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AN EXAMINATION OF THE POTENTIAL OF SECONDARY MATHEMATICS
CURRICULUM MATERIALS TO SUPPORT TEACHER AND STUDENT
LEARNING OF PROBABIILITY AND STATISTICS
Joshua E. Williams, EdD

University of Pittsburgh, 2016

The Common Core State Standards for Mathematics (CCSSSM) suggest many changes to
secondary mathematics education including an increased focus on conceptual understanding and
the inclusion of content and processes that are beyond what is currently taught to most high
school students. To facilitate these changes, students will need opportunities to engage in tasks
that are cognitively demanding in order to develop this conceptual understanding and to engage
in such tasks over a breadth of content areas including probability and statistics. However,
teachers may have a difficult time facilitating a change from traditional mathematics instruction
to instruction that centers around the use of high-level tasks and a focus on conceptual
understanding and that include content from the areas of probability and statistics that may go
beyond their expertise and experience. Therefore, curriculum materials that promote teacher
learning, as well as student learning, may be a critical element in supporting teachers’ enactment
of the CCSSM. This study examines three secondary mathematics curriculum materials with the
intention of determining both the opportunities they provide for students to engage in high-level

tasks and the opportunities for teacher learning. Tasks in the written curriculum materials



involving probability and statistics as defined by the CCSSM will be examined for evidence of
these opportunities. The results of this examination suggest that one of the three secondary
mathematics curriculum materials, Core-Plus Mathematics Project (CPMP), contains high-level
tasks addressing many of the probability and statistics standards from the CCSSM. A second
curriculum, Interactive Mathematics Program, also contains high-level tasks but has far fewer
high-level tasks than CPMP. The third curriculum, Glencoe Mathematics (GM), addresses many
of the probability and statistics standards from CCSSM but does so with low-level tasks. None of
the three curricula provides ample opportunities for teacher learning in the areas of anticipating
student thinking and providing transparency of the pedagogical decisions made by the authors

when designing the materials.
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1.0 RESEARCH PROBLEM

This study examines secondary mathematics curriculum materials with the intention of
determining both the opportunities for students to engage in high-level tasks and the
opportunities for teacher learning. Tasks in the written curriculum materials involving
probability and statistics as defined by the Common Core State Standards for Mathematics
(CCSSM) will be examined for evidence of these opportunities. With that end in mind, this
chapter will argue the following points in order to justify such a study:

1) CCSSM will necessitate change in mathematics education

2) Curriculum materials will play a vital role in the change that CCSSM hopes to facilitate

3) CCSSM may require student engagement in high-level tasks

4) Teacher learning may be necessary for high-level tasks to be implemented well

5) Curriculum materials are one potential source of teacher learning (educative curriculum

materials)
6) Probability and statistics are important content areas where high-level tasks and educative

curriculum materials may be especially useful



11 CCSSM WILL NECESSITATE CHANGE IN MATEHMATICS EDUCATION

The Common Core State Standards represent the first time in United States history that common
standards will be used across most of the country. Forty-three states have adopted the CCSSM
along with the District of Columbia, four territories, and the Department of Defense Education
Activity (National Governors Association Center & Council of Chief State School Officers,
2012). The intention of CCSSM is to provide a more focused, coherent set of goals for what
students are expected to learn than what currently exists among the states in the United States
(National Governors Association Center for Best Practices, 2010). The CCSSM emphasizes
conceptual understanding and additional content beyond what is currently taught in most high
schools with the goal of college and career readiness for all students (NGACBP, 2010).

Another addition relative to previous standards in CCSSM specific to mathematics
(CCSSM) is the inclusion of Standards for Mathematical Practice. According to the CCSSM,
these Standards for Mathematical Practice incorporate important processes and proficiencies
from the NCTM process standards and the strands of mathematical proficiency from the National
Research Council (NGACBP, 2010). These Standards for Mathematical Practice describe to
educators the processes and proficiencies that should be developed in their students. Including
practices along with specified content sets the CCSSM apart from many of the state level
standards that focus on content only.

The CCSSM were created because of the results of both national and international
assessments of student performance. For example, poor results from the National Assessment of
Education Progress (NAEP) led to a Commission on No Child Left Behind (NCLB) leading a
call for a voluntary national curriculum and assessments that would match (Goertz, 2010). Both

the original NAEP (2008) which is referred to as the Long-Term Trend assessment (LTT) and
2



the New NAEP (2009) do not demonstrate a significant improvement for secondary students in
mathematics (Kloosterman & Walcott, 2010). Internationally, 15 year olds from the United
States do not compare favorably in mathematics, ranking 26™ out of 34 countries according to
the Program for International Student Assessment (PISA) data (OECD, 2013).

These results were not consistent with the results being reported from state level
assessments. For example, a state might report that 70% of the students tested were proficient in
8" grade mathematics. However, NAEP data would suggest that only 30% of the students from
that state were proficient in 8" grade mathematics. This discrepancy between individual state
results and a national assessment revealed one of the potential problems with the United States
educational system. There is disparity between each state’s standards. One would think the
release of the Curriculum and Evaluation Standards for School Mathematics by the National
Council of Teachers of Mathematics (NCTM) in 1989 would have facilitated the states coming
together to teach a common set of standards. While the NCTM provided what could have been a
guiding document, many states created mathematical standards of their own that were often
unfocused and lacked coherence (Geortz, 2010). Additionally, the state standards varied greatly
and often did not match what the NCTM was proposing (Porter et al., 2009; Reyes, 2006).

The lack of consistent standards across states made it difficult for curriculum developers
to produce quality curriculum materials that would be suitable across the country. One option
would have been to create textbooks specific to each state’s individual standards. However, this
was far too expensive and therefore was only done for states with large populations such as
California, New York, and Texas. For the rest of the United States, the alternative was that
curriculum developers made textbooks that were large and incoherent in an attempt to satisfy the

many different demands of these states. As a result, some have suggested that the textbooks are



not adequate and will need to be improved if significant changes in mathematics education are to
be made (Willoughby, 2010).

The Curriculum and Evaluation Standards for School Mathematics proposed significant
changes in mathematics education. The NCTM further developed their recommendations with
the release of the Principles and Standards for School Mathematics in 2000. This document
refined the previous recommendations by specifying learning expectations for different grade
bands beginning with Pre-K all the way through grade 12. These two documents intended to
facilitate a major shift in mathematics education, to change dramatically the way many think
about mathematics instruction, and ushered in what is known as the Standards Era.

The widespread adoption of the CCSSM, the specificity of the standards, and the
potential use of assessments that will be aligned to them could accomplish what the NCTM
started in 1989. Based on the disparity already mentioned between the state standards and
NCTM Standards, one might conclude that the state standards likely differ greatly from the
guidelines set forth by CCSSM. This suggests that states will need to make significant changes if
the guidelines of CCSSM are to be met. Porter et al. (2011) refers to this change as, "An
unprecedented shift away from disparate content guidelines across individual states™ (p. 103).
Porter et al. (2011) suggest that CCSSM is considerably different than what states currently have
in their standards and assessments, is more focused than what states standards are in
mathematics, and is different than what teachers currently report they are teaching.

CCSSM hopes to push the level of conceptual understanding for students beyond the
current U.S. levels. However, accomplishing the goal of increasing conceptual understanding
may be especially difficult because many current curriculum materials may not support the

demands of CCSSM. Many of the textbooks used in the United States are conceptually weak



which leads to mathematics instruction that is too mechanical (Ginsburg et al., 2005). This may
be because it is much easier to write curriculum that caters to low-level thought (Willoughby

2010).

1.2 CURRICULUM MATERIALS WILL PLAY AVITAL ROLE

Many researchers agree that textbooks have a significant impact on what students learn (e.g.,
Schmidt, Houang, & Cogan, 2002; Stein, Remillard, & Smith, 2007; Valverde et al., 2002;
Willoughby, 2010). Research has demonstrated that teachers have a strong dependence on
textbooks and other resource materials (Remillard, 2005) likely due to their important role in
supporting both teaching and learning (Fan & Zhu, 2007; Boaler, 2002). Because of the
important role of textbooks and teacher dependence on them, textbooks are often a way to try to
influence classroom practices and affect student achievement (Senk & Thompson, 2003). In
many cases, the textbook is the curriculum (Hudson, Lahann, & Lee, 2010). Other researchers
suggest that textbooks affect how teachers teach (Ball & Cohen, 1996; Reys, Reys, & Chavez,
2004). Begle (1973) suggested that changing textbooks may be the only way to affect student
learning and that textbooks are so powerful that they may have more impact on student learning
than the teacher does.

Curriculum materials will play an important role in the CCSSM era if CCSSM is to be
effective. Shaughnessy (2007) suggests that national standards without curriculum materials to
accompany them are not useful. Curriculum materials will likely need to adapt and evolve to
meet the new recommendations set forth in CCSSM. It has been suggested that for a curriculum

to be effective for the students it must first have an effect on the teachers (Remillard & Bryans,



2004). Therefore, curriculum materials should provide opportunities for teacher learning and
support for teachers in order to maximize the effectiveness of their instruction.

According to Martin et al. (2001), when the NCTM proposed their new standards in
1989, no textbooks at the time were consistent with what NCTM was proposing, So new
curriculum materials were required. NCTM was advocating for students to have opportunities to
engage in problem solving, communication, reasoning, and extended connections to other
concepts. As a result, the National Science Foundation (NSF) funded multiple textbook projects
at the elementary, middle, and high school levels. These NSF funded textbooks are referred to as
Standards-based textbooks. Even though Standards-based textbooks were designed to address
the demands of the NCTM Standards, because they differed so greatly from the textbooks that
had been traditionally used, they were often rejected. In some communities, they were the source
of considerable controversy (Schoenfeld, 2004).
The CCSSM may be positioned to enact change at a larger scale than the NCTM Standards
because there are assessments aligned to CCSSM that provide accountability for schools to
implement CCSSM. Schools may need to examine every aspect of their mathematics programs
including which textbooks they are using. If schools are using textbooks that are not consistent
with the demands of CCSSM, schools will be in the market for new materials. Both traditional
and Standards-based textbooks are making the claim to being aligned with the CCSSM through
updated versions of older texts or the publication of new versions, but the legitimacy of those

claims is still in question.



1.3 CCSSM MAY REQUIRE STUDENT ENGAGEMENT IN HIGH-LEVEL TASKS

The adoption of the CCSSM may force textbook publishers to reevaluate their products and
improve them. Textbook publishers will need to incorporate tasks that require high-level
cognitive demand in order to develop conceptual strength. Additionally, school districts will
need to evaluate their current curriculum materials to determine if they will be able to meet the
demands of these new standards and assessments. To meet the challenges of the CCSSM,
schools may need to challenge their students with tasks that place a higher cognitive demand on
them. One possible step toward meeting these challenges could be the adoption of new
curriculum materials that would contain these cognitively demanding tasks.

In 1979, Doyle initially introduced the notion of task as a potential unit for analysis.
Doyle (1983) suggested that tasks are important because the intellectual and physical products
students are expected to create, the operations students are to use to create these products, and
the resources available for students to use can all be traced back to the task. Doyle's (1983)
theory of the importance of tasks is driven by the notion that the mathematical concepts students
are to learn are embedded in the tasks provided by the teacher. If a task is designed to elicit high-
level thinking, students will then have an opportunity to approach a concept with higher order
thinking. If a task is designed to elicit low-level thinking, students will then only have the
opportunity to approach the concept with a focus on low-level procedures. Thus, one can reach
Doyle's (1983) conclusion that tasks are a vital part of mathematical learning.

Stein and Lane (1996) and Stein, Grover, and Henningsen (1996) advanced the notion of
analyzing tasks specifically in mathematics education. Organizations such as NCTM and MAA
have called for students to develop deeper understandings about mathematics as opposed to

simple memorization or procedural knowledge. Stein and Lane (1996) suggest that tasks have a
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significant influence on the kinds of thinking students may engage in and therefore significantly
influence learning outcomes. The work of Stein et al. (1996) led to the development of the Task
Analysis Guide found in Appendix C (Stein et al., 2000). The Task Analysis Guide can be used
to differentiate between mathematical tasks that have the potential for either low or high
cognitive demand. Low cognitive demand tasks are those that involve either memorization or
using procedures without connection to meaning. High cognitive demand tasks are those tasks
that involve using procedure while also making connections or tasks defined as doing
mathematics. More detail about the Task Analysis Guide will be presented in chapters 2 and 3.
Since textbooks are so widely used in secondary mathematics education and tasks tend to
drive instruction, one could reasonably conclude that it would be important to look at the level of
tasks found in textbooks. The level of cognitive demand of tasks may also be indicative of the
potential for a task to engage students in the Standards for Mathematical Practice from the
CCSSM. Low-level tasks (memorization and procedures without connections) have little
ambiguity about what needs to be done or how to do it (Smith & Stein, 1998). Based on this
characterization, many of the Standards for Mathematical Practice are already beyond
memorization and procedures without connections. For example, making sense of problems,
reasoning abstractly, constructing arguments, looking for structure and repeated reasoning are all
components of the Standards for Mathematical Practice that all would require, at a minimum,
that a task be somewhat ambiguous about what needs to be done or how to do it. Given the
characterization of low-level tasks from Smith and Stein (1998) which indicates that little
ambiguity exists, low-level tasks are unlikely to engage students in the Standards for
Mathematical Practice. Therefore, while the level of cognitive demand will not reveal the extent

to which students will actually engage in a specific practice, it is reasonable to assume that a



high-level task is more likely to provide potential opportunities for students to engage in the

Standards for Mathematical Practice.

1.4  TEACHER LEARNING MAY BE NECESSARY

Adapting to the demands of CCSSM, specifically the increased conceptual level associated with
CCSSM, may be difficult for teachers. Most teachers were taught in a traditional manner and
most teachers tend to teach in the same manner in which they were once instructed and find it
difficult to change their routines (Putnam & Borko, 2000). However, providing students with
opportunities to engage in tasks that require a high-level cognitive demand will require
improvements in teaching practices (Boston & Smith, 2009). To improve teaching practices,
teachers need opportunities to challenge long-held beliefs by thinking about the types of tasks
students should engage in, what it means to know and understand mathematics, and how to help
students as they engage in high-level thinking and reasoning (Boston & Smith, 2009). All of
these suggestions are related to promoting teacher learning in addition to student learning.
Davis and Krajcik (2005) suggest that promoting teacher learning is no easy task and
therefore may not successfully occur through one method. While it may be easy to add new
ideas, teachers must use knowledge in real time in the classroom and need to make connections
between the new and existing ideas. These ideas are what Shulman (1986) describes as
pedagogical content knowledge (PCK). PCK is knowledge that teachers have that differs from
experts in a field, content knowledge, and general pedagogy shared by all educators, pedagogical

knowledge. PCK is knowledge of how content and pedagogy are combined into effective



instructional practices for specified content. The need for PCK makes promoting teacher learning
different from promoting student learning.

Ball and Cohen (1996) suggest that teachers must adapt curriculum to meet the needs of
their own students. However, Ball and Cohen further suggest that curriculum materials often
overlook the role of the teacher. The result is that the teachers make adaptations to the
curriculum that create a gap between what the curriculum writers intended and what is actually
enacted in the classroom. In some cases, the teacher may even disregard the curriculum
altogether and create his or her own lesson. Curriculum materials that promote teacher learning
could assist the teacher in adapting the curriculum to fit their local needs while helping them to
avoid making changes that would be detrimental to the curriculum.

Stein and Kaufman (2010) suggest that curriculum materials that are designed to elicit
more ambitious forms of student learning will be significantly more challenging for teacher
learning because they are different from what teachers are used to. Standards-based curriculum
materials differ greatly from what people in the United States would remember about their own
educational experiences (Robinson, Robinson, & Maceli, 2000 cited in Senk & Thompson,
2003). These types of materials challenge currently held beliefs about what of mathematics
education is important and how these important items would best be taught (Hudson, Lahann, &
Lee, 2010; Senk & Thompson, 2003). The foreign nature of these curriculum materials is one

reason that they should strive to be educative in nature (Remillard, 2005).
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1.5 CURRICULUM MATERIALS ARE ONE POTENTIAL SOURCE FOR

TEACHER LEARNING

Educative curriculum materials are materials that aim to promote teacher learning. The notion
that curriculum materials could promote teacher learning has been suggested by several
researchers (Ball & Cohen, 1996; Davis & Krajcik, 2005). Curriculum materials that are
educative have the potential to provide learning and support for teachers while maximizing the
effectiveness of their instruction. Educative curriculum materials have demonstrated the ability
to facilitate changes in instruction (Ball & Cohen, 1996). Since, as has already been established
in this chapter, teachers rely heavily on curriculum materials, including textbooks, educative
curriculum materials may provide a means of influencing large numbers of teachers and thus
large numbers of students (Stein & Kim, 2009).

Ball and Cohen (1996, p. 7) proposed that, "Materials could be designed to place
teachers' learning central to efforts to improve education.” Ball and Cohen assert that the need
for curriculum materials to be educative is based on how individual teachers shape their
instruction based on their own understandings about the curriculum materials they are using,
beliefs about what is important, ideas about students, and a notion of what the role of the teacher
should be. Curriculum materials then should attempt to address each of these areas. Ball and
Cohen noted that curriculum developers often overlook the teacher, acting as if their materials
can work on students without teachers. As a result, many curriculum materials with the potential
to improve student learning have failed to improve student learning because they have not
provided enough support to the teacher to implement the curriculum effectively.

According to Ball and Cohen (1996), educative curriculum could be valuable by pointing

out the following areas where school districts miss opportunities by setting the wrong goals for
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change. School districts often see the adoption of a new curriculum as a way of changing
instruction, but they miss the opportunity of a new curriculum to facilitate teacher learning.
Additionally, school districts focus professional development on fidelity of implementation when
they could focus on developing professionals by promoting increases in their capacity to teach.
Building the capacity to teach could promote teachers adapting curriculum materials for their
personal needs while still reaching the instructional goals of the curriculum. The focus would
shift from fidelity of implementation to fidelity of student learning.

Educative curriculum materials are important because teacher learning is potentially not
as simple as student learning. A number of areas that teachers may benefit from learning exist.
Research has shown that not all teachers are equipped with enough knowledge to teach high
school mathematics effectively. Specifically, they fail to see the connections between concepts
that could maximize their effectiveness. Teachers may also benefit from understanding more
about the goals, rationales, and approaches of the curriculum they are being asked to implement.
Finally, teachers could benefit from an increased ability to anticipate what students are thinking.
Students will develop their understandings by connecting new information to prior knowledge,
S0 anticipating student thinking is an important part of effective instruction (Stein & Kim, 2009).
Anticipating student thinking involves considering how students will interpret the problem, the
strategies they may use to solve the problem, and how those strategies relate to what the teacher
would like the students to learn (Stein & Kim, 2009). Educative curriculum materials have the
potential to address each of these three areas.

To summarize the argument thus far, the CCSSM is positioned to usher in an era of
mathematics education that will focus more on conceptual understanding and include content and

processes that are beyond what is currently taught to most high school students. To facilitate
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these changes, students will need opportunities to engage in tasks that are cognitively demanding
in order to develop this conceptual understanding and to engage in such tasks over a breadth of
content areas. However, teachers may have a difficult time facilitating a change from traditional
mathematics instruction to instruction that centers around the use of high-level tasks and a focus
on conceptual understanding and that include content that may go beyond their expertise and
experience. Therefore, curriculum materials that promote teacher learning, as well as student
learning, may be a critical element in supporting teachers’ enactment of the CCSSM in

mathematics.

1.6 PROBABILITY AND STATISTICS ARE IMPORTANT CONTENT AREAS

Probability and statistics education has been identified as important for several reasons. These
include the need to create productive citizens of all students, the emergence of probability and
statistics in the workplace, and the importance of probability and statistics in many college level
classes (Jones & Tarr, 2010).

To elaborate on the need of probability and statistics for productive citizens, Garfield and
Ahlgren (1988) suggest that all citizens should have knowledge of probability and statistics as a
part of basic literacy in mathematics because knowledge of probability and statistics could be
valuable in interpreting data presented in the media, understanding games of chance such as the
lottery, or other examples that appear in everyday life. Cobb and Moore (1997) argue that
variability is omnipresent thus making probability and statistics important to study.

Even though people are surrounded by probability and statistics, their reasoning in these

areas may be flawed. Researchers have shown that there are widespread, persistent
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misconceptions (to be discussed in Chapter 2) in these areas that need to be addressed (Garfield
& Ahlgren, 1988). These misconceptions are similar at all age levels, exist among all levels of
ability, and are difficult to change (Garfield & Ahlgren, 1988; Konold et al., 1993; Pratt, 2000).

These reasons are likely a major part of why the NCTM Standards (1989; 2000) included
two widely ignored content areas, probability and statistics, among its ten content areas. The
NCTM was advocating for the inclusion of probability and statistics as a vital part of
mathematics education along the same lines as algebra or geometry (Shaughnessy, 2007).
CCSSM has included probability and statistics as one of the six conceptual categories for high
school mathematics and included probability and statistics as a domain in sixth through eighth
grade. This once again puts probability and statistics on equal ground as the other conceptual
categories such as algebra and geometry.

The Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report
was written to provide recommendations for a comprehensive statistics education program that
spanned K-12 education. The goal of the report was to promote statistical literacy among all
high school graduates (Franklin et al., 2007).The GAISE Report argued that statistical literacy
was needed for the following reasons:

1) Creating good citizens - Citizens are informed by polls which are based in statistics C

2) Making good personal choices - Data is presented to us about food quality, drug
effectiveness, toy safety, investment choices, etc.

3) Developing better workers - Quality control practices and accountability systems allow
for the identification of improvements in manufacturing and are based in statistics

Teaching probability and statistics will not be easy. Konold (1989) suggests that teaching

probability and statistics is difficult because students possess strong, often incorrect, conceptions
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prior to any instruction. More dangerous is that even when these conceptions are inaccurate they
can sometimes learn quantitative skills well enough to convince the teacher and themselves that
they have an accurate understanding of probability and statistics concepts. Martin et al. (2001)
suggests that including probability and statistics could be especially difficult for schools and
could require school districts to make a significant commitment to developing both pedagogical
and content knowledge for teachers in their district. In a review of literature, Jones, Langrall, and
Mooney (2007) found that there was evidence of many issues dealing with teachers' content
knowledge in probability. Jones and Tarr (2010) suggest that more efforts must be dedicated to
the education of teachers in the areas of probability and statistics in order to improve student
understanding of probability and statistics.

Probability and statistics bring an added level of complexity not typically associated with
other mathematics content. Shaughnessy (2007) suggests that unlike other mathematics
problems, statistics problems add the challenge of dealing with bias, contextual issues, and
uncontrolled variation. Additionally, probability is an area where students have diverse levels of
reasoning thus making it even more difficult to teach (Jones et al., 2007).

Some teachers eliminated probability and statistics concepts from instruction altogether
due to lack of time and a fear that including it might take away from other parts of their
curriculum (Gattuso & Pannone, 2002). This type of thinking may stem from the era before the
NCTM Standards and CCSSM when probability and statistics were not a part of mainstream
curriculum and thus were not seen as important as they are today. Failure to assess these areas
has provided teachers no motivation to change their thinking. Jones and Tarr (2010) suggest that

teachers might not provide students with opportunities to learn probability and statistics because
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they never had such an opportunity themselves. This is especially concerning since researchers
have identified probability and statistics as a very important area for learning in high school.

The reasons mentioned here likely contributed to the poor performance by high school
students in the areas of probability and statistics on national (NAEP) and international (PISA)
assessments. In some cases, scores from United States students improved when compared to
previous years (Data analysis, statistics and probability scores for 12" grade were 150 in 2005
and 153 in 2009 according to NAEP), but despite improvement in these areas, the probability
and statistics scores were still below proficient levels (only 26% of 12" graders at or above
proficient in 2009 in mathematics according to NAEP) or the averages of other countries (U.S.
score of 481 was below the average score of 494 for all countries involved and lower than 29
other educational systems according to 2012 PISA). One could interpret these data as
demonstrating that the NCTM did have a positive impact on probability and statistics since there
was some improvement, but the United States was so far behind that the impact was not enough
to bring students up to acceptable levels of performance.

CCSSM and the assessments aligned to them will likely include probability and statistics.
Because probability and statistics are going to be assessed, school districts nationwide will be
taking steps to ensure probability and statistics are taught in their classrooms. Given the
difficulties with instruction, the lack of teacher knowledge, and the importance of probability and
statistics, educative curriculum could be especially useful in this area. Since probability and
statistics are often excluded from curricula, school district leadership will need to find a textbook
that includes them. Since it has been established that textbooks drive curriculum, the inclusion of
probability and statistics in a textbook could be the best way to ensure their inclusion in the

curriculum. Finally, based on the literature cited here, it would seem that probability and
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statistics are areas with severely underdeveloped content knowledge for both teachers and
students. As a result, the use of high-level tasks would represent an even greater challenge for

teachers in probability and statistics than in other areas of mathematics.

1.7 PURPOSE AND RESEARCH QUESTIONS

The purpose of this study is to evaluate textbooks currently in use in secondary schools for
teaching mathematics to determine the extent to which those textbooks have the potential to
prepare students and teachers to meet the demands of the Common Core State Standards with
regard to probability and statistics. Specifically, this study answers the following research
questions:
1) To what extent do current secondary mathematics textbooks provide opportunities for
students to engage in the probability and statistics content recommended by the Common
Core State Standards?
2) What are the cognitive demands of the tasks that are aligned with the Common Core
State Standards recommendations for mathematical content in probability and statistics?
3) To what extent does the teachers’ guide provide support for enacting high-level tasks that
address the Common Core State Standards recommendations related to probability and
statistics?
a) To what extent does the teachers’ guide provide suggestions related to anticipation on
high-level tasks that reflect content recommendations of the Common Core State

Standards?
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b) To what extent does the teachers’ guide provide transparency on high-level tasks that

reflect content recommendations of the Common Core State Standards?

