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Current materials used for adipose tissue reconstruction have critical shortcomings such 

as suboptimal volume retention, donor site morbidity, and poor biocompatibility. The aim of this 

study was to develop and examine a controlled delivery system of dexamethasone (Dex) to 

generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse 

model for up to six months. The hypotheses that the slow release of Dex from polymeric 

microspheres would enhance both adipogenesis and angiogenesis, resulting in long term adipose 

volume retention, was tested using two microsphere drug delivery systems. In one treatment 

group, Dex was encapsulated within single-walled poly(lactic-co-glycolic acid) (PLGA) 

microspheres (Dex SW MS), and in the second, Dex was encapsulated in a (PLGA) core 

surrounded by a shell of poly(L-lactic acid) (PLLA). The double-walled polymer microsphere 

system was developed to create a slower and more sustainable drug delivery process. The Dex 

loaded microspheres were then mixed with human lipoaspirate. Both single- and double-walled 

empty microspheres and lipoaspirate-only controls were examined. A treatment group consisted 

of 3 different combinations of microspheres including a group of single- and double-walled 
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empty microspheres combined and lipoaspirate only as a control was also examined in the nude 

mouse model. Samples were analyzed grossly and histologically after 6 weeks and 6 months in 

vivo. Mass and volume were measured; Dex microsphere-containing, dose of 27 mg double-

walled microspheres samples demonstrated greater adipose tissue retention (80±12%) compared 

to the control group (10±7.3%) at 6 months time point. Histological analysis, including H&E and 

CD31 staining, indicated increased vascularization (p<0.05) within the Dex MS-containing 

samples. Adipose tissue injected in animals was affected by dexamethasone-loaded microspheres 

showing an improvement in mass and volume measurements. Histology of the extracted fat 

shows overall healthy adipose tissue morphology with the great presence of vascularity in the 

treatment groups. Controlled delivery of adipogenic factors, such as dexamethasone via polymer 

microspheres, significantly affects adipose tissue retention by maintaining healthy tissue 

formation and vascularization. The use of microspheres as a vehicle for controlled drug delivery 

of adipogenic factors therefore presents a clinically relevant model of adipose retention.  
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1.0  INTRODUCTION 

1.1 SOFT TISSUE ENGINEERING 

 

1.1.1 Clinical need for soft tissue engineering 

Soft tissue defects, whether due to trauma, tumor resection, or congenital 

malformations, require extensive tissue repair. Standard care includes free tissue transfer or 

prosthetic components such as silicone or saline implants. Resection of tumors in the head 

and neck area, as well as trauma or congenital abnormalities, often result in contour defects 

from loss of soft tissue, which is largely composed of subcutaneous adipose tissue. (1) With 

breast cancer being one of the most common malignant conditions in the new era-1 in 8 

women will develop breast cancer in the United States according to the American Society of 

Plastic Surgeons (ASPS)-there are over 100,000 breast reconstructive surgeries performed 

per year following a mastectomy. (2) 
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Currently, the most common strategy used to repair soft tissue defects in these cases 

is mainly by replacing lost volume using synthetic or prosthetic materials. A major challenge 

is the deep tissue destruction and discontinuity that is often a result of trauma experienced 

during war, considerably facial traumas. The Joint Theater Trauma Registry showed 26% of 

all service members injured during battle and evacuated over a 6-year period in Iraq and 

Afghanistan suffered wounds to the cranio-maxillofacial region. (3) While the reconstruction 

of bone tissue has been achieved to some degree of precision, soft tissue reconstruction, 

which is responsible for the contours of the human form, falls short. Prosthetic restorations 

used as filler materials prove to not only be ineffective for soft tissue repair but also 

dangerous to the patient because of negative host reactions associated with local edema, 

lymphadenopathy, and scarring.  

 

1.1.2 Soft tissue engineering in plastic surgery 

Non-autologous materials are most often recognized as foreign bodies and can be 

degraded by enzymes and inflammatory cell complexes. Repeated injections are required to 

maintain volume in even the smallest of defects. Although allergic reactions occur rarely 

only in 3–5% of restorative surgeries hypersensitivity reactions are frequently observed. (4-

5) Allografts, also known as homologous tissue grafts, are not ideal due to the potential for 

viral transmission or immunogenic and allergic reactions to occur. Autologous fat grafting is 

another option utilized in reconstructive and augmentative surgery. (6)  
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Current materials used in restorative tissue surgery possess a number of limitations, 

including unpredictable outcomes, fibrous capsular contraction, allergic reaction, suboptimal 

mechanical properties, distortion, migration, and long-term resorption. (7) One promising 

strategy involves the controlled delivery of adipogenic factors, such as dexamethasone (Dex), 

within the fat graft. (8-9) Our laboratory has a long history of developing novel biomaterials 

based on both native matrices as well as synthetic polymers for regenerative medicine 

applications. (8) By encapsulating adipogenic factors within polymer microspheres, the 

agents will be released in a local environment in a controlled manner. Previous in vitro and in 

vivo studies have demonstrated that the controlled delivery of dexamethasone and other 

adipogenic drugs via polymer microspheres significantly affected mass and vascularization 

of the fat graft. (8) 

 

1.2 PROSTHETIC MATERIALS IN PLASTIC SURGERY 

 

1.2.1 Benefits of prosthetic materials 

Prosthetic implants are widely used in plastic and reconstructive surgery.  These 

implants are obtained from a large number of bioorganic based or artificial non-physiological 

materials such as metal or silicone.  Implants can be placed permanently or temporarily 

depending on the condition directed to treat.  



 4 

 Early investigators used materials based on availability and ease of application. 

Paraffin wax, petrolatum, vegetable oils, lanolin, silicone oil, and beeswax have been used 

for facial augmentation, but with very limited success rate. Research with the purpose of 

developing the ideal synthetic implant has been based on some primary characteristics: 

decreased foreign body reaction, easily manipulated or contoured, retain the shape over time, 

easily sterilized and not interfered with primary condition such as in malignancy cases.  

 
 

Table 1. Synthetic materials used in plastic and reconstructive surgery 
 

Synthetic Materials Type of Material Most Common 

Usage 

Polytetrafluoroethylene 
 Gore-Tex, Proplast I and II 

Teflon 
 

Soft tissue and bone 

repair 

Silicone-based materials 
 BioPlastique, Injectable silicone 

Silastic sheets, Silicone, Silicone gel 
 

Soft tissue 

augmentation 

High density polyethylene 
 Medpor Facial bone 

augmentation 

Tissue adhesives 
 Cyanoacrylate 

 

Tendon repair 

Polymer mesh 
 Dacron (Mersilene), Dexon, Prolene 

Supramid Vicryl 
 

Abdominal wall 

reconstruction 

Dermal fillers Botox (Botulin toxin), Juvederm 

(hyaluronic acid), Restylane (non-animal 

hyaluronic acid) 

Soft tissue fillers 
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These synthetic materials have a wide range of use in many plastic surgery 

procedures including breast reconstruction, craniofacial surgery, maxillofacial trauma and 

aesthetic surgery.  Table 1lists number of synthetic materials used in plastic surgery.  

  

1.2.2 Prosthetic materials limitations 

The limitations that are associated with the use of the synthetic materials in plastic 

and reconstructive surgery have lead to the examination of autologous materials. The 

disadvantages of the synthetic materials are associated mostly with the foreign body reaction.  

Implants should be manipulated as little as possible with very cautious instrument handling. 

Insertion of the material is usually implanted as far as possible from the final position of the 

implant. This is performed for the purpose of avoiding extrusion and infection. The insertion 

of implant requires opening the pocket in surrounding tissue with adequate size. Dermal 

fillers are short-term solutions for soft tissue reconstruction, but have limited ability to fill a 

small defect and re-injections are often required. 
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1.3 NATURAL MATERIALS IN PLASTIC SURGERY 

 

1.3.1 Benefits of natural materials 

The use of natural materials for the purpose of reconstructing soft tissue defects has 

been on developed in the last few decades. Natural materials are physiological tissue that is 

obtained from the same patient (autologous), or from another person, genetically similar 

donor (allogeneic tissue). Xenogeneic tissue is natural tissue donated from a different species 

such as non-human primates or swine. The advantages of the autologous tissue grafting are 

that grafts are readily available, and there is no need to identify a human leukocyte antigen 

(HLA) matched donor.  Autologous transplants have a lower risk of life-threatening 

complications; there is no risk of graft vs. host disease (GVHD) and no need for 

immunosuppressive therapy to prevent GVHD and graft rejection. Immune reconstitution is 

more rapid than after an allogeneic transplant and there is a lower risk of opportunistic 

infections. Graft failure occurs rarely. There are a large number of tissues that are used for 

transplants in plastic surgery, with most common ones being cartilage and fat tissue.   

Cartilage tissue is very commonly used as a natural graft, obtained from patients’ ears 

or ribs. The cartilage tissue can be easily tailored and fixed for the patients’ needs and there 

is no need for additional surgery on the donated tissue site. The disadvantages of using 

cartilage tissue involve the nature of the cartilage tissue, which includes the challenge to 

manipulate the tissue once the graft is integrated into the defect site.  
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1.3.2 Adipose tissue grafting 

The patient’s own fat or adipose, is commonly used for contouring lost soft tissue. 

The fat tissue is easily harvested via liposuction from the patient and injected back in the 

desired part of the face or body. Lipoaspirate is typically harvested from the patient’s 

abdomen, thighs or buttocks. The advantages of using fat tissue for soft tissue reconstructive 

purposes are similar to those advantages described previously for cartilage; adipose (fat) 

tissue is easily derived from the same patient. Fat tissue is also very easily manipulated. 

Recovery from fat grafting is usually minimal with very rare post-operative complications. 

However, there are several disadvantages that go along with fat tissue grafting. (9) 

          

Figure 1. Adipose tissue graft survival (9) 

Due to the lack of vascularization in the area where the adipose tissue is injected, a 

limited volume of fat survives (Figure 1). Formation of blood vessels in the grafted tissue 

occurs very slowly. The initial lack of vascularization in the grafted tissue causes necrosis of 

the adipose cells following by reabsorption of necrotized tissue. This lack of early vascularity 

remains one of the most important reasons why the grafted adipose tissue loses volume over 

time and needs re-injected.   



 8 

1.4 DRUG DELIVERY SYSTEMS 

 

1.4.1 History of drug delivery systems 

Drug delivery systems are engineered systems that help deliver the drug with a 

controlled rate in the local area or tissue. New era pharmaceutics companies have developed 

advanced ways of targeting certain conditions with different agents. Biomedical engineering 

research has contributed to the development of different methods of transporting drugs into 

the body. However, despite this progress, a great number of agents, even those discovered 

using the advanced molecular biology strategies, have side effects due to the drug interacting 

with healthy tissues that are not targeted by the drug. Side effects limit the ability to design 

medications for many diseases such as malignancies and neurodegenerative diseases.   

Drug delivery systems have been formulated and optimized for many conditions but 

mainly for malignancies or other single target types of disease. Most common drug delivery 

systems include liposomes, pro-liposomes, microspheres, gels, and cyclodextrins. (10) 

The 1st generation (1950-1980) of drug delivery systems was based more on the 

development of oral and transdermal-sustained release. The 2nd generation (1980-2010) of 

drug delivery systems focused on the development of zero-order release systems, self-

regulated drug delivery systems, long-term depot formulations, and nanotechnology-based 

delivery systems. The optimization of the 2nd generation was focused on studying 

nanoparticle formulations.(11).  
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1.4.2 Microspheres as a drug delivery system 

Microspheres are composed of biodegradable polymers with the purpose of meeting 

the requirements needed for drug delivery systems, such as the ability to deliver locally, 

stable biocompatibility, targeting of specific tissue or cell populations in the tissue, release of 

the drug in a desired manner, and degradation within a period of time. Between the variety of 

devices that have been used for controlled release drug delivery, biodegradable polymer 

microspheres are one of the most common types of drug delivery with several advantages. 

Microspheres can encapsulate many types of drugs including proteins and growth factors.  

Microspheres are easily administered through a syringe needle. Microspheres are 

biocompatible, with minimal side effects in surrounding areas, but most importantly, 

microspheres are designed to be capable of sustained release for long periods of time.  

The fabrication of the microspheres plays an important role in the encapsulation and 

release of therapeutics. In addition, the type of polymer, the polymer molecular weight, the 

copolymer composition, and the nature of the drug encapsulated, is important factors 

affecting the microsphere size, thus controlling the delivery rate.  
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1.4.3 Clinical applications  

The clinical use of microspheres in the last decades has been developed in several 

applications, such as: 1) fillers and bulking agents, 2) embolic particles, and 3) drug delivery 

vehicles.(12) An example of the use of degradable microspheres as drug delivery vehicles in 

bone-filling formulations or scaffolds include microspheres loaded with bone-morphogenic 

protein 2 (BMP-2) or vascular endothelial growth factor (VEGF) to improve the formation of 

new bone in cases of critical size defects. The efficiency of sustained delivery of drugs from 

microspheres has been studied and applied to numerous malignancy conditions. 

