
CONTINUOUS ONLINE MEMORY DIAGNOSTIC

by

Musfiq Niaz Rahman

Bachelor of Science, Bangladesh University of Eng and Tech, 2005

Master of Science, University of Pittsburgh, 2013

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

in Computer Science

University of Pittsburgh

2016

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Musfiq Niaz Rahman

It was defended on

December 8th 2016

and approved by

Dr. Bruce R. Childers, Dietrich School of Arts and Sciences

Dr. Rami Melhem, Dietrich School of Arts and Sciences

Dr. Wonsun Ahn, Dietrich School of Arts and Sciences

Dr. Kartik Mohanram, Swanson School of Engineering

Dissertation Director: Dr. Bruce R. Childers, Dietrich School of Arts and Sciences

ii

Copyright c© by Musfiq Niaz Rahman

2016

iii

CONTINUOUS ONLINE MEMORY DIAGNOSTIC

Musfiq Niaz Rahman, PhD

University of Pittsburgh, 2016

Today’s computers have gigabytes of main memory due to improved DRAM density. As density

increases, smaller bit cells become more susceptible to errors. With an increase in error suscepti-

bility, the need for memory resiliency also increases. Self-testing of memory health can proactively

check for errors to improve resiliency. Developing a memory diagnostic is challenging due to re-

quirements for transparency, scalability and low performance overheads. In my thesis, I developed

a software-only self-test to continuously test memory. I present the challenges and the design for

two approaches, called COMeT and Asteroid, that are built on a common software framework for

memory diagnostic and target chip multiprocessors. COMeT tests memory health simultaneously

with single-threaded and multi-threaded application execution in anticipation of memory alloca-

tion requests. The approach guarantees that memory is tested within a fixed time interval to limit

exposure to lurking errors. On the SPEC CPU2006 and the PARSEC benchmarks, COMeT has a

low 4% average performance overhead.

Despite the promising results, COMeT showed poor scalability on multi-programmed work-

load environment with high memory pressure. I developed another novel approach, Asteroid,

which can adapt at runtime to workload behavior and resource availability to maximize test quality

while reducing performance overhead. Asteroid is designed to support control policies to dy-

namically configure a diagnostic. Asteroid is seamlessly integrated with a hierarchical memory

allocator in modern operating systems and is optimized to achieve higher memory test speed than

COMeT. Using an adaptive policy, in a 16-core server, Asteroid has modest overhead of 1% to 4%

iv

for workloads with low to high memory demand. For these workloads, Asteroid’s adaptive policy

shows good error coverage and can thoroughly test memory. Thorough evaluation of my tech-

niques provides experimental justification that a transparent and online software-based strategy for

memory diagnostic can be achievable by utilizing over-provisioned system resources.

v

TABLE OF CONTENTS

PREFACE . xiii

1.0 INTRODUCTION . 1

1.1 Requirements of a Good Solution . 3

1.2 Challenges . 4

1.3 Research Overview . 5

1.4 Contributions . 6

1.5 Thesis Organization . 7

2.0 BACKGROUND AND RELATED WORK . 8

2.1 Traditional Memory Testers . 10

2.2 Memory Error Detection and Correction . 10

2.3 OS Memory Management . 11

2.3.1 Application malloc() . 11

2.3.2 Kernel Memory Management . 13

2.4 OS Scalability Issues . 14

2.5 Related Work . 14

3.0 ONLINE MEMORY DIAGNOSTICS . 16

3.1 Observations Influencing Online Memory Diagnostics 16

3.2 My Approach For Online Memory Diagnostic 18

3.2.1 Operation . 18

3.2.2 Test Guarantee and Replenishment . 20

vi

3.3 Assumptions . 22

3.4 Framework for Online Memory Diagnostic . 23

4.0 ONLINE MEMORY DIAGNOSTIC IN SMALL-SCALE SYSTEMS 27

4.1 Architecture . 28

4.1.1 Allocation Monitor . 29

4.1.2 Guarantee Timer and Handler . 30

4.1.3 Global Allocation Timer and Handler . 31

4.1.4 Global Tester . 32

4.1.5 Adaptive Test Rate . 33

4.1.6 Page Migration . 36

4.2 Evaluation . 37

4.2.1 Methodology . 39

4.2.2 Overall Results . 40

4.2.3 Configuration . 44

4.2.4 Test Guarantee and Replenishment . 46

4.2.5 Overload Behavior . 48

4.2.6 Sensitivity to Test Latency . 49

4.2.7 Multi-threaded Workload . 50

5.0 ONLINE MEMORY DIAGNOSTIC IN LARGE-SCALE SYSTEMS 55

5.1 Asteroid . 58

5.2 Components of Asteroid . 59

5.2.1 Test Controller (TC) . 60

5.2.2 Test Dispatcher (TD) . 61

5.2.3 Concurrent Tester Threads (CTT) . 61

5.2.3.1 Core-local on-demand test . 62

5.2.3.2 Page cache recycling . 63

5.2.3.3 Skip middle-ranked blocks . 64

5.2.3.4 Cache indirect test . 64

vii

5.2.4 Test Controller and Diagnostic Control Policy 65

5.2.4.1 Operation . 66

5.2.4.2 Determining Memory Blocks to Test 66

5.2.4.3 Determining Test Configuration 67

5.2.4.4 Fixed Policy . 70

5.2.4.5 Adaptive Policy . 71

5.3 Experimental Evaluation . 73

5.3.1 Methodology . 73

5.3.2 Effect of Optimizations . 75

5.3.3 Fixed Configuration . 77

5.3.4 Adaptive Configuration . 79

5.3.5 Underlying Behavior . 81

6.0 CONCLUSION AND FUTURE WORK . 85

6.1 Summary of Contributions . 86

6.2 Future Work . 87

APPENDIX A. NOTES ON IMPLEMENTATION . 89

A.1 Core Kernel Modifications . 89

A.1.1 More out of Buddy System . 90

A.1.2 Per-CPU Page-Cache (PCP) . 90

A.1.3 Statistics Counters . 91

A.2 Kernel Module of the framework . 91

A.2.1 Administrator Control Knobs . 92

A.2.2 Testing a Page . 92

A.2.3 Page Timestamps . 92

A.2.4 Making a Page Uncachable . 93

A.2.5 Page Migration . 93

A.2.6 TLB Shootdowns . 94

APPENDIX B. DEBUGGING AND TOOLS . 95

viii

B.1 Kernel Debugging . 95

B.2 Using Vim Code Navigator and Callgraph . 95

B.3 Miscellaneous Tools . 96

BIBLIOGRAPHY . 97

ix

LIST OF TABLES

1 Configuration . 37

2 Experimental setting . 38

3 SPEC CPU2006 Benchmark Statistics (table is sorted by memory utilization) 38

4 Energy consumption . 43

5 Slowdown or Out-of-Memory (OOM) under overload 49

6 Test Controller and Diagnostic Control Policy Parameters 70

7 Workload Mixes. 74

8 Slowdown for Adaptive and Fix: Fidelity 8 and 16 77

9 Slowdown for Adaptive and Fix: Fidelity 24 and 32 78

x

LIST OF FIGURES

1 Objects of the same size grouped into bins . 12

2 Page State Diagram . 19

3 High-Level Design of COMeT . 24

4 Framework Components . 25

5 Design of COMeT . 28

6 Check expiration of tested used pages . 30

7 Handler for global allocation timer . 31

8 Tester for global allocation . 33

9 State Transition during Test Rate Change . 34

10 Adjust buddy order’s replenishment rate . 35

11 Page coverage (percentage of physical pages tested) 40

12 Slowdown relative to baseline without testing. 41

13 Slowdown relative to baseline without testing on selected PARSEC benchmarks . . 43

14 Effect of replenish-δ . 46

15 Page coverage due to migration . 47

16 Effect of replenishment rates . 48

17 Sensitivity to test latency . 50

18 Slowdown on Multi-threaded Benchmarks: Canneal 51

19 Slowdown on Multi-threaded Benchmarks: Streamcluster 51

20 Slowdown on Multi-threaded Benchmarks: Ferret 52

xi

21 Rate of TLB shootdowns on Multi-threaded Benchmarks: Canneal 52

22 Rate of TLB shootdowns on Multi-threaded Benchmarks: Streamcluster 53

23 Rate of TLB shootdowns on Multi-threaded Benchmarks: Ferret 53

24 COMeT slowdown on selected multi-instance SPEC CPU2006 workloads 55

25 Memory Access Latency in NUMA . 57

26 Asteroid memory diagnostic framework . 59

27 Paths for tested pages (dashed line) and requested pages (solid line) 62

28 Example MARCH test using cache indirect testing with one pattern 65

29 Software architecture and information flow for TC 66

30 Adaptive policy to find test configuration . 71

31 Impact of cache indirect testing, page recycling and skipping middle ranks for CTT 75

32 Impact of node local dispatch by TD . 76

33 Comparison of performance, fidelity and threads for Adaptive and Fix. 80

34 Slowdown of individual benchmark instances in H2 workload. 82

xii

PREFACE

I like to dedicate my dissertation to my parents (Mizanur Rahman and Zeenat Jahan Begum), my

wife (Meher Nigar) and my son (Shayan Rahman). Without their encouragement and support,

none of this would be possible. I like to thank my committee for their valuable feedback to mature

the work done in my dissertation. I am thankful to the Computer Science Department for all

the help I received during my research. Finally, I am very thankful to my advisor (Dr. Bruce R.

Childers) for his enormous support and feedback throughout my research. My dissertation is based

upon work supported by the National Science Foundation under grant numbers CCF-1422331 and

CNS-1012070.

xiii

1.0 INTRODUCTION

Due to a good balance of cost, power, performance and density, DRAM has long been used for

main memory. With technology scaling, however, evidence is mounting that reliable operation

is becoming a significant challenge for DRAM. Microsoft, Google, AMD and others have found

indications that transient and permanent multi-bit errors are prevalent in DRAM [8, 38, 50, 66, 71].

At increasingly small device scales and operating voltages, it is probable that these errors will

become even more common at technology node sizes below 22nm. Hence, there is a growing need

for new resiliency techniques to mitigate memory errors.

A memory diagnostic is a resiliency technique that can play a valuable role in error mitigation

for memory: A diagnostic exercises memory under varying scenarios to expose marginal locations.

A diagnostic’s strength is it can exercise memory in many ways to expose errors that only manifest

themselves in specific conditions. Memory diagnostics are complementary to error mitigation; a

diagnostic provides information to guide mitigation. They can be used to assist in online repair and

recovery, forestall memory replacement, and direct error correction. For example, page retirement

is used in Solaris and Linux to implement error avoidance of “bad” memory locations. It has also

been proposed for managing failed memory pages in emerging technologies, such as phase-change

memory [22].

When an error is discovered, the physical page frame containing the error is quarantined to

avoid future use. A diagnostic could indicate the pages to retire as a triage measure to hold off on

replacing a DRAM DIMM until an operator can access the machine. Similarly, diagnostic results

can guide error correction. For example, ArchShield is a strong error correction scheme for future

memory technologies with high rates of transient and permanent errors [49]. It uses a memory

1

diagnostic to build a fault map of locations that need extra redundancy for repair. Error correction

(ECC) can also guide the diagnostic: When ECC is triggered with a relatively high frequency (i.e.,

to correct a bit error with a single-error-correction, double-error-detection, SECDED, code) for

some region of memory, a diagnostic can be run to more thoroughly test the memory, particularly

to check whether the memory is actively failing (i.e., possibility of multi-bit errors that cannot be

corrected).

While memory diagnostics extract useful information, they tend to consume significant re-

sources (e.g., bandwidth) and require unfettered access to physical memory. A diagnostic performs

write, read and compare operations with test bit patterns in multiple sweeps through the memory.

The process is inherently memory bound and time consuming, particularly for the most advanced

diagnostics that apply several bit patterns in many sweeps. Consequently, most memory diagnos-

tics are done offline when the system is not actively serving a workload, such as during boot-up [4]

or periods of low utilization (e.g., overnight) [65]. However, with server consolidation keeping

machines busier and the growing error rates, there is a need for online diagnostics that operate

while the system does actual work. Of course, a memory failure can happen at any moment, and

an online diagnostic will be more responsive than an offline one.

Contemporary computing systems are equipped with a number of processing cores and large

main memory capacity to execute a wide range of applications. Over the past few decades appli-

cations have become diverse in CPU, memory and IO usage. Therefore, system designers often

over-provision system resources to handle workload variations. This over-provisioning provides

an opportunity to use under-utilized system resources to perform various system diagnostics that

protect the system from potential failures before they take place. One over-provisioned resource

is idle processor cycles. These idle cycles can be utilized to test the system memory for errors

and thereby minimizing the vulnerability of the system to an error. The primary goal of a memory

diagnostic is to increase resiliency for many application types and, hence, it needs to handle and

scale for multi-programmed and multi-threaded workloads with similar efficiency. In this research,

my hypothesis is a diagnostic can be integrated into the live OS so that over-provisioned system

resources are utilized to make the system more reliable to the user.

2

1.1 REQUIREMENTS OF A GOOD SOLUTION

To help address memory resiliency, in this research I designed and developed an online mem-

ory diagnostic inspired by conventional standalone memory testers (e.g., Memtest86+ [4] and PC

BIOS Power-on Self Test). These conventional approaches usually operate in a non-transparent

and offline setting. To make an online diagnostic a good solution, four requirements should be

maintained in it.

The first requirement of a good solution to designing and developing this diagnostic is to check

memory health online in a system. Because memory can fail at any time, a solution should aim to

check memory health in a deployed system, as it is actively serving a workload. Indeed, the actual

conditions, e.g., temperature, age and utilization under which the system is operated can influence

the appearance of errors and failure. An online test will check the health in an actual operating

context, similar to a wearable heart rate or blood sugar monitor.

The second requirement is the diagnostic must minimize its impact on performance of the

system. Due to memory access latency and using processor cycles to access memory, a software-

based diagnostic can pose considerable impact on system performance. Given these constraints,

the diagnostic aims to maximize test rate and thoroughness.

The third requirement is that the diagnostic must be transparent to applications and the OS.

Changes in the OS need to be minimized so that the diagnostic does not hamper original OS func-

tionalities. At the same time, applications must be kept unchanged. This requirement also ensures

that the diagnostic will become a good candidate for a quick adoption by the user community.

The last requirement is to test memory constantly and thoroughly in a way that stresses the

memory to expose marginal behavior, which may or may not actually manifest itself during ap-

plication execution. A good solution ensures that the test includes the entire memory subsystem

and guarantees that memory health is regularly checked. Failures can happen in many places of

the memory system, ranging from the memory controller, to the interconnect, to the DIMMs, and

individual chips. Even with error correction and scrubbing techniques, marginally faulty locations

can behave in a way that is not covered by the error correction. For example, SECDED is com-

3

monly used to protect the memory chips. However, this code can only correct a single bit error,

but multi-bit errors are possible. The aim is to test the memory for marginality; it is not to provide

fault tolerance. By proactively testing the memory, resiliency can be improved.

1.2 CHALLENGES

To meet the requirements for a good solution to a memory diagnostic, five challenges must be ad-

dressed. These challenges influence various aspects of my diagnostic approach such as its design,

operation, and implementation. The challenges are described below.

The first challenge lies in developing a testing strategy. Memory pages can be tested ahead of

time of allocation concurrently with running applications or they can be tested on-demand at the

time of a page allocation request. Another strategy can be designed that combines these two pos-

sibilities. These strategies will have different impacts on performance degradation of the system.

The second challenge is deriving test parameters for my memory diagnostic. There are a

number of parameters (e.g., test rate, page expiration time, etc.) that influence testing. During

runtime, the diagnostic needs to set and dynamically adjust values for these parameters to ensure

performance efficiency and provide a guarantee that memory health is regularly checked.

The third challenge is scaling the diagnostic to large systems. The diagnostic needs to handle

multi-threaded and multi-programmed workloads and increasing number of CPUs and memory

capacity. It must test large memory capacity in large systems with similar efficiency as small

systems.

The fourth challenge is meeting performance constraints. Given a performance budget, the

diagnostic should maximize test rate and guarantee a regular health check of the entire memory.

The final challenge is the implementation of the diagnostic. It will be highly dependent on the

OS memory management which is a complex piece of software. So, the implementation needs to

be carefully crafted and integrated so that the functionalities and subtleties of the OS design and

4

implementation are not adversely disturbed. Further, the implementation should aim to localize

any OS changes, given the complex, monolithic structure of most modern OSes.

1.3 RESEARCH OVERVIEW

In my dissertation, I developed Continuous Online Memory Testing (COMeT), a software frame-

work that can be used to create online memory diagnostic to perform error diagnosis on phys-

ical memory. This diagnostic can sweep through memory at regular intervals with a MARCH

test [76, 80]. A MARCH test writes specific bit patterns on physical locations of memory, reads

them back, and verifies the correctness of the values to determine marginal erroneous locations.

Typically, a more thorough test with many bit patterns can discover more lurking error conditions

including unusual but possible ones. Memory pages with detected errors can be retired, scrubbed

or possibly salvaged for small kernel buffers [77]. By avoiding pages with errors, especially ones

with errors that are uncorrectable by hardware mechanisms (e.g., multi-bit errors for SECDED),

reliability is improved. COMeT exercises the entire memory system, including the memory con-

troller(s), memory interconnect, DIMMs, and associated glue logic.

The implementation of COMeT retrofits the OS memory manager with a memory diagnostic

capability. COMeT consists of a test controller and tester threads. The test controller works as an

intermediary between the memory manager and the memory tester threads. It is designed to be

adaptive to memory pressure in the system. A tester thread is responsible for executing MARCH

tests on a given memory page. A set of testers can be executed per node which consists of a num-

ber of cores and memory. When testing is finished, the tester thread returns fault-free pages to the

memory manager. A bad memory page is marked unusable and isolated from the OS by the test

controller. COMeT is highly configurable by system administrator who can set resource limitation

for COMeT. The design of COMeT aims to minimize the performance impact by fairly distributing

testing tasks among tester threads depending on their processing capacity and current load while

5

staying within the resource limit. In addition, COMeT provides functionalities to thoroughly eval-

uate diagnostic efficiency and performance impact on the system where it is deployed.

1.4 CONTRIBUTIONS

My dissertation makes a number of contributions to the challenges of online memory diagnostic.

First, I presented the design of a software-only process to continuously test main memory’s

health while the system is up and running. I developed techniques to test memory ahead-of-

allocation in a CMP and adaptively adjust test rate to minimize overhead, while achieving a guar-

anteed bound on the maximum time between successive tests of a page.

Second, I demonstrated a number of parameters which can be used to control an online testing

behavior effectively. I provided in-depth guidance to system administrators on proper setting of

these parameters based on their target system of deployment.

Third, I developed new algorithms which work with OS memory management to permit the

diagnostic and memory management to work in harmony. These algorithms show how to integrate

different test parameters to achieve a maximum memory test rate.

Fourth, I addressed COMeT’s scalability issues through a set of a novel techniques in Asteroid.

Using numerous experiments, I showed how Asteroid can scale a memory diagnostic on multi-

programmed workload with a wide range of memory demands. My techniques also addressed

non-uniform memory access while testing in large multi-core systems.

Fifth, I showed a number of interesting optimization techniques which can be crucial to meet

the given performance budget of any software-based online diagnostic. Some of these optimization

techniques also provide helpful insight into OS memory allocation and access pattern in general.

Sixth, I evaluated performance, energy, and resiliency of COMeT to memory errors, includ-

ing an analysis of important design and configuration choices. Additionally, I showed COMeT’s

effectiveness to reduce system downtime by proactively isolating bad memory pages.

6

Finally, I provided a description of how COMeT can be structured and integrated with an OS

kernel. This description can be used as a reference for the OS developer community with ideas and

subtle design issues on memory diagnostic in the OS.

1.5 THESIS ORGANIZATION

Rest of my dissertation is organized into four chapters. In Chapter 2, motivation and background

of my work are described. Relevant works by other researchers on memory diagnostics are also

mentioned in this chapter. Chapter 3 introduces my diagnostic framework and provides a high-

level overview of components of the framework. Chapter 4 presents COMeT which is a memory

diagnostic based on my framework for small-scale systems. COMeT’s effectiveness, evaluation

and limitations are discussed in detail in this chapter. The corresponding work is published in [56–

58]. Asteroid is presented in Chapter 5 which provides an in depth discussion on my novel tech-

niques to eliminate scalability limitations of COMeT in large-scale systems. This chapter also

presents a number of interesting optimization techniques in Asteroid to achieve higher test speed

than COMeT. The corresponding work is published in [54, 55]. In conclusion, Chapter 6 summa-

rizes the work and contributions of my dissertation and highlights potential future work.

7

2.0 BACKGROUND AND RELATED WORK

For several decades, DRAM has been the best choice for main memory due to its relatively low

cost, aggressive scalability, low power and good performance. Continued decreases in bit cell size

have led to large main memories–a laptop can be purchased with several gigabytes of memory,

while a server can easily have tens of gigabytes. The capacity enabled by DRAM has had a direct

consequence on the applications, execution models and processors employed today. While the

relentless scaling of DRAM has been a key enabler, it also has a down side. As cell size and

operating voltage are decreased, the memory becomes more susceptible to errors [10, 40, 78].

Background radiation may lead to more “single event upsets” (i.e., independent random bit flips)

in a small cell size. Other error types, such as interdependent multi-bit transient and hard errors,

are also possible, and indeed probable, at the extreme scales used in high-density DRAM [8, 71].

With new materials, smaller device geometry and increased process variations, these error types

may become as important as single event upsets, particularly at operating margins [15, 34, 36, 72].

A program will be corrupted only if a memory location with an error is accessed and the “bad

value” is propagated to sensitive state [36, 37, 47, 48].

A two and half year study of reliability in Google’s data centers revealed that nearly one third

of their machines and 8% of memory modules—using today’s memory technology—experienced

at least one memory error [66]. The study suggested that the errors were inter-related, and thus, un-

likely caused by independent bit flips. This result is even more surprising given that memory with

uncorrectable errors was quickly replaced. Further, in another study [50] by researchers from Mi-

crosoft analyzed Windows crash reports collected from thousands of consumer PCs to discover the

dominant causes of failure. Consumer PCs usually lack the support for error handling (e.g., ECC).