This study defines anticipation and transparency in the same manner as Stein and Kim
(2009). Anticipation involves, “Expectations about how students might interpret a problem, the
array of strategies — both correct and incorrect — they might use to tackle it, and how those
strategies and interpretations might relate to the mathematical concepts, procedures, and
practices that the teacher would like her students to learn (Stein & Kim, p. 45, 2009).”
Transparency involves talking about, “The mathematical and pedagogical ideas underlying these
tasks — thereby making their agendas and perspectives accessible (Stein & Kim, p. 44, 2009).”
Stein and Kim (2009) suggest that this goes beyond providing steps to follow, questions to pose
to the students, and answers to give. Instead, they propose that transparency equips teachers with
the necessary information to select and adapt tasks. Finally, Stein and Kim suggest transparency
may include providing information about how the task is connected to other activities in the
curriculum. In summary, transparency is about making the mathematical purpose of the task
clear to the teacher.

Only those tasks coded at high-level cognitive demand were analyzed for anticipation
and transparency because they are the only tasks that would require such support for the teacher
(Stein & Kim, 2009). Because low-level tasks offer a restricted path, following previously
learned algorithms or recalling facts, there is no need for the teacher to anticipate multiple
strategies and interpretations or be transparent about underlying mathematical and pedagogical
ideas. However, high-level tasks, specifically doing mathematics tasks, have an open-ended
nature without a predictable pathway to follow. Therefore, guidance in the areas of anticipation

and transparency would be very valuable.
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1.8 SIGNIFICANCE

There is a variety of groups that could benefit from this study. The largest benefactor would
likely be those schools or districts considering one of the curricula reviewed for adoption.
Analyzing the cognitive demand of instructional tasks speaks to both the instructional design and
the content emphasis of a textbook as suggested by Hudson, Lahann, and Lee (2010). Schools
can then decide what type of textbook is appropriate for their school climate. Textbooks with
high-level tasks will require a great deal of professional development, may cause a lot of conflict
with the beliefs held by teachers, and will be difficult to implement (Hudson, Lahann, & Lee,
2010). School decision makers will have to decide if they have the time, resources, and staff to
take on such a challenge. The analysis of the potential for teacher learning provides decision
makers with an idea of how supportive the curriculum materials are of their own implementation.
In addition, each textbook was analyzed to determine its alignment with the CCSSM in regards
to probability and statistics. While most publishers are going to make the claim of alignment, the
textbooks analyzed have had that claim tested in one specific content area.

In addition to providing specific information relating to probability and statistics, the
analysis of tasks provided by this study could serve as a framework for further evaluation of
curriculum materials. For example, if a district uses curriculum materials that have not been
reviewed here, they could apply the same analysis on their own to determine how their
curriculum materials would fit in with those that are reviewed in this study. This study brings
together research on tasks that require high-level cognitive demand, research on educative
curriculum materials, and applies them to the CCSSM in such a manner that could be applicable

to any one of the content areas identified by the CCSSM. Therefore, anyone wishing to evaluate
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content areas other than probability and statistics as defined by the CCSSM could benefit from
this study as well.

Finally, this study provides a foundation for understanding the potential of curriculum
materials that could be used as an aide when observing teachers using these materials. If an
observer could be educated in the same way as the teacher, the observer may be able to provide
feedback to the teacher more effectively. For example, if someone observing had a better
understanding of anticipated student responses, connections between topics, and transparency
related to key ideas of a task, he or she might have a different perspective during observation.
This understanding of the potential of the curriculum could also be beneficial when planning in-
service activities that could work in cooperation with the curriculum materials to maximize

teacher learning and instructional effectiveness.

1.9 LIMITATIONS

The primary limitation of this study is that it only focuses on the written curriculum. According
to the math task framework, Appendix D, this study is only focusing on the tasks as they appear
in the curricular/instructional materials. It does not take into account how the teachers will set up
the task, how the task will be implemented, or what student learning will actually occur. This
study is only focused on the potential each task has as it is written in the curriculum. Of course,
the potential of each task is critical since if a task does not have the potential to do something, it
most likely will not. That makes this study an important first step of many for researchers
wishing to understand the impact of tasks on student learning. Another limitation is that the study

focuses on probability and statistics only. There are six different conceptual categories in the
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CCSSM for high school. Probability and statistics are only one of the six categories. If one or all
of the other conceptual categories were to be analyzed, they very well may tell a different story
about each curriculum. Additionally, this study is based on the assumption that high-level tasks
will better address the Standards for Mathematical Practice than low-level tasks. While this
assumption is reasonable, it does not tell the entire story. Not every high-level task will address
all of the eight Standards for Mathematical Practice and not every low-level task fails to address
all of the eight Standards for Mathematical Practice. An analysis of tasks with a focus on the
extent to which each of the Standards for Mathematical Practice are addressed would provide
greater detail about how each of these standards is being addressed in the curriculum materials.
Finally, this study is limited in that it only analyzes three sets of current curriculum
materials. These three sets of materials provide a snapshot of the landscape of secondary
mathematics education materials, but they may not paint the entire picture of what is available.
Including more curricula from an even wider variety of publishers could reveal more about

available curriculum materials.

1.10 SUMMARY

The following points were argued to justify a study that examined secondary mathematics
curriculum materials with the intention of determining both the opportunities for students to
engage in high-level tasks and the opportunities for teacher learning on tasks in the written
curriculum materials involving probability and statistics as defined by the Common Core State

Standards:
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1) CCSSM will necessitate change in mathematics education through more focused,
coherent goals that emphasize conceptual understanding and specific mathematical
practices

2) Curriculum materials will play a vital role in the change that CCSSM hopes to facilitate

3) CCSSM may require student engagement in high-level tasks

4) Teacher learning may be necessary for high-level tasks to be implemented well

5) Curriculum materials are one potential source of teacher learning (educative curriculum
materials)

6) Probability and statistics are important content areas where high-level tasks and educative
curriculum materials may be especially useful

The next chapter reviews literature, which provides a research foundation for the points, argued
here. This literature will provide a basis for why probability and statistics are important, difficult
to teach, and an overview of the myriad of misconceptions in this content area. The literature will
also provide information regarding the potential power of curriculum materials to educate not
only students but teachers as well. The potential of curriculum to be educative in nature could be
especially important in meeting the demands of CCSSM, which may require schools to provide
students with opportunities to engage in tasks that require high-level cognitive demand. The
literature will provide a background on the importance and implementation of high-level tasks in
mathematics education. Finally, the probability and statistics standards of CCSSM will be
analyzed in connection with both secondary mathematics education research and the Guidelines
for Assessment and Instruction in Statistics Education (GAISE) Report. All of the literature
referenced will further build on the argument made in this chapter while providing the basis for

the methodology of the study.
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2.0 REVIEW OF LITERATURE

Chapter 2 is dedicated to reviewing salient literature related to this study. This chapter begins
with an examination of research in probability and statistics. This examination includes why
probability and statistics are important, what makes them difficult to teach, including common
misconceptions, and connections between the CCSSM and research in probability and statistics.
After reviewing research on probability and statistics, this chapter turns its focus to educative
curriculum materials. Educative curriculum materials are materials that promote teacher learning.
Most curricula are written with student learning in mind. However, researchers have recently
suggested that it could be possible for teacher learning to be a consideration in the design of
curriculum materials. Since this chapter will establish a number of reasons that probability and
statistics education could be difficult to teach and learn promoting teacher learning will then
potentially be a very important step in providing enough support to promote student learning.
Finally, this chapter turns its attention to tasks. The importance of tasks was established by
Doyle (1983) and has since been elaborated specifically in mathematics education. The latest
research on tasks discusses the importance of tasks requiring high-level cognitive demand for
students to complete. An important connection made by Stein and Kim (2009) is that if a task
potentially requires high-level cognitive demand, it will also put a high-level demand on the
teacher to implement well. Therefore, it may be even more important for curriculum materials to

be educative in nature if those materials incorporate many high-level tasks.
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2.1 PROBABILITY AND STATISTICS

The primary purpose of this section is to make the following argument: Probability and statistics
are important topics but are difficult to teach due to many factors including that misconceptions
are widespread across content and for students at all grade levels. Once this argument has been
made, the chapter will move on to suggestions related to statistics education. Next research in
probability and statistics is connected to the curricular suggestions of the CCSSM. Finally, a
study analyzing the tasks found in textbooks relating to probability from a historical perspective
IS reviewed.

However, before moving on to the argument, it might be beneficial to define what
probability and statistics education might entail. The GAISE Report suggests that instructional
programs should enable all students to do the following (Franklin et al., p. 5, 2007):

1) Formulate questions that can be addressed with data and collect, organize, and display
relevant data to answer them;

2) Select and use appropriate statistical methods to analyze data;

3) Develop and evaluate inferences and predictions that are based on data; and

4) Understand and apply basic concepts of probability

In order to accomplish this, the GAISE Report suggests that students will need to
understand the nature of variability, the role of context, probability, and chance variability
(Franklin et al., 2007).

After an extensive review of research in statistics education, Garfield et al. (2008)
suggest the following ideas as being important to statistics education:

1) Data

2) Statistical models
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3) Distribution

4) Center

5) Variability

6) Comparing groups

7) Sampling and sampling distributions

8) Statistical inference

9) Covariation
One can see many similarities between the GAISE Report (Franklin et al., 2007) suggestions and
those made by Garfield et al. (2008). The sense of agreement between the two becomes even
greater when both are investigated in detail. For example, Garfield specifically identifies center
as an important idea for statistics education. Even though center has not been explicitly listed as
an instructional goal for the GAISE Report, it spends considerable effort in developing a student
understanding of center in service of addressing the goals that are explicitly listed. This
agreement is of no surprise since both the GAISE Report and Garfield et al. are based on prior

research.

2.1.1 Probability and statistics are important

Probability and statistics have been identified as an area of importance by many researchers
(Casey, 2010; Garfield et al., 2008; Hawkins & Kapadia, 1984; Hirsch & O’Donnell, 2001;
Jones et al., 1997; Jones et al., 1999; Konold et al., 1993). Some researchers approach the
importance of probability and statistics by identifying everyday situations where the average
person may interact with probability and statistics. For example, Garfield et al. (2008) suggests
that advertising has become more persuasive through presenting data. Because of this Garfield et
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al. suggest that it would be important for someone to be able to evaluate the claims the
advertisers are making and be able to make sound arguments themselves as the person in
question makes decisions. Therefore, all citizens should be educated in statistics. Because of the
importance of probability and statistics, statistics education is increasing at the elementary,
middle school, secondary, and post-secondary levels (Casey, 2010; Garfield et al., 2008). Others
consider the implications of probability and statistics in professional settings. Hirsch and

O’Donnell (2001) suggest that probability is vital in all careers and most everyday decisions.

2.1.2 Probability and statistics are difficult to teach

There are many issues associated with probability and statistics education. One issue is that when
compared to other areas of research, probability and statistics education is relatively new
(Garfield et al., 2008). Educational research on probability and statistics has only existed for the
past twenty years. Prior to the NCTM Standards (1989), probability and statistics were not
considered part of most mathematics curricula in schools. Research on probability and statistics
prior to the Standards, was primarily conducted by psychologists in an attempt to understand
subjects’ judgments in situations of uncertainty and the misconceptions that caused errors in
judgment (Shaughnessy, 1992).

Another issue related to research on probability and statistics education is the lack of
connection between research results and suggestions for instruction (Garfield et al., 2008).
Garfield et al. elaborate by saying that research is too often conducted in labs using quantitative
methods that don’t transfer to classrooms. Often this occurs because researchers do not feel that
qualitative methods would be relevant and the researchers are more comfortable outside of the

classroom setting.
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In addition to these research concerns, teachers often lack preparation specific to teaching
probability and statistics (Bataner, Godino, & Roa, 2004). Casey (2010) suggests that one cause
of this may be that few teachers have studied statistics, and the few that have studied statistics
were taught with an emphasis on procedural knowledge. Most teachers are being asked to teach
something they have never themselves experienced, reasoning with statistics (Casey, 2010;
Pfannkuch, 2006).

Statistical reasoning involves, “Making interpretations based on sets of data, graphical
representations, and statistical summaries (Garfield, 2002).” Garfield (2002) further suggests that
statistical reasoning is a combination of ideas about data and chance, making inferences, and
interpreting results. Even for those who are proficient in mathematical reasoning, there are three
areas of difficulty associated with statistical reasoning. Statistical reasoning is difficult because it
is contextual (Garfield, 2003), requires an aggregate view (McGatha, Cobb, & McClain, 1998),
and can be counterintuitive (Batanero & Sanchez, 2005; Baterno, Henry, & Parzysz, 2005;
Hawkins & Kapadia, 1984).

Contextual refers to the need to pay attention to contexts. In statistics, data alone is
meaningless. The contexts of the data provide all of the meaning. Mathematical reasoning is
abstract which means it attempts to remove the contexts and focuses on the underlying
mathematical rule or idea. Because of their stance on contexts, statistical reasoning and
mathematical reasoning are in direct conflict with one another (Garfield, 2003). An aggregate
view is a view that considers all the data as a whole instead of focusing on individual data points
(McGatha et al., 1998). Casey (2010) suggests that the inability to see data from an aggregate
view causes difficult for secondary students and prevents them from understanding topics that

are otherwise developmentally appropriate such as correlation coefficient. Reasoning related to
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probability can be counterintuitive which differs greatly from logical reasoning and causal
reasoning (Batanero & Sanchez, 2005; Baterno, Henry, & Parzysz, 2005; Hawkins & Kapadia,
1984). For example, if drug A is better for right handed people and drug A is better for left
handed people, one would reason that drug A is better for all people which is not necessarily true
(Hawkins & Kapadia, 1984). Conversely, in mathematics counterintuitive results only occur at
the highest levels while in probability they occur even at the elementary level (Baterno, Henry,
& Parzysz, 2005). Therefore, not only are teachers inexperienced in this form of reasoning, but
the experiences they have in mathematical reasoning can be contradictory to what they would be
asked to teach in statistical reasoning. It is not unreasonable to conclude that teachers with
degrees in mathematics may have difficulty teaching probability and statistics (Garfield et al.,
2008).

Garfield et al. (2008) suggest that both preservice and inservice teachers demonstrate
difficulty with understanding and teaching the core concepts of probability and statistics at all
levels K through 12. Teacher knowledge in statistics needs to be developed and determining
ways to develop such knowledge should be explored (Casey, 2010; Garfield et al., 2008).

Garfield et al. (2008) suggest that another problem is that teachers were taught statistics
via a lecture format and then chose to teach statistics in the same manner. Garfield et al. further
suggest that even though many efforts are made to lead teachers away from lecture-based
formats of instruction, few teachers actually change their methods. One suggestion for why this
takes place is because a lecture is much easier to prepare for than an activity. However, much as
in other topics in mathematics, lecture oriented approaches fail to develop deep understandings

and thus leave students with knowledge that quickly disappears (Garfield et al., 2008).
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Garfield et al. (2008) suggest that studies have demonstrated that students have
difficulties with even the most basic concepts in statistics. They conclude that promoting student
learning will be very difficult. In addition, studies have also demonstrated that preservice
teachers have limited or even incorrect notions related to the concept of sample even after they
have taken a statistics course. Similarly, Garfield et al. also reference studies that have
demonstrated participant failure to use relevant content when comparing groups of data even
after they have taken a methods course. Additionally, studies of students who earned an Ain a
college statistics course showed that shortly after completion of the course, the students had
limited understandings of mean, standard deviations, and the Central Limit Theorem (Garfield et
al., 2008). When all of these factors are added together, it makes sense that confidence would be
a serious issue for anyone being asked to teach statistics (Garfield et al., 2008).

Casey (2010) conducted a study of three mathematics teachers that were attempting to
teach students to think and reason statistically as well as becoming statistically literate. The
statistics content being taught was correlation coefficient. According to Casey, correlation
coefficient is developmentally appropriate for secondary students but is difficult to understand
because students fail to see data as aggregate and rely too much on personal beliefs about the
data. Additionally, Casey suggests that students struggle the most with inverse associate or
negative correlation. Casey observed during this study that for teachers to teach anything beyond
basic calculations of correlation coefficients, the teachers needed to possess a conceptual
understanding of correlation. This knowledge would include how to compute correlation, why
correlation is computed in that manner, and what the implications of this computation are. In

other words, teachers needed to know the meaning of correlation not just the computation. As a
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result, Casey suggests that teaching statistics requires three knowledge components: knowledge
of meaning, knowledge of terminology, and knowledge of context.

Research by Konold (1995) demonstrated that formal instruction often fails to impact
students. Konold used questionnaires and interviews to learn about the beliefs of college students
in relation to their prior education in statistics and found that the beliefs held by the participants
were unaffected by the classes they had taken. For example, Konold gave a questionnaire to 119
students asking about the accuracy of the weather forecast that claims a 70% chance of rain both
before and after they participated in a variety of different statistics courses and workshops. The
results showed only a 6% increase in the number of correct responses after instruction.

Finally Garfield et al. (2008) summarize other issues in statistics education by suggesting
that statistics is challenging to both teachers and learners for the following reasons:

1) Concepts and rules are complex and often counterintuitive
2) Students struggle with the underlying mathematics
3) Contexts can be misleading
4) Often confused with mathematics where there is one right answer and problems are not as
messy
Perhaps the greatest concern to educators in the areas of probability and statistics are the
widespread misconceptions in these areas. While misconceptions are an issue in mathematics

education, their role in probability and statistics education may be significantly stronger.

2.1.3 Misconceptions are widespread across content and among everyone

Most of what has been written in regards to probability and statistics focuses on the myriad of
misconceptions associated with them. There are many misconceptions, primarily among
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statistically naive thinkers, but even among those whom have been educated in probability and
statistics. Therefore, one might suggest that probability and statistics is an area of utmost
importance in education. However, these misconceptions could also make probability and
statistics an area of extreme difficulty to teach.

Hawkins and Kapadia (1984) note that there are many historical examples of
mathematicians themselves making errors when it comes to basic probability. One example
given is that a number of mathematicians felt that when flipping two coins, the probabilities of
both heads, both tails, and one of each were all equally likely (each being 1/3). One should
realize that flipping one of each is twice as likely (1/2) as the other two (1/4 and 1/4). Similarly,
Batanero, Henry, and Parzysz (2005) reference a famous mathematician, D’ Alembert, who
argued that the probability of getting at least one tail in the same two flips of a coin situation was
2/3 even though it should be %.

Hirsch and O’Donnell (2001) suggest that misconceptions related to probability and
statistics are developed outside of the classroom through informal experiences. Students are
exposed to complicated problems and develop heuristics to estimate the probabilities associated
with these problems. Unfortunately, in many cases these heuristics are faulty. Even though the
heuristics are faulty, they are deeply held and thus resist changing even with formal instruction
(Batanero, Henry, & Parzysz, 2005; Hirsch & O’Donnell, 2001; Konold, 1995). Hirsch and
O’Donnell suggest that students will passively go along with instruction but actually still hold on
to their misconceptions. As a result, students can choose correct answers to problems without
correct reasoning behind it.

Hirsch and O’Donnell (2001) were able to generate evidence of students using faulty

logic to generate correct answers in their research. Hirsch and O’Donnell gave students multiple
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choice and open-ended questions related to probability and probabilistic reasoning. The multiple
choice items would ask students which of the following is either least or most likely. Then there
would be a follow up multiple-choice item asking students to provide an explanation for their
answer. The results of this study showed that many students provided correct answers to
probability questions without providing the correct reasoning on the follow up question. This can
be especially dangerous for statistics education. Students and teachers would in essence be
seeing a false positive test. The positive being the correct answer but with false reasoning used to
determine the correct answer. Teachers may then be compelled to believe that the students have
mastered the concept due to the positive response without such mastery actually occurring. Since
the reasoning associated with the concepts is still faulty, future learning may be impeded as well.

In some cases, instruction in probability and statistics has actually caused students to rely
more on faulty heuristics. Research by Morsanyi, Primi, Chiesi & Handley (2009) demonstrated
that psychology students relied on the equiprobability bias heuristic more at the end of their
college educations than they did at the beginning. An example of how the use of this heuristic
was assessed is in the following question from Morsanyi et al. (p. 213, 2009):

The two most common causes of learning difficulties among university students are
dyslexia and dyscalculia. Out of 15 university students with learning difficulties, approximately
nine are dyslexic, and six have dyscalculia. Joe is a student with a learning difficulty. Which of
the following is most likely?

a) Joe is dyslexic

b) Joe has dyscalculia

c) Both are equally likely
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In this example, the appropriate response is choice A. Based on the data provided, Joe is
most likely dyslexic because nine of 15 university students with learning difficulties are dyslexic.
However, students using the equiprobability heuristic respond with C because they falsely
assume that two outcomes must be equally likely even though they have been provided data that
demonstrates this assumption to be untrue.

Research on misconceptions was initially conducted by psychologists, not educators. As
a result, reviews of literature on probability and statistics often trace research back to either
Piaget and Inhelder from the 1950’s or Tversky and Kahneman’s work from the 1970’s
(Shaughnessy, 1992; Chernoff & Sriraman, 2010; Garfield, 2008). These psychologists
developed many theoretical perspectives on probability and statistics and identified specific
heuristics subjects in their studies used to make decisions under conditions of uncertainty that led
to misconceptions of probability and statistics. Specifically, Tversky and Kahneman (1973) were
able to establish the existence of the representativeness and availability heuristics, which have
led them and other researchers to determine many other misconceptions that exist in the areas of
probability and statistics. A table of identified misconceptions can be found in Appendix A.

Teachers may benefit from being aware of these common misconceptions. If teachers are
able to anticipate potential misconceptions that students might have, they might be better able to
deal with those misconceptions during instruction. Since these misconceptions occur in people at
all levels of education, the teachers themselves might even have some of these misconceptions. If
the teacher has a misconception, it is vital that the teacher has an opportunity to change his or her
thinking. Therefore, tasks that address commonly held misconceptions could be beneficial to
both the teacher and students. However, since these misconceptions are so strongly held and

widespread, the curriculum materials containing such tasks will need to be educative in nature in
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order to support building teacher knowledge. Without such support, it is possible that the
misconception will either never be addressed or even worse, the misconception could be

reinforced if it is held by teachers and passed on to students.

2.2  GUIDELINES FOR ASSESSMENT AND INSTRUCTION IN STATISTICS

EDUCATION REPORT

In an attempt to help educators deal with all of the previously mentioned issues, the Guidelines
for Assessment and Instruction in Statistics Education (GAISE) Report was written. The GAISE
Report was written on the premise that, “Every high-school graduate should be able to use sound
statistical reasoning to intelligently cope with the requirements of citizenship, employment, and
family and to be prepared for a healthy, happy, productive life (Franklin et al., p. 1, 2007).” The
GAISE Report references advances in technology, a society that is filled with data in the
information age, and the NCTM as justification for statistics and probability being key
components to mathematics curriculum beginning as early as pre-K and continuing all the way
through 12" grade. However, incorporating probability and statistics is not as easy as just adding
it to the existing curriculum.

The GAISE Report concurs with the research previously referenced that suggests that
teachers have difficulty with teaching probability and statistics for many reasons (Franklin et al.,
2007). As previously suggested, one of these reasons is that probability and statistics are new
topics for many mathematics teachers. Because of this, teachers have not had the opportunity to
develop their knowledge of the concepts and underlying practices that they will be teaching. This

lack of knowledge leads to a vision of the curriculum that lacks cohesion. Another significant

34



difference that was previously mentioned and is suggested by the GAISE Report is that
mathematics and statistics differ greatly. The GAISE Report notes that mathematics is simply
about numbers, but statistics and probability are numbers with context. Garfield et al. (2008)
further explain that in mathematics contexts are discarded because they can be distracting, hence
the need for abstraction. These fundamental differences cause students to react differently to
each and therefore teachers need to be prepared differently depending on which one they are to
teach.

One area where these differences are evident is that statistics focuses on variability.
Franklin et al. (2007) define multiple types of variability in the GAISE Report. The basis of
statistics is comparing natural variability to induced variability. Natural variability refers to the
idea that measurements on individuals will vary. For example, if one were to measure the heights
of different people, not everyone is the same height. Induced variability refers to experiments
that are set up with the intention of creating variation. An example of this would be giving
someone a drug as compared to giving them a placebo. In addition to these two main types of
variability, Franklin et al. (2007) define two others, measurement variability and sampling
variability that are important to statistics. Measurement variability refers to the idea that even
repeating measurements on the same subjects can yield different results. For example, if a person
blood pressure is measured more than once, it is possible that the measurements will differ.
Sampling variability refers to the idea that two samples of the same population will likely yield
different results.

Many other researchers join Franklin et al. (2007) when they propose that all students
should have statistical literacy (Batanero & Sanchez, 2005; Ben-Zvi & Garfield, 2004; Garfield

et al., 2008; Jones & Thornton, 2005). Garfield et al. (2008) define statistical literacy as
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understanding both the language and tools of statistics. They suggest that this includes an
understanding of terms, symbols and representations of data, and the ability to interpret,
evaluate, and communicate about data. They further suggest that this occurs through five
knowledge bases: literacy, statistical, mathematical, context, and critical. Finally, they
specifically identify three levels of statistical literacy as knowledge of terms, understanding
terms in context, and critiquing claims.

