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Recent data breaches have motivated a desire to remove all trust storage platforms (e.g., the cloud). 

To this end, research has focused on implementing cryptographic access controls on untrusted 

storage platforms. However, there are issues with the feasibility of implementing such controls, 

particularly when revocation (i.e., a user losing permission) occurs. This thesis investigates the 

opportunity to increase the viability of these systems by exploiting new functionality in emerging 

main memory technology. Technology such as the Hybrid Memory Cube possess the ability to 

perform certain computations in-memory, without reading data into the CPU. This thesis focuses 

on implementing a re-encryption scheme, called keystream re-encryption, that computes a stream 

of key material that can be XOR-ed in-memory to re-encrypt a file, without ever bringing the 

contents of that file into the CPU. We show that keystream re-encryption can produce 5-10% 

improvements in Instructions Per Cycle (IPC), while also increasing throughput by 18% and 

reducing energy consumption by 44-65%.  
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1.0  INTRODUCTION 

Typical access control models run under the assumption of a trusted platform, that is, a platform 

that will not act in malicious way. Specifically, these models assume a trusted reference monitor 

to enforce the specific policies. If this assumption is violated, then we can no longer trust our 

reference monitor, or the access control in general, to enforce our policies. For example, data 

breaches have become a regular occurrence, with more than 6,500 breaches occurring since 2005, 

leaking over 850 million records [12]. In response to these risks, research has been conducted into 

implementing access control models that assume an untrusted platform (e.g., cloud services, shared 

computers, etc.) since, should the platform begin acting in a hostile way, the system has already 

been designed to handle that undesired behavior. 

In recent years, many access control models have been proposed to address these issues 

with untrusted platforms. These models have focused on implementing cryptographic access 

control. Cryptographic access control does not rely on an enforcement mechanism that lives on 

the untrusted platform, but rather, it relies on keys that are used to encrypt the data, thus rendering 

the data unusable unless you possess the key. Possession of the key, therefore, is equivalent to 

having permission to view that file. Unfortunately, current research on cryptographic access 

control models consists primarily of static data and permissions and new research has shown that 

these models can inherit excessive overheads when dynamically changing data and permissions 
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are introduced [5]. Even simplifying assumptions such as lazy re-encryption does not help to 

mitigate these problems.  

When examining these costs, revocation of permission(s) from a user, which occurs when 

a user has their access to some data removed, provides an exemplary glimpse into the pitfalls of 

cryptographic access control models. The revocation of permissions from a user in real-world 

datasets have been shown to incur costs totaling thousands of re-encryptions due to the need to re-

encrypt all data the user had access to with new keys [5]. This arises from the fact that most users 

have thousands (if not millions) of files and those files are typically shared amongst multiple users. 

When a revocation occurs, this creates a domino effect of re-encryptions. Once all the costs are 

calculated, it becomes apparent that dynamic systems can lead to poor performance. As access 

control is desirable in an untrusted environment, the question must be asked of whether there are 

remedies to these issues. 

Revocation provides an opportunity to examine an underlying issue with the access control 

models proposed. Requiring so many re-encryptions incurs a significant overhead that, if 

alleviated, could lead toward situations where these cryptographic access controls become more 

feasible. To that end, this thesis examines the feasibility of expediting that re-encryption process. 

While there has been extensive work in enhancing cryptographic performance, these results have 

always required the active participation of the CPU. Thus, these enhancements have still incurred 

the memory traffic associated with pulling the data to be re-encrypted into the CPU, performing 

the operations in the CPU, and the traffic generated to return the data to memory. The goal of this 

thesis is to show that it is not only feasible to shift some of the computation off the CPU, but by 

doing so, there will be other benefits in terms of decreased memory latency since the data will not 

need to be brought into the CPU. By leveraging these improvements, this thesis aims to show that 
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some downsides to cryptographic access control systems can be reduced, thereby increasing the 

viability of said models.  

To this end, we look at emerging memory technologies, which have the capacity to further 

increase the efficiency of cryptographic operations. Memory technology has advanced in recent 

years to provide many improved and new features including higher bandwidth, shorter latencies 

and more recently, in-memory computation [19]. These features provide opportunities to reduce 

cryptographic overheads, however, while most are speed and performance increases, in-memory 

computation provides a unique opportunity to reduce the amount of computation performed by the 

processor as well as the amount of data brought into the CPU during these cryptographic 

operations. This thesis investigates the ways in which offloading some of the workload can reduce 

the overheads associated with cryptographic operations while also reducing the impact that 

cryptography has on co-running processes and thus, increase the viability of cryptographic access 

control models.  

This thesis is organized with the following structure. Chapter 2 discusses related works 

dealing with hardware solutions aimed at improving cryptographic performance along with a 

discussion about cryptographic access controls. Chapter 3 addresses the methodology used to 

investigate in-memory computation. The experimental setup, results and discussion are laid out in 

Chapter 4. With Chapter 5 concluding the thesis along with a discussion of future works.  
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2.0  BACKGROUND & RELATED WORKS 

We now provide an overview of background information and related works relevant to our 

investigation. We begin by describing the types of cryptographic functions that will be used in this 

thesis. We then move on to describe work related to cryptographic access controls and their 

shortcomings before describing a set of new instructions by Intel to aid in AES cryptography. 

Finally, we discuss in-memory computation technology and the possibilities that this opens up.  

2.1 BLOCK CIPHERS 

Block ciphers are a type of cryptographic function that allows for the encryption and decryption 

of fixed-sized blocks of data. They perform better than stream ciphers, which are used for 

encrypting/decrypting continuous data and which perform the cryptography on a bit-by-bit level 

rather than per block [1]. Figure 1 illustrates a simple, high level block cipher. A plaintext input 

of fixed-size (typically 128 or 256 bits) is provided (P), this is then passed into an encryption 

function along with a secret key known only to individuals authorized to encrypt and decrypt the 

data. The key, typically at least 128 bits [13], is used to encrypt the data, producing an output of 
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ciphertext (C), also of a fixed size that is the same as the input size. All encryption and decryption 

in this thesis uses the Advanced Encryption Standard (AES).  