8

Their study revealed that DRAM error is one of the three major causes of crash and these errors are

recurrent. Their error statistics is collected over only about 1.5% of the average memory capacity

across several thousands of consumer PCs. Hence, they suspected that the number of DRAM errors

in the entire memory is much worse. They also observed a positive correlation between CPU speed

and DRAM errors due to the package temperature. While the CPU speed continues to increase,

the package temperature will promote more DRAM errors in future. An overarching conclusion

of both of these studies was resiliency techniques are necessary to successfully manage memory

reliability.

Two very recent large scale studies [8, 71] have revealed a further interesting trend in DRAM

faults. Authors in [71] made two important conclusions. First, SECDED ECC is poorly suited

to modern DRAM subsystems and the rate of undetected errors is too high to justify the use of

SECDEC ECC in very large scale systems. Second, the choice of DRAM vendor is an important

consideration for system reliability. In [8], the authors found that correcting codes optimized for

adjacent bit errors are less effective. They also noticed that the number of multi-bit corruptions

between 7am and 6pm is double the number of multi-bit corruptions during the night. Their con-

clusion is that the evidence of SDC occurring in an isolated and independent fashion, making it

extremely hard to detect and/or predict. Without proper diagnostic, these errors will have signif-

icant adverse impact on system by causing crash and silent data corruption. Memory diagnostic

techniques will become vital as DRAM node size is further decreased.

While these studies strongly motivate my work, they do not propose a specific technique to

combat errors that occur in DRAM chips. Numerous studies have investigated mechanisms for

error diagnosis and recovery [36, 37, 64], checkpointing and rollback [52, 70], detection and repair

of bugs [18, 25, 51, 53, 59, 63], software fault tolerance [46, 60, 62, 82] and online self test [26, 39].

Many of these methods, including SWAT [36, 64], SWIFT [61], core self testing [26, 39] and

duplicated threads [60, 82], rely on free resources (cores, functional units, etc.). However, these

approaches target the processor rather than main memory with added hardware support, application

modification, compiler support, and/or replicated state.

9

2.1 TRADITIONAL MEMORY TESTERS

Traditional testers (e.g., Memtest86+ [4], POST by BIOS, etc.) repeatedly execute write, read and

verify operations on physical memory locations. Different bit patterns are written and read back to

check for the potential and presence of various error types, including multi-bit errors. The advan-

tage to these techniques is they can stress memory with many patterns to find marginal locations

that have errors only in particular situations. Memory testers are used during manufacture, boot up,

or machine malfunction (for diagnosis). They are not designed to determine memory health in a

live system. Because the testers sweep through the whole memory, they can have large test latency.

During manufacture, test time is expensive and may be done for only a short burn-in period [14].

Similarly, it can take a long time to thoroughly test memory during the boot process.

2.2 MEMORY ERROR DETECTION AND CORRECTION

Computer memories are often protected by some form of parity-check code. In a parity-check

code, information symbols within a word are processed to generate check symbols. These two

symbols together form the coded word which is called ECC (error correcting code). Given the fact

that soft errors and hard errors are prevalent in DRAMs, ECC has been used to detect and correct

such errors in server computers. Most memory controllers use Single Error Correction Double

Error Detection (SECDED) ECC because of its low overhead and easy implementation. ECC uses

Hamming codes to encode memory bits and Hamming distance to distinguish between valid and

invalid Hamming codes. SECDED uses a combination of SEC Hamming code and parity checking

where parity checking augments Hamming code to provide double-bit error detection.

For main memory, the most viable hardware approach relies on embedding some form of in-

formation redundancy in DRAM. Such redundancy provides a check on data integrity and/or a

capability to restore the original data on detecting an error(s). For example, the most popular

10

DRAM protection practice employs error correction codes (ECC) at the DRAM module level. A

typical ECC is capable of correcting a single-bit error and detecting two errors in a single error

correction unit (typically 64 bits), commonly referred to as SECDED. Other schemes [21, 83]

distribute memory content (and redundancy) across different chips (or different DIMMs) to pro-

vide stronger protection against multiple bit errors. For example, IBM’s chipkill [21] can scatter

memory bits in a single ECC unit to multiple chips. A smart “virtualized” embodiment of the

ECC scheme [81] was recently proposed to decouple the actual ECC from the data in memory

and separate the process of detecting errors from the rare need to also correct errors (to save en-

ergy). Similar “smart” encoding schemes have been applied to caches [7, 28, 29]. Other encoding

schemes have also been proposed to reduce bit-flips in DRAM [67] and in emerging non-volatile

memory technologies, e.g., phase-change-memory [42–44, 68].

2.3 OS MEMORY MANAGEMENT

The memory diagnostic in a live system must work closely with the OS memory management.

The diagnostic will depend on the OS memory manager to collect memory pages for testing. The

fundamental concept on how applications and the OS kernel manages their memory is briefly

described below.

2.3.1 Application malloc()

malloc() is a function for efficient management of dynamic objects in memory. During execution of

a process, different objects sizes in memory need to be allocated and released. Without proper man-

agement, memory allocation becomes slow, dynamic memory becomes fragmented and memory

utilization drops. Further, dynamically allocated memory in Symmetric Multiprocessors (SMPs)

can lead to performance degradation due to false sharing of cache lines among threads of a process

running on separate cores or processors [9, 35]. Depending on these performance factors (e.g.,

11

16 24 32 … 512 576 640 … 231

2
exact	
bins 4 64 65 127

sorted
binsindex

size

chunks

Figure 1: Objects of the same size grouped into bins

speed, memory fragmentation and locality, cache utilization etc.) on various hardware platforms,

different variants of malloc() have been developed. Fundamentally these implementations create a

cache of pre-allocated objects in a memory area called ‘heap’ in the process address space. These

objects are grouped together based on their sizes in the heap. Figure 1 shows a cache with size

groups called ‘bins’. Each bin contains a list of free objects of corresponding size. Inside a bin,

two neighboring free objects might be coalesced to form a free object of larger size and moved

to corresponding bin at a higher index. This design was proposed by Doug Lea [33] and used in

the GNU C Library. During allocation, objects are taken out of ‘smallest-first’ object-size bin that

‘best-fits’ the size of allocation and handed to the requesting process. On release, free objects are

put back to the specific-sized bin they belong to. The heap can be extended using the sbrk() system

call in case a process requires more objects than can fit in the heap capacity. For requests larger

than 32 pages, malloc() employs mmap() to allocate a corresponding number of virtual pages from

the OS [35].

12

2.3.2 Kernel Memory Management

The Linux kernel handles its free memory in two techniques. In the first technique, the kernel

uses “Buddy System” to keep track of its free memory pages [20, 41, 45]. Memory allocation is

partitioned among global and per-CPU page frame cache (PCP) allocators. Each allocator has free

lists that hold blocks of contiguous unused pages. The global allocator uses buddy lists, where a

free list is an order of rank i that holds free blocks of size 2i, where 0 ≤ i ≤ 10. Modification to

buddy blocks during memory allocation and release is done using the Buddy Algorithm [32]. For

PCP allocation, there are separate free lists (hot and cold) for each core, which locally cache free

blocks of size one page. The allocators have separate free lists for different memory zones (DMA,

normal and high). Allocation is hierarchical: the PCP allocator is tried first. If this fails, then the

global allocator is tried.

The second technique is called “Slab Allocator” [12] which is essentially another implementa-

tion of malloc(). Each slab in a slab allocator acts as a bin. The slab allocator has all the advantages

of application-level malloc(). Additionally, to improve cache utilization, the slab allocator uses ob-

ject coloring to pack objects in a slab at different starting addresses. It reduces the probability that

objects from the same slab are stored at the same location in the cache and conflict.

A memory diagnostic must work co-operatively with memory management functionalities pro-

vided by the OS. There are several ways a memory diagnostic can be implemented. For example, a

diagnostic can be a stand-alone user-mode application which allocates memory using standard li-

brary functions, e.g., malloc() and test that memory. However, such diagnostic lacks control on the

location of the memory pages allocated by the library and the OS. Another technique is to modify

the memory management libraries to provide memory testing functionalities. The drawback of this

technique is that applications need to be modified and re-built with new libraries. A more effective

way is that the diagnostic can be integrated within the kernel as a kernel module or a kernel thread.

Such diagnostic has privileged access to system memory and can test memory in background while

applications are running. Some code change in the kernel may be required for this diagnostic to

gain a better access over system memory resources.

13

2.4 OS SCALABILITY ISSUES

Contemporary OSes (e.g., Linux, Windows, Solaris) use numerous locking mechanisms (e.g., spin-

locks, reader-writer locks, etc.) to synchronize access control to shared resources. For simplicity,

these locks were developed to be coarse-grained. Eventually, they were not scalable on multicore

machines with more than eight CPU cores [17, 79]. The OS community developed more scalable

locks, e.g., RCU locks, MCS locks, etc. and now the community is shifting their focus to the

direction where access synchronization scalability is achieved using light-weight message passing

[11, 16, 17, 30]. Regardless, these new OSes still need time to mature in design and go through

a time-consuming development and rigorous testing before they are used in consumer systems.

Further, NUMA is becoming more prevalent in newer systems to manage and scale with increased

memory capacity and multiple CPU cores efficiently. Newer Linux kernels support NUMA and

provide user-mode libraries (libnuma [31]) so that application programmers can use NUMA fea-

tures. In addition to improved locking and NUMA support, Linux introduced local run queues [6]

in process scheduling and improved load-balancing [2] in multicore systems. These improvements

and features in the OS can be utilized to make a memory diagnostic scalable with large amount of

memory.

2.5 RELATED WORK

Researchers have predicted [13, 15] and observed [8, 19, 50, 66, 66, 71] high incidences of errors

in processors and memory chips built at nanometer-scale. Both smaller transistor geometry and

higher chip density aggravate the problem. A field study revealed that DRAM error rates are

surprisingly high, with 25,000 to 70,000 errors per billion device hours per Mbit and dominated by

hard errors [66]. This study found more than 8% of memory modules affected by errors per year.

Another study found evidence of SDC occurring in an isolated and independent fashion, making it

14

extremely hard to detect and/or predict [8]. Other studies [27, 38, 73] made similar observations.

This past work motivates COMeT, but does not propose how to combat errors.

Two previous schemes are related to my work, Elm et al. [23] and Singh et al. [69]; like my

work, they propose a software memory test strategy. While both proposals implement OS memory

testing, the goals and strategies are different than COMeT. First, the past proposals assume ECC

and test memory occasionally to catch faults with no consideration for page migration. Instead,

COMeT is agnostic to the presence of ECC—it can work both with or without ECC support. If

ECC is present, it can be used to triage memory regions that are weak to identify them for more

aggressive testing by COMeT. Alternatively, if ECC is not present, COMeT can test memory

continuously as described in the paper. Second, neither proposal is adaptive; they allocate a fixed

chunk of memory for testing at a fixed rate assigned by the system administrator. They do not relate

test strategy parameters and error coverage. Third, they do not study memory test performance on

individual programs. For example, Elm et al. [23] measured and reported “system performance

degradation” (essentially, lost cycles) due to their memory tester during a one-week experiment

with 25 complete tests of a 32MB main memory. Singh et al. [69] employed two programs but

detailed memory access behaviors were not discussed or related with the coverage results. Lastly,

these previous studies did not consider CMPs.

More recent research (e.g., RAMpage [65] and FlipSphere [24]) has shown progress on soft-

ware online memory testing. In RAMpage [65], an online scheme is described to test memory

during low utilization; it does not guarantee the vulnerability window nor adapt test strategy.

RAMpage relies on OS memory allocator interface to get memory pages to test while COMeT is

integrated much deeper with the OS memory allocator to sample system memory usage behavior at

runtime and get untested memory pages for testing. FlipSphere [24], on the other hand, is a library

which provides error detection and correction to malloc system call. It offloads ECC calculation

to off-chip hardware accelerator (Intel Xion Phi co-processors [5]). Their technique is on-demand

memory testing and suffers from very high performance overhead (85%). COMeT’s techniques are

orthogonal to FlipShpere and as a future improvement, COMeT can use FlipSphere’s hardware-

based ECC calculation approach to make MARCH tests more efficient by using off-chip hardware.

15

3.0 ONLINE MEMORY DIAGNOSTICS

An online memory diagnostic is a software process that checks for errors in physical memory.

Errors in DRAM can manifest themselves at any point [8, 71], which necessitates that physical

pages are constantly checked. Memory pages with detected errors can be retired and isolated by the

OS. By avoiding pages with errors, especially ones with errors that are uncorrectable by hardware

mechanisms (e.g., multi-bit errors for SECDED), reliability is improved. In essence, an online

memory diagnostic sweeps through memory at regular intervals with a MARCH test [76, 80].

A MARCH test writes specific bit patterns on physical locations of memory, reads them back,

and verifies the correctness of the values to determine marginal erroneous locations. Typically, a

more thorough test with many bit patterns can discover more lurking error conditions including

unusual but possible ones. Multiple MARCH tests can be used with varying periodicity to check

for different error types.

3.1 OBSERVATIONS INFLUENCING ONLINE MEMORY DIAGNOSTICS

Although conceptually simple, there are numerous ways that memory testing can be structured

and integrated as an online and software-only method. Four observations influenced my design

and implementation:

1. The frequency at which memory pages are tested impacts the likelihood that an application will

16

encounter a page with an error—the more recent an actively used page is tested, the less likely

an application will hit an error on the page. Thus, the amount of time between successive tests

on the same physical page determines a “vulnerability window” during which a memory access

could suffer an error. To test the entire memory capacity can be time consuming, which can

lead to a long vulnerability window. However, the vulnerability window should be minimized

for a better error resiliency.

2. Memory errors can equally affect single-threaded and multi-threaded applications. An appli-

cation is vulnerable only to errors on pages that are used. Pages that are allocated, or will

be allocated in the near future, must be tested, but unused ones do not have to be checked.

Thus, depending on memory utilization, only a portion of physical memory actually needs to

be tested. By checking a smaller number of used pages, test frequency can be increased to

reduce the vulnerability window. Alternatively, the test frequency can be set for total memory

capacity, and less memory could be tested to reduce overhead.

3. Applications often have high page turnover. A page may be requested, allocated and then

released quickly. After a page is released, the vulnerability window for that page may not have

been reached yet. Thus, a page that has been recently tested and returned does not have to be

tested again until the guaranteed duration of the vulnerability window is reached. In essence,

this reduces the amount of testing that has to be done. Some pages may be held for a long

period and must be tested while they are being used.

4. The test rate only partially determines the actual error exposure of an application. An error

may appear shortly after a page is tested, but before the page is tested again. A program will

be corrupted only if the error location is accessed and the “bad value” is propagated to sensitive

state [36, 37, 47, 48]. Thus, even a modest limit on the vulnerability window duration can be

effective.

17

3.2 MY APPROACH FOR ONLINE MEMORY DIAGNOSTIC

Based on these observations, one way to do memory testing is “on demand”. An on-demand

strategy can reduce the amount of testing by focusing on pages that are actually allocated. A

physical page is tested on-demand when it is allocated and mapped to a virtual page. A page that

is held for longer than the vulnerability window is periodically tested by migrating the page to one

that is tested.

However, an on-demand strategy is naı̈ve: It introduces large performance overhead since it

is inherently sequential. In particular, on a page allocation, the amount of time spent to test a

page is fully observed because an application is paused while waiting for its allocation request

to be satisfied. Similarly, when page migration is done sequentially with program execution, the

program has to wait. Although some migration latency can be masked by testing and copying

pages during blocked periods for an application, this process is too unpredictable to guarantee the

vulnerability window.

A less time consuming and more predictable approach can check page health concurrently to

program execution in anticipation of allocation. With available idleness in a typical commodity

CMP, a free core (or cores) can be used to constantly test memory from which allocation requests

are satisfied. Migration can be used to copy long-held pages to ones that are already tested before

migration begins. This “ahead-of-time” strategy plans for allocation by executing MARCH tests

on pages before requests are placed.

3.2.1 Operation

The key to ahead-of-time diagnostic is the maintenance of a pool of unused tested pages from

which memory allocation requests are satisfied. The allocation requests may come from an appli-

cation’s memory usage patterns or the test processes employed by the strategy. The tested pages

in the pool must be regularly replenished (i.e., newly tested pages are added as pages are removed

or grow old). This strategy cooperatively works with the OS memory allocator to provide tested

18

Untested

Free

Tested

Free

Tested

Used

Tested Allocated

Test expired:

Age > test lifetimeMigrated test expired:

Age > test lifetime

Released:

Age < test lifetime

No available tested page:

tested on-demand

Failed

Failed

test

Figure 2: Page State Diagram

pages and gather feedback about memory demand to adjust the replenishment rate.

The ahead-of-time diagnostic guarantees that every page used by an application has had its

health checked within a fixed time interval. To express this guarantee, I defined age(p) as the

amount of time elapsed since physical page pwas last tested. My approach guarantees age(p)+δ <

test lifetime for all pages p used by an application. δ is a small constant to allow the diagnostic to

check for page expiration prior to it happening. In this way, a bound, determined by test lifetime,

is placed on the vulnerability window which assures a sound memory health.

To understand ahead-of-time diagnostic, first consider a simplified memory allocator. Assume

this allocator has a single free list and maintains a page in one of two states – free or used. A

free page is on the free list and available for allocation. Physical memory pages are transitioned

between these states based on allocation and de-allocation requests. The diagnostic adds states and

transitions to the simplified allocator’s state diagram to track whether a page is tested or untested.

Figure 2 shows state diagram for the diagnostic. age(p) is the amount of time that page p spends

in a tested state (free or used). Initially, p is untested free. At some point, p is selected to be tested

and transitioned to tested free or failed. On a successful test, p is moved to tested free and remains

in this state until it is allocated or age(p) + δ ≥ test lifetime. A page that does not pass the test is

retired and put in the failed state.

When a tested free page p is requested, it is transitioned to tested used. However, it is possible

for p to remain in tested free long enough that age(p) + δ ≥ test lifetime, which is called “test

19

expiration”. To maintain its guarantee, the diagnostic must inspect p’s age to ensure the page has

not expired. If p expired, then it is transitioned to untested free to refresh its test. A different

unexpired tested free page, q, is selected instead to satisfy the memory request.

Similarly, a tested used page p can also expire. In this case, the diagnostic should replace p

with a tested free page q before p expires. p is migrated to q, and the states of p and q are updated to

untested free and tested used, respectively. This diagnostic must periodically check p’s age while

the page is in use. Thus, the transition from tested used to untested free happens on a regular time

interval during application execution.

Finally, a transition happens from untested free to tested used when there are not enough pages

in tested free to satisfy a memory request. It causes a page to be tested on-demand at the moment

of a request, incurring overhead. This diagnostic tries to avoid this transition maintaining enough

tested free pages to meet instantaneous demand. Although, in reality, errors can manifest while a

page is being used by an application, the diagnostic does not handle the situation.

3.2.2 Test Guarantee and Replenishment

My “ahead-of-time” diagnostic relies on two rates. The first rate, termed the “guarantee rate”, con-

trols how often to check whether tested used pages expire. The second rate—the “replenishment

rate”—determines how often to replenish tested free pages.

The guarantee rate is determined by test lifetime. To maintain age(p) + δ < test lifetime,

the rate must be at least 1
test lifetime−δ . This rate represents only how often my approach needs to

check whether tested used pages should be migrated and released. Pages that are tested free can

have their age checked at time of allocation, as previously described. To set the guarantee rate,

test lifetime has to be determined. A simple strategy based on physical memory capacity and

utilization can be used:

test lifetime = α× (mem cap
page size)×mem util×test latency

test res

In this equation, α ≥ 1 is an adjustment factor set by the system administrator to scale test lifetime

according to system needs. A larger power or performance budget means a higher test rate can be

20

used. A low error rate would normally permit a slower test rate than the one solely established by

memory capacity.

mem cap is the memory capacity and page size is the memory page size. These parameters

reflect the physical memory configuration. mem util is the average percentage of used memory.

mem util = 1.0 sets the guarantee rate conservatively enough that the entire capacity can be

tested. However, the whole memory may not be fully utilized (i.e., all pages in tested used) at any

moment, and the guarantee rate could be set higher by adjusting mem util . The slack from less

than peak utilization can alternatively be exploited to reduce the performance and energy cost of

checking memory health since fewer pages have to be checked in unit time.

test latency is the amount of time needed to test one page. This latency depends on what tests

are done. For example, a comprehensive MARCH test that makes multiple passes over physical

memory to read and write different bit patterns could take upwards of 1ms per page (there is no

caching!). test res influences the test rate—the more computational time that the diagnostic is

allowed for testing, the faster the guarantee rate. In a “core rich environment”, we may be able to

dedicate a core(s) to test memory and set test res = 1 .0 . In contrast, α can enforce a high test

rate even under low memory pressure.

Unlike the guarantee rate, the replenishment rate does not effect the vulnerability of an ap-

plication to errors. Instead, it determines how often the pool of tested unused pages is filled. Its

purpose is to avoid the “demand transition” in the page state diagram. To replenish the pool, a set

of untested free pages need to be acquired, a MARCH test done, and the pages returned. When

the pages are released, they are put in the tested free state. The page tests are done concurrently

to application execution. The higher the replenishment rate, the more likely that an application

request can be satisfied with tested free pages and the on-demand transition in Figure 2 can be

avoided. However, a high replenishment rate puts more load on the memory subsystem. It also

removes more pages on average from the memory allocator, impacting the allocator’s ability to

satisfy requests in overload situations. It also causes the allocator’s performance to suffer due to

locking and internal bookkeeping (e.g., breaking buddy blocks into smaller ones). If the replen-

ishment rate is set too low, there may not be enough tested free pages available, which can cause

21

overhead due to the on-demand transition.

