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The goal of the proposed work is to systematically study the time-dependent mechanics of 

concrete with a focus on concrete creep and its effect on prestressed concrete bridges, which are 

creep-sensitive. With increasing demands for sustainable construction, a longer lifespan, i.e., 

over 100 years, is now generally expected for critical bridges in structural design. To ensure the 

safety and serviceability of prestressed concrete bridges throughout this prolonged lifespan, there 

is a call for deeper understanding of the concrete time-dependent mechanics and its effects on the 

structural performance of prestressed concrete bridges. 

The primary aim of this study is to build a numerical framework to estimate the time-

dependent performance of prestressed concrete bridges based on the development of concrete 

creep and its coupling with other physical and chemical processes. The established framework 

will be used to capture the correlation between the long-term asymptotes of deformation curves, 

early age measurements, and distinctive concrete creep models. Based on the identified 

correlation and in-situ measurements, a suitable creep model can be identified and calibrated for 

the bridge under investigation. Then the framework is extended to take into account the effect of 

scatter in concrete creep on the deformation asymptote. Statistical analyses based on the Latin 

hypercube sampling scheme are employed to investigate the effectiveness and robustness of the 

established correlation. For bridges carrying heavy traffic flows, the intertwined effects of 
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concrete static creep, cyclic creep, softening and cracking are recommended to be incorporated 

to enhance the predictive capacity of the proposed framework. To meet this need, a unified 

concrete constitutive model is formulated and then is integrated in the 3D rate-type formulation 

for full-scale creep structural analysis.  

Finally, to remedy the inadequacy resulting from the phenomenological formulas in 

concrete creep modeling, a multi-scale methodology residing at the meso-scale of concrete is 

developed. A representative volume element (RVE) of concrete is numerically generated for the 

multi-scale analysis and the macros-scale time-dependent behavior of concrete is approximated 

by a proper computational homogenization scheme. 
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1672-1687, 2015”.  In this work, two columns in Table 2.2, “distribution type” and “standard 
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and Strauss also provided the material parameters for the 45 simulations in Chapter 2.7, which 

were generated by Latin hypercube sampling scheme. 

Chapter 3 presents the second journal paper: “Tong T, Liu Z, Zhang J, and Yu, Q. Long-

term performance of prestressed concrete bridges under the intertwined effects of concrete 

damage, static creep and traffic-induced cyclic creep. Engineering Structures, 127: 510-524, 

2016”.  In this work, the drawings and investigation report [73] of the Humen Bridge were 
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1.0  INTRODUCTION 

1.1 MOTIVATION AND BACKGROUND 

Elongating the service lifetime of an infrastructure system can significantly reduce its economic 

and environmental footprint, and thus is an essential aspect of the progress towards a sustainable 

built environment. For critical structures like large-span bridges, a longer lifespan, i.e., over 100 

to 120 years, is now generally expected in design. However, for segmentally-erected prestressed 

concrete bridges, a serious challenge to this goal is the currently low quality in long-term 

performance prediction, which is a result of the complex time-dependent interactions between 

concrete creep, shrinkage, steel relaxation, and deterioration processes, coupled with other 

physical [1] and mechanical [2] influences. 

 A recent survey [3] on segmentally-erected prestressed concrete box girders shows that 

among 56 prestressed box girders from around the world, over 60% of them displayed excessive 

deflections about 20 years after construction, although their short-term deflections were benign. 

Until now, there is still no unified definition for the excessive deflection. In this thesis, the 

excessive deflection means the magnitude of the vertical deflection apparently exceeds the 

expected value, which can be estimated based on the current specifications. Unexpectedly 

excessive deflection has a profound impact on the bridge safety and serviceability. Recently, 

there are numerous studies about the excessive vertical deflection of the Koror-Babeldaob (KB) 
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Bridge in Palau [4]-[7]. This was a segmentally-erected prestressed box girder with a main span 

of 241m. The bridge was built in 1977. After 18 years’ service, the vertical deflection at the 

middle span reached 1.61 m, which was measured from the design camber. Finally, this bridge 

collapsed after a risky retrofit aimed at partially recovering its serviceability; see Figure 1.1. The 

immediate cause of the collapse was improper retrofit design and procedure [8] although the 

excessive deflection did precipitate the need to retrofit.  

 

 

Figure 1.1. Collapse of K-B bridge after 18 years’ service. 

 

A further investigation [9] on these bridges leads to the conclusion that the significant 

underestimation of the long-term asymptote of concrete creep and its scatter in design models is 

one of the primary causes of the unrealistic prediction of the long-term deflections for large-span 

prestressed concrete bridges. Considering the excessive vertical deflection can severely affect the 

safety and serviceability of bridges, extensive efforts have been invested to improve the accuracy 

in predicting the multi-decade deflections of large-span prestressed concrete bridges [10]. More 

realistic concrete creep models and advanced numerical formulations have been developed 
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recently [11]-[15]. Built upon long-term creep tests, theoretical formulations and statistical 

analyses [16][17], design formulas capable of approximating the long-term asymptote of 

concrete static creep have been proposed and used for predicting the long-term deflections of 

bridges. For example, by utilizing the models B3/B4 [14][18] and the fib (2010) [19] models, the 

time-dependent deflections recorded in several large-span prestressed concrete bridges have been 

realistically approximated in recent full-scale numerical analyses, respectively. A common 

characteristic of these improved creep models is that under sustained stress the static creep of 

concrete does not terminate with time. Instead, the growth of static creep follows a nonzero 

asymptotical slope in log-time scale. 

The oversimplified modelling and primitive formulation in creep analysis are identified 

as other sources of inaccuracy [13]. In addition to improving the concrete creep models, 

progresses have also been achieved in the numerical formulation for full-scale 3D creep 

structural analysis. Rate-type formulation, residing on rheological models and utilizing 3D solid 

elements, has recently been developed and successfully implemented in numerical analyses of 

several large-span prestressed concrete bridges [3][15][20]. Compared to the integral-type 

formulation using one- or two-dimensional beam elements, the 3D rate-type formulation 

significantly improves computational efficiency and model fidelity. More importantly, it enables 

coupling between the creep analysis and other memory-dependent or -independent processes. 

Unfortunately, the coupling between the creep analysis and the softening, cracking, and cyclic 

creep of concrete is weak in the recent studies [3][15][20]. 

Currently, concrete creep models are predominantly calibrated based on the macro-scale 

tests, like B3/B4 [14][18] and fib (2010) model [19]. In these creep models, concrete is treated as 

a homogenous material and how the different phases affect the macro-scale concrete creep is not 
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considered. Nevertheless, concrete is a heterogeneous material with multiple phases. The 

mechanisms of these different phases at meso-, micro-, or even nano-scales intrinsically 

determine the macro-scale mechanical and transport behaviors of concrete. At the meso-scale, 

concrete can be decomposed as mortar matrix, coarse aggregate, interface transition zone (ITZ), 

and air voids. Furthermore, the mortar matrix can be decomposed as fine aggregate (sand), 

anhydrous phase, CH, CSH and porous phase at the micro-scale [21]. Recently, Pellenq proposed 

the atomistic model of CSH [22] and propelled the relevant research of cementitious materials at 

the nano-scale. Multi-scale experiments and simulations of cementitious materials can offer more 

accurate insights to the mechanical, time-dependent, and transport behaviors of cementitious 

materials [23]-[25]. Although numerical studies of concrete properties at different scales can 

provide more accurate results, it is prohibitively expensive to investigate concrete at micro-scale 

or nano-scale, due to limited computational capacity. Fortunately, meso-scale investigation is 

accurate enough to obtain a fundamental understanding of mechanical and time-dependent 

mechanisms, which can be utilized in the macro-scale analysis [26]. 

1.2 DIFFERENT CONCRETE CREEP MODELS 

To study creep-sensitive structures, like segmentally-erected prestressed concrete bridges 

presented in this thesis, it is essential to implement an efficient and realistic creep model. 

Concrete creep, characterized by gradual strain growth with time under a unit sustained stress 

applied at age t0 (in days), is generally calculated based on a given compliance function J(t, t0), 

where t (in days) is the current time.  
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In this section, the details of various concrete creep models are discussed, including ACI 

(2008) [27], CEB-FIP (1990) [28], fib (2010) [19], and B3 [14] models. The B4 [18] model is 

similar to B3 model and is not presented here. 

1.2.1 ACI (2008) model 

In the ACI model, concrete creep is described by the so-called creep coefficient φ(t, t0),  which is 

the ratio of creep strain to elastic strain: 

J (t, t0) = [1+ φ(t, t0)]/Ecmt0 (1.1) 

where Ecmt0 is the modulus of the elasticity (in MPa) at  t0, which is given as: 

1.5
0 00.043cmt c cmtE fc=   (1.2) 

where cc  is the unit weight of concrete in kg/m3, and 0cmtf  is the mean concrete strength (in 

MPa) at t0. The creep coefficient φ(t, t0) has two components that determine the asymptotic value 

and the time development of creep and is given as: 

0
0

0

( )( , )
( ) u

t tt t
d t t

ν

νϕ ϕ−
=

+ −
 

(1.3) 

where 0( )t t−  is the duration of loading; d  and ν are empirical constants; and uϕ  is the ultimate 

creep coefficient. For typical conditions, in the absence of specific creep data for local 

aggregates and conditions, the average value for the ultimate creep coefficient is 2.35uϕ = , and 

average values of 10 and 0.6 are recommended for d  and ν , respectively. 

For other conditions, the value of uϕ  needs to be modified by correction factors, as 

follows [27]: 
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, , , , , ,2.35 2.35u c c to c RH c vs c s c shψ αϕ γ γ γ γ γ γ γ= =  (1.4) 

where cγ  represents the cumulative product of the applicable correction factors. For ages at 

application of load greater than 7 days for moist-curved concrete or greater than 1 to 3 days for 

steam-cured concrete, the age of loading factor for creep ,c toγ  is estimated from:  

0.118
, 01.25c to tγ −=  for moisture curing 

(1.5)  
0.094

, 01.13c to tγ −=  for steam curing 

The factor  ,c RHγ  is related to the ambient relative humidity h  as: 

, 1.27 0.67c RH hγ = −  for 0.40h ≥  (1.6) 

The coefficient ,c vsγ  accounts for the size of the member in terms of the volume (V in 

mm3)-surface ( S in mm2) ratio, and is expressed as: 

{ 0.0213( / )}
,

2 (1 1.13 )
3

V S
c vs eγ −= +  

(1.7) 

The slump factor ,c sγ , where s is the slump (in mm) of fresh concrete, is 

, 0.82 0.00264c s sγ = +  (1.8) 

 The fine aggregate factor ,c ψγ , where ψ (expressed as percentage) is the ratio of fine 

aggregate to total aggregate by weight, is 

, 0.88 0.024c ψγ ψ= +  (1.9) 

 The air content factor ,sh αγ , where  α  is the air content in percentage, is 

, 0.95 0.008 1sh αγ α= + ≥  (1.10) 
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1.2.2 CEB-FIP (1990) model 

The compliance function J(t, t0) that represents the total stress-dependent strain is given as:  

28 0
0 0 28 0

28 0 28

( , )1 1( , ) [ ( ) ( , )]
cm cmt cm

t tJ t t t t t
E E E

ϕη ϕ= + = +  
(1.11) 

where 0 28 0( ) /cm cmtt E Eη = . 28cmE  is the mean modulus (in MPa) of elasticity of concrete at 28 

days. Within the range of service stress, the 28-day creep coefficient 28 0( , )t tϕ  is calculated as: 

28 0 0 0( , ) ( )ct t t tϕ ϕ β= −  (1.12) 

in which 0ϕ  is the notional creep coefficient and 0( )c t tβ −  is the coefficient that describes the 

development of creep with time after loading. The notional creep coefficient 0ϕ  can be 

determined as: 

0 28 0( ) ( ) ( )RH cmh f tϕ ϕ β β=  (1.13) 

with 

0
1 23

0

1 /( ) [1 ]
0.1[( / ) / ( / ) ]RH

h hh
V S V S

ϕ α α−
= +       0.70

1
28

3.5( )cm

cm

f
f

α =    0.20
2

28

3.5( )cm

cm

f
f

α =  
(1.14) 

28
28 0

5.3( )
/cm

cm cm

f
f f

β =  
(1.15) 

0 0.2
0 1

1( )
0.1 ( / )

t
t t

β =
+

 
(1.16) 

0 28 0( ) ( ) ( )RH cmh f tϕ ϕ β β=  (1.17) 

where 28cmf  is the mean concrete strength (in MPa) at the age of 28 days; 0 10cmf MPa= ; 0 1h = ; 

0( / ) 50V S mm= ; and 1 1t =  day. The function 0( )c t tβ −  describes the development of creep with 

time after loading and is expressed as: 
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0.30 1
0

0 1

( ) /( ) [ ]
( ) /c

H

t t tt t
t t t

β
β

−
− =

+ −
 

(1.18) 

with 

18
0 0 3 3150[1 (1.2 / ) ]( / ) / ( / ) 250 1500H h h V S V Sβ α α= + + <   0.50

3
28

3.5( )cm

cm

f
f

α =  
(1.19) 

1.2.3 Fib (2010) model 

In the fib (2010) model, the compliance function J(t, t0) is expressed as:  

0
0

0 28

( , )1( , )
cmt cm

t tJ t t
E E

ϕ
= +  

(1.20) 

  The creep coefficient 0( , )t tϕ  is calculated as the basic creep coefficient 0( , )bc t tϕ  and the 

drying creep coefficient 0( , )dc t tϕ : 

0 0 0( , ) ( , ) ( , )bc dct t t t t tϕ ϕ ϕ= +  (1.21) 

  The basic creep coefficient 0( , )bc t tϕ  may be estimated from: 

0 28 0( , ) ( ) ( , )bc bc cm bct t f t tϕ bb = ⋅  (1.22) 

with 

28 0.7
28

1.8( )
( )bc cm

cm

f
f

b =  
(1.23) 

2
0 0

0

30( , ) [( 0.035) ( ) 1]bc t t In t t
t

b = + ⋅ − +  
(1.24) 

The drying creep coefficient 0( , )dc t tϕ  may be estimated as: 

0 28 0 0( , ) ( ) ( ) ( ) ( , )dc dc cm dc dct t f h t t tϕ β β β β= ⋅ ⋅ ⋅  (1.25) 

with 
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28 1.4
28

412( )
( )dc cm

cm

f
f

β =  
(1.26) 

3

1
100( )

(2 / )0.1
100

c

h

RH
A u

β
−

=
⋅

 

(1.27) 

0 0.2
0

1( )
0.1dc t

t
β =

+
 

(1.28) 

where (2 / )cA u  is the notional size of member (in mm), cA  is the cross-section (in mm2) and u is 

the perimeter of the member (in mm) in contact with the atmosphere.  

The development of drying creep with time is described as: 

0( )0
0

0

( )( , ) [ ]
( )

t
dc

h

t tt t
t t

γβ
β

−
=

+ −
 

(1.29) 

with 

0

0

1( ) 3.52.3
t

t

γ =
+

 
(1.30) 

0.5 0.5

28 28

35 351.5(2 / ) 250( ) 1500( )h c
cm cm

A u
f f

β = + ≤  
(1.31) 

1.2.4 B3 model  

The concrete creep in the B3 model considers instantaneous deformation, basic and drying creep 

as: 

0 1 0 0 0( , ) ( , ) ( , , )d cJ t t q C t t C t t t= + +  (1.32) 
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where 1q  is the instantaneous strain due to unit stress; 0 0( , )C t t  is the compliance function for the 

basic creep; 0( , , )d cC t t t  is the additional compliance function for the drying creep; and ct  is the 

age when drying begins for concrete. The instantaneous strain due to unit stress is expressed as: 

1 280.6 / cmq E=  (1.33) 

The basic creep 0 0( , )C t t is composed of three terms: an aging viscoelastic term, a 

nonaging viscoelastic term and an aging flow term: 

0.1
0 0 2 0 3 0 4 0( , ) ( , ) In[1 ( ) ] In( / )C t t q Q t t q t t q t t= + ⋅ + − +  (1.34) 

where 2 0( , )q Q t t  is the aging viscoelastic compliance term. The cement content c and the 

concrete mean compressive strength at 28 days 28cmf  (in MPa) are required to calculate the 

parameter 2q  as: 

6 0.5 0.9
2 28185.4 10 cmq c f− −= ×  (1.35) 

0( , )Q t t  is an approximate binomial integral and is expressed as: 

0 00 ( ) 1/ ( )
0 0

0

( )
( , ) ( )[1 ( ) ]

( , )
f r t r t

f

Q t
Q t t Q t

Z t t
−= +  

2/9 4/9 1
0 0 0( ) [0.086( ) 1.21( ) ]fQ t t t −= +  

0.5 0.1
0 0 0( , ) ( ) [1 ( ) ]Z t t t In t t−= ⋅ + −  

0.12
0 0( ) 1.7( ) 8r t t= +  

(1.36) 

3q  is the nonaging viscoelastic compliance parameter and 4q  is the aging flow 

compliance parameter. These parameters are functions of the concrete mean strength at 28 days 

28cmf  (in MPa), the concrete content c  (in kg/m3), the water to cement ratio /w c  and aggregate 

to cement ratio /a c : 
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4
3 20.29( / )q w c q=  (1.37) 

6 0.7
4 20.3 10 ( / )q a c− −= ×  (1.38) 

The compliance function for drying creep 0( , , )d cC t t t  is defined as Eq. (1.39). This 

equation accounts for drying before loading:  

1/2
0 5 0( , , ) [exp{ 8 ( )} exp{ 8 ( )}d cC t t t q H t H t= − − −  (1.39) 

( )H t  and 0( )H t  are spatial averages of pore relative humidity, which are expressed as: 

1/2( ) 1 (1 ) tanh[( ) ]c

sh

t tH t h
t
−

= − −  
(1.40) 

 1/20
0( ) 1 (1 ) tanh[( ) ]c

sh

t tH t h
t
−

= − −  

where shτ  is the shrinkage half-time. 5q  is the drying creep compliance parameter and is a 

function of the concrete mean strength at 28 days 28cmf  (in MPa) and the ultimate shrinkage 

strain shε ∞ , and is given as: 

0.61 6
5 280.757 10cm shq f ε

−−
∞= ×  (1.41) 

1.3 RATE-TYPE FORMULATION FOR CREEP ANALYSIS 

For a stress level within the service stress range, concrete creep is assumed to follow the 

constitutive law of ageing linear viscoelasticity [6][7][29]. The viscoelasticity means that under 

deformation, the material will exhibit both viscous and elastic characteristics. Thus, the principle 

of superposition can be applied to estimate the concrete creep under a general stress history σ (t). 
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This principle means that the total creep strain due to multiple individual stress histories is the 

sum of multiple corresponding creep strain responses.  Thus, one may write the creep law in the 

in the form of Volterra integral equation: 

0

0( , )
t

t

J t t dε σ= ∫  
(1.42) 

Unfortunately, the kernel J(t, t0) in the Volterra integral equation is not of a convolution 

type due to the ageing of concrete creep. Therefore, the direct application of the principle of 

superposition leads to a primitive integral-type formulation for creep analysis, in which all the 

history data must be stored and then used for the next step. Only for small-scale 1D or 2D 

analysis under simple loading, is this approach applicable because the computational cost is 

affordable. However, for the structural analyses of the long-term behaviors of large creep-

sensitive structures such as prestressed box girders and large-span shells, the computational cost 

will be extremely high if all the history variables must be stored at each time step. 

Furthermore, for large-scale structures, concrete creep will strongly interact with other 

physical and mechanical phenomena, e.g., concrete cracking and damage, steel relaxation, and 

environment variations, to name a few. These influencing phenomena are usually memory-

independent, and thus not compatible with the integral-type formulation. Therefore, for large-

scale creep structural analysis, it is necessary to convert the integral-type formulation to a rate-

type algorithm for creep analysis. 

Generally, a realistic stress-strain relation based on ageing linear viscoelasticity can be 

approximated at any desired accuracy by a rheological model, which is usually visualized with a 

system of Kelvin units, Maxwell units or their hybrids. For creep, a Kelvin chain is more 

convenient because a Maxwell chain requires converting the compliance function J(t, t0) to a 

relaxation function R(t, t0), which adds numerical cost. The Kelvin chain model consists of a 
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series of Kelvin units µ = 1, 2, 3, ···, N; see Figure 1.2. Each Kelvin chain unit contains a spring 

coupled in parallel with a dashpot. Using a Kelvin chain model consisting of N Kelvin units of 

distinctive relaxation time tµ, the creep analysis can be converted to a quasi-elastic incremental 

stress-strain relation, which can be easily solved in general FEM software like ABQAUS. 

 

 

Figure 1.2. A Kelvin chain consisting of N Kelvin units. 

 

For a rate-type formulation, the 3D quasi-elastic stress-strain incremental relation at any 

time step can be written as [13][29]: 

( )Eσ ε ε′ ′′∆ = ∆ − ∆  (1.43) 
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where ε ′′∆  is the increment of inelastic strain induced by concrete creep. If concrete is damaged 

at this time step, the damage strain can be incorporated into the inelastic strain. E′  is the 

effective incremental modulus that can be expressed as: 

1

1 10 0

1 1 1 (1 )
N N

D A
E E Eµ µ µ

µ µ

λ−

= =

= + = + −
′ ∑ ∑  

(1.44) 

where E0 is the short-term modulus; Dµ is the modulus of the µ th Kelvin unit; λµ is a variable 

related to the relaxation time tµ and the time increment ∆t; and Aµ is the discrete spectrum of a 

given compliance. In the previous practice of creep analysis, Aµ is determined by numerical 

fitting, an approach being found to give non-unique results and to be oversensitive to the 

complexity of the compliance function. To overcome this problem, the continuous spectrum 

approach [13][30] is used in this study. 