While the typical block size for a block cipher is 128 or 256 bits, most use cases want to 

encrypt more than 128 or 256 bits of data. Therefore, there are multiple different modes of 

operations for accomplishing this with block ciphers, including: Electronic Code Book (ECB), 

Cipher Block Chaining (CBC), Output Feedback Mode (FB), Cipher Feedback Mode (CFB) and 

Counter Mode (CTR), among others [13]. These different modes of operation are available to 

facilitate different use cases. For example, CFB can be used to encrypt only m bits of data when 

the block cipher typically encrypts n bits (where m < n). This can be used for applications such as 

keystrokes at a terminal where we want to send data as soon as it is needed, and not wait until we 

have a full block of data [14]. For our investigation, we only used Counter Mode (CTR).  

 

 

 

Figure 1: Block Cipher 
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Figure 2: Counter Mode 

 

Counter Mode (Figure 2) allows for encrypting/decrypting blocks of data without relying 

upon any other blocks. The only values that need to be known are the secret key (Key), 

initialization vector (IV) and the current block number (0, 1, …). At a high level, Counter Mode 

uses the secret key (Key) to encrypt the IV. This produces key material (KM) that is the same 

length as the block of plaintext that is being encrypted. After this key material is computed, it is a 

simple matter of performing the XOR between KM and the plaintext block being encrypted (P0, 

P1, …), to produce the ciphertext (C0, C1, …). If decryption is desired, the same steps are performed 

except, the key material, KM, is XOR-ed with the ciphertext to derive the original plaintext.  

The IV is a random value used to inject non-determinism into the encryption process 

however, the value does not have to be secret. This is because, without knowing the secret key 

(Key), it is computationally infeasible to determine the key material (KM) that is produced by 

encrypting the IV with Key. The IV is incremented to prevent identical plaintext blocks at different 

positions from encrypting to the same ciphertext, which would leak information even without the 

secret key being revealed, and could open the door to the possibility of replay attacks. A replay 
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attack occurs when an adversary injects a previously transmitted and encrypted block of ciphertext 

into the current ciphertext being sent. The incremented IV helps to protect against this, since the 

same plaintext at different positions will not produce the same ciphertext, due to the use of a 

different IV, which will produce different key material.  

2.2 RELATED WORK 

2.2.1 CRYPTOGRAPHIC ACCESS CONTROLS 

Access control is any mechanism that restricts access to a set of resources by analyzing permissions 

and deciding to allow or deny access based on those set of permissions. For example, a padlock is 

a very primitive access control mechanism. It restricts access to a resource, a chest for instance, 

by requiring that the entity that wants to access that resource have some permission – namely a 

key. If the key is presented to the access control mechanism, then access is granted to the chest 

and the padlock releases. This is the basic goal behind any access control model. Cryptographic 

access control is almost identical to the padlock example. Resources, e.g., files, are encrypted with 

a key that is known to only those users that have access to that data. Should a user wish to interact 

with the file, they must first provide the key to the access control mechanism, which will then 

decrypt the file so that it can be viewed and/or modified by the user. Thus, cryptographic access 

control reduces to a key derivation and/or distribution problem, of which, there are many proposed 

schemes [4].  

A basic cryptographic access control scenario is described in Figure 3. Data (D1, D2, …, 

DN) are assigned a label, typically denoting a grouping of individuals, for example, Employees. 
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There is also a key and data associated with that label. That key is used to encrypt the data 

(EK(DN)), and, without that key, an individual cannot view the data that was encrypted. This label 

can then be assigned to users and, through that assignment, those users will gain access to the key 

used to encrypt the data.  

The problem with cryptographic access control is that, should a user need to be removed 

from a label, then all of the data they had access to must be re-encrypted so that they no longer 

have access to that data. Referring to Figure 3, if a user has their label revoked, then all the data 

associated with that label (D1 … DN) must be re-encrypted with a different key. Thus, if a label 

has access to N items of data, then there must be N re-encryptions. As pointed out in [5], this incurs 

severe overhead as most labels have access to large quantities of data. There is also the case where 

a new key is computed for a label to maintain the freshness of the key. This also requires re-

encrypting all the data with the new key. 

Despite these issues, cryptographic access controls provide a high level of confidentiality 

due to the data being encrypted. This means that, unless the private key is leaked, it is 

computationally infeasible to reconstruct the original data from the encrypted data. So, a user can 

store encrypted data on an untrusted storage platform with a high degree of confidence that the 

plaintext data will remain confidential. This degree of confidentiality, provided by cryptographic 

access controls, has prompted research into how to negate the overheads associated with them. 

 

Figure 3: Simple Access Control Diagram 
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2.2.2 AES HARDWARE ACCELRATION 

To address work related to increasing cryptographic performance, it is important to begin with a 

basic instantiation of the encryption/decryption process. This basic implementation follows a 

lifecycle of: reading data from disk, decrypting the data, modifying the data, re-encrypting the data 

and finally, writing the data back to disk. This basic example provides a foundation on which to 

lay current improvements to cryptography. This implementation exists entirely in software and is 

not accelerated at all by hardware.  

To improve the performance of AES, Intel released a set of instructions to supplement its 

standard instruction set. The Advanced Encryption Standard New Instructions (AES-NI), achieves 

performance improvements by removing the need for references such as lookup tables, and instead, 

implementing AES entirely in hardware, while also mitigating several side channel attacks [6]. 

Utilizing AES-NI results in an AES encryption/decryption rate of approximately 2 cycles/byte [7]. 

This is a significant improvement over the software only implementation of AES, which has an 

encryption/decryption rate of approximately 100 cycles/byte [7]. There is an obvious drawback to 

this implementation that the underlying system and hardware must support these instructions. 