The “ahead-of-time” diagnostic walks the tight rope between a high and a low replenishment

rate by monitoring memory requests to adjust the rate. As described later, my implementation

uses an adaptive strategy based on recent history of memory requests to determine a current re-

plenishment rate. The rate by itself is insufficient since it can be satisfied in different ways. Two

parameters determine the replenishment rate: block demand and replenish-δ. block demand is

number of pages to test every interval of replenish-δ time. My approach dynamically determines

block demand , but replenish-δ is statically fixed.

3.3 ASSUMPTIONS

Several assumptions are made to isolate the fundamental concepts and strategies of my approach

from its implementation details in real systems. My assumptions are stated below.

First, my techniques will not test memory that belongs to the OS kernel. The kernel memory is

assumed to be fault-free and can be tested with appropriates changes to the OS memory manager.

I developed a general methodology for online memory testing and apply that methodology to

application memory.

Second, my approach targets detecting hard errors in DRAM including the ones which only

manifest under certain operational conditions (e.g., low power budget, temperature, stress on

DRAM cells due to reading and writing certain MARCH test patterns, etc.). Detection of SEUs

and similar short term transient errors is not a goal of my approach.

Third, on a fault discovery, a memory page is isolated and flagged unusable by the OS instead

of replacing the memory module.

Fourth, my approach assumes that the system memory controller exposes information on

DRAM row buffer open and close operations. This information is used by tester to ensure test

patterns land in DRAM cells from DRAM row buffer during MARCH test.

22

Fifth, if the target system uses Non-Uniform Memory Access (NUMA) architecture, then the

underlying topology is assumed to be known. It can be either automatically collected from the

BIOS or manually derived by calculating speed of memory accesses on different nodes from dif-

ferent cores. Discovery of the NUMA topology is not a focus.

Lastly, the target systems are assumed to be over-provisioned and there will be time periods

when system recourses are available to perform the diagnostic. However, I evaluated my ap-

proaches in overloaded systems to understand how the diagnostic behaves and affects applications

in a stressful high-load situation.

3.4 FRAMEWORK FOR ONLINE MEMORY DIAGNOSTIC

In this research, I developed a diagnostic framework, COMeT, which performs error diagnosis

on physical memory and scales to multi-core system. At the core, this diagnostic sweeps through

memory at regular intervals with a MARCH test. Memory pages with detected errors can be retired,

scrubbed or possibly salvaged for small kernel buffers [77]. COMeT exercises the entire memory

system, including the memory controller(s), memory interconnect, DIMMs, and associated glue

logic.

Figure 3 shows my proposed high-level design of the framework. In this figure, the Diagnostic

Manager module retrofits the OS memory manager with a memory diagnostic capability. The

Diagnostic Manager works as an intermediary between the memory manager and the memory

tester threads. A tester thread is responsible for executing MARCH tests on a given memory page.

A set of testers can be executed per node which consists of a number of cores and memory. The

memory manager is responsible for managing the memory associated with a node. To determine

the number of memory pages to test in a given amount of time, the Diagnostic Manager depends

on the following five parameters.

1. The Memory Capacity of the system.

23

Memory Manager

Diagnostic
Manager

Bad Pages

C0 C1

C2 C3

C4 C5

C6 C7

cores

M
em

o
ry

channel

channel
tester

Node 0

C0 C1

C2 C3

C4 C5

C6 C7

cores

M
em

o
ry

channel

channel

Node 1

C0 C1

C2 C3

C4 C5

C6 C7

cores

M
em

o
ry

channel

channel

Node 2

C0 C1

C2 C3

C4 C5

C6 C7

cores

M
em

o
ry

channel

channel

Node 3

tester

tester

tester

tester

tester

tester

tester

tester

App 0 App 1 App 2 App 3 App N

The OS Kernel

Gets pages for
testing and

releases
good pages

Spawns
testing on
a core

Retires
pages

Figure 3: High-Level Design of COMeT

2. The Memory Utilization which indicates the level memory pressure the system is currently

undergoing.

3. The Test Latency to test a memory page depending on the MARCH test.

4. The CPU Share the tester threads will get depending on system workload.

5. The Scalability Requirement which impacts performance due to testing on large-scale multi-

core and multi-socket systems.

After determining the number of pages to test, the Diagnostic Manager pulls pages out of the

memory manager and hands those pages to a tester thread. When testing is finished, the tester

thread notifies the Diagnostic Manager which returns fault-free pages to the memory manager. A

bad memory page is marked unusable and isolated from the OS by the Diagnostic Manager. My

design of the framework aims to minimize the performance impact by fairly distributing testing

tasks among tester threads depending on their processing capacity and current load.

Figure 4 gives an overview of framework components. It is integrated in the OS kernel and

works collaboratively with memory allocation. There are three components: 1) Test Controller

24

Test Controller

OS Memory Manager

test configurations

library of available tests

Dispatcher Concurrent Tester

Test
Policy

CPU/OS
Performance

Monitor

tester0

tester1

testerN

memory
demand

memory
blocks

te
st

 r
eq

u
ir

em
en

t
tested
pages

Figure 4: Framework Components

(TC), 2) Test Dispatcher (TD), and 3) Concurrent Tester Threads (CTT).

TC determines how memory should be tested and sets diagnostic parameters, or configuration,

accordingly. A Test Policy is incorporated in the Test Controller to set the configuration; the policy

is developed by the administrator for a target system. The Test Policy is responsible for only

configuring the diagnostic; it decides how to test, rather than what and how much to test. Depending

on Test Policy and memory demand information from the OS, TC determines how much and what

to test and passes this information to TD. TD extracts physical pages frames from the memory

allocator and distributes them to software threads that do memory tests, CTT. CTT is a collection

of kernel threads that test memory. TD is node-aware for multi-processor systems and balances

work distribution. This design not only ensures scalability but also enables an administrator to

implement system-specific diagnostic control policies and memory test algorithms.

The design of the framework is flexible enough to optimize a diagnostic for small-scale sys-

tems with limited resource availability or to maximize a diagnostic to support various diagnostic

policies on large-scale systems. COMeT is not a substitute for hardware ECC, which should be

25

used whenever possible. COMeT can work cooperatively with hardware ECC to proactively and

thoroughly test memory. In this case, it would operate post ECC to triage memory modules to

determine degree of marginality and potential for uncorrected multi-bit errors. Similarly, COMeT

can be used to focus checkpointing on marginal memory modules. In the following chapter, I de-

scribe how COMeT framework can be used to design and implement diagnostic policy suitable for

single-threaded applications on small-scale systems.

26

4.0 ONLINE MEMORY DIAGNOSTIC IN SMALL-SCALE SYSTEMS

The requirements for an online diagnostic (i.e., transparent operation in a live system, low perfor-

mance overhead, support for both single-threaded and multi-threaded programming models and

bounded memory error vulnerability) pose important questions about its design, operation, and

implementation. In this chapter, I answer these questions, including: 1) what is an appropriate de-

sign that is both performance efficient and can guarantee that memory health is regularly checked;

2) how should an online diagnostic be implemented and integrated in an actual system; 3) is a

software-only memory diagnostic feasible from an implementation and performance perspective

and can it improve memory resiliency; and, 4) is this diagnostic capable enough to handle multi-

threaded workloads.

For small-scale systems, COMeT is designed to work with both single-threaded and multi-

threaded applications. COMeT operates along-side an OS memory manager. So, many of its

design choices depend on OS memory manager functionalities. Next sections describe these design

choices including the architecture and algorithms behind COMeT. The choices are made in the

context of a prototype in Linux that examines how the approach can be integrated with a modern

operating system. The design is discussed below.

27

DMA

Normal

Highc
o
re
 0
:
p
c
p

a
ll
o
c
a
ti
o
n

unavail.

fa
il
e
d

p
a
g
e
s

pcp normal tester

pcp DMA tester

pcp high tester

global high tester

global low tester

guarantee

timer
guarantee tester

DMA

Normal

Highc
o
re
 1
:
p
c
p

a
ll
o
c
a
ti
o
n

DMA

Normal

High

g
lo
b
a
l

a
ll
o
c
a
ti
o
n

pcp timer

pcp timer

global timer

allocation monitor

Figure 5: Design of COMeT

4.1 ARCHITECTURE

Figure 5 shows COMeT’s implementation, which adds several timers and threads to the OS kernel.

As the figure shows, memory allocation is partitioned in a modern OS (e.g., Linux) among global

and per-CPU page frame cache (PCP) allocators. Each allocator has free lists that hold blocks of

contiguous unused pages. The global allocator uses buddy lists, where a free list is an order of rank

i that holds free blocks of size 2i. There are orders 0 ≤ i ≤ 10 in Linux. For PCP allocation, there

is a separate free list for each core, which locally caches free blocks of size 1. The allocators have

separate free lists for different memory zones (DMA, normal and high). Allocation is hierarchical:

the PCP allocator is tried first, and if this fails, then the global allocator is tried.

Most changes made to the OS kernel for COMeT are independent of the actual memory allo-

28

cators, with three exceptions. First, I added interfaces to the memory allocators to request untested

blocks and insert tested blocks into free lists. These interfaces can be invoked only by kernel

threads. Second, I changed the memory allocators to gather and expose information about mem-

ory request demand. Finally, the allocators are modified to return a tested block for an allocation

request. If a tested block is unavailable, then the allocator invokes a MARCH test on a block to

satisfy the request. This change implements the demand transition from Figure 2.

COMeT introduces new kernel timers to guarantee the vulnerability window and to replenish

the free lists with tested pages. Figure 5 shows four timers: one for the vulnerability window

guarantee (“guarantee timer”), one for global allocation (“global timer”), and two for per-core al-

location on each core (“pcp timer”). When the guarantee timer expires, physical pages are checked

for test expiration. When an allocation timer expires, its handler pulls untested blocks, based on

monitored demand, from the appropriate free lists to be tested.

New kernel threads are also added to do the actual testing (e.g., “pcp normal tester” and “global

low order tester”). Each thread has an input work queue used to accept blocks for testing. The

threads are arranged by zone and buddy order rank. For PCP allocation, there are three threads

– one tests DMA pages, one tests normal pages, and the last one tests high pages. Similarly,

for global allocation, one thread tests the low buddy orders and the other tests the high orders.

This organization localizes testing and permits different thread priorities based on latency and

importance to satisfying memory requests.

The timer handlers pass memory blocks to these threads for testing. The testers check the

blocks, and return blocks to the allocators. When a test finds a page with an error, the page is put

into a fault map of failed pages. A page is never allocated again once in the fault map.

4.1.1 Allocation Monitor

The allocation monitor holds a buffer of counters to track allocation events. The counters record

memory demand over the time interval replenish-δ. Each free list has its own counters because

demand varies per list. There are two counters for each list: allocated counts the number of blocks

allocated and tested counts number of free tested blocks. The counters are set by the allocation

29

timer handlers. Each counter is 16 bits which rarely saturates for small replenish-δ values.

4.1.2 Guarantee Timer and Handler

Figure 6 shows pseudo-code for the guarantee timer’s handler. The handler checks whether a page

is about to expire (i.e., age(p) + δ ≥ test lifetime). To check for test expiration, the handler

compares the current time to a timestamp for each allocated physical page. When a page, p, is

allocated, its timestamp is set to talloc(p) + test lifetime − δ. On line 1, the current time, time, is

queried. FIND-EXPIRED-PAGES returns a list of pages whose timestamp ≥ time on line 2.

GUARANTEE-HANDLER()
1 TimeStamp time = GET-TIME()
2 PageList expired = FIND-EXPIRED-PAGES(time)
3 foreach Page page in expired
4 Page newpage = ALLOCATE(0)
5 MARK-PTE-MIGRATING(page)
6 COPY(newpage , page)
7 UPDATE-PTE(newpage , page)
8 RELEASE(page ,0)
9 SET-TIMER(δ − (GET-TIME()− time))

Figure 6: Check expiration of tested used pages

Lines 3 to 8 migrate an expired page by allocating a new tested page and copying the old one

to it. During migration, page table entries (PTEs) for the old page are flagged. This action causes

a process to fault when it touches a migrating page and to be paused until the migration completes.

Once the old page is copied to the new one, the associated PTEs are updated and the old page is

released. Line 9 re-arms the timer which is set to expire in δ time, taking page migration latency

into account. As long as the handler finishes in δ, the promise on the vulnerability window is

satisfied. However, my implementation does not guarantee this condition. δ is large enough (e.g.,

10 seconds) that the migration will likely be completed before the next timer event. If such a

“deadline miss” actually arises, then migration can be parallelized for better performance.

30

4.1.3 Global Allocation Timer and Handler

To replenish the pool of tested pages, COMeT regularly extracts and tests blocks of pages. Fig-

ure 7(a) shows pseudo-code for this process. Each global allocation zone has a timer. When a

timer expires, GLOBAL-HANDLER is invoked with an identifier for the zone (zone).1 GLOBAL-

HANDLER forms two lists: lowlist and highlist (lines 1 and 2) that collect untested blocks based

on order rank. Blocks put into the lists are tested by the global tester (Section 4.1.4). Lines 3 to

18 build the two lists. The for loop iterates over the buddy orders. A descriptor for an order is

accessed on line 4.
GLOBAL-HANDLER(MemoryZone zone)

1 PageBlockList lowlist = NIL
2 PageBlockList highlist = NIL
3 for Integer id = 0 to MAX-ORDER(zone)
4 BuddyOrder order = zone. freelist[id]
5 ADJUST-REPLENISH-RATE(order)
6 Integer blockdemand = BLOCKS-TO-TEST(order)
7 if blockdemand 6= 0
8 PageBlock block = TAIL(order)
9 while block 6= HEAD(order) and blockdemand > 0

10 PageBlock prevblock = PREV(block , order)
11 if IS-TESTED(block) == FALSE
12 REMOVE(block , order)
13 if order ≤ LOW-ORDER
14 ENQUEUE(block , lowlist)
15 else
16 ENQUEUE(block , highlist)
17 N = N − 1
18 block = prevblock
19 SIGNAL-WORK(LOW-TEST-THREAD, lowlist)
20 SIGNAL-WORK(HIGH-TEST-THREAD, highlist)
21 SET-TIMER(this , replenish-δ)

Figure 7: Handler for global allocation timer

Next, in line 5, ADJUST-REPLENISH-RATE adjusts the replenishment rate (discussed in Sec-

tion 4.1.5). Once the new rate is set, the number of blocks, blockdemand , to test to meet the rate

is determined (line 6). BLOCKS-TO-TEST retrieves the replenishment rate which is updated by

ADJUST-REPLENISH-RATE at each replenish-δ interval. If blocks need to be tested (line 7), then
1Although not shown, the actual implementation is re-entrant to handle two or more timer expirations.

31

up to blockdemand untested blocks are extracted from the order (lines 8 to 18). The while loop

on line 9 iterates through the order’s free list from tail to head. The list is processed in reverse

because it is more likely that untested blocks will be at the list’s end (these are the “older” blocks).

An untested block is removed from the free list on line 12. If this block came from a low order

(determined by the constant LOW-ORDER), then it is put into lowlist for testing. Otherwise, it is

added to highlist . Lines 19 and 20 signal the low and high global tester threads that new blocks

are available. Finally, line 21 resets the global timer to replenish-δ. This parameter controls how

frequently pages are pulled for testing; the page quantity (in blocks) is determined from the de-

mand during the last replenish-δ interval. Unlike the guarantee rate, the replenishment rate does

not have to be exact. Thus, the timer is set to expire in replenish-δ time.

4.1.4 Global Tester

GLOBAL-TESTER, shown in Figure 8(a), is the routine that tests page blocks. It consumes the list

of blocks produced by the global timer’s handler. GLOBAL-TESTER waits until the handler has

produced work, and then it invokes TEST-BLOCK on each block in the work list.2

A MARCH test is done by TEST-BLOCK. Lines 2-5 test each page in a block with MARCH-

TEST. The page is marked uncacheable prior to the MARCH test to avoid the caches filtering

accesses to physical memory. The MARCH test operates on virtual addresses that are known to be

mapped to the physical page. If the MARCH test fails, then the foreach loop terminates and lines

6 to 9 are done. Line 7 splits the block with the failed page into two or more smaller blocks. The

block is split at the failed page. SPLIT-LIST-AT ensures that the new blocks have an appropriate

number of pages (i.e., an integral power of 2). The new blocks are put in the work list on line 8

and the failed page is retired on line 9. If the test succeeded, then the block is released back to the

allocator on line 11. A small block from a split is released to the appropriate buddy order (this step

is not shown, but implied by RELEASE on line 11). Line 12 increments the tested counter for the

block’s order.

2GLOBAL-TESTER handles delivery of new blocks during test, although this is not shown.

32

GLOBAL-TESTER(Signal sig , PageBlockList work)
1 while (TRUE)
2 WAIT-ON-SIGNAL(sig)
3 while (work 6= NIL)
4 PageBlock block = DEQUEUE(work)
5 TEST-BLOCK(block ,work)

(a) Test each block in work list

TEST-BLOCK(PageBlock block , PageBlockList work)
1 Boolean isfailed = FALSE
2 foreach Page page in block and isfailed = = FALSE
3 MARK-UNCACHEABLE(page)
4 isfailed = MARCH-TEST(page)
5 MARK-CACHEABLE(page)
6 if isfailed
7 PageList frags = SPLIT-LIST-AT(page, block)
8 ENQUEUE(frags , work)
9 PERMANENTLY-RETIRE(page)

10 else
11 RELEASE(block)
12 monitor. INCREMENT-TESTED(GET-ORDER(block))

(b) Test blocks and release good ones

Figure 8: Tester for global allocation

4.1.5 Adaptive Test Rate

To change the test rate according to application memory requirements at runtime, COMeT uses an

adaptive algorithm. This algorithm introduces five states for each of the free lists for each order.

Each state tracks how the current memory demand affects the test rate on that free list. These five

states are:

1. State A: The test rate is set to a minimum value that is configured during COMeT’s initializa-

tion. The default minimum rate depends on the usage of the free list.

2. State B: The current test rate is doubled. This state usually signifies that COMeT is responding

to increased memory demand.

3. State C: The current test rate is kept constant. This state signifies that memory demand has

33

been reduced but still high enough not to drop the test rate.

4. State D: The current test rate is decreased by half. This state signifies that memory demand is

low enough to decrease the rate. If the rate falls below the minimum rate, the minimum rate is

set for that free list.

5. State E: The current test rate is set to 0. This state signifies that there are enough tested pages

in the free list and memory demand is also low.

START

A

B

C

D

E
a=0

u>0 or
a>=th

u>0 or
a>=th

u>0 or
a>=4*th

a<th

a=0

a<th
a=0

a<th

a>=th
& u=0

a<th

u>0 or
a>=4*th

a>=th

th<a<4*th

u>0

a≠0 u=0 &
a=0

States
A: min rate
B: binary rate increase
C: constant rate
D: binary rate decrease
E: no testing

Legend:
a: number of allocation
u: number of untested
pages

allocated
th: allocation threshold

Figure 9: State Transition during Test Rate Change

For each free list, a change from one state to another depends on three factors: 1) a: the number

of pages allocated since the last rate adjustment; 2) th: a threshold value that signifies that the free

list is high memory pressure and will soon run out of tested pages; 3) u: the number of untested

pages allocated since the last rate adjustment.

When COMeT is initialized, a free list is in state A to ensure that there will be tested pages on

that free list. The simplified algorithm for ADJUST-REPLENISH-RATE is shown in Figure 10. Lines

34

ADJUST-REPLENISH-RATE(BuddyOrder order)
1 Integer state = CURRENT-STATE(order)
2 Integer rate = CURRENT-TEST-RATE(order)
3 Integer a = monitor.GET-ALLOCATED(order)
4 Integer u = monitor.GET-UNTESTED(order)
5 Integer th = monitor.GET-THRESHOLD(order)
6 new -state = GET-NEW-STATE(state ,a ,u ,th)
7 new -rate = GET-NEW-RATE(new -state ,rate)
8 SET-REPLENISH-RATE(order , new -rate)
9 SET-NEW-STATE(order , new -state)

10 monitor.RESET-ALLOCATED(order)
11 monitor.RESET-UNTESTED(order)

Figure 10: Adjust buddy order’s replenishment rate

1-5 of the pseudo-code read the current state state, the current rate rate, the number of allocated

pages a, the number of untested pages u and the threshold th from COMeT’s monitoring feature

added in the OS. Based on state, a, u and th, line 6 invokes GET-NEW-STATE to calculate the next

state for the free list. The state changes are summarized in Figure 9. As long as 0 < a < th, the

state remains the same enforcing a minimum rate of testing. If a falls to 0, there is not enough

memory demand and the free list goes to state E. In state E, COMeT stops testing for that free list.

From state A and E, if any untested page was allocated (u > 0) or the memory pressure increases

(a ≤ th), the free list switches to state B. In state B, the test rate is doubled at each invocation of

ADJUST-REPLENISH-RATE. As long as memory pressure is very high (a ≥ 4 × th) or there are

more untested pages allocated (u > 0), the free list stays in state B.

If the memory pressure decreases but is still over the threshold (a ≥ th) and there are no

untested pages allocated (u = 0), the free list moves to state C. In state C, the test rate is kept

constant. As long as memory pressure is relatively high (th < a < 4 × th), state C remains

in effect. If the memory pressure rises again (a ≥ 4 × th) or there are untested allocated pages

(u > 0), the free list moves back to state B. If the memory pressure decreases further (a < th),

the free list goes to state D where the test rate is reduced by half each time ADJUST-REPLENISH-

RATE is invoked. The free list remains in state D as long as the memory pressure is sufficiently

35

low (a < th). Any untested page allocation forces the list to go to state B. If the pressure again

rises beyond the threshold, the free list can move to state C. If the memory pressure becomes

0 (a = 0), the free list moves back to state A. This approach scales the rate quickly upward,

but avoids decreasing too rapidly, particularly given the relatively small time intervals over which

demand is measured. Once GET-NEW-STATE calculates the new next state, GET-NEW-RATE fixes

the test rate based on the new state and the current test rate. Lines 8 and 9 set the new test rate

and new state into effect for the free list. Lines 10 and 11 resets a and u to track the number of

allocated pages and untested allocated pages between two calls to ADJUST-REPLENISH-RATE.

