudofischeri 

EF422844 Eupenicillium cinnamopurpureum 

EF422843 Eupenicillium cinnamopurpureum 

EF422842 Eupenicillium cinnamopurpureum 

EF422841 Eupenicillium cinnamopurpureum 
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Table B1 (Continued)  

DQ494437 Eupenicillium pinetorum 

 DQ494435 Eupenicillium pinetorum 

 AF459733 Neosartorya stramenia 

 AF459730 Neosartorya quadricincta 

 AF459729 Neosartorya pseudofischeri 

EU427295 Eupenicillium osmophilum 

 EU427292 Eupenicillium tropicum 

 EU427289 Eupenicillium erubescens 

 EU427286 Eupenicillium zonatum 

 EU427284 Eupenicillium cinnamopurpureum 

EF626961 Eupenicillium ochrosalmoneum 

EF626960 Eupenicillium ochrosalmoneum 

EF626959 Eupenicillium ochrosalmoneum 

EF626958 Eupenicillium ochrosalmoneum 

EF626955 Eupenicillium idahoense 

 AF033462 Eupenicillium rubidurum 

 AF033454 Eupenicillium alutaceum 

 AF033435 Eupenicillium brefeldianum 

 AF033431 Eupenicillium inusitatum 

 AF033430 Eupenicillium lassenii 

 AF033425 Eupenicillium anatolicum 

 AF033414 Eupenicillium cinnamopurpureum 

AF033409 Eupenicillium lapidosum 

 GQ924907 Eupenicillium shearii 

 FJ527878 Eupenicillium brefeldianum 

 EU715611 Neosartorya hiratsukae 

 U18358 Eupenicillium javanicum 

 U18355 Neosartorya fischeri 

 EU714322 Neosartorya hiratsukae 

 EU926976 Neosartorya fischeri 

 EU622253 Pleurotus ostreatus 

 EU593904 Neosartorya hiratsukae 

 EU551199 Neosartorya fischeri 

 EU543210 Neosartorya hiratsukae 

 EU515147 Neosartorya hiratsukae 

 EU030360 Eupenicillium lapidosum 

 EF531696 Eupenicillium anatolicum 

 EF488446 Eupenicillium brefeldianum 

 DQ536524 Eupenicillium parvum 

 DQ473558 Eupenicillium pinetorum 

 DQ401533 Neosartorya fischeri 
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Table B1 (Continued) 

DQ314733 Macrophomina phaseolina 

 AY330710 Neosartorya pseudofischeri 

AY213647 Eupenicillium cinnamopurpureum 

AY232278 Eupenicillium shearii 

 AF455541 Neosartorya fischeri 

 AF455538 Neosartorya fischeri 

 AF176661 Neosartorya fischeri 

 AF263347 Eupenicillium bovifimosum 

 AF033487 Eupenicillium tularense 

 AF033481 Eupenicillium baarnense 

 AF033467 Eupenicillium egyptiacum 

 AF033466 Eupenicillium crustaceum 

 AF033464 Eupenicillium erubescens 

 AF033458 Eupenicillium katangense 

 AF033446 Eupenicillium terrenum 

 AF033444 Eupenicillium stolkiae 

 AF033437 Eupenicillium reticulisporum 

AF033436 Eupenicillium levitum 

 AF033432 Eupenicillium ehrlichii 

 AF033420 Eupenicillium shearii 

 AF033418 Eupenicillium hirayamae 

 AF033411 Eupenicillium pinetorum 

 AB479321 Eupenicillium crustaceum 

 AB479320 Eupenicillium molle 

 AB479319 Eupenicillium egyptiacum 

 AB470908 Bionectria ochroleuca 

 AB185272 Neosartorya glabra 

 AB185271 Neosartorya spinosa 

 AB185270 Neosartorya glabra 

 AB185269 Neosartorya tatenoi 

 AB185268 Neosartorya tatenoi 

 AB185267 Neosartorya spathulata 

 AB185266 Neosartorya aurata 

 AB185265 Neosartorya udagawae 

 AB185264 Neosartorya aureola 

 AB185263 Neosartorya stramenia 

 AB185262 Neosartorya fennelliae 

 AB185261 Neosartorya primulina 

 AB185260 Neosartorya quadricincta 

 AB185259 Neosartorya botucatensis 

 AB185258 Neosartorya spinosa 
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Table B1 (Continued) 