Microspheres applied for trans-arterial chemo-embolization (TACE) release anti-cancer 

drugs such as doxorubicin or cisplatin. (13) Low molecular weight drugs are typically easily 

encapsulated in microspheres, although the loading efficiency is still variable; however, high 

molecular weight bioactive molecules can be difficult to load into microspheres. Therefore, 

tailored controlled degradation of microspheres will be required to deliver such drugs in a 

controlled fashion.  
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1.5 POLYESTERS 

 

1.5.1 Poly(lactide-co-glycolide) PLGA 

Biomaterials can be natural or synthetic, and are degraded, either through enzymes or 

hydrolysis, producing biocompatible, safe products, which are further eliminated via normal 

metabolic pathways. The biomaterials used in drug delivery systems can be classified as (A) 

synthetic biodegradable polymers, which includes hydrophobic materials such as hydroxy 

acids (poly(lactic-co-glycolic acid), PLGA) or polyanhydrides, and (B) naturally occurring 

polymers, such as complex carbohydrates (hyaluronan, chitosan) or inorganics 

(hydroxyapatite). 

 

                           

Figure 2. Poly(lactide-co-glycolide) PLGA(87) 

 

The polymer PLGA is a copolymer of poly(lactic acid) (PLA) and poly(glycolic acid) 

(PGA) (Figure 2). PLGA is the most commonly used polymer in tissue engineering because 

of the biodegradable properties and low toxicity.  
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Poly(lactic acid) contains an asymmetric carbon which is described as the D or L. The 

chemical forms of the polymer PLA are poly(D-lactic acid) (PDLA) and poly(L-lactic acid) 

(PLLA). PLGA is an acronym for poly(D,L-lactic-co-glycolic acid) where D- and L- lactic 

acid forms are in equal ratio(87). 

 

 

Figure 3. PLGA degradation in the tissue (87) 

 In the tissue, PLGA degrades by hydrolysis of its ester linkages in the presence 

of water. PLGA bio-dissolves relatively quickly in the body. PLGA chains are cleaved to 

monomeric acids that are then eliminated by the Kreb’s cycle as CO2 and in the urine as 

water (Figure 3). 

1.5.2 Poly(L-lactic acid) (PLLA) 

Poly(lactic acid) or polylactide (PLA) is a biodegradable polyester widely used not 

only in medicine but also in everyday life. PLA is often used as a decomposable packaging 

material, like "plastic" bags. In medical field, PLLA is most commonly used as a building 

material for biodegradable sutures and soft tissue filler. 
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In early 2000's, the US Food and Drug Administration approved PLLA for a 

polymer-based injectable medical device for restoration and/or correction of the signs of 

facial fat loss in cases with human immunodeficiency virus.(88)   

 

                                                   
Figure 4. Poly(lactic acid) (PLLA) structure(88) 

Polylactides have a long and stable history of safe use in medical applications, such 

as pins, plates, screws but also as a drug delivery system for sustained release of drugs. 

Chemically, the L-isomer of polylactic acid is a biodegradable and biocompatible (Figure 4), 

which makes PLLA a rather crystalline polymer where as the poly(D,L-lactide) (PDLA) is an 

amorphous polymer. Similar to PLGA, PLLA is degraded by hydrolytic process with a 

breakage of ester linkages, resulting in bulk erosion. 
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1.6 PROJECT OBJECTIVES 

 

1.6.1 Objective 1: Effect of Dexamethasone encapsulated in single-walled 

microspheres in adipose tissue 

Objective #1: To optimize dexamethasone encapsulation in single-walled 

microspheres (Dex SW MS), optimize the doses of Dex SW MS and test the effect in 

in vivo environment 

 

Hypothesis: Dexamethasone encapsulated in PLGA microspheres, will be released in 

a controlled manner for duration of 4-6 weeks, affecting the fat in a sustained and 

local manner. 

 

1.6.2 Objective 2: Fabrication of dexamethasone-loaded double-walled polymer 

microspheres 

Objective #2: To fabricate and optimize dexamethasone encapsulation in double-

walled microspheres, test the bioactivity of dexamethasone double-walled 

microspheres in vitro, optimizing the doses of Dex DW MS in in vivo testing 
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Hypothesis: Dexamethasone, protected by the PLGA and PLLA, will be released in a 

controlled manner for duration of 10-24 weeks, with a minimal burst release effect. 

Slow and controlled release of dexamethasone within injected fat in a mouse model 

will enhance adipogenesis in a controlled fashion, therefore increasing adipose tissue 

retention. 

 

1.6.3   Objective 3: Optimization of combined microspheres doses for prolonged 

adipose tissue retention 

Objective #3: To optimize and evaluate the in vivo effect of combining single- and 

double-walled microspheres for the purpose of prolonged and more efficient fat 

grafting retention. 

 

Hypothesis: Dexamethasone-loaded microspheres, both single- and double-walled, 

will release the drug in a controlled fashion with doses being tailored to release by 

contemplating both forms of microspheres to achieve further stable fat grafting for six 

months. 
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2.0  EFFECT OF ADIPOGENIC DRUGS ENCAPSULATED IN SINGLE-

WALLED MICROSPHERES IN ADIPOSE TISSUE RETENTION  

 

2.1 INTRODUCTION 

 

Tissue defects from trauma, tumor resection, or congenital malformations require soft 

tissue repair. Standard care includes tissue flap transfer or prosthetic components such as 

silicone or saline implants. Autologous fat grafting is a minimally invasive option in plastic 

and reconstructive surgery. (14) In this technique, the limitations of current restorative and 

reparative techniques have served as motivation for the development of adipose tissue 

regeneration as an application area for tissue engineering.  

Synthetic materials possess severe limitations, including but not limited to, 

unpredictable outcome, fibrous capsular contraction, allergic reaction, suboptimal 

mechanical properties, distortion, migration, and long-term reabsorption. (15) Transplanted 

fat can have a low survival rate, and the adipose tissue can be quickly resorbed and replaced 

by fibrous tissue and oil cysts. (16-18) These issues have greatly impacted the widespread 

adoption of autologous fat as the ideal soft tissue filler.  
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At present, the exact mechanisms that mediate fat graft survival and resorption 

remain unclear. One potential mechanism for graft loss is the lack of adequate 

revascularization within the transplanted fat. Due to the lack of vascularization, ischemia of 

the tissue occurs, leading to tissue necrosis and graft loss at an early stage. (19,20) In this 

study, we strived to create a predictable and clinically relevant method of soft tissue retention 

using pharmacologic interventions to improve autologous fat grafting. Our strategy for soft 

tissue regeneration involves the controlled, long-term, local delivery of adipogenic factors, 

such as insulin (Ins) and dexamethasone (Dex), within the fat graft.(8) 

This study outlines the design and assessment of encapsulated insulin and Dex in 

poly(lactic-co-glycolic acid), (PLGA) microspheres (MS) mixed with lipoaspirate, and the 

effects on both vascularization and fat retention in vivo, using a combined drug therapy 

approach. We sought to determine whether encapsulation of these adipogenic factors and the 

subsequent localized delivery within fat grafts, resulted in enhanced adipose retention and 

vascularization as confirmed by immune-histological analysis of the explanted tissue. 

 

2.1.1 Microspheres 

2.1.1.1  Polymer-based single-walled microspheres as a drug delivery system 

 

Controlled release drug delivery systems are being developed to address many of the 

difficulties associated with traditional methods of administration. Controlled drug delivery 

employs devices such as polymer-based disks, rods, pellets, or microspheres that encapsulate 

drug and release it at controlled rate for long periods of time.  
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A variety of devices have been used for controlled release drug delivery, 

biodegradable polymer microspheres are one of the most common types with several 

advantages. Microspheres can encapsulate many types of drugs including small molecules, 

proteins, and growth factors. Microspheres are easily administered through a syringe needle. 

Microspheres are overall biocompatible, and capable of sustained release for long periods of 

time. The commercial products that are based on polymer microspheres include Lupron 

Depot and Nutropin Depot. The disadvantages associated with microspheres include 

difficulty of large-scale manufacturing, inactivation of drug during fabrication, and poor 

control of drug release rates.  

Co-polymer poly(lactic-co-glycolic acid) (PLGA) microspheres have been developed 

for many years and have been approved by the US FDA for the use of drug delivery, 

diagnostics and other applications of clinical and basic science research, including 

cardiovascular disease, cancer, vaccine and tissue engineering. (21) Despite all the 

advantages of using PLGA microspheres, after a period of slow drug release, degradation of 

the polyester PLGA leads to reduced polymer chain length and accelerated diffusion and 

drug release.  This is a challenge when using microspheres in situations that require a long-

term release of drugs.  
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2.1.2 Adipogenic factors 

2.1.2.1 Dexamethasone 

 

Dexamethasone (Dex) (Figure 5) is commonly used synthetic corticosteroid, covering a great 

range of inflammations and auto-immune diseases. Dexamethasone is administered in 

different ways, depending on the severity and location of the target tissue.  

 

 

 

Figure 5. Structure of dexamethasone (22) 

 

 

Dexamethasone is an important factor in adipogenesis. Dexamethasone as a highly 

potent synthetic glucocorticoid works through activation of the glucocorticoid receptor, 

which is a nuclear hormone receptor in the same superfamily as peroxisome proliferator 

activated receptor-γ (PPAR-γ).  
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Figure 6. Effect of glucocorticoids in adipose tissue (23) 

 

Dexamethasone induces C/EBP-δ adipogenic activity and reduces the expression of 

pref-1, a negative regulator of adipogenesis. (22-26) Adipocyte differentiation is multistep 

process requiring the sequential activation of several groups of transcription factors, 

including CCAAT/enhancer-binding protein (C/EBP) gene family and peroxisome 

proliferator activated receptor-γ (PPAR-γ) (Figure 6). 

2.1.2.2 Insulin  

 

Insulin is a hormone that is known for regulation of carbohydrates and fat metabolism 

in the body. The presence of insulin in tissue stops the process of using fat as energy 

resource. When insulin is absent, cells do not take up glucose and the body begins to use fat 
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as an energy source or gluconeogenesis (Figure 7), by transfer of lipids from adipose tissue to 

the liver for mobilization as an energy source. (27) The release of insulin to induce 

adipogenesis has demonstrated, using in vitro and in vivo studies, resulting in fat tissue 

increase, and thus weight increase in couple of weeks. (28-29) 

 

    Figure 7. Schematic of the role insulin in adipose tissue (27) 

 

Biodegradable drug delivery systems, such as poly(lactic-co-glycolic acid)-

polyethylene glycol (PLGA-PEG) microspheres, have been studied as delivery vehicles for 

insulin, insulin-like growth factor-1 (IGF-1), and basic fibroblast growth factor (bFGF).  

In a subcutaneous rat model, incorporating the growth factors improved autologous 

free fat graft weight and volume, with the best results observed for either insulin or IGF-1 

alone or in combination. The PLGA (75:25) foam was also assessed in vivo in combination 

with IGF-1 and insulin, with fibro-elastic tissue formation at the implantation site at 12 

weeks. (30-31)   
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2.1.3 Specific Aim 1.  

The specific aim of this chapter was based on the work for developing sustained and 

controlled delivery of adipogenic drugs, dexamethasone and insulin. The effect of drug 

delivery of both adipogenic drugs from single walled PLGA microspheres was tested in vivo. 

Adipogenic drugs loaded in microspheres were expected to be released in a controlled 

manner for duration of 4-6 weeks, affecting the fat in a sustained and local manner.  

To test this hypothesis, dexamethasone and insulin PLGA microspheres were mixed 

with human disintegrated adipose tissue and injected in athymic mice. Adipogenesis was 

tested in animals in 2 different time points, 6 weeks and 6 months respectfully. We have also 

tested the combined dexamethasone and insulin loaded microspheres effect in injected 

lipoaspirate. Volume and mass measurements of the extracted tissue were calculated 

followed by histology testing including tissue morphology and presence of blood vessels. 

2.2 METHODS 

2.2.1 Fabrication and characterization of Dexamethasone encapsulated single-walled 

microspheres 

The protocol for encapsulating Dexamethasone in single-walled PLGA MS has been 

established in our laboratory. (8) Dexamethasone sodium phosphate PLGA MS (Dex MS) 

was prepared using a single emulsion/solvent extraction technique. PLGA (75:25) (400 mg) 

was dissolved in methylene chloride (MC) (4.5 mL). 
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 Dexamethasone phosphate (Dex) (20 mg) was dissolved in methanol (0.5 mL), 

which was added to the polymer solution. After stirring and the addition of a 600 mg of 2% 

poly(vinyl alcohol) (PVA) solution, the MS were collected by centrifugation, frozen at -  20 

◦C, and freeze dried for 12 h (LabConco Freezone 4.5). The loading capacity was determined 

by using the equation LC = Amount of drug loaded (AD) divided by the amount of polymer 

and amount of drug loaded (AP+AD). Encapsulation efficiency (EC) was determined by 

amount of actual drug concentration (Ca) divided by the theoretical concentration (Cth). 