4.1.6 Page Migration

Page migration is required for expired or near-expired pages of an application. COMeT peri-

odically walks through the application page table to examine the time stamps of the pages (see

Section A.2.5 for Linux-specific details). If an expired or near-expired page is found, COMeT mi-

grates that page to a free page that was recently tested. Usually the long-held application pages are

the primary targets of migration. This migration process is expensive due to the latency of copying

data from the old page to the new one and fixing the page table entry. During data copying, the

application is stalled only if it tries to access the page. Hence, the frequency of page migration can

cause adverse performance impact on an application. Less frequent page migration may result in

more expired and near-expired pages that need to be migrated. More frequent page migration will

require more page table walks which can be expensive. In COMeT, the page migration interval

can be easily configured or turned off using a page migration control knob.

COMeT’s page migration supports multi-threaded applications. In multi-threaded applica-

tions, usually the code and the data are shared among threads via a single address space which

persists throughout the runtime of the application. Thus, in multi-threaded applications, the num-

ber of shared pages is higher than those in single-threaded applications. Fixing a shared page

table entry during migration takes longer due to the reverse-page-table lookup in the OS kernel

and multiple page table entries that must be fixed. This page table modification entails eventual

TLB shootdowns on CMP machines. TLB-shootdowns adversely harm performance as page table

36

Baseline Configuration

test lifetime 3min vulnerability window

δ 10sec (5sec, 20sec, 30sec)

replenish-δ 25ms (15ms, 35ms, 45ms, 0 for On-demand)

α, mem util , test res 1.0 (test all memory at maximum rate)

test latency 0.4ms (MATS MARCH test was used [80])

Minimum test rate Same as guarantee rate

Table 1: Configuration

entries must be reconstructed through expensive page table walks in subsequent accesses. If the

vulnerability window is very small, more pages may be migrated causing more TLB shootdowns

and further performance degradation.

Most processors support OS-guided TLB-shootdown. Linux uses inter-processor interrupts

(IPI) to invalidate shared TLB entries during page migration (Section A.2.6). In the current im-

plementation, COMeT only gathers statistics from the native IPI handling code. The effect of

TLB-shootdowns due to COMeT’s operation is described in Section 4.2.7.

4.2 EVALUATION

To determine COMeT’s effectiveness, I investigated how many pages are tested, the performance

overhead and energy of my implementation. I studied several design parameters and compared my

approach to a naı̈ve on-demand testing strategy (see Section 3.2), COMeT and a baseline without

testing. I also analyzed at the effect of TLB-shootdowns due to COMeT’s operation in multi-

threaded applications.

37

Experimental Setup (Single-threaded Benchmarks) Experimental Setup (Multi-threaded Benchmarks)
Processor Pentium 4 D (Presler 930) Intel i7
Speed/cores 3.0 GHz, dual-core, no hyperthreading 2.1 GHz, four-core with hyperthreading
mem cap, page size 1 GB, 4,096 bytes 6 GB, 4,096 bytes
Linux kernel version 2.6.24.3 3.1.1
Benchmarks SPEC CPU2006, ref. input data sets PARSEC, native input data sets

Table 2: Experimental setting

Program Time Util. Program Time Util.

povray 751.5s 14.9% omnetpp 994.9s 35.2%

caclulix 2557.2s 19.9% gromacs 1632.7s 35.7%

namd 1173.0s 20.3% gamess 1632.0s 36.8%

gcc 111.6s 21.2% libquantum 1789.6s 42.2%

gobmk 193.7s 21.3% leslie3d 2179.2s 45.3%

h264ref 189.5s 22.5% xalancbmk 797.8s 52.6%

sphnix3 1579.6s 24.1% zeusmp 1555.8s 62.8%

hmmer 494.0s 24.7% lbm 1340.6s 67.3%

soplex 570.9s 27.5% milc 1242.0s 82.2%

perlbench 542.6s 29.0% mcf 948.3s 93.9%

sjeng 1634.1s 31.2% gemsFDTD 1966.3s 95.4%

astar 518.3s 31.3% bwaves 1405.2s 97.6%

dealIII 942.7s 32.5% bzip2 261.8s 98.4%

tonto 1782.8s 34.5% cactusADM 2395.7s 98.7%

Table 3: SPEC CPU2006 Benchmark Statistics (table is sorted by memory utilization)

38

4.2.1 Methodology

Table 1 lists on-demand testing and COMeT’s base configuration. In the discussion of results, I

refer to on-demand testing as “On-demand”. It takes about 3 minutes to perform a basic MARCH

test on the entire memory in my setup (Table 2). Thus, I used a baseline 3 minute vulnerability

window to evaluate On-demand and COMeT in a harsh situation where the test process is kept

busy and system resources are taxed. In practice, the expected error rate is likely to be low enough

that the vulnerability window can be set to a longer duration. I used the classic MATS MARCH

test [80]. The DRAM row-buffer page is opened and closed on every memory access during the

MATS test to directly operate on the DRAM array.

For COMeT, a minimum replenishment rate is used to ensure some tested pages are available.

For all lists, this rate is set to the guarantee rate. An initial replenishment rate for each free list

is set on each program invocation. To get this initial rate, I profiled the benchmarks to find the

minimum demand on each list. The minimum among all programs is used for a list’s initial rate.

To model On-demand, I fix the replenishment rate to 0 and enable page migration.

Table 2 gives two experimental setups. The first setup is used to evaluate single-threaded

benchmarks (SPEC CPU2006) and the second is used to evaluate multi-threaded benchmarks

(PARSEC). Experiments are done in Linux single-user mode to minimize system activity. Be-

cause COMeT imposes overhead on system time, performance is measured as the sum of user and

system time (i.e., wall-clock time). I also measure energy using a power meter. Energy is mea-

sured for a full SPEC run rather than individual benchmarks due to the meter’s limited precision.

All cores of the experimental machine are used. The kernel can schedule the benchmark and test

threads on the available cores to approximate a “core rich” environment. I used SPEC CPU2006

with reference inputs and PARSEC with native inputs. Table 3 shows the SPEC CPU2006 bench-

marks (sorted by memory utilization), their run-time (“Time”), and average memory residency

(“Util.”) in the first experimental setup with 1GB of main memory. Past work lists the working set

sizes for PARSEC [11].

39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
%
	C
ov
er
ag
e

On-demand COMeT

Figure 11: Page coverage (percentage of physical pages tested)

4.2.2 Overall Results

Pages tested: Figure 11 shows the page coverage of On-demand and COMeT. Page coverage

is the ratio of the number of pages tested (free or used) to the total number of physical pages.

On-demand’s coverage is 15.3% to 99%, with an average of 46.4%. The coverage follows the

trend of memory utilization. For example, povray has the smallest memory utilization (14.9%) and

coverage (15.3%). Similarly, cactusADM has the highest utilization (98.7%) and coverage (99%).

On-demand’s coverage is slightly more than memory utilization since pages can be returned before

expiration.

COMeT’s coverage is 19.5% to 98.6% (51.4% average). The coverage follows the same trend

as On-demand, tracking memory utilization. Again, povray has the lowest coverage and cactu-

sADM has the highest. COMeT always keeps tested pages in the free lists, and naturally, its cov-

erage is higher than On-demand. Coverage also indicates COMeT’s prediction accuracy for future

40

memory demand. The higher coverage relative to utilization reveals there is some overestimation

from two aspects. First, COMeT scales up the replenishment rate quickly but degrades it slowly.

The delay in degrading the rate causes more pages to be tested than necessary. Second, COMeT

conservatively keeps pages in rarely used free lists. It is desirable to overpredict by a small amount

to have a reserve of tested pages for unexpected peak allocation.

1

1.1

1.2

1.3

1.4

1.5

Sl
o
w
d
o
w
n

On-demand COMeT

Figure 12: Slowdown relative to baseline without testing.

Performance: Performance overhead for On-demand and COMeT is presented in Figure 12. This

figure shows the slowdown experienced by a benchmark versus the baseline without testing. Slow-

down is the ratio of a program’s wall-clock time with testing to wall-clock time without testing.

On-demand’s slowdown is 1.15 (povray) to 1.5 (cactusADM) with an average 1.34. The over-

head generally increases with memory utilization. Because pages are sequentially tested with

program execution, the full latency of allocating, testing, and mapping a page is observed, which

harms execution time. bzip2 has this behavior. It has a 1.48 slowdown due to its short execution

time (261.8s) but high memory utilization (98.4%). There is less impact in povray because its

resident size is only 14.9% of memory.

41

To enforce page lifetime, a large penalty is paid for migration in On-demand. When pages are

migrated, target pages are tested on-demand, which dramatically increases migration latency. As

a result, in programs with large working sets and high utilization, it is probable that a page under

migration will be touched, forcing the program to be paused. In effect, the program cannot make

quick progress since it executes sequentially with testing and migration. Several programs (e.g,

mcf, gemsFDTD and catcusADM) exhibit this behavior.

Figure 12 also gives slowdown for COMeT, which is a modest 1.02 to 1.05, with an average

of 1.04. Programs with high utilization again have the most overhead; however, the actual over-

head is small. For example, cactusADM and bzip2 use 98% of memory but suffer only a 1.05

slowdown. For bzip2, ahead-of-time testing has helped dramatically. When pages are requested,

tested ones can be delivered without the latency of on-demand testing. Similarly, ahead-of-time

COMeT has reduced migration latency because target pages are tested ahead of time. Migration

is now primarily a page copy operation, which can happen at cache speed. This low latency leads

to a smaller chance that a program has to be paused. Even if an application must be paused, it will

be stopped for a much shorter duration than with On-demand. COMeT’s slowdown comes mostly

from increased pressure on memory resources, including the hardware memory subsystem, despite

the availability of a free core for testing.

To understand COMeT’s behavior on multi-threaded workload, I ran a selection of benchmarks

from PARSEC including canneal, streamcluster, blackscholes, ferret and fluidanimate. These

benchmarks have different memory footprints and levels of data sharing [11]. Figure 13 shows the

slowdown of these benchmarks. Each PARSEC program was configured with four threads on four

cores with my second experimental setup. Similar to the single-threaded benchmarks, the slow-

down comes from memory pressure. Blackscholes, whose native working set size is about 2MB,

suffers less than 2% slowdown. Canneal, whose native working set size is 2GB, suffers the most

with nearly 8% slowdown. On average, the slowdown is approximately 3.8% across these multi-

threaded benchmarks. As the system coverages for single-threaded benchmarks closely followed

their memory requirements, I do not show the comparison between on-demand and COMeT’s sys-

tem coverages. In Section 4.2.7, I discuss COMeT’s impact due to TLB-shootdowns during page

42

migration on the multi-threaded benchmarks.

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Sl
ow
do
w
n

Figure 13: Slowdown relative to baseline without testing on selected PARSEC benchmarks

Energy: Table 4 shows energy for the baseline, On-demand and COMeT. I found that total energy

is 47% higher for On-demand than the baseline due to the extra time to run the programs. There

is also some cost from more memory and core activity as shown by the 10% penalty in power

with On-demand (98 vs. 108 watts). COMeT also increases total energy, but by a smaller 18%.

COMeT’s energy per hour (113 watts) compared to the baseline (98 watts) shows the impact of

using a second core. In comparison to each other, COMeT pays more power than On-demand

(113 watts vs. 108 watts) due to increased parallelism, but it has less slowdown, leading to better

No testing On-demand COMeT

Total energy (kWh) 0.91 1.3 1.1

Power (watts) 98 108 113

Table 4: Energy consumption

43

energy consumption. The experimental machine is an early generation (Pentium 4) CMP, which is

a challenging energy target. Current CMPs have less power dissipation per core, and thus, using

an idle core for testing should have less energy overhead than these results suggest.

I conclude that ahead-of-time COMeT has feasibly low overhead. The remaining experiments

focus on COMeT, and for brevity, a subset of SPEC with mixed behavior (gromacs, zeusmp, mcf

and calculix) and a few other interesting cases. For multi-threaded benchmarks, I showed experi-

mental results for canneal, streamcluster and ferret.

4.2.3 Configuration

COMeT has three important parameters: vulnerability window duration, guarantee timer (δ), and

replenishment timer (replenish-δ). I varied these parameters to observe their influence. The other

parameters were fixed according to Table 1. I do not report coverage because it does not change

from Figure 11.

Vulnerability window: The average “effective page hold time” is influential. This time reflects

how long a program needs physical pages, including situations where a page is remapped fre-

quently due to a high page fault rate and memory utilization. When a program has many active

pages for a certain vulnerability window size, then it will have the same or more active pages at

a smaller size, leading to more migrations. Thus, there is a greater likelihood that a program will

need a page that is under migration, causing it to be briefly paused. For example, calculix is run

with an input that causes many pages to be regularly allocated and released from the heap. It holds

these pages for around 2 minutes, which causes its slowdown to increase from 1.03 (3 mins.) to 1.1

(2 mins.). zeusmp holds 100% of its pages for at least 3 minutes and varies from 1.04 (3 mins.) to

1.08 slowdown (2 mins.). cactusADM and gemsFDTD have higher page fault rates and utilization,

which cause a slowdown of 1.11 at 2 minutes. On average for all SPEC CPU2006 benchmarks, 2

minutes has the worst performance and 4 minutes has little gain over 3 minutes. Thus, I select a 3

minute window.

Guarantee timer (δ): For a 3 minute vulnerability window, I tried 5, 10, 20 and 30 seconds for

44

δ. There was only a small overhead change as δ was varied (not graphed). For example, zeusmp’s

slowdown was 1.04 at 5, 10 and 20 seconds. The overhead increased to 1.06 at 30 seconds. While

the relative performance difference is small, varying δ does represent a trade-off. A small δ means

that a page p will be migrated closer to its actual texpire(p) time. This can avoid migrations due

to an unnecessarily early test expiration (for too large δ). However, a small δ causes more timer

events, introducing extra overhead from the expiration check in GUARANTEE-HANDLER. δ also

has to be large enough that expired pages can be migrated within the allotted δ time to invoke the

guarantee handler. In SPEC, a 10 second δ best balanced the test expiration check’s cost and early

migration.

Replenishment timer (replenish-δ): The replenishment handlers (e.g., GLOBAL-HANDLER) are

invoked periodically based on replenish-δ. Like δ, this parameter has a trade-off. A small value

allows COMeT to react swiftly and it causes a single handler invocation to more quickly acquire

a smaller number of pages than a large value. However, a small value may momentarily overreact

to a spike in demand. It also leads to more handler invocations. Thus, there can be more total

competition for memory resources.

To investigate this trade-off, I tried 15ms, 25ms, 35ms, and 45ms for replenish-δ. All pro-

grams had little difference for 25ms, 35ms and 45ms, but a larger change was observed for 15ms.

Figure 14 displays slowdown at 15ms and 25ms. At 25ms, slowdown is 1.03 to 1.05, with a 1.04

average. Slowdown is higher for 15ms: 1.05 to 1.11 with a 1.06 average. Programs with high

memory utilization or page turn-over (e.g., calculix, gemsFDTD and bzip2) are the most harmed

at 15ms. It is better to pull more pages less frequently (at 25ms), but this effect diminishes as

utilization decreases. gromacs and zeusmp have moderate utilization, with many long-held pages,

and suffer less penalty from 15ms. In these programs, less replenishment is traded for more mi-

gration. Even in the lowest utilization cases (e.g., povray), there is still some penalty for a 15ms

interval from extra handler invocations. From these results, I find that a 25ms interval is the best

choice since it lets COMeT respond more quickly to memory demand than 35ms and 45ms with

less slowdown than 15ms.

45

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

po
vr
ay

ga
m
es
s

gr
om

ac
s

na
m
d

hm
m
er

sp
hn

ix
3

om
ne

tp
p

sje
ng

go
bm

k
lb
m

ze
us
m
p

pe
rlb

en
ch

xa
la
nb

m
k

lib
qu

an
tu
m

h2
64
re
f

m
cf

ca
ct
us
AD

M
as
ta
r

le
sli
e3
d

bz
ip
2

ca
clu

lix
bw

av
es

de
al
III

ge
m
sF
DT

D
gc
c

so
pl
ex

to
nt
o

m
ilc

Av
er
ag
e

Sl
ow

do
w
n

15ms 25ms

Figure 14: Effect of replenish-δ

4.2.4 Test Guarantee and Replenishment

Page migration and replenishment are key aspects to COMeT as its ability to limit exposure to

errors partly depends on migration to test long-held pages and its overhead depends on adapting

the replenishment rate.

Page migration: Figure 15 shows page coverage without and with page migration. Some pro-

grams have a large reduction when page migration is disabled (e.g., zeusmp’s coverage is 71.6% to

34.7%). These programs hold many pages beyond the vulnerability window, and thus, migration

is especially valuable. calculix, mcf and milc have different behavior – migration has a smaller

impact due to page turn-over (which leads to a small number of long-held pages). gemsFDTD has

high memory utilization with a small number (7.3%) of long-held pages, and thus, its coverage is

moderately reduced (96.1% to 80.1%). The average coverage reduces from 51.4% to 41.5%. From

these results, I conclude that page migration is necessary to limit error exposure.

46

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p
o
v
r
a
y

g
a
m
e
s
s

g
r
o
m
a
c
s

n
a
m
d

h
m
m
e
r

s
p
h
n
ix
3

o
m
n
e
t
p
p

s
je
n
g

g
o
b
m
k

lb
m

z
e
u
s
m
p

p
e
r
lb
e
n
c
h

x
a
la
n
b
m
k

li
b
q
u
a
n
t
u
m

h
2
6
4
r
e
f

m
c
f

c
a
c
t
u
s
A
D
M

a
s
t
a
r

le
s
li
e
3
d

b
z
ip
2

c
a
c
lu
li
x

b
w
a
v
e
s

d
e
a
lI
II

g
e
m
s
F
D
T
D

g
c
c

s
o
p
le
x

t
o
n
t
o

m
il
c

A
v
e
r
a
g
e

%
	C
o
v
e
r
a
g
e

w/	mig. w/o	mig.

Figure 15: Page coverage due to migration

Replenishment rate: Figure 16 illustrates the benefit from an adaptive replenishment rate. The

figure compares slowdown for four rate policies: “Min” statically fixes each free list’s rate to

the minimum average request rate among all applications, “Max” fixes the rates to the maximum

averages among all applications, “Application” fixes the rates to the average rates for a given

program, and “Adaptive” is COMeT’s scheme. “Min” does well for low demand programs; e.g.,

povray (1.04 slowdown). However, because there is a drought of tested free pages, most programs

(e.g., cactusADM) suffer badly. Pages are frequently tested on demand, causing “Min” to behave

similar to On-demand. “Max” corrects this problem; the rates are set high enough that the free

lists are replenished. Nevertheless, “Max” does worse than “Application” due to pressure from

unnecessary testing. “Application” is the best because the replenishment rates are set specifically

for each program. “Adaptive” comes close to “Application”, but it does not need offline profiling.

The SPEC average slowdown is 1.03 for “Application” and 1.04 for “Adaptive”. The adaptive

47

1

1.1

1.2

1.3

1.4

1.5

1.6

po
vr
ay

ga
m
es
s

gr
om

ac
s

na
m
d

hm
m
er

sp
hn

ix
3

om
ne

tp
p

sje
ng

go
bm

k
lb
m

ze
us
m
p

pe
rlb

en
ch

xa
la
nb

m
k

lib
qu

an
tu
m

h2
64
re
f

m
cf

ca
ct
us
AD

M
as
ta
r

le
sli
e3
d

bz
ip
2

ca
clu

lix
bw

av
es

de
al
III

ge
m
sF
DT

D
gc
c

so
pl
ex

to
nt
o

m
ilc

Av
er
ag
e

Sl
ow

do
w
n

Min Max Application Adaptive

Figure 16: Effect of replenishment rates

scheme can dynamically change to global demand, walking the line between too little and too

much testing. For this reason, I find that an adaptive replenishment rate should be used.

4.2.5 Overload Behavior

To examine COMeT in an overload situation for CPU cycles and memory bandwidth, I measured

performance as system load is increased by executing multiple program instances. I chose mcf,

libquantum, calculix, lbm and zeusmp due to their adequate memory pressure to create stress on

the system without exhausting available memory in one instance.

Table 5 shows slowdown for multiple instances; slowdown is relative to the number of in-

stances without testing. The instances can execute on both processor cores. In some cases, my

experimental machine runs out of memory and the slowdown cannot be reported. This condition

is labeled “OOM” in the table. Among the benchmarks, calculix has a relatively low memory uti-

48

Benchmarks
Number of Instances

1 2 3 4 5

calculix 1.03 1.03 1.03 1.05 1.07

libquantum 1.03 1.07 1.08 1.14 OOM

mcf 1.02 1.08 OOM OOM OOM

lbm 1.04 1.07 1.09 OOM OOM

zeusmp 1.03 1.05 1.10 OOM OOM

Table 5: Slowdown or Out-of-Memory (OOM) under overload

lization: the slowdown is 1.03 (one instance) to 1.07 (five instances). As more instances are added,

allocation rate and memory utilization increase, causing competition for cores and memory band-

width. libquantum, lbm and zeusmp are memory intensive, causing more overhead. For example,

libquantum had an overhead of 1.14 at four instances. mcf had the highest memory utilization, and

thus, the largest overhead at the fewest instances (1.08 for 2 instances). In general, the slowdown

increases as there is more pressure on the memory allocator and the memory hardware. Even in

the most stressful situations in Table 5, however, the overhead is acceptable, demonstrating that

COMeT performs well at overload.

4.2.6 Sensitivity to Test Latency

To examine application sensitivity to test latency, mcf, zeusmp, gromacs and calculix were executed

with an increasing amount of MARCH testing. Test intensity was varied by applying more patterns

in additional test iterations during a page test.