In the GAISE Report, Franklin et al. (2007) suggest that statistical literacy should
emphasize data collection design, exploring data, and interpreting results. This emphasis is
evident in the GAISE Report’s suggestions for statistical problem solving. Franklin et al. suggest
the following four processes be included:

1) Formulating questions by clarifying the problem and determining what questions the data
can answer
2) Collecting data by designing and then employing a plan to collect data appropriate for the
question
3) Analyzing data with appropriate numerical and graphical methods
4) Interpreting results in relation to the original question
Franklin et al. (2007) suggest that variability plays an important role in the above process and
that an increased role of variability is indicative of maturation in the process. Specifically they
note the following:
1) To be a stats question, there must be variability
2) Acknowledge the variability and use randomness and other designs to minimize it

3) Use distributions (confidence intervals) to account for variability
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4) Generalizations must incorporate additional variability (make data go from sample to

population)

Based on all of these ideas, the GAISE Report was created. One purpose of the report was to
generate a framework that would represent a clear, coherent vision of what statistics education
might look like in the pre-K through 12 classrooms. The GAISE Statistics Framework consists of
three developmental levels. These levels are often equated with grade levels, but the intention of
them is to be based on levels of statistical literacy as opposed to age. Thus, an adult with no
experience in statistics would begin at level A even though some might consider level A to be
elementary level statistics. This is an important component of using the framework since it
would be inappropriate to have high school students working in level C if they have not first

experience levels A and B in elementary and middle school.

The distinction between the three levels is the role of variability (Franklin et al., 2007). In
level A, variability within a group is considered. Level B considered variability between groups
and covariability. Finally, at level C, students consider modeling aspects of data analysis.
Franklin et al. provide examples related to word length to illustrate the differences between the
levels. At level A, one might consider how the lengths of words on a single page differ. At level
B, one might consider how the lengths of words from third grade books compare to lengths of
words from fifth grade books and be able to describe the differences with statistical relationships
such as every grade the words get two letters longer. At level C, one might consider a regression
line predicting the lengths of words at each grade level book and determine if it predicts the

lengths well. The framework for each level can be found in appendix B.
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23 COMMON CORE STATE STANDARDS AND PROBABILITY AND

STATISTICS

Before moving forward, it may be helpful to summarize this chapter so far. The chapter has
established that probability and statistics are important topics and should be included in
mathematics education. It has been established that probability and statistics will be difficult to
teach because those with the responsibility to teach it are typically experts in mathematics, which
uses a different type of reasoning than probability and statistics. Mathematical reasoning often
involves abstraction, which requires eliminating contextual features of a problem. Probability
and statistics reasoning is just the opposite because the contexts are vital to interpreting the data
(Garfield, 2003). Probability and statistics are also difficult to teach because of the widespread
misconceptions strongly held by many people that will likely be present in the students and even

possibly the teachers.

2.3.1 Probability and statistics in curricula and standards

As information on probability and statistics has become available and more prevalent, studies
have begun to determine how much probability and statistics exist in current curricula and
standards documents. With the NCTM’s push to make probability and statistics mainstream
topics, one would expect that textbooks, state standards documents, and assessments would all
contain a variety of probability and statistics topics.

Porter, Polikoff, and Smithson (2009) analyzed state standards and compared them to
each other and NCTM Standards at the fourth and eighth grade levels. They found that they were

significantly different. There was nationwide agreement on 13 topics in mathematics, which
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represented on average only 18.6% of each state’s total curriculum and 21.4% of the NCTM’s
suggested content. Of the 13 topics, most indicated using low-level cognitive demand.

This is particularly disturbing since Porter, Polikoff, and Smithson (2009) suggest that
having clear consistent standards is the first step in standards based reform. However, Porter et
al. continue by suggesting that just having standards is not enough. In addition, assessments need
to be created to match the expectations of the standards or the standards will be ineffective.
Professional development and instructional materials can be aligned with standards and
assessments to create a coherent system of education that will better promote student learning.

CCSSM intend to change all of this. The argument has already been made for how the
CCSSM will facilitate such a change and therefore provides a fertile basis for this research.
Therefore, the next step is to analyze the suggestions found in CCSSM. Since this study uses
CCSSM as its guide to what areas of probability and statistics should be included in the
curriculum that was analyzed, it makes sense to make connections between suggestions found in
the literature and suggestions found in the CCSSM as part of a review of literature.

The GAISE Report was released in 2007. The authors of the GAISE Report were guided
by the findings from decades of prior research. CCSSM was released in 2010, which means that
the GAISE Report was able to influence what suggestions were made by CCSSM. This
relationship between research influencing GAISE and GAISE influencing CCSSM is
demonstrated in the tables that follow. There are three tables, each representing one of the
domains from CCSSM in the area of probability and statistics.

1) Interpreting Categorical and Quantitative Data
2) Making Inferences and Justifying Conclusions

3) Conditional Probability and the Rules of Probability

39



Within each of these domains, there is a cluster of standards. For example, there are nine
standards in the cluster associated with Interpreting Categorical and Quantitative Data. The rows
of the tables are organized by specific standards from CCSSM. Any suggestions from the GAISE
Report and suggestions found in research are summarized in the row with the CCSSM standard
to which the suggestions correspond.

The similarities across the rows are not coincidental. The tables demonstrate that the
GAISE Report influenced CCSSM and that both CCSSM and the GAISE Report were
influenced by research. Therefore, even if CCSSM were not adopted by many states nationwide,
it would still provide an appropriate basis for studying probability and statistics since it is based

on prior research and the GAISE Report.

2.3.2 Interpreting Categorical and Quantitative Data (S-1D)

The S-1D standard focuses on interpreting data. Specifically, there is a focus on summarizing,
representing, and interpreting data. Graphical representations of data are prevalent as well as
uses of measures of center and spread. A key point of emphasis is that the focus is not just on
drawing graphs and calculating measures of center and spread. The focus is on interpreting and
understanding what the graphs represent and what the measures of center and spread mean. The
keys to these understandings are interpreting each with contexts. In mathematics, contexts are
often intentionally ignored in favor of abstracting mathematical concepts. In statistics, contexts
are vital and cannot be ignored. Another key to interpreting data is an aggregate view. Students
must develop the ability to look at data as a whole rather than focusing on individual data points.
Table 2.1 provides links for each of the standards in this cluster with the recommendations in the
GAISE Report and relevant research.
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Table 2.1. Comparison of CCSSM S-ID cluster to GAISE report and research

CCSSM Standard

GAISE Report

Relevant Research

S-ID-1

At level A, students use dot plots

Garfield et al. (2008) suggests that

Represent data with and box plots to explore histograms and box plots cause
plots on the real distributions and association. confusion for students because the
number line (dot Students begin using histograms students think they are the same
plots,  histograms, at level B for summarizing and thing even though they are
and box plots) comparing distributions as well as significantly  different.  Bakker,
more sophisticated uses of dot Biehler, and Konold (2004) suggest
plots and box plots. Potential that boxplots present unique
confusion between bar graphs and challenges for students because the
histograms is noted as a misuse of median and quartiles are not easily
statistics in level A. understood and individual cases are
not perceiveable.
S-1D-2 Measures of center and spread are Groth and Bergner (2006) suggest
Use statistics introduced at level A and increase that students need to understand
appropriate to the in sophistication through levels B measures of center including which

shape of the data
distribution to
compar9e center
(median, mean) and
spread (interquartile
range, standard
deviation) of two or
more different data
sets.

and C. For example, the mean
evolves from an interpretation as
“fair share” to “balance point”
from level A to level B and then
sample means are used for
making statistical inferences.
Measures of spread start with
range at level A, progress to the
Mean Absolute Deviation at level
B, and then standard deviation
and applications of measures of
spread at level C.
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measure is most useful for a given
problem. Ben-zvi (2004) suggests
that spread is fundamental to
statistical thinking. Reading and
Reid (2006) suggest that variation
(spread) affects all other areas of
statistics. Reading (2004) suggests
that center is overemphasized while
variability is underemphasized or
even ignored due to difficulty.
Delmas and Liu (2005) suggest that
students will have difficulty with
variability and as a result cannot
make inferences or understand
distributions. Konold and Pollatsek
(2002) suggest a signal (center)
amongst the noise (variation) view
of center and spread.

(table continues)



Table 2.1 (continued)

CCSSM Standard

GAISE Report

Relevant Research

S-ID-3

Interpret differences
in shape, center, and
spread in the context
of the data sets,
accounting for
possible effects of
extreme data points
(outliers)

Context is viewed very differently
in statistics than it is in
mathematics. In mathematics, we
strip away contexts, but in
statistics, context is what gives
the numbers meaning. Students
will interpret differences in data
sets throughout all three levels of
the framework with degrees of
sophistication being developed
throughout.

Chance (2002) suggests that data
without context is useless. Casey
(2010) suggests knowledge of
context is important in teaching
statistics. Garfield et al. (2008)
suggests that making comparisons
between groups allows students to
develop an understanding of
contexts and that boxplots may be
useful for making such comparisons.
Pfannkuch (2006) suggests that
boxplots are difficult for both
students and teachers because they
are conceptually demanding,
obscure information, condense data,
and summarize data. Pfannkuch
(2006) also suggests that justifying
inferences is difficult and that
traditional  statistics  instruction
neglects making inferences with box
plots.

S-ID-4

Use the mean and
standard deviation of
adatasettofitittoa
normal distribution
and to estimate
population
percentages.
Recognize that there

are data sets for
which such a
procedure is not
appropriate. Use
calculators,

spreadsheets, and
tables to estimate
areas under the

normal curve.

Students should develop an
understanding of  appropriate
analysis as analysis that leads to
inferential statements regarding
population parameters that can be
justified. Normal distributions
should be introduced as a model
for sampling distributions and
students should be familiar with
finding areas under the normal
curve using appropriate
technology.
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Pfannkuch (2006) suggests that both

students and teachers need to
improve their abilities to
communicate in the area of

distribution. Garfield et al. (2008)
suggests that normal distribution and
fitting data to normal distribution are
important topics and prerequisites to
formal studying of sampling
distributions.

(table continues)



Table 2.1 (continued)

CCSSM Standard

GAISE Report

Relevant Research

S-1D-5

Summarize
categorical data for
two categories in
two-way frequency
tables. Interpret
relative frequencies
in the context of the
data (including joint,
marginal, and
conditional relative
frequencies).
Recognize possible
associations and
trends in the data.

Using a two-way frequency table
to summarize categorical data for
two categories is explicitly
suggested as part of level B.
Interpretations of data are part of

this suggestion including
recognizing  associations and
trends.

Understanding context is vital
(Casey, 2010; Chance, 2002;
Garfield et al., 2008). Batanero et al.
(1996) studied conceptions of
association in frequency tables and
suggest that three misconceptions
exist: dependence can only exist if
the two cells containing
disagreement  between variables
have a frequency of zero; inverse
association is a form  of
independence; judgments are based
on the cell that contains the
maximum frequency and ignores the
other cells.

S-ID-6

Represent data on
two quantitative
variables on a scatter
plot, and describe
how the variables are
related.

Representing two quantitative
variables on a scatter plot and
describing how they are related is
incorporated at all three levels (A,
B, and C) with varying levels of
sophistication. These
comparisons range from basic
comparisons like as one gets
larger the other gets larger at level
A to estimating lines of best fit at
level B and finally using least
squares to calculate a line of best
fit.

Garfield et al. (2008) suggest that
processing, analyzing, and
representing the data is one of four
stages of data analysis. Hubbard
(1997) suggests that students are
presented open-ended questions in a
standard form leading to
memorization that teachers
misinterpret as understanding (i.e.,
create a scatter plot, describe the
relationship, find the correlation
coefficient and say if it agrees with
the suggested relationship, find the
regression model and write the
equation, plot regression model,
state if the model does a good job
predicting).

S-ID-7

Interpret the slope
(rate of change) and
the intercept
(constant term) of a
linear model in the
context of the data.

Interpretations of both slope and
intercept are both explicitly
discussed at level C. This
discussion includes situations in
which interpretations of intercept
are unrealistic based on contexts.
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Garfield et al. (2008) suggests that
contexts are used to explain patterns
or deviations from patterns when
generating a model and that models
are the foundation of statistical
thinking yet are often neglected in
statistics courses.  Zieffler and
Garfield (2009) suggest that student
interpretation of rate of change is
slow to develop and often is not seen
as relating to covariation.

(table continues)



Table 2.1 (continued)

CCSSM Standard

GAISE Report

Relevant Research

S-1D-8

Compute (using
technology) and
interpret the
correlation

coefficient of a
linear fit.

At level B, the calculated
correlation coefficient is the
Quadrant Count Ratio. This

notion is built upon to develop the
use of Pearson’s correlation
coefficient at level C.

Falk and Well (1997) suggest that
correlation coefficient, specifically
Pearson’s r, is used in education,
psychology, the social sciences, and
IS central to many statistical
methods, but current instructional
practices lead to an impoverished
understanding of conception of
correlation. Rumsey (2002) suggests
time focused on calculating
correlation coefficients can inhibit
understanding.

S-ID-9

Distinguish between
correlation and
causation

Students  begin distinguishing
between correlation and causation
at level B and then continue to
develop the ability to distinguish
between the two at level C.
Specific suggestions are given for
each how to facilitate students
making this distinction at both
levels.

There is a common misconception
that correlation implies causation.
(Chance, 2002; Delmas et al., 2007;
Garfield, 2003)

Throughout Table 2.1, the influence of the GAISE Report and research on CCSSM can

be seen. The GAISE Report and research suggested much of the same content found in CCSSM

prior to CCSSM being released. In addition to these content suggestions, the GAISE Report and

research also emphasize a focus on understanding, how each fits into the big picture of statistics,

and cautions associated with each. Additionally, misconceptions and errors in emphasis during

instruction are identified as important points to be made about how these suggestions should be

taught. Both GAISE and research emphasize the importance of contexts in probability and

statistics education. The authors of CCSSM incorporated all these content suggestions and the

emphasis on contexts.
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2.3.3 Making Inferences and Justifying Conclusions (S-1C)

The S-1C standard focuses on making inferences and conclusions about a population based on a
sample of that population. The focus is not just on being able to make an inference or draw a
conclusion, but to understand why one can make such an inference or draw such a conclusion. In
addition, students are expected to understand the role of randomness in these inferences and
conclusions. Additionally, students should be able to look at the inferences and conclusions of

others and decide if they are appropriate.
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Table 2.2. Comparison of CCSSM S-IC cluster to GAISE report and research

CCSSM Standard

GAISE Report

Relevant Research

S-1C-1

Understand statistics
as a process for
making inferences
about population
parameters based on
a random sample
from that population

One of the four components
identified is  the process
component. At level A, students do
not make inferences. At level B,
making inferences is considered
reasonable by students. At level C,
students are able to make
inferences about the population.

Garfield et al. (2008) suggest
making inferences based on
samples is a central idea of

statistics but students are reluctant
to make inferences about a
population regardless of the
sample. They further suggest that
students have multiple difficulties
and multiple misconceptions in
the area of sampling.

S-IC-2

Decide if a specified
model is consistent
with results from a

given data-
generating  process,
e.g., using
simulation. For
example, a model

says a spinning coin
falls heads up with
probability 0.5.
Would a result of 5
tails in a row cause
you to question the
model?

Possible reasons for inconsistent
models are provided. At level C, p-
values are used to make judgments
when a model is in question. The
specific example of determining if
a coin is fair by using 5 tosses is
explicitly  discussed in  the
introduction.

Garfield et al. (2008) suggest that
students should understand how
data are produced, how data are
collected, where data comes from,
the types of analysis, and the
conclusions that can be made.
They further suggest that students
lack an understanding of the
importance of sample size.
Sample size is important to
consider in the case of tossing a
coin 5 times.

S-IC-3

Recognize the
purposes of and
differences among
sample surveys,
experiments, and

observational
studies; explain how
randomization
relates to each.

Collect data is one of the four
identified process components. At
level A, the differences are not
considered. At level B, differences
begin to be considered with sample
surveys and comparative
experiments being used. At level
C, students develop a full
understanding of each type of
statistical ~ study and  how
randomization is important to each.
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Garfield et al. (2008) suggest that
students should understand the
differences  between  random
sampling and random assignment.
Smith and Sugden (1988) suggest
that surveys, experiments, and
observational studies are
important to the work of applied
statistics and propose a framework
for examining each.

(table continues)



Table 2.2 (continued)

CCSSM Standard

GAISE Report

Relevant Research

S-IC-4

Use data from a
sample survey to
estimate a

population mean or
proportion; develop
a margin of error
through the use of

At level C, an appropriate analysis
is defined as one where justifiable

inferential statements about
population parameters can be
made. Specifically, population

mean is identified for numerical
data and population proportion is
identified for categorical data.
Multiple explicit suggestions for
estimating a population mean or
proportion and a margin of error
calculated based on the sampling
distribution are provided.

Garfield et al. (2008) suggest
making inferences based on
samples is a central idea of

statistics and should include how
data are produced, how data are
collected, where data comes from,
the types of analysis, and the
conclusions that can be made.
Yilmaz (1996) suggests statistics
education is important for many
students not majoring in statistics
yet has been ineffective. Yilmaz
suggests a course design that
includes studying  population,
sampling, drawing conclusions,
and statements regarding error
using appropriate technology.

simulation  models
for random
sampling.

S-IC-5

Use data from a
randomized
experiment to
compare two
treatments; use
simulations to decide
if differences

between parameters
are significant.

Level C  provides specific
suggestions regarding randomized
experiments  including  using
simulations to approximate a p-
value and decide if the differences
are significant.

No specific references to this
particular standard were found in
the research.

S-1C-6
Evaluate
based on data.

reports

An overall theme of the report is
that data governs our lives. It
suggests that students understand
how statistics are commonly
misused in reports so that students
may be equipped to identify such
things in the real world. Historical
examples of these misuses are
presented.

Garfield et al. (2008) suggest that
advertising has become more
persuasive through presenting
data, so it would be important for
someone to be able to evaluate the
claims the advertisers are making.
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The GAISE Report initially suggested many of the concepts later identified by CCSSM
and provided suggestions for developing these concepts throughout varying levels of
sophistication. For example, the GAISE Report suggests that students first consider making
inferences about the population at level B and are unable to make such inferences until level C.
Building on this idea, CCSSM suggests that students understand making inferences about the
population as one of the standards found in under the domain of Making Inferences and
Justifying Conclusions. Therefore, we can once again see that the suggestions found in CCSSM
are built upon the suggestions of the previously released GAISE Report. Research also plays an
influential role as many cautions that educators need to made aware of including areas where
students have misconceptions, reluctance, or tend to lack understanding are addressed. For
example, Garfield et al. (2008) suggests that students will be reluctant to make inferences based
on a scholarly review of research. Understanding this suggestion from research could be why the
GAISE Report does not address making inferences until its highest level of sophistication, level

C, and suggests that students will not even consider making inferences until level B.

2.3.4 Conditional Probability and the Rules of Probability (S-CP)

The S-CP standard focuses on independence, conditional probability, and rules of probability.
Multiple interpretations of independence are addressed both using and not using rules of
probability. Rules of probability are addressed with suggested example problems and methods of

interpreting results that may demonstrate appropriate understanding of each.
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Table 2.3. Comparison of CCSSM S-CP cluster to GAISE report and research

CCSSM Standard

GAISE Report

Relevant Research

S-CP-1

Describe events as subsets
of a sample space (the set of
outcomes) using
characteristics (or
categories) of the outcomes,
or as unions, intersections,
or complements of other
events (“or,” “and,” “not”).

While describing events as
subsets of sample space using
these characteristics is not
explicitly addressed, the use of
two-way frequency tables and

suggestions regarding
association require an
understanding  of  unions,

intersection, and complements.

Batanero, Henry, & Parzysz
(2005) suggest that sample
space and compound events
are important concepts for
probability instruction. Jones
& Thornton (2005) suggest
that middle school and high
school age students struggle
with sample space.

S-CP-2

Understand that two events
A and B are independent if
the probability of A and B
occurring together is the

product of their
probabilities, and use this
characterization to
determine if they are
independent.

Acknowledges the importance
of students understanding
independence, but defines
independence in the context of
random sampling providing
independent observations as
opposed to using the product
of probabilities as a
characterization.

49

Independence is an important
concept (Batanero, Henry, &
Parzysz, 2005; Batanero &
Sanchez, 2005). However,
Batanero, Godino, and Roa
(2004) suggest that although
independence can be expressed
by this multiplicative rule,
probability instruction s
moving away from this
characterization  because it
often leads to an incomplete
understanding of
independence.  Hirsch &
O’Donnell (2001) suggest that
students may be able to
demonstrate use of formal
rules while still holding on to
misconceptions.

(table continues)



Table 2.3 (continued)

CCSSM Standard

GAISE Report

Relevant Research

S-CP-3

Understand the conditional
probability of A given B as
P(A and B)/P(B), and
interpret independence of A
and B as saying that the
conditional probability of A
given B is the same as the
probability of A, and the
conditional probability of B
given A is the same as the
probability of B.

While not stating the rule
explicitly, the GAISE Report
interprets independence in the
same manner by suggesting
that independence is the
chance of one outcome not
being effected by knowledge
of another outcome (if a coin
landed on heads on the second
flip that doesn’t change the
probabilities associated with
the fourth flip of that coin).

Independence is an important
concept (Batanero, Henry, &
Parzysz, 2005; Batanero &
Sanchez, 2005). Batanero,
Godino, and Roa (2004) make
instructional suggestions for
developing an understanding
of conditional probability and
independence that include
playing a game with three
cards. One card is red on both
sides, one blue on both sides,
and one that is red on one side
and blue on the other. Cards
are randomly drawn with
replacement and only one side
shown to students. Students are
then asked to predict what
color the other side is.

S-CP-4

Construct and interpret two-
way frequency tables of data
when two categories are
associated with each object
being classified. Use the
two-way table as a sample
space to decide if events are
independent and to
approximate conditional
probabilities. For example,
collect data from a random
sample of students in your

school on their favorite
subject among math,
science, and  English.

Estimate the probability that
a randomly selected student
from your school will favor
science given that the
student is in tenth grade. Do
the same for other subjects
and compare the results.

Suggestions addressing this
standard are introduced at level
A and then further developed
at levels B and C with the
explicit use of a two-way table.

Rossman and Short (1995)
suggest that an intuitive
understanding of conditional
probability can be developed
using genuine data and two-
way frequency tables. They
present multiple examples and
suggest  that  conditional
probability provides
opportunities for important and
interesting examples to be
included in statistics education.
Batanero & Sanchez (2005)
suggest that students will
benefit from working with real
data and have multiple
misconceptions in conditional
probability. Chance (2002)
suggests that students will
benefit from working through
the entire statistical process as
opposed to textbook problems
that eliminate steps for them.
(table continues)

Table 2.3 (continued)
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CCSSM Standard

GAISE Report

Relevant Research

S-CP-5
Recognize and explain the

concepts of conditional
probability and
independence in everyday
language and everyday
situations. For example,
compare the chance of

having lung cancer if you
are a smoker with the
chance of being a smoker if
you have lung cancer.

Acknowledges the importance
of students understanding
independence, but defines
independence in the context of

random sampling providing
independent observations.
Specifically  addresses an

observational study involving
smoking and lung cancer at
level C.

Rossman and Short (1995)
suggest that the distinction
between P(A/B) and P(B/A) is
subtle yet crucial. They
specifically  reference  an
example where students are
asked to interpret a two-way
table of data and assess the
statement “most Democratic
senators are women” and
“most women senators are
Democrats” and refer to
making such an interpretation
as an essential skill.

S-CP-6

Find the conditional
probability of A given B as
the fraction of B’s outcomes
that also belong to A, and
interpret the answer in terms
of the model.

While this standard is not
explicitly —addressed, other
suggestions are closely related
and could be used in a manner
consistent with the suggestion
of CCSSM. For example,
suggestions  for  discussing
association as an interpretation
of conditional probabilities
readily lend themselves to this
suggested understanding of
conditional probability.

No specific references to this
particular view of conditional
probability were found in the
research.

S-CP-7
Apply the Addition Rule,
P(A or B) = P(A) + P(B) —
P(A and B), and interpret
the answer in terms of the
model.

Once again, while this standard
IS not explicitly addressed,
using the suggestions
regarding association could
easily incorporate the addition
rule and then interpreting the
results of the addition rule in
terms of the population based
on the model.

Hansen, McCann, and Myers
(1985) research demonstrates
that students who learned from
text that focused on conceptual
learning as opposed to rote
learning were able to apply six
formulas including P(A or B) —
P(A) + P(B) — P(A and B)
more effectively due to their
ability to categorize problems
by underlying concepts as
opposed to surface features
which could be misleading.
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Both the GAISE Report and research likely influenced the authors of CCSSM in the area
of independence. Both make the assertion that an understanding of independence is vital to
probability and statistics, which was then adopted by CCSSM. What is interesting is the stance
each takes on how that understanding is developed. The primary influence of the research is
cautioning against the use of formal rules because of how formal rules have the ability to mask
misconceptions. Because of this suggestion from research, the GAISE Report suggests formal
rules should be saved for advanced classes such as discrete mathematics or calculus and opts for
a more informal approach to developing an understanding of independence in earlier classes.
CCSSM incorporates multiple ways of understanding including both informal methods and the
use of formal rules. For example, standard S-CP-3 seems to reflect the suggestions of the GAISE
Report even though it relies on an application of a formal rule for conditional probability.
Standard S-CP-2 seems to contradict the suggestions of both GAISE and research since it

focuses on using a formal rule to define independence.