 

                    

Equation 1. Loading capacity of microspheres 

 

                    

 

Equation 2. Encapsulation efficiency of microspheres 

2.2.2  Fabrication and characterization of empty single walled microspheres 

Empty MS were prepared and characterized using the same protocol as in the Dex 

MS, without adding any drugs to the PLGA. 

 

 LC (%)=   ------------------------------------  
   

Amount of drug loaded 

Amount of polymer + amount of loaded drug 

X 100 

 EC(%)=  --------------------------------------  
Cth (Theoretical concentration) 

X 100 
Ca (Actual concentration) 
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2.2.3 Fabrication and characterization of insulin encapsulated single-walled 

microspheres 

Our previously established protocol was used to encapsulate insulin in PLGA MS.(8) 

Insulin-loaded PLGA MS (insulin MS) were prepared using a double emulsion/solvent 

extraction technique. PLGA (75:25) was dissolved in MC (4.5 mL). To form the first 

emulsion, insulin was dissolved in a phosphate-buffered saline (PBS; 0.2 mL), added to the 

dissolved PLGA (400 mg), and vortexed to form an emulsion.  

The first emulsion was added to a stirring 2.0% PVA solution and stirred. After 2 

min, water was added and stirred for 3 h at 500 rpm. The MS were collected by 

centrifugation, frozen at - 20◦C, and freeze-dried for 12 h. The loading capacity was 

determined by using the equation LC = De/Sw, where DE is the amount of drug encapsulated 

and Sw is the mass of the MS. 

 

2.2.4 Dexamethasone and insulin microsphere characterization 

The morphology of Dex and insulin MS was determined by scanning electron 

microscopy (SEM) microscopy. MS were gold coated using a Cressington 108 Auto 

(Cressington) followed by usage of JSM 6335F SEM (JEOL) operated at 3.0 kV acceleration 

for morphology characterization. Particle-size distribution was determined by measuring the 

diameters of at least 50 MS from SEM images.  
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2.2.5  Dexamethasone and insulin drug release profile  

To determine the release of the drug from the single-walled microspheres, 10 mg of 

microspheres were placed in Eppendorf tubes and incubated in 1 mL PBS at 37ºC.  Starting 

with week 1 and then weekly time points, supernatant was collected and microspheres were 

replaced with fresh PBS after being vortexed.  

The amount of dexamethasone released collected was analyzed using spectrometry. 

The data collected will be calculated utilizing standard curve. The insulin loaded microsphere 

drug release was determined by using a commercial kit the FluoroProfile Protein 

Quantification Kit (Sigma Aldrich). In both drug release studies, the results were compared 

with PBS only. 

 

2.2.6 Drug dosage for the in vivo study 

Dex is a synthetic steroid with an anti-inflammatory effect, and is used in different 

fields of medicine, such as in autoimmune (acquired) disorders of the endocrine system, 

allergic states, and rheumatologic diseases. Dex can be delivered orally, intramuscularly 

(I.M.), and in some cases intravenously (I.V.), depending on the severity of symptoms. The 

official doses used in clinics based on the National Institute of Health (NIH) data, I.V. doses 

range from 0.5 to 40 mg/kg in life-threatening cases such as unresponsive shock, and the 

average dose of Dex delivered I.V. or I.M, is typically 10–14 mg/kg, in 24 h.(32)  
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The doses in the study used in the animals were designed to be easily translated in 

human models, with drug doses lower than the doses shown above, when maintaining the 

ratio of animals to humans. The concentration of insulin in the insulin-loaded MS was 

designed in the same fashion. The physiological levels of insulin in the healthy adult are 24–

38 units per day or an average of 8–11 nlU/mL(33) In this murine study, the dosage of 

insulin encapsulated in MS is lower than the doses above. 

 

2.2.7  Human lipoaspirate processing 

Human lipoaspirate was processed from patients undergoing elective surgery and 

have given informed consent, approved by University of Pittsburgh Institutional Review 

Board. Briefly, adipose tissue was gently aspirated using a two-holed blunt harvesting 

cannula attached to 10mL Luer-Lok syringes.  

 

 

Figure 8. Human lipoasirate processing (34) 
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The capped 10mL Luer-Lok syringes was centrifuged at 1200Xg for 3 min. After the 

upper (oil) and lower (blood and infiltration liquids) layers were removed (Figure 8), the 

middle layer (purified and processed lipoaspirate) was transferred through Luer-Lok 

connectors to 1mL syringes. (34) Immediately after fat tissue processing, the lipoaspirate was 

mixed manually with the specific dose of Dex DW MS homogenously and re-inserted in 1 

mL syringes in preparation for animal injections. 

2.2.8  Animal surgery: Dex and insulin MS alone 

 The University of Pittsburgh Institutional Animal Care and Use Committee approved 

all animal studies. Thirty-five female athymic nude mice (5–10 weeks old; Harlan 

Laboratories) were equally divided into seven groups with five animals in each group: Dex 

A= 40 mg MS, Dex B = 80 mg MS, Dex C= 150 mg MS, Insulin A= 10 mg MS, Insulin B = 

14 mg MS, Insulin C = 28 mg MS, and Insulin D= 56 mg MS (Table 2). At the time of 

surgery, animals were weighed and then anesthetized with 12 mg/kg xylazine followed by 80 

mg/kg of ketamine. Human lipoaspirate was processed as approved by the University of 

Pittsburgh Institutional Review Board, obtained by the patients undergoing elective surgery. 

Briefly, adipose tissue was gently aspirated using a twoholed, blunt harvesting cannula 

attached to 10-mL Luer-Lok syringes. The capped 10-mL Luer-Lok syringes then were 

centrifuged at 1200 g for 3 min. After the upper (oil) and lower (blood and infiltration 

liquids) layers were removed, the lower one-third of the middle layer (purified and processed 

lipoaspirate) was transferred through the Luer-Lok connectors to 1-mL syringes, known as 

the Coleman method. (32)  
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Immediately after sedation, the processed lipoaspirate (300–1000mL lipoaspirate) 

was injected subcutaneously (fan-injection technique) and bilaterally in the dorsal flanks of 

nude mice using the 16-gauge infiltration cannula: right side lipoaspirate with MS and right 

side lipoaspirate only.  Immediately following injections, photos were captured for analysis 

of the adipose retention and were photographed weekly throughout the study. After 5 weeks, 

the animals were sacrificed in the CO2 chamber. Adipose explants were analyzed for mass 

measurements and volume displacement using an Accupyc II 1340 gas Pycnometer 

(Micrometrics). 

Table 2. Dex and insulin MS doses 

Dexamethasone  
MS /1 mL of human lipo 

Drug treatment 
dose 

Number of 
animals 

Time points 

  40 mg of MS 5 5 weeks 

 80 mg of MS 5 5 weeks 

 150 mg of MS 5 5 weeks 

    

Insulin MS/ 1mLof 
human lipo 

Drug treatment 
dose 

Number ofanimals 
Time points 

 10 mg of MS 5 5 weeks 

 14 mg of MS 5 5 weeks 

 28 mg of MS 5 5 weeks 

 56 mg of MS 5 5 weeks 
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2.2.9  Animal Surgery: Combined Dex MS and insulin MS study design  

In the subsequent study, both Dex MS and insulin MS were combined and examined 

in the athymic nude mouse model as described above. Seven groups of mice were used in 

this part of the experiment, each containing nine animals in each group (powered for eight 

animals with one extra mouse for persistency) for a total of 63 mice, In addition to control 

groups, different combinations of Dex MS and insulin MS doses, were examined as follows: 

Group 1 = 50 mg Dex +  90 mg insulin MS; Group 2 =  50 mg Dex +  10 mg insulin MS; 

Group 3 =  27 mg Dex +  19 mg insulin MS; Group 4 =  27 mg Dex +  0mg Insulin; and 

Group 5 =  0mg Dex +  10 mg insulin MS.  The following two control groups were analyzed: 

Control 1: Lipoaspirate only and Control 2 = Lipoaspirate + 100 mg Empty PLGA MS 

(Table 3). The MS were mixed with 0.3mL of human lipoaspirate. Animals were sacrificed 

after 5 weeks and assessed as described above. 

 

Table 3. Combined drug MS study design 

Combined drug MS 
/ 0.3mL of lipo 

Drug treatment 
dose 

Number of animals Time points 

Group A 50 mg+90 mg 9 5 weeks 

Group B 50 mg+10 mg 9 5 weeks 

Group C 27 mg+19 mg 9 5 weeks 

Group D 27 mg 9 5 weeks 

Group E 10 mg 9 5 weeks 

Group F 100 mg Empty 9 5 weeks 

Group G Lipoaspirate 9 5 weeks 
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2.2.10 Long term Dex MS treatment animals 

The six month, long-term time point’s animal’s surgeries were conducted in the same 

environment as the six week, short-term animals. The study was conducted to test the long-

term drug release from the single-walled dexamethasone-loaded microspheres. A total of 20 

animals were injected, divided into 4 groups with 5 animals per group. High dose (50 mg 

Dex MS) and low dose (27 mg Dex MS) groups were compared with a group of empty 

microspheres and lipoaspirate only (Table 4).  

 

Table 4. Dexamethasone microsphere long-term animal study 

Dexamethasone 
MS/ 0.3 mL 
human lipo 

Drug treatment 
dose 

Number of animals Time points 

High dose 50 mg Dex MS 5 6 months 

Low dose 27 mg Dex MS 5 6 months 

Empty MS 50 mg MS 5 6 months 

Lipoaspirate NA 5 6 months 

 

Animals in the short-term time point were injected with 1 mL of lipoaspirate mixed 

with microspheres on the dorsal part, which was a high volume for rodents. In the long-term 

dexamethasone MS surgeries, animals were injected with the volume of 0.3 mL, while the 

dose of the drug remains the same, with the different ratio. Animals were closely monitored 

for 6 months.  
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2.2.11  Histological analysis 

The samples were fixed in 4% paraformaldehyde, incubated overnight in 30% sucrose 

(Sigma-Aldrich), and then embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek USA, 

Inc.), followed by cryosectioning at 18 mm thickness. Hematoxylin (Santa Cruz 

Biotechnology, Inc.) and eosin (Sigma-Aldrich) (H&E) staining was conducted. To assess 

vascularization, horseradish peroxidase-based CD31 antibody staining was performed to 

confirm the presence of blood vessels. Samples were fixed in 10% buffered formalin for 1 h, 

processed, and embedded in paraffin.  

Samples were first deparaffinized and then rehydrated with an ethanol gradient. 

Antigen retrieval (95 ◦C citrate buffer for human for 20 min) was then performed and slides 

were washed. Slides were blocked (sequentially for avidin, biotin, and endogenous enzymes 

(Dako), proteins (Dako), and 5% rabbit serum (Jackson ImmunoResearch) for human or 3% 

peroxide and 5% BSA for mouse, and washed with tris buffered saline between blocking 

steps. The slides were incubated with the CD31 primary antibody (goat anti-human 1:100 for 

1.5 h at room temperature, SC-1506; Santa Cruz Biotechnology or rat anti-mouse 1:100 for 2 

h at room temperature, ab56299; Abcam) in PBS. Slides were washed and then incubated 

with a secondary antibody (rabbit anti-goat 1:200 in PBS with 6% rabbit serum for 30 min at 

room temperature, BA-5000; Vector Laboratories or rabbit anti-rat 1:100 in PBS for 1 h at 

room temperature, P0450; Dako). Slides were washed and human slides were incubated with 

an ABC kit avidin–biotin complex (Vector Laboratories) for 15 min at room temperature and 

washed. 
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2.2.12 Image analysis 

The slides were imaged using an Olympus Provis microscope (Olympus). Blood 

vessels were counted using ImageJ (NIH). Cylindrical-shaped structures surrounded with 

endothelial cells were identified as vascular lumens on H&E-stained slides and were 

subsequently confirmed as blood vessels using CD31 staining.  

 

2.2.13  Blood vessel quantification  

Blood vessel lumens were counted using CD31-stained slides, five slides per group, 

and the average was recorded. In addition, using CD31-stained slides, 20 random cell surface 

areas were evaluated with Image J starting from the center of the slide and counting five cells 

in four directions for the purpose of setting the difference in cell areas between the control 

and treatment groups. Ten random tissue sections were quantified for each sample and means 

were determined for the aforementioned variables. 
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2.3 RESULTS 

 

2.3.1 Dexamethasone and insulin loaded single-walled microsphere characterization 

Dex MS were examined by SEM (Figure 9a). The MS had an average diameter of ≈100 200 

μm. The release of Dex occurred over 34 days (Figure 10a). A controlled release was 

maintained over this period. After 24 h, 30.4% – 4.4% of total Dex was released. A large 

burst effect (e.g., > 80% during the first 24 h) was not observed. After 35 days, 90.0% ± 

1.5% was released. The yield was 68.3%  ± 15.1%. The loading capacity was 7.3 v 1.5 mg 

Dex per mg of MS. 

 

 

Figure 9. SEM images of a) dexamethasone (Dex) poly (lactic-co-glycolic acid) (PLGA) 

microspheres (MS) and b) insulin-loaded PLGA MS 

 

 

                                                      a.                                                                      b. 
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In the same manner, insulin MS were examined utilizing SEM (Figure 9b). The 

average diameter of the insulin MS was 200–300 μm. The release of insulin was observed 

over 21 days (Figure 10b). The insulin microsphere yield was 40.6% ± 11.3%. The loading 

capacity 10.7± 2.3 mg insulin per mg of MS.  