Figure 17 shows that COMeT sufficiently masks test latency up to 3 iterations due to ahead

of time testing, with an average 10% slowdown. Beyond 3 iterations, application performance

can suffer. mcf and zeusmp had a large 25% degradation at 5 iterations because COMeT could

not maintain a fast enough replenishment rate to keep the pool of tested pages full, which caused

increased on-demand testing that harmed performance. In comparison, gromacs and calculix have

49

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1 2 3 4 5 6

Sl
ow

do
w
n

number	of	iterations

mcf

zeusmp

gromacs
calculix

Figure 17: Sensitivity to test latency

low memory utilization, and had only a 10% degradation at 5 iterations. As this experiment shows,

there is a trade-off between memory demand and test aggressiveness. Complex test patterns for

neighborhood pattern sensitive faults may require additional test time, and consequently, they may

not be usable in high demand applications. These applications will likely require fewer and simpler

test patterns (i.e., less error coverage) to minimize overhead. Indeed, the patterns and test rate could

be dynamically adapted to balance aggressiveness and overhead.

4.2.7 Multi-threaded Workload

For multi-threaded benchmarks, I used PARSEC on the second experimental setup with 2.1GHz

Intel i7 processor and 6GB of RAM. The processor has four physical cores (eight hardware con-

texts). The selected benchmarks were executed with 1, 2, 4 and 8 threads. For each thread count,

a benchmark was run 10 times with native inputs and the average runtime was calculated relative

50

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1 2 4 8

O
ve

rh
ea

d

Number of Threads

mig 30 mig 45 mig 60

Figure 18: Slowdown on Multi-threaded Benchmarks: Canneal

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1 2 4 8

O
ve

rh
ea

d

Number of Threads

mig 30 mig 45 mig 60

Figure 19: Slowdown on Multi-threaded Benchmarks: Streamcluster

51

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1 2 4 8

O
ve

rh
ea

d

Number of Threads

mig 30 mig 45 mig 60

Figure 20: Slowdown on Multi-threaded Benchmarks: Ferret

0

0.005

0.01

0.015

0.02

0.025

1 2 4 8

Sh
oo

td
ow

ns
/S

ec

Number of Threads

mig 30 mig 45 mig 60

Figure 21: Rate of TLB shootdowns on Multi-threaded Benchmarks: Canneal

52

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 4 8

Sh
oo

td
ow

ns
/S

ec

Number of Threads

mig 30 mig 45 mig 60

Figure 22: Rate of TLB shootdowns on Multi-threaded Benchmarks: Streamcluster

0

5

10

15

20

25

1 2 4 8

Sh
oo

td
ow

ns
/S

ec

Number of Threads

mig 30 mig 45 mig 60

Figure 23: Rate of TLB shootdowns on Multi-threaded Benchmarks: Ferret

53

to the baseline with the corresponding number of threads without COMeT.

Figure 18, Figure 19 and Figure 20 show COMeT’s overhead on Canneal, Streamcluster and

Ferret respectively. From these figures, Canneal has the highest slowdown of 8.7% with four

threads and a 30 second migration interval. Canneal has the largest native working set size in

PARSEC and high data sharing [11]. As the migration interval is gradually increased to 45 seconds

and 60 seconds, the overhead drops as Canneal releases pages before the expensive migration

enforced by COMeT. Figure 21 shows the rate of TLB shootdowns for Canneal. I found that the

rate of TLB shootdowns increases for 8 threads but its performance impact is lower than the impact

on 4 threads. I also observe that the rate TLB shootdowns is quite low (e.g., less than 0.025 per

second with 8 threads). Thus, the performance overhead comes primarily from Canneal’s high

memory demand, putting more pressure on COMeT.

Figure 19 shows that the overhead for Streamcluster is slightly reduced due lower memory

pressure than Canneal. Figure 22 shows that the rate of TLB shootdowns for Streamcluster is

slightly higher than Canneal. However, the increased rate is not high enough to impact slowdown

for Streamcluster. Figure 20 indicates that overhead for Ferret is much lower than Canneal and

Streamcluster. However, from Figure 23, Ferret’s TLB shootdown rate is much higher than the

other two benchmarks. The high rate of TLB shootdowns adversely impacts Ferret’s performance.

Blackscholes and Fluidanimate (not shown) have very low TLB shootdown rates and the perfor-

mance overhead for these programs is due to memory pressure. In summary, TLB shootdowns will

cause the overhead from COMeT to increase. Nevertheless, overhead remains relatively low even

for multi-threaded programs.

In summary, COMeT can monitor memory health in a deployed system that is actively execut-

ing user applications. COMeT provides an excellent effectiveness in detecting errors “ahead-of-

time” with low performance impact on single-threaded and multi-threaded applications in small-

scale systems. COMeT is easily deployable and highly configurable. No change in applica-

tion code or binary is required to run on COMeT-enabled systems. In addition, using Stealth-

Works, COMeT provides a neat way for system administrators to stress test their configuration for

COMeT-enabled systems before deployment.

54

5.0 ONLINE MEMORY DIAGNOSTIC IN LARGE-SCALE SYSTEMS

COMeT uses a single test thread to do diagnostics. The speed at which this thread does writes,

reads and comparisons determines the test latency of a page. With more bit patterns, the latency

increases, reducing the maximum achievable test rate. This rate must be higher than the workload’s

aggregate memory request rate to avoid on-demand testing. As the number of applications increase

with more cores, there is more memory demand, which can overwhelm the test thread.

��

����

����

����

����

����

����

���	

���

����

� � � � � � 	
 � �� �� ��

�
��
�
�
�
�
�

������������������

������������� �
�������������

�!�"����������� �
�!�"�����������

#�������$��������� �
#�������$���������

Figure 24: COMeT slowdown on selected multi-instance SPEC CPU2006 workloads

To examine this behavior, I implemented COMeT for an Intel dual-processor server with 16

cores on SPEC CPU2006 (see Section 5.3.1 for the full details of my experimental setup). I evalu-

55

ated how some SPEC benchmarks behave when run in multiple instance workloads to understand

how increasing demand can affect overhead. Figure 24 shows slowdown for three benchmarks

in multiple instance workloads. I showed these benchmarks only because they have moderate

demand—i.e., they are “typical” of the most SPEC benchmarks. The figure graphs slowdown of

testing with COMeT as the number of co-running instances of each benchmark is increased. Slow-

down is workload runtime with testing divided by workload runtime without testing. The figure

also shows how the quantity of test bit patterns, which is call “fidelity”, affects slowdown. Two

fidelities are shown: 1 and 8.

On average, for all of SPEC CPU2006, COMeT has only 1.04 slowdown (range 1.01 to 1.07,

not shown). In multiple instance workloads, the slowdown remains reasonable until around 5

instances with fidelity=1. The figure illustrates this observation for milc, bwaves, and perlbench.

In these cases, COMeT maintains a sufficient test rate to avoid on-demand testing of memory until

5 instances.

Beyond 5 instances, the slowdown is high: Aggregate memory pressure is too much for testing

to keep pace, causing on-demand testing. When fidelity=8, the point where slowdown worsens

shifts to fewer instances because more testing is required per physical page, incurring higher test

latency and lower maximum achievable test rate. For example, perlbench has 1.1 slowdown at 8

instances with fidelity=1. The same slowdown happens at 4 instances with fidelity=8. milc with 12

instances and fidelity=8 has the worst slowdown of the examples at 1.84. A change in fidelity does

not necessarily cause slowdown to linearly change: It depends on the rate of allocation relative to

number of instructions executed. Resource competition also contributes to the slowdown, but it is

minimal from my measurements.

In addition to increased memory pressure, Non-Uniform Memory Access (NUMA) architec-

ture has been increasingly used by new multicore systems due to scalability and decentralized

access control over memory among cores. For example, Figure 25 shows memory access laten-

cies from processing cores to memory in node 0 of an AMD Opteron 48-core machine with 96GB

of memory. As this figure shows, memory access latency varies significantly depending on the

location of cores and the node hosting the memory due to the interconnect bandwidth. In large

56

0.75 0.80 0.85 0.90 0.95 1.00 1.05
Memory Access Latency 1e9

0

10

20

30

40

50

Co
re

 ID

0 1 2 34 5 6 78 9 10 1112 13 14 1516 17 18 1920 21 222324 25 262728 29 30 3132 33 343536 37 383940 41 424344 45 46 47
Node 0

Figure 25: Memory Access Latency in NUMA

systems, NUMA is expected to have an impact on the experimental results of COMeT. A tester

thread on a core in a node will observe varying latencies during testing a page depending on the

location of that page in NUMA. Remote pages will require more time to test. NUMA latency is

very important to address as well while designing a scalable diagnostic.

From these results, I conclude that COMeT is sufficient for a small number of co-running

applications at low fidelity. However, it cannot keep pace at larger core counts, executing many

applications. Further, COMeT applies only a few patterns, which may not provide enough error

coverage. I address these limitations of COMeT by introducing a scalable online memory diag-

nostic which I describe in the following sections.

57

5.1 ASTEROID

To address scalability issues explained in the previous section, I designed Adaptive and Scalable

Technique for Resiliency with Online Diagnostics (Asteroid). Asteroid allows adapting memory

testing based on workload behavior to minimize performance overhead. It is designed to scale to

large core counts and aggressive memory tests (i.e., that apply many bit patterns). Asteroid allows

the system administrator to specify a diagnostic control policy that decides how to adjust memory

tests to trade thoroughness/coverage (fidelity), resource usage, and performance overhead. The

administrator can also specify the specific tests to use.

Asteroid has three new capabilities. First, it allows multiple memory pages to be tested simul-

taneously by independent test threads to use multiple idle cores. Second, memory tests done on

physical pages can be adapted to apply fewer or more test bit patterns (changing the amount of error

coverage), depending on memory pressure. When pressure is high, such as during application ini-

tialization, less aggressive tests can be applied to avoid competition with the workload. Likewise,

during low demand periods, more aggressive tests can be used to more thoroughly check memory

health through increased error coverage with more bit patterns and sweeps. Finally, integration of

memory testing and the OS memory allocator are optimized to minimize test latency.

Asteroid supports high memory demands and high fidelity settings for multi-core systems.

The key insight is tailoring the diagnostic test to workload demand: the effective test rate can

be adjusted by changing the number of test threads and the fidelity. A diagnostic control pol-

icy determines these parameters, which can be set prior to execution or adjusted online. An online

approach permits trading test rate, fidelity and resource competition with runtime changes in mem-

ory pressure. Similar to COMeT, Asteroid guarantees that all allocated pages are tested within the

vulnerability window. It also migrates pages that are held a long time (beyond the vulnerability

window time interval) to test them. Unlike COMeT, Asteroid guarantees minimum fidelity and

maximum resource usage. It is also designed to be easily extended by an administrator to imple-

ment system-specific diagnostic control policies and memory test algorithms.

58

5.2 COMPONENTS OF ASTEROID

Asteroid has a significantly more complex architecture than COMeT, which does not support

changing the test policy. COMeT uses a simplified version of my diagnostic framework in Fig-

ure 3 by using only a single test thread. Consequently, COMeT is more tightly integrated with

the kernel and relies heavily on timers/event handling for testing. Instead, Asteroid follows my

diagnostic framework in Figure 3 more closely. Asteroid introduces three new components (TC,

TD and CTT), a well-defined interface between the components, and extensibility to add new test

policies and even new memory test strategies (i.e., MARCH tests).

socket1

Core
Allocator Core

Allocator Core
Allocator

(1) Test Controller

Global
Allocator

Core
Allocator

OS Memory Allocator

d
e

m
a

n
d

(2) Dispatcher

blocks

Test
policy

Test
Spec.

CPU/OS
performance

monitor

tester1

tester0

tester3

tester2

socket0

p
a
g
e
s

test configuration

(3) Concurrent Tester

o
rd

e
r

&
 n

u
m

b
e

r
b

lo
c
k
s

library of available tests

te
s
te

d
 p

a
g

e
s

diagnostic info.

diagnostic info.

d
e

m
a

n
d

Figure 26: Asteroid memory diagnostic framework

Figure 26 shows Asteroid’s design in detail. It is integrated in the OS kernel and works col-

laboratively with memory allocation. There are three components: 1) Test Controller (TC), 2) Test

Dispatcher (TD), and 3) Concurrent Tester Threads (CTT). TC decides what memory to test and

how to test it. It applies the diagnostic control policy. TD extracts physical pages frames from the

memory allocator and distributes them to software threads that do memory tests, CTT. CTT is a

collection of kernel threads that test memory. Each of these components is described in detail in

59

the next sections.

5.2.1 Test Controller (TC)

TC determines how memory should be tested and sets diagnostic parameters, or a configuration, ac-

cordingly. For example, when the system is relatively idle, TC could configure a DRAM diagnostic

to perform aggressive MARCH tests for maximum error coverage. A diagnostic control policy is

incorporated in the Test Controller to set the configuration, testconfig; the policy is developed by

the administrator for a target system, or one of my existing policies can be used. The control pol-

icy is invoked to determine testconfig for an upcoming interval of time, the test epoch. The test

configuration is a tuple [fidelity, threads], where fidelity is a parameter for the test threads and

threads is how many test threads to use. The meaning of fidelity is specific to the actual diagnostic

implemented in Asteroid. For example, in a MARCH test, fidelity specifies a list of bit patterns to

use for the test.

A control policy follows a sense-decide-configure model. TC periodically receives a timer

event, which triggers the control policy to evaluate current conditions to derive testconfig for the

next epoch. Information about memory pressure and CPU events from hardware counters (e.g.,

cache misses) may be used to derive the configuration. The policy obeys constraints on minimum

test fidelity, MIN-FIDELITY, and maximum core count for testing, MAX-CORES, in setting the

configuration.

The control policy is responsible for only configuring the diagnostic (testconfig); it decides how

to test, rather than what and how much to test. This structure factors low-level details about the

operating system’s memory allocator and physical memory away from the configuration decisions.

This factoring is important as details about the memory allocator can be complex and subtle with

information scattered throughout the kernel, particularly in an OS that uses hierarchical allocation.

Instead, TC provides the functionality to interact with the memory allocator separately from the

control policy. The operational details of the memory allocator and page allocation do not need to

be considered in the policy itself, simplifying its structure.

To determine the specific pages to test, i.e., the free memory blocks, TC interacts with the

60

memory allocator. This functionality does not depend on the control policy; an administrator

implementing a control policy does not have to consider how to extract blocks for testing. TC

automatically extracts pages separately based on monitored demand.

The Test Controller determines a memory block list, memblocks, which indicates (1) what

memory to test (from what buddy allocator ranks) and (2) how many blocks to test (from each

buddy rank). Memblocks is a list of tuples [ranki, numberi] that indicates the quantity of blocks to

test for each rank i of the kernel’s buddy memory allocator. The tuple list is a specification of how

much and what to test, rather than the specific physical addresses (pages) to be tested.

TC is the key component in Asteroid since it configures the diagnostic and determines what

memory to test. Section 5.2.4 describes TC in detail, including software architecture, operation

and diagnostic control policy.

5.2.2 Test Dispatcher (TD)

TD receives memblocks and testconfig from TC; memblocks specifies the quantity and orders for

extracting actual blocks (i.e., contiguous physical page frames). After extracting blocks from the

allocator, TD distributes them to test threads (CTT), which are configured using testconfig.

TD is node-aware for multi-processor systems: It dispatches a page to a test thread on that

page’s home node, avoiding remote memory access latency. Memory blocks associated with a

particular memory controller are dispatched to test threads running on that node. TD also balances

work distribution by monitoring occupancy of the input work queue of each test thread. Occupancy

is measured by number of pages in the input queue of a test thread. Work is dispatched in blocks;

blocks are not split since they are contiguous memory pages that will be returned to the buddy

allocator, assuming they pass the diagnostic.

5.2.3 Concurrent Tester Threads (CTT)

CTT is a pool of test threads, which can be configured to change thread count and fidelity (i.e.,

testconfig). This capability allows CTT to adjust system resources (threads) and memory intensity

61

(bandwidth) with workload behavior. Figure 27 illustrates how CTT receives blocks of pages to

test. The dashed line in the figure shows the flow of extracting untested blocks, testing them,

and returning them to the allocator. This “test path” uses TD to extract blocks (according to

requirements from TC), which are passed to CTT for testing.

To improve test efficiency, CTT does four “optimizations”: (1) core-local on-demand test, (2)

page cache recycling, (3) skip middle-ranked blocks, and (4) cache indirect testing. The optimiza-

tions are described next.

Figure 27: Paths for tested pages (dashed line) and requested pages (solid line)

5.2.3.1 Core-local on-demand test Because modern OSes use hierarchical local and global al-

location, CTT is also hierarchical. Local allocation acts as a fast path to satisfy allocation requests;

a fixed-length list of singleton blocks are kept per core (the per-core page cache) from which re-

quests can be handled. Local allocation can also have cache benefits from returning pages back

through the local allocator.

62

In Asteroid, pages that need to be tested on-demand are tested locally on the core where the

pages were allocated. In Figure 27, the “On-demand Tester” is a kernel thread that runs locally

on the core suffering an on-demand request. Multiple on-demand testers can be active simultane-

ously, if there are several local on-demand requests. This structure lets on-demand testing happen

concurrently to execution of other programs and test threads. Thus, only the application local to a

core suffering on-demand testing is impacted.

5.2.3.2 Page cache recycling A tested page is marked expired when it is returned to the global

allocator from a local allocator. Figure 27 shows this return path. The Requester (e.g., application)

can request a singleton block (one page), which is satisfied locally by the Local Allocator. When a

singleton block is released by the Requester, it is returned to rank-0 of the global buddy allocator,

rather than the per-core page cache. The returned page is expired during return and put to the end

of the list of blocks inside the global allocator. Future allocations from the global allocator to the

local allocator consist of freshly tested pages. Hence, applications get the most recently tested

pages, which are less likely to require migration to ensure the vulnerability window.

The figure shows how the global allocator provides singleton blocks to the local allocator.

These pages are delivered from the rank-0 freelist, which is heavily tested (receiving many re-

quests). Although the figure does not show on-demand testing on this path (to simplify the draw-

ing), my implementation ensures that the local allocator receives only tested pages, including the

possibility of on-demand testing. Fortunately, on-demand testing from rank-0 to the local allocator

is usually off the critical path: The local allocator can satisfy requests with existing free tested

pages that it already holds while new pages are concurrently being tested on-demand. In effect,

on-demand testing from rank-0 to the local allocator happens in the background to application ex-

ecution. There can be moments, however, where the local freelist is empty and the rank-0 freelist

has no tested pages. In this case, a request to the local allocator will be delayed by on-demand

testing from rank-0. This situation is rare in practice, particularly as the test rate is adjusted with

demand.

63

5.2.3.3 Skip middle-ranked blocks I observed that low buddy ranks (order 2 or less) sustain

most memory allocation during normal system operation. Because the buddy algorithm actively

tries to reduce memory fragmentation, the highest-ranked blocks (order 9 and up) also sustain

allocation activity to provide memory to lower ranks. Thus, only blocks from lists of order 2 (most

heavily accessed) or less and lists of order 9 and up (source of blocks for middle ranks) are tested.

All other ranks are skipped. The test time of skipped ranks thereby saved is used to test the more

heavily used ranks. Figure 27 shows the test path extracts blocks from rank 10, 9, 2, 1 and 0. The

CTT can return tested blocks back to these ranks.

Because blocks may be split from a higher rank, the middle ranks tend to receive recently

tested blocks. The figure depicts splitting blocks from the ranks 10 and 9 to fill lower ranks. In this

way, tested blocks tend to propagate downward through middle ranks. Consequently, the delivery

of an untested block from a middle rank is somewhat unusual as long as the test rate keeps up with

demand. There are two reasons for this. First, the vast majority of blocks requested come from the

lowest rank, which are actively tested. Second, when a request is made to a middle rank, it will

likely be satisfied by a block tested ahead of time due to splitting from a higher rank. If a tested

block is not available, then one will be tested on-demand.

5.2.3.4 Cache indirect test Test threads issue memory reads and writes that can either be done

directly on memory or indirectly through the caches. CTT uses the latter method for efficiency:

Test latency is reduced by utilizing burst-mode cache writes, which is called a “cache indirect

test”. During testing of a memory page, each cache line is written and flushed to DRAM one at a

time. After the whole page is written, the page is read again to check that the patterns were written

correctly to DRAM. Burst writes dramatically reduce test latency compared to writing one word

at a time bypassing the caches [57]. Test threads also implement strided writes and reads to flush

DRAM row buffers before reading them back.

Figure 28 shows a skeletal algorithm for a simple MARCH test that uses cache indirect testing.

This test writes, reads and verifies one bit pattern for every cache line on a physical page. For each

line on a page (lines 3-5), the line is first flushed from the cache and DRAM (flush from the cache

64

MARCH-PAGE-DIAGNOSTIC(page)

1 line addr = page
2 for (line num = 0; line num < PAGE-SIZE; line num++)
3 // Initialize cache line to clean (flushed) state
4 CACHE-FLUSH(line addr)
5 DRAM-CLOSE-PAGE(line addr)
6 // Write pattern to cache line, flush, close DRAM row
7 WRITE-PATTERN(line addr , PATTERN)
8 CACHE-FLUSH(line addr)
9 DRAM-CLOSE-PAGE(line addr)

10 // Read pattern and check match on pattern
11 line data = READ-PATTERN(line addr)
12 if (CHECK-PATTERN(line data , PATTERN))
13 // Did not match: Report as failed diagnostic.
14 return FALSE

15 line addr = line addr + LINE-SIZE

16 return TRUE

Figure 28: Example MARCH test using cache indirect testing with one pattern

and close the DRAM row), if present in the cache or DRAM row buffer. Next, the test bit pattern

is written to all words in the cache line and flushed to memory (lines 6-9). Finally, the line is

read from memory and the words in the line are checked against the pattern (lines 10-14). If the

read data does not match the written pattern, then the page is reported as failing the diagnostic. In

memory direct testing, the cache and DRAM row buffer would need to be flushed for every word in

the page, which is more expensive than performing the same operations at cache line granularity.