24  TEXTBOOK STUDIES

As argued in chapter 1, textbooks represent a way to influence classroom practices and affect
student achievement (Senk & Thompson, 2003). In some cases, research has suggested that
textbooks have more of an impact on student learning than the teacher (Begle, 1973). This is
because textbooks impact what students have the opportunity to learn (Schmidt, Houang, &
Cogan, 2002; Stein, Remillard, & Smith, 2007; Valverde et al., 2002; Willoughby, 2010) and the
teachers are dependent on them (Remillard, 2005). For these reasons, analyzing textbooks has

been an important method of research employed in both probability and mathematics education.
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2.4.1 Analysis of probability in textbooks

Jones and Tarr (2007) set out to determine the nature of probability topics in middle
school textbooks with a specific focus on the levels of cognitive demand. Jones and Tarr selected
two textbooks from four different eras of mathematics education published over the last 50 years.
Those four eras are New Math (1957 — 1972), Back to Basics (1973 — 1983), a focus on Problem
Solving (1984 — 1993), and the National Council of Teachers of Mathematics Standards (1994 —
2004) era. The textbooks were selected based on their popularity, which was determined by the
market share during a given era. Due to a lack of data, the popularity of textbooks during the
New Math era was determined by a consensus of mathematics educators familiar with the
curriculum during that era. In order to qualify for selection, textbooks must have been intended
for average students in grades 6, 7, and 8. For example, algebra textbooks were not considered
because they would have been intended for advanced students. Only student editions of the
textbooks were analyzed because Jones and Tarr were only concerned with tasks students may
have encountered.

In addition to examining popular textbooks, Jones and Tarr (2007) also analyzed what
they referred to as alternative textbooks. Alternative textbooks were ones that were identified by
the previously mentioned consensus of mathematics educators as being potentially innovative,
influential, or being a departure from the current popular series. Table 2.4 is a list of the eras,
popular textbooks, and alternative textbooks analyzed by Jones and Tarr.

Jones and Tarr (2007) used the task analysis guide (Appendix C) from Smith and Stein
(1998) as the basis for their analysis. Table 2.5 shows the codes from Smith and Stein and the
resulting description used by Jones and Tarr for their research in probability.

Table 2.4. Textbooks selected for analysis from different mathematical eras
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Era

Popular (Publisher)

Alternative (Publisher)

New Math
(1957 — 1972)

Structure and Use 6

Modern School Mathematics:

Structure and Method 7 & 8
(Houghton Mifflin)

Modern School Mathematics:

Mathematics for the
School, Grade 6
Mathematics for Junior High School,
Vols. | & 11

(Yale University Press)

Elementary

Back to Basics
(1973 —1983)

Holt School Mathematics:
Grades 6, 7, & 8
(Holt, Rinehart, & Winston)

Real Math: Levels 6, 7, & 8
(Open Court)

Problem Solving
(1984 —1993)

Mathematics Today:
Levels6,7, &8
(Harcourt Brace Jovanovich)

Math 65: An Incremental Development
Math 76: An Incremental Development
Math 87: An Incremental Development
(Saxon Publishers)

Standards
(1994 — 2004)

Mathematics:

Courses 1, 2, & 3
(Glencoe/McGraw-Hill)

Applications and Connections:

Connected Mathematics
(Dale Seymour)

Note. From “An examination of the levels of cognitive demand required by probability tasks in

middle grades mathematics textbooks,” by Jones & Tarr, 2007, Statistics Education Research

Journal, 6(2), p. 12. Reprinted pending permission

Table 2.5. Comparison of codes from Smith and Stein (1998) to Jones and Tarr (2007)

Smith and Stein (1998)

Jones and Tarr (2007, p. 8)

Memorization

Simply memorize information

Procedures without Connections

Routinely perform algorithms without giving any

attention to the meaning or development of the

procedure

Procedures with Connections

Focus on the meaning of a procedure or algorithm

Doing Mathematics

situation

Explore and analyze the mathematical features of a

Jones and Tarr (2007) found that most probability tasks across textbooks were at the level

of procedures without connections. However, two textbooks contained both more high-level

tasks and a higher percentage of high-level tasks than all others did. Those textbooks were the

standards era alternative series (Connected Mathematics) and the Back to Basics era alternative

series (Real Math: Levels 6, 7, & 8). The standards era alternative series was particularly

impressive because a majority (59%) of its tasks required high-level cognitive demand. By
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applying the finding that tasks either stay at the same level or decline during implementation
(Stein et al., 1996), Jones and Tarr suggest that most textbooks across each of the four eras
analyzed would have only provided students with opportunities for engagement at lower levels

of cognitive demand and thus severely limit their views and understandings of probability.

2.4.2 Textbook studies in mathematics education

Other studies where textbooks were analyzed also provide important insights for the proposed
study. Thompson, Senk, and Johnson’s (2012) analysis of high school mathematics textbooks for
opportunities to learn reasoning and proof is of particular interest. Thompson et al. (2012)
claimed that, “Textbook analysis is a first, but important, step in understand students’
opportunities to learn reasoning and proof (p. 282).” Thompson et al. analyzed both the
narratives and exercises of textbooks in order to determine what opportunities to engage in this
process were available in U.S. secondary textbooks. Thompson et al. analyzed the narratives
because they provide opportunities for teachers to introduce reasoning and proof to students.
Thompson et al. analyzed the exercises because they provide opportunities for students to
practice with reasoning and proof.

Thompson et al. (2012) analyzed a variety of textbooks for their study. They began with
the Algebra I, Algebra I1, and Precalculus textbooks from each of the large textbook publishing
companies (Glencoe, Holt, and Prentice-Hall). These major companies were included in the
study because they represent a majority of the textbooks being used by secondary schools. They
also analyzed Interactive Mathematics Program textbooks because of their reputation for
developing innovative curriculum materials. Finally, they analyzed textbooks from two different
curriculum development projects, Core-Plus Mathematics (courses 1 — 4) and the University of
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Chicago School Mathematics Project (Algebra I, Algebra 11, Functions, Statistics, and
Trigonometry, and Precalculus and Discrete Mathematics). This sample of textbooks allowed
them to analyze both traditional and Standards-based textbooks.

Thompson et al. (2012) suggest that students have few opportunities to engage in proof
and reasoning in both the narratives and exercises. Furthermore, many of the justifications found
in the Algebra | textbooks that were analyzed were related to a specific case rather than a general
case. Thompson et al. suggest that this focus on justifications with specific cases may contribute
to the willingness many students have to confuse an argument based on a specific example as a
proof.

Another key finding by Thompson et al. (2012) is the differences between the curriculum
materials based on their pedagogical design. Thompson et al. found that Core-Plus Mathematics
contained the largest percentage of proof and reasoning exercises with Interactive Mathematics
Program and the University of Chicago School Mathematics Project also rating as above average
in the percentage of proof and reasoning exercises. However, the style of the proof and reasoning
opportunities were not the same. Core-Plus Mathematics and Interactive Mathematics Program
provided students with more opportunities for making conjectures while the University of
Chicago School Mathematics Project provided more opportunities for students to read proofs.
Thompson et al. suggest that this is because Core-Plus Mathematics and Interactive Mathematics
Program are both investigation based while the University of Chicago School Mathematics
Project focuses more on the study of mathematical properties.

These results suggest that including textbooks in the current study that differ with respect
to the underlying philosophy of teaching and learning may also lead to differences with respect

to the level of cognitive demand the tasks require of students. In other words, investigation-based
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materials may require a different level of cognitive demand than materials that focus on
mathematical properties. On a related note, teachers may require more support to implement one
type of curriculum material than another may. Depending on the nature of the tasks found in
each textbook, teachers may be required to learn as much or more than the students are required

to learn in order for the curriculum to be implemented with fidelity.

25 EDUCATIVE CURRICULUM

Educative curriculum materials are curriculum materials that are written to educate the teachers
and students as opposed to those curriculum materials that only have student learning in mind.
The argument has just been made that probability and statistics are important topics but are
difficult to teach due to many factors including that misconceptions are widespread across
content and for students at all grade levels. Because of this argument, educating teachers along

with students may be vital in probability and statistics education.

2.5.1 The birth of educative curriculum materials

Ball and Cohen (1996) are often credited with initiating the notion that curriculum materials
could be written with the intention of educating the teacher along with the students. Ball and
Cohen suggest that textbooks represent an important avenue to teacher education because they
are a central fixture in teaching, intimately connected to teaching, well positioned to influence

individual teachers, and already a part of the routine of schools. Ball and Cohen suggest the
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drawback of using curriculum materials to influence instruction is that the teachers and
sometimes parents will reject the new textbooks.

Ball and Cohen (1996) suggest that curriculum materials often fail because they overlook
the teacher and all the needs the teacher will have in order to implement the curriculum well.
They suggest that since teachers shape instruction based on their understanding of the material,
their personal beliefs about what is important, and their perception of the roles students and
teachers should play in instruction, curriculum materials may be doomed to fail without strong
curricular guidance. Unfortunately, Ball and Cohen also suggest that lacking this guidance is a
common characteristic in our educational system.

One would assume that curriculum developers would prefer that their curriculum
materials be implemented with fidelity. However, Ball and Cohen (1996) suggest that teachers
often adapt curriculum materials to fit local needs that curriculum developers may not have been
able to predict. In addition, Ball and Cohen suggest that the educational system we operate in
often disparages textbooks and promotes the notion that the best teachers do not follow
textbooks. Ball and Cohen suggest that there is a significant gap between teachers and textbook
designers with little work being done to bridge this gap or study the relationship between the
two.

The premise of this work by Ball and Cohen (1996) is that “Curriculum materials could
contribute to professional practice if they were created with closer attention to processes of
curriculum enactment” (p. 7). Ball and Cohen later assert that, “Materials could be designed to
place teachers in the center of curriculum construction and make teachers’ learning central to
efforts to improve education” (p. 7). Based on this belief, the notion of educative curriculum

materials was born.
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Ball and Cohen (1996) suggest that there are five intersecting domains teachers work
across while enacting curriculum materials (p. 7):

1) Teachers are influenced by what they think about their students, what students bring
to instruction, students’ probable ideas about the content at hand, and the trajectories
of their learning that content.

2) Teachers work with their own understanding of the material, which shapes their
interpretations of what the central ideas are, how they hear, evaluate, and respond to
students’ ideas, and how they decide how to focus and frame the material for students

3) Teachers fashion the material for students, choose tasks or models, and navigate
instructional resources such as textbooks in order to design instruction.

4) Teachers must keep their eye on the group, and on the ways of knowing, interacting,
and working that seem possible. This requires attention to patterns and norms of
discourse, the nature of tasks, and the roles played by the teacher and student.

5) Teachers are influenced by their views of the broader community and policy contexts
in which they work, and by the expressed ideas of parents, administrators, and

professional organizations.

Ball and Cohen (1996) suggest that curriculum materials could be designed to take into
account the work that teachers must do in each of these five domains. They use knowledge of
students as an example. Ball and Cohen suggest that while each individual student may differ
some from the others, much of what students may think or do can be anticipated. Ball and Cohen

continue by suggesting that teachers’ guides could then offer examples of student work with
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comments on the meaning of each example to aide teachers in interpretation and anticipation of
student thinking.

Ball and Cohen also suggest that teachers’ guides could support teachers in learning
content better. This could be done by providing alternative representations and the connections
between them and the merits each would provide. Curriculum guides may be able to illuminate
the possibilities of curriculum materials that may have gone unnoticed by teachers.

Ball and Cohen (1996) also suggest that curriculum developers could make their
pedagogical judgments explicit to teachers. If teachers were made aware of pedagogical thinking
that went into specific tasks, their decisions on adaptation or omission of a task may be impacted.
In addition, teachers may be able to better present the materials if the pedagogy behind them
were made explicit instead of being kept secret.

Ball and Cohen (1996) suggest that rather than approaching a new curriculum with the
previously mentioned goal of fidelity of implementation, perhaps it would be more beneficial to
think of new curriculum materials as an opportunity for professional development. Ball and
Cohen acknowledge the difficulty in such a task. Curriculum materials would need to change the
way they are designed to incorporate things such as examples anticipated student work.

However, Ball and Cohen suggest that the results could be an increased capacity to teach.

2.5.2 Design heuristics for educative curriculum

Davis and Krajcik (2005) state that teacher learning is:

Developing and integrating one's knowledge base about content, teaching, and learning;
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Becoming able to apply that knowledge in real time to make instructional decisions;

participating in the discourse of teaching; and becoming enculturated into (and engaging

in) a range of teacher practices. Teacher learning is situated in teachers' practice. (p. 3)
Davis and Krajcik's (2005) definition of teacher learning is multifaceted, complex, and has many
components. Teacher learning requires subject matter knowledge, pedagogical knowledge, and
pedagogical content knowledge as suggested by Shulman (1986). Davis and Krajcik (2005)
further suggest that connections between ideas must be established as a part of teacher learning
while new instructional approaches are being developed and teaching principles are addressed.
Careful consideration must be given to possible student ideas that might arise.

Given all the needs and difficulties of teachers learning, what can educative curriculum
materials do? The positive potential of educative curriculum materials was described by Ball and
Cohen in 1996 and was advanced by Davis and Krajcik in 2005. Davis and Krajcik make five
suggestions regarding educative curriculum materials. These five suggestions then lead Davis
and Krajcik into developing nine design heuristics.

The first suggestion from Davis and Krajcik (2005) is based on Ball and Cohen (1996)
suggesting that educative curriculum materials could help teachers to anticipate student thinking
and help teachers consider what to do in reaction to this anticipated thinking during instruction.
Davis and Krajcik suggest that curriculum materials could also explain why the students might
be thinking that way. Additional support related to anticipating and dealing with student thinking
could include knowledge of different instructional representations such as analogies, models, or
diagrams.

The second suggestion by Davis and Krajcik (2005) is to promote teachers’ learning of

subject matter. Once again, this suggestion is based on Ball and Cohen (1996). The typical
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notion of subject matter knowledge should obviously be included here, but one could also
consider the disciplinary practices associated with a subject area. This would lend itself to the
notion of doing mathematics as a mathematician might instead of in the procedural world that
mathematics education often becomes in traditional classrooms.

The third suggestion made by Davis and Krajcik (2005) is that educative curriculum
could help teachers relate units during the year. Once again, this suggestion is based on Ball and
Cohen (1996). Davis and Krajcik suggest that this could move beyond providing teachers with
simple objectives. Instead, teachers could have lesson objectives presented in such a way that
they promoted the teachers reflecting on the lesson and how it fit into the context of the bigger
picture of the curriculum. This could promote a more coherent instructional program overall and
foster some discussions between teachers as they consider the courses they teach in relation to
the courses taught by their colleagues.

A fourth suggestion by Ball and Cohen (1996) that was expanded upon by Davis and
Krajcik (2005) is that educative curriculum materials could make the curriculum developers'
pedagogical judgments visible to the teachers using them. Davis and Krajcik suggest that by
providing rationales to the teachers, teachers will be able to better integrate their knowledge
bases and stronger connections will be made between theory and practice. This could improve
the flexibility with which the knowledge could be applied and could promote autonomy by
helping teachers make decisions about adapting curriculum materials to their own classrooms.

The fifth and final suggestion by Davis and Krajcik (2005) is that curriculum materials
might promote a teacher's ability to use resources either provided in the curriculum or provided
personally to adapt curriculum materials to fit local conditions while still achieving productive

instructional goals. They refer to this ability in a teacher as pedagogical design capacity. The
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theory behind this idea is that teachers enact a curriculum with their students in the classroom.
This enactment ideally may involve changes that are made to the curriculum materials but the
essence of the original curriculum materials are still addressed. In other cases, the teacher may
intentionally move away from the essence of the original materials, which could also be
acceptable. However, teachers may move away from the essence of the original curriculum
materials in such a way that is devastating to the intended learning of the materials. Given these
possible scenarios, it could be important to arm teachers with an improved ability to make
decisions regarding the enactment of curriculum materials in productive ways.

These five suggestions led to the creation of Davis and Krajcik's (2005) nine design
heuristics. The heuristics are listed in Table 2.6. These heuristics are based in science, but the
authors speculate that they are widely applicable to other fields, which could include
mathematics. This would seem to be a reasonable suggestions since the challenges faced by
teachers of science would seem to be similar to the challenge faced by teachers of mathematics.
The need to anticipate student thinking or make connections across topics does not change just
because the content does. Each of the nine heuristics includes what the curriculum materials
should provide the teacher, how the materials could assist the teacher in understanding rationales
behind decisions that were made by the developer, and how teachers could infuse their own ideas

into instruction

Table 2.6. Educative curriculum design heuristics (Davis & Krajcik, 2005)

Design Heuristic Description

Supporting Teachers in  Materials should provide tasks for students to engage in,
Engaging Students with Topic- rationales for the teacher explaining why the tasks are
Specific Scientific Phenomena  appropriate, and suggestions for implementing the tasks

well including potential difficulties and proper sequencing

Supporting Teachers in Using Materials should provide instructional representations
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Scientific Instructional

Representations

such as models or diagrams, rationales for the teacher
explaining why the representations are appropriate, and
suggestions for using the representation well including
what features are the most salient and support in adapting
the representations

Supporting Teacher in
Anticipating, Understanding,
and Dealing with Students’
Ideas About Science

Materials should identify likely student ideas and provide
suggestions to help the teacher in dealing with those ideas

Supporting Teachers in
Engaging Students in Questions

Materials should provide questions for teachers to use to
frame the unit, guide class discussion, and engage
students in asking and answering their own questions
while providing rationales for why the provided questions
are appropriate

Supporting Teachers in
Engaging Students With
Collecting and Analyzing Data

Materials should provide suggestions for approaches to
help students collect, compile, and use evidence across
multiple topics and provide the teachers with rationales
for why using evidence is important

Supporting Teachers in
Engaging Students in Designing
Investigations

Materials should support teachers in helping students
design their own investigations including ideas for
appropriate designs and suggestions for improving
inappropriate designs

Supporting Teachers in
Engaging Students in Making
Explanations Based on

Materials should provide suggestions for helping students
make evidence based explanations including rationales for
why engaging students in making evidence based

Evidence explanations is important

Supporting Teachers in  Materials should provide suggestions for helping students

Promoting Scientific communicate productively including rationales for why

Communication engaging students in productive communication is
important

Supporting Teachers in the Materials should support teachers in developing

Development of Subject Matter knowledge of the content beyond the students level

Knowledge including possible  student  conceptions and
misconceptions and  relationships to  real-world
phenomena

While not the first to suggest the potential for curriculum materials to be educative, Davis
and Krajcik (2005) are one of the most influential. Davis and Krajcik took the notions suggested
by the likes of Ball and Cohen in 1996 and developed design heuristics that could help readers
understand the potential for curriculum materials to promote teacher learning and thus be

educative. They posed the question, "How can K-12 curriculum materials be designed to support
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teacher learning, and what might teacher learning with educative curriculum materials look
like?" (Davis & Krajcik, p. 4, 2005). To answer this question, the design heuristics were intended
to act as a guide to curriculum developers and a basis for discussion on how specific features of a
curriculum might promote teacher learning.

Davis and Krajcik (2005) acknowledge the difficulties inherent in promoting teacher
learning. They suggest that teacher learning includes developing and integrating a teacher's
knowledge base regarding the content they are teaching, the pedagogy of teaching, and the
teacher's own learning. Then the knowledge must be applied in real time during instruction all
while trying to provide meaningful content to assist students to meet instructional goals in the
context of authentic activities. Further complicating matters is the diverse nature of classrooms
where all students are expected to succeed. Davis and Krajik suggest that all of this learning is
situated in practice. This practice may include planning and modifying lessons, assessments,
collaboration with colleagues, and communicating with parents.

To aide readers in understanding the complexity of teacher learning, Davis and Krajcik
(2005) provide a comparison between student learning and teacher learning. Students are given a
structured environment in school where they are provided a set of learning experiences intended
to increase subject matter knowledge. Teachers are not placed in a structured learning
environment and thus have to control their own learning. Teachers must also develop subject
matter knowledge much like the students, but teachers must also develop pedagogical knowledge
and pedagogical content knowledge as suggested by Shulman (1986). Since teachers are to apply
their knowledge while making real time decisions in the classroom, teachers must acquire a

much more flexible knowledge than students must. Because of these factors, one might suggest
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as Davis and Krajcik have that promoting teacher learning is different from promoting student
learning.

Davis and Krajcik (2005) acknowledge that they have not empirically tested their design
heuristics and thus do not refer to them as principles or standards. The term heuristic was
specifically selected to suggest that their research is intended to provide useful suggestions that
take research one-step closer to such principles or standards but that may require multiple
iterations and revisions before such a goal may be obtained.

Davis and Krajcik (2005) acknowledge some limitations of educative curriculum
materials. The educative nature of the curriculum may not be important if the content of the base
curriculum is not of high quality. This means that a curriculum that is educative but filled with
low-level tasks is not a good curriculum. A second limitation may be the teacher. Personal
characteristics of the teachers using the curriculum are likely to have a significant impact on the
effectiveness of the curriculum. The prior knowledge, beliefs held by the teacher, and the
teacher's attitude toward improving his or her own instruction will all be possible factors in
determining the effectiveness of how educative a curriculum can be. Finally, educative
curriculum is not enough to facilitate change on its own. Multiple avenues of professional
development should be used for maximum effectiveness.

If teachers can be educated through the curriculum materials, then instructional
effectiveness could be maximized and curriculum could be implemented with fidelity. The next
question one might ask is whether a specific curriculum is worth implementing well. Research in
mathematics education suggests that the most worthwhile curriculum uses tasks that require

high-level cognitive demand for students to complete (Boaler & Staples, 2008; Stein & Lane,
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1996). It would not be a stretch to think that the research on high-level tasks in mathematics

could apply to probability and statistics education as well.

2.5.3 Educative curriculum and CCSSM

Porter et al. (2011) suggest that CCSSM is considerably different than what states currently call
for and what teachers are currently teaching. This suggests that for CCSSM to be implemented
effectively, change must occur. For this change to occur, it may be necessary to have an impact
on teacher knowledge. Even if a teacher does not need to be impacted to promote the changes by
CCSSM, improving teacher knowledge can still be beneficial to instruction.

However, many approaches to improving teacher knowledge or even teaching in general
are ineffective. Putnam & Borko (2000) suggest that learning experiences aimed at teachers that
take place outside of the classroom do not have a meaningful impact because they are too
removed from the day-to-day work of teaching. As a result, teacher educators are challenged
with finding a way to facilitate learning experiences that actually relate to the work that teachers
do. One way to facilitate learning experiences related to the work teachers do, may be with
educative curriculum materials. Since teachers use curriculum materials as part of their day-to-
day teaching duties, it seems logical that curriculum materials could represent a possible avenue
for improvement in instruction that could have a meaningful impact since it is part of the day-to-

day work of teaching.
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2.5.4 Educative curriculum in mathematics education

The study most closely related to the current study was conducted by Stein and Kim (2009).
Stein and Kim set out to analyze both the demands and opportunities for teacher learning of two
Standards-based elementary school mathematics curricula. The rational for comparing two
Standards-based curricula was that if Standards-based curricula were assumed desirable, what
features make Standards-based materials different and therefore able to impact changes in
instruction differently. District leaders could then consider the needs of their individual district,
and decide which of these two desirable curricula would be better suited for their district. The
two elementary school, Standards-based mathematics curricula Stein and Kim analyzed were
Everyday Mathematics and Investigation in Number, Data, and Space.

Stein and Kim (2009) defined a few terms that are useful in the proposed study as well.
Stein and Kim define base curriculum materials to mean, "That portion of the materials that is
directly pitched to students and their learning (p. 10, 2009)." Stein and Kim define teacher
materials as, "The parts intended to guide teachers as they use the materials (p. 10, 2009)." Much
like the analysis by Stein and Kim, the proposed study focuses on both the base curriculum
materials and the teacher materials.

The curricula chosen by Stein and Kim (2009) were carefully selected due to some
specific features noted by the authors. Both curricula are designed to place an emphasis on the
strategies used by students with special attention being paid to multiple representations as
opposed to just correctness of solutions. Everyday Mathematics is a spiral curriculum in that
students are exposed to concepts repeatedly but with increasing depth as they revisit the concepts

throughout elementary school. Investigations is a module based curriculum where conceptual
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themes are developed into separate booklets and the order and pacing of the curriculum are less
important than mastery of individual modules.

Stein and Kim (2009) randomly selected lessons from each curricula to analyze for their
study. The main instructional task of each lesson was coded according to the math task
framework, which is based on research by Stein et al. (1996). Each task was coded as either
memorization, procedures without connections, procedures with connection, or doing
mathematics. Next, the teacher materials were examined for evidence of transparency and
anticipation of student thinking.

As expected, most of the tasks found in both curricula were high-level tasks meaning
they were procedures with connections or doing mathematics. The Everyday Mathematics
curricula had mostly procedures with connections (79%) while the Investigations curricula had
mostly doing mathematics (89%). Although both types of tasks are challenging to implement
well, the doing mathematics tasks are significantly more challenging for teachers because there is
no specified pathway for students to follow in approaching these tasks. Therefore, teachers are
charged with understanding both the right and wrong approaches student may use while
completing doing mathematics tasks which makes a significant demand on teacher knowledge.
Procedures with connections tasks tend to have a limited number of pathways for student
thinking that makes them much more predictable than doing mathematics tasks.

Based on these differences, Stein and Kim (2009) coded doing mathematics tasks as
placing high-level demand on teacher learning while procedures with connections tasks placed
low-level demand on teacher learning. This is not to suggest that procedures with connections
tasks are easy to implement. In fact, research would suggest otherwise (Stein et al., 1996;

Henningsen & Stein, 1997). However, the challenges associated with procedures with
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connections tasks are not as demanding as those associated with doing mathematics. These
results lead Stein and Kim to conclude that the Investigations curricula would place a higher
demand on teacher learning than Everyday Mathematics due to the high number of doing
mathematics tasks teachers would be asked to implement.