 

 

Figure 10. Drug release kinetics: a) dexamethasone loaded microsphere and b) insulin loaded 

microspheres 
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2.3.2  Dex MS and insulin MS in vivo studies 

The animals were sacrificed after 5 weeks. Photographs showing the differences 

between the treatment groups and the control group are depicted in Figure 11. Dex MS were 

mixed with l mL of lipoaspirate, whereas the control consisted of 1mL of human lipoaspirate 

(C = control without MS and S = sample with Dex MS). Macroscopic differences were 

observed within the implants that had MS treatment compared with tissues without treatment.  

The results showed that the fat samples extracted from the nude mice with the Dex 

MS had increases in mass measurements when compared with lipoaspirate injections only 

(Figure 12). Insulin MS were mixed with 1mL of human lipoaspirate and also compared with 

lipoaspirate alone (Figure 13). Results indicate that mass increased with increasing insulin 

concentrations. 
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Figure 11. Dex MS effect in adipose tissue enhancement 

 

Gross images were photographed at the 5-week time point of explantation. In the 

treatment group, 80mg of Dex MS was mixed with l mL of lipoaspirate, whereas the control 

group consisted of 1mL of only human lipoaspirate (C= control without Dex and S = sample 

with Dex MS). 
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Figure 12. Results from adipose mass analysis of Dex MS treated animals. Mass of the explanted 

fat tissue at the end of 5 weeks was increased, as the dose of Dex MS was increased showing significant 

difference in the comparison with the control groups. 

 

 

Figure 13. Results from adipose tissue treated with insulin MS animals. Mass of the explanted 

tissue after 5 weeks was increased, as the doses of insulin MS were increased, showing significant 

difference comparing with the control groups. 

*              *        

*       *          * 
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2.3.3 Combined drug in vivo studies 

The animals from the Dex MS and insulin MS combined study were sacrificed after 5 

weeks. Fat tissue was extracted, followed by measurements of volume and/or mass. The first 

numbers on the scale is the Dex part of MS and the second is the Insulin, 50 mg of Dex MS+ 

90 mg of insulin MS mixed in 0.3mL of lipoaspirate. The single drug MS are the 27 mg of 

Dex MS and 10 mg of insulin MS mixed with 0.3mL of lipoaspirate and the controls are 

Empty MS and lipoaspirate only (L-left side and R- right side). Treatment groups are labeled 

with S (sample), whereas the control groups are the C (control). 

The increase in mass after 5 weeks of MS treatment samples, as well as the decrease 

in volume for empty MS samples, was statistically significant depending on the dose (Dex 

MS  Volume = 0.32 ±0.043 mL, p = 0.002; Empty MS Volume = - 0.14 ±0.051 mL, p = 

0.646).  
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Figure 14. Results from a) mass and b) volume analysis of combined treated groups at 5 weeks.   

In both graphs, the treatment side is lables with S and control side-lipoaspirate, with C 
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Differences were considered significant when p < 0.05. The combined in vivo study 

of both drugs did not result in a significant difference in volume compared with Dex or 

Insulin only (Figure 14). Although the results show a statistical difference compared with 

controls that were lipoaspirate only, there is a decrease in volume compared with samples 

that used individual drugs. 

 

2.3.4 Long-term dexamethasone MS treatment groups 

The animals from the Dex MS long-term study were sacrificed after monitoring 6 

months. Fat tissue was extracted, followed by measurements of volume and/or mass. 

Significant difference was seen macroscopically between the Dex microspheres treatment 

groups and lipoaspirate only. (Figure 15) 

                

 

Figure 15. Long-term 27 mg Dex MS treatment results show a great difference between 

the treatment and control side. Extracted fat is highly vascularized 

 

         Control                Sample        Extracted fat  
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The volume displacement of the extracted tissue shown in the Figure 16, demonstrates a 

significant difference between the treatment and the control side. High dose Dex MS (50 mg) 

volume = 0.12 ±0.040 mL, p= 0.003 low dose Dex MS (27 mg) volume = 0.10± 0.032, p = 

0.004; Empty MS Volume = 0.05 ± 0.058 mL, p = 0.646. 

 

 

Figure 16. Volume measurements of long-term Dex MS animal study 

2.3.5 Histological and Image J analysis 

Ten tissue sections were stained with H&E, demonstrating gross architecture of the 

tissue. Blood vessels were quantified using ImageJ from the CD31 staining (Figure 17), 

resulting in a higher number of vessels in the treatment groups.  
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The results shown in Figure 18 elaborate the difference in vascularization between 

treatment and control samples in the single-dose study ( Figure 18a) and the combined drug 

study (Figure 18b).  

 

         

Figure 17. Human CD31 staining of Dex-loaded MS and Insulin-loaded MS, a) Dex-loaded 

microspheres group (80 mg Dex MS), b) magnified image of the Dex MS treated group (a), c) 

combined drug group CD31 staining and d) magnified figure of combined drug study (c) 
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Figure 18. Blood vessels count, a) Dex MS treated groups and b) Combined drug MS 

treatment groups-Group A( 50 mg Dex MS+90 mg Insulin MS), group B ( 50 mg Dex MS+10 

mg Insulin MS), group C( 27 mg Dex MS+19 mg Insulin MS), group D ( 27 mg Dex MS), 

group E( 10 mg Insulin MS), group F( 100 mg empty MS) and group G (lipoaspirate) 

  

 

Figure 19. Long-term Dex MS treatment CD31 staining of the extracted fat, a) High dose (50 

mg Dex MS), b) Low dose (27 mg Dex MS) and c) Lipoaspirate only 

a. c. b. 
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Long-term (6 months) Dexamethasone microsphere treatment groups (Figure 19a and Figure 

19b) histology demonstrates highly vascularized tissue and healthy tissue morphology. 

Lipoaspirate group shows distracted tissue morphology with an evident lack of blood vessels 

(Figure 19c).  

 

2.3.6 Statistical analysis 

All results are presented as mean ± standard deviation. The number of specimens in 

each group is presented in the above sections. Data was analyzed in Minitab 16 Statistical 

Software. Paired t-test, two sample t-test and/or one factor analysis of variance (ANOVA) 

tests were performed (where applicable) in order to determine if the differences between 

groups (control vs. experimental) were statistically different at α = 0.05 significance level. 

 

2.4 DISCUSSION 

 

Resection of tumors in the head and neck, upper and lower extremities, as well as 

trauma and congenital abnormalities often resulted in contour defects due to the loss of soft 

tissue, largely composed of subcutaneous adipose tissue. Adipose tissue is a dynamic and 

multifunctional tissue that is ubiquitous throughout the human body.(35-37) Fat functions as 

a specialized organ that maintains the energy balance through controlled storage and release. 
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Adipocytes store energy in the form of triglycerides and accumulate or mobilize 

triacylglycerol in response to the body’s energy requirements. (37) Adipose tissue is highly 

plastic and can adapt to facilitate greater storage through the hypertrophic expansion of 

terminally differentiated mature adipocytes, as well as the hyperplastic growth and 

differentiation of precursor cells present in the stroma. However, as mature adipose tissue 

does not transplant effectively, numerous natural, synthetic, and hybrid materials have been 

used to act as adipose surrogates.  

This study outlines a new technology for fat retention during fat transfer using both 

Dex- and insulin-loaded PLGA MS. The effect of Dex in fat tissue enhancement has been 

studied before. As a synthetic glucocorticoid, Dex is more potent than the natural hormone 

cortisol, and its action in the enhancement of fat tissue formation by increasing the 

expression of C/EBP and PPAR-y has been demonstrated. (38-40) Hence, there are a number 

of cases where Dex is used in medicine and in bioengineering research as an adipogenic 

catalyst. (40,41)  

Insulin is a hormone that is known for regulation of carbohydrates and fat metabolism 

in the body. The presence of insulin in tissue stops the process of using fat as an energy 

resource. When insulin is absent, glucose is not taken up by body cells and the body begins 

to use fat as an energy source, or by transfer of lipids from adipose tissue to the liver for 

mobilization as an energy source.(42,43)  The release of insulin to induce adipogenesis has 

been demonstrated, using in vitro and in vivo studies, resulting in tissue increased weight. 

(43,44)   
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Biodegradable drug delivery systems, such as PLGA-polyethylene glycol (PLGA-

PEG) MS, have been studied as delivery vehicles for insulin, insulin-like growth factor-1 

(IGF-1), and basic fibroblast growth factor. In a subcutaneous rat model, incorporating these 

growth factors improved autologous free fat graft weight and volume, with the best results 

observed for either insulin or IGF-1 alone or in combination. PLGA (75:25) foam was also 

assessed in vivo  in combination with IGF-1 and insulin with fibroelastic tissue formation at 

the implantation site at 12 weeks. (46,47) In this study, we demonstrated that drug-loaded 

PLGA MS can have an impact on fat tissue enhancement through release of adipogenic 

drugs. The Dex-loaded MS successfully released the drug in a controlled fashion for duration 

of 3–5 weeks. Demonstrated by release studies, 70% of drug was released in the first 3 weeks 

with 100% release in 4–5 weeks.  

Results demonstrated that after a 5-week period, there was a significant increase in 

mass and volume of the samples, which proved to be statistically significant. This 

observation was also seen with histological analysis.  The results were notable when 

examined Dex only, which is known to be a synthetic steroid used as a strong anti-

inflammatory drug, and also is a highly adipogenic factor.(48)  increasing the expression of 

the C/EBP and PPARy genes.  

An increase in mass, volume, and vascularization was also observed in the 

experiments with insulin-MS, which is a known lipogenic drug that enhances the lipid filling, 

as shown in previous in vitro and in vivo studies.(49) Insulin-loaded MS successfully resulted 

in a controlled release of insulin for a duration of 3–5 weeks, with 70% of insulin released in 

the first 3 weeks and 100% release in 4–5 weeks.  
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Results demonstrated that after a 5-week period, there was also a significant increase 

in mass and volume of the samples, but not as striking as Dex alone.  

The animal groups treated with dexamethasone microspheres for a 6 month period, 

demonstrated adipose tissue retention compared to the group that was treated with empty 

microspheres and lipoaspirate only (Figure 16). Histology of the extracted adipose tissue 

from animals demonstrated a highly vascularized tissue in the dexamethasone microspheres 

treatment groups, with unobstructed adipose tissue structure.  

2.5 CONCLUSION 

 

The aim of this study was to improve the adipogenesis and angiogenesis of the 

adipose tissue after fat grafting via dexamethasone and insulin delivery by polymer based 

microspheres. In this study we elaborated the usage of encapsulated adipogenic drugs, such 

as insulin and dexamethasone, for stimulating fat tissue enhancement in vivo.  A number of 

different injectable soft tissue replacement are used to reconstruct and regenerate the soft 

tissue after a defect, but most fail because of lack of vascularization before the scaffold gets 

integrated in the in site surrounding tissue.  By preserving the adipogenesis and angiogenesis 

in the injected tissue with adipogenic drugs, we achieved enhanced retention of adipose 

tissue after grafting. Sustained delivery of the drugs through PLGA MS, induced enhanced 

adipose retention, showed by gross and histological differences in fat tissue vascularization 

compared with lipoaspirate alone.  
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Taking into consideration that all the components of the microspheres are FDA-

approved and with a long clinical history including the health/biohazard details, this model 

shows a potentially relevant therapy for soft tissue reconstruction in clinical settings. The 

preliminary data supports that a 4-5 week delivery of the dexamethasone encapsulated in 

single-walled PLGA microspheres resulted in enhanced adipogenesis in an in vitro 

environment (8); therefore single-walled microspheres in in vivo settings were expected to 

work in same manner by increasing the adipogenesis in injected fat by maintaining a stable 

lipoaspirate volume at both time points. Doses of the drug released are undetectable by 

hormonal passage of the animals, and no adverse side effects were evident. 

The mechanisms of dexamethasone and insulin in adipose retention are still unknown. 