AB185257 Neosartorya hiratsukae 

 AB185256 Neosartorya pseudofischeri 

AB185255 Neosartorya glabra 

 AB185254 Neosartorya fischeri 

 AB299414 Neosartorya coreana 

 AB299413 Neosartorya laciniosa 

 AB250782 Neosartorya udagawae 

 AB250781 Neosartorya udagawae 

 AJ004893 Eupenicillium shearii 

 AJ004892 Eupenicillium crustaceum 

 HQ407424 Eupenicillium brefeldianum 

 HQ129858 Eupenicillium brefeldianum 

 FJ004324 Eupenicillium cinnamopurpureum 

GU046487 Hypocrea lixii 

 HQ166710 Neosartorya fischeri 

 FR733875 Neosartorya laciniosa 

 FR733873 Neosartorya hiratsukae 

 FR733872 Neosartorya hiratsukae 

 FR733871 Neosartorya quadricincta 

 FR837959 Neosartorya hiratsukae 

 HQ263372 Neosartorya udagawae 

 HQ263364 Neosartorya udagawae 

 HQ263363 Neosartorya udagawae 

 HQ263362 Neosartorya udagawae 

 HQ263361 Neosartorya udagawae 

 HQ710545 Eupenicillium javanicum 

 HQ608058 Eupenicillium rubidurum 

 HQ607997 Neosartorya fischeri 

 HQ607978 Eupenicillium rubidurum 

 JN089772 Eupenicillium ochrosalmoneum 

JN093268 Neosartorya aureola 

 JN114420 Ustilago tritici 

 EU982016 Neosartorya fischeri 

 JN564000 Neosartorya fennelliae 

 JN390830 Neosartorya fischeri 

 HE578066 Neosartorya hiratsukae 

 HE578061 Neosartorya udagawae 

 JN252116 Hypocrea lixii 

 JN252106 Hypocrea lixii 

 JN252105 Hypocrea lixii 

 JN943591 Neosartorya udagawae 
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Table B1 (Continued) 

JN943589 Neosartorya spinosa 

 JN943587 Neosartorya spathulata 

 JN943585 Neosartorya quadricincta 

 JN943583 Neosartorya pseudofischeri 

JN943581 Neosartorya laciniosa 

 JN943579 Neosartorya hiratsukae 

 JN943577 Neosartorya glabra 

 JN943575 Neosartorya fischeri 

 JN943573 Neosartorya fennelliae 

 JN943571 Neosartorya fennelliae 

 JN943569 Neosartorya coreana 

 JN943592 Neosartorya udagawae 

 JN943590 Neosartorya spinosa 

 JN943588 Neosartorya spathulata 

 JN943586 Neosartorya quadricincta 

 JN943584 Neosartorya pseudofischeri 

JN943582 Neosartorya laciniosa 

 JN943580 Neosartorya hiratsukae 

 JN943578 Neosartorya glabra 

 JN943576 Neosartorya fischeri 

 JN943574 Neosartorya fennelliae 

 JN943572 Neosartorya fennelliae 

 JN943570 Neosartorya coreana 

 JF922037 Neosartorya fischeri 

 JF922036 Eupenicillium osmophilum 

 JQ680034 Eupenicillium brefeldianum 

 HE974448 Neosartorya nishimurae 

 HE974446 Neosartorya tsunodae 

 HE974444 Neosartorya multiplicata 

 HE974449 Neosartorya nishimurae 

 HE974447 Neosartorya tsunodae 

 HE974445 Neosartorya multiplicata 

 JQ316519 Neosartorya udagawae 
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Table B2 Accuracy of pure culture fungal DNA taxonomy identification on genus level 

Tested fungi Assigned taxa Number of 

sequences 

True/False TIR 

(%) 

FIR 

(%) 

ER 

(%) 

Alternaria alternata Alternaria 972 T 96.91 0.10 0.10 

 Cladosporium 1 F    

 Ambiguous 30 U/D    

 Total 1003     

Aspergillus 

fumigatus 

Aspergillus 2517 T 99.76 0.08 0.08 

 Cladosporium 1 F    

 Epicoccum 1 F    

 Ambiguous 4 U/D    

  Total 2523         

Cladosporium 

cladosporioides 

Cladosporium 1560 T 95.76 0.18 0.19 

 Omphalotus 1 F    

 Aspergillus 1 F    

 Talaromyces 1 F    

 Ambiguous 66 U/D    

  Total 1629         

Epicoccum nigrum Epicoccum 1289 T 99.77 0.08 0.08 

 Cladosporium 1 F    

 Ambiguous 2 U/D    

  Total 1292         

Penicillium 

chrysogenum 

Penicillium 1782 T 99.61 0.06 0.06 

 Alternaria 1 F    

 Ambiguous 6 U/D    

  Total 1789         

N/D: Not determined because of ambiguous identity at this taxonomic rank; 