While this is a minor drawback, it is still a drawback that some systems will not be able to utilize 

this performance increase without the proper hardware. While the AES-NI was developed 

specifically to aid AES, there is the possibility of utilizing hardware not developed specifically for 

cryptography to further reduce the overheads associated with bulk encryption/decryption 

operations. An example of this type of hardware is the Hybrid Memory Cube. 
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2.2.3 HYBRID MEMORY CUBE 

Hybrid Memory Cubes (HMC) have been developed to augment standard DRAM main memory 

by manipulating the layout of the DRAM. HMC consists of three-dimensional stacks of DRAM 

dies, layered one on top of the other, rather than the traditional DRAM layout. The goal of stacking 

the dies on top of each other is to increase the parallelism that can be achieved through main 

memory. All of the dies are then connected with Through-Silicon Vias (TSVs), instead of the 

standard pin connections used by current DRAM. This allows for extremely fast data transmission 

within the HMC itself. The HMC is subdivided into quadrants which are used for logically 

partitioning the HMC into four segments. These quadrants are further subdivided into vaults, 

which are analogous to a channel in current DRAM [19]. Vaults extend upward through the HMC 

from the bottom die to the top. These vaults contain partitions, with each partition containing 

several banks. Figure 4 provides a visual representation of the Hybrid memory cube layout. 

 

Figure 4: HMC architecture 
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Each vault within a HMC has a dedicated vault controller. This controller acts as the 

standard memory controller in current systems: handling the DRAM commands sent to the dies 

within the relevant vault [19]. Underlying these vault controllers is a logic layer, along with a 

crossbar switch. The crossbar switch is responsible for handling the routing of requests arriving 

on the links connecting the HMC to the CPU. Since any request can arrive on any link, some 

routing is required to send the request to the appropriate vault controller, which will handle the 

actual memory access. The logic layer controls the actual logic behind the routing while the 

crossbar switch provides the interface through which to achieve it. While the logic layer is 

responsible for handling the routing of requests, it also provides some unique functionality, namely 

in-memory computation. 

While in-memory computation is not unique to HMC, the operations have never been 

implemented in an easy to use way [19]. HMC changes this by supporting a variety of Atomic 

Request Commands [19]. These atomic commands act on the data at the specified address, 

performing the appropriate command and then replacing the data, all without the need for bringing 

the data into the CPU. These commands range from basic arithmetic commands (add immediate, 

increment), to comparisons, to Boolean commands (AND, NAND, NOR, XOR) [10]. With these 

commands at the CPU’s disposal, it is apparent that there is an opportunity to shift certain types 

of computation away from the CPU. 

Of interest to cryptographic functions is the XOR command. Since XOR plays an integral 

part in many cryptographic constructions, the possibility of shifting that computation from the 

CPU into memory poses some interesting implications. First, it relieves the CPU of the burden of 

performing those instructions. Second, and more importantly, it removes that memory traffic from 

the bus. When a typical block of data is encrypted, that data needs to be read into the CPU, XOR-
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ed with the key and then written back to memory. The ability to perform the XOR in memory 

allows the process to become streamlined: the CPU needs only to compute the key material before 

sending an XOR request with that key material to the appropriate memory address. This removes 

the reading of data into the CPU, essentially halving the memory traffic. 

There are a couple of hurdles related to Hybrid Memory Cubes, specifically with the 

feasibility of testing and research. First and foremost is the fact that the technology is not readily 

available for testing. Therefore, investigations into the effectiveness of the technology must make 

do with the HMC specifications and simulators based off of those specifications [9][11][19]. 

However, another hurdle is that the final timing parameters for HMC simulators are not released 

due to these parameters being proprietary information. These two issues pose an impasse that 

severely effects the research that can be conducted into HMC. 

Luckily, there has already been some research into the use of XOR in-memory with 

standard DRAM [8]. By leveraging this existing research, this thesis will examine the benefits 

available to cryptographic functions by exploiting the in-memory computation. 
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3.0  EXPERIMENTAL METHODOLOGY 

We first describe how in-memory computation can be used with encryption before explaining how 

normal cryptographic functionality can be adapted for the usages pertinent to our investigation. 

We then pose three hypotheses that will drive our investigation, before finishing with a small test 

to confirm the intuition and motivation behind our hypotheses. 

3.1 SCENARIOS 

Re-encryption requires loading data into main memory and then sequentially accessing that data 

by bringing it into the CPU to decrypt it and then re-encrypt it with a new key. The data is then 

written back out to main memory. Our goal is to reduce this back and forth between the CPU and 

main memory. We can then compare the standard re-encryption, with both reads and writes, with 

a scenario where there are only writes, and the re-encryption takes place in-memory. While HMCs 

are not readily available, we can circumvent that issue by simulating everything up until the 

computation that would be executed within the HMC. We then count this cost, of performing the 

XOR in-memory, as negligible since all computation would occur within the HMC. Thus, we 

perform the re-encryption costs that would be experienced by the CPU and the memory traffic it 

would incur. These costs include computing the key material needed to re-encrypt the data, 

however, they do not include reading the data into the CPU, only the subsequent write of that key 

material out to main memory. We then compare those values to the costs seen when performing 

re-encryption in the typical way. With this setup, we can accurately represent the re-encryption 
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process that would take place given a main memory that could perform the in-memory 

computation. 