There are studies that show that adipocyte going through the process of hypertrophy during 

the effect of dexamethasone or insulin. More research is needed to elucidate a clear 

mechanism.  We have demonstrated that adipose tissue preserved volume after 5 weeks in an 

athymic mouse model compared to control lipoaspirate only treatments. These promising 

studies will support future longer-term studies as well as potential larger animal models.   
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3.0  DEXAMETHASONE-LOADED DOUBLE-WALLED MICROSPHERES 

 

3.1 INTRODUCTION 

 

The adipose tissue has become a focus area for soft tissue engineering based on a 

large number of reconstructive and correctional conditions that could be corrected with 

adipose tissue engineering strategies.  Adipose tissue is a dynamic and multi-functional tissue 

that is ubiquitous throughout the human body.(50-51) Fat functions as a specialized organ 

that maintains the energy balance through controlled storage and release. Adipocytes store 

energy in the form of triglycerides, and accumulate or mobilize triacylglycerol in response to 

the body's energy requirements.(52) Adipose tissue is an active and dynamic tissue, which 

can adapt to facilitate greater storage through the hypertrophic expansion of terminally 

differentiated mature adipocytes, as well as the hyperplastic growth and differentiation of 

precursor cells present in the stroma. Mature adipose tissue does not transplant effectively; 

therefore, numerous natural, synthetic, and hybrid materials have been used to act as adipose 

surrogates.(53)  
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Due to issues of variability of retention of grafted fat, much research has been 

conducted to overcome and improve the survival of adipose tissue grafting. Processing of fat 

tissue prior to fat grafting is one method that has been manipulated for the purpose of 

maintaining improved adipose tissue retention. (54-55) 

The effect of dexamethasone in fat tissue enhancement has been studied through the 

years. Being a synthetic glucocorticoid, dexamethasone is more potent than the natural 

hormone cortisol, the role and its action in enhancement in fat tissue formation by increasing 

the expression of C/EBP and PPAR-y. (57) Hence, there are a number of cases where Dex is 

used in medicine and in bioengineering research as an adipogenic catalyst. In this objective, 

dexamethasone was encapsulated in a PLGA microsphere core surrounded by PLLA shell 

with the objective of a slower and better-controlled drug delivery. By encapsulation of 

dexamethasone in double-walled microspheres, the drug will be released in a sustained and 

controlled fashion for an average of 80-120 days. The release of the adipogenic drug in a 

slow and more controlled environment should favorably affect adipose tissue retention.  

 

3.1.1 Specific Aim 2.  

The specific aim of this chapter was to fabricate and optimize dexamethasone 

encapsulation in double wall microspheres, together with optimizing the doses of Dex DW 

MS in in vivo testing. The rational of this aim was based on the fact that dexamethasone, 

protected by the PLGA and PLLA, will be released in a controlled manner for duration of 10-

24 weeks, with a minimal burst release effect.  
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Slow and controlled release of dexamethasone within injected fat in a mouse model 

will enhance adipogenesis in a controlled fashion, therefore increasing adipose tissue 

retention. 

To test this hypothesis, dexamethasone was encapsulated double wall microspheres 

and proven the core-shell architecture together with drug release profile.  Once the 

parameters of the microspheres were established, they mixed with human lipoaspirate and 

injected in athymic mouse model, testing the adipogenesis in two time points. Volume and 

mass measurements of the extracted tissue were calculated followed by histology testing 

including tissue morphology and presence of blood vessels. 

 

3.2 METHODS 

 

3.2.1 Dexamethasone encapsulation within double-walled microspheres 

In order to create double-walled microspheres, 400 mg of PLGA (75:25) was 

dissolved in 4.5 mL of dichloromethane (DCM). In a separate vial, a 10% solution of PLLA 

of equal polymer mass was prepared. After both polymers were dissolved, 20 mg of 

dexamethasone-sodium phosphate was added to the PLGA solution and vortexed until the 

solution was homogenous. The PLGA solution was then added to the PLLA solution and 

vortexed for additional 60 seconds.  
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This solution was then added via pipette to 400 mL of aqueous 1% poly(vinyl 

alcohol) solution and stirred at 500 rpm for 3 h. The microspheres were collected by means 

of centrifugation, followed by freeze-drying for a 24-hour period (LabConco Freezone 4.5).  

Empty double-walled microspheres (Empty DW MS) were created following the same 

protocol as dexamethasone double-walled microspheres (Dex DW MS), omitting the addition 

of dexamethasone.  

 

3.2.2  Dexamethasone double-walled microsphere characterization 

The morphology of both single and double-walled microspheres was determined 

using scanning electron microscopy (SEM). Initially, the microspheres were gold coated 

using a Cressington 108 Auto (Cressington), followed by the usage of a JSM-6335F SEM 

(JEOL) operated at an acceleration of 3.0 kV for morphology characterization. The size 

distribution of microspheres was determined by measuring the diameters of 30-50 

microspheres using SEM images. Microsphere loading capacity was determined by using the 

equation LC = Amount of drug loaded (AD) divided by the amount of polymer and amount 

of drug loaded (AP+AD). Encapsulation efficiency (EC) was determined by amount of actual 

drug concentration (Ca) divided by theoretical concentration (Cth). 
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3.2.3 Dexamethasone double-walled microspheres ethyl acetate test 

In order to confirm the polymer core-shell architecture in the double-walled 

microsphere, a solvent-specific ethyl acetate dissolution test was conducted. The polymer 

PLLA is not soluble in ethyl acetate, while PLGA is soluble. Therefore, dexamethasone 

loaded double-walled microspheres were sectioned and mounted on metal stubs using 

double-sided copper tape. After the microsphere were attached onto the metal stubs, they 

were exposing the ethyl acetate for 2 days. After this period the stubs were dehydrated and 

imaged with SEM. Because the PLGA component of the double-walled microsphere was 

dissolved, PLLA spherical shell was expected to remain. 

 

3.2.4  Dexamethasone release from microspheres  

The release kinetics of dexamethasone from both single and double-walled 

microspheres were tested by incubating 10 mg of microspheres in 1 mL of phosphate-

buffered saline (PBS) at 37 °C. Supernatant was collected weekly for 45 weeks. Each week, 

the solution was replaced with fresh PBS after being vortexed for 15 sec. The amount of 

dexamethasone released was analyzed using spectrophotometry. The data collected was 

calculated using a standard curve.  
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3.2.5  Dexamethasone-loaded microspheres in vivo study design 

Animals used in the study were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. A total number of 60 female athymic nude mice (5–10 

weeks old; Harlan Laboratories) were used for the study. Animals were separated into 12 

groups, each containing 5 mice per group (Table 5). The right side injection was the 

experimental (sample) group, and the left side consisted of the control group. Single and 

doubled walled dexamethasone microspheres were tested at two different time points, 6 

weeks and 6 months. Two different combinations of dexamethasone microspheres were 

examined as shown in table 5. 

 

Table 5. Doses of dexamethasone loaded single and double-walled microspheres 

 

 

  

Treatment 
0.3mL injections 

Drug treatment dose Number of animals Time points 

High dose Double-
walled MS 

50 mg Dex MS 5 6 weeks/ months 

Low dose Double-
walled MS 

27 mg Dex MS 5 6 weeks/ months 

High dose Single-
walled MS 

50 mg Dex MS 5 6 weeks/ months 

Low dose Single-
walled MS 

27 mg Dex MS 5 6 weeks/ months 

Empty MS 
A 

50 mg MS 5 6 weeks/ months 

Lipoaspirate 
B 

NA 5 6 weeks/ months 
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The dosage of the drug is determined by the mass of the microspheres injected. The 

highest dose contained 50 mg of dexamethasone microspheres and the lowest dose consisted 

of 27 mg of dexamethasone microspheres, which correlated to ≈500 ng of Dex and ≈270 ng 

of Dex respectively. In addition to experimental groups, two control groups were tested. 

Control group ‘A’ contained empty microspheres, whereas control group ‘B’ consisted of 

only lipoaspirate. The doses were chosen based on our results from a previous study.(58)  

The doses correspond to concentrations currently used in humans that are within the 

safe and therapeutic range. (60,61) Human lipoaspirate was processed as approved by the 

University of Pittsburgh Institutional Review Board, obtained by patients undergoing elective 

surgery using the Coleman method as described in previous studies.(58,59)  

 

3.2.6  Animal surgeries 

Animals were anesthetized with 3% isoflurane in oxygen at the time of the surgery. 

The lipoaspirate/MS injections were performed using a 16-gauge surgical cannula, in both 

sides of the dorsal area of the animal. The right side was injected with the experimental 

group and the left side contained lipoaspirate exclusively (Figure 20). Photographs were 

taken immediately following the surgery and weekly throughout the study.  
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Figure 20. Animal surgery design 

 

3.2.7  Histological analysis 

Following extraction, the samples were fixed in 4% paraformaldehyde, incubated 

overnight in 30% sucrose (Sigma-Aldrich), and then embedded in paraffin, then 

cryosectioned at a thickness of 10 μm. Hematoxylin (Santa Cruz Biotechnology, Inc.) and 

eosin (Sigma-Aldrich) (H&E) staining was conducted using the same protocol as in our 

previous study.(58) Vascularization of the extracted samples was determined by assessing a 

pan peroxidase-based CD31 antibody staining to confirm the presence of blood vessels.  
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3.2.8  Image analysis 

The Olympus Provis microscope (Olympus) was used to image extracted adipose 

tissue slides. Adipose tissue architecture was assessed by analyzing the tissue morphology of 

H&E stained slides. Blood vessels were counted using ImageJ (NIH).  Blood vessel lumens 

were counted using CD31-stained slides, containing 5 slides per group. CD31-stained slides 

were used to evaluate 20 random cell surface areas. Beginning at the center of the slide and 

counting five cells in four directions, Image J was used to set the difference in cell areas 

between the control and treatment groups. Ten random tissue sections were quantified for 

each sample and means were determined for the aforementioned vessels and vessel lumens. 

 

3.2.9  Dexamethasone-loaded microspheres systemic effects 

Dexamethasone is able to effectively suppress levels of corticosterone as negative 

feedback from adrenocorticotropic hormones.(62-64) The levels of dexamethasone in 

treatment groups were tested by drawing blood from animals at the 6 week timepoint. Before 

sacrifice, blood was collected and preserved in EDTA-coated tubes from four animals from 

each group under light anesthesia. The plasma was then separated and stored at −80 °C until 

used. Corticosterone levels in the plasma were quantified using an ELISA kit following the 

manufacturer's instructions (Enzo Life Sciences).(65-67) 
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3.2.10   Statistical analysis 

Data was analyzed using SPSS Statistical Software. Paired t-tests, two-sample t-tests, 

and mixed way analysis of variance tests (ANOVA) were performed to determine if the 

differences between the experimental and control groups were statistically significant at the p 

≤ 0.05 significance level. All results are presented as mean ± standard deviation. 
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3.3 RESULTS 

 

3.3.1 Dexamethasone microspheres characterization  

Single and double-walled microspheres were examined using SEM images. Single-

walled microspheres both dexamethasone loaded and empty are an average of 100±10.5 μm 

in diameter (Figure 21a).  Double-walled microspheres are an average of 250±20.5 μm of 

diameter (Figure 21b). Single-walled dexamethasone-loaded microspheres released the drug 

in 80 days, with an average of 30 ± 5.5% being released in the first week. After 85 days, 

around 95 ± 3.5% was released in total (Figure 22). Double-walled dexamethasone loaded 

microspheres released the drug in a period of ~300 days, with ~10 ± 5.5% released in the first 

40 days, resulting in a minimal burst release effect.  

 At day 300, 90 ± 2.7% of the drug was released. Double-walled dexamethasone 

loading capacity was found to be LC = 42±3.6 mg Dex/g MS and the encapsulation 

efficiency was calculated as EE = 43± 2.3 %.  
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Figure 21. SEM images of dexamethasone loaded microspheres, a) Single-walled poly(lactic-co-

glycolic acid) (PLGA) dexamethasone loaded microspheres, b) Double-walled poly(lactic-co-

glycolic acid) (PLGA)- poly-L-lactide (PLLA) dexamethasone loaded microspheres 

 

 

   

Figure 22. Drug release profile of Dex SW MS and Dex DW MS 
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3.3.2 Dexamethasone double-walled microsphere polymer orientation 

Core-shell architecture of the microspheres was tested with a dissolution ethyl acetate 

test. Microspheres were first sectioned and treated with ethyl acetate, a solvent that dissolves 

PLGA and not PLLA. The SEM imaging of microspheres treated for 48h with ethyl acetate 

show mass loss of inner PLGA core. The PLLA shell was preserved to some extent in 

spheres treated with ethyl acetate. Figure 23 shows the results from ethyl acetate test, which 

shows the presence of the core-shell architecture of double-walled microspheres.  

                     

 

Figure 23. Core-shell orientation of polymers in double-walled microspheres tested with ethyl 

acetate test, a) Empty double-walled microsphere and b) Dexamethasone loaded double-walled 

microsphere 

 

 

a.                              b. 
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3.3.3  In vivo studies  

Animals were sacrificed at two different time points: 6 weeks and 6 months. 

Dexamethasone-loaded microspheres were mixed with 0.3 mL of lipoaspirate, whereas the 

control consisted of 0.3 mL of only human lipoaspirate (C=Control without microspheres and 

S=sample with Dex MS). All animals were also compared with a control group that consisted 

of empty microspheres injected in one side and lipoaspirate in the other, as well as with a 

group that had lipoaspirate injected in both sites of the animal labeled a. and b. A significant 

difference can be seen between the control and the single-walled microsphere treatment 

groups in the photographs taken at the 6-week time point (Figure 24a) On the contrary, no 

noticeable difference can be seen between the double-walled microsphere treatment group 

and the control side at the earlier 6 week time point (Figure 24b).  

            

Figure 24. Gross images of extracted adipose tissue at week 6 a) Dexamethasone single-

walled microspheres (27 mg Dex SW MS) treatment, and b) Dexamethasone double-walled 

microspheres (27 mg Dex DW MS) treatment 
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Photographs taken at the 6-month time point, however, show significant differences 

between the treatment group and the control group in both single-walled (Figure 25a) and 

double-walled dexamethasone microspheres (Figure 25b). 