If relaxation times tµ have an infinitely close spacing, they will form a continuous 

retardation spectrum, which can be uniquely identified by utilizing Laplace transformation 

inversion supplemented by Widder’s approximate inversion formula [31]. The analytical solution 

for a given compliance function gives: 

( )lim( ) ( )
( )

( 1)!

k k
u uk

u

k C k
L

k

ττ
τ →∞=

−
 

(1.45) 

where C(k) is the k-th order derivative on time t of the creep function C(t, t0) = J(t, t0) – 1/E0. For 

creep formulas used in the current practice, it suffices to use k = 3. Then a discretization of the 

continuous spectrum gives the discrete spectrum for each Kelvin unit: 

( ) ( )In10u uA Lττ =  (1.46) 

which is needed for calculating E′  in Eq. (1.44) at each time step. If the time increment ∆t is 

sufficiently short compared to the age of concrete, the ageing of the material can be neglected 
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within the individual time step. This means that, although J(t, t0) is different at each time step 

due to ageing, within a given time step, a constant compliance J(t, t0) can be used to calculate the 

discrete spectrum Aµ, where t0 is the age of concrete at the middle of the current time step. By 

doing this, the effects of environment variations and other phenomena on the compliance 

function can be taken into account. 

The general algorithms for the numerical solutions of the first order ordinary differential 

equations, including central or backward difference methods or the Runge-Kutta method, will 

have numerical instability problems, as these numerical algorithms are stable only if ∆t<<t1. In 

order to achieve numerical stability, the exponential algorithm, which is an unconditionally 

stable algorithm, is utilized here. This algorithm gives: 

/(1 ) /ut
u u e ttλ t −∆= − ∆  (1.47) 

Therefore, the increment of inelastic strain induced by concrete creep ε ′′∆  can be 

obtained for each integration point of each finite element: 

/ ( 1)

1
(1 )u

N
t n

u
u

e te γ−∆ −

=

′′∆ = −∑  
(1.48) 

The increment of internal variable uγ of the µ th Kelvin unit is then updated at each 

integration point as follows: 

/( ) 1 ( 1)utn n
u u u uD e tγ λ σ γ−D− −= D +  (1.49) 

where the history of the internal variables uγ , stress σ and other variables for the previous time 

steps does not need to be stored, which will greatly save computational cost.  

In addition to creep in tension and compression, creep in shear can be taken into account 

in the present formulation when the rate-type formulation is applied in 3D structures. This is 

critical for capturing the shear lag, which is important for the long-term deformation of 
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prestressed concrete girders having thin walls that cannot be captured in simplified 1D or 2D 

analyses [13]. Therefore, the improved rate-type formulation employed in the present study 

offers great advantages in approximating concrete ageing, concrete creep coupled with damage, 

shear lag and variations in the environmental conditions. The incremental elastic stress-strain 

relation in Eq.(1.43) for each time step can further be modified according to other physical and 

mechanical phenomena.  

1.4 RESEARCH TOPICS IN THIS DISSERTATION 

Utilizing the various concrete models and the improved rate-type formulation for creep analysis 

discussed above, this research starts with modelling asymptotic behaviors, including the vertical 

deflection and axial shortening, of the Colle Isarco Viaduct Bridge under the various creep 

models. The deformation asymptotes of this post-tensioned box girder bridge with a total length 

of 1,000 m are captured and discussed in Chapter 2. When predicting the long-term vertical 

deflection for some prestressed concrete bridges carrying heavy busy traffic flows, it is necessary 

to further consider the coupled effects of traffic-induced cyclic creep and concrete tensile 

cracking. The unified concrete model is proposed in Chapter 3 to explicitly consider the concrete 

damage, static creep and traffic-induced cyclic creep. In Chapter 4, the time-dependent behavior 

of concrete is investigated at the meso-scale. The effects of shape and spatial distribution of 

coarse aggregates and voids on the mechanical and time-dependent behaviors of concrete are 

investigated, based on the meso-scale structure of concrete. Two approaches, computational 

multiscale analysis and multiscale material model, are discussed to map the response of meso-

scale structure to the macro-scale structure.  
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2.0  LONG-TERM DEFORMATION ASYMPTOTES OF POST-TENSIONED 

PRESTRESSED CONCRETE BRIDGES AND THEIR CORRELATIONS WITH 

CONCRETE CREEP 

2.1 MOTIVATION AND BACKGROUND 

A recent study [3] shows that among 56 prestressed concrete bridges from around the world, 

over 60% of them displayed excessive deflections about 20 years after construction. These 

excessive deflections indicate the poor predictive capabilities of current creep models resulted 

from inadequacies in their compliance functions, a primary source of which is the scarcity of 

systematic long-term creep tests data [32][33]. Available creep and shrinkage databases 

compiled from laboratories around the world for model calibration are dominated by short-term 

tests [11][34][35], which provide little information about the long-term trends of concrete creep. 

This obstructs the formulation, calibration, and validation of theoretically based prediction 

models for concrete creep. Furthermore, without sufficient experimental information, the 

parameters governing the long-term asymptote of concrete creep and their variations cannot be 

identified, even after a theoretically solid formulation is qualitatively established for the 

compliance function. To remedy this problem, multi-decade in-situ measurements must be used 

to supplement the current databases of laboratory tests [12]. This however requires information 
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regarding the correlation of concrete creep with the observed structural responses such as mid-

span deflection or axial shortening of prestressed bridge elements. 

This chapter will focus on how to identify and establish a correlation between the long-

term asymptotes of deformation curves, early age measurements, and the distinctive compliance 

functions of different creep models. Different concrete creep models, including ACI (2008) [27], 

CEB-FIP (1990) [28], fib (2010) [19], B3 [14] and B4 [18] models, are utilized to capture 

deformation asymptotes of a selected prestressed concrete bridge. Based on the identified 

correlation and in-situ measurements, a suitable creep model can be identified and calibrated for 

the bridge under investigation. The governing parameters in the compliance function can be 

approximated according to the concrete specifications and the established correlation. Another 

objective of this chapter is to investigate the effect of scatter in concrete creep on the 

deformation asymptote. Statistical analyses based on the Latin hypercube sampling scheme [36] 

are employed to investigate the effectiveness and robustness of the established correlation. 

In this chapter, the Colle Isarco Viaduct Bridge, located in Northern Italy having a total 

length of 1,000 m [37], is simulated to serve as a case study. All analyses are performed using a 

3D model that was created based on the available design drawings of the Bridge. Different 

prestress levels will be applied to the tendons to explore their effects on the pursued correlation 

between long-term deformation and concrete creep. In order to isolate the fundamental 

interactions between the deformation evolution and time-dependent mechanics of concrete and 

steel, the other coupled phenomena like fatigue, damage and corrosion will not be considered, 

although they can be incorporated in a unified framework, which will be addressed in Chapter 3. 
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2.2 BRIDGE MODELING 

The bridge modelled in this study is one main cantilever portion of the Colle Isarco Viaduct, 

located in Northern Italy (see the bridge in the red circle in Figure 2.1(a)). The bridge is a fully 

post-tensioned box girder bridge with a total length of 1,000 m as described in a recent 

investigation [37]. The main structural elements are two identical cast-in-place balanced 

cantilever girders, each with a total length of 167.5 m. The girders are subdivided into a main 

span of 91.0 m, a long cantilever of 59.0 m, and a short cantilever of 17.5 m. With a width of 

11.0 m, the top slab of a symmetric cross-section is 5.0 m wider than the bottom slab. The height 

of the girder decreases from 10.8 m at Pier 1 to 4.5 m at Pier 2 and further to 2.85 m at the tip of 

the cantilevers. The cross-sections of the box girders at Piers 1 and 2 are shown in Figure 2.1(b). 
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 (a) 

 

 

(b) 
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Figure 2.1. Colle Isarco Viaduct Bridge [37]: (a) Real Bridge; (b) cross-sections of box girder at Piers 1 and 2 (Unit: 

m); and (c) the tendon layout. 

 

To realistically approximate the stress and strain evolutions in this bridge during its 

service lifetime, a 3D FEM program, capable of incorporating the requisite material constitutive 

laws and mimicking the complex loading history, is needed. Due to its advantages in 

implementing user-defined materials and modelling the segmental construction sequence, the 

software ABAQUS is selected. In Figure 2.2(a), the bridge model built in ABAQUS based on the 

information given by [37] is shown. Because of the symmetry, only half of the cross-section 

needs to be modelled, see Figure 2.2(a). The layout of the prestressing tendons is shown in 

Figure 2.2(b). 
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(a) 

 

(b) 

 

Figure 2.2. Modelling of: (a) Colle Isarco Viaduct Bridge, and (b) its prestressing tendons. 
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The webs, and top and bottom slabs of the box girder are modelled by two layers of 

elements through their thickness. Hence, the prestressing tendons can be placed at the middle of 

these slabs, see Figure 2.3. The red circles in Figure 2.3 show the possible locations for the 

longitudinal prestressing tendons at the top and bottom slabs. Concrete is modelled by 3D 

hexahedral isoparametric elements; while for the tendons 3D truss elements are utilized. The non 

prestressed reinforcing steel is not explicitly considered in the FEM model because (1) it is 

computationally expensive to model every bar in the FEM simulations, and (2) the overall 

behavior of reinforced concrete is still viscoelastic due to the low mild steel ratio (1-2%) in this 

bridge. However, to account for the effect of mild steel bars, the Young’s modulus of concrete is 

adjusted according to the ratio of mild steel based on the smeared method [5][13]. In this half 

section bridge model, 497 prestressing tendons (Grade 1860 low-relaxation) are used to prestress 

the 44 segments sequentially. Among the tendons, there are 149 prestressing tendons over the 

main pier, which are categorized into 26 groups based on the prestressing sequence, see Figure 

2.1(c) and Table 2.1. Since the tendons are mostly straight (Figure 2.2(b)), the curvature friction 

is negligible and only wobble friction needs to be considered. For each group of tendons, the 

prestress is applied 7 days after their anchoring segment is cast.  
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Figure 2.3. Mesh of cross-section and the location for prestressing tendons. 

 

Table 2.1. The prestressing tendons categorized in 26 groups. 

Group Prestressing tendon Group Prestressing tendon Group Prestressing tendon 

1 1 10 6 19 6 

2 1 11 6 20 2 

3 2 12 6 21 1 

4 2 13 8 22 6 

5 2 14 8 23 6 

6 2 15 8 24 2 

7 4 16 14 25 2 

8 4 17 8 26 28 

9 1 18 8   

 

Perfect bond is assumed between the concrete and bonded tendons in the FEM 

simulation. As illustrated in Figure 2.4, 3D solid elements are used for concrete and 3D truss 

elements are used for the tendons. In the FEM implementation, the truss element 1 stands for the 
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prestressing tendon and the solid elements 2 and 3 stand for the concrete. The element 1 shares 

the identical nodes with elements 2 and 3, highlighted by the red circles. This means the three 

elements will have the same nodal displacement and no sliding at the shared nodes. In this 

chapter, five prestress levels, namely 600, 720, 840, 960 and 1080 MPa, are applied to study the 

effect of prestress on the long-term deformation of the bridge. The long-term prestress level in 

the bridge is most likely closely to 1080 Mpa (i.e. 0.58 fpu). 

 

 

Figure 2.4. “Perfect bond” between the concrete and prestressing tendons in FEM simulation. 

 

After meshing in ABAQUS, the bridge model contains 26,558 hexahedral elements and 

11,793 truss elements; see Figure 2.2. To simulate the segmental construction procedure, which 

leads to a complex loading history in the tendons and concrete, the elements in the segments, for 

both concrete and steel, are deactivated at first and then progressively activated based on the 

construction sequence. Because no information is available for prestress adjustment after the 

construction of each segment, there will be a camber at the cantilever tip when the bridge is 

completed. In order to focus on only the post-construction behavior, this camber, different for 

each creep model, will not be considered in the deflection measurement.  
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2.3 LONG-TERM DEFROMATION ASYMPTOTES 

In this investigation, the creep and shrinkage models of ACI (2008) [27], CEB-FIP (1990) [28], 

fib (2010) [19], B3 [14] and B4 [18] are used and the results based on these are studied. Among 

these models, ACI and CEB-FIP (1990) models are purely empirical and the only intrinsic 

parameter employed to represent concrete composition in their compliance formulas is the 

concrete compressive strength fc’. The fib (2010) is similar to an older version, except for 

introducing the basic and drying creep similar to models B3 and B4 [38]. Among these models, 

model B3 and its successor model B4 are different because they are based on a solid mechanical 

basis: the solidification theory [14][16][17]. According to models B3 and B4, the concrete creep 

is the sum of basic creep and drying creep. The former is unbounded and consists of short-term 

strain, viscous strain and a flow term; while the latter is bounded and related to moisture loss. 

Multiple intrinsic parameters are employed to represent the concrete composition including 

water-cement ratio (w/c), aggregate-cement ratio (a/c), cement content (c) and concrete strength 

(fc’). In model B4, the effects of admixtures, reactive additives, and type of aggregate on the 

creep and shrinkage behavior are taken into account [11]. The detail formulas of these different 

concrete creep models can be found in Chapter 1.2. 

In order to isolate the differences resulting from the compliance function only, the same 

set of intrinsic input parameters is employed. Design compressive strength fc’ = 40 MPa is used 

for all models. Since the real concrete composition is unknown, the composition parameters are 

obtained based on a virtual mix design that will achieve the given concrete strength. Following 

the general practice [39] for 28-day standard cylinder compression strength fc’ = 40 MPa, the 

water to cement ratio by weight w/c = 0.35 is first determined according to Table 7.1 in [39]. By 

assuming that the maximum aggregate size to be 25mm and the slump is 50mm, the water 
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content per cubic meter is determined according to Table 7.8 in [39] and the cement content is 

found to be c = 523.5 kg/m3. The weight of aggregates (both coarse and fine aggregates) is 

determined by subtracting the weights of water and cement from the total weight of concrete and 

is a = 1832.25 kg/m3. In addition, all the extrinsic parameters, e.g., environmental humidity h 

and temperature T, construction sequence, curing time and external loads, are the same in all 

simulations. The mean values of input parameters used for different models are listed in Table 

2.2 [40]. 

 

Table 2.2. Essential particles Mean and standard deviation of input parameters 

Variable Mean Distribution type Standard deviation C.o.V 

E28 30,000 MPa Lognormal 1,500  0.05 

fc’ 40MPa Lognormal 2.0 0.05 

c 523.5 kg/m3 Normal 104.7 0.2 

w/c 0.35 Normal 0.07 0.2 

a/c 3.5 Normal 0.7 0.2 

h 0.7 Normal 0.035 0.05 

T 20 °C Normal 1.0 0.05 

k 0.12 Normal 0.012 0.1 

ρ1000 0.035 Normal 0.0035 0.1 

 1.0 Normal 0.10 0.1 

 

Using the improved rate-type formulation, the compliance functions of the creep models 

are converted to a system of Kelvin units based on the continuous spectrum method. The 

constitutive law of concrete, now represented by the properties of the Kelvin units, is added to 

ABAQUS by utilizing the user material subroutine UMAT. As for steel, a bilinear law 
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characterized by the Young’s modulus and yield strength of steel is employed in the simulations. 

E = 200 GPa and fy = 1674 MPa are selected for the prestressing tendons. After yield, the 

stiffness for prestressing tendons is assumed zero. Meanwhile, the steel relaxation is modelled 

based on the CEB relaxation formulas (CEB 1990) [28] and the related parameters are listed in 

Table 2.2. 

In the simulations, five initial prestress levels (600, 720, 840, 960 and 1080 MPa, 

respectively) are considered to investigate the effect of prestress and its interaction with concrete 

creep on long-term deflection. The deflection history at the tip of the long cantilever under 

different prestress levels is plotted in Figure 2.5 for all creep models. In addition to the linear 

time scale displayed on the left, the same plot is also given in logarithmic time scale to highlight 

the long-term asymptote on the right. This is due to the fact that creep asymptote is conspicuous 

at logarithmic time scale if the model contains a logarithmic time function. Note that the reported 

deflection values refer to the reference state at the end of construction and any camber predicted 

at the end of the construction sequence is neglected. 

For a large-span bridge, the evolution of the deflection is mainly governed by the 

competition between the self-weight (including sustained service load) and prestress force. In a 

cantilever box girder, if the compressive stress in the top slab is greater than the bottom slab, the 

cantilever will tilt up under the negative moment; otherwise, it will deflect downwards. This is 

illustrated in Figure 2.5 showing an increase of upward deflection with the prestress level. Due to 

concrete creep, the upward deflection will start to grow if the exerted compressive stresses 

induce more creep strain in the top slab than in the bottom slab. As time elapses, the compressive 

stress in the top slab will drop due to the prestress loss in the tendons, a collective result of 
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shrinkage, creep and relaxation. Consequentially, the growth of upward deflection will slow and 

downward deflection will start to develop. 

The compliance functions of ACI and CEB-FIP (1990) are both bounded, which means 

creep will terminate after a certain amount of time. Therefore, the strain in the top slab will be 

stabilized and the deflection curve will approach a horizontal asymptote. Based on the ACI 

compliance function, it takes about 30 years for creep to terminate. After that, the deflection 

curve approaches a horizontal asymptote, as demonstrated in both linear and logarithmic scales 

in Figure 2.5(a), (b). This behavior, however, contradicts the bridge deflection trends reported in 

the recent survey of 56 girders [5]. 

In the case of the fib (2010) model the compliance function is unbounded due to the 

introduction of a split in bounded drying creep and unbounded basic creep. Thus, the 

compressive stress in the top slab will gradually decrease and the deflection curve will eventually 

approach an downward asymptote, which is conspicuous in the logarithmic time scale in Figure 

2.5(c). Similarly, the compliance functions of basic creep in models B3 and B4 contain viscous 

and flow terms, which dictate an inclined asymptote too; see Figure 2.5(d), (e). 

In addition to the long-term asymptote, the deflection history based on different models 

differs substantially, although equivalent intrinsic and extrinsic parameters are chosen. For the 

same level of prestress, the deflection curves of ACI and CEB-FIP are similar, with ACI 

developing more downward deflection than CEB-FIP. For both models, constant deflections are 

approached within about 30 years, independent of the prestress level; see Figure 2.5(a), (b). For 

fib (2010), the long-term creep is determined by the logarithmic time function of basic creep, 

which predicts greater and faster creep growth. Thus, downward deflection will grow and an 

inclined asymptote is approached in about 10 years in the logarithmic time scale. This is 
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evidenced by the deflection curves under initial prestress not greater than 840 MPa (Figure 

2.5(c)). 

 

(a) 

  

(b) 

  

(c) 
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(d) 

  

(e) 

  

Figure 2.5. Vertical deflection history of long cantilever tip predicted by different creep models: (a) ACI model; (b) 

CEB-FIP(1990) model; (c) fib(2010) model; (d) B3 model; and (e) B4 model. 

 

Among these models, models B3 and B4 are unique in that their viscous term plays an 

important role at early age and their flow term dominates the long-term behavior. Since both 

terms are expressed logarithmically in their compliance functions, their asymptotes are 

conspicuous in the logarithmic time scale. Similar to fib (2010), a downward slope is approached 

in about 10 years for initial prestress not greater than 840 MPa; see Figure 2.5(d), (e). While, for 

high prestress equal to 960 or 1080 MPa, the downward asymptote is not witnessed in Figure 

2.5(d), (e) because the deflection curve is still in the transition from upward to downward. If the 

simulation is extended to 100 years, the downward asymptote appears (Figure 2.6). Therefore, 
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models B3/B4 as well as fib (2010) model eventually give a downward deflection as time goes to 

infinity. 

Based on the captured long-term asymptotes, it can be seen there is a clear correlation 

between the deflection curve and compliance function. The establishment of this correlation 

depends on the properties of the compliance function, as well as the prestress level. Usually, this 

linear dependence develops quickly if the prestress level is low. For ACI and CEB-FIP (1990) 

models, this clear correlation will be developed in about 30 years after construction because of 

the nonexistence of logarithmic term in their compliance functions. For fib (2010) and B3/B4 

models, which contain logarithmic terms, it can be approached at the 10th year if the prestress 

level is not high. For high prestress, the coincidence of the long-term asymptotes between the 

deflection and compliance is pushed back to 30 years or longer.  

 

  

Figure 2.6. Simulations of two high prestress levels are extended to 100 years (based on B3 model): (Left) linear 

time scale, and (Right) logarithmic time scale. 
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2.4 STRESS EVOLUTION OF PRESTRESSING TENDONS 

The main influences affecting the stress in the tendons are concrete creep and shrinkage, as well 

as steel relaxation. In this half section bridge model, there are 149 tendons in the top slab over 

Pier 1, which are prestressed in 26 groups (Figure 2.2(c)) to counteract the self-weight. Figure 

2.7 shows the stress history of the total prestressing force at the location of Pier 1 based on 

different creep and shrinkage models. It can be seen that after a rapid drop, the total prestress 

loss is approaching an asymptote. Among the models, the fib (2010) predicts the highest 

prestress loss, which results in the largest downward deflection.  

 

  

Figure 2.7.  Total prestressing force at Pier 1 (half cross-section) based on initial prestress = 1080 MPa: (Left) linear 

time scale, and (Right) logarithmic time scale. 

 

The stress history of an individual tendon group is more complicated. During 

construction, an instantaneous prestress loss will happen in the tendons whenever a new segment 

is stressed; see Figure 2.8. This is due to the elastic shortening caused by the prestress release in 
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the new segment. On the other hand, the self-weight and external loads in the new segment raise 

the stress level in the tendons. This competition, coupled with creep, shrinkage and relaxation, 

leads to a rather complex stress evolution in the tendons during construction (Figure 2.8). 

 

  

Figure 2.8.  Prestress loss of 26 group tendons (based on B3 model): (Left) linear time scale, and (Right) logarithmic 

time scale. 