3.1.1 STANDARD RE-ENCRYPTION 

The baseline scenario that we start with is the standard re-encryption via Counter Mode. Standard 

re-encryption reads in an encrypted file (C) and decrypts each block (Cj) with the key material 

(KMj) produced by encrypting the 𝐼𝑉 + 𝑗	with the secret key (Key). The output of the decryption 

process is a plaintext block Pj. This plaintext block is then re-encrypted by XOR-ing the plaintext 

with the new key material (KM’), produced by encrypting the new 𝐼𝑉& + 	𝑗 with the new key 

(Key’). Figure 5 demonstrates this process for a single block, Cj à Cj’. We examine two versions 

of this standard re-encryption. The first version, full file re-encryption, decrypts the entire file with 

the old key material (KM), before re-encrypting it with the new key material (KM’). Cryptographic 

APIs make this first scenario very easy to implement and thus, it is the default way to re-encrypt 

data. The second version, block-by-block re-encryption, decrypts each block and immediately re-

encrypts that block with the new key material (KM’) before moving on to the next block. This 

method requires more work by the programmer however, it achieves better locality. 
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Figure 5: Re-encryption via Counter Mode for a single block j 

 

 

Figure 6: Keystream Re-Encryption 
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3.1.2 KEYSTREAM RE-ENCRYPTION 

Keystream re-encryption is very similar to the block-by-block standard re-encryption. However, 

it is based on the observation that both decryption and re-encryption require XOR-ing the data 

with the key material. By slightly modifying the block-by-block standard re-encryption scheme, 

we can perform the re-encryption in a single XOR with the original ciphertext, which could then 

be performed in-memory (Figure 6). For this to work, the value that is passed to memory needs to 

effectively decrypt the ciphertext currently stored there and then re-encrypt that ciphertext with 

the new key (Key’) and IV’. The decryption step within block-by-block standard re-encryption is 

represented in Equation 1, where 𝐾𝑀) represents the key material produced by encrypting 𝐼𝑉 +

𝑗	with the key (Key). Similarly, the encryption, from block-by-block standard re-encryption, is 

represented by Equation 2 where 𝐾𝑀&
) represents the new key material produced by encrypting 

𝐼𝑉& + 	𝑗	with the new key (Key’). Consequently, if in-memory re-encryption is desired, Equation 

1 and Equation 2 must be combined to produce Equation 3. Since the XOR operation is 

commutative, we can perform the second XOR first. Thus, the desired value is 𝐾𝑀) 	 𝐾𝑀&
) and 

the ciphertext 𝐶) will remain in memory. The CPU then only needs to compute the two sets of key 

material (KM and KM’), and perform an XOR between those. That value (Final KM) can then be 

sent to memory and XOR-ed with Cj there, to produce Cj’.  

Equation 1: 𝑪𝒋 	 𝑲𝑴𝒋 → 	𝑷𝒋 

Equation 2: 𝑷𝒋 	 𝑲𝑴&
𝒋 	→ 𝑪&𝒋 

Equation 3: 𝑪𝒋 	 𝑲𝑴𝒋 	 𝑲𝑴&
𝒋 → 	𝑪′𝒋	 
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3.2 HYPOTHESES 

Examining all these scenarios reveals several insights regarding the expected results when 

comparing the different re-encryption scenarios. First, looking at Figures 5 and 6 it is apparent that 

both modes of re-encryption will perform almost the same set of operations. The only difference 

is that keystream re-encryption executes one less XOR in the CPU. Therefore, from a 

computational standpoint, it is expected that these two modes will be roughly equivalent. The 

second insight is that, because the keystream re-encryption does not pull data into the CPU to 

perform the re-encryption, it will generate less memory traffic. This occurs because, with standard 

re-encryption, data must be fetched from memory and brought into the CPU to be re-encrypted. 

However, with keystream re-encryption, that data stays in memory and only the key material is 

computed in the CPU before that data is pushed out to memory.  

Standard DRAM has an access time of roughly 50-70 nanoseconds [17]. Therefore, when 

the standard re-encryption requires data to re-encrypt, it must wait that long until the data has been 

properly fetched, then it can perform the re-encryption. Keystream re-encryption circumvents this 

latency by not bringing the data into the CPU. Further, since each block is independent of all other 

blocks (Counter Mode) then there is no need to wait for that request to even complete. This differs 

from the block independence during standard re-encryption because while that key material can 

be generated while the data is being fetched, the key material must still be XOR-ed with the data 

in the CPU. Therefore, there is still the latency of waiting for that data to arrive in the CPU, 

although, the CPU can begin computing the key material for the next block. Extrapolating from 

these insights produces multiple hypotheses regarding the expected outcome of our investigation.  
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• Hypothesis 1: Not moving data from memory to the CPU, which results in less 

stalling, as well as the CPU performing less computation should lead to an increase 

in throughput for keystream re-encryption compared to standard re-encryption. 

• Hypothesis 2: The overall memory traffic will be reduced with keystream re-

encryption due to it not bringing data into the CPU. This reduction in data on the 

bus should result in less interference on other processes.  

• Hypothesis 3: The DRAM energy consumption for keystream re-encryption will 

be lower than the DRAM energy consumption for standard re-encryption due to 

the decreased amount of data reads from DRAM.  

3.3 SIMPLE COMPARISON 

As an initial investigation into this space, all three scenarios were run on a file already encrypted 

with an initial key (Key), and the timing statistics were gathered. The machine used for this 

benchmark had Dual Hyper-Threaded Six-Core 3.33GHz Xeon processors with 96GB of RAM 

running CentOS 5.5. Using the UNIX time command to time the process, all three scenarios were 

run on a 1GB file of random input produced via dd if=/dev/urandom. The results of these 

runs are summarized in Table 1.  

The in-memory re-encryption had almost 20% better throughput (in MB/second) than the 

standard re-encryption variants. These results are in line with the proposed hypotheses, as the 

keystream re-encryption does indeed have a higher throughput. While this helps to verify the 

intuition behind Hypothesis 1, it does not provide enough information to make a judgement on 
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Hypotheses 2 or 3. A more in-depth approach is required to verify the effect that this mode of re-

encryption has on the memory traffic and energy consumption of a system.  

 

Re-Encryption User Sys User + Sys Filesize Throughput 

(MB / sec) 

Full File 20.339 3.883 24.222 1 GB 41.285 

Block-by-

Block 

20.576 4.12 24.696 1 GB 40.492 

Keystream 17.450 3.332 20.782 1 GB 48.119 

Table 1: Simple Time Comparison of Test Cases 
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4.0  EVALUATION 

We begin by detailing our experimental setup. We also discuss the cryptographic library used to 

implement our test cases, as well as the simulator that the test cases were run on. Since Hypothesis 

2 deals with the impact on other processes, we include a discussion of other processes used before 

diving into the experiment itself and describing the different runs. We conclude with a discussion 

of our results. 