 

Figure 25. Extracted adipose tissue from animals at 6 months’ time point, a) Dexamethasone 

single-walled microspheres (Dex SW MS) treatment and b) Dexamethasone double-walled 

microspheres (Dex DW MS) treatment 

3.3.4 Adipose tissue mass and volume measurements  

Macroscopic differences observed within the injections that contained dexamethasone 

microsphere treatments compared to tissue without Dex were confirmed by measuring mass 

and volume displacement of the extracted lipoaspirate in all groups. Tissue extracted from 

the earlier time point (6 weeks), show increase in mass and volume in single-walled 

dexamethasone microspheres treatment (Figure 26a and b), likely due to faster release of the 

drug from the single-walled microspheres. 
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Figure 26. Adipose tissue extracted from animals at 6 week time point mass measurements 

(Fig. 21a) and extracted adipose tissue volume measurements (Fig. 21b) 

 

  Adipose tissue extracted from the second time point, 6 months respectfully, show a 

higher increase in mass and volume measurements in double-walled dexamethasone 

microspheres treatment groups compared to control groups of empty microspheres and 

lipoaspirate only (Figure 27a and b).   
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Figure 27. Adipose tissue extracted from animals at 6 months’ time point mass 

measurements (Fig. 26a) and extracted adipose tissue volume displacement (Fig. 26b) 

 

 

 

 

 

 

*             *                            * 

*             *                            * 
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3.3.5 Dexamethasone loaded microspheres systemic effect 

 Plasma collected from four animals (n=4) per group of the 6-week time point was 

tested for the presence of dexamethasone in the systemic blood stream using the 

Corticosterone ELISA kit and by following the manufacturer’s instructions (Enzo Life 

Sciences). Corticosterone levels were similar in all groups (≈1,600 pg/mL), including the 

treatment and control groups, showing no significant difference in corticosterone levels on a 

systemic scale in any of the groups (Figure 28). 

  

       

 

Figure 28. Corticosterone levels in all groups were average of 1,600 pg/mL, including the 

treatment and control groups 
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3.3.6 Histological analysis 

Three tissue sections from each lipoaspirate extraction were stained with H&E in 

order to analyze gross architecture of the tissue (Figure 29). H&E images show healthy 

morphology of the adipose tissue in all treatment groups, without any interruption from the 

polymer microspheres.  Adipose tissue without any microsphere treatment shows large 

adipocytes with surrounding disrupted tissue.  

                

 

Figure 29. Histology of the extracted adipose tissue at 6 weeks’ time point. H&E staining of 

the treatment groups and lipoaspirate control 
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Blood vessels were analyzed using Image J to view CD31-stained slides. The 

differences in vascularization between treatment and control samples are demonstrated in 

Figure 30. Presence of blood vessels were evident in all treatment groups, 50 mg Dex MS 

and 27 mg Dex MS, single and double-walled microspheres, with predominantly higher 

number of blood vessels in the double-walled microspheres treatment groups. Control group, 

lipoaspirate showed significantly fewer blood vessels compared to all the treatment groups. 

The difference in mass measurements between all groups was analyzed statistically with 

SPSS software, showing a statistically significant difference between the treatment group 

from the 6-month time point, which had results similar to the volume displacement 

measurements.  

 

Figure 30. Histology of extracted fat at 6 month time point. CD31 staining shows a 

significant difference on blood vessel presence in treatment groups compared to control 
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All treatment groups had significant volume retention, with the 27 mg Dex DW MS 

group retaining up to 80% of the initially injected lipoaspirate (Figure 27b). Measurements 

from the 6-week time trial showed mass and volume retention of up to 60% for tissue treated 

with single-walled microspheres compared to the empty microsphere and lipoaspirate groups 

(Figure 26). 

 

3.3.7 Dexamethasone microspheres treatment extracted fat cell size 

Tissue explants were also analyzed to determine trends in cell size (hyperplasia v. 

hypertrophy) for various treatment groups and controls utilizing the microscope imaging 

software from NIH, ImageJ (Figure 31). Hyperplasia results from an increase in cell number 

which would indicate adipose tissue regeneration and adipose stem cell (ASC) 

differentiation. Contrastingly, hypertrophy results from an increase in cell size. Hypertrophy 

can indicate the initial stages of necrosis and apoptosis or increased lipid retention. Analysis 

involved randomly choosing five adipocytes from each explant sample and measuring their 

area in square µm. The average area for each group was calculated with percent standard of 

deviation. A paired, two-tailed t-test via SPSS software was utilized to determine if the size 

differences of adipocytes between control and experimental samples held any statistically 

significant differences with any comparison with a p-value<0.05 resulting in statistical 

significance.  
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Figure 31. CD31-ImageJ NIH software image of Dex 27 mg SW MS treatment group. Arrow 

shows the process of labeling adipocyte area 

 

The results from this data analysis is shown in Figure 32 From the data it was 

determined that adipocytes from the experimental groups were significantly smaller in size, 

and thus higher in number, compared to the control explant groups that did not receive Dex 

MS treatment. This indicates that the Dex MS impacted hyperplasia within the adipose 

tissue.  
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Figure 32. Adipocyte cell size in all the treatments, a) 50 mg Dex DW MS, b) 27 mg Dex SW 

MS, c) 50 mg Dex SW MS and d) 27 mg Dex SW MS 

 

Additionally, there was a trend that 50 mg (higher dosage) treatment groups had a 

larger statistical difference than the 27 mg (lower dosage) treatment groups. Similarly, the 

SW treatment group exhibited less statistical significance compared to the DW treatment 

group. Thus, we assume that both increased Dex dosage and extended release period results 

in more blatant hyperplasia. However, because this experiment was not blinded it is 

suggested that this phenomenon is further investigated in future studies. 
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3.4 DISCUSSION 

 

According to the American Society of Plastic Surgeons, there were a total of 

5,814,998 reconstructive surgeries conducted in 2015 alone.(68) With such a large number of 

reconstructive surgeries occurring each year, it is critical that an optimal substance be used in 

tissue repair. Autologous fat, or mature adipose tissue, has been investigated as a key source 

of material for soft tissue reconstruction. Fat tissue is easily harvested and many patients 

possess excessive amounts of mature adipose tissue that can be collected without producing 

significant contour defects. Despite the incredible potential advantages of using adipose 

tissue in restorative tissue surgery, autologous fat transplantation has demonstrated poor 

results, with a 40 to 60% reduction in graft volume due to resorption.(69,70) Such high rates 

of adipose tissue resorption are theorized to be related to insufficient revascularization and 

mechanical damage.(71) Recent work has demonstrated that microvascular endothelial cells 

play a critical role in protecting adipose cells from hypoxia.(72) Moreover, adipose tissue 

mass is governed by the formation of healthy vasculature.(73)  

Dexamethasone, a synthetic glucocorticoid, promotes adipogenesis by increasing the 

gene expression of CCAAT-enhancer-binding protein (C/EBP) and Peroxisome proliferator-

activated receptor-gamma (PPAR-gamma).(8,58,71,72) The sustained delivery of adipogenic 

drugs, such as dexamethasone, to the healing tissue not only promotes cell differentiation and 

vascularization, but also acts to support long-term retention of the injected tissue. In this 

study, we demonstrated the ability to encapsulate and deliver dexamethasone within 

biodegradable double-walled microspheres to the injected adipose tissue for a period of over 

6 months.  
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The long-term delivery of an adipogenic drug to the surgery site is critical for tissue 

repair and retention. According to the release studies, dexamethasone was released steadily 

from the Dex DW MS for the entirety of the 6-month trial. In both the 6-week and 6-month 

trials, the injected adipose tissue treated with Dex DW MS resulted in higher overall mass 

and volume retention when compared to the lipoaspirate and empty MS control groups. In 

addition, a greater number of blood vessels were observed in the treatment group samples 

following CD31 and H&E staining, suggesting improved vascularization of the treated tissue. 

Scaffolds comprised of with synthetic materials are another means of supporting 

tissue regeneration by offering mechanical support.  Yuksel et al., successfully described the 

delivery of adipogenic agents such as insulin and insulin-like growth factor-1 via 

PLGA/polyethylene glycol microspheres for the purpose of creating de novo fat tissue, which 

supported adipogenesis for a period of 4 weeks.(73,74) Adipocyte differentiation is multistep 

process requiring the sequential activation of several groups of transcription factors, 

including C/EBP gene family and PPAR-γ.(75-77)  

Dexamethasone as a highly potent synthetic glucocorticoid works through activation 

of the glucocorticoid receptor, which is a nuclear hormone receptor in the same superfamily 

as PPAR-γ. Dexamethasone induces C/EBP-δ adipogenic activity and reduces the expression 

of pref-1, a negative regulator of adipogenesis.(78,79) 
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3.5 CONCLUSION 

 

Although these findings are promising, to date, research has shown limited data on 

creating a proficient system for delivering adipogenic drugs over a prolonged period of time. 

By encapsulating an adipogenic drug, such as dexamethasone in doubled-walled 

PLGA/PLLA microspheres, we have shown that one can achieve slow and sustained drug 

delivery in a local environment, resulting in a long-term effect of dexamethasone in the 

implanted fat tissue for 6 months. 

While the sustained and controlled release of the dexamethasone from double-walled 

microspheres has significantly increased the adipose tissue retention, it has also contributed 

on increasing blood supply in the added tissue.  The immunohistochemistry staining shows 

more positive staining in the groups with double-walled microsphere treatment compared to 

single walled microspheres, empty microspheres and lipoaspirate only. Blood drawn from the 

animals show the absence of the drug in the blood stream, meaning that the systemic effects 

of the dexamethasone loaded double-walled microspheres is minimum to completely absent. 

This drug delivery system presents a clinical relevant form of successful drug delivery device 

with promising results.  

Encapsulation of dexamethasone in double-walled PLGA/PLLA microspheres with 

the purpose of releasing the drug in a more sustained rate, presents an improved drug 

delivery system for prolonged adipose tissue retention. Sustained drug release, in this case 

dexamethasone, is successfully reached with local effect in grafted adipose tissue.  
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4.0  COMBINED SINGLE AND DOUBLE-WALLED MICROSPHERES DRUG 

DELIVERY SYSTEM EFFECT IN ADIPOSE TISSUE RETENTION  

 

4.1 INTRODUCTION 

 

4.1.1 Adipose tissue biology and function  

Soft tissue engineering has been developed through the years, aiming to rebuild soft 

tissue loss.  Adipose tissue is the key component needed for soft tissue reconstruction. Fat is 

an active and dynamic tissue, highly vascularized, distributed around the main organs and 

under the dermal part of the skin. Adipose tissue also gives shape and contour to the body.  

The minimal changes due to tumor resections or trauma can cause loss and deformity of the 

physiological shape of the body. Furthermore, adipose tissue is responsible for maintaining 

energy metabolism through storage of lipid, a task carried out by the mature adipocytes.  
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Figure 33. Adipose tissue (www.am-medicine.com) 

 

The adipose tissue functional mechanisms overlap and interact with surrounding 

tissues and capillaries in addition to influencing energy homeostasis throughout the entire 

organism. Understanding of adipocyte biology and function helps establishing the different 

methods of handling adipose tissue prior to grafting. Different types of fat that have 

different functions in physiology and metabolic diseases. Relative to white adipose tissue, 

which is the body’s main energy storage, brown adipose tissue can dissipate energy as a 

defense against cold temperatures and maintains energy balance in the body. The transition 

from an immature to a mature adipocyte starts initially by the determination and 

differentiation of a multipotent stem cell into an adipo-blast and pre-adipocyte, followed by 

differentiation into a mature adipocyte.(85)  
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4.1.2 Long-term viability of grafted adipose tissue  

As discussed throughout this thesis, adipose tissue transplantation for soft tissue 

augmentation is a commonly used technique in plastic surgery. The outcomes include a 

variety of reports showing degrees of success or failure. The different methods of processing 

adipose tissue prior to injection can affect the survival of adipose tissue.(80) Autologous 

adipose tissue retention after fat grafting has been a hot topic for some time now. The 

literature reports a large number of autologous fat tissue grafting techniques; however, there 

is no optimized standard test for determining fat viability or volume augmentation after 

grafting.(81) Average retention of adipose after  fat grafting by even experienced surgeons 

ranges from about 50-90%.(82) Additional procedures are usually necessary to achieve an 

optimal result. However, there is very limited data, which has addressed the timing of 

subsequent fat grafting. Typically, fat survival is adequate for 6-8 months before a repeat 

procedure is required.(83)  

Autologous fat grafting is considered a challenging procedure, due to the un-

optimized characteristic of adipose tissue. Viability of transplanted adipose tissue is a main 

consideration when fat grafting is performed, and significant research has been done to 

understand and predict the fate of grafted fat.  Poor fat viability that produces inadequate 

results can be considered as a complication of this procedure. Many studies have 

demonstrated that fat longevity depends donor site selection, methods of harvesting, 

processing and handling of fat.(84)  
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Lack of vascularization of the transplanted tissue can create fat pseudo-cysts that, 

over time, are absorbed, leading to volume loss of the tissue. (85) 

 

4.1.3 Specific Aim 3 

In this study we aimed to optimize and evaluate the in vivo effect of combining single 

and double-walled microspheres for the purpose of prolonged and efficient fat grafting 

retention. Dexamethasone-loaded microspheres, both single and double-walled, will release 

the drug in a controlled fashion with doses being tailored to release by utilizing both types of 

microspheres to achieve enhanced fat grafting for shorter and longer periods of time. By 

combining both single-walled PLGA microspheres and double-walled PLGA-PLLA 

microspheres, it was hypothesized that the adipose tissue will have the acute effect of the 

single-walled microspheres (due to the burst release by the time that its crucial for fat tissue 

survival after being grafted) and followed by slow and steady release of the drug from the 

double-walled microspheres. Retention of the adipose tissue will be significantly maintained 

with using the combination of both types of microspheres.  
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4.2 METHODS 

4.2.1  Fabrication of single and double-walled microspheres 

Fabrication of single and double-walled microspheres has been described in the 

previous chapters. Dexamethasone loaded single-walled microspheres were prepared using 

single emulsion, protocol established previously in the lab.(8)  

Double-walled dexamethasone loaded microspheres were prepared using a double 

emulsion protocol, creating the core-shell architecture of the microspheres. Empty single and 

double-walled microspheres were prepared using the same conditions as dexamethasone-

loaded microspheres but omitting the drug.  