5.2.4 Test Controller and Diagnostic Control Policy

In this section, I describe the general operation, constraints and options for the test controller, with

an emphasis on how TC can accommodate different diagnostic control policies. I describe two

diagnostic control policies but others could be implemented as well.

65

5.2.4.1 Operation Figure 29 shows the architecture of the test controller. TC has two primary

functions: (1) determine which freelists (i.e., the global buddy allocator ranks and the local allo-

cator page cache list) require tested pages and how many pages to be tested and (2) determine the

configuration of the test threads for the next test epoch. These functions are described next.

Figure 29: Software architecture and information flow for TC

5.2.4.2 Determining Memory Blocks to Test As the figure shows, TC has a component Mem-

blocks Extraction that determines which blocks and how many to test for the upcoming test epoch.

This component generates the memory block list, memblocks, which is passed to Test Dispatch to

extract the actual physical page frames from the freelists for testing. Memblocks is a list of tuples,

[ranki, numberi], that indicate the ranks (freelists) which need replenishment with tested pages

and how many blocks to test for each rank.

Periodically, the Monitoring Timer expires, causing the Event Reader to query the memory

allocator about which freelists have provided pages (due to allocator requests) since the last query.

66

The Event Reader also samples any available performance monitoring information, such as hard-

ware counters (e.g., cache misses). All of the sampled information is recorded for use by Mem-

blocks Extraction, the Diagnostic Control Policy and the Alarm Condition.

Using the recorded counter values for memory demand, Memblocks Extraction determines

which ranks to test and how many blocks to test from each rank. The number of blocks to test for

rank i is the difference between the current counter value and the previous one scaled by a small

factor. The current counter values reflect the most recent demand, allowing Memblocks Extraction

to react to demand bursts, which will possibly deplete the freelists of tested pages for the next

test epoch. In contrast, to avoid reacting to deep valleys in demand (e.g., 0 requests), a lower

limit is placed on how many blocks to test. The lower limit is determined by the moving average

of demand scaled by one half. The moving average is decayed gradually to smooth out sudden

drops in demand. Specifically, the number of blocks tested for rank i is: numberi = MAX(α ×

(counteri − prev counteri),moving averagei/2). This strategy ensures a ready supply of tested

pages to avoid on-demand testing. It may over test for a period of time, but eventually the moving

average decays and stabilizes to reflect the actual demand when it drops sufficiently long.

According to the skip middle rank optimization, Memblocks Extraction considers only the low

and high order ranks (i = 0, 1, 2, 9, 10) of the global buddy allocator. The previous counter values

and the moving average of demand for each rank is updated after the memblocks list is determined.

5.2.4.3 Determining Test Configuration A diagnostic control policy aims to configure the di-

agnostic to achieve objectives for the memory test and the impact on applications, according to

memory demand. That is, it tries to configure the diagnostic to keep up with the blocks being

scheduled for testing by Memblocks Extraction. TC hosts the control policy, as the figure shows.

The control policy and an associated alarm condition (described below), are user defined. The sys-

tem administrator can change these components to achieve particular system goals (e.g., minimize

performance overhead or maximize test coverage).

Similar to Memblocks Extraction, the diagnostic control policy is periodically invoked (deter-

mined by a timer, Policy Timer) to configure the test configuration. Whenever invoked, the control

67

policy decides on the configuration for the upcoming period until invoked again.

Using the monitored information from the Event Reader, the diagnostic control policy attempts

to configure the diagnostic to maintain the test rate to avoid on-demand testing. In practice, I

found that it is best to scale up the target test rate by a small factor, i.e., test rate = alloc rate×α,

where α > 1.0. The amount of scaling, α can be set by the administrator to control how much to

overprovision testing of pages; this value also affects how many additional blocks (pages) above

monitored demand are scheduled by Memblocks Extraction for testing. I found that doubling the

demand works well for my experimental system [58]. Conceptually there is a single test rate, but

in actuality, the memory allocator maintains several freelists, each of which has its own test rate,

along with the monitored information. For simplicity, in the following discussion, I treat the test

rate as a single value that affects how many pages to test every test epoch to keep the memory

allocator’s freelists filled with a sufficient supply of pages that have been recently tested in the

background.

The control policy determines a configuration testconfig = [fidelity, threads], such that

test rate satisfies:

test rate ≤ threads× CALC-BANDWIDTH(fidelity)

1 ≤ threads ≤ MAX-CORES

MIN-FIDELITY ≤ fidelity ≤ MAX-FIDELITY

where CALC-BANDWIDTH is used to calculate the maximum effective bandwidth to test phys-

ical page frames at the specified fidelity. CALC-BANDWIDTH depends on the specific diagnostic

tests implemented; I will give an example of this function for MARCH testing in Section 5.2.4.5.

In practice, there can be memory contention which may affect the actual bandwidth to test a page.

MAX-CORES is the maximum number of cores (system resources) to use for testing pages, MIN-

FIDELITY is the lowest acceptable fidelity, and MAX-FIDELITY is the maximum fidelity. These

parameters are set by the administrator.

A policy should select the configuration to satisfy the required test rate to keep up with the

scheduled memblocks but also to meet system goals, such as reducing performance overhead, min-

imizing core usage or maximizing test thoroughness. A fixed policy can set the parameters to

68

constants for the expected maximum bandwidth demand, while an adaptive policy can change the

parameters, according to demand and operating conditions.

The diagnostic policy is periodically invoked by the TC whenever the Policy Timer expires.

The periodicity, the test epoch, is configurable. Ideally, the periodicity should be set relatively large

to avoid changing test configurations too frequently. It helps “smooth out” making configuration

adjustments in responding to demand bursts. However, too long of an interval may cause too much

smoothing, leading to on-demand testing as the rate cannot be adjusted upward quickly during

burst demand.

To address burst demand, TC has an “emergency override” capability through the Alarm Con-

dition. Whenever the Monitoring Timer expires, the Alarm Condition is checked to determine

whether monitored allocation demand is high enough to trigger increasing test bandwidth to its

maximum for the burst. Note that Memblocks Extraction does not place an upper limit on the

number of blocks to schedule for testing (i.e., the current test rate does not limit how many pages

to actually schedule for testing). Hence, the emergency override is used to reconfigure the diag-

nostic to react to peak demand, causing more work (i.e., pages to test) to be suddenly scheduled

by Memblocks Extraction. The Alarm Condition is checked with the same periodicity of Mem-

blocks Extraction. Similarly to other aspects of TC, the Alarm Condition is configurable. For the

emergency override, three parameters affect its operation: Monitoring Timer periodicity, the alarm

triggering event (condition), and the emergency test configuration.

For my experimental system (see Section 5.3.1), I tried different settings of all parameters1.

I found that an emergency override where demand has increased by 4× since its last reading

works well as a threshold (indicating a rapid rise in burst demand) [58]. I also set the emergency

configuration to be the one that has the maximum test rate (allowed by the constraints). The

emergency configuration remains in effect until the end of the current test epoch. I used a 25ms

Monitoring Timer value, as suggested by previous work [58]. With these settings, a one second

Policy Timer value works well for my system—the system is responsive to demand and emergency

override only kicks in during unexpected demand. The test configuration also remains stable during

1I do not show a sensitivity study of the parameters because the parameters should be tuned to a given target system
with offline profiling. This tuning is orthogonal to my contribution and relatively uninteresting.

69

epochs without short-lived demand spikes.

Parameter Description (Values used in experiments)

α (α ≥ 1) Scale test rate to over-provision for demand (2.0)

MAX-CORES Maximum number of cores to use for testing (4)

MIN-FIDELITY Minimum fidelity to use (1)

MAX-FIDELITY Maximum fidelity to use (32)

Alarm Condition Trigger emergency test configuration (4× increase demand)

e testconfig Emergency test configuration ([MIN-FIDELITY,MAX-CORES])

Policy Timer How often to invoke control policy (1s)

Monitoring Timer How often to sample demand and performance counters (25ms)

In summary, the administrator needs to set several parameters, as shown in Table 6, and select

a diagnostic control policy (or implement his/her own policy). Having described the operation and

parameters of TC, I describe two exemplar diagnostic control policies: Fixed and Adaptive. Fixed

is static, while Adaptive changes the configuration at runtime. In the results, I experimentally

evaluated these policies.

5.2.4.4 Fixed Policy In this simple policy, the system administrator sets a fixed configuration

for the diagnostic. The configuration is not changed at runtime; it is initialized at system bootup.

In particular, the administrator picks the actual configuration to use, obeying the constraints noted

above. That is, threads and fidelity are selected by the administrator and remain fixed throughout

system uptime.

In this policy, the test threads (in the CTT) will operate only when they have work avail-

able. The amount of work, i.e., pages to test, depends on the monitored allocation demand. If

70

 Table 6: Test Controller and Diagnostic Control Policy Parameters

the selected fixed configuration cannot meet the demand, then the diagnostic will fall behind the

demand, and more pages will be on-demand tested at allocation, leading to high performance over-

head. If the configuration can meet the demand, then a fixed configuration may unnecessarily use

too many resources. It is important to accurately profile the expected system workloads a priori

to select the “best” configuration. If the workloads have significant variance in demand, then the

fixed policy may prove ineffective, either being under- or over-provisioned. Hence, unless the

workload demand is relatively stable, this policy can cause unnecessary resources to be occupied

(over-provisioned with threads) or high overhead (under-provisioned, causing on-demand testing

of pages).

5.2.4.5 Adaptive Policy Because it can be difficult to anticipate workload demand (i.e., by

Fixed), Adaptive adjusts threads and fidelity at runtime to match memory allocator pressure. Pri-

ority is given to the parameters: threads is first minimized, and then fidelity is maximized, while

obeying the constraints to set test rate on MAX-CORES, MIN-FIDELITY and MAX-FIDELITY.

ADAPTIVE-POLICY(request bw)

1 threads ← 1, fidelity ← MAX-FIDELITY

2 while request bw > (threads × CALC-BANDWIDTH(fidelity))
3 fidelity ← fidelity − 1
4 if fidelity < MIN-FIDELITY

5 threads ← threads + 1
6 if threads > MAX-CORES

7 return testconfig(1, MAX-CORES)
8 fidelity ← MAX-FIDELITY

9 return testconfig(fidelity , threads)

CALC-BANDWIDTH(fidelity)

1 return (MAX-TEST-BW × 1
fidelity)

Figure 30: Adaptive policy to find test configuration

Figure 30 shows the algorithm for Adaptive. It is “core preserving” because core usage is

minimized. It iterates over the test configuration space to find fidelity that uses the smallest threads

71

that meets demand. The algorithm starts with one thread and MAX-FIDELITY fidelity on line 1-2

and checks if that setting provides sufficient test bandwidth via CALC-BANDWIDTH. If not, the

algorithm searches for a configuration (lines 2-8). To start the search, a lower fidelity is selected

on line 3. If valid, the loop continues. Otherwise, threads is incremented (line 5). If the number

of threads becomes higher than MAX-CORES, the configuration space has been exhausted and the

maximum threads and minimum fidelity are returned (line 8). This configuration has the fastest

test rate. If threads is less than MAX-CORES, the highest fidelity is selected (line 8) and the loop

continues. If the demand can now be met, this setting is returned.

Figure 30 shows how the test bandwidth is computed for a given fidelity in my experimental

system, employing a MARCH test. In my implementation, fidelity controls how many test patterns

are written, read and verified. The number of test patterns used by the MARCH test is 2×fidelity.

For example, at fidelity = 16, thirty-two test patterns are used to check memory health. MAX-

TEST-RATE is determined through offline profiling, which exercises the diagnostic at the lowest

fidelity to perform reads, writes and checks with one test thread. The profiling accounts for all

overheads of the diagnostic, including cache invalidations, reads, writes, branches and other control

operations. The lowest fidelity is the one that achieves the maximum test rate, since the least

amount of work is done. Because my diagnostic has a simple relationship between fidelity and

amount of work (number of patterns), the maximum test rate can be linearly scaled down with

increasing fidelity to determine bandwidth requirements. In more complex diagnostics, it may

be necessary to profile the system under all fidelity settings. This profile information could be

represented in a table that is loaded by the system at bootup. A table lookup could then be done in

CALC-BANDWIDTH to get the bandwidth requirements.

72

5.3 EXPERIMENTAL EVALUATION

5.3.1 Methodology

I performed two types of experiments, which I term “primary” and “secondary”. The primary

experiments evaluate my techniques across a range of workload demands. The focus for the pri-

mary experiments is how Fixed and Adaptive compare with one another. I also conducted a set of

secondary experiments to establish a baseline for the primary experiments. In the secondary ex-

periments, I examined how the optimizations for the Concurrent Test Threads affect performance.

In these experiments, I compared against the original COMeT technique.

I implemented Asteroid in Linux 3.1.7 on a Dell PowerEdge T620 server with two Intel Xeon

E5-2650 2.0 GHz processors and 64 GB 1333 MHz DDR3 memory. Each processor has 8 cores

(16 cores total); hyperthreading is disabled. In my experimental system, I implemented the classic

MATS test algorithm [80]. Each CTT thread does this algorithm on physical pages. Four fidelity

levels are used: 8, 16, 24 or 32 patterns. On-demand testing, when activated, uses minimal patterns

(8).

To form workloads for my primary experiments (Sections 5.3.3, 5.3.4, and 5.3.5), I mixed

benchmarks from SPEC CPU2006, according to their memory demand. The workloads are listed

in Table 7; each workload has 12 programs (75% system utilization). The workloads cover three

categories of demand—Low (L*), Medium (M*), and High (H*) to examine how demand pressure

affects Asteroid. In each category, I increased the demand. L1 has the lowest demand and H2 has

the highest.

For the secondary experiments (Section 5.3.2), I considered mixed pairs of benchmarks from

SPEC. In these experiments, I ran 5 instances of each benchmark in a pair. I evaluated eight pairs

spanning a range of low to moderate memory demand.

I implemented Fixed and Adaptive policies. Fixx.yy is Fixed with x test threads and yy test

patterns (fidelity). In this notation, the first number after Fix is always a single digit for my exper-

iments (from 1 to 8) and the second number is up to two digits. Adaptive is abbreviated, Adapt. It

73

Name Benchmarks (Number instances denoted by “/x”.)

L1 namd/2+bzip2/2+povray/2+tonto+hmmer+sphinx3+lbm+libquant+gamess

L2
perlbench+bwaves+gems++gromacs+sjeng+

h264ref+tonto+namd+bzip2+povray+hmmer+lbm

L3
omnetpp/2+mcf+cactus+soplex+gobmk+tonto+namd+

bzip2+povray+hmmer+lbm

M1
omnetpp/2+mcf+cactus+soplex+gobmk+perlbench+bwaves+

gems+zeusmp+leslie3d+gromacs

M2
astar/2+calculix/2+omnetpp+mcf+cactusADM+soplex+

perlbench+bwaves+GemsFDTD+zeusmp

M3 astar/3+calculix/3+omnetpp/2+mcf+cactusADM+soplex+gobmk

H1
milc/2+gcc/2+astar/2+calculix/2+omnetpp+mcf+

cactusADM+soplex

H2 milc/3+gcc/3+astar/3+caclulix/3

adjusts configuration in 1 second epochs. Monitored demand is decayed to avoid selecting a low

test rate configuration too quickly. Both Fix and Adapt use up to 4 test threads, which are assigned

round robin to the two processors, P1 and P2. Pages are assigned to test threads in 1 second test

epochs. In the primary experiments, Fixx.yy and Adapt are run with all CTT optimizations enabled.

Finally, I considered a number of metrics. For the primary experiments, I reported slowdown,

fidelity and threads. Slowdown is runtime with testing divided by runtime without testing. Because

some programs finish more quickly than others in a workload, all fast programs are relaunched

until the longest running program completes. The programs are pinned to the same cores in all

runs to minimize contention differences between runs. For the secondary experiments, I report

only slowdown. Fidelity is average number of test patterns applied, and threads is the average

number of cores used. For Fix, fidelity and threads are constant (i.e., the configuration). The test

74

 Table 7: Workload Mixes.

configuration is sampled every second to compute the metrics.

5.3.2 Effect of Optimizations

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Sl
ow

do
w
n

COMeT	(Fix1.8)	fidelity=8
+Cache	Indirect
+Page	Recyling
+Buddy	Skip

Figure 31: Impact of cache indirect testing, page recycling and skipping middle ranks for CTT

To establish a baseline for my primary experiments, which compare the fixed and adaptive

diagnostic control policies, I evaluated how the CTT optimizations affect performance. Figure 31

shows a comparison of Fix1.8 with progressively more optimizations enabled. In the figure, the

benchmarks are ordered left to right according to memory demand; the highest demand workload

pair is on the right side. The COMeT bar represents performance of COMeT implemented in my

experimental system with fidelity = 8 and no CTT optimizations. In essence, this bar is Fix1.8

without the optimizations. The figure shows how progressively enabling the optimizations for

cache indirect testing, page recycling and skipping middle ranks of the buddy allocator influences

slowdown. Going from left to right, each bar in a group adds an optimization.

As the figure shows, slowdown for COMeT is quite high (1.5 to 2.3) for the benchmark pairs;

as noted in Figure 24, the basic scheme, with one test thread and no optimizations, simply cannot

keep up with demand of running more than a few benchmark instances, which causes on-demand

testing. Enabling cache indirect testing dramatically reduces slowdown. In this case, testing at

75

“memory burst” speed, permitted by grouping words into cache blocks, allows a much higher

effective test rate for the MARCH diagnostic. With this higher rate, the diagnostic can better

maintain the pace of demand. The figure also shows that page recycling and skipping middle ranks

also lead to performance improvement. Relative to cache indirect testing, these optimizations offer

a good advantage, especially as demand increases (rightmost pairs in the figure).

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Sl
ow

do
w
n

+2	test	threads,	fidelity=8

+NUMA	placement

Figure 32: Impact of node local dispatch by TD

Figure 32 shows the impact of dispatching blocks to to a test thread running on the node

containing the physical memory for the block (i.e., the node local to the test thread). In this

figure, the configuration is Fix2.8 with cache indirect, page recycling and skipping buddy ranks

optimizations enabled. The benchmarks are uniformly assigned to the cores of the two sockets

(nodes) of my system to avoid imbalance in demand influencing the results.

The figure shows two cases: (1) the left bar is slowdown when blocks are distributed to two

test threads based on occupancy (i.e., distribute new blocks to be tested to the least occupied test

thread) and (2) the right bar is slowdown when blocks are distributed to the test thread on the

local node of the block. As expected, distributing blocks without consideration for local or remote

memory access incurs more overhead due to the effect of non-uniform memory access. In the M2

workload, for example, there are numerous remote memory operations, which suffer significantly

76

more memory latency, slowing down testing.

From these results, I conclude that all four optimizations are useful to improving the perfor-

mance of testing. In the remaining sections with the primary results, all four optimizations are

enabled. Fix1.8 is used in the primary results to approximate COMeT with the four optimiza-

tions enabled (since it has one test thread). Consequently, a comparison against Fix1.8 shows how

adaptivity for test thread count and fidelity affect performance.

5.3.3 Fixed Configuration

NAME Adapt Fix4.8 Fix3.8 Fix2.8 Fix1.8
L1 1.01 1.01 1.01 1.01 1.01
L2 1.01 1.00 1.01 1.00 1.01
L3 1.02 1.01 1.01 1.01 1.01
M1 1.01 1.00 1.00 1.00 1.00
M2 1.02 1.02 1.02 1.02 1.04
M3 1.02 1.02 1.02 1.03 1.07
H1 1.02 1.02 1.03 1.04 1.08
H2 1.04 1.07 1.07 1.08 1.15

NAME Adapt Fix4.16 Fix3.16 Fix2.16 Fix1.16
L1 1.01 1.01 1.01 1.02 1.02
L2 1.01 1.01 1.01 1.01 1.02
L3 1.02 1.01 1.02 1.02 1.02
M1 1.01 1.01 1.01 1.01 1.02
M2 1.02 1.02 1.02 1.03 1.09
M3 1.02 1.05 1.05 1.05 1.12
H1 1.02 1.05 1.05 1.07 1.13
H2 1.04 1.12 1.12 1.14 1.20

Table 8: Slowdown for Adaptive and Fix: Fidelity 8 and 16

Table 8 and Table 9 show slowdown of the fixed configurations. The Fix columns are ordered

left to right, top to bottom based on priority of slowdown, fidelity and resource usage. The leftmost

and top configuration of Table 8, Fix4.8, uses the most resources (4 cores) and has the lowest

fidelity (8). It is the “fastest” configuration. The rightmost and bottom configuration of Table 9,

Fix1.32, uses the fewest resources and has the highest fidelity. It is the slowest. The relative

maximum test rate of a configuration is threads/fidelity. Note the table columns are not sorted

by the test rate.

In general, Fix’s slowdown is affected by workload memory demand. Slowdown is minimized

by fast configurations due to less on-demand testing. As an example, M1 has 1.1 slowdown with

77

NAME Adapt Fix4.24 Fix3.24 Fix2.24 Fix1.24
L1 1.01 1.01 1.02 1.02 1.03
L2 1.01 1.01 1.02 1.02 1.03
L3 1.02 1.02 1.02 1.04 1.07
M1 1.01 1.01 1.02 1.06 1.09
M2 1.02 1.04 1.09 1.07 1.08
M3 1.02 1.07 1.08 1.08 1.15
H1 1.02 1.08 1.09 1.13 1.15
H2 1.04 1.16 1.17 1.23 1.22

NAME Adapt Fix4.32 Fix3.32 Fix2.32 Fix1.32
L1 1.01 1.02 1.02 1.02 1.03
L2 1.01 1.03 1.05 1.05 1.07
L3 1.02 1.05 1.06 1.06 1.08
M1 1.01 1.07 1.08 1.09 1.10
M2 1.02 1.08 1.13 1.12 1.15
M3 1.02 1.10 1.11 1.15 1.17
H1 1.02 1.11 1.15 1.14 1.19
H2 1.04 1.18 1.22 1.25 1.25

Table 9: Slowdown for Adaptive and Fix: Fidelity 24 and 32

Fix1.32 and 1.0 slowdown with Fix4.8. Slowdown increases as memory demand increases. For

example, L1 (lowest demand) with Fix1.32 has 1.03 slowdown and H2 (highest demand) with

Fix1.32 has 1.25 slowdown. Some configurations to the left and top of others have higher slow-

down due to lower test rate. For example, in M2, Fix3.16 has a 1.03 slowdown and Fix1.8 has

1.04. The relative test rate for these configurations is (3/16) > (1/8), and therefore, Fix3.16 has

slightly less slowdown.