4.1 SETUP 

The first step in our setup is to describe the simulator used for our experiment, along with the tool 

used to instrument the test cases so that they could be run through the simulator. We then describe 

the cryptographic library used, and provide pseudocode with the appropriate API calls used from 

the cryptographic library. 

4.1.1 HYBRID MAIN MEMORY SIMULATOR 

For the actual experiment, HMMSim [2] was used to run the scenarios described in the previous 

section. HMMSim (Hybrid Main Memory Simulator) simulates the entire memory hierarchy, from 

the CPU, through the caches, into main memory, including a shared page table among multiple 

processes, and even down to the level of the banks and buses [2]. Since the hypotheses for this 

experiment deal with memory traffic, HMMSim was an ideal fit to analyze interactions throughout 
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the memory hierarchy. While there are other simulators available, such as DRAMSim2 [20], the 

fact that HMMSim simulated the complete memory hierarchy, not just DRAM, makes it a 

desirable choice.  

HMMSim’s logical construction is laid out in Figure 7. HMMSim relies upon discrete 

event simulation to allow for scheduling of events anywhere within the system. Then, when that 

event completes, the component from whom that event originated will receive a callback [2]. 

HMMSim is a trace driven simulator, therefore, any workloads that need to be run in HMMSim 

must first be instrumented to generate traces. These traces consist of addresses, sizes and 

timestamps, subdivided into three categories (instruction, read & write), which are used to drive 

the simulator. HMMSim provides a tool, built using Intel’s Pin [18], to help generate these traces. 

The tracing tool provided by HMMSim is also equipped with several options for modifying how 

the workload is instrumented. For instrumenting the scenarios for this experiment the two options 

changed were -s (starting point) and –i (instruction count). These values where changed to 750 

 

Figure 7: HMMSim Overview [2] 

 



 22 

million for the starting point and one billion for the instruction count. The starting point was set to 

750 million instructions to provide confidence that the trace tool instrumented code relevant to the 

program being executed and not code dealing with starting and setting up the program. One billion 

was used as the instruction count because it provided a good tradeoff between capturing enough 

of the program for our investigation to make inferences, while also completing in a reasonable 

amount of time (the longest runs typically took around 45 minutes).  

One drawback of Pin is that it does not instrument code outside the user level. Therefore, 

traces of operations such as file I/O do not accurately reflect the memory operations happening. A 

workaround for this problem is to manipulate the data in-memory rather than utilizing file I/O. 

This workaround, of performing the process in-memory rather than using file I/O, is a standard 

practice while tracing with Pin [3]. To accomplish this, any data from a file is read into an array, 

and then the program acts upon the data.  

When configuring HMMSim, all default values were used except for those located in Table 

2. These changes were made for a couple of reasons. First the value of dram_ranks was reduced 

from 8 to 4 due to the fact that 8 produced a memory configuration with an extremely high level 

of parallelism, not indicative of the standard memory found in systems nowadays. Secondly, the 

values of dram_channels and dram_rows_per_bank were each doubled to take the total 

system memory size from 4GB to 8GB. Again, this value was more in line with a standard system 

nowadays. All other configurations were left as the default value. However, it is worth it to point 

out a couple default values and idiosyncrasies of HMMSim. 

When multiple traces are loaded into HMMSim, each trace is given its own CPU and, its 

own private L1 cache. For example, when 2 traces are loaded, there will be 2 CPUs and 2 private 

L1 caches. However, there will only be one L2 cache. This is because the default value for 
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private_L2 is set to false. Thus, the L2 cache is shared among all traces. Also, while HMMSim 

is designed to simulate hybrid memory configurations, i.e., PCM and DRAM, the default memory 

configuration is set to DRAM only. To summarize, all simulations run on HMMSim in this thesis 

utilized a DRAM-only, 8GB main memory, with multiple private L1 caches (64KB) and a single 

shared L2 cache (2MB).  

Parameter Default New 

dram_ranks 8 4 

dram_channels 1 2 

dram_rows_per_bank 16k 32k 

Table 2: HMMSim Configuration 

4.1.2 MBED TLS 

The scenarios described in Chapter 3 were implemented using Mbed TLS. Mbed TLS is an 

intuitive, simple, and lightweight SSL Library that is extremely easy to setup and use [22]. AES 

was chosen for two reasons. First, AES is the most popular symmetric key algorithm used today. 

This is due to its easy implementation and high performance. This performance leads to the second 

reason AES was chosen, namely, to exploit the AES-NI described in Section 2.2.2. Mbed TLS 

supports AES-NI by requiring a user to define MBEDTLS_AESNI_C within the config.h file. This 

tells Mbed TLS to utilize AES-NI, if the underlying system supports it. The API calls, and 

pseudocode, used to implement the scenarios are shown in Figures 8, 9, and 10.  

All re-encryption methods iterate over the entire data size. The difference between the three 

methods is that both standard re-encryption variants must decrypt the data and then re-encrypt it 

with the new key (Key’) and IV’. The full file standard re-encryption is described in Figure 8. It 
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reads the entire file into an array before decrypting the entire array. It then encrypts the entire 

decrypted array with the new key and IV. Block-by-block standard re-encryption is depicted in 

Figure 9, and re-encrypts 16-byte wide blocks of data at a time by first decrypting the block and 

then immediately encrypting the same. Both standard re-encryption scenarios differ from the 

keystream re-encryption (Figure 10), which only needs to compute the encryption of both the IV 

with Key (KM) and IV’ with Key’ (KM’), and then XOR those values together. It then writes that 

value to an array, simulating a stream of key material values that would be written to main memory 

in a system that supported in-memory computation. Since the XOR, and therefore the re-