Based on the work of Ball and Cohen (1996) and then Davis and Krajcik (2005), Stein
and Kim (2009) identified the potential for teacher learning as information in the teacher
materials that provide teachers with the curriculum developers' rationales for including a
particular task in the curriculum and information that will assist teachers in anticipating student
thinking. Stein and Kim (2009) note that the notion of making curriculum developers' rationales
visible to the teacher is referred to as being transparent. Stein and Kim reference Davis and
Krajcik (2005) in suggesting that transparency could lead to teachers seeing connections between
suggested activities rather than having teachers feel like they are completing a list of
unconnected concepts. Stein and Kim suggest that many teachers' manuals fail to include
rationales, assumptions or agendas that underscore the actions requested of the teachers and
therefore limit the teacher's ability to intelligently select and adapt tasks. Stein and Kim (2009)
elaborate on anticipating student responses by suggesting that curricula could provide teachers
with discussion of typical student responses to tasks along with examples of student work. This
suggestion stems from research suggesting that effective teacher preparation involves active
envisioning of how students might approach a task both correctly and incorrectly.

Stein and Kim (2009) found that Investigations provide more opportunities for teacher
learning than did Everyday Mathematics. Investigations was judged transparent for 80% of the
tasks analyzed where Everyday Mathematics was only transparent for 21% of the tasks.

Similarly, Everyday Mathematics only included examples of student work and thinking 30% of
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the time compared to Investigations where 91% of the tasks included some form of student
responses, work, examples of potential difficulties, and/or explanations of how students may
interpret the task. These results led Stein and Kim to classify Investigations as having a high
number of opportunities for teacher learning while Everyday Mathematics had a low number of
opportunities for teacher learning.

To summarize the findings of Stein and Kim (2009), Investigations places a higher
demand on teacher learning than Everyday Mathematics to be implemented well, but also
provides more support for teacher learning. A school leader must then consider the needs of his
or her staff when deciding which of these two curricula he or she might choose. A staff that has a
high rate of turnover with a high number of at risk students may not benefit as much from the

same curricula as a staff with a low rate of turnover and a low number of at risk students.

2.6 HIGH-LEVEL TASKS

Stein and Kim (2009) were able to take two areas of research and combine them into one study.
This chapter has already discussed educative curriculum materials, which is one area,
represented in the Stein and Kim study. The other area is high-level tasks. Research on high-
level tasks began with Doyle in 1983. Doyle’s work established the importance of tasks in
education. As part of this important work on tasks, Doyle was also the first to classify tasks.
However, Doyle’s work was not focused on any specific content area. Researchers in
mathematics education (Stein, Grover, & Henningsen, 1996) then picked up where Doyle left off

and refined his work to apply more specifically to mathematics education.
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2.6.1 Establishing the importance of tasks

In 1983, Doyle explored the nature of academic work in both elementary and secondary schools.
Doyle also hoped to discover what adaptations to academic work might improve student
achievement. Doyle’s approach to this analysis was to view curriculum as a collection of tasks.
Doyle (1983) felt that, “tasks form the basic treatment unit in classrooms (p. 162)” and defined
the focus of a task as follows (p. 161):
(a) The products students are to formulate, such as an original essay or answers to a set of
test questions
(b) The operations that are to be used to generate the product, such as memorizing a list of
words or classifying examples of a concept
(c) The givens or resources available to students while they are generating a product, such as

a model of a finished essay supplied by the teacher or a fellow student
Doyle further clarified tasks as being defined by the answers students produce and the paths that
the students use to obtain those answers.

Doyle (1983) distinguished the types of tasks by acknowledging that tasks influence
learners because they direct the attention of learners to specific aspects of the curriculum and
specific ways of processing the information. Doyle noted that this could be particularly important
if the task directs the learner to process information in such a way that is based in meaning as
compared to processing information based simply in surface features. Doyle also acknowledged
that the resources provided with the task had a significant impact on the cognitive demand of the
task. The cognitive demand of a task could be significantly lowered depending on the additional
resources offered to the students.

Doyle (1983) categorized tasks four ways (p. 162):
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1) Memory tasks in which students are expected to recognize or reproduce information
previously encountered
2) Procedureal or routine tasks in which students are expected to apply a standardized
and predictable formula or algorithm go generate answers
3) Comprehension or understanding tasks in which students are expected to (a)
recognize transformed or paraphrased versions of information previously
encountered, (b) apply procedures to new problems or decide from among several
procedures those which are applicable to a particular problem, or (c) draw inferences
from previously encountered information or procedures
4) Opinion tasks in which students are expected to state a preference for something
Doyle (1983) makes an important assertion that could be applied to explain the
arguments made by those who support either traditional or Standards-based approaches to
teaching mathematics. Dolye suggests that the completing one type of task can interfere with the
goals of another type of task. Doyle specifically cites an example that learning an algorithm does
not enable one to understand why it works or when to use it much like a supporter of Standards-
based instruction would. Doyle further supports this view by noting that his analysis does not
support the notion that drill and practice are required for acquisition of understanding. However,
Doyle also suggests that understanding why an algorithm works and when to use it does not
always lead to being able to use it correctly much like a supporter of traditional instruction might

argue.
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2.6.2 The relationship between cognitive demands of tasks as set up and implemented

Stein, Grover, and Henningsen (1996) advanced the notion of the importance of high-level tasks
and brought task analysis to the forefront of research in mathematics education. Their research
analyzed the characteristics, levels of cognitive demand, and fidelity of implementation of the
level of cognitive demand of 144 tasks in classrooms in a reform-oriented mathematics project.
The focus of the research was the relationship between when the teacher set the tasks up and how
the tasks were actually implemented. Their goal was to examine the instructional tasks used and
determine what causes high-level tasks either to be maintained at a high-level or to decline to a
low-level.

Stein et al. (1996) have identified three phases that tasks must pass through as part of the
math task framework. First, the task appears in the curriculum materials or instructional
materials. Second, the teacher sets up the task. Third, the students implement them. Each of these
phases can influence student learning. This relationship is illustrated in Appendix D.

The notion of engaging students in high-level mathematical tasks was inspired by
national publications from the National Council of Teachers of Mathematics, the Mathematical
Association of America, and the National Research Council suggesting students develop deep
understandings of mathematics (Stein et al., 1996). The notion is that students should strive to
"do mathematics" just as a mathematician might. Stein et al. define this as "framing and solving
problems, looking for patterns, making conjectures, examining constraints, making inferences
from data, abstracting, inventing, explaining, justifying, challenging, and so on (p. 456)." Stein
et al. and their colleagues suggest that for students to be able to "do mathematics"” students must
be given the opportunity to engage in tasks that require high-level cognitive demand.

Unfortunately, most mathematics classrooms follow an all too common problem of the teacher
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presenting a problem with a prescribed algorithm and then assigning a set of similar problems for
students to practice individually. This type of instruction leads to either memorization or
practicing procedures without understanding why the procedure works or when to use it.

Stein, Grover, and Henningsen (1996) conducted their research as part of the QUASAR
Project. QUASAR (Quantitative Understanding: Amplifying Student Achievement and
Reasoning) was a reform oriented project at the University of Pittsburgh aimed at studying the
development and implementation of mathematics instructional programs in economically
disadvantaged middle schools. QUASAR was a school level reform where teachers received
professional development in an attempt to improve instructional opportunities for students who
typically are not given an opportunity to participate in meaningful and challenging learning
environments.

Stein, Grover, and Henningsen (1996) based the idea of analyzing mathematical tasks on
Doyle's (1983) assertion of the importance of academic tasks. The authors note that a
mathematical task is not a new task unless the underlying mathematical idea changes. Therefore,
a lesson may be made up of multiples problems but if they were all focused on a single
mathematical concept, they would be classified as one task.

Stein, Grover, and Henningsen (1996) categorized their codes into four categories: task
description, task set up, task implementation, and factors of decline or maintenance. These codes
included the duration of each task, the percentage of class time used for the task, the resources
the task was based on, the mathematical topic that was the focus of the task, the context of the
task, and if the set up was a collaborative effort among students. Codes specific to the set up and

implementation of the task included the cognitive demands of the tasks, number of solution
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strategies, number and types of representations, and the requirements for communication,
reasoning, or justification from students.

Of particular interest to the current study are the codes for the level of cognitive demand.
Low-level tasks were coded as either memorizations or procedures without connection. The
high-level tasks were coded as either procedures with connections or doing mathematics. The
authors made a judgment call when faced with tasks that included multiple types of cognitive
activity. Their decision was to code the task based on the task during set up and what a majority

of the students were doing during implementation.

2.6.3 High-level tasks and student learning

The Math Task Framework, Appendix D, suggests that tasks pass through three phases prior to
student learning. The first phase is the task as it appears in the curricular materials. The second
phase is the task as set up by the teacher. The third phase is the task as implemented by the
students. Stein and Lane (1996) investigated the link between tasks as set up by the teacher and
student learning at four middle schools as part of the QUASAR Project.

Stein and Lane (1996) noted three possibilities for tasks as they moved from being set up
by the teacher to being implemented by the students. The first is that high-level tasks were
maintained throughout implementation and thus were implemented at high-level cognitive
demand. The second was that tasks that were set up by the teacher to demand high-level
cognitive demand were implemented at low-level cognitive demand. The third was that tasks that
were set up by the teacher at low-level cognitive demand stayed at low-levels throughout

implementation.
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Stein and Lane (1996) suggest that the highest gains in student learning were from
classrooms where the instruction was focused on high-level tasks. Conversely, classroom where
the instruction focused on tasks that were set up and implemented with low-level cognitive
demand demonstrated the lowest gains in student learning. Tasks that were set up with high-level
cognitive demand even outperformed tasks that were set up with low-level cognitive demand
when they were not implemented with fidelity. In other words, even when both implemented at
low-levels, tasks set up for high-level cognitive demand still outperformed those set up for low-
level cognitive demand.

A second study aimed at studying the use of high-level tasks and their impact on student
achievement was conducted by Boaler and Staples (2008). Boaler and Staples analyzed student
achievement and attitudes over a period of five years in three different schools. One of the
schools, Railside, offered all students the same curriculum that the teachers had designed
collaboratively using Standards-based resources such as IMP. In addition to designing their own
curriculum, the teachers also developed their own method of enacting the curriculum that
emphasized students working in groups on high-level tasks. Students were not grouped by ability
level. Instead, every student at Railside was enrolled in the same Algebra course when entering
the high school. The other two schools offered both traditional courses and IMP in classes that
were grouped by ability level. Most students in these schools enrolled in the traditional courses.

An assessment based in middle school mathematics administered to first year students at
the beginning of the study demonstrated that students at Railside achieved at significantly lower
levels than students at the other two schools. This outcome was not unexpected since Railside is
situated in an urban, low-income setting. The other schools were in a suburban setting. At the

end of the first year, an algebra assessment indicated that the Railside students were still
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performing at a significantly lower level, but that they had closed the distance between the
schools. At the end of year two, an assessment containing both algebra and geometry (which all
students had received instruction in) demonstrated that the Railside students had not only
surpassed the students from the other schools, but they scored significantly higher than those
students did on the assessment. Additionally, students at Railside ended up taking more
advanced mathematics classes their senior year than students at the other two schools.

In summary, students from a disadvantaged school with a significantly lower level of
initial achievement were able to surpass their peers in only two years of instruction because of
being given the opportunity to engage in high-level tasks. This study demonstrates the important
relationship between high-level tasks and student learning. This study also demonstrates that
instruction focusing on engaging students in high-level tasks can be more effective than

traditional mathematics instruction.

2.7 SUMMARIZING CHAPTER 2

Probability and statistics are important topics because all people interact with them in a variety
of ways. Additionally, probability and statistics are growing in importance in most professional
careers. Because of their importance, probability and statistics education are becoming more
prevalent at all levels of schooling. This educational importance is acknowledged at the
secondary level by CCSSM since probability and statistics represents one of the six conceptual
categories for high school mathematics. The probability and statistics standards found in CCSSM
are built on suggestions by both the GAISE Report and scholarly research thus making these

suggestions an appropriate basis for research in probability and statistics.

78



CCSSM represents a change from what mathematics instruction currently takes place in
many classrooms across the United States. In order to meet the demands of CCSSM, students
may need opportunities to engage in high-level tasks. Additionally, instruction focusing student
engagement with high-level tasks will be the most effective way to promote student learning.
However, high-level tasks are difficult to implement well and therefore teachers will need
additional support to implement a curriculum designed to provide students with opportunities to
engage in high-level tasks. Additionally, probability and statistics may be difficult for teachers
implement well since most of these teachers are experts in mathematics and not probability and
statistics. Finally, probability and statistics tasks are difficult to implement well because
misconceptions are widespread, strongly held, and occur at all levels.

The combination of probability and statistics being exceptionally difficult to teach and
high-level tasks being more difficult to implement well may suggest that teachers will need more
support to meet the probability and statistics standards of CCSSM than any other conceptual
category. One way to provide additional support to many of these teachers is through the
curriculum materials they will be using. Curriculum materials that promote teacher learning in
addition to student learning, known as educative curriculum materials, may be beneficial in
aiding teachers in implementing the probability and statistics standards of CCSSM.

Based on this summary, it is appropriate to examine tasks found in secondary mathematics
textbooks that correspond to the probability and statistics standards of CCSSM. One way to
analyze these tasks would be to determine the potential of the task to engage students in
cognitively demanding work. The higher the level of cognitive demand, the more potential the
task will have in meeting the expectations of CCSSM. Once the level of cognitive demand has

been established, it may be important to note the potential for teacher learning. Tasks of high
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demand will require more opportunities for teacher learning than those of low demand. When all
of this data has been collected and analyzed, a clear picture of the potential a curriculum has to

meet the expectations of CCSSM in probability and statistics will be available.
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3.0 METHODOLOGY

Chapter 3 will focus on the methodology of the study. This chapter begins with a review of the
purpose of the study and the research questions intended to address that purpose. The chapter
will then discuss the textbooks that were included in the study and how the textbooks were
selected. Next, the specific methodology for this study will be discussed. Finally, the chapter will
connect the methodology of the study to the purpose of the study by discussing how the data that

is collected will relate to the research questions.

3.1 PURPOSE AND RESEARCH QUESTIONS

The purpose of the study is to determine the extent to which secondary mathematics textbooks
have the potential to prepare students and teachers to meet the demands of the content
recommendations in the domain of probability and statistics as specified in the Common Core
State Standards for Mathematics. Specifically, this study answers the following research
questions:
1) To what extent do current secondary mathematics textbooks provide opportunities for
students to engage in the probability and statistics content recommended by the Common

Core State Standards?
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2) What are the cognitive demands of the tasks that are aligned with the Common Core

State Standards recommendations for mathematical content in probability and statistics?

3) To what extent does the teachers’ guide provide support for enacting high-level tasks that
address the Common Core State Standards recommendations related to probability and
statistics?

a) To what extent does the teachers’ guide provide suggestions related to anticipation on
high-level tasks that reflect content recommendations of the Common Core State
Standards?

b) To what extent does the teachers’ guide provide transparency on high-level tasks that

reflect content recommendations of the Common Core State Standards?

3.2 TEXTBOOK SELECTION

All of the research questions focus on the analysis of items and tasks as they appear in the
written curriculum. Therefore, the curriculum selection is a vital part of the methodology of this
study. Analyzing textbooks has proven to be a valuable avenue for research in the past with
many examples of significant contribution being available in mathematics education alone (Jones
& Tarr, 2007; Ross, 2011; Stein & Kim, 2009; Stylianides, 2009; Thompson, Senk, & Johnson
2012). Three secondary mathematics textbooks series (Core-Plus Mathematics, Glencoe
Mathematics, and Interactive Mathematics Program) and the teachers’ guides that accompany
them were analyzed. Each of the identified textbooks series is described, including how it was

selected, in the sections that follow.
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The goal of the study was to analyze at least one traditional and one Standards-based
curriculum. The traditional curriculum would be selected based on widespread use. Selection of
the Standards-based curriculum began with an examination of the five curricula that were funded
by the National Science Foundation (Core-Plus Mathematics Project, Interactive Mathematics
Program, Math Connections, Mathematics: Modeling Our World, and SIMMS Integrated
Mathematics). Of these five, the curricula selected to represent Standards-based materials would
be that which had been suggested as being the most promising. For example, Martin et al. (2001)
references mathematics programs identified by the U.S. Department of Education’s Mathematics
and Science Expert Panel as being exemplary. These exemplary programs include two of the
National Science Foundation funded materials listed above, Core-Plus Mathematics Project and
Interactive Mathematics Program. Additionally, researchers have examined the performance of
students on multiple measures of achievement when using Core-Plus Mathematics Project or
Interactive Mathematics Program as compared to traditional mathematics curriculum (Chavez et
al., 2015; Grouws et al., 2013; Senk & Thompson, 2003; Tarr et al., 2013). In each case, the two
Standards-based curricula have performed as well or better than their traditional counterparts

have.

3.2.1 Glencoe Mathematics (GM)

The GM series is included because it represents a widely used textbook series (Ross, 2011). The
GM series represents a traditional approach to mathematics education. The traditional approach
means that the student editions include example problems with worked out solutions and
explanations provided to guide students through the steps of the solutions. Then there are
exercises at the end of each section often corresponding directly to one of these worked out
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examples. Additionally, the GM textbooks are organized by mathematical content meaning there
is a book dedicated solely to Algebra I, another book specifically focused on Geometry, etc. The
GM textbooks are published by McGraw-Hill and hold both the greatest collective market share
and each textbook holds the greatest individual market share relative to other textbooks of type
according to Ross (2011).! The GM textbook series is made up of four textbooks:

Algebra | (Carter et al., 2014)

Geometry (Carter et al., 2014)

Algebra 2 (Carter et al., 2014)

Advanced Mathematical Concepts: Precalculus with Application (Precalculus) (Holliday,

Cuevas, McClure, Carter, & Marks, 2014)
The worked out example problems, the exercises at the end of each section, and the narratives
were included in the analysis. A small sample from the GM Algebra textbook has been provided
to exemplify each. Figure 3.1 is a worked out example from lesson 0-13 of the GM Algebra
textbook. This example contains two items. The term items refers to the individual parts of a
task. In Figure 3.1, the first item asks students to make a histogram of the frequency. The second
item in Figure 3.1 asks students to make a histogram of the cumulative frequency. Figure 3.2 is
one of the corresponding exercises from lesson 0-13 of the GM Algebra textbook. Once again,
the exercise contains two items. Exactly like the worked out example, the first item asks students
to graph the frequency, and the second item asks students to graph the cumulative frequency.
Figure 3.3 is the part of the narrative of lesson 0-13 that is located prior to the worked out

example and is indicative of the entire narrative for lesson 0-13.

1 GM held the largest market share in 2011 and no data is currently available regarding the 2014
edition.
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Figure 3.1. Example aligned to S-1D-1 from GM Algebra 1 (Carter et al., p. 41, 2010)

2. PLAYS The frequency table at the right Tally . | Frequency |

shows the ages of people attending a high B - " o
school play.
a. Make a histogram to display the data. 20°35 | VA ATV L =
b. Make a cumulative frequency histogram 40-59 | [H1 JHT IHT Lit LT AT | 31
showing the number of people attending 60-79 | Wl 8
who were less than 20, 40, 60, or
80 years old.

Figure 3.2. Exercise related to Figure 3.1 from GM Algebra 1 (Carter et al., p. 45, 2010)

The cumulative frequency for each event is the sum of its frequency and the

frequencies of all preceding events. A histogram is a type of bar graph used to
display numerical data that have been organized into equal intervals.

Figure 3.3.Narrative found prior to Figures 3.1 from GM Algebra 1 (Carter et al., p. 41, 2010)
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3.2.2 Core-Plus Mathematics Project (CPMP)

The CPMP curriculum materials were funded by the National Science Foundation (NSF)
and represent a Standards-based approach to secondary mathematics education. The CPMP
curriculum materials have been identified as being an exemplary mathematics program by the
U.S. Department of Education’s Mathematics and Science Expert Panel (Martin et al., 2001).
Additionally, research by Martin et al. (2001) demonstrated that five NSF funded curricula,
including CPMP, were aligned with the NCTM Standards. Due to the existence of evidence
suggesting alignment with NCTM, there was optimism that CPMP would also align well with
CCSSM. Rather than have textbooks identified by content area, the CPMP textbook series
organizes textbooks by years. There are four years of textbooks intended to be implemented in
grades 9 through 12.

Core-Plus Mathematics, Course 1 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L.,

& Watkins, A. E., 2015)

Core-Plus Mathematics, Course 2 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L.,

& Watkins, A. E., 2015)

Core-Plus Mathematics, Course 3 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L.,

& Watkins, A. E., 2015)

Core-Plus Mathematics, Course 4 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L.,

& Watkins, A. E., 2015)

The CPMP curriculum materials are divided into years (1, 2, 3, and 4) which are then
subdivided into units, and then lessons. Each lesson contains at least two investigations and an
on your own section. Each investigation typically contained multiple items for instruction,

summarizing, and checking for understanding. Each individual item was coded to paint a picture

86



of the quantity of individual items as opposed to grouping all of the related items together as a
single main instructional task and potentially masking the levels of cognitive demand of some
parts of the curricula. In addition to coding items from the investigations, any items from the on
your own section that correspond to the probability and statistics standards from CCSSM and the
narrative parts of the text were also coded.

The following figures are from the first year of the CPMP textbook and exemplify what a
typical investigation looks like. Figure 3.4 is from Year 1, Unit 2, Lesson 1, Investigation 1 of
the CPMP curricula. It contains five items (note a-i and a-ii make up two of the five). Figure 3.5
is from Year 1, Unit 2, Lesson 1, Investigation 1. It contains four items. Figure 3.6 is the items at
the end of Year 1, Unit 2, Lesson 1, Investigation 1 that are intended to summarize the
investigation and be used for students to check their understanding. Finally, Figure 3.7 is the

narrative part of Year 1, Unit 2, Lesson 1, Investigation 1.
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@ As part of an effort to study the wild black bear population in
Minnesota, Department of Natural Resources staff anesthetized
and then measured the lengths of 143 black bears. (The length of a
bear is measured from the tip of its nose te the tip of its tail.} The
following dot plots (or number line plots) show the distributions of
the lengths of the male and the female bears.
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Sourse: Minitab Statistical Software Data Sat

a. Compare the shapes of the two distributions. When asked to
compare, you should discuss the similarities and differences
between the two distributions, not just describe each one
separately.

i. Are the shapes of the two distributions fundamentally alike or
fundamentally different?
il. How would you describe the shapes?

b. Are there any lengths that fall outside the overall pattern of either
distribution?

¢. Compare the centers of the two distributions.

d. Compare the spreads of the two distributions.

Figure 3.4. Items aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 76, 2015)
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Figure 3.5. Items aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 76-77, 2015)
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the Mathematic

is investigation, you explored how dot plots and histogram§ can he!p ‘yqu' se

t_he»i.{hape of a distribution and to estimate its center and spread.
@;'What is important to inciude in any description of a distribution? ;

Qt Describe some important shapes of distributions and, for each, give a daté‘vset‘ti‘iat’
- would likely have that shape. S L

@ Under what circumstances s it best to make a histogram rather than a d t.-pibt?'
" A relative frequency histogram rather than a histogram? R

srepared to share your ideas and reasoning with the class.

‘s__Li/Check Your Understanding
Consider the amount of fat in the fast-food sandwiches listed in the table
on page 82.
a. Make a dot plot of these data.
b. Make a histogram and then a relative frequency histogram of these data.
¢. Write a short description of the distribution so that a person who had
not seen the distribution could draw an approximately correct sketch
of it.

Figure 3.6. Items aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 83, 2015)

Investigation ]

. Shapes of Distributions

T A

Every day, people are bombarded by data on television, on the Internet, in
newspapers, and in magazines. For example, states release report cards for
schools and statistics on crime and unemployment, and sports writers
Feport batting averages and shooting percentages. Making sense of data is
important in everyday life and in most professions today. Often a first step
to understanding data is to analyze a plot of the data. As you work on the
problems in this investigation, look for answers to this question:

How can you produce and interpret plots of data
and use those plots to compare distributions?

Figure 3.7. Narrative aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 76, 2015)
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3.2.3 Interactive Mathematics Program (IMP)

Much like the CPMP curriculum materials, the IMP curriculum materials were funded by the
NSF and represent a Standards-based approach to secondary mathematics education. The IMP
curriculum materials were also identified as being an exemplary mathematics program by the
U.S. Department of Education’s Mathematics and Science Expert Panel (Martin et al., 2001).
IMP was also one of the five NSF funded curricula that demonstrated alignment with the NCTM
Standards according to Martin et al. (2001). Once again, due to the existence of evidence
suggesting alignment with NCTM, there was optimism that IMP would also align well with
CCSSM. In the same fashion as CPMP, the IMP textbook series organizes textbooks by years.
There are four years of textbooks intended to be implemented in grades 9 through 12.

Interactive Mathematics Program Year 1 (Fendel, D., Resek, D, Alper, L., & Fraser, S.,

2009)

Interactive Mathematics Program Year 2 (Fendel, D., Resek, D, Alper, L., & Fraser, S.,

2009)

Interactive Mathematics Program Year 3 (Fendel, D., Resek, D, Alper, L., & Fraser, S.,

2009)

Interactive Mathematics Program Year 4 (Fendel, D., Resek, D, Alper, L., & Fraser, S.,

2009)

The IMP curriculum materials were also divided into years (1, 2, 3, and 4) which were
then subdivided into categories that are referred to as units although they were not explicitly
called units by the curriculum materials. Each unit also had its own subcategories that resembled
the lessons from CPMP. Each lesson then contains activities, group activities, and problems of

the week. All three and any narrative sections were coded in the IMP curricula. Figure 3.8 is a
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group activity from the IMP curriculum called What Are the Chances?. This group activity

contains ten items. Figure 3.9 is an activity from the IMP curriculum called Rollin’, Rollin’,

Rollin’. This activity contains three items. Figure 3.10 is a problem of the week called A Sticky

Gum Problem. Figure 3.11 is the narrative found at the beginning of the unit containing the

group activity, activity, and problem of the week that are shown.