TIR (true identification ratio) = Ntrue/Ntotal;  

FIR (false identification ratio)  = Nfalse/Ntotal;  

ER (error ratio) = Nfalse/(Ntrue+Nfalse); 

Ntrue: number of sequences assigned to correct taxonomy. Nfalse: number of sequences assigned to 

false taxonomy. Ntotal: total number of sequences [1] 
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Table B3 Accuracy of pure culture fungal DNA taxonomy identification on species level 

Tested fungi Assigned taxa Number of 

sequences 

True/

False 

TIR 

(%) 

FIR 

(%) 

ER 

(%) 

Alternaria alternata Alternaria alternata 14 T 1.40 1.20 46.15 

 Alternaria compacta 3 F    

 Alternaria mali 4 F    

 Alternaria tenuissima 3 F    

 Alternaria porri 1 F    

 Alternaria spp. 947 U/D    

 Cladosporiumspp. 1 F    

 Ambiguous 30 U/D    

  Total 1003         

Aspergillus fumigatus Aspergillus fumigatus 20 T 0.79 0.08 9.09 

 Aspergillus spp. 2497 U/D    

 Epicoccum nigrum 1 F    

 Cladosporiumspp. 1 F    

 Ambiguous 4 U/D    

  Total 2523         

Cladosporium 

cladosporioides 

Cladosporium 

cladosporioides 

11 T 0.68 0.18 21.43 

 Cladosporiumspp. 1549 U/D    

 Talaromyces 

wortmannii 

1 F    

 Omphalotus olearius 1 F    

 Aspergillus 

versicolor 

1 F    

 Ambiguous 66 U/D    

  Total 1629         

Epicoccum nigrum Epicoccum nigrum 1289 T 99.77 0.08 0.08 

 Cladosporiumspp. 1 F    

 Ambiguous 2 U/D    

  Total 1292         

Penicillium 

chrysogenum 

Penicillium 

chrysogenum 

7 T 0.39 0.50 56.25 

 Penicillium 

coprobium 

1 F    

 Penicillium 

granulatum 

5 F    

 Penicillium commune 1 F    

 Penicillium italicum 1 F    

 Penicillium spp. 1767 U/D    

 Alternaria spp. 1 F    

 Ambiguous 6 U/D    
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Table B3 (Continued) 

  Total 1789         

N/D: Not determined because of ambiguous identity at this taxonomic rank 

TIR (true identification ratio) = Ntrue/Ntotal;  

FIR (false identification ratio)  = Nfalse/Ntotal;  

ER (error ratio) = Nfalse/(Ntrue+Nfalse); 

Ntrue: number of sequences assigned to correct taxonomy. Nfalse: number of sequences assigned to 

false taxonomy. Ntotal: total number of sequences [1] 

 

 

 

Table B4 Genera identified and associated relative abundance 

Genera Average 

relative 

abundance 

Std. 

deviation 

Max. 