// Decrypt the entire input array, consisting of the encrypted file 

mbedtls_aes_crypt_ctr( old_key , filesize , … , input_buffer , output_buffer ); 

// Encrypt the entire decrypted array from previous step with the new <Key, IV> 

mbedtls_aes_crypt_ctr( new_key , filesize , … , output_buffer , final_buffer ); 

Figure 8: Standard Full File Re-Encryption Pseudocode 

for ( i = 0 ; i < filesize ; i += 16 ) 

{ 

// Decrypt the section of input array, consisting of the encrypted file 

mbedtls_aes_crypt_ctr( old_key , 16 , … , input_buffer , output_buffer ); 

// Encrypt the decrypted array from previous step with the new <Key, IV> 

mbedtls_aes_crypt_ctr( new_key , 16 , … , output_buffer , final_buffer ); 

} 

Figure 9: Standard Block-by-Block Re-Encryption Pseudocode 

for ( i = 0 ;  i < filesize ; i += 16 ) 

{ 

 old_material = mbedtls_aes_crypt_ecb( old_key , … , old_iv , … ); 

 new_material = mbedtls_aes_crypt_ecb( new_key , … , new_iv , … ); 

 keystream = new_material ^ old_material; 

 increment(old_iv); 

 increment(new_iv); 

} 

Figure 10: Keystream Re-encryption Pseudocode 
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encryption, would be performed in-memory, writing to an array is all that the keystream re-

encryption scenario needs to accomplish. 

We provided a workload for each of our re-encryption scenarios that consisted of twenty 

copies of Moby Dick1 (total size: 24 MB), concatenated together in one file. We then instrumented 

our programs, using the Pin tool, to produce trace files that captured this re-encryption of the file. 

As mentioned before, these traces were offset by 750 million instructions before capturing one 

billion instructions.  

4.2 SPEC BENCHMARKS 

The Standard Performance Evaluation Corporation (SPEC) is a non-profit organization that 

maintains sets of benchmarks used to evaluate high performance computing systems [23]. The 

SPEC CPU2006 benchmark suite was used for this experiment and provides a set of roughly 20 

different benchmarks. The applications within the CPU2006 suite were selected by SPEC to 

emphasize the performance of the CPU and memory architecture [21]. The emphasis on the 

memory architecture makes CPU20006 an ideal candidate for this experiment since this thesis is 

focused mainly on the interactions of memory traffic. The following benchmarks were selected 

from the CPU2006 set, representing a range of memory behavior: Bwaves (Fluid Dynamics), Mcf 

(Combinatorial Optimization), Milc (Physics: Quantum Chromodynamics), ZeusMP (Physics / 

CFD), CactusAMD (Physics / General Relativity), Leslie3d (Fluid Dynamics), Soplex (Linear 

Programming, Optimization), GemsFDTD (Computational Electromagnetics) and Libquantum 

                                                

1 https://www.gutenberg.org/files/2701/2701-h/2701-h.htm 
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(Physics: Quantum Computing) [21]. These benchmarks, including our three re-encryption 

scenarios, constitute the set of processes that will be run through HMMSim. 

4.3 RESULTS 

We now present the results of our experiment before proceeding to the results recorded for 

different combinations of the benchmarks and re-encryption scenarios before concluding with an 

account of the results of our power consumption tests. 

4.3.1 SINGLE RUNS 

The first step was to take the traces of all the selected benchmarks, listed in Section 4.2.2, along 

with the traces of our re-encryption scenarios, and run each trace individually through HMMSim. 

These solo runs provided an opportunity to baseline each benchmark, as well as each re-encryption 

scenarios. Each run was conducted using the HMMSim configuration described earlier in Section 

4.1.1. Table 3 provides a subset of the statistics produced by HMMSim, focusing on computing 

speed and memory pressure. Instructions Per Cycle (IPC) and Memory Used are both statistics 

reported directly by HMMSim. While, Misses Per Kilo Instructions (MPKI), using statistics 

captured in the L2 cache, was calculated using Equation 4. 

Equation 4: (𝑳𝟐_𝒂𝒍𝒍_𝒎𝒊𝒔𝒔𝒆𝒔	 ∗ 	𝟏𝟎𝟎𝟎)	/	𝒕𝒐𝒕𝒂𝒍_𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 
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4.3.2 IMPACT ON CO-RUNNING PROCESSES 

After running each trace individually, we proceeded to co-running processes. HMMSim can run 

multiple traces concurrently to simulate multiprocessing. Therefore, each trace of a SPEC 

benchmark was run jointly with the full file standard re-encryption trace, block-by-block standard 

re-encryption, and finally, with the keystream re-encryption trace (3 simulations per benchmark). 

This was done to assess the change in memory traffic imposed by each re-encryption process. The 

IPC calculations resulting from these joint runs are listed in Table 4. The values reported are total 

IPC values, calculated by adding together the IPC for each of the two concurrent traces (SPEC 

benchmark and re-encryption scenario) being run during each simulation. This provides an 

aggregate IPC value that can be used for comparison. For example, the Bwaves benchmark was 

paired with the full file standard re-encryption trace and run through HMMSim, which then reports 

statistics on a per trace basis. The IPC values for each trace are then aggregated to get a total IPC 

for the entire system across both traces (e.g., Bwaves plus full file standard re-encryption). These 

resulting aggregate IPC values are compared in Table 4. In the final two rows, both tables also 

report the speedup, in terms of IPC, when using keystream re-encryption instead of standard re-

encryption.  

4.3.3 THROUGHPUT TEST 

While HMMSim provides a very nice overview of the memory architecture it lacks a convenient 

way to calculate the throughput of the test scenarios. Therefore, the earlier throughput test, using 

the time command, was repeated. However, both block-by-block standard re-encryption and 

keystream re-encryption were run 100 times on file sizes of 1MB, 10MB, 100MB and 1000MB. 
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The results of the time command were captured and the user and sys fields were added together to 

produce a total execution time. These results are reported in Figure 11 and Table 6. This test was 

done entirely independent of HMMSim. The actual code, not the traces generated by Pin, were 

executed and timed to produce an empirical value for the throughput achieved by the different re-

encryption scenarios. 