 

However, after construction, the stress evolution in the tendons is steady, gradually 

approaching an asymptote as time elapses. This asymptote is mainly governed by the interaction 

between concrete creep and steel relaxation. For ACI and CEB-FIP (1990), the concrete creep 

will terminate because it is bounded in their compliance functions. Therefore, the slope of 

prestress loss in logarithmic time scale is dictated by steel relaxation (Figure 2.7). While for the 

fib (2010), or B3/B4 models, concrete creep is unbounded. Therefore, the slopes of prestress loss 

are steeper; see Figure 2.7. Note, in model B3, the prestress loss is not uniform and the prestress 

in some groups drops relatively faster, which is manifested by the crossing of curves in Figure 
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2.8. This implies that the deflection of the bridge is more sensitive to the prestress in these 

tendons.  

2.5 CORRELATION BETWEEN THE SHORTENING AND CREEP ASYMPTOTE 

Utilizing in-situ measurements to improve the predictive capacity of creep models garners 

increasing interest in practice because it brings benefits in estimating the long-term deformation 

as well as supplementing the short-term laboratory tests. Recently, a method [32] was proposed 

utilizing the deflection measurements 3 years after construction to obtain the long-term 

asymptote, i.e., using the slope of the deflection curve measured at the end of the 3rd year to 

extrapolate the long-term deflection. The reason to select the 3rd year is that the effects of 

differential drying and other short-term influences are no longer affecting the behaviors of 

bridges, and thus will not disturb the trend afterwards. However, this approach, built upon the 

correlation between the deflection curve and compliance function, has three main disadvantages:  

• The proposed correlation is strongly influenced by the prestress level. For realistic 

prestress levels, like 1080 MPa used, this approach is not applicable because the 

deflection curve may still be in its transitional zone as shown by the simulations based on 

model B3 in Figure 2.6. Therefore, the slope of the deflection curve at the 3rd year cannot 

be used. Any realistic prediction has to wait for the deflection measurement after 30 years 

or longer; see Figure 2.6. This dependence on the prestress level was previously 

neglected and is hypothesized to be responsible for the significant amount of scatter in 

the inverse identification of long-term slope of the creep compliance as reported by 

Bažant and Hubler [32].  
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• The correlation between deflection and compliance function is established long after 

construction. As documented in Figure 2.5(c), (d), (e), the agreement of asymptotes is 

usually approached about 10 years after construction for fib (2010) and models B3/B4. 

This long duration complicates the practice of utilizing early-age measurements for long-

term prediction. It also raises the risk that the asymptote will be contaminated by other 

coupled phenomena like fatigue and cracking. Thus, the use of the slope of long-term 

deflection to supplement the missing multi-decade laboratory data may distort any model 

calibration. Yet, bridge deformation measurements are so far the only available source of 

multi-decade information.  

• The inverse analysis of deflection data to obtain creep compliance information as 

supplement to short-term creep tests is inconvenient. The reason is that the asymptote of 

a deflection curve is not directly related to the compliance function, as a consequence of 

the competing effects of self-weight and prestress. The geometrical characteristics of the 

segment, which determine the moments generated by the prestressing tendons, play an 

important role. Therefore, the governing parameters obtained based on this approach may 

demand complex treatment to avoid significant deviation from the real values. 

To circumvent these obstacles, a more efficient and robust approach is proposed for 

models whose long-term behavior is governed by the logarithmic time function in the basic creep 

compliance functions. It is found that, if the shortening at the tip of the long cantilever is 

monitored, the shortening curve approaches its asymptote at a much earlier age than the 

deflection measurements, as evidenced by the simulations for fib (2010), B3 and B4. As for ACI 

and CEB-FIP (1990) containing no logarithmic terms, there is almost no advantage to use the 

shortening curve because it approaches the asymptote at about the same time as the deflection 
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curve, i.e., after 30 years; see Figure 2.9(a), (b). Although up to now no systematic collection of 

axial shortening information was attempted, this information was likely recorded in course of 

inspections to judge the performance of expansion joints and bearings.  

For fib (2010) and B3/B4 models, unlike the deflection measurement, the trend captured 

in shortening curves is consistent, and negligibly disturbed by the prestress level. For example, 

after 3 years, the shortening curves approach a constant slope in the logarithmic time scale; see 

Figure 2.9(c), (d), (e). The close correlation is established at the 3rd year even for the highest 

prestress level (1080 MPa), while, for deflection curves, this only happens for the lowest 

prestress level, i.e., 600 MPa. At the initial prestress level of 1080 MPa, this point is delayed to 

an age of over 30 years because of the long transitional period shown in Figure 2.6.  

 

(a) 

  

(b) 
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(c) 

  

(d) 

  

(e) 

  

Figure 2.9.  Long cantilever shortening based on different creep models: (a) ACI model; (b) CEB-FIP (1990) model; 

(c) fib (2010) model; and (d) B3 model; and (e) B4 model. 

 

The reason for the promptness and consistency is that the shortening curve is directly 

related to the creep compliance function by the average compressive stress on the cross section. 

After the short-term influences decay, the strain change during a time increment from t1 to t2 in 

the cantilever beam can be written as: 
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1 0 2 0 2 1[ ( , ) ( , )] ( , )J t t J t t J t tε σ σ∆ = − + ∆  (2.1) 

where both t1 and t2 are much greater than t0 when the load is initially applied. Because the stress 

increment σ∆  during t∆  is negligible compared to the prestress σ  and J (t2, t1) is insignificant 

for aged concrete, Eq. (2.1) can be simplified as 

1 0 2 0[ ( , ) ( , )]J t t J t tε σ∆ = −  (2.2) 

For models containing logarithmic terms, after the short-term influences attenuate, the 

asymptote will be dictated by the logarithmic terms. For example, in model B3, its compliance is 

governed by the viscous and flow terms as follows: 

3 0 4 3 4
0

In(1 ( ) ) In ( )Inn tJ q t t q J nq q t
t

= + − + → ≈ +  
(2.3) 

Based on Eq. (2.2) and Eq. (2.3), we get 

3 4( ) Innq q tε σ∆ = + ∆  (2.4) 

Thus, in the logarithmic time scale, the asymptote is a straight line with slope = nq3+q4. 

For a cantilever box girder consisting of m segments, the change of its total shortening can be 

written as: 

3 4
1

( ) In
m

i i

i

lnq q t
l l

σδ
=

= + ∆∑  
(2.5) 

where δ  is the change of the total shortening of the cantilever of length l, iσ  is the effective 

stress in the i-th segment of length li.  

Eq. (2.5) shows that the governing parameters of a given compliance function and the 

creep trend can be estimated based on the total shortening, if the effective stress in each segment 

is known and the slope of the shortening curve at the 3rd year is measured. For simplicity, the 

initial prestress in each tendon is used and the average cross section of the segment to calculate 
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the effective stress iσ . Now, it is found that the ratios of nq3+q4 obtained based on Eq. (2.5) to 

the theoretical values used in the material subroutine are 1.152, 1.11, 1.10, 1.09 and 1.09 for 

prestress = 600, 720, 840, 960, and 1080 MPa respectively. The minor deviation is mainly due to 

the errors in iσ  and the sequential construction, which causes the prestress release time t0 to be 

different for each segment. However, considering the typical scatter found in concrete creep, the 

predictions based on Eq. (2.5) are satisfactory and sufficiently consistent. 

2.6 INFLUENCE OF PRESTRESS VARIABILITY 

As shown in Figure 2.8, the change of prestress loss is not uniform in all tendon groups. This 

means that deflection is more sensitive to some groups of tendons than others. To study this 

sensitivity, first a deterministic study based on the model B3 with initial stress = 1080 MPa is 

performed. The change of deflection caused by a 10% decrease of initial prestress in an 

individual tendon group while the prestress levels of the other groups remained unchanged is 

simulated. The deflection variations, compared to the deterministic simulation result, are shown 

in Figure 2.10. For most groups, the variation of the prestress level has negligible influence on 

the deflection of the cantilever tip. However, several groups have significant impacts on the 

deflection. A 10% prestress drop in group 16 and 26 causes a 20% and 50% deflection growth, 

respectively. The disproportional variation is closely related with the tendon number (Table 2.1) 

and distribution inside the individual tendon group. The groups 16 and 26 correspond to the 

completion of the short cantilever and long cantilever, respectively, and therefore contain more 

tendons than other 24 tendon groups. 
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Figure 2.10. Effect of 10% prestress loss on the vertical deflection of the long cantilever. 

2.7 PROBABILISTIC SENSITIVITY STUDY 

In order to systematically study the effects of variations of the influencing parameters on bridge 

deformation, which are known to show large scatter, a probabilistic analysis is performed. The 

correlation between deformation asymptote and creep compliance function is investigated based 

on model B3 with initial prestress being 1080MPa. The results apply equally to model B4. In 

Table 2.2, the stochastic models with mean values identical to the deterministic investigation are 

presented. For the 28-day concrete modulus E28 and compressive strength fc’, the coefficient of 

variation (C.o.V.) is set as 5%, as for this kind of large-span bridges, quality control is strict. The 

C.o.V. for temperature and humidity is 5%, since they are both annual average values and 

climate change is not considered. For the relaxation parameters, C.o.V. = 10% or higher is used 

because the collected databases show that the results of relaxation are scattered. The variability 
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in the initial prestress level is modelled by uncertainty factors  with C.o.V. being 10%. 

These parameters are generated according to the reference [40]. 

No statistical dependence between the variables is considered with the exception of the 

concrete properties. Table 2.3 gives the correlation matrix that is described by pairwise linear 

correlation coefficients according to Pearson [41] and Stigler [42]. 

 

Table 2.3. Correlation matrix of concrete properties  

 E28 fc’ c w/c a/c 

E28 1 0.19 0.06 -0.07 0.05 

fc’ 0.19 1 0.5 -0.52 0.36 

c 0.06 0.5 1 -0.86 -0.86 

w/c -0.07 -0.52 -0.86 1 0.8 

a/c 0.05 0.36 -0.86 0.8 1 

 

The Latin hypercube sampling scheme [36] combined with simulated annealing [43][44] 

guarantees a lower number of samples can be used to reasonably approximate the statistical 

characteristics of the marginal distributions as well as their statistical dependence [45]. For this 

investigation a population size of 45 samples is generated based on all the statistical varieties 

[40]. 

In Figure 2.11, the variability in the horizontal shortening of the long cantilever is 

presented in terms of the individual response curves (grey), the mean value response (bold line), 

the 5% and 95% confidence bounds and the empirical cumulative distribution at 1133, 4233, and 

8833 days, respectively. After about 12 years the modelled variability in the input parameters 

causes 15.3% scatter in the predicted bridge shortening with a mean response of 1.9 cm. It 

 42 



implies that the axial shortening of the bridge is not sensitive to the coupling of randomness and 

variation from different sources. According to the test by Monahan [46] the best fitting 

distribution changes from a 3-parameter lognormal for early ages to a Gumbel EV1 distribution 

for long-term predictions.  

 

  

(a) (b) 

Figure 2.11. Statistical analysis of shortening of the long cantilever in: (a) linear, and (b) logarithmic time. 

 

Although this figure shows a certain amount of scatter, the bridge shortening is 

consistent. No elongation is observed for the axial deformation. On the other hand, the predicted 

vertical deformation displays a wide scatter band, ranging from upward camber to downward 

deflection, see Figure 2.12. The scatter for the 12-year prediction almost approaches a coefficient 

of variation of 72 %. Considering the variability of input parameters, the deflection is sensitive to 

the coupling of randomness and variation from different sources. With increasing age the 

distribution converges towards Gaussian. 
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(a) (b) 

Figure 2.12. Statistical analysis of vertical deflection of the long cantilever in (a) linear, and (b) logarithmic time. 

 

The results of shortening and deflection for the short cantilever are plotted in Figure 2.13 

and Figure 2.14 in both linear and logarithmic scale, respectively. Compared to the long 

cantilever the predicted trends are more consistent with qualitatively similar scatter. Only one 

sample shows an upward camber. The 12-year scatter amounts to 13.8% for shortening and 34% 

for vertical deflection. The comparison reveals, as expected, a close correlation between axial 

shortening and creep asymptote.  
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(a) (b) 

Figure 2.13. Statistical analysis of shortening of the short cantilever in (a) linear, and (b) logarithmic time. 

 

  

(a) (b) 

Figure 2.14. Statistical analysis of vertical deflection of the short cantilever in: (a) linear, and (b) logarithmic 

time. 
 

 

The prestress force at the Pier 1 is significantly influenced by concrete creep as well as 

steel relaxation and prestress level. Figure 2.15 shows the scatter band for the prestressing force. 
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The scatter, however, is significantly smaller and amounts to only 3.6% after 12 years. The best 

fitting distribution in this case is the 3-parameter Weibull min distribution. On top of a 

quantification of uncertainty in long-term predictions a primary goal of this investigation lies in 

the determination of sensitivities between input parameters and structural response, namely 

deformation. These sensitivities can be expressed in terms of sensitivity factors . The values of 

dominating variables have to be selected carefully and variables with low sensitivity can be 

ignored. A straightforward and simple approach to obtain sensitivity factors is based on the non-

parametric rank-order statistical correlation between input variables and structural response 

variables. The relative effect of each input variable (generated samples) on the (simulated) 

structural response can be measured using the partial correlation coefficient. The method is based 

on the assumption that the random variable which influences the response variable more 

considerably (either in a positive or negative sense) has a higher correlation coefficient than 

other variables. Since the model for the structural response is generally nonlinear, a non-

parametric rank-order correlation is used, quantified by means of the Spearman correlation 

coefficient a  or Kendall τ .  
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(a) (b) 

Figure 2.15. Statistical analysis of prestressing force at the Pier 1 in (a) linear, and (b) logarithmic time. 

 

A sensitivity analysis reveals that the shortening of the cantilever is primarily governed 

by the concrete composition parameters followed by the prestress levels of a selected few tendon 

groups. With time increasing, the influence of composition parameters rises and the parameters 

of the relaxation function slowly gain in importance. After 12 years, the most significant input 

parameters are the aggregate to cement ratio with a sensitivity factors / 0.94a ca = − , the cement 

content with 0.82cα = , the compressive strength with / 0.31f cα = , and the water to cement ratio 

with / 0.71w cα = − . The sensitivities for the shortening of the short cantilever are very close.  

In addition to showing a significantly larger scatter, the sensitivity analysis of vertical 

deflection reveals a reduced sensitivity to the input parameters of the creep model. The most 

significant 12 year sensitivity factors are 26 0.67PSα = , / 0.44a ca = − , 0.40cα = and / 0.39w cα = − . 

In case of the short cantilever, the influence of prestressing levels is even more significant. Out 
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of the first 10 most significant input variables, 9 are prestressing correction factors, or related to 

steel relaxation. 

According to the sensitivity study, the prestress force at the Pier 1 is mainly determined 

by the prestress of tendon group 26, followed by the concrete composition parameters a/c, c, and 

w/c. The most significant 12 year sensitivity factors are: PSα = 0.89, /a ca = 0.24, cα = -0.23 and 

/w cα = 0.19. 

Based on the presented sensitivity analysis it can be concluded that vertical deflections 

show significantly higher scatter and lower sensitivity to creep. Thus, shortening measurements 

are a better source of information for inverse analysis of creep models as well as long-term 

predictions.  

2.8 SUMMARY 

The investigation of the Colle Isarco Viaduct Bridge in this chapter shows that for structural 

analyses of large creep-sensitive structures, a 3D rate-type approach powered by exponential 

algorithm and enriched by the continuous retardation spectrum method brings in the benefits of 

computational efficiency as well as allows the coupling with memory-independent phenomena. 

Some conclusions can be obtained based on this case study: 

1. The simulations based on a large-span prestressed concrete bridge show that the 

asymptotes of long-term deflection and axial shortening as well as their curves are very different 

for different creep models. For creep models containing logarithmic time functions, the 

deflection and shortening asymptotes eventually approach an inclined straight-line in logarithmic 

time scale. 
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2. The prestress level in the tendons is critical for achieving the deflection 

asymptote. If high initial prestress is applied, the arrival of the deflection asymptote will be 

pushed back to over 30 years due to the long transitional period. Thus, an early establishment of 

the correlation between creep compliance function and deflection asymptote cannot be achieved. 

3. On the other hand, the axial shortening is not sensitive to the prestress level. For 

initial prestress ranging from 600 to 1080 MPa, the axial shortening consistently reaches its 

asymptote in about 3 years or earlier. Therefore, an early establishment of correlation between 

creep compliance function and shortening asymptote can be achieved and then used to predict 

the long-term bridge deformation as well as supplement the laboratory tests. 

4. Statistical analysis based on Latin hypercube sampling scheme shows the 

coupling of randomness and variation of influencing parameters in creep structural analysis does 

not augment the scatter of the axial shortening, which consistently approaches its asymptote in 

about 3 years. Contrarily, the combination of variability of input parameters will magnify the 

scatter band of the deflection curve and the arrival of deflection asymptote is severely disturbed. 

5. Utilizing the early-age in-situ measurement of bridge deformation to improve the 

creep models so as to enhance the prediction of long-term deformation is a promising approach 

of both academic and practical significance. The consistency and robustness displayed in the 

correlation between asymptote of axial shortening and creep compliance function makes axial 

shortening a good candidate for in-situ monitoring. 
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3.0  THE INTERTWINED EFFECTS OF CONCRETE DAMAGE, STATIC CREEP 

AND TRAFFIC-INDUCED CYCLIC CREEP 

3.1 MOTIVATION AND BACKGROUND 

Until now, deflection studies are almost exclusively focused on the viscoelastic behavior 

triggered by the static creep of concrete and its effect on the deflection history of prestressed 

concrete bridge [3]. Nevertheless, this means that the advantages of 3D rate-type formulation of 

creep analysis, like approximating concrete ageing, concrete creep coupled with damage, shear 

lag and variations in the environmental conditions, are not fully exploited. The interaction 

between concrete creep and cracking attracts very limited attention in full-scale creep structural 

analysis. Some oversimplified methods, for example, quasi-elastic stress-strain relations 

equipped with a plastic tensile limit [4], are frequently used in creep analysis to approximate 

concrete responses after cracking. As a consequence, the coupled effects of concrete creep, 

softening and cracking on the deflection evolution and stress redistribution may be ignored or 

inadequately estimated in creep structural analysis. However, in reality, the excessive deflection 

of a prestressed concrete bridge is generally accompanied with the concrete cracking. In addition 

to static creep due to sustained stress, stress fluctuation induced by traffic loads will cause cyclic 

creep in concrete. For large-span prestressed concrete bridges, it is found that if the total traffic 

volume throughout the bridge lifespan is not significant, the effect of cyclic creep on the 
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deflection growth is not important [47]. Therefore, the time-dependent process triggered by the 

cyclic creep of concrete is usually neglected in multi-decade deflection predictions.  

Increasing demands for sustainable transportation call for considerations of the cracking 

and cyclic creep of concrete in creep structural analysis. Because the heavy traffic flow and 

concrete cracking will lead to much more severe stress redistribution of the bridge. Thus, the 

intertwined effects of concrete static creep, cyclic creep, softening and cracking need to be 

considered to ensure the serviceability and safety of bridges. To meet this need, a unified 

constitutive model, which incorporates static creep, cyclic creep and fracture behavior of 

concrete, is developed and then integrated in the 3D rate-type formulation for the full-scale creep 

structural analysis. In this unified constitutive model, the rate-type formulation of concrete static 

creep hinging on the Kelvin chain model (which is described in Chapter 1.3) is utilized. Then a 

cyclic creep model based on the fatigue growth of microcracks is added in the nonlinear stress-

strain incremental relation. Subsequently, an elasto-plastic damage model is employed to 

describe the concrete softening and cracking under complex stress states. The interactions 

between the static creep, cyclic creep and concrete cracking are integrated into a unified 

framework, which can be implemented in a general-purpose FEM program, e.g., ABAQUS. 

Based on the proposed unified framework, a case study is carried out to investigate the 

performance of a large-span prestressed concrete bridge. Finally, the results obtained by the 

numerical simulations are presented and discussed. 
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3.2 CYCLIC CREEP OF CONCRETE 

Different from other creep-sensitive structures, the service load on prestressed concrete bridges 

fluctuates constantly due to the passing vehicles. The stress variation complicates the viscoelastic 

behavior of concrete by inducing another type of complex time-dependent deformation, namely 

cyclic creep, which was initially discovered in 1906 by Féret [48] and then extensively studied 

by many researchers [49]-[51]. 

Despite some theoretical attempts based on qualitative terms [52][53], empirical models 

are predominantly used in current practice to predict the cyclic creep of concrete. In these 

models, the cyclic creep is usually calculated as an additional inelastic strain [54]-[56] or treated 

as an acceleration of static creep [49][57]. Although these empirical models generally agree with 

short-duration tests, their predictive capacity for long-term behavior is inadequate because the 

phenomenological formulations used are seldom anchored in a mechanistic model capable of 

describing the microstructure change induced by cyclic loading. 

In this chapter, a fatigue mechanics-based model proposed recently by Bažant and Hubler 

[47] is utilized to estimate the cyclic creep of concrete. In this model, which is different from the 

purely macroscopic formulation, the cyclic creep is considered as the macroscopic deformation 

induced by the fatigue growth of the pre-existing microcracks in concrete.  

Concrete is full of flaws and preexisting cracks, and the microcracks will grow under the 

fatigue load. Suppose that the volume per microcrack is 3
cl  and all the microcracks are 

perpendicular to the direction of applied stress, according to the Castigliano’s theorem [47][58], 

the displacement u  per crack can be calculated as: 
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where *Π  is the complementary energy (Gibb’s free energy) per microcrack; σ  is the applied 

remote stress; P  is the remote applied force and 2
cP l σ= ; and 0γ  is a dimensionless constant 

characterizing the geometry. Hence, the macroscopic strain caused by the formation of the 

microcrack of size ca  is: 

30
3

cc
c

c c

u a
l El

γε σ= =  (3.2) 

The total microcrack size increment over cN cycles is 0Nc Nc ca a a∆ = − , where Nca  is 

crack size after cN cycles and 0ca  is the initial crack size. Suppose the creep strain is small 

( 0/ 1Nc ca a∆ << ), after cN cycles, the strain increment due to cyclic loading is: 

3 3 30 0
0 03

0

( ) 3 ( )cc c Nc
Nc c

c c c

a aa a
El E l a
γ σε σ γ ∆

∆ = − ≈  (3.3) 

Except for the very large stress amplitude and very high stress level, the fatigue growth of 

the microcrack depends on the amplitude of the stress intensity factor K∆  and follows the Paris’ 

law: 

( )mN

c

a K
N K

λ∆ ∆
=  (3.4) 

where cK  is the critical stress intensity factor; λ and m  are empirical constants. The 

amplitude K∆  is proportional to the remote applied stress amplitude cK z a σ∆ = ∆ .  