 

4.2.2  Human lipoaspirate processing process 

Adipose tissue was harvest from abdominal area of the University of Pittsburgh IRB 

approved patients. Harvested lipoaspirate was processed with Coleman technique as 

described in the previous two chapters. The processed human lipoaspirate was then mixed 

manually with microspheres prior to injecting into the mouse model.  
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4.2.3 Combined microspheres dosage 

The doses for combined microspheres study were based on the hypothesis that 

dexamethasone loaded microspheres both single and double-walled will release the drug in a 

controlled fashion with doses being tailored to release dex for shorter and longer period of 

time. The combination of both single-walled PLGA microspheres and double-walled PLGA-

PLLA microspheres will result in the beneficial effects of the short term dex release from 

single-walled microspheres along with the long-term release of dex from the double-walled 

microspheres. 

 

4.2.4  Combined single and double-walled microspheres In vivo study design 

For testing statistical significance for aim 3, total number of 70 animals was used. 

There were 7 groups of mice, each containing 5 mice per group, tested at 2 time points, 6 

weeks and 6 months respectfully (Table 6). One site of injection was the experimental 

(sample) group, with the other site consisting of the control group. The ‘A’ control group 

consisted of empty microspheres, whereas ‘B’ control group consisted of lipoaspirate alone. 
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Table 6. Combined single and double-walled microsphere in vivo study design 

Groups Treatment 
Doses 

Single-double 
walled 

microspheres 
ratio 

(SW:DW) 

Dose of 
the drug 

Number of 
animals 

Time points 

Group A 
(High dose of 

SW MS) 

36 mg SW / 15 
mg DW MS 

2:1 402 μg 5 6 
weeks/months 

Group B 
(Equal dose 
of SW/DW 

MS) 

24 mg SW/ 24 
mg DW MS 

1:1 408 μg 5 6 
weeks/months 

Group C 
(High dose of 

DW MS) 

15 mg SW/ 30 
mg DW MS 

1:2 405 μg 5 6 
weeks/months 

Group D (SW 
MS) 

57 mg SW MS SW MS only 400 μg 5 6 
weeks/months 

Group E (DW 
MS) 

40 mg DW 
MS 

DW MS only 400 μg 5 6 
weeks/months 

Group F 
(Empty MS ) 

25 mg SWe/ 
25 mg DWe 

1:1 0 μg 5 6 
weeks/months 

Lipoaspirate NA NA 0 μg 5 6 
weeks/months 

              

 

Three different dose ratios of single and double-walled microspheres are described in 

Table 6. These dosages were chosen based on our results in the previous studies.  Also, these 

doses correspond to doses in humans that are in the safe, therapeutic range. Furthermore, the 

dosage of drug is determined by the mass of microspheres injected. In addition to 

experimental groups, two control groups were tested. One group contained lipoaspirate alone 

and the second group consisted of empty double-walled microspheres. 
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4.2.5 Animal Surgeries 

Animals in Aim 3 went through the same surgeries as described in Aims 1 and 2. 

Animals used in the study were athymic mice (5–10 weeks old; Harlan Laboratories). 

Animals were anesthetized with 3% isoflurane in oxygen at the time of the surgery. The 

lipoaspirate/MS injections were performed using a 16-gauge surgical cannula, in both sides 

of the dorsal area of the animal. The right side was injected with the experimental group and 

the left side contained lipoaspirate exclusively. Photographs were taken immediately 

following the surgery and weekly throughout the study.  

 

4.2.6  Dexamethasone-loaded microspheres systemic effects 

The levels of dexamethasone in treatment groups were tested by drawing blood from 

animals of the 6 week treatment groups. Blood was collected before sacrifice the animals and 

preserved in EDTA coated tubes from four animals from each group under light anesthesia. 

The plasma was then separated and stored at −80°C until used. Corticosterone levels in the 

plasma were quantified using an ELISA kit following the manufacturer's instructions (Enzo 

Life Sciences).(65-67) 
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4.2.7 Histological analysis 

The samples were fixed in 4% paraformaldehyde, incubated overnight in 30% sucrose 

(Sigma-Aldrich), and then embedded in paraffin, then cryosectioned at a thickness of 10 μm. 

Hematoxylin (Santa Cruz Biotechnology, Inc.) and eosin (Sigma-Aldrich) (H&E) staining 

was conducted using the same protocol as in previous study. Vascularization of the extracted 

samples was determined by assessing a pan peroxidase-based CD31 antibody staining to 

confirm the presence of blood vessels.  

 

4.2.8 Image analysis 

As in the previous studies, Olympus Provis microscope was used to image extracted 

adipose tissue slides. Adipose tissue architecture was assessed by analyzing the tissue 

morphology of H&E stained slides. Blood vessel were counted using CD31-stained slides, 

containing 5 slides per group. Ten random tissue sections were quantified for each sample 

and means were determined for the aforementioned vessels and vessel lumens. 

4.2.9 Statistical analyses 

All the data was analyzed using SPSS Statistical Software. Paired t-tests, two-sample 

t-tests, and mixed way analysis of variance tests (ANOVA) were performed to determine if 

the differences between the experimental and control groups were statistically significant at 

the p ≤ 0.05 significance level. All results are presented as mean ± standard deviation. 
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4.3 RESULTS 

 

4.3.1 In vivo studies  

4.3.1.1 In vivo results from 6 weeks’ time point 

 

Animals from the combined dexamethasone loaded single and double-walled 

microspheres were sacrificed at two different time points: 6 weeks and 6 months. All the 

groups with combined dexamethasone loaded microspheres were mixed with 0.3 mL of 

lipoaspirate, whereas the control consisted of 0.3 mL of only human lipoaspirate (C=Control 

without microspheres and S=sample with microspheres). The animals were also compared 

with a control group that consisted of combined single and double-walled empty 

microspheres injected in one side and lipoaspirate in the other, as well as with a group that 

had lipoaspirate injected in both sites of the animal labeled a. and b.  

At the 6 weeks’ time point, no evident differences were seen in any of the groups that 

had the treatment with the combined single and double-walled microspheres. However, a 

difference was observed between the control and sample side on the group that had only 

single-walled microsphere treatment (group D).  
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The photographs show differences in adipose retention in the photographs taken at the 

6-week time point (Figure 34) Control side, labeled with C appears smaller than sample or 

treatment side, labeled as S in Figure 34.  

 

           

 

Figure 34.  Animal with group D treatment and lipoaspirate (a) and adipose tissue extracted 

from group D, dexamethasone loaded single-walled microspheres (b) 

 

No noticeable difference was observed between the treatment group and the control 

side at any of the combined single and double-walled microspheres treatment, including the 

group with double-walled microspheres at the 6 weeks’ time point (Figure 35); however, 

differences of treatment groups compared to the controls were observed. 

 

 

a.                                      b. 
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Figure 35. Adipose tissue extracted from 6 weeks animals with the following treatments: a) 

Group A-2:1 SW:DW ratio, b) Group C-1:2 SW:DW and c) Group F-Empty MS 1:1 SW:DW 

ratio 

 

 The extracted fat from the combined single and double-walled microspheres groups 

was grossly not different from combined single and double-walled empty microspheres or 

lipoaspirate group at 6 weeks’ time point. It is anticipated that there’s no difference seen 

because of the slow release of dexamethasone from double walled microspheres. Figure 35 

shows the extracted adipose tissue from 3 groups of treatment.  

a. 
 
 
 
 
 
b. 
 
 
 
 
c. 
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Group A, the groups with the higher ratio of dexamethasone single-walled 

microspheres (36 mg Dex SW MS: 15 mg Dex DW MS) grossly don’t show any evidence of 

the treatment side being different from the control side. The similar case follows the other 

combination of single and double-walled microspheres treatment (Group B- 25 mg Dex SW 

MS/ 25 mg Dex DW MS and group C- 15 mg Dex SW MS/ 30 mg Dex DW MS). Group F, 

combined single and double-walled empty microspheres shows no adipose tissue 

macroscopic difference between the treatment and control side.  

 

4.3.1.2 In vivo results from 6 months’ time point 

 

The combined dexamethasone loaded single and double-walled microspheres study 

was analyzed at two time points, short-time 6 weeks and longer-time point 6 months 

respectfully. All the groups with combined dexamethasone loaded microspheres were mixed 

with 0.3 mL of lipoaspirate, whereas the control consisted of 0.3 mL of only human 

lipoaspirate (C=Control without microspheres and S=sample with microspheres). The 

animals were also compared with a control group that consisted of combined single and 

double-walled empty microspheres injected in one side, and lipoaspirate in the other, as well 

as with a group that had lipoaspirate injected in both sites of the animal labeled a. and b. 

Whereas the gross results from the first (short) time point show that only in the group with 

the single-walled microspheres there was an evident difference between the microspheres 

treatment and control side, none of the combined microspheres treatments groups showed 

differences in gross morphology of the extracted fat.    
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Figure 36. Adipose tissue extracted from animals treated for 6 months, group A (2:1-SW/DW 

MS), group C (1:2-SW/DW MS), empty MS (1:1-SW/DW empty MS) and lipoaspirate only 

(A/B) 

 

The treatment group A, combined single-walled (36 mg SW MS) and double-walled 

(15 mg DW MS) shows a difference between the lipoaspirate in the treatment side and the 

control side of the injections (Fig.31). Adipose tissue extracted from the group C (15 mg SW 

MS / 30 mg DW MS) was macroscopically larger than the control side or any of the control 

groups. Empty microspheres group showed the lipoaspirate with no evident changes on the 

side that had the treatment and the side with lipoaspirate (Figure 36).   

Group A                             Group C                               Empty MS (C/S) 

Lipo only (A/B) 
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Understanding the morphology and properties of the double-walled dexamethasone 

loaded microspheres, the sustained and slow of the drug, explains the difference seen in the 

explanted adipose tissue at the 6 month time point compared to results of 6 week time point.  

4.3.3. Mass and volume measurements analysis 

The differences observed within the treatment groups that contained combined 

dexamethasone microsphere treatments compared to tissue without the drug were confirmed 

by measuring mass and volume displacement of the extracted lipoaspirate in all groups. 

Tissue extracted from the first time point (6 weeks), show a significant increase in volume 

only with the single-walled dexamethasone microspheres treatment (Figure 37), which may 

be due to faster release of the drug from the single-walled microspheres. 

 

 

Figure 37. Adipose tissue volume measurements at 6 weeks’ time point 
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The extracted lipoaspirate group showed a change between the treatment and control 

side at the longer time point of 6 months. Combined single and double-walled microspheres 

demonstrated higher volume retention compared to control groups. Animals were initially 

injected with 0.3mL of lipoaspirate combined with microspheres in the treatment side and 

lipoaspirate only on the control side. Figure 38 depicts the volume retention with group A of 

~95 % compare to group F (empty SW/DW microspheres) of ~15% and lipoaspirate only 

~12% volume retention. The statistically significant difference between the treatment and 

control sides has been determined One-Way ANOVA comparison, SPSS software, p-value 

<0.005.  

 

 

Figure 38. Adipose tissue volume retention at 6 months’ time-point 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sa
m

pl
e

Co
nt

ro
l

Sa
m

pl
e

Co
nt

ro
l

Sa
m

pl
e

Co
nt

ro
l

Sa
m

pl
e

Co
nt

ro
l

Sa
m

pl
e

Co
nt

ro
l

Sa
m

pl
e

Co
nt

ro
l

Ri
gh

t

Le
ft

Group A Group B Group C Group D Group E Group F Lipo

Vo
lu

m
e 

(m
ll)

 



 91 

4.3.4.  Sample histology 

Three tissue sections from each lipoaspirate extraction were stained with H&E in 

order to analyze gross architecture of the tissue. H&E images show indestructible 

architecture of the adipose tissue in all treatment groups, without any interruption from the 

combined single and double-walled microspheres (Figure 39).  Adipose tissue without any 

microsphere treatment shows large adipocytes with surrounding disrupted tissue.  