_ B E Group Aciiy | BN TEEE—

What Are the Chances?

Part I: Finding Probabilities

Sometimes the only way to find the probability of something is to use
observed probability—a model based on using your own experience
or making an educated guess. In other cases, you can use theoretical
probability.

Items A through | pose questions about probability. In each case,

« Decide on the probability, using a theoretical model if you can.

«» Describe how you decided on the probability. State whether your
answer was based on a theoretical model or on observed results, or
whether it was just a pure guess.

A. You pull one gumball out of a bag that contains three red gumballs,
two blue gumballs, and four black gumballs, What is the probability
that the gumball you picked is blue?

B. What is the probability of snow falling in Florida at least once
next July?

C. You arrive at an intersection with a traffic signal. What is the
probability that the light is red?

D. You flip a coin twice. What is the probability of getting one head
and one tail? * ‘a\
)
E. You roll a standard die. What is the probability of getting a g
prime number?

-

- Your teacher selects two students at random from your
class to run an errand. What is the probability that you are
one of the two students? A

G.

g

You randomly point to a student in your mathematics

class. What is the probability that this student is

wearing sneakers?

H. You roll two dice. What is the probability of getting
doubles?

I. You roll a pair of dice until you get doubles, What is the

probability that you get doubles in three or fewer rolls?

Part lI: Probabilities on the Number Line

Make a number line like the one below. For each item in Part 1,
indicate its probability by putting the letter in the proper place on
the number line.

continzad §

Figure 3.8. Items aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 92-93, 2009)
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Activity

Rollin’, Rollin’, Rollin’

Roll a pair of dice 50 times. With each roll, find the sum of the dice.
Keep a record of your sums in an organized way.

1. Draw a graph of the data you gathered.

2. Write a paragraph about your results. You
should summarize your observations about the
data and discuss why the results came out the
way they did.

3. What new thoughts does this
experiment give you about how to
play the counters game?

Figure 3.9. Items aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 104, 2009)

PROBLEM
OF THE WEEK

A Sticky Gum P}’ob’em As you create and solve examples of your own, look for a way to &
: S R : Y organize the information. Also look for patterns. Your goal is to

find a formula that will guarantee each child a gumball of the same

color. If someone tells you the number of gaumball colors and the

number of children, your formula will tell you the maximum

amount of money the parent might need to spend.

This Problem of the Week, or POW, starts with some specific

situations. It then asks you to generalize what you've learned from

the situations.

1. Ms. Hemandez comes across a gumball machine one day when she
is out with her twins. Of course, the twins each want a
gumball. They also insist on having gumballs of the

o Write-up

Begin your write-up for this POW with a discussion of Questions 1

same color. They don't care what color the gumballs
are, as long as they're both the same.

Ms. Hernandez can see that there are only white
gumballs and red gumballs in the machine.
The gumballs cost a penny each, and there
is no way to tell which color will come out
next. A\‘l;. Hernandez decides to keep
putting in pennies until she gets two
gumballs of the same color.

Why is three cents the most she might
have to spend?

9. The next day, Ms. Hernandez and her
twins pass another gumball machine.
This one has three colors of gumballs:
red, white, and blue. ‘
What is the most Ms. Hernandez might have fo spend at this
machine to get matching gumballs for her twins?

3. Mr. Hodges and his triplets pass the three-color gumball machine.
Of course, his children insist that they all get the same Color’)
gumbell. What is the most Mr. Hodges might have to spend?

; 4 §
After you have answered these questions, create some emmplte: o
your éwn You may want to begin with more examples about the ;

X 3 : LS,
Hernandez twins, using different numbers of colors. 0r>) ou m:{ wan
to create examples using the three-color gumball machine and larger
sets of children.

through 3. Explain your answers to each question, and describe the
process you used to solve them.

Then discuss the problems you made up and their solutions. Explain
how you organized your information and the patterns you found.

Finally, state any general ideas you were able to formulate. Include
conjectures you may have about the general problem, even if you can’t
prove them. For each general statement, explain why you think it's true.
Provide examples to illustrate each statement. Describe the process by
which you arrived at that generalization.

Figure 3.10. Items aligned to S-1D-1 from IMP Year 1 (Fendel et al., p. 83-84, 2009)
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Chance and Strategy

The theory of probability was developed in the seventeenth
century, primarily to answer questions posed by gamblers.
Mathematicians of the time saw that certain strategies

could help increase the chances of success in many types of
situations, even in those involving luck. Today, probability is
used in many areas, from scientific research to helping people
make good business decisions.

You'll enter the world of probability by exploring a dice
game called Pig. In the first few activities of this unit, you
will begin your search for the best strategy for the game by
experimenting with different options.

Flipping coins is another way to investigate ideas about
probability. In The Gambler’s Fallacy, you'll use coin flips to
arrive at a conclusion that may surprise you. Then you'll move
on to the formal definition of probability. As you'll see, people
: study probability
through both
experimentation and
theoretical analysis.

Leah Allen and Crystal Kovarik begin the unit by playing Pig and thinking
about strategies they might use to play the game.

Figure 3.11. Narrative aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 81, 2009)

3.3 METHODOLOGY

Stein and Kim’s (2009) work in analyzing tasks found in the written curriculum of elementary
mathematics textbooks provides the foundation of the methodology used for this study. Stein and

Kim analyzed the demands and opportunities for teacher learning of two widely used elementary
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mathematics programs, Everyday Mathematics and Investigations in Number, Data, and Space.
These textbooks both represent Standards-based curricula. Stein and Kim (2009) analyzed both
the textbooks intended for the students, referred to as base materials, and the materials intended
for the teachers, referred to as teacher materials, found in the teacher’s edition of the textbook in
close proximity to the lesson for the student. Stein and Kim did this because survey research in
the districts where they did their analysis demonstrated that a majority of teachers did not consult
materials in books that are separate from those intended for daily use. The base materials were
analyzed to determine the level of cognitive demand of the textbooks using the Task Analysis
Guide (Smith & Stein, 1998). The teacher materials were analyzed to determine what
opportunities for teacher learning were available. Specifically, the teacher materials were
analyzed for transparency, which refers to the curriculum writers being explicit about the
mathematical purpose of the task, and anticipation, which refers to helping teachers to anticipate
student responses.

This study also analyzed both base materials and teacher materials to determine the level
of cognitive demand based on the Task Analysis Guide and the opportunities for teacher learning
in the areas of transparency and anticipation. However, multiple grain sizes of analysis were
used. Stein and Kim (2009) analyzed what they referred to as the main instructional task of each
lesson. To ensure a complete picture of each curriculum, both a smaller grain size and more
widespread analysis than looking only at the main instructional task was used for this study. The
analysis began by following the Thompson, Senk, and Johnson (2012) methodology in
identifying smaller pieces than tasks to be coded. These individual pieces are referred to as
items. Thompson, Senk, and Johnson coded the lesson’s narratives and all exercises within the

lesson including review exercises. Anything in the textbook that represents an opportunity to
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learn was considered in their analysis. Once these data were collected, the individual items were
then grouped together to form the main instructional tasks as defined by Stein and Kim (2009)
and examined in a manner consistent with their methodology as well. By analyzing the textbooks
using both the item view and task view, a clearer picture of the textbook was available than by
simply looking at one or the other.

A task is defined as, “A classroom activity, the purpose of which is to focus students’
attention on a particular mathematical idea (Stein et al., p. 460, 1996).” Grouping items into tasks
required looking at the mathematical idea behind each item. It is important to note that none of
the narratives, review exercises, or parts of a curriculum that are not intended for instructional
use such as the Problems of the Week in the IMP curriculum were coded at the level of task.

For the IMP textbooks, the tasks were the activities or group activities since they are intended to
be the instructional component of the curriculum and are organized to contain multiple items all
focused on developing some common mathematical idea. For the CPMP textbooks, the
investigations are divided into exercises for the student to work though. Each exercise would
represent multiple items focused on the same mathematical idea, so each exercises often
represented a task. If consecutive exercises represented the same mathematical idea, then they
were group together and coded as a single task. The GM textbooks typically have multiple
exercises grouped under the same set of directions. For example, the directions might say for
problems 15 — 23 find the mean of the set of data. Since all of the problems from 15 — 23 involve
finding the mean, they would be considered one instructional task. Because the GM textbooks
follow the traditional pattern of providing an example and then providing exercises that
correspond to that example, exercises were often grouped together with others that relate to the

same example. This grouping of exercises constituted a task because they related to the same
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previous example and thus the same mathematical idea. For example, Figure 3.1 and Figure 3.2
would be consider a single instructional task because the exercise in Figure 3.2 was exactly like

the example in Figure 3.1.

3.3.1 ldentifying the items to be analyzed

Each of the curricula selected has an online resource that aligns the curriculum materials to the
CCSSM. Only parts of the textbook identified in this online resource as being aligned to one of
the standards for probability and statistics in the CCSSM were analyzed. However, there were
cases where a subset of the sections identified by the online resource did not align to the CCSSM
in the areas of probability and statistics. This often occurred because the item was included for
review purposes. Only those items identified by the online resource that were verified as actually
aligning with CCSSM in probability and statistics were analyzed.

A spreadsheet was created containing entries for every item where a curricula claims
alignment with CCSSM. In the case of the CPMP textbooks, either page numbers or a page
number with the specific items in alignment with the specified standard were identified. The GM
curricula choose to identify alignment with a standard by providing a chapter and section
number. For example, 12-3 would represent chapter 12, section 3. The IMP curriculum identified
activities by titles that align to a specified standard. Table 3.1 is an example of that spreadsheet

with a focus on standard S-1D-1.
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Table 3.1. Sections aligned to S-ID-1

Standard Textbook Section
S-ID-1 CPMP-1 67

S-1D-1 CPMP-1 73-101

S-ID-1  CPMP-1 106

S-1D-1 CPMP-1 108-142

S-ID-1  CPMP-1  144-147

S-1D-1 CPMP-1 231 #29

S-ID-1  CPMP-1 454 #31

S-ID-1 CPMP-1 554-556

S-ID-1  CPMP-1 558

S-1D-1 CPMP-1  560-562

S-ID-1  CPMP-1 564

S-1D-1 CPMP-1 571-575

S-ID-1  CPMP-1 587

S-1D-1 GM-A1l 0-13

S-ID-1  GM-A1l  12-3

S-1D-1 GM-A1l 12-4

S-ID-1 IMP-1 What Are the Chances?
S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’
S-ID-1  IMP-1 Waiting for a Double

Once the online identification of sections of the textbooks was established, the next step
was to identify the items within those sections that were in alignment with the given standard (in
this case S-ID-1). Since the goal of this research was to gain a clear understanding of the
opportunities that might exist in the areas of probability and statistics in a given set of curriculum
materials, all parts of those curriculum materials were considered. Consistent with the
methodology of Thompson, Senk, and Johnson (2012) both the narrative of the lesson and the
exercises in the lesson were analyzed. This included those exercises intended for review.
Thompson, Senk, and Johnson believed the narrative provided opportunities for teachers to
introduce reasoning and proof (the focus of their analysis) while the exercises provide the
students opportunities to engage in practice with reasoning and proof. In this case, an item may

be introduced by the narrative or engaged in during the exercises and thus both require analysis.
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Rather than look at all of the sections indicated as being in alignment with S-ID-1, it may
be more beneficial to discuss the methodology with a more focused approach. Therefore, from
this point forward, a subset of the sections will be used to continue this discussion of
methodology. Table 3.2 is a subset of the same example spreadsheet from Table 3.1 with the
“Item” column completed. This column is used to identify the parts of the identified sections that
are aligned to the specified standard (in this case S-1D-1) from CCSSM. Often, multiple items
were found in alignment with the specified standard in any one identified section. It is important
to note that in some cases, in some cases, no alignment was found between the item and the
identified standard from CCSSM. For example, “Waiting for a Double” in the IMP curriculum
does not actually align with the standard S-1D-1 because the data are never represented with a

plot on the real number line (see last row in Table 3.2).
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Table 3.2. Items aligned to S-ID-1 from sections in Table 3.1

Standard Textbook Section Item
S-ID-1  CPMP-1  73-101: U2-L1-11 Narrative
S-1D-1 CPMP-1  73-101: U2-L1-11 la-i
S-ID-1  CPMP-1  73-101: U2-L1-11 la-ii
S-1D-1 CPMP-1  73-101: U2-L1-11 1b
S-ID-1  CPMP-1  73-101: U2-L1-11 1c
S-1D-1 CPMP-1  73-101: U2-L1-11 1d
S-ID-1  CPMP-1  73-101: U2-L1-11 2a
S-1D-1 CPMP-1  73-101: U2-L1-11 2b
S-ID-1  CPMP-1  73-101: U2-L1-11 2¢C
S-1D-1 CPMP-1  73-101: U2-L1-11 2d
S-ID-1  CPMP-1  73-101: U2-L1-11 3a
S-1D-1 CPMP-1  73-101: U2-L1-11 3b
S-ID-1  CPMP-1  73-101: U2-L1-11 3c
S-1D-1 CPMP-1  73-101: U2-L1-11 3d
S-ID-1  CPMP-1  73-101: U2-L1-11 4a
S-1D-1 CPMP-1  73-101: U2-L1-11 4b-i
S-ID-1  CPMP-1  73-101: U2-L1-11 4b-ii
S-1D-1 CPMP-1  73-101: U2-L1-11 4c-i
S-ID-1  CPMP-1  73-101: U2-L1-11 4c-ii
S-1D-1 CPMP-1  73-101: U2-L1-11 44
S-ID-1  CPMP-1  73-101: U2-L1-11 5a
S-1D-1 CPMP-1  73-101: U2-L1-11 5b
S-ID-1  CPMP-1  73-101: U2-L1-11 6a
S-1D-1 CPMP-1  73-101: U2-L1-11 6b
S-ID-1  CPMP-1  73-101: U2-L1-11 7a
S-1D-1 CPMP-1  73-101: U2-L1-11 7b
S-ID-1  CPMP-1  73-101: U2-L1-11 7c
S-1D-1 CPMP-1  73-101: U2-L1-11 7d
S-ID-1  CPMP-1  73-101: U2-L1-11 8a
S-1D-1 CPMP-1  73-101: U2-L1-11 8b
S-ID-1  CPMP-1  73-101: U2-L1-11 8c
S-1D-1 CPMP-1  73-101: U2-L1-11 8d
S-ID-1  CPMP-1  73-101: U2-L1-11 9a
S-1D-1 CPMP-1  73-101: U2-L1-11 9b
S-ID-1 CPMP-1  73-101: U2-L1-11 9c
S-1D-1 CPMP-1  73-101: U2-L1-11 9d
S-ID-1 CPMP-1  73-101: U2-L1-11 SM1
S-1D-1 CPMP-1  73-101: U2-L1-11 SM2
S-ID-1 CPMP-1  73-101: U2-L1-11 SM3
S-1D-1 CPMP-1  73-101: U2-L1-11 CYUa
S-ID-1 CPMP-1  73-101: U2-L1-11 CYUb
S-1D-1 CPMP-1  73-101: U2-L1-11 CYUc

100
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Table 3.2 (continued)

Standard Textbook Section Item

S-1D-1 GM-A1l 0-13 Narrative
S-ID-1 GM-A1  0-13 Example 2
S-ID-1  GM-Al  0-13 Example 4
S-ID-1 GM-A1  0-13 Example 6
S-ID-1  GM-Al  0-13 Example 7a
S-ID-1 GM-A1  0-13 Example 7b
S-ID-1  GM-Al  0-13 Example 7c
S-ID-1 GM-Al  0-13 Example 8a
S-ID-1  GM-A1l  0-13 Example 8b
S-1D-1 GM-Al 0-13 Exercise 2a
S-ID-1 GM-A1  0-13 Exercise 2b
S-1D-1 GM-Al 0-13 Exercise 3
S-1D-1 GM-A1l 0-13 Exercise 4
S-1D-1 GM-A1l 0-13 Exercise 5
S-1D-1 GM-A1l 0-13 Exercise 7
S-1D-1 GM-A1l 0-13 Exercise 8a
S-ID-1 GM-A1  0-13 Exercise 8b
S-1D-1 GM-A1l 0-13 Exercise 8¢
S-ID-1 GM-A1  0-13 Exercise 9a
S-ID-1 GM-A1l 0-13 Exercise 9b
S-ID-1 GM-A1  0-13 Exercise 9c
S-1D-1 GM-A1l 0-13 Exercise 10
S-1D-1 GM-A1l 0-13 Exercise 11
S-1D-1 GM-A1l 0-13 Exercise 12
S-ID-1 GM-A1  0-13 Exercise 13a
S-ID-1 GM-A1l 0-13 Exercise 13b
S-ID-1 GM-A1  0-13 Exercise 13c
S-ID-1 GM-A1l 0-13 Exercise 13d
S-1D-1 GM-A1l 0-13 Exercise 14a
S-ID-1 GM-A1l 0-13 Exercise 14b
S-1D-1 GM-A1l 0-13 Exercise 14c
S-ID-1 GM-A1l 0-13 Exercise 14d
S-1D-1 IMP-1 What Are the Chances? Part| - A
S-ID-1 IMP-1 What Are the Chances? Part|l-B
S-ID-1 IMP-1 What Are the Chances? Partl-C
S-ID-1 IMP-1 What Are the Chances? Partl-D
S-1D-1 IMP-1 What Are the Chances? Part|l—-E
S-ID-1 IMP-1 What Are the Chances? Part|-F
S-ID-1 IMP-1 What Are the Chances? Partl -G
S-ID-1 IMP-1 What Are the Chances? Part|—-H
S-1D-1 IMP-1 What Are the Chances? Part|— 1
S-ID-1 IMP-1 What Are the Chances? Part Il
S-ID-1 IMP-1 Rollin’, Rollin’, Rollin> 1

(table continues)
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Table 3.2 (continued)
Standard Textbook Section Item
S-ID-1 IMP-1 Rollin’, Rollin’, Rollin> 2
S-1D-1 IMP-1 Rollin’, Rollin’, Rollin> 3
S-ID-1  IMP-1 Waiting for a Double No alignment

Within a single page or section of a textbook, there were often many items to be
analyzed. Once again, in an effort to focus this discussion of methodology, a subset of the items
will be used to continue this discussion. Each textbook has a different approach to instruction
and thus an item in one textbook may look different than an item does in another.

Data was collected on how many items in a given textbook and in a given series are
related to probability and statistics. Which textbook the items are found in may also be important
since many states require only 3 years of mathematics. Any textbooks beyond the first three of
each curricula (GM — Advanced Mathematical Concepts, CPMP — Year 4, IMP — Year 4) are
more likely to be omitted for students completing only the minimum state requirements for
graduation. Each of these more likely to be omitted textbooks was still analyzed for this research
because they still represent opportunities for engagement. The results and discussion of this
study include two analyses. The first analysis considers each curricula in its entirety. The second

analysis considers only the first three years of each curricula.

3.3.2 ldentify level of cognitive demand

Items were coded using the Task Analysis Guide as found in Smith and Stein (1998) (see
Appendix C). The Task Analysis Guide specifies the characteristics of tasks in each of four

categories: memorization, procedures without connections, procedures with connections, and
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doing mathematics. Each item was coded based on the highest potential level of cognitive
demand it could achieve.

Once each item was assigned a code, both the frequency of each code and the percentage
of items receiving each code are reported. These data are reported by standard, by textbook, and
by overall curriculum. This was done to establish an overall rating of the cognitive demand in
each manner described. In other words, the data rates the cognitive demand for each standard,
each textbook, and each series overall.

Once again, to focus the discussion, a subset of the items presented earlier will be used to
facilitate the discussion from this point. The items from Figure 3.2 from the GM textbook, Figure
3.4 and Figure 3.5 from the CPMP textbook, and Figure 3.8 and Figure 3.9 from the IMP
textbook will be analyzed further. The items are shown in Table 3.3 with codes for cognitive
demand. The CPMP examples highlight the rationale behind the methodology of coding each
individual item. In both cases, if the analysis were limited to only coding the main instructional
task, both would have received a code of doing mathematics. However, upon further inspection,
in the first task from CPMP (Figure 3.4), three items are doing mathematics, one item is
procedures with connections and one item is procedures without connections. In the second task
from CPMP (Figure 3.5), one item is doing mathematics, two items are procedures with
connections and one item is procedures without connections. By analyzing each individual item
as opposed to only the task as a whole, a clearer picture of the curriculum may be available.

In some cases, there is not as much of a distinction. For example, all ten items of the IMP
task What Are the Chances? are examples of procedures with connections because students are
given suggested pathways that have connections to underlying conceptual ideas and multiple

representations. Another example from IMP is that all three items of Rollin’, Rollin’, Rollin’ are
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examples of doing mathematics because students are presented with open ended questions and
must make a number of choices along the way as well as analyzing their own findings in a
paragraph. The items from the GM textbook are coded as procedures without connections.
Students are expected to use a learned procedure on the exercise with little connection to
underlying concepts. A complete list of codes for the previously referenced items with the level
of cognitive demand section completed is shown in Table 3.3 and with reference to the figures

presented earlier.
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Table 3.3. Items aligned to S-1D-1 from Table 3.2 with level of cognitive demand codes

Standard Textbook Section Item Cognitive
Demand

S-ID-1 CPMP-1  73-101: U2-L1-11 la-i (Figure 3.4) PWC
S-ID-1  CPMP-1  73-101: U2-L1-I1 la-ii (Figure 3.4) DM
S-ID-1 CPMP-1  73-101: U2-L1-11 1b (Figure 3.4) PNC
S-ID-1  CPMP-1  73-101: U2-L1-I11 1c (Figure 3.4) DM
S-ID-1 CPMP-1  73-101: U2-L1-11 1d (Figure 3.4) DM
S-ID-1  CPMP-1  73-101: U2-L1-I11 2a (Figure 3.5) PWC
S-ID-1 CPMP-1  73-101: U2-L1-11 2b (Figure 3.5) DM
S-ID-1  CPMP-1  73-101: U2-L1-I11 2c (Figure 3.5) PNC
S-ID-1 CPMP-1  73-101: U2-L1-11 2d (Figure 3.5) PWC
S-ID-1  GM-Al 0-13 Exercise 2a (Figure 3.2) PNC
S-ID-1  GM-Al  0-13 Exercise 2b (Figure 3.2) PNC
S-ID-1  IMP-1 What Are the Chances? I-A (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? |-B (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? 1I-C (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? 1-D (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? I-E (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? I-F (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? 1-G (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? I-H (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? I-I (Figure 3.8) PWC
S-ID-1  IMP-1 What Are the Chances? 11 (Figure 3.8) PWC
S-ID-1  IMP-1 Rollin’, Rollin’, Rollin” 1 (Figure 3.9) DM
S-ID-1 IMP-1 Rollin’, Rollin’, Rollin” 2 (Figure 3.9) DM
S-ID-1  IMP-1 Rollin’, Rollin’, Rollin” 3 (Figure 3.9) DM

Defining a task in these smaller units also allows for a more fair comparison between the

curricula. If Figure 3.2 from the GM textbook is one task, Figure 3.4 or Figure 3.5 from the

CPMP textbook is one task, and Figure 3.8 or Figure 3.9 from the IMP textbook is one task, the

size of a task is dramatically different in each curricula. Coding Figure 3.4 and Figure 3.5 from

CPMP as five items and four items respectively and Figure 3.8 and Figure 3.9 from IMP as three

items and ten items respectively brings them much closer to the grain size of Figure 3.2 in the

GM textbook, which is only two items.
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3.3.3 Identify educative opportunities for teachers

The final step in the analysis was to examine the opportunities for teacher learning on the
main instructional tasks, which were designated to be highly cognitively demanding in the
curriculum materials. It is important to emphasize that this analysis is occurring at the level of
main instructional task and not the item level. Items were grouped together consistent with the
methodology from Stein et al. (1996), so items aimed at a particular mathematical idea were
grouped together to form one main instructional task. The cognitive demand of these
instructional tasks was also determined by using the highest code on any item within that task.
While one might consider the average code or most frequent code to be more appropriate for an
instructional task, these two alternative designations were not appropriate for the research
questions posed in this study. It may be possible that lower cognitive demand items are included
in a task in service of the higher demand item. Based on this possibility, the lower demand items
are not the focus of the task. Additionally, the goal of this study was to examine the potential of
the curriculum. If part of a task has the potential to be high-level, it would be inappropriate to
suggest that the task is not high-level. Table 3.4 represents the same items from Table 3.3
collapsed into the level of task instead of item. Only the main instructional tasks of the textbooks
that are designed to elicit high-level cognitive demand were coded for anticipation and

transparency.
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Table 3.4. Items aligned to S-ID-1from Table 3.3 grouped to form tasks

Standard Textbook Section Task Cognitive
Demand

S-ID-1 CPMP-1  73-101: U2-L1-11 1and 2 (Figure 3.4 and 3.5) DM

S-ID-1  GM-Al 0-13 Exercise 2 (Figure 3.2) PNC

S-ID-1 IMP-1 What Are the Chances? Entire Section (Figure 3.8) PWC
S-ID-1  IMP-1 Rollin’, Rollin’, Rollin”  Entire Section (Figure 3.9) DM
Figure 3.12 is part of a task where students are asked to relate a table or a graph to the

Law of Large Numbers. The teacher’s edition of the textbook provides an opportunity for
anticipation as shown in Figure 3.13. Figure 3.13 anticipates two concepts that may cause
conflict with students when it comes to the law of large numbers. Students may understand that
the proportion of heads tends to get closer to the theoretical value of 0.5, but they may find
difficulty in recognizing that the difference between actual value of heads and the expected value

of heads typically increases.

f. Explain how your completed graph and table illustrate the Law of
Large Mumbers.