For very large or small K∆ , the crack growth rate deviates from the slope m . 

Nevertheless, the Paris’ law can accurately approximate the intermediate range of fatigue crack 

growth, when K∆  exceeds certain threshold. With the Paris’ law, we can arrive at: 

 53 



0 ( )c m
Nc c c

c

z a
a a N

K
σ

λ
∆

− =  (3.5) 

Substituting Eq. (3.5) into Eq. (3.3), we can obtain the strain increment due to cyclic 

creep after the cN  cycles: 

1 ( )cc m
c

c

C N
f
σε σ ∆

=
′

 (3.6) 

where 1C  is expressed as: 

030 0
1

0

3 ( ) ( )c c mc

c c c

f azaC
E a l K
γ l ′

=  (3.7) 

in which cf ′  is the compression strength of concrete.  

It is noted that the cyclic creep strain tensor ccε  is dependent on both σ  and cN  linearly, 

this agrees with the available cyclic creep measurements and is convenient for structural 

analysis. Through experimental calibration, the exponent value m  is found to be 4 [59][60] and 

the coefficient 1C  is about 46×10-6 [47]. 

For large-span prestressed concrete girders, the average stress σ in Eq. (3.6) can be 

approximated by the stress induced by the dead load, which is much greater than that from 

vehicular line loading. However, the amplitude of stress variation σ∆  varies due to the travel of 

different types of vehicles on the girders. Thus, the time shape of a load cycle on a bridge is quite 

different from the symmetric and periodic ones used in the experiments. To avoid the 

complication caused by the randomly varied σ∆ , a simplified cyclic shape with constant 

amplitude, which is the time average of different vehicles, is adopted by using Eq. (3.8). 

Since cyclic creep is treated as macroscopic deformation induced by the fatigue growth 

of pre-existing microcracks in the model, this simplified cyclic waveform must generate the 
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same amount of microcrack advance after the same number of cycles when compared to the real 

waveform of varied amplitude. This requires 

0 0
( )N N

mt tmC t dt C dtσ σ∆ = ∆∫ ∫  
(3.8) 

where ( )tσ∆  represents the random amplitude of the real waveform, σ∆  represents the constant 

amplitude of the simplified waveform and C is a constant. The evaluation of the integral on the 

left side of Eq. (3.8) is a challenging task because the cycle-cycle interactions are complicated 

[61]. Since the concrete is generally designed to be under service condition and the amplitude of 

cyclic load due to traffic is usually low in large bridges, one can simplify this evaluation by 

assuming that the crack growth increment per cycle is equal to the crack growth rate under 

constant amplitude loading of the same magnitude [61].   

Suppose during a fixed time, two different types of vehicles pass across the bridge, 

leading to the different stress variations 1σ∆  and 2σ∆ , respectively, with different cycles N1 and 

N2, respectively; see Figure 3.1. The constant amplitude of the simplified waveform σ∆  is 

obtained according to: 

1 2
1 2 1 2( ) ( ) ( ) ( )m m m

c c c

C N C N C N N
f f f
σ σ σ∆ ∆ ∆

+ = +
′ ′ ′

 
(3.9) 

Typically, σ∆  will fall between 1σ∆  and 2σ∆ . 
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Figure 3.1. Stress fluctuation due to traffic on the bridge and the simplified cyclic load shape for concrete cyclic 

creep. 

3.3 ELASTO-PLASTIC DAMAGE MODEL FOR CONCRETE 

To capture the instantaneous responses of concrete under complex stress states, constitutive 

models based on different theories and formulations have been constructed. Among the 

continuum models available, the elasto-plastic damage model is selected. The advantages of this 

model are that: (1) it is capable of capturing the concrete cracking in tension and 

softening/hardening under low-confined compression, which is typical for prestressed concrete, 

and (2) the concept of effective stress and the hypothesis of equivalent strain enable the 

straightforward coupling of concrete cracking with creep structural analysis. The important 
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concepts of this model are briefly introduced here and the detailed process is referred to the 

recent comprehensive studies [62]-[64].    

In this model, the effective stress jiσ  used for the plasticity formulation is the average 

micro-level stress acting on the undamaged material skeleton. Thus, it is different from the 

nominal stress jiσ  calculated based on the nominal area (i.e., the cross section of a damaged 

body) containing meso-scale cracks. Since the remaining skeleton is intact, the effective stress 

jiσ  can be expressed as: 

j ijkl kli Eσ ε=  (3.10) 

where ijklE  is the effective modulus and klε  is the effective strain of the undamaged skeleton. 

The connection between the undamaged skeleton and the damaged body can be established 

based on the assumption of strain equivalence or strain energy equivalence. Here the strain 

equivalence hypothesis is adopted, which leads to 

p pe e
ij ij ij ij ij ijeeeeee     = + = = +  (3.11) 

where ijε is the nominal strain of the nominal area, and the superscripts e  and p  indicate the 

elastic and plastic components of the strain tensor, respectively. After cracking, the nominal 

stress can be described by the effective stress based on a damage law as follows [65]: 

(1 ) (1 ) e
ij ij ijkl klEσ σ e= − Φ = − Φ  (3.12) 

Usually an isotropic damage scalar is used for Φ . However, if spectral decomposition is 

employed to separate tension and compression, the damage scalar Φ  can be decomposed 

into +Φ  and −Φ  to account for the anisotropic damage under tension (+) and compression (-) 

respectively.  
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In this model, the local uniqueness is guaranteed in the plasticity formulation by using the 

effective stress. Here the yield criterion follows the plastic yield surface f proposed by Lubliner 

et al. [66]  

2 1 max max
ˆ ˆ3 ( ) ( ) (1 ) ( ) 0eqf J I H ca β κ σ σ ae ± − −= + + − − ≤  (3.13) 

where 2J  is the 2nd-invariant of the effective devitoric stress; 1I  is the 1st-invariant of the 

effective stress; H is a Heaviside step function of the maximum principal effective stress σ̂ ; β  

is a function of the equivalent tensile and compressive plastic strains κ ± ; α  is a dimensionless 

constant ranging from 0.08 to 0.14 for normal concrete [66]; and c−  is the compression cohesion 

dependent on the equivalent compressive strain eqe − ; maxσ̂  is the maximum principle effective 

stress; and
0

t
dtκ κ± ±= ∫   is the equivalent plastic strain, and is defined as: 

max
ˆˆ( ) p

ijrκ σ ε+ =     min
ˆˆ(1 ( )) p

ijrκ σ ε− = − −   (3.14) 

where the dimensionless parameter ˆ( )ijr σ  is a weight factor depending on the principle stresses 

and is defined as: 

3

1
3

1

ˆ
ˆ( )

ˆ
kk

ij
kk

r
σ

σ
σ

=

=

< >
= ∑

∑
    

(3.15) 

where < ⋅ > is the Macauley bracket (i.e., 1 ( )
2

x x x< >= + ).  

The parameter α in Eq. (3.13) is a dimensionless constant given by Lubliner et.al. [66] 

and is within 0.08-0.14. The parameter β  in Eq. (3.13) is given as: 

( )( ) (1 ) (1 )
( )

c
c

κβ κ α α
κ

− −
±

+ += − − +     
(3.16) 

where the cohesion parameters, ( )c κ+ + and ( )c κ− − , are given as: 
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0( )c f hκ κ+ + + += +       
(3.17) 

0( ) [1 exp( )]c f Qκ ωκ− − − −= + − −  

where Q  and ω  are material constants characterizing the saturated stress and the rate of 

saturation respectively; h  is a material constant obtained from the uniaxial tensile stress-strain 

diagram; and 0f
+  and 0f

−  are the yield stresses for uniaxial tension and compression, 

respectively. 

The non-associative plasticity flow rule is generally utilized to determine the shape of the 

concrete loading surface at any given loading state. The flow rule connects the loading surface 

and the stress-strain relation. When the current yield surface f is reached, the material is 

considered to be loading. In this model, the flow rule is given as a function of the effective stress 

ijσ  by: 

P
P
ij P

ij

Fε λ
σ

∂
=

∂
   

(3.18) 

where Pλ  is known as the plastic loading factor or known as the Lagrangian plasticity multiplier, 

which can be obtained by the plasticity consistency condition, 0f = , such that 

0, 0, 0, 0P P Pf f fλ λ λ≤ ≥ = =         (3.19) 

By using the Drucker-Prager function, the plastic potential PF  can be expressed as: 

2 13P PF J Iα= +       (3.20) 

where Pα  is the dilation constant. Then the plastic flow direction is given by: 
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3
2 3

P
ij P

ij
ij

SF a
J

δ
σ

∂
= +

∂
      

(3.21) 

Tao and Phillps [67] defined the damage surface g ±  as a function of the damage 

thermodynamic conjugate force Y ±  and the scalar damage parameter ±Φ  of a form similar to 

that of La Borderie et. al. [68]: 

0 0g Y Y Z± ± ± ±= − − ≤       (3.22) 

where 0Y ±  are the initial damage thresholds which govern the onset of tensile and compressive 

damage respectively.  

 As damage progresses, the initial damage surface changes according to the evolution 

laws defined by the hardening/softening parameters Z ± . Tao and Phillips [67] assumed that the 

softening of damage surface followed a power law, in the form of: 

11 ( )
1

bZ
a

±
±

±
± ±

Φ
=

− Φ
      

(3.23) 

A stress point in the principal stress space can be either within or on the current damage 

surface. Once it is on the damage surface, two possible damage states exist. One may be 

unloading or neutral loading ( 0±Φ = ). The other is loading, accompanied with the evolution of 

damage, and is defined as 0±Φ > . Mathematically, the above description can be expressed as: 

If 0g ± < ,   then 0±Φ =  

If 0g ± =  and 0g ± ≤ ,   then 0±Φ =  

If 0g ± =  and 0g ± > ,   then 0±Φ >         

(3.24) 

The Helmholtz free energy can be formed by a series of internal state variables 

characterizing the elastic, plastic and damage behaviors of concrete. The constitutive model here 

 60 



is based on the hypothesis of uncoupled elasticity. This hypothesis assumes that the total free 

energy density per unit volume is formed by the two independent parts: the elastic part and the 

plastic part. Therefore, the Helmholtz free energy of concrete is: 

( , , ) ( , )e e p
ijψ ψ e ψ κ κ+ − + −= Φ Φ +       (3.25) 

It is assumed that the damage only affects the elastic one rather than the plastic one. 

Taking time derivative of the Helmholtz free energy, we get: 

e e e p p
e p e

ije
ij

ψ ψ ψ ψ ψψ ψ ψ e κ κ
e κ κ

+ − + −
+ − + −

∂ ∂ ∂ ∂ ∂
= + = + Φ + Φ + +

∂ ∂Φ ∂Φ ∂ ∂
             

(3.26) 

For isothermal behavior, the second-law of thermodynamics states that the rate of change 

in the internal energy is less than or equal to the external expenditure of power, which leads: 

( ) 0ij ijσ ε ρψ− ≥        (3.27) 

By substituting the rate of the Helmholtz free energy density described in Eq. (3.25) into 

the Clausius-Duhem inequality (Eq. (3.27)), we can get: 

( ) 0
e e e p p

p e
ij ij ij ije

ij

ψ ψ ψ ψ ψσ e σ ρ e ρ ρ ρ κ ρ κ
e κ κ

+ − + −
+ − + −

∂ ∂ ∂ ∂ ∂
+ − − Φ − Φ − − ≥

∂ ∂Φ ∂Φ ∂ ∂
           

(3.28) 

The above equation is valid for any admissible internal state variable such that the 

Cauchy stress is defined as:
e

ij e
ij

ψσ ρ
e

∂
=

∂
. Eq. (3.28) can be written as: 

0p
ij ij Y Y c cσ ε κ κ+ + − − + + − −+ Φ + Φ − − ≥          (3.29) 

with the damage conjugate force Y ±  and plasticity conjugate force c± being: 

e

Y ψρ±
±

∂
= −

∂Φ
      

(3.30) 
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c ψρ
κ

±
±

∂
=

∂
      

(3.31) 

Based on the thermodynamic framework, one can obtain the expression for the damage 

thermodynamic conjugate forces Y ± : 

21 1{ (1 )( ) }
2 9

e
ij e e e

ij ijkl kl mm ij ijkl kl
ij

Y E E
σψρ ee  β e δ δ
σ

±
±

±

∂
= − = − −

∂Φ
      

(3.32) 

with the damage reduction factor: 

11
1 exp( )cY d Y

β = −
+ − ⋅

      
(3.33) 

where c and d  can be regarded as two material constants to make β  dimensionless.  

3.4 UNIFIED CONSTITUTIVE MODEL FOR CONCRETE 

To achieve a unified description of the viscoelasticity, plasticity and fracture of concrete, models 

formulated based on the series coupling of a viscoelastic model and a damage model are 

frequently mentioned in literature [69]-[71]. In these models, the creep strain and cracking strain 

are calculated separately by using the same nominal stress increment and then added together. 

Although this type of formulation is straightforward and effective, its integration into a general-

purpose FEM program (e.g., ABAQUS) is inconvenient because the series coupling requires 

iterations to achieve the same nominal stress increment in the two coupled models. Therefore, a 

different strategy is used in this thesis. 

In Figure 3.2, the proposed unified constitutive model is demonstrated. Based on this 

one-dimensional illustration, the total strain ijε in concrete is 
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"( ) pe cc sh
ij ij ij ij ij ijeeeeee     = + + + +  (3.34) 

here the term "( )e
ij ijee +  represents the viscoelastic strain of the Kelvin units. To utilize the quasi-

elastic stress-strain incremental relation of Eq. (1.43), the cyclic creep strain cc
ijε , plastic strain 

p
ijε  and shrinkage strain sh

ijε  should be removed from the total nominal strain. 

 

 

Figure 3.2. 1D illustration of the proposed unified concrete model. 

 

In this formulation, the static creep is assumed to happen only on the undamaged 

skeleton, not on the cracked body. This is rational and consistent with creep experiments where 

stress much lower than the compressive cracking threshold of concrete is generally used. Thus 

the creep strain calculation, similar to the plastic strain, is based on the effective stress ijσ , not 

the nominal stress ijσ .  

To couple the concrete damage with the rheological model, now a damage scalar Φ  is 

homogeneously applied to the modulus of each Kelvin unit when the nominal stress of concrete 

is calculated. This means the effective modulus obtained in Eq. (1.44) is adjusted based on the 
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damage evolution given in Eq. (3.22), and thus can be used to calculate the nominal stress shown 

in Eq. (3.12). 

Both cc
ijε  and sh

ijε  are calculated separately and then input to Eq. (3.34) like eigenstrains. 

Since Eq. (3.6) is built upon the small fatigue growth of pre-existing microcracks [47] and no 

strength loss is observed in cyclic creep tests [58], it may be a realistic approximation to assume 

that the cyclic creep happens only on the undamaged skeleton too. Therefore, simple elastic 

analysis on intact concrete can be used to attain the average stress σ and the variation amplitude 

σ∆ , for which the influence lines of different types of vehicles have to be exploited. 

3.5 FRAMEWORK OF IMPLEMENTATION 

In addition to the coupling of different physical processes, another advantage of the proposed 

unified constitutive model is that it can be embedded as a user subroutine into a general-purpose 

FEM program. This provides great convenience in modelling, visualization and post-processing, 

and thus is preferred in creep structural analysis. The general-purpose program ABAQUS is used; 

the flowchart of the implementation is presented in Figure 3.3. 
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Select retardation times
τ  = 10i-7 , i=1,2,…,13

Loop over time steps tn

Compute A(τi), λi, Di, E"

Compute Δεsh, Δεcc, Δε"

Obtain Δεe, Δεp

Calculate stresses and strains and 
displacement

Update internal variable (γi)n+1

End

Assemble stiffness/load matrix

Structural analysis by ABAQUS

Return mapping 
algorithm - Fig. 3.4(a)

Input Δε, Δt, (γi)n, 
σn, Δσcc, ΔNc

Update 
(εe)n+1 (εp)n+1 (εsc)n+1 (εcc)n+1 
(εsh)n+1 

 Obtain (Δεe+Δεp)

Calculate damage scalar 
(Φ)n+1- Fig. 3.4(b)

          Compute: σn+1

Update  σn+1
 

Initialize internal variables
Input environmental conditions

 J(t0,t0)=1/E0

 

Figure 3.3. Flowchart illustrating the numerical implementation of the proposed unified concrete model in 

ABAQUS. 

 

At the initiation of the current time step, the total strain increment ε∆  is provided by 

ABAQUS. To obtain the unknown ee∆  and pε∆ , a return mapping algorithm [72] based on the 

Newton-Raphson iteration is used here; see Figure 3.4(a). By utilizing the relation between the 

plastic deformation pε  and effective stress σ , which is determined by the elastic strain ee , this 

algorithm achieves convergence in less than 10 iterations. After all strain components are 

determined, the damage scalar for the current time step is calculated (Figure 3.4(b)), and the 
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corresponding nominal stress σ  and effective modulus (1 )E′′− Φ  of concrete are obtained and 

then returned to ABAQUS for assembling the global stiffness/load matrix. 

 

σn, (εe)n, (εp)n, (κ±)n, (ϕ±)n 

 strain increment (Δεe+Δεp)

 σtrial = σn + E·(Δεe+Δεp), Δλp =0

σn+1 =σtrial

(εp)n+1 = (εp)n

(εe)n+1 = (εe)n + (Δεe+Δεp)

Yes

Update Δλp=Δλp+f trail/H
No

Calculate Δεp, (κ±)
Update σtrial =σtrial− E·Δεp

Update hardening functions c+ c−

Update σn+1 =σtrial

Yes

f (σtrial) < 0

Convergence of f (σtrial) = 0No

 

(a) 

 66 



Input  (εe)n+1, σn+1

Compute (Y ± )n+1

Update (Φ± )n+1

Using (Y ± )n+1

Update (Φ)n+1

 (Φ)n+1

(Φ)n+1 = (Φ)n

No Yes
Evaluate
g± ((Y ± )n+1, (Φ± )n ) < 0

 

(b) 

Figure 3.4. (a) Return mapping algorithm for the plastic softening and (b) subroutine for the damage variable 

calculation. 

 

To validate the model and test its implementation in ABAQUS, virtual experiments are 

carried out before the case study of a real bridge. A standard 150 mm cube made of C55 concrete 

[73], which is identical to the concrete used in the case study, is modelled (Figure 3.5(a)). Based 

on the strength of concrete, material constants for the elasto-plastic damage model recommended 

in [62] are adjusted, through which the stress-strain curve of C55 concrete for uniaxial 

compression and tension can be captured in Figure 3.5(a). These material constants are listed in 

Table 3.1. Following the general practice [39], the virtual mix design gives the water to cement 

ratio (w/c = 0.28), aggregate to cement ratio (a/c = 3.8), and cement content (c = 520.0 kg/m3). 

Therefore, the material parameters for the viscoelastic model, which adopts fib (2010) model 
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(denoted as MC model in this chapter) and model B4, can be evaluated according to Chapters 

1.2.3 and 1.2.4, respectively.  

 

Table 3.1.  The material constants for elasto-plastic damage model 

Parameter Value Parameter Value 

,cu mf  63.2 ×106  Pa 0f
−  20.0×106  Pa 

µ  0.18 Q  50.0×109  Pa 

E  34500×106  Pa b  2200 

α  0.12 0Y +  156 Pa 

Pα  0.20 0Y −  400 Pa 

0f
+  3.48×106  Pa a+  3.3×10-3   Pa-1 

h  25.0×109  Pa a−  8.4×10-6   Pa-1 

c  2.0 Pa-1 b+  1.20 

d  0.7 Pa-1 b−  0.98 

 

Figure 3.5(a) shows the simulation results of the cube under uniaxial tension and 

compression. The corresponding damage evolution is plotted in Figure 3.5(b). Failure under 

tension and the softening under compression captured in the virtual tests agree with the typical 

responses of normal concrete (e.g., the average cube strength of C55 concrete is about 63 MPa 

and the ratio of tensile strength to compression strength is about 1/14) [27]. Similarly, virtual 

creep tests are carried out on the same concrete cube. Two service stress levels, i.e., 10 and 15 

MPa, are applied to the concrete cube respectively. Figure 3.5(c) shows the corresponding creep 
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curves obtained based on the B4 and MC models, respectively. It can be seen that the linearity 

and asymptote of static creep are both realistically reproduced by the proposed framework.  

If the sustained stress in concrete is much higher than the service level, concrete will fail 

within a certain period of time due to the nonlinear creep and fracture growth. This phenomenon 

is called creep failure [74]. Although creep failure rarely happens in prestressed concrete bridges, 

it is used here to test the coupling of concrete static creep and damage in the proposed 

constitutive model. Experiments conducted by Zhou [74] at Lund University are simulated and 

the material parameters of the model are adjusted based on the experimental report. The notched 

concrete beams are under 3-point bending with sustained loads of 92%, 85%, 80% and 76% of 

the maximum load capacity, respectively (Figure 3.5(d)). If creep failure occurs, the beam cannot 

support the sustained load and the numerical simulation cannot reach convergence. The results of 

creep failure simulations are plotted in Figure 3.5(d), where the trend observed in Zhou's test 

[74] is realistically reproduced by the proposed model.      

 

  

(a) (b) 
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(c) (d) 

Figure 3.5. Validation of the implementation in ABAQUS: (a) stress-strain curve of a virtual concrete cube under 

uniaxial compression and tension; (b) corresponding damage evolution; (c) creep curves based on the MC and B4 

models, respectively; and (d) simulated creep failure under different load levels using B4 model. 