 

Benchmark Bwaves Mcf Milc Zeusmp CactusADM Leslie3d Soplex GemsFDTD Libquantum 

Standard 

(Block-by-

Block) 

Standard 

(Full File) 
Keystream 

IPC 1.5 0.57 0.9 1.37 1.89 1.25 0.87 0.79 0.98 3.76 3.75 4.00 

MPKI (L2) 19.56 71.74 24.82 11.85 5.37 16.71 23.23 18.61 38.02 0.21 0.43 0.12 

Memory 

Used (MB) 
972 1,758 713 526 657 130 162 871 86 51 51 26 

Table 3: Individual Benchmark Statistics 

Benchmark Bwaves Mcf Milc Zeusmp CactusADM Leslie3d Soplex GemsFDTD Libquantum 

Standard 

Full-File 

Re-Encryption 

Total IPC 

5.01 3.85 4.38 4.98 5.41 4.79 4.27 4.39 4.42 

Standard 

Block-by-Block 

Re-Encryption 

Total IPC 

5.2 4.08 4.57 5.14 5.58 4.96 4.44 4.54 4.63 

Keystream 

Re-Encryption 

Total IPC 

5.41 4.40 4.79 5.32 5.81 5.17 4.70 4.74 4.84 

KS / Full-File 1.08 1.14 1.09 1.07 1.07 1.08 1.10 1.08 1.10 

KS / Block-by-

Block 
1.04 1.078 1.048 1.035 1.041 1.042 1.059 1.044 1.045 

Table 4: Block-by-Block Re-Encryption Dual Benchmark Statistics 
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Benchmark Bwaves Mcf Milc ZeusMp CactusAMD Leslie3d Soplex GemsFDTD Libquantum 

Standard 

(Full 

File) 

Standard 

(Block-

by-

Block) 

Keystream 

DRAM Reads 19564250 71735883 24819558 11845196 5370566 16709709 23232275 18605602 38022576 430318 207446 122931 

DRAM Writes 607062 2231766 8364243 4122291 1551742 3847670 9502741 2453819 655 198084 173994 89845 

Total 

Energy (mJ) 
6325 23197 11162 5381 2308 6778 11139 6791 11806 215 136 75 

Table 5: Energy Consumption Statistics 

 

Figure 11: Throughput Comparisons 

File Size (MB) Standard Keystream  Percent Change 

1 37.864	 43.821	 0.157	

10 37.670	 44.539	 0.182	

100 37.957	 44.659	 0.177	

1000 37.268	 45.120	 0.211	

Average 37.690	 44.535	 0.182	

Table 6: Throughput Calculations in MB / sec 

1 10 100 1000
STANDARD	AVG.	TIME 0.02641 0.26546 2.63459 26.83291

KEYSTREAM	AVG.	TIME 0.02282 0.22452 2.23921 22.163
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4.3.4 ENERGY TEST 

Calculating energy consumption does not require running any additional simulations. Rather, the 

DRAM read and write statistics, gathered during the initial solo runs, were used to calculate this 

value. The value of 0.000310518 mJ / access was used for DRAM reads and 0.000413123 mJ / 

access was used for DRAM writes [15]. This lead to a straightforward calculation of total DRAM 

energy costs; accesses multiplied by the cost of each access. As a note, these values do not include 

the cost of performing the XOR in-memory. These values are reported in Table 5 and are broken 

up into separate read and write costs before reporting the final energy consumption.  

4.4 DISCUSSION 

Hypothesis 1: Not moving data from memory to the CPU, which results in less stalling, as well as 

the CPU performing less computation should lead to an increase in throughput for keystream re-

encryption compared to standard re-encryption. 

 

For evaluating Hypothesis 1, Figure 11 and its associated table provide a useful insight into 

the throughput advantages of keystream re-encryption. The first result to remark on is the fact that 

the throughput for both standard and keystream re-encryption is linear. As the size of the file is 

increased by a factor of 10, the time it takes to re-encrypt that file is also increased by a factor of 

10. This is expected, as each block is re-encrypted without any dependencies on other blocks and, 

therefore, the time to re-encrypt each block is constant.  
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We can now look at the throughput values calculated during the time test. Looking at Table 

6 on page 30, we can see that the throughput achieved by keystream re-encryption is, on average, 

18% higher than that of block-by-block standard re-encryption.  Keystream re-encryption can 

successfully re-encrypt more data per second than block-by-block standard re-encryption. These 

results confirm Hypothesis 1; removing the need to pull in data from memory for re-encryption, 

serves to increase the throughput over standard re-encryption. 

 

Hypothesis 2: The overall memory traffic will be reduced with keystream re-encryption 

due to it not bringing data into the CPU. This reduction in data on the bus should result in less 

interference on other processes. 

 

On its surface, Hypothesis 2 is straightforward and trivial to confirm. Standard re-

encryption involves both reads and writes, while keystream re-encryption has only writes. Thus, 

keystream re-encryption has less traffic to and from memory. However, there is something deeper 

to get at when examining the results. Table 4 contains the results of running full file standard re-

encryption with each benchmark, block-by-block standard re-encryption with each benchmark, 

and keystream re-encryption with each benchmark. Comparing these values for each benchmark 

reveals an interesting trend: higher IPC values when using keystream re-encryption compared to 

either standard re-encryption variant. By itself, this seems to be consistent with what is expected. 

Less memory traffic means less contention between concurrent processes and, therefore, reduced 

latencies which lead to higher IPC values. This is consistent with Hypothesis 2 in that, due to 

keystream having less memory traffic, it should produce a higher IPC.  
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Another interesting portion is seen when comparing the increase in total IPC (the 

benchmark IPC + test case IPC) between the standard re-encryption and keystream re-encryption. 