relative 

abundance 

Persistence 

Penicillium 88.89% 6.37% 97.55% 100.00% 

Aspergillus 0.71% 1.13% 6.15% 90.00% 

Peniophora 0.29% 0.62% 3.03% 56.67% 

Cladosporium 0.16% 0.28% 1.01% 50.00% 

Rhodosporidium 0.18% 0.30% 1.48% 50.00% 

Aureobasidium 0.25% 0.90% 4.95% 43.33% 

Fusarium 0.14% 0.34% 1.57% 40.00% 

Cantharellus 0.46% 0.93% 3.80% 36.67% 

Trichosporon 0.09% 0.20% 0.90% 36.67% 

Cryptococcus 0.07% 0.17% 0.75% 36.67% 

Candida 0.15% 0.37% 1.59% 33.33% 

Trametes 0.13% 0.34% 1.50% 33.33% 

Pichia 0.87% 3.62% 19.78% 30.00% 

Gymnopus 0.02% 0.07% 0.38% 26.67% 

Acremonium 0.09% 0.27% 1.38% 26.67% 

Wallemia 0.03% 0.06% 0.19% 26.67% 

Rhizopogon 0.01% 0.04% 0.16% 20.00% 

Basidiobolus 0.05% 0.15% 0.76% 20.00% 

Stereum 0.04% 0.13% 0.63% 16.67% 

Chaetomium 0.06% 0.19% 0.95% 16.67% 

Eutypella 0.05% 0.12% 0.46% 16.67% 

Mycoleptodiscus 0.01% 0.01% 0.06% 16.67% 

Rhodotorula 0.02% 0.04% 0.18% 16.67% 

Phanerochaete 0.03% 0.16% 0.89% 16.67% 

Hyphodontia 0.05% 0.14% 0.56% 16.67% 

Agaricus 0.01% 0.04% 0.16% 16.67% 

Nigrospora 0.04% 0.09% 0.37% 16.67% 

Inocybe 0.01% 0.03% 0.16% 16.67% 
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Table B4 (Continued) 

Tricholoma 0.01% 0.05% 0.25% 16.67% 

Alternaria 0.04% 0.14% 0.76% 16.67% 

Glomus 0.01% 0.03% 0.16% 16.67% 

Leptosphaerulina 0.03% 0.10% 0.44% 16.67% 

Hypocrea 0.04% 0.18% 0.99% 13.33% 

Amanita 0.00% 0.02% 0.08% 13.33% 

Devriesia 0.11% 0.45% 2.31% 13.33% 

Teratosphaeria 0.11% 0.43% 2.22% 13.33% 

Toxicocladosporium 0.05% 0.13% 0.48% 13.33% 

Sclerotium 0.02% 0.07% 0.38% 13.33% 

Paecilomyces 0.04% 0.14% 0.77% 13.33% 

Phoma 0.05% 0.16% 0.73% 13.33% 

Phialosimplex 0.00% 0.01% 0.05% 13.33% 

Polyporus 0.00% 0.01% 0.03% 13.33% 

Eremascus 0.07% 0.30% 1.62% 13.33% 

Epicoccum 0.03% 0.12% 0.63% 10.00% 

Ceriporia 0.03% 0.12% 0.63% 10.00% 

Sporobolomyces 0.03% 0.12% 0.63% 10.00% 

Taphrina 0.00% 0.01% 0.08% 10.00% 

Rhizoctonia 0.00% 0.02% 0.12% 10.00% 

Eurotium 0.00% 0.01% 0.03% 10.00% 

Phlebia 0.00% 0.02% 0.07% 10.00% 

Olpidium 0.01% 0.03% 0.16% 10.00% 

Oudemansiella 0.01% 0.04% 0.17% 10.00% 

Heterobasidion 0.01% 0.06% 0.35% 10.00% 

Davidiella 0.00% 0.02% 0.09% 10.00% 

Lasiodiplodia 0.03% 0.16% 0.89% 10.00% 

Xylaria 0.01% 0.06% 0.27% 10.00% 

Flavodon 0.01% 0.04% 0.15% 10.00% 

Cochliobolus 0.02% 0.09% 0.46% 10.00% 

Apiosporina 0.00% 0.01% 0.06% 10.00% 

Amorosia 0.00% 0.01% 0.02% 6.67% 

Chaetocalathus 0.00% 0.01% 0.05% 6.67% 

Waitea 0.01% 0.05% 0.25% 6.67% 

Chromelosporium 0.00% 0.02% 0.08% 6.67% 

Magnaporthe 0.08% 0.42% 2.31% 6.67% 

Sarocladium 0.02% 0.07% 0.37% 6.67% 

Falcocladium 0.00% 0.01% 0.02% 6.67% 

Phomopsis 0.01% 0.04% 0.20% 6.67% 

Daldinia 0.01% 0.06% 0.35% 6.67% 

Caloplaca 0.01% 0.04% 0.22% 6.67% 

Penidiella 0.00% 0.01% 0.04% 6.67% 

Fuscoporia 0.01% 0.04% 0.19% 6.67% 

Choanephora 0.01% 0.03% 0.13% 6.67% 
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Table B4 (Continued) 