 

Another purpose of these virtual experiments is to regularize the localized damage, which 

cannot be objectively described by a local constitutive model. Without a localization limiter to 

regularize the fracture energy release, the structural response to cracking will be mesh-sensitive. 

A remedy to this problem will be the nonlocal formulation utilizing the weighted spatial average 

for the damage variables [75]-[77]. But it is currently difficult to implement the nonlocal 

formulation in ABAQUS. Therefore, another approach is used here. In line with the classical 

crack band theory [78], a mesh size-dependent parameter will be used to adjust the damage law 

in the proposed model [79]. Considering the compression in concrete is typically within the 

service range, this alternative is sufficient for the numerical analyses of large-span prestressed 

concrete bridges.      

× - Zhou’s  
test (1992) 
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3.6 MODELING OF A LARGE-SPAN BRIDGE 

The bridge under study is the Humen Bridge in Guangdong Province, China. It consists of two 

adjacent identical but independent bridges (I and II), which carry vehicles travelling in opposite 

directions respectively (Figure 3.6(a)). The busy traffic flow containing a considerable number of 

heavy trucks makes the Humen Bridge a unique case to study the intertwined effects of static 

creep, cyclic creep and concrete cracking and softening.  

This 3-span prestressed concrete bridge was erected segmentally and the continuous main 

span (270m long) set the world record for prestressed box girders when the construction was 

completed in 1997; see Figure 3.6(a). Following a quadratic parabolic curve, the height of the 

box girders decreases from 14.8 m at the piers to 5.0 m at midspan (Figure 3.6(b)). Similarly, the 

thickness of bottom slab and webs changes from 1.3 m and 0.6 m at the piers to 0.32 m and 0.4 

m at the midspan respectively. The thickness of the top slab is constant along the traffic direction 

(Figure 3.6(b)). 

For bridge I, the main span (consisting of 63 segments) and the two side spans (consisting 

of 36 segments for each) are both erected sequentially by 94 prestressing tendon groups  (ASTM 

A416-94 [80]), among which 66 groups are used to prestress the top slab and the remainder in 

the bottom slab. In addition, to enhance the shear resistance, threaded bars (diameter = 32 mm) 

are installed vertically to prestress the webs with a spacing of 1 m. The distribution of 

prestressing tendons and threaded bars for bridge I is plotted in Figure 3.6(c). 
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(a) 

 

(b) 
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(c) 

Figure 3.6. The Humen Bridge: (a) the bridges I and II (Unit: m); (b) cross-sections of box girders at the piers and 

midspan (unit: cm); and (c) the tendon layout for bridge I. 

 

Based on the information provided by the available drawings [73], a 3D model of bridge I 

was built in ABAQUS (Figure 3.7(a)). Since prestressing tendons or threaded bars exist in all 

slabs, the top slab, bottom slab and webs are all meshed with 2 layers along the thickness 

direction so as to accommodate the prestressing tendons and bars at the middle. In this model, 

concrete is meshed by 3D hexahedral isoparametric elements (Figure 3.7(a)), and the tendons 

with 3D truss elements (Figure 3.7(b)) with the nodes perfectly bonded with the concrete 

elements. As for the mild steel, it is smeared into concrete due to its extremely low percentage 

and quasi-uniform distribution. 

Since the tendons are almost straight, the curvature friction is negligible and only the 

wobble friction is considered. For each group of tendons, the prestress is applied 7 days after the 
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anchoring segments are cast. The initial prestress level for tendons is 1080 MPa and for screw-

threaded bars is 400 MPa. The final layout of the prestressing tendons and bars in the model is 

shown in Figure 3.7(b).  

To approximate the balanced construction process, which leads to a complex loading 

history in the concrete and tendons, the segments are deactivated at first in the simulations and 

then progressively activated based on the construction sequence provided in the drawings. In 

order to focus on the post-construction behavior, which is recorded in the inspection reports, the 

camber generated during the segmental construction will not be considered in the deflection 

analysis.   

 

 

(a) 
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(b) 

Figure 3.7. (a) Modelling of Humen bridge, and (b) modeling of prestressing tendons and threaded bars.  

 

As a critical link connecting Guangdong Province and Hong Kong, the Humen Bridge is 

among the busiest traffic flows in the world. Based on the record of the highway toll system 

installed in this bridge, the annual traffic flow on the Humen Bridge is documented in Figure 3.8. 

It grew from 6,381,541 vehicles in 1998 to 22,994,003 vehicles in 2008 [73]. The vehicles are 

categorized by weight into six groups ( 

Table 3.2), whose proportions in the traffic flow are also recorded by the toll system. The 

pie chart in Figure 3.8 shows the composition of the traffic flow recorded in 2002. Based on the 

record of the toll system, it is assumed that the traffic volumes and compositions on these two 
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bridges are similar. The annual traffic flow and average weight of each vehicle type used for 

simulation are listed in Table 3.2. 

 

 

Figure 3.8. The records of annual traffic flow on the Humen Bridge and its composition in 2002. 

 

Table 3.2.  The annual traffic flow and average weight of each vehicle type [73]. 

 
Weight 

(Ton) 

Average weight 

(Ton) 

Annual traffic flow 

1998 1999 2000 2001 2002 2003 

Type I - - - - - - - - 

Type II 0 ~ 2 1 4407805 5303888 6453875 7074112 8206501 8152148 

Type III 2~ 5 3.5 957902 984534 1086003 1024960 1004673 1546715 

Type IV 5~ 8 6.5 368171 499203 653313 799117 1096677 255937 

Type V 8~ 20 14 242644 240844 257730 237732 255937 387985 

Type VI > 20 38 196872 303862 319146 344340 460140 380974 
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3.7 SIMULATION AND RESULTS 

To demonstrate the coupled effects induced by cyclic creep and concrete cracking, two types of 

simulations are run in this chapter. In the first type of simulations, the effects of concrete 

plasticity, damage and cyclic creep are not considered. This means the subroutines shown in 

Figure 3.3 and Figure 3.4 to account for these effects will be deactivated in the numerical 

analysis. Thus, only the static creep and shrinkage of concrete and steel relaxation will play a 

role in the time-dependent deflection. While, in the second type of simulations these effects will 

be considered and the subroutines will be activated. To compare these two types of simulations, 

the same intrinsic and extrinsic parameters, including the material parameters of concrete and 

steel, temperature, humidity, construction sequence, curing time before prestressing and traffic 

loads, are used.     

In this investigation, the static creep of concrete, as well as concrete shrinkage, is 

approximated by the B4 and MC models. For both models, their intrinsic parameters need to be 

determined based on the concrete properties. Although the compressive strength is known for the 

C55 concrete used in the Humen Bridge, the composition of this concrete is not provided. 

Therefore, a virtual mix design, which achieves the given compressive strength, is used to obtain 

the composition parameters. 

As for the relevant extrinsic parameters, the average humidity h is selected to be 70% and 

average temperature T is 20°C based on the bridge location. The construction sequence follows 

the drawings and the curing time before prestressing is set as 7 days. For the prestressing 

tendons, a bilinear law characterized by the Young’s modulus E = 200 GPa and yield strength fy 

= 1674 MPa is employed. For the threaded bars, the yield strength fy in the bilinear law is 

changed to 785 MPa. After yield, the stiffness for prestressing prestressing tendons and threaded 
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bars is assumed zero. The relaxation parameters of prestressing tendons and bars are selected 

based on the CEB code formula [28]. To take into account the effect of strain variation (e.g., the 

shortening of the side spans), an improved relaxation formula utilizing a viscoplastic constitutive 

relation [20] is used in the simulation. 

For traffic loads, a simplified cyclic shape with constant amplitude is used; see Figure 

3.1(b). Since there are two lanes on bridge I, the cyclic shape depends on the vehicle weight as 

well as the ways of the vehicles to use these two lanes. The average weight used for each type of 

vehicles can be found in  

Table 3.2, where the effect of Type I vehicles, standing for motorcycles, is not considered 

due to the negligible effect of motocycles on the stress fluctuation. Based on the traffic record, a 

traffic pattern (Pattern I) illustrated in Figure 3.9 is used to approximate the complex traffic flow 

on bridge I. In this pattern, vehicles in the same group drive on the lanes side by side, except that 

95% of the trucks (Type VI) pass the bridge one by one. Based on the average weight in  

Table 3.2 the influence lines of different types of vehicles are obtained, and the cyclic 

shape is subsequently determined according to Eq. (3.8).   

 

 

Figure 3.9. Approximate traffic flow (Pattern I) on the bridge I of the Humen Bridge.  
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 For example, the total vehicles passing bridge I and bridge II are about 11 million in 2003. 

For Bridge I, the vehicles of Type II, III, IV, V and VI are 4076074, 773358, 127968, 193992, 

and 190487, respectively. Based on the traffic Pattern I in Figure 3.9, the cycles Nc of Type II 

vehicles are 2038037, and the vehicles drive on the lanes side by side. The cycles for other types 

of vehicles in 2003 are presented in Table 3.3. The range of stress variation σ∆  caused by the 

different vehicle type, for  both top and bottom slabs, are also shown in Table 3.3.  

 

Table 3.3.  Cycles for traffic Pattern I of the year 2003. 

Vehicle  Cycles (Nc) σ∆ (MPa) 

Type II 

 
2038037 

Top: 0.01~0.10 

Bottom: 0.01~0.16 

Type III 
 

386679 
Top: 0.02~0.20 

Bottom: 0.03~0.35 

Type IV 

 
63984 

Top: 0.03~0.36 

Bottom: 0.05~0.64 

Type V 

 
96996 

Top: 0.07~0.12 

Bottom: 0.80~1.39 

Type VI 
 

4762 
Top: 0.20~2.36 

Bottom: 0.34~4.09 

 
180963 

Top: 0.10~1.18 

Bottom: 0.17~2.05 
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The traffic loads will induce fluctuations in both the normal and shear stress in concrete. 

An approach to treat this complexity is to calculate the variations of the principal stresses, based 

on which Eq. (3.6) is applied to determine the cyclic strains in the corresponding principal 

directions. The calculation can be further simplified by taking advantage of the stress distribution 

in a box girder section, in which the normal stress is mainly carried by the top and bottom slabs 

and the shear stress is mainly supported by the webs. For the traffic Pattern I, the ratios of the 

average stress variation σ∆  obtained using Eq. (3.8) to the concrete strength cf ′ , of the webs, top 

and bottom slabs, are listed in Appendix. A (Table A.1). These values vary from 0.003 to 0.013 

in the top slab, and 0.001 to 0.005 in the bottom slab. 

Using the recommended parameters listed in Table 3.1, numerical analysis of bridge I is 

carried out. The midspan deflection history in the first six years is obtained by the first type of 

simulations and plotted in Figure 3.10 in both linear and logarithmic time scales, the latter 

highlighting the asymptotical slope of the deflection curve.  

 

 

(a) 
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(b) 

Figure 3.10.  Comparison of the midspan deflection between the measurements and simulations without considering 

the coupled effects of cyclic creep and concrete cracking: (a) linear time scale, and (b) logarithmic time scale. 

 

The measured midspan deflections of bridges I and II are also plotted in Figure 3.10 for 

comparison. It can be seen that after only six years in service the midspan deflection reaches 210 

- 220 mm, exceeding 1/1300 of the length of main span. This unexpected deflection triggered a 

retrofit in 2003, which changed the structural form of the Humen Bridge. Since the information 

about this retrofit is not available, the bridge performance after 2003 is not simulated. 

When compared to the in-situ measurements, the first type of simulations significantly 

underestimates the midspan deflection (Figure 3.10). For both the B4 and MC models, the 

predicted midspan deflections before retrofit are only about 100 mm, less than 50% of the 

measurements. In addition, the shape of the predicted deflection history substantially differs from 

the measured deflection history. The asymptotical slopes of B4 and MC models in logarithmic 

time scale, based on which the long-term creep growth may be estimated, are much less than 

those of the measured curves. Furthermore, since concrete damage is not considered, no concrete 

cracking is reported in the simulations.  
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In the second type of simulations, the plasticity, damage and cyclic creep in the unified 

model are all activated. The predicted midspan deflections are plotted in Figure 3.11 to compare 

with the measurements in both linear and logarithmic time scales. It can be seen that the 

prediction is significantly improved after the coupled effects are considered. Based on the MC 

and B4 models, the midspan deflections after six years in service are 237 and 224 mm 

respectively, which are close to the measurements (Figure 3.11). Except for the early-age 

development estimated by the MC model, the shape of the predicted deflection curves agrees 

well with the measured ones. In Figure 3.11, both models exhibit asymptotical slopes similar to 

the in-situ measurements.  

 

 

(a) 
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(b) 

Figure 3.11. Comparison of the midspan deflection between the measurements and simulations considering the 

coupled effects of cyclic creep and concrete cracking: (a) linear time scale, and (b) logarithmic time scale. 

 

In addition to the deflection of midspan, the deformed profiles of the bridge are also 

estimated in the second type of simulations. The measured profiles of bridges I and II after two, 

three, four and five years in service are plotted in Figure 3.12. It can be seen that after taking into 

account the intertwined effects of plasticity, damage and cyclic creep, the proposed unified 

constitutive model reproduces the deformed profiles realistically in the second type of 

simulations. This means that the proposed unified framework is capable of approximating the 

global time-dependent response of Humen Bridge. 
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(a) (b) 

  

(c) (d) 

Figure 3.12. Comparison of the deformed bridge profile between the measurements and simulations considering the 

coupled effects of cyclic creep and concrete cracking: (a) 2 years; (b) 3 years; (c) 4 years; and (d) 5 years after 

construction.  

 

Based on the inspection report [73], a number of cracks are found in the segments close 

to the midspan six years after construction (Figure 3.13(a)). The cracks initiate in the bottom slab 

and then propagate gradually to the webs [73]. For some segments located around the ¼ span, 

minor skewed cracks are recorded on the top portion of webs (Figure 3.13(a)). For segments near 

the piers, no visible cracks are reported in the inspection.   
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In the second type of simulations, the damage scalar Φ is used to indicate the extent of 

concrete cracking. The development of cracking in concrete captured in the simulations is 

demonstrated in Figure 3.13(b). The simulations show that initially there is almost no concrete 

cracking along the bridge after construction. After one-year service, cracking is developed in 

some segments (Figure 3.13(b)). Since the cracking is minor (i.e., the damage scalar Φ < 0.1), it 

can be ignored. After four years, cracking grows around the midspan ( Φ < 0.23). At the end of 

the sixth year, severe cracking is developed in the bottom slab close to the midspan ( Φ < 0.86), 

and some of the cracks penetrate into the webs (Figure 3.13(b)). In some segments around the ¼ 

span, mild cracking (i.e., Φ < 0.15) in the top portion of webs is captured after six years’ service. 

For the segments at the piers, the concrete is in good condition (i.e., Φ  ≈ 0). Clearly, the cracking 

distribution in concrete shown in Figure 3.13(b) agrees well with the inspection report [73].  

The results of the two types of simulations show that the static creep alone is inadequate 

for estimating the time-dependent deformation of prestressed concrete girders carrying heavy 

traffic flows. The neglect of cyclic creep and concrete cracking may lead to significant 

underestimation of the long-term deflection growth and inaccurate prediction of the damage 

development. This is very different from bridges carrying light or mild traffic flows. For 

example, the extensive study [47] on the Palau Bridge determined that the light traffic load on 

this large-span bridge (about 200 cars per day) had a negligible effect on the deflection evolution 

and damage development. 

 

 85 



 

(a) 

 

(b) 

Figure 3.13. (a) Crack distribution recorded in the inspection report, and (b) simulated damage distribution at 

different ages using B4 model.  
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3.8 INFLUENCE OF TRAFFIC WEIGHT AND VOLUME 

The cyclic creep of concrete, which is found to be non-negligible for the damage accumulation 

and deflection growth in the Humen Bridge, is governed by the time shape of cyclic load [47]. 

Due to the random passage of vehicles, the correlation of concrete cyclic creep with traffic 

weight and flow is very complex. Thus, simplified traffic patterns must be used in creep 

structural analysis. To ensure that the traffic Pattern I shown in Figure 3.9 is an acceptable 

simplification, a qualitative exploration focused on the sensitivity of cyclic creep to traffic 

pattern is carried out.  

In addition to Pattern I shown in Figure 3.9, five more simplified traffic patterns are 

studied (Figure 3.14). In Pattern II, all the vehicles pass the bridge one by one, randomly on 

either of the two lanes. This simplistic traffic pattern is highly possible for the heavy trucks but 

not realistic for the cars on a busy bridge. To approximate the traffic flow of cars, except for 

certain types of vehicles, side-by-side driving is allowed in Patterns III and IV, in which vehicles 

from the same group drive in pairs on the bridge. This is different from the real traffic flow, in 

which different types of cars may occupy adjacent lanes. However, the pairing strategy used in 

Patterns III and IV can maximize the amplitude of stress variation induced by the heavier 

vehicles, and thus give more conservative predictions of the cyclic creep. To probe the effect of 

heavy vehicles, trucks driving in pairs on the lanes are increased to 10% in the Pattern V and to 

50% in the Pattern VI. Pattern VI is very unlikely to occur in a bridge equipped with toll systems; 

it is used here to illustrate the extreme scenarios that may be triggered by heavy trucks. For the 

traffic Patterns II, III, IV, V and VI, the ratios of the average stress variation σ∆  obtained using 

Eq. (3.8) to the concrete strength cf ′ , of the webs, top and bottom slabs, are listed in Appendix. A 
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(from Table A.2 to Table A.6), respectively. Clearly, from traffic Pattern II to Pattern VI, the 

maximum ratio increases from 0.018 to 0.031, which is affected by the random passage of 

vehicles. 

 

 

Figure 3.14. Six traffic patterns on the bridge I of the Humen Bridge. 

 

 88 



Here only B4 model is used for the unified framework because it performs better than the 

MC model in predicting the early-age development of midspan deflection (see Figure 3.11). The 

simulation results based on the respective traffic patterns are plotted in Figure 3.15 to compare 

with the measured deflections. It can be seen that the deflection curves based on the Patterns I-V 

give good approximations of the real measurements. The difference among the Patterns II-IV is 

negligible because the predicted deflections are almost same (~200 mm). This means that the 

bridge deflection is insensitive to the traffic pattern of cars less than 10 tons. The deflection 

growth induced by the cyclic creep primarily depends on the total number of cars travelling 

through the bridge. 

 

 

(a) 
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(b) 

Figure 3.15. Comparison of the midspan deflection between the measurements and simulations under different 

traffic patterns: (a) linear time scale and (b) logarithmic time scale. 

 

If heavy trucks are allowed to pass in pairs, the influence of traffic pattern on deflection 

development becomes non-negligible. When 5% of the trucks drive side by side on the lanes (the 

Pattern I), the deflection gains a minor increase and the final deflection grows to 224 mm. This 

change coincides with the deflection difference between bridges I and II; see the gray lines in 

Figure 3.10. When the proportion of paired trucks rises to 10% (the Pattern V), the final 

deflection will reach 272 mm, beyond the measured deflections. However, if trucks follow 

Pattern VI, a striking increase in deflection will appear and the final deflection will surprisingly 

approach 500 mm.  

Although unrealistic, the excessive deflection exhibited by Pattern VI is consistent with 

experimental results. In cyclic creep tests [81][82], it was found that when the average stress and 

stress amplitude were about 25% and 10% of the concrete compressive strength respectively, the 

cyclic creep of concrete under cyclic compression reached about 2.3 times the elastic 
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deformation after only 100,000 cycles. The cyclic shape based on traffic Pattern VI, which is not 

realistic for heavy trucks, displays a stress fluctuation of 4.0 MPa. Therefore, the cyclic creep 

and bridge deflection predicted by this pattern are reasonable.   

The numerical investigation shows that the bridge deflection is insensitive to the traffic 

pattern of lightweight vehicles and the simplified traffic Pattern I (Figure 3.9) used in the 

simulations is acceptable. It also implies that the traffic pattern of heavy trucks may contribute to 

the deflection difference between bridges I and II, which have identical structure and carry 

similar traffic loads. The greater deflection measured in bridge II may be attributed to a higher 

percentage of paired trucks on it. Of course, this is just a conjecture based on the simulations. 

The possibility that other sources (e.g., the material and construction randomness) triggered this 

deflection difference cannot be excluded. 

To mitigate the risk of excessive deflection, the trucks travelling on the bridge need to be 

managed. A prudent traffic management plan, which can be implemented in some bridges, is to 

assign only one lane to the trucks. To make it more effective, the assigned lane may be alternated 

after a period (e.g., 3 years) so as to distribute the damage accumulation in concrete. Figure 

3.16(a) shows two hypothetic traffic management plans, one assigning a fixed lane to the trucks 

(Plan A) and the other alternating the truck lane every 3 years (Plan B). To compare these two 

plans, the respective traffic flows are applied in the numerical investigation. The deflection 

developments predicted by the simulations corresponding to these two plans are shown in Figure 

3.16 (b), respectively. The simulated damage distribution in concrete is shown in Figure 3.16 (c) 

for Plan A and Figure 3.16 (d) for Plan B. It can be seen that both the deflection growth and 

damage development are slower if the truck lane is alternated (Figure 3.16 (b-d)).  
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(a) (b) 

  

(c) (d) 

Figure 3.16. Comparison of the traffic management planes A and B: (a) illustration of lane assignment; (b) 

corresponding midspan deflections in linear time scale; (c) simulated damage distribution around the midspan for the 

plan A; and (d) simulated damage distribution around the midspan for the plan B.  
3   

3.9 SUMMARY 

A unified constitutive model, coupling the static creep with the cyclic creep, damage and 

softening of concrete, is constructed and integrated into a 3D rate-type framework for creep 

structural analysis. The intertwined effects of concrete viscoelasticity, cracking and plastic 
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softening on the time-dependent deformation are investigated by a case study of a large-span 

prestressed concrete bridge carrying a heavy traffic flow. Based on the simulation results, the 

conclusions drawn from this study include: 

1. To predict the multi-decade deflection of large-span prestressed concrete box 

girders, a realistic constitutive model is needed to approximate the complicatedly intertwined 

time-dependent processes in concrete. The proposed unified constitutive model, coupling the B4 

(or MC) creep and shrinkage model with an elasto-plastic damage model and a fatigue 

mechanics-based cyclic creep model, is capable of describing the concrete viscoelastic behavior 

as well as the concrete responses under mild-level confinement. 