Some results are influenced by resource competition in the memory subsystem. For example,

consider M2 with Fix1.8, Fix2.16, Fix3.24 and Fix4.32. These configurations are test rate equiv-

alent, yet they have different slowdown. Fix1.8 and Fix2.16 have similar slowdowns (1.02 and

1.03), while Fix3.24 and Fix4.32 have noticeably higher slowdown (1.09 and 1.08). The higher

slowdown is due to competition: programs on P1 are sensitive to increased testing. Fix3.24 and

Fix4.32 use two test threads on P1, whereas Fix1.8 and Fix2.16 use only one thread. The additional

test thread consumes more memory bandwidth, causing local competition for memory bandwidth.

Asteroid also tries to test memory with a local thread, which can cause imbalance in test work dis-

tribution between P1 and P2. For M2, test threads on P1 are busier, leading to additional difference

in memory bandwidth consumption on P1 and P2.

78

The tables show the “best” configuration in shading for each workload. This choice minimizes

slowdown, maximizes fidelity and minimizes resource usage (in that order). It is the rightmost and

bottom one that has slowdown equal to the minimum of all configurations. For example, L1 has

minimum slowdown of 1.01. Looking at L1’s row, the rightmost bottom point with 1.01 slowdown

is Fix4.24, which maximizes fidelity at a cost of 4 cores. Slowdown does not change much to the

left of this point since Fix4.24 matches L1’s demand. Lastly, the “best” choice moves leftward

and upward as demand increases. The left configurations have higher test rates at the cost of lower

fidelity and more cores. For example, Fix3.16 is best for M2 and Fix3.8 is best for H2. Fix3.8’s

test rate is twice as fast as Fix3.16.

From these results, I observed that no single configuration always works best due to varying

demand and local effects, such as resource competition. Thus, it is difficult to select one configu-

ration that always works. Adapt tries to resolve this issue. Next I compare Adapt to Fix.

5.3.4 Adaptive Configuration

Table 8 and Table 9 show Adapt’s slowdown (left column). Slowdown is generally low: 1.01

to 1.04 (increasing with demand). Because Adapt essentially selects between Fix configurations

at runtime, it can identify a configuration to satisfy demand during workload phases. Generally,

Adapt should have no worse slowdown than Fix4.8, which is the fastest fixed configuration. How-

ever, in a few cases, Adapt is slightly worse. For example, in L3, Adapt has 1.02 slowdown, while

Fix4.8 has 1.01 slowdown. Adapt’s higher slowdown is due to management overhead and delay in

reacting to memory demand.

H2 is is especially interesting: Adapt’s slowdown (1.04) is better than Fix4.8’s slowdown

(1.07). From examining execution traces, I found that Fix4.8 tends to test pages in a burst since the

work is dispatched to all threads at once. The burst causes a temporary spike in memory bandwidth

competition at the beginning of each test epoch. In contrast, Adapt often selects a configuration

with fewer threads (e.g., Fix2.8). This configuration gradually tests the same number of pages as

Fix4.8 in each epoch, smoothing the competition.

Slowdown is only part of the story: Adapt should also maximize test fidelity and minimize

79

1.01 1.01
1.02

1.01
1.02 1.02 1.02

1.04

1.01
1

1.01
1

1.02 1.02 1.02

1.07

1.03

1.07
1.08

1.1

1.15

1.17

1.19

1.25

0.98

1.03

1.08

1.13

1.18

1.23

L1	 L2	 L3	 M1	 M2	 M3	 H1	 H2	

Sl
ow

do
w
n

Adaptive Fix	Min Fix	Max

(a)	Slowdown

5

10

15

20

25

30

L1	 L2	 L3	 M1	 M2	 M3	 H1	 H2	

In
te
ns
ity

Adaptive Fixed

(b)	Fidelity

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L1	 L2	 L3	 M1	 M2	 M3	 H1	 H2	

Th
re
ad

s

Adaptive Fixed

(c)	Threads

Figure 33: Comparison of performance, fidelity and threads for Adaptive and Fix.

80

resource usage. Figure 33 compares performance, fidelity and threads. Figure 33(a) compares

Adapt’s slowdown to the best configuration for Fix (shaded entries in Table 8 and Table 9) and the

worst configuration (largest slowdown). The figure illustrates the range of slowdown for Fix; it

also shows that Adapt does a good job to select configurations that minimize slowdown.

Figure 33(b) shows fidelity for Adapt and the best Fix choice. Dynamically adjusting con-

figuration, particularly during low demand, is usually beneficial. Fidelity is typically higher with

Adapt than Fix for L* and H* workloads. These workloads have several demand peaks and val-

leys, exposing opportunity to adjust configuration. For example, in L1, average fidelity is 30.3

with Adapt and 24 with Fix4.24. At the other end, H* exhibit phases with low demand that Adapt

exploits to select high fidelity configurations. For example, in H2, Adapt has an average fidelity

of 11.6 and Fix3.8 has a fidelity of 8. The medium (M*) workloads tend to be stable; they do not

exhibit demand variance in phases. Thus, Adapt tends to select one configuration for the full run

that is similar to the best Fix configuration, which explains why fidelity does not differ in Adapt

and Fix on M*.

Figure 33(c) shows “cost” paid by Adapt compared to the best Fix configuration. For similar

reasons as fidelity, Adapt generally has lower cost. It scales down test thread count dynamically

to avoid holding onto cores. Fix inherently does something similar. For example, although Fix4.8

uses 4 test threads, the threads are not necessarily always busy. Nevertheless, Fix pays the cost to

reserve resources to run testing for the full test epoch. As demand increases, Adapt employs more

threads, which begins to behave similarly as Fix. In H2, Adapt used more threads than Fix because

it selected high fidelity configurations during some workload phases.

5.3.5 Underlying Behavior

Next I examined Adapt’s behavior on a workload’s individual programs to determine whether the

approach unfairly penalizes some applications, while favoring other ones. I show one workload,

H2, as a representative example. It has similar behavior as the other workloads. Figure 34(a) gives

the slowdown of individual programs. Some programs have more slowdown than others due to

sensitivity to memory demand and local resource competition. The value in parenthesis is the core

81

1

1.01

1.02

1.03

1.04

1.05

1.06

m
ilc
(2
)

m
ilc
(3
)

m
ilc
(4
)

gc
c(
5)

gc
c(
6)

gc
c(
7)

as
ta
(8
)

as
ta
(9
)

as
ta
(1
0)

ca
lc
(1
1)

ca
lc
(1
2)

ca
lc
(1
3)

Sl
ow

do
w
n

(a)	Slowdown	of	Instances

 315 320 325 330 335 340 345

K
ilo

 p
ag

es
 /

se
c

Execution Timeline (in seconds)

(b) Timeline of workload demand and testing

demand
concurrent

concurrent + ondemand

Figure 34: Slowdown of individual benchmark instances in H2 workload.

82

on which the program was executed. Even cores are processor P1 and odd cores are P2. The figure

illustrates how local competition from testing affects slowdown: The same program on P1 has

more slowdown than on P2. For instance, gcc has 1.04 slowdown on P1 and 1.02 slowdown on

P2. There is more testing on P1, and consequently, competition and on-demand testing increases. I

observed similar behavior for the other workloads. The effect is less pronounced with less demand

due to dilution.

Figure 34(b) gives a snapshot of how Adapt reacts to demand. It shows actual memory demand

(“demand”) during 30 seconds (s) of execution. “Concurrent” is the rate to fill the pool of tested

pages, and “concurrent+ondemand” is the rate for concurrent and on-demand testing. The curves

track demand, except during bursts. For example, at 324s, there is a burst from an application

relaunch. Adapt cannot react to the peak: The test threads do not deliver enough pages. Further,

the peak is short, which is difficult to quickly accommodate. However, the peak influences later

testing because the test rate is decayed. The decay allows refilling the pool during a “quiet period”

after a burst empties it. Concurrent+ondemand is higher than Concurrent at 326s to 328s because

the pool was depleted at 324s. The burst emptied the pool, leading to on-demand testing later

and refilling the pool. The pool is refilled and the test rate is effectively higher than the demand

between 330 and 335 seconds.

The graph illustrates that Adapt cannot always meet burst demand. In this situation, more test

threads are required, which would require more cores and memory bandwidth. However, Adapt

is typically effective by adjusting configuration to demand. From these results, I conclude that

Asteroid, using Adapt, minimizes slowdown, while maximizing the number of tests applied to

memory. It strikes a good balance to select the “right test configuration at the right time.” Asteroid

is also flexible enough to support multiple test strategies, as my implementation with Adapt and

Fix demonstrates.

In summary, Asteroid shows an impressive scalability in systems with large amount of mem-

ory and applications with a wide range of memory requirements. Asteroid’s test policies provide

system administrators complete control over resources to be used by the memory diagnostic. The

diagnostic optimization techniques used by Asteroid provide subtle insight into the interaction be-

83

tween an application and the OS memory manager that no other study has done before. Scalability,

transparency, ease of deployment and configuration make Asteroid a novel memory diagnostic

technique.

84

6.0 CONCLUSION AND FUTURE WORK

Although lack of reliability in DRAM has become a growing concern, there has been less work

on online memory diagnostics which improves DRAM reliability. In my dissertation, I presented

a transparent software diagnostic framework, Continuous Online Memory Testing (COMeT), to

check memory for hard errors. This framework is designed to allow memory diagnostic to run con-

currently with other applications in the system. To achieve low run-time overhead, the framework

utilizes available cores in a CMP to proactively test memory ahead of allocation. COMeT also

uses concurrent page migration to limit the exposure of in-use pages to errors. Based on system

configurations and workloads, two designs and implementations of the framework are described

and evaluated in my dissertation. In the first implementation, COMeT targets single-threaded and

multi-threaded workloads in small-scale systems with a minimal average slowdown of just 1.04 for

both SPEC CPU2006 and PARSEC. I also showed that excess TLB-shootdowns due to COMeT’s

operation do not harm performance of multi-threaded applications. My results demonstrate that

a software-only approach to check memory health can be incorporated in a transparent fashion to

have feasibly low performance overhead for small-scale CMPs.

In the second implementation, Asteroid, I addressed scalability issue that COMeT suffers from.

Asteroid is essentially an improved design of COMeT to make it scalable in large scale system with

multi-programmed workload. Asteroid provides for online, scalable software memory diagnostics

in multi-core systems. It enables approaches that dynamically adjust test fidelity and resource

usage with memory pressure to minimize performance overhead. Asteroid is integrated and opti-

mized with the OS to ensure testing is efficient. I implemented two diagnostic policies, Fixed and

Adaptive, in the framework, which illustrates Asteroid’s extensibility. Using an implementation

85

for Linux on a 16-core server, I found that Asteroid with Adaptive has low overhead (1% to 4%),

while maximizing test fidelity and minimizing resource usage. I conclude that Asteroid is effective

in testing memory and has feasibly low overhead.

6.1 SUMMARY OF CONTRIBUTIONS

Throughout this dissertation, I focused on developing software-based techniques to make DRAM

more reliable while system is running. My contributions can be summarized as following.

• The design and implementation of a software-only process is described which continuously

tests main memory’s health while actively executing user applications. The design is gradually

improved to make the diagnostic process scalable.

• Techniques and algorithms are presented to test memory ahead of allocation and adaptively

adjust test rate to minimize overhead. These techniques and algorithms help my diagnostic

achieve a guaranteed bound on the maximum time between successive tests of a page.

• A number of test parameters and policies are shown with in-depth discussion on their deriva-

tion, usage and tuning. These parameters provide system administrator an extensive control

over resources consumed by the memory diagnostic.

• The performance impact of an online memory diagnostic on single-threaded, multi-threaded

and multi-programmed workloads with a wide range of memory requirements is experimen-

tally shown. The feasibility of COMeT and Asteroid as an effective memory diagnostic is

proved from a thorough evaluation of performance, energy, TLB-shootdown effect and re-

siliency to memory errors, including an analysis of important design and configuration choices.

• Diagnostic scalability is addressed in Asteroid. My approach shows how to trade-off between

test thoroughness and CPU usage under high memory pressure on systems with large memory

capacity. Asteroid shows fixed and adaptive test policies and their implication on large-scale

systems.

86

• Based on the interactions among applications, the OS memory manager and memory hard-

ware, a number of novel optimization techniques for memory diagnostic are described. These

optimizations fit neatly within COMeT framework and work transparently in the system.

• An outline of how COMeT and Asteroid can be structured and integrated with an OS kernel

is given. My design tries to modularize the diagnostic software for easy implementation and

extensibility while minimizing modification to the OS kernel.

• Complete application transparency is maintained throughout my dissertation. No change in

application code and/or binary is required to run in COMeT-enabled systems.

6.2 FUTURE WORK

While I made my best effort to make COMeT framework an efficient and scalable solution to

online memory testing, there are still places for improvement and further work. First, in Asteroid,

I evaluated “core preserving” Adaptive policy as in Figure 30. A similar “fidelity preserving”

algorithm could be used to maximize fidelity. Another possible policy could be implemented in

Asteroid to trigger testing for memory regions with a relatively high (above a threshold) number

of error corrections, when ECC is present. This would focus the testing on that specific region. I

leave these two policies to future work; my goal is to demonstrate that adaptivity, even the simple

kind used by a core preserving policy, is effective at mitigating overheads.

Second, COMeT can be deployed in very large scale computing, e.g., supercomputers con-

sisting of hundreds or thousands of nodes. Such deployment can enable further tuning of test

parameters in COMeT and Asteroid. A thorough evaluation can span several months to several

years which significantly increases the probability that the nodes will be hit by a considerable

number of hard DRAM failures [8, 50, 66, 71]. Deployment, parameter tuning and evaluation of

COMeT on supercomputing nodes can make a good contribution to the research on software-based

online memory diagnostic.

87

Third, COMeT can use off-chip dedicated hardware to do MARCH testing using DMA, cal-

culate and correct errors via ECC. Researchers have already shown techniques in FlipSphere to

use off-chip hardware for checksum and ECC calculation [24]. Having a dedicated hardware for

testing purpose is expensive. Hence, the balance between cost and benefit of off-chip hardware

support in COMeT can be evaluated as a future work.

Fourth, COMeT uses available (possibly idle) resources in the system for diagnostic. Hence,

COMeT can potentially increase hardware power usage. I discussed energy consumption in Sec-

tion 4.2.2. However, evaluation of energy consumption due to testing in COMeT framework on

large-scale systems can be helpful to data-center architects to estimate a power budget and tune

COMeT according to their needs.

Lastly, over last decade, graphics processors have become cheap and powerful computing

commodity and have recently been widely used in data-centers. GPUs come packed with several

gigabytes of memory for video rendering as well as general purpose computing. Similar to DRAM

for CPU, GPU memory also suffers from faults [74, 75]. COMeT can be deployed on GPUs to

ensure improved reliability for them.

88

APPENDIX A

NOTES ON IMPLEMENTATION

COMeT framework is written entirely in C and integrated in Linux kernel. The framework code

is designed and written as a kernel module. Although bulk of the operations of the framework is

implemented in the module, some core kernel modifications were needed to make the kernel work

properly when COMeT framework is present and active. In the next two sections describes these

kernel changes and interesting testing and optimization techniques implemented in the module.

A.1 CORE KERNEL MODIFICATIONS

The standard Linux kernel memory manager uses two types of algorithms to manage its free mem-

ory (DRAM). Linux maintains a list of free pages in ’Buddy System’ for memory chunks which

are bigger than 4KB (Section 2.3.2). For memory blocks smaller than 4KB size, Linux uses “Slab

Allocator” to put different sized chunks into different buckets. Memory from “Slab Allocator” is

used much more rapidly by the kernel for various purposes such as allocating various software

data-structures to maintain file-system, networking subsystem etc. This Slab Allocator relies on

the Buddy System for memory pages. COMeT framework makes some modification to Buddy

System to support two sets of operations:

89

1. Collect statistics on memory manager of the OS.

2. Access physical pages of the system.

These operations are discussed next in the context of Buddy System.

A.1.1 More out of Buddy System

Linux kernel provides API to ask Buddy System for free memory pages. These APIs have a limita-

tion of accessing physical pages from specific list of blocks within Buddy System. To get memory

pages from specific lists of blocks of memory pages, COMeT framework introduces another API

which work on specific lists of page blocks. This API can do the following operations:

1. Extract a specific number of page blocks from front of a buddy list.

2. Extract a specific number of page blocks from end of a buddy list.

3. Return a specific number of page blocks to the front of a buddy list.

4. Return a specific number of page blocks to the end of a buddy list.

The Buddy System data structures are protected by a single lock. Two design choices are made

in COMeT framework to reduce thrashing on this lock. First, the API functions work on a list

of a particular order. As described in Section 4.1, kernel page allocation and release behavior

depends on page timestamps. Due to this unique design, buddy list data structures can be quickly

accessed and the time buddy lock is held can be reduced. Second, various statistics counters of

COMeT A.1.3 are updated without the lock is held. This later choice may cause slight glitch in

various estimated values. However, algorithms in the framework are designed in a way to keep

some room for such glitch in estimations.

A.1.2 Per-CPU Page-Cache (PCP)

Linux reserves a number of pages for each CPU core to make single page allocation and release

more efficient. The PCP cache is not a part of the Buddy System. PCP cache does not have

any locking since the pages are accessible only by single CPU and only by the kernel. COMeT

90

framework has another set of API functions similar to Buddy System APIs to interact with the PCP

cache.

A.1.3 Statistics Counters

To support calculation of test rate and Test Controller(Section 5.2), COMeT framework introduces

a number of statistics counters in Buddy System of Linux VMM. These counters keep track of the

following information of each rank of blocks in Buddy System.

1. number of pages allocated untested.

2. number of pages allocated tested.

3. number of pages returned and not expired.

4. number of pages returned and expired.

Using these counters, COMeT calculates adaptive test rate, alarm condition etc. In Asteroid,

these counters are used by the Test Controller to calculate testconfig and memblocks. All these

counters can be accessed via /sys/comet interface (see Section A.2.1).

A.2 KERNEL MODULE OF THE FRAMEWORK

While COMeT framework requires some modification to Linux VMM, bulk of the code goes into

a kernel module. The design of module is shown in Figure 26. Each tester thread (CTT) is created

using kernel thread library provided by Linux. kthread create function is used to create a kernel

thread and provide a handler (callback) for the thread. kthread bind function is used to bind the

kernel thread to a specific CPU.

Each kernel thread sleeps until some work is arrived for it. To sleep, I used the waitqueue

mechanism provided by Linux. Whenever the Test Controller has some work for a CTT, a work

object is prepared with page numbers and the object is put into a queue for the CTT. Then Test

91

Controller signals the waitqueue which wakes up the CTT. CTT tests pages, returns to Buddy

System directly and goes back to sleep. Buddy System statistics counters are updated when CTT

returns tested pages.

A.2.1 Administrator Control Knobs

I used Linux kernel interface for kobjects to create entries in /sys/comet/. kobjects can be embed-

ded into various data structures in the kernel module and this is an efficient way to manage /sys

entries for those data structures. System administrator can use the /sys/comet/ entries to tune

various parameters as mentioned in Table 1 and Table 6.

A.2.2 Testing a Page

During page testing, COMeT framework must ensure a MARCH test pattern is flushed to DRAM

when it is written. Intel x86 processor provides CLFLUSH instruction to flush a cache line. Linux

kernel provides API to get cache-block size. Using cache-block size, my test function writes

MARCH test pattern into one cache-block at a time and flush it before going to write to the next

block. When the page is marked uncachable (Section A.2.4), COMeT’s test function ignores cache-

block size and writes one word at a time.

Page test is done by kernel thread. When kernel thread is initialized, it allocates a page-sized

virtual address region in kernel space. I used vmalloc function to allocate a virtual address region

of a specific size. When a page is given to the tester for testing, the page is mapped using vmap

function on the previously allocated virtual address region and then tested. Upon completion of

testing, the page is unmapped using vmunap from kernel space and returned to caller.

A.2.3 Page Timestamps

During testing, COMeT framework has to ensure pages are timestamped properly to mark the

point of time when a page was last tested for errors. To do that, the framework uses RDTSC

92

instruction which returns the 64-bit value of the Time Stamp Counter (TSC) register present on all

x86 processors. It counts the number of cycles since reset.

A.2.4 Making a Page Uncachable

To make sure MARCH test patterns are written and read from DRAM, we need to bypass the CPU

caches. There are two ways to do it. First, Intel Pentium processors come with a special set of

registers called Memory Type Range Register (MTRR) [3] which can be programmed to a range

of physical address uncachable. Programming MTRRs each time a page test request arrives is

usually not a very good approach. The second way is to program the PTE when a page is mapped

to virtual address. Linux kernel provides the flag PAGE CACHE UC MINUS [1] which can be

supplied in vmap function to make sure a page is marked uncachable.

A.2.5 Page Migration

One of the most interesting features of COMeT is page migration. There is a page migration

timer which is triggered at specific intervals. Migration handler is already aware of which user-

mode tasks need to be examined for potential expired pages. At each migration trigger, migration

handler walks through the page table of a task.