Rozella 0.01% 0.05% 0.27% 6.67% 

Massarina 0.00% 0.02% 0.09% 6.67% 

Dermocybe 0.00% 0.02% 0.08% 6.67% 

Marasmius 0.00% 0.01% 0.06% 6.67% 

Cystofilobasidium 0.01% 0.07% 0.38% 6.67% 

Cladonia 0.00% 0.01% 0.07% 6.67% 

Trichaptum 0.01% 0.03% 0.14% 6.67% 

Scleroderma 0.00% 0.01% 0.06% 6.67% 

Laetiporus 0.01% 0.06% 0.31% 6.67% 

Oliveonia 0.02% 0.09% 0.51% 6.67% 

Phialocephala 0.00% 0.01% 0.07% 6.67% 

Dendrophora 0.04% 0.19% 1.04% 6.67% 

Ceratocystis 0.01% 0.06% 0.32% 6.67% 

Ambispora 0.00% 0.01% 0.03% 6.67% 

Antrodiella 0.00% 0.01% 0.05% 6.67% 

Phlebiopsis 0.00% 0.01% 0.08% 6.67% 

Gibberella 0.00% 0.02% 0.07% 6.67% 

Fomitopsis 0.01% 0.02% 0.11% 6.67% 

Tubeufia 0.01% 0.03% 0.15% 6.67% 

Cephaliophora 0.00% 0.01% 0.04% 6.67% 

Entoloma 0.00% 0.01% 0.03% 6.67% 

Bensingtonia 0.00% 0.01% 0.05% 6.67% 

Coniothyrium 0.00% 0.02% 0.08% 6.67% 

Hypochnicium 0.00% 0.01% 0.06% 6.67% 

Exophiala 0.01% 0.04% 0.15% 6.67% 

Diaporthe 0.01% 0.04% 0.18% 6.67% 

Gongronella 0.02% 0.11% 0.63% 3.33% 

Leohumicola 0.01% 0.05% 0.25% 3.33% 

Schizophyllum 0.00% 0.02% 0.12% 3.33% 

Dothidea 0.00% 0.02% 0.09% 3.33% 

Nakaseomyces 0.00% 0.00% 0.02% 3.33% 

Crinipellis 0.00% 0.00% 0.02% 3.33% 

Hypoxylon 0.00% 0.01% 0.08% 3.33% 

Aplosporella 0.00% 0.02% 0.12% 3.33% 

Passalora 0.00% 0.00% 0.02% 3.33% 

Paraphoma 0.03% 0.17% 0.95% 3.33% 

Absconditella 0.02% 0.09% 0.48% 3.33% 

Mycosphaerella 0.00% 0.02% 0.13% 3.33% 

Agrocybe 0.00% 0.02% 0.13% 3.33% 

Cantharellula 0.00% 0.02% 0.13% 3.33% 

Phaeobotryosphaeria 0.00% 0.01% 0.06% 3.33% 

Schizangiella 0.00% 0.00% 0.02% 3.33% 

Ophiocordyceps 0.00% 0.00% 0.02% 3.33% 

Hygrophorus 0.00% 0.00% 0.02% 3.33% 
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Table B4 (Continued) 