2. As demonstrated in the case study of a large-span prestressed concrete bridge, the 

proposed numerical framework is efficient for large-scale creep structural analysis. The 3D rate-

type formulation used in the framework provides the key assistance to couple the static creep 

with the cyclic creep, concrete cracking, and other processes, which may not be compatible with 

the integral-type formulation.  

3. For large-span segmentally prestressed concrete bridges supporting heavy traffic 

flows, the case study of the Humen Bridge shows that viscoelastic analysis based on the static 

creep of concrete alone is not adequate. It provides limited information of concrete damage and 

may significantly underestimate the bridge deflection. To improve the predictive capacity of 

creep structural analysis, it is recommended that the intertwined effects of concrete cyclic creep 

and concrete cracking should be considered for bridges similar to the case study. 

4. The cyclic creep of concrete for Humen Bridge is insensitive to the traffic pattern 

of vehicles less than 10 tons, because lightweight vehicles have lesser ratio of stress variation to 

concrete compressive strength, and hence have a little impact on cyclic creep strain. However, 
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the traffic pattern of heavy trucks cannot be ignored. The percentage of trucks driving in parallel 

with each other can significantly impact the bridge deflection development and stress 

redistribution in concrete.  

5. To mitigate the coupled effects of concrete cyclic creep and crack propagation on 

the deformation growth in busy segmental bridges, besides the total traffic volume, the traffic 

pattern of heavy trucks needs to be managed. Traffic management plans assigning and 

alternating lanes for trucks can effectively mitigate the risk of excessive deflection and concrete 

cracking induced by the traffic loads. In addition, increasing the concrete strength may also aid 

in resisting the cyclic creep.  

In this investigation, the performance of Hunmen Bridge is studied based on the 

deterministic simulations. The randomness induced by the intrinsic and extrinsic sources 

associated with the bridge behavior is not considered and its role in the bridge performance is not 

evaluated. Only the average trend of the intertwined effects of concrete viscoelasticity, softening 

and damage is qualitatively studied in the numerical analyses. Therefore, although the proposed 

model adequately captures the general trend of the bridge performance in the case study, for 

more accurate quantification of the deflection history, this inadequacy needs to be remedied in 

future by incorporating statistical analysis. After equipped with proper sampling strategies (e.g., 

Latin hypercube sampling), the proposed framework can be extended to statistically quantify and 

assess the coupled effects of different physical processes so as to provide more general and 

reliable prediction for the long-term performance of large-span prestressed concrete bridges. In 

addition, some of the conclusions derived in this chapter are based on the simulation of the 

Humen Bridge. Further investigations of more prestressed concrete bridges are required to 

validate these conclusions. 
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4.0  MULTISCALE TIME-DEPENDENT SIMULATIONS OF CONCRETE  

4.1 MOTIVATION AND BACKGROUND 

In Chapters 2 and 3, the parameters of different concrete creep models, including ACI (2008), 

CEB-FIP (1990), fib (2010) and B3/B4 models, are calibrated by macro-scale creep experiments. 

In these macroscopic formulations, concrete is treated as a homogenous material. However, 

concrete is a heterogeneous material composed of multiple phases. The macro-scale time-

dependent mechanisms of cementitious materials are intrinsically governed by these phases at 

meso-, micro-, or even nano-scales. Multi-scale experiments and simulations of cementitious 

materials can offer more accurate insights to the mechanical, time-dependent, and transport 

behaviors of cementitious materials [23]-[25]. Although the numerical studies of concrete 

properties at different scales can provide more accurate results, it is prohibitively expensive to 

model concrete at micro-scale or nano-scale due to the limited computational capacity. 

Fortunately, meso-scale structure is accurate sufficiently to obtain the fundamental 

understanding of the mechanical and time-dependent mechanisms, which can be utilized in the 

macro-scale analysis [26]. At the meso-scale, concrete can be decomposed to mortar matrix, 

coarse aggregate, interface transition zone (ITZ) and air voids. 

Generally two different approaches are adopted to generate models at the meso-scale for 

concrete. The first approach is based on the digital images of concrete meso-scale structures 

 95 



obtained by microscopes or more advanced techniques [83]-[85]. These digital images are then 

converted into finite element meshes to model the multiple phases with real sizes, shapes and 

distributions. The image-based approach can realistically reflect the meso-scale structures of 

concrete but the cost is expensive. Thus, the image-based approach is not suitable for parameter 

study. The second approach is the parameterization modelling method, where the meso-scale 

structures of concrete are generated virtually by the computer [26]. More specifically, the 

indirect and direct algorithms can be used for the parameterization modelling method. Different 

phases are not explicitly modelled in the indirect algorithm. Instead, different phases inside the 

heterogeneous materials are modelled as spatially-varying random fields assigned to 

conventional FE meshes [24], or by lattice model in which lattice elements are randomly 

assigned as aggregates or mortar [86]. In the direct algorithm, coarse aggregates of different 

shapes are randomly packed into the space, and embedded within the mortar matrix to form the 

meso-scale structures of concrete. The direct algorithm can generate a large number of samples 

easily, and thus is suitable for parametric study. 

Based on the parameterization modelling approach, this paper presents a study of 

mechanical and time-dependent behaviors of concrete at meso-scale. The conventional “taking” 

and “placing” procedure [87] is applied to randomly generate the meso-scale structure of 

concrete. Under a given grading curve of coarse aggregates, the circular, elliptical and polygonal 

coarse aggregates, and circular and elliptical air voids are considered in the numerical specimens. 

After the geometry of the numerical specimen is determined, the solid elements are used to mesh 

the concrete domain. After that, zero-thickness cohesive elements with different damage and 

softening behaviors are inserted between the meshed solid elements to capture the fracture and 

damage of mortar matrix and ITZ.  
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The uniaxial tensile and compressive behaviors are investigated for these numerical 

concrete specimens, using a displacement-control scheme. First, the maximum tensile and 

compressive loads for these numerical concrete specimens are obtained. After that, two different 

load levels, 20% and 60% of the maximum compressive load, are applied on the specimen to 

investigate creep-induced deformation, respectively.  

In order to map the simulation result of meso-scale structure to the macro-scale behavior 

of concrete, two different approaches are utilized. The first approach adopts the framework of 

computational homogenization based on the Hill’s stationary condition, whose computational 

cost is relatively high but can provide accurate results. The second approach is based on the 

theoretical solution of a matrix-inclusion problem, whose computational cost is inexpensive but 

is limited by the shape of the meso-scale structure. 

4.2 MESO-STRUCTURE OF CONCRETE 

The meso-scale structure of concrete is generally characterized by the phases of mortar matrix, 

coarse aggregate, ITZ and air void. At this length scale, the mortar matrix is simply treated as a 

homogeneous material. In this section, the meso-scale structure of concrete, in accordance with a 

given gradation of coarse aggregates, is constructed numerically. Different shapes of coarse 

aggregates (circular, elliptical and polygonal coarse aggregates) and different shapes of air voids 

(circular and elliptical air voids) are considered in the modelling. The typical “taking” and 

“placing” algorithm [26] is realized in MATLAB to generate and pack these particles in the 

given concrete domain. After the geometry of the meso-structure is determined, pre-processing 

functionalities in ABAQUS controlled by Python script are adopted to mesh the concrete domain 

 97 



by solid elements. After that, the cohesive elements are inserted between each solid element to 

simulate the damage and failure behaviors of concrete.  

Aggregates are generally divided into fine aggregate (sand) and coarse aggregate (i.e. 

gravel or crushed stone). The sum of coarse aggregates and fine aggregates can occupy up to 

60~80 % volume of the normal concrete, of which 30~50% of the total volume of concrete is 

coarse aggregate. The fine aggregate is not explicitly considered at the meso-scale as it is 

embedded in the mortar matrix. Therefore, “aggregate” hereafter refers to the coarse aggregate 

only. The shape of aggregate depends on the aggregate type. Generally, gravel aggregate has a 

rounded shape while the crushed aggregate has an angular shape [87]. Gravel aggregate is 

assumed to have a circular or elliptical shape, while the convex polygonal shape is used to 

simulate the crushed aggregate.  

Grading refers to the particle size distribution of aggregates, which is usually expressed 

as a cumulative percentage passing through a series of sieves of increasingly finer openings. The 

grading of coarse aggregates is often characterized by the Fuller curve, which generally leads to 

the optimum density and strength of concrete. The Fuller curve can be written as [24]: 

max

( ) 100 ( )ndP d
d

=  
(4.1) 

where ( )P d  is the cumulative percentage passing a sieve with aperture diameter d , and maxd  is 

the maximum size of aggregate particles and n  is a constant ( n = 0.45-0.70).  

In practice, the Fuller curve can be replaced with a number of segments, where the area 

of aggregate aggA  within each grading segment 1[ , ]i id d +  can be expressed as [87]: 

1
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where mind  denotes the minimum size of aggregates; aggP  is the area fraction of aggregates; and 

A  is the sample area of concrete.  

In this study, a four-segment size distribution of coarse aggregates (Table 4.1 and Figure 

4.1) is adopted [88]. Only coarse aggregates with a size greater than 2.36 mm, like gravels and 

crushed stones, are considered in the meso-scale model. Gravel aggregates having a circular or 

elliptical shape and curshed aggregates having a polygonal shape are modelled to investigate the 

effect of aggregate shape on the macro-scale behavior of concrete. 

Voids and pores in concrete can be roughly divided into air voids, cappillary pores and 

gel pores [89]. The capillary and gel pores are too small (less that a few micrometers) and can be 

ignored at meso-scale [26]. The air voids have relatively larger size and are included in the 

meso-structure of concrete. The size of air voids, which is circular or elliptical, is uniformly 

distributed within the range from 2 to 4 mm [90].  

 

Table 4.1. Four-segement gradation of aggregate size distribution 

Sieve size (mm) Total percentage passing (%) 

19.00 100 

12.70 97 

9.50 61 

4.75 10 

2.36 1.4 
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Figure 4.1. Aggregates size distribution. 

 

After dividing the grading curve into several segments, the generation and packing of 

aggregates starts from the largest size particles. A typical “taking” and “placing” algorithm is 

utilized to generate and place the aggregates randomly in a 2D domain [87]. The “taking” and 

“placing” algorithm is implemented in MATLAB and the procedures are explained in detail as 

follows: 

The “taking” process generates an individual aggregate or air void in accordance with the 

grading curve in Figure 4.1. The generation of aggregates and air voids is repeated until the 

target volume of aggregates and air voids is achieved for each grading segment.  

1. The areas for the aggregates in each grading segments 1[ , ]i id d +  and air voids are 

calculated.  

2. The generation of aggregates starts with the grading segment containing the 

largest aggregates. For different grading segments, one may assume a uniform distribution 
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between id  and 1id + . The aggregate size d  is calculated by 1( )i i id d d dη += + − , whereη is a 

random number between 0 and 1.  

3. Calculate the area of the aggregate and subtract it from the total area for the 

grading segments 1[ , ]i id d + . 

4. The generation of aggregate for this grading segment (Steps 2 and 3) is repeated 

until the area of aggregate to be generated is less than / 4idπ , which means the remaining area 

for this grading curve is not enough to generate another aggregate. This remaining area is added 

to the next grading segment 1[ , ]i id d− . 

5. Repeat Steps 2, 3 and 4 until the last particle of the smallest size of the grading 

segment is finished. 

6. Assume that the size of air voids distributes uniformly between 0d  and 1d . The 

air void size is 0 1 0( )d d d dη= + − . The generation of air voids is repeated until the area of void 

to be generated is less than 0 / 4dπ , indicating no extra space to place another air void. 

The “placing” process inserts the aggregates and air voids into the predefined domain 

subjected to the prescribed physical constraints. First, the coarse aggregates are placed into the 

predefined domain. In order to save computational time, the insertion of aggregates begins from 

the large size to the small one. The aggregates with smaller size are then inserted between the 

larger aggregates to dense the domain. After positions for all aggregates are determined, then the 

air voids are inserted between these aggregates. Based on the “taking” and “placing” algorithm 

described here, Wang et.al [26] successfully created the meso-scale structures of concrete with 

40% coarse aggregates and 2% air voids in volume. The meso-scale structures with 45% 
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polygonal coarse aggregates are also obtained in [87]. Therefore, this algorithm is utilized in this 

chapter.  

In order to place the aggregates and air voids randomly within the concrete domain, two 

physical constraints need to be satisfied.  First, all aggregates and air voids should be within the 

concrete domain. Second, the newly inserted aggregate or air void must not have any overlap 

with the previously placed aggregates and air voids. In addition to these two constraints, the third 

physical constraint requires that each aggregate should be coated with a mortar film of a certain 

minimum thickness. The minimum thickness of the mortar film is thought to be related to the 

particle size and aggregate content. Schlangen and Mier proposed [91] that the minimum 

thickness was 0.1( ) / 2a bd d+ , where ad  and bd are the sizes of the two aggregates. Two constant 

values, the minimum distance 1γ  between the aggregate/void and specimen boundary and the 

minimum distance 2γ  between the newly inserted aggregate/void and the existed aggregate/void, 

are utilized.  

Random numbers are generated to define the position of the aggregates and air voids. If 

any of these three physical constraints is violated, this newly inserted aggregate/void is 

disregarded and another random number is generated to place the same aggregate/void in another 

position. Otherwise, the position for this aggregate/void is accepted. Using the above “taking” 

and “placing” algorithm, concrete specimens with different shapes and sizes of aggregates and 

air voids can be obtained. In this chapter, 1γ  and 2γ  are set as 0.5 mm. The aspect ratio 

[2, 2.5]R =  is adopted for elliptical aggregates and air voids. The number of sides for the convex 

polygons is set as [4,7]N =  for the crushed aggregates, which means the number of sides for the 

convex polygons randomly varies from 4 to 7. Some numerical samples of generated meso-scale 
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structures for concrete with different shapes and contents of aggregates and air voids are 

illustrated in Figure 4.2-Figure 4.4. 

   

(a) (b) (c) 

Figure 4.2. Numerical samples with circular aggregates: (a) Pvoid=0%, Pagg=40%; (b) Pvoid =2%, Pagg=40%; and (c) 

Pvoid =2%, Pagg=45%. 

   

(a) (b) (c) 

Figure 4.3. Numerical samples with elliptical aggregates: (a) Pvoid =0%, Pagg=40%; (b) Pvoid =2%, Pagg=40%; and (c) 

Pvoid =2%, Pagg=45%. 
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Figure 4.4. Numerical samples with polygonal aggregates: (a) Pvoid =0%, Pagg=40%; (b) Pvoid =2%, Pagg=40%; and 

(c) Pvoid =2%, Pagg=45%. 

 

After the meso-scale structure is obtained, the pre-processing functionalities in ABAQUS 

controlled by Python script are utilized to generate the finite element model. The regions for the 

aggregates and air voids are identified by Boolean operations. The sample is meshed 

automatically by 3-node linear plane stress triangle elements (CPS3).  

The 4-node two-dimensional cohesive element (COH2D4) is inserted between adjacent 

CPS3 elements to realistically capture the fracture process of concrete. Three sets of cohesive 

elements with different traction-separation softening behaviors are inserted. The COH-AGG 

elements are inserted inside the aggregates, which are assumed to be elastic and no damage will 

happen in COH-AGG elements. The COH_MOR elements are inserted inside the mortar matrix. 

At the interface between mortar and aggregate elements, the COH_ITZ elements with weaker 

strength are inserted in order to simulate the ITZ zone. For example, for the circular aggregates 

and air voids, the three sets of cohesive elements are illustrated as red lines in Figure 4.5.  
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(a) (b) (c) 

Figure 4.5. The finite element mesh showing different cohesive interface elements: (a) COH-AGG; (b) COH-MOR; 

and (c) COH_ITZ. 

4.3 CONSTITUTIVE MODELS 

Only the mortar matrix is assumed to have time-depenent bahavior while the aggregate is 

assumed to be purely elastic. The viscoelastic behavior of the mortar matrix is captured by the 

rheological model consisting of aging Kelvin chain units. The complete 1D model for mortar 

creep and shrinkage has been schematically represented in Figure 3.2. Model B4 is utilized here 

to characterize the creep bahavior of mortar matrix. 

Moisture transport processes associated with drying shrinkage are not considered here 

due to the fact that the dimension of the meso-scale structure utilized is relatively small. Drying 

shrinkage of the mortar matrix in the 2D model is therefore assumed uniform. Shrinkage of the 

mortar matrix is linked to the moisture state through the shrinkage coefficient, i.e. the slope of 

the strain vs. relative humidity curve. This curve is approximately linear for the cement paste 

with w/c ratio from 0.4 to 0.5 in the relative humidity range of 40%-100% [92]. Constant 

shrinkage coefficient of 0.07 mm/m%RH is adopted [92]. 
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The simulation of the energy dissipation process in the fracture process zone (FPZ) 

during fracture can be realistically captured by the cohesive crack model proposed by Barenblatt 

[93] and Dugdale [94]. The cohesive element assumes that there exists a normal traction nt  and a 

tangential traction (shear cohesion) st  across the crack surface, through which the fracture 

mechanisms like material bonding, aggregate interlocking and surface friction can be simulated. 

The cohesion force decreases monotonically as a function of the corresponding relative 

displacement of the crack surfaces (crack opening displacement nδ  and crack sliding 

displacement sδ ).  

The typical linear softening curves for the cohesion force and crack opening in the 

normal direction ( nt - nδ ) and in the shear direction ( st - sδ ) are illustrated in Figure 4.6. The 

linear ascending branch is added in each softening curve to model the initially un-cracked 

material. The unloading paths are also indicated. The areas under the curves represent the mode-I 

fracture energy nfG  and the mode-II fracture energy sfG , respectively. Both nfG  and sfG  can be 

treated as material properties. The initial tensile stiffness 0nk  before tensile strength 0nt should be 

high enough to represent the un-cracked material, but not high enough to cause numerical ill-

conditioning. If nδ  is negative during loading increments or iterations, a compressive stiffness 

equal to 0nk  is assigned in order to prevent penetration of crack surfaces.  
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(a) (b) 

Figure 4.6. Traction-separation laws for the cohesive elements [24]: (a) in normal direction, and (b) in shear 

direction. 

 

The evolution of damage under the combined normal and tangential separations is 

described via a scalar index D . To this end an effective relative displacement mδ , introduced as: 

2 2
m n sδ δ δ= < > +  (4.3) 

where <>  is the Macaulay bracket, is used to define the damage scalar: 

,max 0

,max 0

( )
( )

mf m m

m mf m

D
δ δ δ
δ δ δ

−
=

−
 

(4.4) 

where ,maxmδ  is the maximum effective relative displacement obtained during the load history, 

and 0mδ  ( mfδ ) denotes the effective relative displacement at damage initiation (final failure). 

Damage variable D  affects the stiffness coefficient nk  and sk  for the loading and reloading, 

which change correspondingly to:  
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0(1 )n nk D k= − ,  0(1 )s sk D k= −  (4.5) 

This also affects the tractions, which change to  

(1 ) , 0
, , 0

n n
n

n n

D t t
t

t t
− ≥

=  <
, 

0(1 )s sk D k= −  

(1 )s st D t= −  

(4.6) 

where nt  and st  are the traction components predicted by the elastic traction-displacement 

behavior for the current separation without damage.  

The theoretical framework described above is used for the cohesive elements with 

different parameters for the three sets. The simulations are run with zero-thickness cohesive 

elements. The results are found to be strongly sensitive to the normal stiffness of the elements. 

High values of the normal stiffness would cause the convergence problem while low values will 

cause spurious compliance. This effect becomes more pronounced with a higher aggregate 

content.  

4.4 VERIFICATION 

The capability of the presented material model and the capability of cohesive elements to capture 

the micro-scale cracks of concrete are verified by modelling a well-documented experiment [92]. 

The drying shrinkage of the mortar matrix is subject to mechanical restraint caused by the coarse 

aggregates in concrete, which would lead to micro-cracking inside the mortar matrix. The 

experiment shows that the aggregate-induced cracks upon drying shrinkage and creep increase 
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with the aggregate size and volume fraction. There is a critical aggregate size, below which the 

aggregate-restraint does not cause experimentally detectable microcracks.  

The 2 mm thick square plates are cast with the Portland cement (Type I) of w/c = 0.50. 

The aggregates are replaced by steel cylindrical inclusions whose axes are perpendicular to the 

plate. The spatial distribution of these steel inclusions is determined by the pseudo-random 

number for each coordinate of the inclusion center. The geometrical restrictions are set to avoid 

the overlapping of the inclusions and the contact between the inclusions and boundaries. Two 

volume fractions of inclusions, 10% and 35%, with deferent sizes of steel inclusions and square 

plates, are adopted in the experiments. In this section, the two volume fractions of inclusions are 

simulated and compared with the experimental results. One is 10% with 5.97 mm diameter steel 

cylinders embedded in a 65 mm square plate and the other is 35% with 3.98 mm diameter steel 

cylinders embedded in a smaller 43.3 mm square plate.  

The drying tests start at age of 28 days and are carried out in a climate chamber at 20 ±2 

ºC. These samples are dried from both surfaces, while the 2mm-thick sample edges are covered 

with layers of adhesives tape. The relative humidity in the climate chamber is lowered to 60% in 

one week: 1 day at 95%, 3 days at 80%, and 3 days at 70%. Next, relative humidity is kept at 

60% for additional 31 days. After that, the specimens are impregnated with epoxy resin, which 

penetrates into the cracks by capillary force. The specimens are then photographed with a high-

resolution camera under a fluorescent light, which is reflected by the dye in the epoxy resin [92]. 