These values are reported in the last two rows of results in Table 4. Keystream re-encryption 

produces, on average, a 10% increase in IPC over full file standard re-encryption produces, while 

also producing a 5% increase in IPC, on average, compared to block-by-block standard re-

encryption. These changes in IPC are also displayed in Figure 12. While this is not an extreme 

increase in IPC it still shows a consistent trend of keystream re-encryption having a higher 

aggregate IPC, even when compared to the block-by-block standard re-encryption. More 

importantly, it was achieved by reducing a small amount of memory traffic. Table 6 lists the 

DRAM reads and writes performed by each trace in HMMSim and it shows that the normal and 

keystream re-encryption perform 1 to 2 orders of magnitude less memory operations than the other 

benchmarks. Yet that small reduction in memory traffic from standard re-encryption to keystream, 

produces a significant increase in the IPC.  

One more result to draw attention to is the L2 MPKI of the solo runs, located in Table 3. 

MPKI is a good indicator of memory pressure and we can see that all three re-encryption scenarios 

have extremely low values. Also, when examining these values between the two standard re-

encryption scenarios, we can see the effect of locality. By performing efficient re-encryption 

(block-by-block) instead of using the naïve full file approach, we can effectively halve the MPKI. 

This is because full file re-encryption does not preserve locality: a miss is incurred when 

decrypting a block, and a second miss occurs for each block when it is fetched again for re-

encryption. The block-by-block scenario avoids this by performing the decryption and encryption 

immediately on the same block, thus preserving locality. Keystream re-encryption almost halves 

the block-by-block MPKI value again because it is removing all ciphertext reads, while the block-
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by-block scenario requires both the read into the CPU and the subsequent write out. Therefore, 

neither re-encryption has much impact on the memory traffic of concurrent processes. Even with 

re-encryption being computationally bound, there is still a reduction in traffic with keystream and 

an overall increase in IPC.  

 

Figure 12: Aggregate IPC Comparisons 

Hypothesis 3: The DRAM energy consumption for keystream re-encryption will be lower 

than the DRAM energy consumption for standard re-encryption due to the decreased amount of 

data reads from DRAM. 

 

Table 5 calculates the total energy used by DRAM reads and writes for all the SPEC 

Benchmarks as well as the standard re-encryption and keystream re-encryption. As mentioned 

before, since re-encryption is computationally bound there is very little energy consumed in 

DRAM. However, what is notable is the improvement in energy consumption by switching to 

keystream re-encryption from full file standard re-encryption (65%) and even from block-by-block 

standard re-encryption (44%). This introduces some interesting scenarios, particularly if the 

primary process being run is some form of encryption. This is because the amount of energy spent 
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on DRAM accesses during re-encryption is miniscule compared to the energy consumed by the 

SPEC benchmarks and, thus, if they are run at the same time, re-encryption produces almost no 

change in total energy consumption. However, if this is a machine with a high cryptographic 

workload, then there is a significant decrease in energy consumption due to the use of keystream 

re-encryption over standard re-encryption. Additionally, these savings are before any 

consideration of the fact that HMC technology is more energy efficient than standard DRAM due 

to the short distance (via the TSVs) that data needs to travel [19].  
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5.0  CONCLUDING REMARKS 

We finish this thesis by summarizing the results seen and conclusions drawn from the experiments, 

before looking at future work. Specifically, we put forth the possibility of shifting even more 

computation off of the CPU and into memory. 

5.1 CONCLUSIONS 

Overall, Hybrid Memory Cube technology and other forms of in-memory computation possess 

some interesting and useful properties to aid in cryptography. The ability to move computation 

from the CPU and perform it in memory allows for reductions in memory traffic. This reduction 

in memory traffic not only serves to increase throughput by a significant amount (18%), but also 

reduces the impact that re-encryption has on the rest of the system (increasing IPC by 5-10%) 

while also requiring less energy due to the decreased number of DRAM accesses. These results 

show potential to increase the efficiency of cryptographic access control mechanisms implemented 

on untrusted storage platforms and thus make those mechanisms more viable for real world 

applications. By increasing the throughput, there will be a direct correlation to a decrease in the 

time required to re-encrypt data. Additionally, the lower level of memory traffic will have less 

impact on other processes while also supporting faster re-encryption due to not having to bring the 

data into the CPU. Finally, keystream re-encryption will also provide lower energy consumption 

even before factoring in the lower energy costs of new memory technology like HMC.  
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5.2 FUTURE WORK 

While this thesis only explored the ability to exploit in-memory XOR operations, there are other 

operations available within an HMC. Just as AES-NI is tightly coupled with the hardware, there 

exists the possibility of tying cryptographic functionality directly into the HMC. Specifically, if an 

instruction stream could be computed using only the HMC Atomic Command Requests, then all 

computation could be moved off the CPU and lead to further reductions in memory traffic. There 

already exist commands for incrementing a value within the HMC specification. Therefore, if the 

AES encryption could be carried out in memory, then the IV could be incremented in-memory as 

well as the XOR, leading to the entire keystream being generation in memory. Even in the likely 

scenario that AES encryption cannot be implemented entirely using HMC commands, a small 

dedicated controller could be placed close to the HMC to handle the cryptographic functionality 

not available within the HMC. With this type of implementation, all the memory traffic and a 

significant portion of the computation is removed from the CPU. While this may seem like an 

extreme implementation, not only adding a different memory architecture but also another 

controller, it brings about some interesting implications. Most notably, data travel is extremely 

minimal. An encrypted file is loaded into main memory, then each block of the file is XOR-ed 

with the keystream produced by the micro controller (possibly with help from the HMC to compute 

the keystream) before returning the data to its memory address. All of that takes place without the 

data ever leaving the HMC. While this has significant performance benefits, as the latency within 

the HMC is even less than the latency between the HMC and CPU, there are also added security 

benefits. Data only ever exists in main memory - it does not travel between main memory and the 

CPU and it is never in plaintext. There are questions regarding whether the keystream leaks 

information however, those questions are beyond the scope of this thesis.  
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