Arthroderma 0.00% 0.00% 0.02% 3.33% 

Cercospora 0.00% 0.01% 0.05% 3.33% 

Ophiostoma 0.00% 0.00% 0.02% 3.33% 

Hyphodermella 0.00% 0.02% 0.09% 3.33% 

Pandora 0.00% 0.00% 0.02% 3.33% 

Septoria 0.00% 0.00% 0.02% 3.33% 

Auricularia 0.00% 0.01% 0.04% 3.33% 

Kazachstania 0.00% 0.01% 0.04% 3.33% 

Hormonema 0.00% 0.00% 0.02% 3.33% 

Myrmecridium 0.01% 0.08% 0.43% 3.33% 

Fomitiporia 0.00% 0.00% 0.02% 3.33% 

Pleurotus 0.01% 0.03% 0.16% 3.33% 

Serpula 0.00% 0.00% 0.02% 3.33% 

Filobasidium 0.01% 0.05% 0.29% 3.33% 

Calicium 0.00% 0.02% 0.13% 3.33% 

Neurospora 0.02% 0.09% 0.49% 3.33% 

Dendryphiella 0.00% 0.01% 0.03% 3.33% 

Pyrenochaeta 0.00% 0.01% 0.06% 3.33% 

Amylosporus 0.00% 0.01% 0.03% 3.33% 

Phlebiella 0.00% 0.00% 0.03% 3.33% 

Ganoderma 0.00% 0.00% 0.03% 3.33% 

Phaeosphaeria 0.00% 0.02% 0.14% 3.33% 

Hericium 0.01% 0.03% 0.19% 3.33% 

Hyphoderma 0.00% 0.02% 0.14% 3.33% 

Sporidiobolus 0.02% 0.12% 0.68% 3.33% 

Skeletocutis 0.00% 0.01% 0.05% 3.33% 

Artomyces 0.00% 0.01% 0.08% 3.33% 

Ramichloridium 0.00% 0.01% 0.05% 3.33% 

Cylindrobasidium 0.00% 0.00% 0.03% 3.33% 

Rachicladosporium 0.00% 0.02% 0.14% 3.33% 

Pterula 0.00% 0.02% 0.14% 3.33% 

Nectria 0.00% 0.00% 0.03% 3.33% 

Noosia 0.00% 0.02% 0.14% 3.33% 

Lagarobasidium 0.00% 0.00% 0.03% 3.33% 

Physisporinus 0.00% 0.01% 0.05% 3.33% 

Rhizomucor 0.00% 0.00% 0.03% 3.33% 

Dissoconium 0.01% 0.03% 0.16% 3.33% 

Wickerhamomyces 0.00% 0.02% 0.12% 3.33% 

Porpomyces 0.00% 0.00% 0.01% 3.33% 

Lycoperdon 0.00% 0.00% 0.01% 3.33% 

Trichoderma 0.00% 0.00% 0.01% 3.33% 

Inonotus 0.00% 0.00% 0.00% 3.33% 

Gigaspora 0.00% 0.00% 0.01% 3.33% 

Preussia 0.01% 0.07% 0.41% 3.33% 
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Table B4 (Continued) 

Trapelia 0.01% 0.07% 0.36% 3.33% 

Paradictyoarthrinium 0.00% 0.03% 0.14% 3.33% 

Metacordyceps 0.00% 0.00% 0.01% 3.33% 

Golovinomyces 0.00% 0.01% 0.03% 3.33% 

Beauveria 0.00% 0.00% 0.01% 3.33% 

Valsa 0.00% 0.00% 0.02% 3.33% 

Capnobotryella 0.00% 0.00% 0.02% 3.33% 

Coriolopsis 0.00% 0.00% 0.02% 3.33% 

Lecidella 0.00% 0.00% 0.01% 3.33% 

Flagelloscypha 0.00% 0.00% 0.00% 3.33% 

Sphaerobolus 0.00% 0.00% 0.00% 3.33% 

Blakeslea 0.00% 0.00% 0.02% 3.33% 

Gloeoporus 0.00% 0.00% 0.02% 3.33% 

Hamigera 0.00% 0.01% 0.05% 3.33% 

Pithomyces 0.00% 0.01% 0.05% 3.33% 

Armillaria 0.00% 0.00% 0.02% 3.33% 

Podoscypha 0.00% 0.01% 0.07% 3.33% 

Ascochyta 0.00% 0.03% 0.14% 3.33% 

Peyronellaea 0.01% 0.03% 0.17% 3.33% 

Ustilaginoidea 0.00% 0.01% 0.03% 3.33% 

Myrothecium 0.00% 0.01% 0.05% 3.33% 

Debaryomyces 0.00% 0.01% 0.04% 3.33% 

Ramularia 0.00% 0.01% 0.04% 3.33% 

Corynespora 0.01% 0.03% 0.17% 3.33% 

Pseudolagarobasidium 0.00% 0.03% 0.15% 3.33% 

Psathyrella 0.00% 0.01% 0.03% 3.33% 

Phialophora 0.01% 0.06% 0.31% 3.33% 

Diatrype 0.01% 0.03% 0.15% 3.33% 

Pseudocercospora 0.01% 0.03% 0.15% 3.33% 

Acarospora 0.01% 0.04% 0.23% 3.33% 

Saccharomyces 0.00% 0.01% 0.03% 3.33% 

Plenodomus 0.00% 0.02% 0.09% 3.33% 

Rhinocladiella 0.01% 0.06% 0.32% 3.33% 

Cystidiodontia 0.00% 0.01% 0.06% 3.33% 

Paraleptosphaeria 0.00% 0.01% 0.06% 3.33% 

Myxotrichum 0.01% 0.08% 0.44% 3.33% 

Degelia 0.03% 0.14% 0.77% 3.33% 

Podosordaria 0.00% 0.01% 0.06% 3.33% 

Suillus 0.00% 0.00% 0.02% 3.33% 

Neosetophoma 0.01% 0.03% 0.16% 3.33% 

Pisolithus 0.00% 0.00% 0.02% 3.33% 

Ambiguous 5.50% 4.72% 22.22% 100.00% 
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Table B5 Shannon’s equitability of each pool shows the fungal community is unequally distributed (ideally even 

community has index value of 1 by definition) 