However, this method does not allow for the detection of cracks at the matrix-inclusion 

interfaces.  

Unfortunately, the experiment [92] does not give the macro-scale tensile or compressive 

strength of cement paste with w/c = 0.50. The strength of the cement paste has to be adjusted to 
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realistically capture the experimental results. According to the suggested values given in [95], 

the adjusted parameters for the cement paste with w/c = 0.50 are given in Table 4.2.  In both 

models, the drying shrinkage of the matrix phase in the 2D-model is assumed to be uniform, and 

is taken as 0.07/mm/m/%RH, which corresponds to the slope of the experimentally measured 

curve of cement paste with w/c = 0.5. The creep parameters of model B4 are determined by 

fitting short-term experimental data measured on sealed and saturated samples made with the 

same water-cement ratio (w/c = 0.5) [95]. The material parameters used in this chapter for B4 

model are listed in Table 4.3. 

 

Table 4.2. Material properties for mechanical behavior 

 Aggregate Mortar COH-AGG COH-MOR COH_ITZ 

Young’s modulus (GPa)  70 20 / / / 

Poisson’s ratio 0.2 0.2 / / / 

Elastic Stiffness 0nk (MPa/m) / / 109 109 109 

Elastic Stiffness 0sk (MPa/m) / / 109 109 109 

Cohesive strength 0nt (MPa) / / / 4 2 

Cohesive strength 0st (MPa) / / / 6 4 

Fracture energy fG  (N/m) / / / 60 30 
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Table 4.3. The material constants for the model B4 in mortar matrix 

1q  (10-6/MPa) 13.9 

2q  (10-6/MPa) 0.0011 

3q  (10-6/MPa) 123 

4q  (10-6/MPa) 58.9 

5q  (10-6/MPa) 540 

 

The comparisons of the measured crack patterns at the middle-section with the computed 

patterns are shown in Figure 4.7 and Figure 4.8. The computed crack patterns do not show 

microcracks narrower than 1 micrometer, which probably could not be detected by the 

experimental method. The comparisons suggest that the meso-scale model can capture the time-

dependent behavior of the experiment. 

 

  

(a) (b) 

Figure 4.7. Comparison of sample with 10% aggregate content: (a) measured crack patterns [92], and (b) computed 

crack patterns. 

 111 



  

(a) (b) 

Figure 4.8. Comparison of sample with 35% aggregate content: (a) measured crack patterns [92], and (b) computed 

crack patterns. 

4.5 MECHANICAL BEHAVIOR 

Several 50 × 50 mm numerical meso-scale structures are simulated to investigate the mechanical 

and time-dependent behaviors of concrete. The solid elements for aggregates and mortar are 

assumed linear elastic. The damage at meso-scale is captured by the cohesive elements. The 

linear tension/shear softening law is used to model the linear damage evolution criteria in 

cohesive elements. The quadratic nominal stress initiation criterion is utilized to determine the 

damage initiation. For the purpose of parametric study, the material parameters listed in Table 

4.2 are utilized for the virtual simulations. The volume fractions of the coarse aggregate and air 

voids are selected as Pagg=40% and Pvoid=2%, respectively. In practice, the coarse aggregates 

take about 30-50% of the concrete volume. Nevertheless, placing a high content of coarse 

aggregate ( ≥ 50%) in a predefined domain using “taking” and “placing” algorithm is still a 

research challenge [24]. In light of this obstacle, Pagg=40% is selected here. Three combinations, 
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namely, circular aggregate & circular air void, elliptical aggregate & elliptical air void, and 

polygonal aggregate & elliptical air void, are selected for the study. For each combination, three 

cases are simulated to study the random distributions of aggregates and voids. The numerical 

samples are illustrated in Figure 4.9, Figure 4.10, and Figure 4.11, respectively. 

 

   

(a) (b) (c) 

Figure 4.9. Numerical samples with circular aggregates and circular voids (Pvoid =2% and Pagg=40%): (a) Case 1; (b) 

Case 2; and (c) Case 3. 

   

(a) (b) (c) 

Figure 4.10. Numerical samples with elliptical aggregates and ellptical voids (Pvoid =2% and Pagg=40%): (a) Case 1; 

(b) Case 2; and (c) Case 3. 
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(a) (b) (c) 

Figure 4.11. Numerical samples with plygonal aggregates and ellptical voids (Pvoid =2% and Pagg=40%): (a) Case 1; 

(b) Case 2; and (c) Case 3. 

 

For the uniaxial tension and compression simulations, all the models are fixed at the left 

boundary in the horizontal direction (Figure 4.12). A displacement-control scheme is utilized for 

the mechanical simulations and the uniformly distributed displacement is applied at the right side 

boundary. For uniaxial tension (compression), the analysis is terminated at a displacement of 0.1 

(-0.2) mm or a strain of 0.2% (-0.4%).  

 

 114 



 

Figure 4.12.  loading and boundary condtions for meso-scale structure.  

 

The mechanical and time-dependent problems are solved in a quasi-static manner based 

on Newton's second law of motion. When conducting the explicit quasi-static analysis, the 

kinetic energy of the meso-scale structure is compared with the internal energy during the 

simulation. The conservation of energy requires that the sum of kinetic energy and internal 

energy is equal to the work done by the external forces. A quasi-static process is achieved if the 

kinetic energy is less than 5% of the internal energy at any time step. In order to realize the 

quasi-static analysis, the loading time for the mechanical analysis is tried several times. Finally, 

the loading time is selected as t = 0.1s, which can, on one hand lead to the steady quasi-static 

analysis, and on the other hand save computational cost. A mesh convergence study is also 

conducted by setting element length L = 2 mm, 1 mm and 0.5mm, respectively. The meso-scale 

structure with circular coarse aggregates and voids is tested (Figure 4.13), and the stress-strain 

curves corresponding to different element sizes for the uniaxial tension are plotted in Figure 
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4.14. It can be seen that the difference between the curve for L = 1 mm and curve for L = 0.5 mm 

is ignorable, indicating the achievement of convergence. Therefore, L =1 mm is finally chosen 

for all the subsequent analyses. 

 

   

(a) (b) (c) 

Figure 4.13.  Meshing with different element size: (a) L = 2 mm; (b) L = 1 mm; and (c) L = 0.5 mm.  

 

 

Figure 4.14.  Strain-stress curves of uniaxial tension for different mesh length. 
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The stress-strain curves for the tension computed from the three samples with random 

distribution of aggregates and air voids are shown in Figure 4.15. The mean curve is shown by 

the red line and the individual test is shown by a black line. The peak stress decreases when the 

shape of aggregate changes from circle (2.65MPa) to ellipsoid (2.52MPa) and polygon 

(2.59MPa). When the aggregate is circular, the stress concentration will be mitigated when 

compared to the ellipsoid and polygon aggregates, which will lead to relatively higher tensile 

stress [26]. Before the peak stress is reached at about d = 0.01mm, the scatter of the stress before 

the peak stress is relatively low for the circular and elliptical aggregates. Also, the magnitude of 

peak stress seems to be less affected by the distribution of circular and elliptical aggregates. For 

the polygonal aggregates, the scatter is conspicuous for the peak stress, indicating that the sharp 

shape of the polygonal aggregates has a considerable influence on the tensile strength. As for the 

post peak part, the softening response seems to be more sensitive to the random distribution of 

aggregates and air voids. 

 

 (a) 
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(b) 

 

(c) 

 

Figure 4.15. Strain-stress curves of uniaxial tension for: (a) numerical samples with circular aggregates and air 

voids, (b) numerical samples with elliptical aggregates and air voids, and (c) numerical samples with plygonal 

aggregates and ellptical air voids. 

 

The microcracks initiate on the aggregate-mortar interface due to the ITZ zone that has 

lower fracture properties than mortar. Microcracks before peak load are not evident. As the 

displacement increases, some aggregate-mortar interfacial cracks continue to propagate and are 

gradually coalesced with the newly formed cracks in the mortar. The predicted post-peak 

microcracks for the numerical specimens are shown in red color in Figure 4.16. Two typical 

fracture patterns are observed for the numerical samples under uniaxial tension. 
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(a) 

   

(b) 

   

(c) 

   

Figure 4.16. Crack pattern for the uniaixal tension after failure: (a) numerical samples with circular aggregates and air 

voids, (b) numerical samples with elliptical aggregates and air voids, and (c) numerical samples with plygonal 

aggregates and ellptical air voids. 

 

The stress-strain curves for the uniaxial compression computed from three samples with 

random distribution of aggregates and air voids are shown in Figure 4.17. The mean curve is 
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shown by the red line and the individual test by a black line. The peak stress decreases when the 

shape of aggregate changes from circle (40.1MPa) to ellipsoid (37.6MPa) and polygon 

(35.3MPa). Similar to uniaxial tension, the stress concentration will be mitigated compared to the 

elliptical and polygonal aggregates when the aggregates are circular. The scatter of the stress 

before the peak stress is low. The constitutive laws for the cohesive elements are primarily for 

modelling the interface fracture, and do not represent fully the coupling of shear and normal 

responses, particularly the interaction between shear and compression. It is expected that this 

simplification only has a minor effect on the analysis of concrete under uniaxial compression in 

the pre-peak regime dominated by tensile micro-cracking. The effect on the post-peak regime 

dominated by compressive micro-cracking, governed by the micro-crack coalescence and 

associated development of shear failures, might be captured less effectively. The predicted post-

peak microcracks for the numerical specimens are shown in red color in Figure 4.18. 

 

(a) 
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(b) 

 

(c) 

 

Figure 4.17. Strain-stress curves of uniaxial compression for: (a) numerical samples with circular aggregates and air 

voids, (b) numerical samples with elliptical aggregates and air voids, and (c) numerical samples with plygonal 

aggregates and ellptical air voids. 
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(a) 

   

(b) 

   

(c) 

   

Figure 4.18. Crack pattern for the uniaixal compression after failure: (a) numerical samples with circular aggregates 

and air voids, (b) numerical samples with elliptical aggregates and air voids, and (c) numerical samples with plygonal 

aggregates and ellptical air voids. 
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4.6 TIME-DEPENDENT BEHAVIOR 

After the maximum compression force is determined for the numerical specimen, two load 

levels, 20% and 60% of the maximum compressive force, are applied on the same numerical 

meso-structure of concrete, to investigate the time-dependent deformation under different load 

level. In order to simplify the analysis, the shrinkage deformation is not considered for all the 

cases and only creep deformation, which is approximated by the model B4, is considered. The 

creep deformation lasting 5 days after loading is investigated.  

For the different combinations of aggregates and voids, the creep deformations are shown 

in Figure 4.19(a), Figure 4.20(a), and Figure 4.21(a), respectively. The average creep 

deformation of the 20% load level 0.2ζ   is shown with the blue line and the average creep 

deformation of the 60% load level 0.6ζ  are shown with the red line. The ratios of creep 

deformation ( 0.6

0.2

( / 0.6)
( / 0.2)
ζ
ζ

) are shown in Figure 4.19(b), Figure 4.20(b), and Figure 4.21(b), 

respectively. The average ratios of creep deformation are plotted as the red line. 
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(a) (b) 

Figure 4.19. Numerical samples with circular aggregates and circular air voids: (a) creep deformaiton, and (b) ratio 

of creep deformation. 

  

(a) (b) 

Figure 4.20. numerical samples with elliptical aggregates and elliptical air voids: (a) creep deformaiton, and (b) ratio 

of creep deformation. 
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(a) (b) 

Figure 4.21. numerical samples with plygonal aggregates and elliptical air voids: (a) creep deformaiton, and (b) ratio 

of creep deformation. 

 

If there were no damage evolution inside the mortar matrix and ITZ zone, the creep 

deformation of the numerical specimens would vary linearly with the level of applied load. The 

ratio of 0.6

0.2

( / 0.6)
( / 0.2)
ζ
ζ

 should be equal 1.0. However, Figure 4.19 (b), Figure 4.20 (b), and Figure 

4.21 (b) indicate that when the loading level is high (in this chapter, 60% of maximum load), the 

nonlinear creep phenomenon is more significant. This is documented by the observation that the 

average ratios for all the simulations are greater than 1.0. The damaged cohesive elements for 

numerical specimen with circular aggregates and air voids (case 1 in Figure 4.9), are shown in 

red color in Figure 4.22, to illustrate the damage in the sample 0 and 5 days after 60% of the 

ultimate compressive force is applied, respectively. Clearly, there is no damage inside the mortar 

matrix or the ITZ zone immediately upon after applying the load. After 5 days, the damage is 

apparent.  
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(a) (b) 

Figure 4.22. Failure cohesive elements for the mortar matrix and ITZ of the 60% of maximum load: (a) 0 day after 

applying load, and (b) 5 days after applying load. 

4.7 MULTISCALE TIME-DEPENDENT SIMULATION  

In this section, two different approaches are utilized to map the mechanical and time-dependent 

behaviors of the meso-scale structure to the macro-scale behavior. The first approach, the 

“computational multiscale analysis”, directly links the macro-scale and meso-scale together. The 

basic idea for the computational multiscale analysis is to obtain the unknown constitutive 

relationship at the macro-scale by solving local finite element problems at the meso-scale [96]. 

The second approach, referred to as “multiscale material model”, is based on the analytical 

solution of matrix-inclusion problem.  

In this section, the results from the two different approaches are compared and their 

advantages and disadvantages are discussed. Only coarse aggregates and mortar matrix are 
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considered in the meso-structure of concrete. The creep using model B4 is considered and the 

shrinkage is not considered to simplify the analysis. 

4.7.1 Computational multiscale analysis  

A domain 0Ω  with an external boundary 0∂Ω (Figure 4.23) describes the macro-scale structure 

at its current configuration.  The superscript “0” indicates the variables at the macroscale level. It 

is assumed that the material is homogeneous at the macro-scale and is characterized by a 

periodic heterogeneous meso-structure. The macro-scale structure is subjected to prescribed 

displacements and forces on the Dirichlet boundaries 0
u∂Ω  and Neumaan boundaries 0

σ∂Ω  

respectively. In the absence of body force, the problem can be expressed as: 

( ) 0xσ∇ =  (4.7) 

where ( )xσ  is the Cauchy stress tensor associated with a point x  of the macro-scale structure in 

the current configuration. The boundary conditions are defined as 

ˆ( ) ( )u x u x=  on 0
u∂Ω  

N Fσ ⋅ =  on 0
q∂Ω  

(4.8) 

where u  denotes the macro-scale displacement field; û  is the proscribed displacement; N  is the 

outward unit normal vector to 0∂Ω ; and F  is a prescribed traction. 
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Figure 4.23. Macro-scale and Meso-scale structures for computational multiscale analysis.  

 

However, at the macro-scale level, the constitutive law relating ( )xσ and ( )xε is 

unknown. In the framework of computational multiscale scheme, the macroscale stress ( )xσ is 

obtained by solving the represented volume element (RVE) subject to the macro-scale strain 

( )xε  at the meso-scale. The homogeneous material at the macro-scale is assumed to have a 

periodic meso-structure, which is characterized by the RVE occupying the domain 1Ω  with an 

external boundary 1∂Ω  in the current configuration. The superscript “1” indicates the variables at 

the meso-scale. In the absence of body force, the equilibrium equation at meso-scale is given as: 

( ) 0xσ∇ =  (4.9) 

where ( )xσ  is the Cauchy stress tensor associated with a macro-scale point x . The RVE is 

subject to boundary conditions depending on the macro-scale deformation tensor ε . If nonlinear 

geometry is not considered and periodic boundary conditions are applied for the RVE, the 

deformation of the RVE will be:  

( )u u x xε+ − + −− = −  (4.10) 

where u±  are the displacements at the meso-scale. The superscripts “+” and “–” are associated 

with node indices on opposite sides of the RVE, respectively. For the RVE at meso-scale, mortar 
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matrix and coarse aggregate are considered with different constitutive laws. The damage and 

failure of both mortar matrix and coarse aggregate are not considered. Linear elastic behavior is 

assumed for the coarse aggregate and viscoelastic (creep) behavior is assumed for the mortar 

matrix. The constitutive laws for coarse aggregate and mortar matrix can be expressed as: 

( ) : ( )aggx C xσ ε=    for coarse aggregate 

( ) : ( ( ) ( ))morx C x xσ ε ε ′′= −    for mortar matrix 
(4.11) 

where aggC and morC  refer to the elastic tensors associated with aggregate and mortar matrix 

respectively and ( )xε ′′  is the inelastic strain induced by creep in mortar matrix. The effective 

stress σ  at a particular point x  of the macro-scale domain 0Ω  is evaluated based on a Mori-

Tanaka type homogenization scheme [97]: 

1
1

1

1 ( )x dσ σ
Ω

= Ω
Ω ∫  (4.12) 

where 1Ω  denotes the volume of the RVE. The relationship between the macro-scale stress σ  

and the macro-scale strainε , in the case of linear constitutive law, can be written as 

( ) :x Cσ σ ε=< >=  (4.13) 

where C  is the homogenized macro-scale constitutive tensor depending on constitutive laws of 

mesoscale constituents. In the case of a nonlinear constitutive law at the meso-scale, this 

relationship can be written in an incremental form: 

:tCσ ε∆ = ∆  (4.14) 

where tC  is the homogenized macro-scale tangent modulus depending on the nonlinear behavior 

of the meso-scale constituents. At each macro-scale load increment, the tangent modulus tC  is 
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computed at each integration point, by solving a finite element problem at the RVE level. The 

periodic boundary conditions are written in the incremental form: 

( )n
iu u x xε+ − + −∆ − ∆ = ∆ −  (4.15) 

where n and i are the number of macroscale load increments and the number of equilibrium 

iterations respectively. Then the meso-scale tangent problem can be written as: 

1
1: 0dσ dε

Ω
∆ Ω =∫  (4.16) 

Once the increment of macro-scale strain n
iε∆  is applied, the analysis at the meso-level is 

performed and the macro-scale stress increment n
iσ∆  is obtained by Eq. (4.14). At this point, 

ABAQUS performs an incremental loading with the time increment t∆ , and a new guess of n
iε∆  

for the strain increment until convergence is achieved. After that, a new tangent modulus is 

computed from the meso-scale analysis for the next time step. The multiscale computations in 

the macro-scale and meso-scale structures are seamlessly integrated by Python script and user-

defined FORTRAN subroutines, as shown in Figure 4.24. 
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Loop over timestep tn

Loop over elements 
(material point)

Macroscale analysis       

Mesoscale analysis

Overall properties:   σ(n+1)Get average stress: (σ)n+1

Structural analysis by ABAQUS

End

Output variables: (ε)n+1, Δε 

 

Figure 4.24. Flow chart of implementation of computational multiscale analyis in ABAQUS. 

4.7.2 Multiscale material model  

The multiscale material model is proposed to ameliorate the computational burden resulting from 

finer discretization of each phase in the computational multiscale analysis. This model is based 

on the micromechanical solution of matrix-inclusion problem. The classical Equivalent Inclusion 

Method (EIM) proposed by Eshelby [98] is utilized for the matrix-inclusion problem.  However, 

the classical EIM is effective for an infinite domain containing an ellipsoidal inhomogeneous 

inclusion, and fails here due to the fact that uniform equivalent eigenstrain may not exist when 

the RVE is bounded. Instead, the analytical solution presented in [99], which accurately predicts 
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the elastic disturbance induced by an inhomogeneous inclusion in a 2D concentric finite RVE, is 

utilized here for illustration.  

 For the proposed multiscale model, the macro-scale responses must be calculated for the 

analysis. Based on the analytical solution for the elastic disturbance induced by an 

inhomogeneous inclusion in a 2D concentric finite RVE (Figure 4.25(a)), Mori-Tanaka 

homogenization scheme [97] is used when the average property of interest in a multi-phase 

domain is needed. If the volume fraction of each phase is known, then the average property can 

be obtained [67]. Accordingly, effective stress is determined by the stress at the meso-scale 

based on Eq. (4.12). In practice, different sampling nodes are seeded inside the coarse aggregate 

and mortar matrix. Therefore, the average stress for the macro-scale structure is expressed as: 

11 (1 )

jagg NN
moragg
ji

ji
agg agg

agg mor

P P
N N

σσ
σ === + −

∑∑
 (4.17) 

where aggN  and morN  are the numbers of sampling nodes inside the aggregate and mortar matrix, 

respectively. Based on the stress obtained on the different sampling nodes inside the mortar 

matrix mor
jσ , the creep strain ( )mor

jε ′′  is subsequently obtained. The average creep strain of the 

macro-scale element can be obtained in a way similar to Eq. (4.17).  
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(a) (b) 

Figure 4.25. Meso-scale structure for multiscale material model: (a) 2D concentric finite RVE, and (b) distribution 

of sampling nodes. 

4.7.3 Numerical example 

In order to compare these two schemes for the multi-scale time-dependent analysis, a relatively 

simple macro-scale structure is adopted for illustration. A 2D column (1m × 2m) is fixed at the 

bottom boundary in the vertical direction, and a unit external load (1 MPa) is applied to the top 

boundary after 7-day curing of concrete.  

 Two different meso-sale RVEs are adopted here, with 10% and 40% volume 

fractions of coarse aggregates respectively. The 10% volume fraction of coarse aggregate is not 

realistic for concrete. However, the simulation is to explore the advantages and disadvantages of 

the two different schemes, rather than to capture the real response of concrete. The 0.05m square 

mortar matrix with one circular aggregate located at the center of the square is used for the 

computational multiscale analysis (Figure 4.26). However, for the multiscale material model, the 

analytical solution is achieved for 2D concentric circular matrix and circular inclusion. 
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Therefore, the circular mortar matrix with one circular aggregate located at the center is used as 

the RVE for the multiscale material model (Figure 4.27). Model B4 is considered for the mortar 

matrix, and linear elasticity is assumed for the coarse aggregate. The model parameters are listed 

in Table 4.2 and Table 4.3. In order to simplify the analysis, the shrinkage is not considered here. 