Figure 3.12. Task supported via anticipation in CPMP Course 1 (Hirsch et al., p. 556, 2015)
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f. The Law of Large Numbers says that as the number of trials increases, the
estimated probability tends to get closer to the theoretical probability. The
graph illustrates this because as the number of flips increases, the proportion
of heads tends to get closer to 0.5.

POSSIBLE MISCONCEPTION Although the proportion of heads is converging\
to 05, the frequency of heads is diverging from the expected frequency.
In the table in Part e, the expected number of heads in 10 flips is 5. The actual
number is 4, for a difference of 1. After 50 flips, the proportion of heads is
closer to 0.5 than for 10 flips, but the number of heads, 22, is 3 away from the
expected number of heads, 25. Notice that while 3 is greater in magnitude
than 1, it represents a smaller percentage of 50 than 1 does of 10.

This is an important idea for students to learn—that as you are flipping
a coin, for example, the percentage of heads tends to get closer and closer
to 50% as the number of flips increases, while the number of heads tends to
get further and further from half the number of tosses. If students do not
understand this, they will believe that the coin must balance out the numbers
of heads and tails in the future by changing the probability that it will be a

head. This idea comes up agdin in Reflections Task 17
o b,

Figure 3.13. Support via anticipation in CPMP Course 1 (Hirsch et al., p. 556T, 2015)
Figure 3.14 is a task from CPMP where the teacher’s edition provides an opportunity for
transparency. Figure 3.15 is the part of the teacher’s edition that corresponds to student edition
task shown in Figure 3.14. These figures demonstrate what typical opportunities for transparency
look like in CPMP textbooks. As shown in Figure 3.15, the underlying focus of the task, use an
informal understanding of conditional probability, is made explicit to the teacher. Additionally,
the teacher is provided with an explanation of how the various methods of completing the task
could be emphasized depending on the prior experience of the students in the class. This allows
the teacher to adapt the task as needed without losing the conceptual understanding that the task

intends to develop.

108



B Suppose again the names of six boys and four girls are written on individual
slips of paper and placed in a hat. This time you draw two names withont
replacement. That is, you draw one name, you do nof return the slip of paper
to the hat, then you draw a second name,

a. Find the probability that the first name drawn is a girl’s name and the
second name is a boy’s name,

b. Explain why the answer to Part a is wof +— l.:) 16;}_

¢. Show how you can find the probability in Part a using the Multiplication
Principle of Counting and the definition of probability given at the
beginning of this investigation.

d. To find the probability in Part a, you can also use the General
Multiplication Rule for any two events:

If A and B are events, then P(A and B) = P{A) x P(B | A).

The notation P(B | A) is read “probability of B given A.” This means you
find the probability of 8 assuming that you know A happened. Show how
to use the General Multiplication Rule to find:

P(girl's name on first draw and boy's name on second draw).

Figure 3.14. Task supported via transparency in CPMP Course 4 (Hirsch et al., p. 579, 2015)
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5 K Students may use various methods.

= Using the General Multiplication Rule (which students may use only
implicitly until they get to Part d):

* Using the Multiplication Principle of Counting:

P{girl's name on first draw and boy’s name on second draw) =
number of outcomes corresponding totheevent  4x 6 _ 026

total number of outcomes T10%x9
(See the Mathematics Note in Problem 4 Part a.)

* Using permutations and the Multiplication Principle of Counting:
number of outcomes corresponding to theevent 4 x g 026

total number of outcomes ~P10.2) -

b. Informal response: The second factor is —g-not % because there are 6 boys but
only 9 slips of paper left in the hat.

Formal response: You cannot use the Multiplication Rule for independent

events because the events are not independent. The events in this analysis are

“girl's name on first draw” and "boy's name on second draw.” These events are

not independent because the first slip of paper is not returned to the hat before

the second slip is drawn; therefore, the result of the first draw changes the
probability for the second draw.

¢. Using the definition of probability given at the beginning of this investigation,
you can compute the probability by counting outcomes. An outcome in this
situation is a possible result of drawing two slips of paper when the first is
drawn without replacement. That is, an outcome is a sequence of two names
drawn. Each outcome is equally likely since each slip of paper is just as likely
to be drawn as any other. Since the first slip of paper is not replaced before
drawing the second, the total number of possible outcomes is 10 X 9 = 90,
(Students may see this as P(10, 2).) The number of outcomes corresponding
to the event of “girl’s name on first draw and boy's name on second draw” is

4 % 6 = 24. Thus, P(girl’s name on first draw and boy’s name on second draw) =

number of outcomes corresponding to the event
total number of outcomes

d. P(girf's name on first draw and boy's name on second draw) = P(girl's name

on first draw) x P(boy's name on second draw | girl's name on first draw) =
4 6

e x —

09

=24 _02%
=30 = 026.

INSTRUCTIONAL NOTE

Problem 5 references
conditional probability. The
context allows students

to understand and apply
conditional probability
informally without formal
development. Thus, depending
on your students’ experience
with conditional probability,
you may emphasize a formal
approach to this idea or simply
use an informal approach
restricted to the specific
contexts in this investigation

Figure 3.15. Support via transparency in CPMP Course 4 (Hirsch et al., p. 579T, 2015)
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3.3.4 Reliability measures

To determine the reliability of the coding assignments, a stratified random sample of items were
coded independently by the primary researcher and a secondary researcher. Stratified random
sample refers to randomly selecting items from each of the textbook series individually as
opposed to randomly selecting sections from all of the textbooks as a whole regardless of which
textbook they were found in. One hundred forty seven items were selected for reliability coding.
Using a stratified random sample as opposed to a random sample ensured representation by each
textbook series. The CPMP and GM textbook series have many more items than the IMP series,
so there was a concern that a random sample may have excluded IMP completely.

Once the items were selected, those items found near the selected items were also coded
by the second coder. This allowed the second coder the opportunity to make judgments about not
only the codes that should be assigned to items, but also what items should be group together to
form tasks. This format of selection also ensures that the second coder reviewed both items and
tasks from each of the individual textbooks. Training sessions were completed prior to coding
the actual items used for this study to ensure reliability between the primary and secondary
coders. These training sessions involved coding items and discussing discrepancies until the
coders were able to provide consistent codes on randomly selected items reliably.

Cohen’s K was run to determine if there was agreement between the two coders’
judgement on item alignment to the standards for probability and statistics of CCSSM. There

was a moderate agreement between the two coders’ judgments, K = .561, p <.0005. Cohen’s K

was also run to determine if there was agreement between the two coders’ judgement on the level

of cognitive demand of the items identified as being in alignment to the standards for probability
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and statistics of CCSSM. There was good agreement between the two coders’ judgments, K =

.618, p <.0005. Finally, Cohen’s K was run to determine if there was agreement between the two
coders’ judgement on the presence of anticipation and transparency on high-level tasks. There

was good agreement between the two coders’ judgments, K = .615, p = .006. In all cases, since

p < .01, the kappa (k) coefficients are statistically significantly different from zero.

34 HOW THE DATA RELATES TO THE RESEARCH QUESTIONS

The first research question was, “To what extent do current secondary mathematics textbooks
provide opportunities for students to engage in the probability and statistics content
recommended by the Common Core State Standards?” The following data are reported to answer
this question:
1) Number of items identified as being in alignment with probability and statistics as
defined by CCSSM in individual textbooks, curriculum materials overall, and the first
three year of the series by individual standard (i.e. CPMP has 181 items in Year 1, 23
items in Year 2, 107 items in Year 3, 2 items in Year 4, 313 items overall, and 311 items
in the first three years relating to standard S-1D-1). The total number of items for all
probability and statistics standards in each textbook will also be reported
2) Number of tasks identified as being in alignment with probability and statistics as defined
by CCSSM in individual textbooks, curriculum materials overall, and the first three year
of the series by individual standard (i.e. CPMP has 11 tasks in Year 1, 1 task in Year 2, 7

tasks in Year 3, 0 tasks in Year 4, 19 tasks overall, and 19 tasks in the first three years
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relating to standard S-1D-1). The total number of tasks for all probability and statistics
standards in each textbook will also be reported

These data quantify the extent to which the textbooks provide opportunities for students to
engage in the probability and statistics content recommended by the CCSSM. Additionally, the
data quantifies the shortcomings of the curricula with respect to the probability and statistics
recommendations of CCSSM. For example, a curriculum with zero items and tasks aligned to a
specified standard could be identified as being deficient in relation to that specific standard.

As previously mentioned, most states require only three years of mathematics in high school.
Any textbooks beyond the first three in a series may be less likely to be used for all students. If a
textbook series saves all of the probability and statistics items and tasks for a fourth year or more
advanced textbook, the opportunities for engagement in those items and tasks may not be taken
advantage of for all students. To address this concern, the findings for just the first three books of
each curricula are also reported.

The second research question is, “What are the cognitive demands of the tasks that are
aligned with the Common Core State Standards recommendations for mathematical content in
probability and statistics?”” The following data are reported to answer this question:

1) The number of items and tasks in each textbook and each curricula receiving each of the
codes for cognitive demand reported by standard and as an overall count (memorization,
procedures without connections, procedures with connection, doing mathematics)

2) The percentage of items and tasks in each textbook and each curricula receiving each of
the codes for cognitive demand reported by standard and as an overall count.

These data speak to the nature of the items and tasks in each textbook and each curricula

overall. By reporting the number of items with each code, the number of opportunities for
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students to engage in high-level tasks in the area of probability and statistics is revealed. By
reporting the number of tasks with each code, the number of opportunities for instruction with
high-level tasks in the area of probability and statistics is revealed. Additionally, since high-level
tasks are more difficult to implement with fidelity, especially doing mathematics tasks, this
provides a report of the number of tasks that are likely to be challenging for the teacher to
implement well. These data speak to the amount of support a district and the teacher materials
would need to provide the teacher to promote proper use of these curriculum materials.

Reporting the percentage of items and tasks in each textbook and curricula receiving each
code allows for some sense of the overall design of the textbook and curricula. Textbooks with a
high percentage of doing mathematics items and tasks will demand much more from both
students and teachers than those with higher percentages of memorization or procedures without
connections codes. As previously argued in Chapter 1 (Section 1.3), a curriculum with high-level
items and tasks will be more likely to promote students engagement in the Standards for
Mathematical Practice. Additionally, reporting the percentage of items and tasks in each
textbook and curricula receiving each of the codes for cognitive demand will also give an
impression of how much support a district and the teacher materials would need to provide the
teacher to promote implementation with fidelity. Finally, by reporting percentages for each
individual textbook some interesting patterns emerge that can be used to reveal an inferred
philosophy regarding how students learn of each curriculum.

The third research question is, “To what extent does the teachers’ guide provide support
for enacting high-level tasks that address the Common Core State Standards recommendations

related to probability and statistics?” The following data are reported to answer this question:
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1) The number of high-level tasks in each textbook and in each curricula receiving each

of the codes for teacher learning (anticipation and transparency).

2) The percentage of high-level tasks in each textbook and in each curricula receiving

each of the codes for teacher learning.

These data speak to the extent that each textbook and each curricula overall support the
teacher in enacting the probability and statistics recommendations of CCSSM. By reporting the
number of high-level tasks with each code, the number of opportunities for teacher learning is
revealed. Reporting the percentage of high-level tasks in each textbook and curricula receiving
each code allows for some sense of the overall design of the textbook and curricula. Textbooks
with a high percentage of high-level tasks receiving codes for anticipation and transparency
provide more support for teachers than those with a low percentage of high-level tasks receiving
those codes.

While more support will be needed to implement the curricula well, understanding what
contributions the curriculum materials make to promoting teacher learning will help school
districts decide what other types of support will be needed to promote proper use of these
curriculum materials. With all of this data in hand, one could decide which curricula meets the
needs of a given school district. Curricula with high-level tasks and little teacher support may be
difficult to implement well without significant spending on other sources of teacher support.
Curricula with low-level tasks may not need teacher support to be implemented with fidelity, but
it may not suit the needs of a district looking to promote higher order thinking in preparation for
CCSSM. In an area like probability and statistics where mathematics teachers are less likely to

be comfortable with content and have a deep understanding of the concepts, understanding the
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demands the tasks place on both students and teachers and the support offered to teachers on

tasks that will be highly demanding may be critical to a school district’s success.
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40 RESULTS

This chapter reports the results of the analysis described in Chapter 3. The research questions
that guided this study, and the analyses conducted to answer them, are as follows:
1) To what extent do current secondary mathematics textbooks provide opportunities for
students to engage in the probability and statistics content recommended by the Common
Core State Standards?
-determine the number of items identified as being in alignment with probability and
statistics as defined by CCSSM in individual textbooks
-determine the number of tasks identified as being in alignment with probability and
statistics as defined by CCSSM in individual textbooks
-determine the number of items identified as being in alignment with probability and
statistics as defined by CCSSM in the entire curriculum
-determine the number of tasks identified as being in alignment with probability and
statistics as defined by CCSSM in the entire curriculum
-determine the number of items identified as being in alignment with probability and
statistics as defined by CCSSM in the first three textbooks of the curriculum
-determine the number of tasks identified as being in alignment with probability and

statistics as defined by CCSSM in the first three textbooks of the curriculum
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2) What are the cognitive demands of the tasks that are aligned with the Common Core
State Standards recommendations for mathematical content in probability and statistics?
-the number of items receiving each of the codes for cognitive demand reported by
standard and for all standards in the entire curriculum
-the number of tasks receiving each of the codes for cognitive demand reported by
standard and for all standards in the entire curriculum
-the number of items receiving each of the codes for cognitive demand reported by
textbook and in all textbooks for all standards
-the number of items receiving each of the codes for cognitive demand reported by
textbook and in all textbooks for all standards

3) To what extent does the teachers’ guide provide support for enacting high-level tasks that
address the Common Core State Standards recommendations related to probability and
statistics?

a) To what extent does the teachers’ guide provide suggestions related to anticipation on
high-level tasks that reflect content recommendations of the Common Core State
Standards?

b) To what extent does the teachers’ guide provide transparency on high-level tasks that
reflect content recommendations of the Common Core State Standards?

-number of high-level tasks coded for teacher learning organized by textbook

-number of high-level tasks coded for teacher learning for the entire series
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4.1 DESCRIPTION OF TASKS AND ITEMS

The results are initially organized by textbook series, followed by a comparison between series.
The term “task” refers to the main instructional task as defined by Stein and Kim (2009). A task
can consist of many components or activities intended to focus students on a particular idea. As
described in Chapter 3, the term “item” refers to each individual component of a task but also
includes narratives, review problems, extra practice, or any other opportunity that students might
have to engage in content that appears in the textbook (Thompson, Senk, & Johnson, 2012).
Recall, this distinction was made to facilitate a more widespread analysis than looking only at the
main instructional task. Additionally, this distinction will allow for more comparable grain sizes
since the items in each curriculum are of similar size while the tasks are not. Figures 4.1 through
4.5 are pages from each of the different textbook series that exemplify the difference between
items and tasks.

Figure 4.1 is page 124 of the CPMP curriculum book 1A. This page is representative of
the typical instructional portion of CPMP. As shown in Table 4.1, this page contains eleven
individual items. The narrative at the top of the page poses a question for students to consider.
This narrative is not considered part of an instructional task, but is included in the item analysis
because it contains a question for consideration. The other ten items on this page comprise a
single instructional task for this lesson. Item 1a is aligned with S-1D-1. Items 2b and 3a are not
aligned with any of the probability and statistics standards of CCSSM. The other seven items on
this page (1b, 1c, 2a, 2c, 2d, 2e, and 2f) are all aligned with S-ID-2. Because most of what the
textbook refers to as number 1 (which includes three items 1a, 1b, and 1c) is aligned to S-ID-2,
number 1 would be considered a task aligned to S-1D-2. Similarly, what the textbook refers to as

problem 2 (which includes 2a, 2b, 2c, 2d, 2e, and 2f) is aligned with S-1D-2, number 2 would be
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considered a task aligned with S-1D-2. Since these two collections of items appear consecutively
and have a majority of items aligned to the same standard, they would then be combined to form
a single instructional task. Therefore, Figure 4.1, which is page 124 of CPMP book 1A, contains
one task made up of nine individual items. Items 2b and 3a are not included in the analysis since

they are not aligned with CCSSM content.
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Table 4.1. Data associated with items from Figure 4.1

Series Textbook Chapter Lesson Section Standard Cognitive
Demand

CPMP 1A 2 2 Inv5—Narr S-ID-1 DM
CPMP 1A 2 2 Inv5-1la S-ID-1 DM
CPMP 1A 2 2 Inv5-1b S-ID-2 PwC
CPMP 1A 2 2 Inv5-1c S-ID-2 DM
CPMP 1A 2 2 Inv5-2a S-ID-2 DM
CPMP 1A 2 2 Inv5-2b None

CPMP 1A 2 2 Inv5-2c S-ID-2 DM
CPMP 1A 2 2 Inv5-2d S-ID-2 PnC
CPMP 1A 2 2 Inv5-—2e S-ID-2 PnC
CPMP 1A 2 2 Inv 5 - 2f S-ID-2 PnC
CPMP 1A 2 2 Inv5-3a None

Figure 4.2 on page 129, is also taken from, CPMP 1A. CPMP is organized by chapters,
which are divided into lessons. Each lesson contains multiple investigations. Figure 4.1 was from
the Investigation 5 of Chapter 2 Lesson 2. At the end of each lesson there are problems referred
to as “On Your Own”. These problems are intended as extensions, reviews, and connection
making problems that students can work on after instruction as opposed to being part of the
investigations, which make up the instructional portion of the textbook. Since these problems are
not intended to be the focus of instruction, they are not considered a task. However, each portion
of them can be considered an item. Therefore, Figure 4.2 contains six items that were analyzed

but no instructional tasks
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ON YOUR OWN

APPLICATIONS :

The table below gives the percentiles of recent SAT mathematics scores for
national college-bound seniors. The highest possible score is 800 and the
lowest possible score is 200. Only scores that are multiples of 50 are shown in
the table, but all multiples of 10 from 200 to 800 are possible,

SAT Math Score | Percentile SAT Math Score |  parcentile
750 97 450 29
700 93 400 15
L. IR il S
650 86 350 ,_7.
600 b 300 2
o= ez & ) S S
550 62 ! __.250 N 1 4]
500 46 200 | 0 o
Source: The College Boord, 2011

a. What percentage of seniors get a score of 650 or Jower on the mathematics
section of the SAT?

b. What percentage get a score higher than 4507

¢. Estimate the score a senior would have to get to be in the top half of the
students who take this test.

d. Estimate the 25th and 75th percentiles. Use these quartiles in a sentence
that describes the distribution.

7)) Inaphysical fitness test, the median time it took a large group of students to
run a mile was 10.2 minutes. The distribution of running times had first and
third quartiles of 7.1 minutes and 13.7 minutes. When results were reported to
the students, faster runners (shorter times) were assigned higher percentiles.

a. Sheila was told that she was at the 25th percentile. How long did it take
Sheila to run the mile?

b. Mark was told that his time was at the 16th percentile. Write a sentence that
tells Mark what this means.

Lesson 2 | Measuring Variability 129

Figure 4.2. Items from On Your Own section in CPMP Course 1 (Hirsch et al., p. 129, 2015)
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Figure 4.3 and Figure 4.4 are the last two pages from section 12-4 of the GM Algebra |
textbook. At the bottom of Figure 4.3 there are problems referred to as Higher Order Thinking
Problems. Higher Order Thinking Problems are intended for enrichment and do not always relate
to the example problems from the lesson in which they are found. For example, section 12-4 has
example problems aligned to both S-ID-2 and S-I1D-3. However, item 23 is aligned with S-1D-1.
Because they are intended for enrichment as opposed to instruction, the Higher Order Thinking
Problems are not considered instructional tasks. The items in the GM textbook that are intended
for instruction have examples for the students and instructional notes for teacher. In the case of
the Higher Order Thinking Problems, there are no examples for the students and the Teacher’s
Edition of the textbook provides the answer to the problem but no instructional notes. Therefore,
even if the items address the same standard as the examples (section 12.4 items 21, 22, 24, and
25), they are not considered a task if they are found in the Higher Order Thinking Problems.
Those items found prior to the Higher Order Thinking designation (18, 19, and 20) were
considered a task since they appear in the main body of the exercises following the example
problems.

Figure 4.4 contains three groups of items referred to as Standardized Test Practice, Spiral
Review, and Skills Review. Item 30 is aligned to S-ID-1, which, once again, was not the focus of
section 12-4. The other 21 items on the page are not aligned to any of the probability and
statistics standards of CCSSM, so they clearly are not in alignment with the examples from the
section in which they are found, 12-4, which is aligned with S-1D-2 and S-1D-3. These problems
are designed as review problems, so they are not considered a task. However, since they are

available for students, they were a part of the item analysis.
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homaecoming danee s shown,
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a. Usea graphiog caloulator to comstimd oy anek w ke phot for vachset o
datt. Then desribe tie shape of cach distribution. a, b. See Ch. 12 Answer Appendix.
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coarmed the Tollow g over the past monthy,

2. e the mean, median. made, range, and
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mepe, and standard deviation of Rhonedy's
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2. Tind the mean. median, mode, rnge, and Boseballhat  $14.98
danedand des ation of the prices Jeans $24.61
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Sweatshirt $19.26
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<ot b founed? Sce Ch. 12 Answier Appendix.

23. WIITING I MATH Compare aned contrast the benelits of displaving data using
histograms and boseand-w hisher plots 23-25. Sec Ch 12 Answer Appendix

24, 0055 REGULARITY 11 & 1= acdididd toenery vabucin.y sct of data, andd then each
resulting value is multplied by a constant o, i > 0, how can the mean, me dian,
mode, range, and standard deviation of the new data set be found? Eaplin your
reasIng
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compare the conter and pre sl of i svimetzical distabutions and the
five number summan is el to compare the eenler and spread of teo
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Vo) 777 Wil

4.3. End of section items in GM Algebra 1 (Carter et al., p. 777, 2010)
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Standardized Test Practice

26, A store manager recorded the number of 28. A rescarch company divides Boup,
customurs cadvday fora week |46, 57, 63, 78, volunteers by g and then rang,
911, 100 Fand the moan absolute volunteers from each group o, "'"I":'tw Wty
deviation € sury ey, What b pe of sample i gy, » J va
A 1ok C 194 F simple LLEEVE TR ted
B ISt D227 G svslematic J steatitugg

27. SHORT RESPONSE Solv o the right triangice. 29, Which set of measures can be LTI,
Round cochy sicle bength to the nearest tonth of the sides of a vight triangle? Hns

- \d =
m..A-3g.L‘ 9-9.0*5.0 A6TY
B9 121
M $ C 121517
1D 148, 50
< A
|

] Mmmﬁhﬁerﬁc slandard dewiation is relatively high compared 10 the mean of 6.4 due 1o e 0
Il this outlier were removed, the ncw mean of the data vrould be about 5.2 with a standard deviation of a.“'!

30, Use o graphing caleulator to construct o Bistogram for the data, and use it 30 P
doscribe the shape of the distribition.
25,45, M), 22,37, 24, W, du, 24, 52,25, 42, 25, 20, 54, 47, 27, 55
63,28, 29,70, 45, 31,55, 43, 32, 34, 70, 23, 30, 15, 27, 35, W, 40 |

31, SUBSCRIPTIONS Ms. Wilson's students are selling magazine subscriptions L
Her students reconded the total number of subscrptions they cach sold- (8, 12,
10,7, 4. % 0,090,573, 2%, 6,2} Find and interpret the standard deviation of the

pasiively showed

dala st
Find the value of v for each figure, Round to the nearest tenth if necessary.
32 1 45in- 2 BA 20004 M4 2mm 20
wedlinm xn s

bl

s A AN ¥ 2

Factor cach polynomial.
3B Ay ke 3Ifx ) 36. v+ v 430 (x+6)(x+5) LR+ 12 ix=4)
3B W Ul 12)ir+3) W ATHID 20 (xH10)(x+2) 40 x4 A2 (0 Hx46)

41, MARUFACTURING A company is designing a bos for dey pasti i the shape of a rectangulbae
prism. Fhe feaghhis 2 inches more than b ice the width, and the herght is 3 inches more
o the length, Write an capression for the yolume of the boy 4 4 140

Skills Review .3

Find the degree of each polynomial.
2. 27«5 212 43 1y’ 17y 16t 4 77 FOR S K P
45. 15 0 46, 3+ Lab?y § a2.7v+ 01

778 Lesson 1244 Comparing Scts of Data

Figure 4.4. End of section items in GM Algebra 1 (Carter et al., p. 778, 2010)
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Figure 4.5 is from the IMP curriculum and contains three items that together form a
single task. The first two items both align to S-ID-1. The third item does not align with any of
the probability and statistics standards of CCSSM. Since most of the items are aligned to S-ID-1,

the three items would be combined into one instructional task that is intended to address S-1D-1.

Activity

Rollin’, Rollin’, Rollin’

Roll a pair of dice 50 times. With each roll, find the sum of the dice.
Keep a record of your sums in an organized way.

1. Draw a graph of the data you gathered.

2. Write a paragraph about your results. You
should summarize your observations about the
data and discuss why the results came out the
way they did.