 

June, 

2011 

Sept, 

2011 

Oct, 

2011 

Nov, 

2011 

Dec, 

2011 

Jan, 

2012 

Feb, 

2012 

March, 

2012 

Pool 1 0.28 0.46 0.41 0.17 0.20 0.19 0.09 0.09 

Pool 2 0.22 0.26 0.13 0.15 N/A 0.13 0.15 0.30 

Pool 3 0.19 0.11 0.18 0.13 0.17 0.06 0.17 N/A 

Pool 4 0.09 0.14 0.19 0.16 0.33 0.34 0.14 0.11 

N/A: Pool 2 from December and Pool 3 from March were PCR negative and not included in 

sequencing 

 

 

 

Table B6 Water quality parameters (data derived from [2]) 

Month Date pH Free 

chlorine 

(mg/L) 

Monochloramine  

(mg/L as Cl2) 

T = 0 (Baseline: right before 

monochloramine injection started) 

9/26/2011 8.3 0.03 0.00 

Month 1 10/24/2011 8.6 0.14 3.14 

Month 2 11/22/2011 8.1 0.09 0.76 

Month 3 12/19/2011 8.1 0.15 1.60 

Month 4 1/17/2012 8.0 0.22 2.58 

Month 5 2/21/2012 7.9 0.17 2.80 

Month 6 3/19/2012 8.1 0.13 2.57 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 5 

C.1 ITS1 sequences of tap water isolates of Aspergillus and Penicillium  

Aspergillus tap water isolate 

5’- 

GCNNNNNTCNNCCCGTGNTACCTAACACTGTTGCTTCGGCGGGGAACCCCCTCNNN

NNNNNGCCGCCGGGGACTACTGAACTTCATGCCTGAGAGTGATGCAGTCTGAGTCT

GAATATAAAATCAGTCAAAACTTTCAACAATGGATCTCTTGGTTCCGGCATCGATGA

AGAACGCAGCA -3’ 

The Aspergillus tap water isolate developed granular dark green colonies with cream to 

dark red back view on potato dextrose agar; was further identified as Aspergillus versicolor 

based on previously described colony morphology features [1, 2]. 

 

Penicillium tap water isolate 

5’- 

TCCNCCCTTGTCTCTATACACCTGTTGCTTTGGCGGGCCCACCGGGGCCACCTGGTC
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GCCGGGGGACATCTGTCCCCGGGCCCGCGCCCGCCGAAGCGCTCTGTGAACCCTGA

TGAAGATGGGCTGTCTGAGTACTATGAAAATTGTCAAAACTTTCAACAATGGATCTC

TTGGTTCCGGCATCGATGAAGAACGCAGCA -3’ 

The Penicillium tap water isolate developed olive green colonies with cream back view 

and arial shape hypae on potato dextrose agar; was further identified as Pencillium 

purpurogenum based on previously described colony morphology features [3]. 

 

C.2 WinBUGS code for delayed Chick-Watson model fitting  

Model 

{ 

 for (i in 1:N) { 

  Y[i] ~ dnorm(mu[i], tau) 

  mu[i] <- beta * (CT[i] - CTlag) * step(CT[i] - CTlag) 

   } 

#non_informative priors (variance sigma2 = 1/tau, CTobs is the CT value corresponding to 10% 

of lowest Ln(N/N0)) 

  tau ~ dgamma(0.001, 0.001) 

  beta ~ dnorm(0.0, 1.0E-6) 

  CTlag ~ dunif(0, CTobs) 

  sigma2 <- 1/tau 

} 
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Figure C1 Measured free chlorine residual concentration (mg/L) 
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Figure C2 Measured monochloramine residual concentration (mg/L) 
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Figure C3 Measured mean Ln(N/N0) for free chlorine and monochloramine control experiments, which no 

disinfectant was used 
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Figure C4 Comparison of model predicted Ln(N/N0) against measured Ln(N/N0) for both delayed Chick-Watson 

model and classical Chick-Watson model, free chlorine disinfection 
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Figure C5 Comparison of model predicted Ln(N/N0) against measured Ln(N/N0) for both delayed Chick-Watson 
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