 

  

(a) (b) 

Figure 4.26. RVE structure for computational multiscale analysis: (a) 10% volume fraction of coarse aggregate; and 

b) 40% volume fraction of coarse aggregate. 

  

(a) (b) 

Figure 4.27. RVE structure for multiscale material model: (a) 10% volume fraction of coarse aggregate; and b) 40% 

volume fraction of coarse aggregate. 
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 The vertical deformations due to creep at the top edge of columns, under two types of 

RVEs with different volume fractions of coarse aggregates, are shown in Figure 4.28. Clearly, 

the difference of the two algorithms is negligible (only about 2%), when the volume fraction of 

coarse aggregate is relatively small (10%). Compared to the classical Eshelby’s solution [100], 

simulation accuracy has been improved. This improvement indicates the effectiveness of the 

multiscale material model utilizing the analytical solution presented in [99]. When the volume 

fraction increases to 40%, the difference between the two algorithms increases to 8% but still 

acceptable. It is supposed that when the coarse aggregate is larger, the stress difference between 

the two RVEs (Figure 4.26(b) and Figure 4.27 (b)) is more apparent. This is due to the 

simplification that replaces the rectangular mortar matrix with a circle. 

 

  

(a) (b) 

Figure 4.28. Creep deformation for: (a) 10% volume fraction of coarse aggregate; and b) 40% volume fraction of 

coarse aggregate. 
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4.8 SUMMARY  

Numerical specimens representing different shape and spatial distributions of coarse aggregates 

and air voids are generated by the “taking” and “placing” algorithm in MATLAB in order to 

simulate and investigate the meso-scale mechanical and time-dependent behaviors of concrete. 

The evolution of microcracks is captured by the cohesive elements with different tension and 

shear softening constitutive laws, which are inserted between solid elements. Some conclusions 

can be obtained as follows: 

(1) If the external loading is high, the damage evolution inside the mortar matrix is 

responsible for the nonlinear creep deformation at macro-scale. 

(2) Two approaches, the computational multiscale analysis and multiscale material 

model, are utilized to map the time-dependent response of the meso-scale structure to the macro-

scale response. It seems that both algorithms can capture the time-dependent behaviors of meso-

scale RVE.   
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5.0  CONCLUSIONS 

Simulations based on a large-span prestressed concrete bridge show that, under different creep 

models, the asymptotes of long-term deflection and axial shortening are different. The deflection 

and shortening asymptotes eventually approach an inclined straight-line in logarithmic time 

scale, if the creep models contain logarithmic time functions. The prestress level in the tendons 

will substantially affect the deflection asymptote. If high initial prestress is applied, the arrival of 

the deflection asymptote will be pushed back to over 30 years due to the long transitional period. 

On the other hand, the axial shortening is not sensitive to the prestress level. For initial prestress 

ranging from 600 to 1080 MPa, the axial shortening consistently reaches its asymptote in about 3 

years or earlier. Therefore, an early establishment of correlation between creep compliance 

function and shortening asymptote can be achieved and then used to predict the long-term bridge 

deformation as well as supplement the laboratory tests. 

 For prestressed concrete bridges sustaining heavy traffic load, a unified constitutive 

model is proposed, coupling the B4 (or MC) creep and shrinkage model with an elasto-plastic 

damage model and a fatigue mechanics-based cyclic creep model. The performance of Hunmen 

Bridge is studied based on the deterministic simulations, coupling the static creep with the cyclic 

creep, concrete cracking, and other processes. It shows that viscoelastic analysis based on the 

static creep of concrete alone is not adequate to predict the long-term deflection for bridges 

sustaining heavy traffic load. The intertwined effects of concrete cyclic creep and concrete 
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cracking should be considered in the long-term performance prediction. The cyclic creep of 

concrete is insensitive to the traffic pattern of vehicles less than 10 tons. However, the traffic 

pattern of heavy trucks cannot be ignored. The percentage of trucks driving in parallel with each 

other can significantly impact the bridge deflection development and stress redistribution in 

concrete. 

 The meso-scale simulations are conducted to investigate the effects of the shape and 

spatial distribution of aggregates and air voids on the macro-scale mechanical and time-

dependent behaviors of cementitious materials. The cohesive elements with different tension and 

shear softening constitutive laws are inserted between the solid elements to capture the potential 

microcracks. Compared to circular aggregates, the elliptical and polygonal aggregates will 

apparently lower both the tensile strength and compressive strength of concrete. The damage 

evolution of the mortar matrix will lead to macro-scale nonlinear creep deformation when the 

specimen is subject to relatively high external load. Two approaches, one is computational 

multiscale analysis and the other is proposed multiscale material based on matrix-inclusion 

problems, can accurately map the meso-structure response to the macro-scale response. 
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APPENDIX A 

RATIO OF AVERAGE STRESS VARIATION TO CONCRETE STRENGTH 

In this half model for bridge I of Humen Bridge, there are 36 segments in the side span and 32 

segments in the middle span, see Figure 3.6(c) and Table A.1. In this appendix, “Li” refers to the 

i-th segment in the side span; “Ri” refers to the i-th segment in the middle span; and “M” stands 

for the segment on the pier. 

 The ratios of the average stress variation σ∆  obtained using Eq. (3.8) to the concrete 

strength cf ′  for different traffic patterns are listed from Table A.1 to Table A.6.  
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Table A.1.  Ratio of average stress variation to concrete strength for traffic Pattern I 

 

 Top slab Bottom slab Web  Top slab Bottom slab Web 

M0 0.013 0.023 0.001 L35 0.002 0.004 0.001 

L1 0.010 0.016 0.005 L36 0.001 0.002 0.001 

L2 0.009 0.015 0.001 R1 0.013 0.022 0.001 

L3 0.008 0.014 0.001 R2 0.012 0.020 0.001 

L4 0.007 0.013 0.001 R3 0.011 0.019 0.001 

L5 0.007 0.011 0.001 R4 0.010 0.018 0.001 

L6 0.006 0.010 0.001 R5 0.010 0.017 0.001 

L7 0.005 0.009 0.001 R6 0.009 0.016 0.001 

L8 0.005 0.008 0.001 R7 0.008 0.015 0.001 

L9 0.004 0.007 0.001 R8 0.008 0.013 0.001 

L10 0.003 0.006 0.001 R9 0.007 0.012 0.001 

L11 0.003 0.005 0.001 R10 0.007 0.011 0.001 

L12 0.003 0.005 0.001 R11 0.006 0.010 0.001 

L13 0.003 0.006 0.001 R12 0.005 0.009 0.001 

L14 0.004 0.007 0.001 R13 0.004 0.008 0.001 

L15 0.004 0.007 0.001 R14 0.004 0.006 0.001 

L16 0.005 0.008 0.001 R15 0.004 0.007 0.001 

L17 0.005 0.009 0.001 R16 0.004 0.008 0.001 

L18 0.006 0.010 0.001 R17 0.005 0.008 0.001 

L19 0.006 0.011 0.001 R18 0.005 0.009 0.001 
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Table A.1.  (continued) 

L20 0.007 0.012 0.001 R19 0.006 0.010 0.001 

L21 0.007 0.012 0.001 R20 0.006 0.011 0.001 

L22 0.008 0.013 0.001 R21 0.007 0.012 0.001 

L23 0.008 0.014 0.001 R22 0.007 0.013 0.001 

L24 0.008 0.014 0.001 R23 0.008 0.014 0.001 

L25 0.008 0.014 0.001 R24 0.008 0.014 0.001 

L26 0.008 0.014 0.001 R25 0.009 0.015 0.001 

L27 0.008 0.013 0.001 R26 0.009 0.016 0.001 

L28 0.007 0.013 0.001 R27 0.009 0.016 0.001 

L29 0.007 0.012 0.001 R28 0.010 0.017 0.001 

L30 0.006 0.011 0.001 R29 0.010 0.017 0.001 

L31 0.005 0.009 0.001 R30 0.010 0.017 0.001 

L32 0.004 0.008 0.001 R31 0.010 0.017 0.001 

L33 0.004 0.007 0.001 R32 0.010 0.017 0.001 

L34 0.003 0.005 0.001         
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Table A.2. Ratio of average stress variation to concrete strength for traffic Pattern II 

 Top slab Bottom slab Web  Top slab Bottom slab Web 

M0 0.010 0.018 0.001 L35 0.002 0.003 0.001 

L1 0.007 0.013 0.004 L36 0.001 0.001 0.001 

L2 0.007 0.012 0.001 R1 0.010 0.017 0.001 

L3 0.006 0.011 0.001 R2 0.009 0.016 0.001 

L4 0.006 0.010 0.001 R3 0.009 0.015 0.001 

L5 0.005 0.009 0.001 R4 0.008 0.014 0.001 

L6 0.005 0.008 0.001 R5 0.008 0.013 0.001 

L7 0.004 0.007 0.001 R6 0.007 0.012 0.001 

L8 0.004 0.006 0.001 R7 0.007 0.011 0.001 

L9 0.003 0.005 0.001 R8 0.006 0.011 0.001 

L10 0.003 0.005 0.001 R9 0.006 0.010 0.001 

L11 0.002 0.004 0.001 R10 0.005 0.009 0.001 

L12 0.002 0.004 0.001 R11 0.005 0.008 0.001 

L13 0.003 0.004 0.001 R12 0.004 0.007 0.001 

L14 0.003 0.005 0.001 R13 0.003 0.006 0.001 

L15 0.003 0.006 0.001 R14 0.003 0.005 0.001 

L16 0.004 0.006 0.001 R15 0.003 0.005 0.001 

L17 0.004 0.007 0.001 R16 0.003 0.006 0.001 

L18 0.004 0.008 0.001 R17 0.004 0.007 0.001 

L19 0.005 0.008 0.001 R18 0.004 0.007 0.001 

L20 0.005 0.009 0.001 R19 0.005 0.008 0.001 

L21 0.006 0.010 0.001 R20 0.005 0.009 0.001 

L22 0.006 0.010 0.001 R21 0.005 0.009 0.001 

L23 0.006 0.011 0.001 R22 0.006 0.010 0.001 

L24 0.006 0.011 0.001 R23 0.006 0.011 0.001 
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Table A.2.  (continued) 

L25 0.006 0.011 0.001 R24 0.007 0.011 0.001 

L26 0.006 0.011 0.001 R25 0.007 0.012 0.001 

L27 0.006 0.010 0.001 R26 0.007 0.012 0.001 

L28 0.006 0.010 0.001 R27 0.007 0.013 0.001 

L29 0.005 0.009 0.001 R28 0.007 0.013 0.001 

L30 0.005 0.008 0.001 R29 0.008 0.013 0.001 

L31 0.004 0.007 0.001 R30 0.008 0.013 0.001 

L32 0.003 0.006 0.001 R31 0.008 0.013 0.001 

L33 0.003 0.005 0.001 R32 0.008 0.013 0.001 

L34 0.002 0.004 0.001         
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Table A.3. Ratio of average stress variation to concrete strength for traffic Pattern III 

 Top slab Bottom slab Web  Top slab Bottom slab Web 

M0 0.012 0.021 0.001 L35 0.002 0.003 0.001 

L1 0.009 0.015 0.004 L36 0.001 0.002 0.001 

L2 0.008 0.014 0.001 R1 0.012 0.020 0.001 

L3 0.007 0.013 0.001 R2 0.011 0.019 0.001 

L4 0.007 0.012 0.001 R3 0.010 0.018 0.001 

L5 0.006 0.010 0.001 R4 0.010 0.016 0.001 

L6 0.005 0.009 0.001 R5 0.009 0.015 0.001 

L7 0.005 0.008 0.001 R6 0.008 0.014 0.001 

L8 0.004 0.007 0.001 R7 0.008 0.013 0.001 

L9 0.004 0.006 0.001 R8 0.007 0.012 0.001 

L10 0.003 0.005 0.001 R9 0.007 0.011 0.001 

L11 0.003 0.004 0.001 R10 0.006 0.010 0.001 

L12 0.003 0.004 0.001 R11 0.005 0.009 0.001 

L13 0.003 0.005 0.001 R12 0.005 0.008 0.001 

L14 0.003 0.006 0.001 R13 0.004 0.007 0.001 

L15 0.004 0.007 0.001 R14 0.003 0.006 0.001 

L16 0.004 0.008 0.001 R15 0.004 0.006 0.001 

L17 0.005 0.008 0.001 R16 0.004 0.007 0.001 

L18 0.005 0.009 0.001 R17 0.004 0.008 0.001 

L19 0.006 0.010 0.001 R18 0.005 0.009 0.001 

L20 0.006 0.011 0.001 R19 0.005 0.009 0.001 

L21 0.007 0.011 0.001 R20 0.006 0.010 0.001 

L22 0.007 0.012 0.001 R21 0.006 0.011 0.001 

L23 0.007 0.012 0.001 R22 0.007 0.012 0.001 

L24 0.007 0.013 0.001 R23 0.007 0.013 0.001 
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Table A.3.  (continued) 

L25 0.007 0.013 0.001 R24 0.008 0.013 0.001 

L26 0.007 0.013 0.001 R25 0.008 0.014 0.001 

L27 0.007 0.012 0.001 R26 0.008 0.014 0.001 

L28 0.007 0.012 0.001 R27 0.009 0.015 0.001 

L29 0.006 0.011 0.001 R28 0.009 0.015 0.001 

L30 0.006 0.010 0.001 R29 0.009 0.015 0.001 

L31 0.005 0.008 0.001 R30 0.009 0.015 0.001 

L32 0.004 0.007 0.001 R31 0.009 0.016 0.001 

L33 0.004 0.006 0.001 R32 0.009 0.016 0.001 

L34 0.003 0.005 0.001         

 145 



Table A.4. Ratio of average stress variation to concrete strength for traffic Pattern IV 

 Top slab Bottom slab Web  Top slab Bottom slab Web 

M0 0.012 0.021 0.001 L35 0.002 0.003 0.001 

L1 0.009 0.015 0.004 L36 0.001 0.002 0.001 

L2 0.008 0.014 0.001 R1 0.012 0.020 0.001 

L3 0.008 0.013 0.001 R2 0.011 0.019 0.001 

L4 0.007 0.012 0.001 R3 0.010 0.018 0.001 

L5 0.006 0.011 0.001 R4 0.010 0.017 0.001 

L6 0.006 0.010 0.001 R5 0.009 0.016 0.001 

L7 0.005 0.008 0.001 R6 0.009 0.015 0.001 

L8 0.004 0.007 0.001 R7 0.008 0.014 0.001 

L9 0.004 0.006 0.001 R8 0.007 0.013 0.001 

L10 0.003 0.005 0.001 R9 0.007 0.012 0.001 

L11 0.003 0.004 0.001 R10 0.006 0.011 0.001 

L12 0.003 0.004 0.001 R11 0.005 0.009 0.001 

L13 0.003 0.005 0.001 R12 0.005 0.008 0.001 

L14 0.004 0.006 0.001 R13 0.004 0.007 0.001 

L15 0.004 0.007 0.001 R14 0.003 0.006 0.001 

L16 0.004 0.008 0.001 R15 0.004 0.006 0.001 

L17 0.005 0.008 0.001 R16 0.004 0.007 0.001 

L18 0.005 0.009 0.001 R17 0.004 0.008 0.001 

L19 0.006 0.010 0.001 R18 0.005 0.009 0.001 

L20 0.006 0.011 0.001 R19 0.006 0.010 0.001 

L21 0.007 0.012 0.001 R20 0.006 0.010 0.001 

L22 0.007 0.012 0.001 R21 0.007 0.011 0.001 

L23 0.007 0.013 0.001 R22 0.007 0.012 0.001 

L24 0.007 0.013 0.001 R23 0.007 0.013 0.001 
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Table A.4.  (continued) 

L25 0.007 0.013 0.001 R24 0.008 0.013 0.001 

L26 0.007 0.013 0.001 R25 0.008 0.014 0.001 

L27 0.007 0.012 0.001 R26 0.008 0.015 0.001 

L28 0.007 0.012 0.001 R27 0.009 0.015 0.001 

L29 0.006 0.011 0.001 R28 0.009 0.015 0.001 

L30 0.006 0.010 0.001 R29 0.009 0.016 0.001 

L31 0.005 0.009 0.001 R30 0.009 0.016 0.001 

L32 0.004 0.007 0.001 R31 0.009 0.016 0.001 

L33 0.004 0.006 0.001 R32 0.009 0.016 0.001 

L34 0.003 0.005 0.001         
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Table A.5. Ratio of average stress variation to concrete strength for traffic Pattern V 

 Top slab Bottom slab Web  Top slab Bottom slab Web 

M0 0.014 0.024 0.001 L35 0.002 0.004 0.001 

L1 0.010 0.017 0.005 L36 0.001 0.002 0.001 

L2 0.009 0.016 0.001 R1 0.013 0.023 0.001 

L3 0.009 0.015 0.001 R2 0.013 0.022 0.001 

L4 0.008 0.013 0.001 R3 0.012 0.020 0.001 

L5 0.007 0.012 0.001 R4 0.011 0.019 0.001 

L6 0.006 0.011 0.001 R5 0.010 0.018 0.001 

L7 0.006 0.010 0.001 R6 0.010 0.017 0.001 

L8 0.005 0.008 0.001 R7 0.009 0.015 0.001 

L9 0.004 0.007 0.001 R8 0.008 0.014 0.001 

L10 0.004 0.006 0.001 R9 0.008 0.013 0.001 

L11 0.003 0.005 0.001 R10 0.007 0.012 0.001 

L12 0.003 0.005 0.001 R11 0.006 0.011 0.001 

L13 0.003 0.006 0.001 R12 0.005 0.009 0.001 

L14 0.004 0.007 0.001 R13 0.005 0.008 0.001 

L15 0.005 0.008 0.001 R14 0.004 0.007 0.001 

L16 0.005 0.009 0.001 R15 0.004 0.007 0.001 

L17 0.006 0.010 0.001 R16 0.005 0.008 0.001 

L18 0.006 0.011 0.001 R17 0.005 0.009 0.001 

L19 0.007 0.012 0.001 R18 0.006 0.010 0.001 

L20 0.007 0.012 0.001 R19 0.006 0.011 0.001 

L21 0.008 0.013 0.001 R20 0.007 0.012 0.001 

L22 0.008 0.014 0.001 R21 0.007 0.013 0.001 

L23 0.008 0.014 0.001 R22 0.008 0.014 0.001 

L24 0.008 0.015 0.001 R23 0.008 0.015 0.001 
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Table A.5.  (continued) 

L25 0.008 0.015 0.001 R24 0.009 0.015 0.001 

L26 0.008 0.014 0.001 R25 0.009 0.016 0.001 

L27 0.008 0.014 0.001 R26 0.010 0.017 0.001 

L28 0.008 0.013 0.001 R27 0.010 0.017 0.001 

L29 0.007 0.012 0.001 R28 0.010 0.017 0.001 

L30 0.007 0.011 0.001 R29 0.010 0.018 0.001 

L31 0.006 0.010 0.001 R30 0.010 0.018 0.001 

L32 0.005 0.008 0.001 R31 0.010 0.018 0.001 

L33 0.004 0.007 0.001 R32 0.010 0.018 0.001 

L34 0.003 0.006 0.001         
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Table A.6. Ratio of average stress variation to concrete strength for traffic Pattern VI 

 Top slab Bottom slab Web  Top slab Bottom slab Web 

M0 0.018 0.031 0.002 L35 0.003 0.005 0.002 

L1 0.013 0.022 0.006 L36 0.001 0.003 0.002 

L2 0.012 0.020 0.002 R1 0.017 0.029 0.002 

L3 0.011 0.019 0.002 R2 0.016 0.027 0.002 

L4 0.010 0.017 0.002 R3 0.015 0.026 0.002 

L5 0.009 0.015 0.002 R4 0.014 0.024 0.002 

L6 0.008 0.014 0.002 R5 0.013 0.023 0.002 

L7 0.007 0.012 0.002 R6 0.012 0.021 0.002 

L8 0.006 0.011 0.002 R7 0.011 0.020 0.002 

L9 0.005 0.009 0.002 R8 0.011 0.018 0.002 

L10 0.005 0.008 0.002 R9 0.010 0.017 0.002 

L11 0.004 0.007 0.002 R10 0.009 0.015 0.002 

L12 0.004 0.006 0.002 R11 0.008 0.014 0.002 

L13 0.004 0.008 0.002 R12 0.007 0.012 0.002 

L14 0.005 0.009 0.002 R13 0.006 0.010 0.002 

L15 0.006 0.010 0.002 R14 0.005 0.009 0.002 

L16 0.006 0.011 0.002 R15 0.005 0.009 0.002 

L17 0.007 0.012 0.002 R16 0.006 0.010 0.002 

L18 0.008 0.013 0.001 R17 0.006 0.011 0.002 

L19 0.008 0.015 0.001 R18 0.007 0.013 0.002 

L20 0.009 0.016 0.001 R19 0.008 0.014 0.002 

L21 0.010 0.017 0.001 R20 0.009 0.015 0.001 

L22 0.010 0.018 0.001 R21 0.009 0.016 0.001 

L23 0.011 0.018 0.001 R22 0.010 0.017 0.001 

L24 0.011 0.019 0.001 R23 0.011 0.019 0.001 

 

 150 



Table A.6.  (continued) 

L25 0.011 0.019 0.001 R24 0.011 0.019 0.001 

L26 0.011 0.018 0.001 R25 0.012 0.020 0.001 

L27 0.010 0.018 0.001 R26 0.012 0.021 0.001 

L28 0.010 0.017 0.001 R27 0.013 0.022 0.001 

L29 0.009 0.016 0.001 R28 0.013 0.022 0.001 

L30 0.008 0.014 0.001 R29 0.013 0.023 0.001 

L31 0.007 0.012 0.001 R30 0.013 0.023 0.001 

L32 0.006 0.010 0.001 R31 0.013 0.023 0.001 

L33 0.005 0.009 0.002 R32 0.013 0.023 0.001 

L34 0.004 0.007 0.002         
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