1 vo id migrate_task_pages (task_struct ∗ task)
2 {
3 mm_struct ∗ mm = task−>mm ;
4 vm_area_struct ∗ vma = mm−>mmap ;
5 w h i l e (vma) {
6 addr = vma−>vm_start ;
7 w h i l e (addr<vma−>vm_end) {
8 pgd = pgd_offset (mm , addr) ;
9 pmd = pmd_offset (mm , pgd , addr) ;

10 pte = pte_offset (mm , pmd , addr) ;
11 i f (pte !=NULL) {
12 page = pte_page (mm , pte , addr) ;
13 i f (expired (page)) {
14 newpage = alloc (PAGE_SIZE) ;
15 comet_migrate (mm , addr , newpage , page) ;
16 }
17 }
18 addr += PAGE_SIZE ;
19 }
20 vma = vma−>vm_next ;
21 }

93

22 }

In this listing, migrate task pages is called with a pointer to task struct . Each process in

Linux is represented by a task struct which contains information on the task, e.g., virtual memory

regions, memory mappings, open file descriptors, sockets etc. All the virtual memory regions (e.g.,

heap, code, stack etc.) allocated for the task is saved in mm struct . Line 2 gets the mm from task.

Then in Line 3, we get the list of the virtual memory regions. Then in Lines 5-18, we iterate

over each of the regions and look for mapped pages in each region via page table walking. Lines

8-10 retrieves the page table entry (PTE). If the PTE contains some value, Line 12 finds the page

specified in the PTE. Once we get the page, we check if the page is already expired and migrate the

page with a newly allocated page if needed. comet migrate function calls Linux’s implementation

of page migration which updates page tables and updates LRU data structures which keep track of

pages for possible eviction during memory pressure.

A.2.6 TLB Shootdowns

Page migration involves eventual TLB shootdown events on multi-core systems. So, collecting

statistics on TLB shootdowns is required to see the effect of different intervals of page migration

walks. Linux kernel implements a function flush tlb others ipi (see in arch/x86/mm/tlb.c)

which is the one responsible for invalidating TLB when a page table update takes place. COMeT

framework puts a counter in this function to gather the statistics on this event.

94

APPENDIX B

DEBUGGING AND TOOLS

B.1 KERNEL DEBUGGING

Throughout my dissertation, I used two debugging techniques to debug my code changes in kernel

and in the kernel module. First, kprintf was used which is the most effective way if serial debugging

is unavailable or not applicable. For example, kprintf is the only way to debug issues with NUMA

and DRAM access. The second way is to use virtual machine and a virtual serial port to perform

serial debugging. This is more efficient way of kernel and module debugging. I used VMWare

Workstation for Linux as my virtual machine. However, such debugging technique cannot be used

if we need to access real hardware (e.g., accessing DRAM and NUMA).

B.2 USING VIM CODE NAVIGATOR AND CALLGRAPH

Navigating large codebase can be very difficult over terminal. I used ctags and cscope with vim

to navigate code. I often found it helpful to generate visual representation of function calls (call-

graphs) to get a bigger picture of how various segments of code are related to each other. I used

95

graphviz to generate callgraphs. I also used online Linux cross-reference sites (e.g., http://lxr.free-

electrons.com/) to quickly navigate kernel code.

B.3 MISCELLANEOUS TOOLS

Besides debugging and code navigation, I frequently used Python to analyze large data-set on

various experimental results. To manage code repository, I used git locally. Periodically, I syn-

chronized my work private git repository online (https://bitbucket.org).

96

BIBLIOGRAPHY

[1] Getting a handle on caching. https://lwn.net/Articles/282250/.

[2] Linux kernel mailing list. http://kerneltrap.org/node/8059.

[3] Memory type range registers (mtrrs). In Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 3A: System Programming Guide Section 11.11.

[4] Memtest86+: Advanced memory diagnostic tool. www.memtest.org.

[5] Intel xeon phi co-processor brief, white paper. 2013.

[6] J. Aas. Understanding the linux 2.6.8.1 cpu scheduler. http://josh.
trancesoftware.com/linux/.

[7] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. ZerehCache: armoring cache architectures in
high defect density technologies. In Int’l. Symp. on Microarchitecture, 2009.

[8] L. Bautista-Gomez, F. Zyulkyarov, S. McIntosh-SmithOsman, and S. Unsal. Unprotected
computing : A large-scale study of dram raw error rate on a supercomputer. In The Inter-
national Conference for High Performance Computing, Networking, Storage, and Analysis
(SC’16), 2016.

[9] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: a scalable memory
allocator for multithreaded applications. SIGPLAN Not., 35:117–128, November 2000.

[10] V. Bhalodia. In SCALE DRAM subsystem power analysis. Massachusetts Institute of Tech-
nology, 2005.

[11] A. Bhattacharjee and M. Martonosi. Characterizing the tlb behavior of emerging parallel
workloads on chip multiprocessors. In Parallel Architectures and Compilation Techniques,
2009. PACT ’09. 18th International Conference on, pages 29 –40, sept. 2009.

97

https://lwn.net/Articles/282250/
http://kerneltrap.org/node/8059
www.memtest.org
http://josh.trancesoftware.com/linux/
http://josh.trancesoftware.com/linux/

[12] J. Bonwick. The slab allocator: an object-caching kernel memory allocator. In Proceedings of
the USENIX Summer 1994 Technical Conference on USENIX Summer 1994 Technical Con-
ference - Volume 1, USTC’94, pages 6–6, Berkeley, CA, USA, 1994. USENIX Association.

[13] S. Borkar. Microarchitecture and design challenges for gigascale integration. In Int’l. Symp.
on Microarchitecture, 2004.

[14] S. Borkar. Designing reliable systems from unreliable components: The challenges of tran-
sistor variability and degradation. IEEE Micro, 25(6):10–16, 2005.

[15] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter variations
and impact on circuits and microarchitecture. In Design Automation Conference, 2003.

[16] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operating system for many cores. In
Proceedings of the 8th USENIX conference on Operating systems design and implementation,
OSDI’08, pages 43–57, Berkeley, CA, USA, 2008. USENIX Association.

[17] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An analysis of linux scalability to many cores. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation, OSDI’10, pages 1–8,
Berkeley, CA, USA, 2010. USENIX Association.

[18] E. D. Burger and B. G. Zorn. DieHard: Probabilistic memory safety for unsafe languages. In
Conf. on Programming Language Design and Implementation, 2006.

[19] C. Constantinescu. Trends and challenges in VLSI circuit reliability. Micro, IEEE, 23(4):14–
19, 2003.

[20] M. C. Daniel Bovet. In Understanding the Linux Kernel, Third Edition. O’Reilly Media, Inc.,
2005.

[21] T. J. Dell. A white paper on the benefits of chipkill. In IBM Microelectronics Division, 1997.

[22] Y. Du, M. Zhou, B. Childers, D. Mosse, and R. Melhem. Supporting superpages in non-
contiguous physical memory. In High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, pages 223–234, Feb 2015.

[23] C. Elm, M. Klein, and D. Tavangarian. Automatic on-line memory tests in workstations. In
Workshop Memory Tech., Design and Testing, 1994.

[24] D. Fiala, K. B. Ferreira, F. Mueller, C. Engelmann, and R. Brightwell. Flipsphere: A
software-based dram error detection and correction library for hpc. Sandia National Lab-
oratories, Technical Report SAND2014–0438C, 2014.

98

[25] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante. Soft-error detection using
control flow assertions. In Int’l. Symp. on Defect and Fault Tolerance in VLSI Syst., 2003.

[26] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Adaptive online testing for efficient hard fault
detection. In Int’l. Conf. on Computer Design, 2009.

[27] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t strike twice: Under-
standing the nature of DRAM errors and the implications for system design. In Conf. on Arch.
Support for Programming Lang. and Operating Syst., 2012.

[28] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe. Multi-bit error tolerant caches using
two-dimensional error coding. In Int’l. Symp. on Microarchitecture, 2007.

[29] S. Kim and A. K. Somani. Area efficient architectures for information integrity in cache mem-
ories. In Proceedings of the 26th annual international symposium on Computer architecture,
pages 246–255, 1999.

[30] A. Kleen. Linux multi-core scalability. http://www.halobates.de/
lk09-scalability.pdf.

[31] A. Kleen. An numa api for linux. http://www.firstfloor.org/˜andi/numa.
html.

[32] D. Knuth. Fundamental Algorithms. The Art of Computer Programming. Vol. 1 (Second ed.),
pages 435–455. Addison-Wesley, Reading, Massachusetts, 1997.

[33] D. Lea. A memory allocator.

[34] S.-H. Lee, C.-H. Choi, J.-T. Kong, W.-S. Lee, and J.-H. Yoo. An efficient statistical analy-
sis methodology and its application to high-density drams. In International Conference on
Computer-Aided Design, 1997.

[35] C. Lever and D. Boreham. malloc() performance in a multithreaded linux environment. In
USENIX Annual Technical Conference, USENIX ATC, pages 56–56, Berkeley, CA, USA,
2000. USENIX Association.

[36] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou. Understanding
the propagation of hard errors to software and implications for resilient system design. In
Int’l. Conf. on Architectural Support for Programming Languages and Operating Syst., 2008.

[37] X. Li, S. V. Adve, P. Bose, and J. A. Rivers. Online estimation of architectural vulnerability
factor for soft errors. In Int’l. Symp. on Computer Architecture, 2008.

[38] X. Li, M. C. Huang, K. Shen, and L. Chu. A realistic evaluation of memory hardware errors
and software system susceptibility. In USENIX Annual Technical Conf., 2010.

99

http://www.halobates.de/lk09-scalability.pdf
http://www.halobates.de/lk09-scalability.pdf
http://www.firstfloor.org/~andi/numa.html
http://www.firstfloor.org/~andi/numa.html

[39] Y. Li, O. Mutlu, and S. Mitra. Operating system scheduling for efficient online self-test in
robust systems. In Int’l. Conf. on Computer-Aided Design, 2009.

[40] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: saving dram refresh-power
through critical data partitioning. In Proceedings of the sixteenth international conference
on Architectural support for programming languages and operating systems, ASPLOS ’11,
pages 213–224. ACM, 2011.

[41] R. Love. In Linux Kernel Development, 2nd Edition. Novell Press, 2005.

[42] R. Maddah, S. Cho, and R. Melhem. Data dependent sparing to manage better-than-bad
blocks. IEEE Computer Architecture Letters, 12(2):43–46, 2013.

[43] R. Maddah, R. Melhem, and S. Cho. Rdis: Tolerating many stuck-at faults in resistive mem-
ory. IEEE Transactions on Computers, 64(3):847–861, 2015.

[44] R. Maddah, S. M. Seyedzadeh, and R. Melhem. Cafo: Cost aware flip optimization for
asymmetric memories. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 320–330. IEEE, 2015.

[45] W. Mauerer. In Professional Linux Kernel Architecture. Wrox, 2008.

[46] A. Meixner and D. J. Sorin. Detouring: Translating software to circumvent hard faults in
simple cores. In Int’l. Conf. on Dependable Syst. and Networks, 2008.

[47] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D. D. Mannaru, A. Riska,
and D. Milojicic. Susceptibility of commodity systems and software to memory soft errors.
IEEE Trans. on Computing, 53(12):1557–1568, Dec 2004.

[48] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A systematic methodol-
ogy to compute the architectural vulnerability factors for a high-performance microprocessor.
In Int’l. Symp. on Microarchitecture, 2003.

[49] P. J. Nair, D.-H. Kim, and M. K. Qureshi. Archshield: Architectural framework for assisting
DRAM scaling by tolerating high error rates. In Int’l. Symp. on Computer Architecture, 2013.

[50] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells and platters: an empirical
analysis of hardware failures on a million consumer PCs. In European Conf. on Computer
Syst., 2011.

[51] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: automatically correcting memory
errors with high probability. In Conf. on Programming language design and implementation,
2007.

100

[52] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-effective architectural support for
rollback recovery in shared-memory multiprocessors. In Int’l. Symp. on Computer Arch.,
2002.

[53] F. Qin, S. Lu, and Y. Zhou. SafeMem: exploiting ECC-memory for detecting memory leaks
and memory corruption during production runs. In Int’l. Symp. on High-Performance Com-
puter Architecture, 2005.

[54] M. Rahman and B. R. Childers. Asteroid: Scalable online memory diagnostics. In Pro-
ceedings of the 12th ACM International Conference on Computing Frontiers, CF ’15, pages
15:1–15:8. ACM, 2015.

[55] M. Rahman and B. R. Childers. Asteroid: Scalable online memory diagnostics for multi-core,
multi-socket servers. International Journal of Parallel Programming, pages 1–26, 2016.

[56] M. Rahman, B. R. Childers, and S. Cho. StealthWorks: Emulating memory errors. In Int’l.
Conf. on Runtime Verification, 2010.

[57] M. Rahman, B. R. Childers, and S. Cho. Comet: Continuous online memory test. In Pacific
Rim Dependability Conf., 2011.

[58] M. Rahman, B. R. Childers, and S. Cho. CoMET+: Continuous online memory testing with
multi-threading extension. IEEE Transactions on Computers, 63(7):1668–1681, 2014.

[59] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante. Soft-error detection through
software fault-tolerance techniques. In Int’. Symp. on Defect and Fault Tolerance in VLSI
Syst., 1999.

[60] S. Reinhardt and S. Mukherjee. Transient fault detection via simultaneous multithreading. In
Int’l. Symp. on Computer Architecture, 2000.

[61] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: Software imple-
mented fault tolerance. In Int’l. Symp. on Code generation and optimization, 2005.

[62] E. Rotenberg. AR/SMT: A microarchitectural approach to fault tolerance in microprocessors.
In Int’l. Symp. on Fault Tolerant Computing, 1998.

[63] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S. Adve, and Y. Zhou. Using
likely porgram invariants to detect hardware errors. In Int’l. Conf. on Dependable Syst. and
Networks, 2008.

[64] S. Sastry Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V. Adve. mSWAT: low-cost
hardware fault detection and diagnosis for multicore systems. In Int’l. Symp. on Microarch.,
2009.

101

[65] H. Schirmeier, J. Neuhalfen, I. Korb, O. Spinczyk, and M. Engel. Rampage: Graceful degra-
dation management for memory errors in commodity Linux servers. In Pacific Rim Depend-
ability Conf., 2011.

[66] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: A large-scale field
study. In Int’l. Conf. on Measurement and Modeling of Computer Syst., 2009.

[67] S. M. Seyedzadeh, A. K. Jones, and R. Melhem. Counter-based tree structure for row ham-
mering mitigation in dram. IEEE Computer Architecture Letters.

[68] S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem. Pres: Pseudo-random encoding
scheme to increase the bit flip reduction in the memory. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[69] A. Singh, D. Bose, and S. Darisala. Software based in-system memory test for highly avail-
able systems. In Workshop Memory Techn., Design and Testing, 2005.

[70] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improving the availability of shared
memory multiprocessors with global checkpoint/recovery. In Int’l. Symp. on Computer Ar-
chitecture, 2002.

[71] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S. Gu-
rumurthi. Memory errors in modern systems: The good, the bad, and the ugly. In ACM
SIGPLAN Notices, volume 50, pages 297–310. ACM, 2015.

[72] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for lifetime reliability-aware
microprocessors. In Int’l. Symp. on Computer Arch., 2004.

[73] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro. Assessment of the effect of memory
page retirement on system RAS against hardware faults. In Int’l. Conf. on Dependable Syst.
and Networks, 2006.

[74] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell. Reliability lessons learned from
gpu experience with the titan supercomputer at oak ridge leadership computing facility. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 38:1–38:12, New York, NY, USA, 2015. ACM.

[75] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira, D. Londo,
N. DeBardeleben, P. Navaux, et al. Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), pages 331–342. IEEE, 2015.

[76] A. van de Goor and I. Tlili. March tests for word-oriented memories. In Design Automation
and Test in Europe Conf., 1998.

102

[77] R. van Rein. BadRAM: Linux kernel support for broken RAM modules, site last visited July
11, 2010. http://rick.vanrein.org/linux/badram/.

[78] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware placement in dram (rapid): soft-
ware methods for quasi-non-volatile dram. In High-Performance Computer Architecture,
2006. The Twelfth International Symposium on, pages 155 – 165, 2006.

[79] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for a scalable
operating system for multicores. SIGOPS Oper. Syst. Rev., 43:76–85, April 2009.

[80] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu. Simulation-based test algorithm gener-
ation for random access memories. In IEEE VLSI Test Symposium, pages 291–296, 2000.

[81] D. H. Yoon and M. Erez. Virtualized and flexible ECC for main memory. In Int’l. Conf. on
Arch. Support for Programming Lang. and Operating Syst., 2010.

[82] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August. DAFT: Decoupled acyclic fault toler-
ance. In Int’l. Conf. on Parallel Architectures and Compilation Techniques, 2010.

[83] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-rank: Adaptive DRAM
architecture for improving memory power efficiency. In Int’l. Symp. on Microarchitecture,
2008.

103

http://rick.vanrein.org/linux/badram/

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Configuration
	2. Experimental setting
	3. SPEC CPU2006 Benchmark Statistics (table is sorted by memory utilization)
	4. Energy consumption
	5. Slowdown or Out-of-Memory (OOM) under overload
	6. Test Controller and Diagnostic Control Policy Parameters
	7. Workload Mixes.
	8. Slowdown for Adaptive and Fix: Fidelity 8 and 16
	9. Slowdown for Adaptive and Fix: Fidelity 24 and 32

	LIST OF FIGURES
	1. Objects of the same size grouped into bins
	2. Page State Diagram
	3. High-Level Design of COMeT
	4. Framework Components
	5. Design of COMeT
	6. Check expiration of tested used pages
	7. Handler for global allocation timer
	8. Tester for global allocation
	9. State Transition during Test Rate Change
	10. Adjust buddy order's replenishment rate
	11. Page coverage (percentage of physical pages tested)
	12. Slowdown relative to baseline without testing.
	13. Slowdown relative to baseline without testing on selected PARSEC benchmarks
	14. Effect of `=`replenish-
	15. Page coverage due to migration
	16. Effect of replenishment rates
	17. Sensitivity to test latency
	18. Slowdown on Multi-threaded Benchmarks: Canneal
	19. Slowdown on Multi-threaded Benchmarks: Streamcluster
	20. Slowdown on Multi-threaded Benchmarks: Ferret
	21. Rate of TLB shootdowns on Multi-threaded Benchmarks: Canneal
	22. Rate of TLB shootdowns on Multi-threaded Benchmarks: Streamcluster
	23. Rate of TLB shootdowns on Multi-threaded Benchmarks: Ferret
	24. COMeT slowdown on selected multi-instance SPEC CPU2006 workloads
	25. Memory Access Latency in NUMA
	26. Asteroid memory diagnostic framework
	27. Paths for tested pages (dashed line) and requested pages (solid line)
	28. Example MARCH test using cache indirect testing with one pattern
	29. Software architecture and information flow for TC
	30. Adaptive policy to find test configuration
	31. Impact of cache indirect testing, page recycling and skipping middle ranks for CTT
	32. Impact of node local dispatch by TD
	33. Comparison of performance, fidelity and threads for Adaptive and Fix.
	34. Slowdown of individual benchmark instances in H2 workload.

	PREFACE
	1.0 INTRODUCTION
	1.1 Requirements of a Good Solution
	1.2 Challenges
	1.3 Research Overview
	1.4 Contributions
	1.5 Thesis Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Traditional Memory Testers
	2.2 Memory Error Detection and Correction
	2.3 OS Memory Management
	2.3.1 Application malloc()
	2.3.2 Kernel Memory Management

	2.4 OS Scalability Issues
	2.5 Related Work

	3.0 ONLINE MEMORY DIAGNOSTICS
	3.1 Observations Influencing Online Memory Diagnostics
	3.2 My Approach For Online Memory Diagnostic
	3.2.1 Operation
	3.2.2 Test Guarantee and Replenishment

	3.3 Assumptions
	3.4 Framework for Online Memory Diagnostic

	4.0 ONLINE MEMORY DIAGNOSTIC IN SMALL-SCALE SYSTEMS
	4.1 Architecture
	4.1.1 Allocation Monitor
	4.1.2 Guarantee Timer and Handler
	4.1.3 Global Allocation Timer and Handler
	4.1.4 Global Tester
	4.1.5 Adaptive Test Rate
	4.1.6 Page Migration

	4.2 Evaluation
	4.2.1 Methodology
	4.2.2 Overall Results
	4.2.3 Configuration
	4.2.4 Test Guarantee and Replenishment
	4.2.5 Overload Behavior
	4.2.6 Sensitivity to Test Latency
	4.2.7 Multi-threaded Workload

	5.0 ONLINE MEMORY DIAGNOSTIC IN LARGE-SCALE SYSTEMS
	5.1 Asteroid
	5.2 Components of Asteroid
	5.2.1 Test Controller (TC)
	5.2.2 Test Dispatcher (TD)
	5.2.3 Concurrent Tester Threads (CTT)
	5.2.3.1 Core-local on-demand test
	5.2.3.2 Page cache recycling
	5.2.3.3 Skip middle-ranked blocks
	5.2.3.4 Cache indirect test

	5.2.4 Test Controller and Diagnostic Control Policy
	5.2.4.1 Operation
	5.2.4.2 Determining Memory Blocks to Test
	5.2.4.3 Determining Test Configuration
	5.2.4.4 Fixed Policy
	5.2.4.5 Adaptive Policy

	5.3 Experimental Evaluation
	5.3.1 Methodology
	5.3.2 Effect of Optimizations
	5.3.3 Fixed Configuration
	5.3.4 Adaptive Configuration
	5.3.5 Underlying Behavior

	6.0 CONCLUSION AND FUTURE WORK
	6.1 Summary of Contributions
	6.2 Future Work

	APPENDIX A. NOTES ON IMPLEMENTATION
	 A.1 Core Kernel Modifications
	 A.1.1 More out of Buddy System
	 A.1.2 Per-CPU Page-Cache (PCP)
	 A.1.3 Statistics Counters

	 A.2 Kernel Module of the framework
	 A.2.1 Administrator Control Knobs
	 A.2.2 Testing a Page
	 A.2.3 Page Timestamps
	 A.2.4 Making a Page Uncachable
	 A.2.5 Page Migration
	 A.2.6 TLB Shootdowns

	APPENDIX B. DEBUGGING AND TOOLS
	 B.1 Kernel Debugging
	 B.2 Using Vim Code Navigator and Callgraph
	 B.3 Miscellaneous Tools

	BIBLIOGRAPHY