 

Treatment 
groups 

6 weeks time 
point 

Group A 
(High SW MS dose) 

Group B 
(Equal SW/DW MS) 

Group C 
(High DW MS dose) 

Group F 
(Equal SW/DW empty 

MS) 

H&E 

staining 

    

 

Figure 39. Histology of extracted tissue at 6-weeks time point. H&E staining of group A (High 

SW MS dose), group B (Equal SW/DW MS dose), group C (High DW MS dose)  and group F 

(Equal SW/DW empty MS) treatment 

 

 

Blood vessels were analyzed using Image J to view CD31-stained slides as described 

in the previous studies. The differences in vascularization between treatment and control 

samples are demonstrated in Figure 40.  
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The difference in mass measurements between all groups was analyzed statistically 

with SPSS software, showing a statistically significant difference between the treatment 

group at the 6-month time point, which had results similar to the volume displacement 

measurements.  

 

Treatment 
groups 

6 weeks time 

point 

Group A 
(High SW MS dose) 

Group B 
(Equal SW/DW MS) 

Group C 
(High DW MS dose) 

Group F 
(Equal SW/DW empty 

MS) 

CD31 staining 

    

 

Figure 40. Histology of the extracted fat at 6 months time point. . CD31 staining shows a 

significant difference on blood vessel presence in treatment groups compared to control 

 

4.3.2 Dexamethasone combined microspheres study systemic effect 

Dexamethasone/corticosterone levels in animals in the combined microspheres 

treatment group were tested at 6 weeks.  Plasma was collected from four animals (n=4) per 

group in the 6-week time point and tested for the presence of dexamethasone in the systemic 

blood stream using the Corticosterone ELISA kit by following the manufacturer’s 

instructions (Enzo Life Sciences).  
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Corticosterone levels didn’t show any significant difference between the group A 

(High dose of SW MS), group B (Equal dose of SW/DW MS) and group C (High dose of 

DW MS) groups and group F (Empty microspheres) and lipoaspirate only. All the treatment 

groups showed an average of ≈1,600 pg/ml corticosterone, showing no significant difference 

in corticosterone levels on a systemic scale in any of the groups (Figure 41) 

 

         

Figure 41. Corticosterone levels in combined microspheres study animals at 6 weeks. 
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4.4  DISCUSSION 

 

Fat grafting is a very commonly used procedure in which fat is harvested by 

liposuction from a part of the body and transferred by injecting it into an area where it can be 

used to add volume, or correct a contour deformity. In late 1800, Neuber  described the use 

of transplanted fat for reconstruction of facial scars.(88) The importance of fat grafting was 

described even in the earliest cases, when the surgeons recognized the importance of the 

transformation the fat into the scarred tissue.(89) 

 Fat grafting comes with a number of advantages, most importantly using patients’ 

own tissues.. Also, different studies demonstrate that fat grafting will last longer than 

artificial fillers, which usually last a couple of months before reinjection is needed.  Fat 

grafting, however, remains a challenging issue within plastic surgery with no solid protocol 

as to how to optimally perform the procedure. Various methods of harvesting and transfer 

have been tested and researched through the years. Despite rapidly growing work done to this 

field, it still remains one of the most influential directions of plastic surgery research.(90-92) 

  As a very promising therapeutic approach, fat grafting has numerous challenges that 

are still being investigated today. The loss of volume or even complete resorption of the graft 

has been evident due to either insufficient tissue quality by lack of cell differentiation or lack 

of vasculature.(93) This emphasis that angiogenesis and adipogenesis are crucial for 

maintaining a stable volume of adipose tissue. (93) Numerous studies have demonstrated the 

important effects of factors and drugs on adipogenesis.(8,58,71,72), also including the 

vascularization for quality, volume and long-term survival of transplanted adipose tissue 

constructs.  
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In this chapter, both dexamethasone single and double-walled microspheres have 

been tested with the purpose of achieving a longer and more sustained volume of grafted 

adipose tissue. Three combinations of microspheres have been tested, group A with higher 

dose of single-walled microspheres (36 mg SW MS/ 15 mg DW MS), group B with equal 

doses of single and double-walled microspheres (25 mg SW MS/ 25 mg DW MS), group C 

with higher dose of double-walled microspheres (15 mg SW MS/ 30 mg DW MS)  and were 

compared with a group with single walled only (group D), group with double-walled 

microspheres only (group E). Two control groups were group F with combined single and 

double-walled empty microspheres and a group with lipoaspirate only. All the treatments 

were tested at two time points, six weeks as a short time point and six months as a longer 

time point. In the first period, 6 weeks respectfully, the only group that showed a significant 

difference in mass and volume measurements was group D (57 mg SW MS), which was most 

likely due to the fast release of the drug from the single-walled microspheres (Figure 34).  

The histology showed healthy tissue morphology in all treatment groups (Figure 39). 

Extracted fat from animals of the 6 months’ time point showed significant difference in mass 

and volume measurements in all the treatment groups compared to single and double-walled 

empty microspheres and lipoaspirate only shown in the Figure 36. The combination of both 

single-walled PLGA microspheres and double-walled PLGA-PLLA microspheres 

demonstrated that thefat has been effected by the acute effect of the single-walled 

microspheres and followed by a slow and steady release of the drug from the double-walled 

microspheres, resulting in a stable volume of grafted fat.  
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4.5 CONCLUSION 

 

In this study, the specific aim was to achieve a prolonged yet still healthy adipose 

tissue volume after lipoaspirate grafting with microsphere drug delivery system. Single and 

double-walled microspheres loaded with dexamethasone were combined, with doses tailored 

to have the fast effect of the single-walled microspheres and followed by the slow and steady 

release of the drug from the double-walled microspheres. Adipose tissue mass and volume 

was preserved in the 6 months’ time point (≈90 ±5.2% in the group A (High SW MS dose)) 

(Figure 38). While the sustained and controlled release of the dexamethasone from combined 

microspheres has affected adipose tissue retention, dex did not show any significant signs of 

being present systemically in animals’ blood stream (Figure 41). The combined single and 

double-walled PLGA-PLLA microspheres has been demonstrated not only to be effective for 

delivering adipogenic drugs such as dexamethasone but also effecting adipose tissue in a 

local and controlled environment.  
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5.0  CONCLUSION AND FUTURE DIRECTIONS  

The main goal of the project was to develop and test a controlled delivery system of 

adipogenic factors, and generate stable adipose tissue retention. Three specific aims are 

proposed to achieve the goals of this study. Optimizing single-walled microspheres loaded 

with two adipogenic drugs was described in Specific Aim 1. Local delivery of 

dexamethasone from PLGA microspheres had a significant role on retaining adipose tissue 

mass in two different time points, 5 weeks as a short-time point and 6 months as a longer 

time point.  Insulin was also tested as the second drug delivery encapsulated in PLGA 

microspheres mixed with lipoaspirate and injected in athymic mice. Additionally, the 

combination of both dexamethasone and insulin loaded PLGA MS, was studied.  The volume 

of extracted tissue with the combined drugs study design didn’t show any significant effect 

compared to the solo treatment with Dex MS or Insulin MS.  

 Specific Aim 2 was designed to address the fabrication and optimization of 

dexamethasone loaded double-walled PLGA/PLLA microspheres and also examine the effect 

in adipose tissue in vivo. Dexamethasone, a highly adipogenic drug, was encapsulated in a 

PLGA core surrounded by PLLA shell with the purpose of a slower and controlled drug 

delivery. By encapsulation of dexamethasone in double-walled microspheres, the drug was 

released in a sustained and controlled fashion for an average of 80-120 days. 
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The release of an adipogenic drug in a slow and more controlled environment affected 

adipose tissue for a prolonged period. With no previous studies reported with the 

encapsulation of steroids in double-walled PLGA/PLLA microspheres, quantitative 

prediction of release profiles is challenging to interpret. Therefore, optimization of 

dexamethasone release upon trials was required. Microspheres were mixed with human 

lipoaspirate and injected into dorsal aspect of athymic mouse model with the purpose of 

testing the bioactivity of dexamethasone-loaded microspheres (Figure 20).   

Figure 22 shows the difference in the drug release mode from the single and double-

walled dexamethasone loaded microspheres. Injected adipose tissue when extracted from the 

animals at both 6 weeks and 6 months’ time line showed a significant difference in mass and 

volume between the treatment and control groups. Figure 27 shows volume retention of 

adipose tissue averaged ≈80% in 27 mg DW MS. Encapsulation of dexamethasone in double-

walled PLGA/PLLA microspheres did affect the adipose tissue by releasing the drug in a 

decreased and more sustained rate developing an improved drug delivery system for 

prolonged adipose tissue retention. 

 Specific Aim 3 described the combination of single and double-walled 

dexamethasone loaded microspheres for the purpose of achieving higher sufficient adipose 

volume retention. The experimental design was based on effects of Dex MS in vitro was 

established as following: Dexamethasone was encapsulated in PLGA single-walled 

microspheres (9), tailored to be released in a controlled sustained fashion in matter of 4-6 

weeks. Dexamethasone, a synthetic glucocorticoid, promotes adipogenesis by increasing the 

gene expression of CCAAT-enhancer-binding protein (C/EBP) and Peroxisome proliferator-

activated receptor-gamma (PPAR-gamma).(8,58,71,72).   
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Also, by encapsulating an adipogenic drug such as dexamethasone in PLGA/PLLA 

microspheres, a slower and sustained drug delivery in the local environment was achieved 

and therefore created a prolonged effect of dexamethasone in implanted fat tissue for over 6 

months. In this study, single and double-walled microspheres were combined with a purpose 

of tailoring the doses to have an acute effect in the first weeks from single-walled 

microspheres and followed by sustained release from double-walled microspheres. Three 

different ratios of single and double-walled were tested: a higher dose of single-walled 

microspheres, a higher dose of double-walled microspheres and an equal dose of single and 

double-walled microspheres. The combined treatments were compared with the group of 

only single-walled microspheres and a group of a double-walled microspheres that had the 

same corresponding dose of dexamethasone as the combined microspheres groups. The 

control groups were combined single and double-walled empty microspheres and lipoaspirate 

only group. Higher adipose tissue retention was demonstrated in 6 months’ time point. Group 

A, high dose of single walled microspheres (2:1 SW/DW MS) did show retention in a range 

of 90% compared to the control lipoaspirate group and empty microspheres group with the 

retention average of 15%. Blood drawn from the animals at 6 weeks’ time point, was tested 

for the levels of glucocorticoids (coticosterone) levels, and showed little to no difference 

between the treatment and control groups.  

This project emphasizes the use of all FDA-approved components for the purpose of 

enhanced adipose tissue survival after fat grafting. Traditional methods for preserving 

adipose tissue after transfer have many inconsistent results.(94-101) The loss of volume 

results from a reduction in the subcutaneous fat, tissue atrophy, and leads to changes in 

shape. 
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Such loss of volume compounded with tissue, leads to the aged appearance of the 

periorbital, perioral, cheek, and mandibular areas.(120-126) A number of surgeons choose to 

replace this volume with various injectable agents, both synthetic and autologous, in search 

for the ideal soft tissue filler.  

While many devices have been evaluated for controlled release drug delivery, 

biodegradable polymer microspheres are one of the most common types. Microspheres can 

be used to encapsulate many types of drugs including vaccine components.(102-105). 

Clinically used and commercial products that are based on polymer microspheres including 

Lupron Depot and Nutropin Depot. The disadvantages of microspheres start with difficulty 

of large-scale manufacturing, inactivation of drug during fabrication, and not easy 

controllable drug release rates(105-110). Nutropin Depot, which consist of Genentech’s 

recombinant human growth hormone (rhGH) encapsulated within poly(D,L-lactide-co-

glycolide) microspheres using Alkermes’ proprietary ProLease_encapsulation technology, 

was recently withdrawn from the market because of high cost of manufacturing. However, 

polymer-based drug delivery systems such as biodegradable microspheres are simple to 

produce and can be administrated through various routes including oral, pulmonary, and 

parenteral injection and don’t require surgical removal after release is completed. 

Unfortunately, with all this forms of administration, control of drug delivery rates remains 

limited.(105-110).  

Single and double-walled microspheres were successfully fabricated and optimized in 

this study. The bioactivity effect was tested in vivo, in an ahtymic mouse model, injected 

with lipoaspirate as a scaffold of dexamethasone loaded microspheres.  
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Dexamethasone has been shown to affect adipose tissue by up-regulating the 

glucocorticoid receptors (118), however more details are needed to examine the effects of 

dexamethasone on different cell types within lipoaspirate. 

Finally, the athymic mouse model was chosen as a primary testing animal model that 

enabled the examination of human adipose tissue. However, future studies that must be 

performed to demonstrate their potential for soft tissue reconstruction will include an 

immunocompetent animal model.  
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