3. What new thoughts does this
experiment give you about how to
play the counters game?

Figure 4.5. Rollin’, Rollin’, Rollin” from IMP Year 1 (Fendel et al., p. 104, 2009)

As shown in Figure 4.2, Figure 4.3, and Figure 4.4, the CPMP and GM textbooks provide
problems at the end of each section for students to work on independently for the purpose of
enrichment or review. These independent practice problems are not part of any instructional task.
The tendency to provide many problems at the end of a section that are not part of the

instructional portion of the text causes the CPMP and GM textbooks to have a high number of
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items when compared to the number of tasks. IMP does not provide these practice problems in
the textbook. The lack of practice problems causes IMP to have fewer items per task than the

other two curricula.

4.2 ONLINE STANDARD IDENTIFICATION LEADING TO ITEMS THAT DIDN’T

CORRESPOND

In total 5283 items were analyzed from the three textbook series. Of the 5283 items, 3743
corresponded to the probability and statistics recommendations of CCSSM. There were 1540
items that did not correspond to the probability and statistic recommendations of CCSSM. These
items were often the result of how the online resources referred to alignment with CCSSM.

The Core-Plus Mathematics Project online resource referred to pages in the textbook. For
example, the Core-Plus Mathematics Project online resource suggested that items for S-1D-1
were on pages 108 to 142. That required the researcher to examine every task on those 35 pages.
While many of the items did align with S-ID-1, not all of the items did. In many cases, there
were problems that did not align with any of the probability and statistics recommendations of
CCSSM so many items received a code of no correspondence. Figure 4.1, from page 124, and
Figure 4.2, from page 129, both include tasks that fall in the range of pages identified by the
online resource as containing S-ID-1 items. However, Table 4.1 shows that only two of eleven
items in Figure 4.1 actually were aligned to S-ID-1. Two others were not aligned to any
probability and statistics standard at all. A greater disparity between the online resource and the
actual text is evident in Figure 4.2. None of the six items on this page is aligned with the

probability and statistics standards of CCSSM let alone S-ID-1. The online resource identifies

128



pages 108 to 142 because these pages are the investigations for Chapter 2 Lesson 2 of the
textbook. Since S-1D-1 is one of the main focal points of this lesson, the online resource
identified the entire lesson as being aligned to S-ID-1. However, there are parts of this lesson that
are not actually aligned. Generalizing alignment in this manner caused the researcher to review
many items from CPMP that did not actually align to any of the probability and statistics
standards in CCSSM.

Similarly, the Glencoe Mathematics curriculum referred to sections of the book that
contained many items. For example, S-ID-1 was found in the Glencoe Algebra I book in chapter
12 section 4. There are more than 50 items in chapter 12 section 4 that had to be analyzed based
on this suggestion. However, not all of them actually corresponded to S-ID-1. Recall that Figure
4.3 and Figure 4.4 were both from chapter 12 section 4. As previously mentioned, one of the
items in Figure 4.3 did not align to any probability and statistics standards of CCSSM. More
dramatically, 21 of 22 items in Figure 4.4 did not align to any probability and statistics standards
of CCSSM. Much like with the CPMP curriculum, the GM curriculum generalized sections of
the textbook that addressed a specific standard even though that section contains problems at the
end that often do not align. This caused the researcher to review many items from GM that did
not actually align to any of the probability and statistics standards of CCSSM.

Because of the design of IMP, there were very few items identified as being in alignment
that were not. IMP did not contain review problems or exercises for independent practice.
Occasionally an item or items within a task would not align to a probability and statistic
standards of CCSSM, but this was a rare occurrence. Item 3 in Figure 4.5 is an example of one

such occurrence.
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The 1540 items that did not correspond to the probability and statistics recommendations
of CCSSM were removed from the analysis. The remaining 3743 items were grouped into a mere
193 tasks. It is expected that there would be many more items than tasks. However, there are
more than 19 times as many items than there are tasks. This ratio does not suggest that typical
tasks contain 19 individual items. This is more the result of many practice and review problems
provided by the CPMP and GM curriculums that are not part of any instructional task as

previously discussed.

43  GLENCOE MATHEMATICS

Glencoe Mathematics (GM) is a traditional approach high school mathematics textbook series
organized by content (Algebra I, Algebra 11, Geometry, and Precalculus) that is widely used
based on market share data in Ross (2011). The traditional approach means that the student
editions include example problems with worked out solutions and explanations provided to guide
students through the steps of the solutions. Then there are exercises at the end of each section
often corresponding directly to one of these worked out examples. Each example and its
corresponding exercises are coded individually as items and then combined to form a task.
Figure 4.6 is a worked out example from lesson 0-13 of the GM Algebra textbook. This
example contains two items. The first item asks students to make a histogram of the frequency.
The second item asks students to make a histogram of the cumulative frequency. Figure 4.7 is
one of the corresponding exercises from lesson 0-13 of the GM Algebra textbook. Once again,
the exercise contains two items. Exactly like the worked out example, the first item asks students

to graph the frequency, and the second item asks students to graph the cumulative frequency.
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These two figures represent four items as shown in Table 4.2. The four items would be combined

to form a single instructional task since they address the same standard in the same manner.

Table 4.2. Data associated with Figure 4.6 and Figure 4.7

Number of Presidents

JEPpr- ey

ON & OO N D

Standard | Textbook | Section | Item Cognitive Demand
S-1D-1 GM-Al | 0-13 Example 2 Histogram (Figure 4.6) PNC
S-ID-1 GM-Al | 0-13 Example 2 Cummulative (Figure 4.6) | PNC
S-ID-1 GM-Al1 | 0-13 Exercise 2a (Figure 4.7) PNC
S-1D-1 GM-Al | 0-13 Exercise 2b (Figure 4.7) PNC
‘. .- "" [ qa ra
Make histograms of the frequency and the cumulative frequency.
Fhgea Toule 40-44 | 45-49 | 50-54 | 55-59 | 60-64 | 65-69
idents 7 13 |12 7 3
Find the cumulative frequency for each interval.
' <50 <55 <60 <65 <70
247=9 |9+13=22|22+12=34|34+7=41|41+3=44

40~ 45- 50- 55- 60- 65—

4 49 54

Age at Inauguration

Number of Presidents

59 64 69

<45 <50 <55 <60 <65 <70
Age at Inauguration

Figure 4.6. Example aligned to S-1D-1 from GM Algebra 1 (Carter et al., p. 41, 2010)

2. PLAYS The frequency table at the right
shows the ages of people attending a high

school play.

a. Make a histogram to display the data.

b. Make a cumulative frequency histogram
showing the number of people attending
who were less than 20, 40, 60, or

80 years old.

20-39 D SHE DRt DR DA Lt S DT 43
40-59 JHT DA AT DA DA D 31
60-79 | Ml 8

Figure 4.7. Exercise related to Figure 4.6 from GM Algebra 1 (Carter et al., p. 45, 2010)
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4.3.1 Question 1

GM contains 1545 items that corresponded to the probability and statistics recommendations of
CCSSM. Of the 1545 items, 822 (53%) of them correspond to only four of the standards (S-1D-1
has 161 items, S-ID-2 has 138 items, S-1D-4 has 257 items, and S-1D-6a has 266 items). That
means the remaining 723 items are spread out over 20 remaining standards. The Algebra I,
Algebra 11, and Precalculus textbooks each have more than 400 items in them. However, the
Geometry textbook only contains 146. Some standards have most of the items corresponding to
them in the Precaluclus textbook. For example, S-1C-2 has 63 of 65 items in the Precalculus
textbook. However, there are no standards that are solely addressed in Precalculus, so even
though many opportunities would be lost by a student not enrolling in Precalculus as part of the
GM program, nothing would be eliminated.

As shown in Table 4.3, the GM curriculum provides opportunities for students to engage
in at least one item for every probability and statistics content suggestion of CCSSM. However,
the number of opportunities varies greatly from one standard to another (S-CP-5 has only one
item while S-ID-6a has 266 items). Of particular concern are the standards highlighted in Table
4.3, S-CP-5, S-CP-6, S-IC-5, and S-ID-5, which all had less than ten total items in the entire GM

curriculum.
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Table 4.3. Number of items in GM textbooks aligned to CCSSM probability and statistics

Standard Algebra | Algebrall ~ Geometry  Precalculus Total First 3
S-ID-1 60 55 33 13 161 (10%) 148
S-ID-2 70 29 0 39 138 (9%) 99
S-ID-3 14 12 0 1 27 (2%) 26
S-1D-4 4 76 0 177 257 (16%) 80
S-ID-5 6 0 2 0 8 (< 1%) 8
S-ID-6a 59 37 0 170 266 (17%) 96
S-1D-6b 5 4 0 8 17 (1%) 9
S-ID-6¢ 35 24 0 27 86 (5%) 59
S-1D-7 4 23 0 9 36 (2%) 27
S-ID-8 23 32 0 26 81 (5%) 55
S-1D-9 5 16 0 0 21 (1%) 21
S-IC-1 0 14 0 17 31 (2%) 14
S-IC-2 0 2 0 63 65 (4%) 2
S-IC-3 21 49 0 0 70 (4%) 70
S-IC-4 1 27 0 37 65 (4%) 28
S-IC-5 0 g 0 2 4 (< 1%) 2
S-IC-6 9 2 0 0 11 (1%) 11
S-CP-1 24 0 27 0 51 (3%) 51
S-CP-2 16 0 15 0 31 (2%) 31
S-CP-3 25 1 30 0 56 (4%) 56
S-CP-4 9 0 8 0 17 (1%) 17
S-CP-5 0 0 1 0 1(<1%) 1
S-CP-6 0 0 2 0 2 (< 1%) 2
S-CP-7 53 0 28 1 82 (5%) 81
Total 524 (33%) 405 (26%) 146 (9%) 590 (37%) 1584 994 (63%)

As shown in Table 4.4, the GM curriculum contains 59 total tasks that correspond to the
probability and statistics standards of CCSSM. Of particular interest are the five standards from
CCSSM that lack an instructional task (S-1D-5, S-ID-9, S-CP-4, S-CP-5, and S-CP-6). While all
of the standards had at least one item associated with them, not all were part of an instructional
task. This could mean they were part of an enrichment section or a special part of the homework

exercises, but they were not included in the examples and main body of the homework exercises.
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Table 4.4. Number of tasks in GM textbooks aligned to CCSSM probability and statistics

Standard Algebra | Algebrall ~ Geometry  Precalculus Total First 3
S-ID-1 3 1 0 4 8 (14%) 4
S-1D-2 4 1 0 1 6 (10%) 5
S-ID-3 1 1 0 0 2 (3%) 2
S-1D-4 0 1 0 2 3 (5%) 1
S-ID-5 0 0 0 0 0 (0%) 0
S-1D-6a 2 1 0 3 6 (10%) 3
S-ID-6b 1 0 0 1 2 (3%) 1
S-ID-6¢ 1 1 0 2 4 (7%) 2
S-ID-7 0 1 0 1 2 (3%) 1
S-1D-8 1 1 0 2 4 (7%) 2
S-ID-9 0 0 0 0 0 (0%) 0
S-IC-1 0 1 0 1 2 (3%) 1
S-IC-2 0 0 0 3 3 (5%) 0
S-IC-3 1 2 0 0 3 (5%) 3
S-IC-4 0 1 0 2 3 (5%) 1
S-IC-5 0 0 0 1 1 (2%) 0
S-IC-6 1 0 0 0 1 (2%) 1
S-CP-1 1 0 1 0 2 (3%) 2
S-CP-2 1 0 1 0 2 (3%) 2
S-CP-3 1 0 1 0 2 (3%) 2
S-CP-4 0 0 0 0 0 (0%) 0
S-CP-5 0 0 0 0 0 (0%) 0
S-CP-6 0 0 0 0 0 (0%) 0
S-CP-7 2 0 1 0 3 (5%) 3
Total 20 (34%) 12 (20%) 4 (7%) 23 (39%) 59 36 (61%)

Figure 4.8 shows the Higher Order Thinking Problems section at the end of chapter 13
section 5 of the GM Geometry textbook. Problem 27 is the only item in the entire GM textbook
series that aligns with S-CP-5 from CCSSM. There is no example in this section related to this
problem. Instead of being part of an instructional task, this problem is provided as enrichment at

the end of a section with instructional tasks dedicated to S-CP-2 and S-CP-3.
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24. 0SS ARGUMENTS There are # different objects in a bag. The probability of drmxingulr et See Ch. "
A and then objedt B without replacement is about 2 4% What is the value of u? xplain nswc;.
\ppendi

25. NEASONING If P(A | B) is the same as P(A), and P(B ] A) s the same as P(B), what can be
saidd about the relationship between events A and 52 A and Bare indepen

26. OPEN ENDED Describe a pair of independent events and a pair of dependent events
I'xplain your reasoning. See Ch. 13 Answer Appendix.

27. VIRITING IN MATH A medical journal reports the chance that a person smokes given that
his or her parent smokes. Explain how you could determine the hkelihood that 4
person’s smoking and their parent’s smoking are independent events, oG

952  Lesson 13-5 | Probabilitics of Independent and Dependent Events

Figure 4.8. Higher Order Thinking Problems from GM Geometry (Carter et al., p. 777, 2010)

4.3.2 Question 2

When examining the number of items receiving each code for cognitive demand by standard, the
most glaring result shown in Table 4.5 is that the GM curriculum is dominated by procedures
without connections items. Most of the individual standards have more items coded as
procedures without connections than the other three possible codes combined. The few
individual standards that do not have mostly procedures without connections items have only
sixteen total items dedicated to them combined. Procedures without connections tasks represent

more than 81% (1293 of a total 1584) of the items in the curriculum overall.
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Table 4.5. Cognitive demand of items in GM textbooks sorted by standard

Standard Memorization Procedures Procedures Doing TOTAL

without with Mathematics

Connections  Connections
S-ID-1 3 133 20 5 161 (10%)
S-ID-2 0 106 31 1 138 (9%)
S-ID-3 0 24 3 0 27 (2%)
S-ID-4 5 228 22 2 257 (16%)
S-ID-5 0 7 1 0 8 (1%)
S-ID-6a 1 178 61 26 266 (17%)
S-ID-6b 0 15 2 0 17 (1%)
S-ID-6¢ 0 77 7 2 86 (5%)
S-ID-7 0 30 4 2 36 (2%)
S-ID-8 1 61 17 2 81 (5%)
S-1D-9 0 15 5 1 21 (1%)
S-IC-1 3 20 4 4 31 (2%)
S-IC-2 0 53 12 0 65 (4%)
S-IC-3 2 64 4 0 70 (4%)
S-IC-4 1 57 6 1 65 (4%)
S-IC-5 1 1 2 0 4 (< 1%)
S-IC-6 0 2 1 8 11 (1%)
S-CP-1 0 45 4 2 51 (3%)
S-CP-2 0 31 0 0 31 (2%)
S-CP-3 1 52 3 0 56 (4%)
S-CP-4 0 12 3 2 17 (1%)
S-CP-5 0 0 1 0 1(<1%)
S-CP-6 0 2 0 0 2 (< 1%)
S-CP-7 0 80 2 0 82 (5%)
Total 18 (1%) 1293 (82%) 215 (14%) 58 (4%) 1584

When examining the level of cognitive demand of items by textbook, it is clear that
procedures without connections dominate each textbook as well. As shown in Table 4.6, Algebra
| contains 368 procedures without connections items out of 433 items. Algebra Il has 329 items
that are procedures without connections and 373 total items. There are 113 total items in the
Geometry textbook, and 102 of them are at the level of procedures without connections. Finally,
in the Precalculus textbook 460 out of 626 items are procedures without connection.

Additionally, over half of the high-level items in the GM curriculum are found in the Precalculus
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text (157 of 268). During the first three years of the curriculum, students will have the
opportunity to engage in 808 low-level items and only 111 high-level items.

Table 4.6. Cognitive demand of items in GM textbooks sorted by textbook

Textbook Memorization Procedures Procedures Doing TOTAL
without with Mathematics
Connections  Connections
Algebra | 0 368 53 12 433 (28%)
Algebra Il 8 329 29 7 373 (24%)
Geometry 1 102 7 3 113 (7%)
Precalculus 9 460 123 34 626 (41%)
Total 18 (1%) 1259 (81%) 212 (14%) 56 (4%) 1545
First 3 9 799 89 22 919 (59%)

When organized by instructional tasks as opposed to items, the results once again contain
mostly procedures without connections codes as shown in Table 4.7. Approximately 66% of the
tasks were coded at the procedures without connections level. Tasks may have multiple
components, and codes were given at the highest level of any individual component, so if any
part of a task was at a high-level, the entire task was credited for being high-level. In other

words, even coded generously, most of the tasks are low-level tasks.
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Table 4.7. Cognitive demand of tasks in GM textbooks sorted by standard

Standard Memorization Procedures Procedures Doing TOTAL
without with Mathematics
Connections  Connections

S-ID-1 0 6 2 0 8 (14%)
S-ID-2 0 3 3 0 6 (10%)
S-ID-3 0 2 0 0 2 (3%)
S-ID-4 0 2 1 0 3 (5%)
S-ID-5 0 0 0 0 0 (0%)
S-ID-6a 0 1 2 3 6 (10%)
S-ID-6b 0 1 1 0 2 (3%)
S-ID-6¢ 0 2 1 1 4 (7%)
S-ID-7 0 1 0 1 2 (3%)
S-ID-8 0 3 1 0 4 (7%)
S-1D-9 0 0 0 0 0 (0%)
S-IC-1 0 2 0 0 2 (3%)
S-IC-2 0 0 3 0 3 (5%)
S-IC-3 0 3 0 0 3 (5%)
S-IC-4 0 3 0 0 3 (5%)
S-IC-5 0 0 1 0 1 (2%)
S-IC-6 0 1 0 0 1 (2%)
S-CP-1 0 2 0 0 2 (3%)
S-CP-2 0 2 0 0 2 (3%)
S-CP-3 0 2 0 0 2 (3%)
S-CP-4 0 0 0 0 0 (0%)
S-CP-5 0 0 0 0 0 (0%)
S-CP-6 0 0 0 0 0 (0%)
S-CP-7 0 3 0 0 3 (5%)
Total 0 (0%) 39 (66%) 15 (25%) 5 (8%) 59

As shown in Table 4.8, the level of cognitive demand of tasks once again demonstrates
the dominance of procedures without connections in the GM series with one exception. The
Precalculus textbook actually has more high-level tasks (16) than low-level tasks (7). However,
the rest of the textbooks have at least 85% of their tasks at the level of procedures without
connections. When Precalculus is considered as part of the analysis, there are 39 low-level tasks
and 20 high-level tasks, which represent 66% and 34% of the tasks respectively. When

Precalculus is removed from the analysis, there are still 32 low-level tasks but only 4 high-level
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tasks representing 89% and 11% of the tasks respectively. The curriculum overall is limited in
the number of opportunities for students to engage in high-level tasks related to probability and
statistics. This limitation is magnified when the fourth textbook is not part of the curriculum.

Table 4.8. Cognitive demand of tasks in GM textbooks sorted by textbook

Textbook Memorization Procedures Procedures Doing TOTAL
without with Mathematics
Connections  Connections

Algebra | 0 17 3 0 20 (34%)

Algebra Il 0 11 1 0 12 (20%)

Geometry 0 4 0 0 4 (7%)

Precalculus 0 7 11 5 23 (39%)

Total 0 (0%) 39 (66%) 15 (25%) 5 (8%) 59

First 3 0 32 4 0 36 (61%)

4.3.3 Question 3

Only one high-level task in the GM series, Advanced Mathematical Concepts: Precalculus with
Applications section 11-1 examples 1, 2, and 3, provide support related to either anticipation or
transparency. Specifically, this task anticipated students having a misconception about what
skewed data looks like graphically, as shown in Figure 4.9. Other than this one task, the teachers’

guide did not provide support for enacting high-level tasks in probability and statistics.
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Tips for New Teachers Focus on Mathematical Content

Skewed Distributions Students may confuse Skewness In a left-skewed distributiol

negatively and positively skewed distributions. mean s less than the median, which is

Remind them that a distribution that is negative the mode: mean < median < mode. In

or left-skewed is skewed away from the left, not skewed distribution, the mean is greale

toward the left. the median, which is greater than the
mean > median > mode. In a symmell
distribution, all three measures are clus
together.

Figure 4.9. Teacher support via anticipation in GM precalculus (Holliday, p. 655-657, 2014)

4.4 INTERACTIVE MATHEMATICS PROGRAM

Interactive Mathematics Program (IMP) curriculum materials were funded by the NSF and
represent a Standards-based approach to secondary mathematics education. Instead of being
organized by content as the GM textbooks were, IMP represents an integrated approach
organized by years. There are four years of textbooks intended to be implemented in grades 9

through 12.

4.4.1 Questionl

The highlighted entries in Table 4.9 are the probability and statistics content suggestions of
CCSSM that the IMP curriculum does not provide opportunities in which students can engage.
While the online resources for teachers did suggest online lessons that could be used to address
these standards, S-1D-6b, S-1D-8, S-CP-3, S-CP-5, and S-CP-7 were not addressed in the student
textbook and thus were not included in this study. No standard was addressed by more than 28
items and very few were addressed in more than one year of the textbook series. Of the 191 total

items shown in Table 4.9, 189 are found in the first two years of the textbook series. If the four
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years of this textbook series are used during grades nine through twelve, then 99% of the
opportunities found in the series will be available in ninth and tenth grade. That also means that
probability and statistics will go unaddressed during the junior and senior years of students who
attend schools using this textbook series.

Table 4.9. Number of items in IMP textbooks aligned to CCSSM probability and statistics

Standard Year 1 Year 2 Year 3 Year 4 Total First 3
S-ID-1 21 0 0 0 21 (11%) 21
S-ID-2 14 0 0 0 14 (7%) 14
S-ID-3 14 0 0 0 14 (7%) 14
S-1D-4 10 0 0 0 10 (5%) 10
S-ID-5 0 20 0 0 20 (10%) 20
S-ID-6a 18 0 2 0 20 (10%) 20
S-ID-6b 0 0 0 0 0 (0%) 0
S-ID-6¢ 3 0 0 0 3 (2%) 3
S-ID-7 8 0 0 0 8 (4%) 8
S-ID-8 0 0 0 0 0 (0%) 0
S-1D-9 0 1 0 0 1(<1%) 1
S-IC-1 0 6 0 0 6 (3%) 6
S-IC-2 1 7 0 0 8 (4%) 8
S-IC-3 0 1 0 0 1(<1%) 1
S-IC-4 0 2 0 0 2 (1%) 2
S-IC-5 1 13 0 0 14 (7%) 14
S-IC-6 1 5 0 0 6 (3%) 6
S-CP-1 28 0 0 0 28 (15%) 28
S-CP-2 13 0 0 0 13 (7%) 13
S-CP-3 0 0 0 0 0 (0%) 0
S-CP-4 0 1 0 0 1(<1%) 1
S-CP-5 0 0 0 0 0 (0%) 0
S-CP-6 1 0 0 0 1(<1%) 1
S-CP-7 0 0 0 0 0 (0%) 0
Total 133 (70%) 56 (29%) 2 (1%) 0 (0%) 191 191 (100%)

An examination of the results of the task analysis, as shown in Table 4.10, confirms the
conclusions reached from the item analysis. There are five or less tasks associated with each

standard. Most of the standards have tasks only in one year of the textbook series.

141



Table 4.10. Number of tasks in IMP textbooks aligned to CCSSM probability and statistics

Standard Year 1 Year 2 Year 3 Year 4 Total First 3
S-ID-1 2 0 0 0 2 (5%) 2
S-ID-2 2 0 0 0 2 (5%) 2
S-ID-3 2 0 0 0 2 (5%) 2
S-1D-4 2 0 0 0 2 (5%) 2
S-ID-5 0 3 0 0 3 (7%) 3
S-ID-6a 4 0 1 0 5 (12%) 5
S-ID-6b 0 0 0 0 0 (0%) 0
S-ID-6¢ 1 0 0 0 1 (2%) 1
S-ID-7 1 0 0 0 1 (2%) 1
S-ID-8 0 0 0 0 0 (0%) 0
S-1D-9 0 1 0 0 1 (2%) 1
S-IC-1 0 3 0 0 3 (7%) 3
S-IC-2 1 3 0 0 4 (10%) 4
S-IC-3 0 1 0 0 1 (2%) 1
S-IC-4 0 1 0 0 1 (2%) 1
S-IC-5 0 4 0 0 4 (10%) 4
S-IC-6 1 2 0 0 3 (7%) 3
S-CP-1 3 0 0 0 3 (7%) 3
S-CP-2 3 0 0 0 3 (7%) 3
S-CP-3 0 0 0 0 0 (0%) 0
S-CP-4 0 0 0 0 0 (0%) 0
S-CP-5 0 0 0 0 0 (0%) 0
S-CP-6 1 0 0 0 1 (2%) 1
S-CP-7 0 0 0 0 0 (0%) 0
Total 24 (57%) 17 (40%) 1 (2%) 0 (0%) 42 42 (100%)

4.4.2 Question 2

As shown in Table 4.11, the IMP curriculum has more high-level items than low-level items.

With 31% of items being at the level of procedures with connections and 40% doing

mathematics, the IMP curriculum has opportunities for students to engage in high-level items

71% of the time.
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Table 4.11. Cognitive demand of items in IMP textbooks sorted by standard

Standard Memorization Procedures Procedures Doing Total

without with Mathematics

Connections  Connections
S-ID-1 0 15 3 3 21 (11%)
S-ID-2 0 3 7 4 14 (7%)
S-ID-3 0 3 3 8 14 (7%)
S-1D-4 1 7 2 0 10 (5%)
S-ID-5 0 13 4 3 20 (10%)
S-1D-6a 0 5 4 11 20 (10%)
S-ID-6b 0 0 0 0 0 (0%)
S-1D-6¢ 0 0 3 0 3 (2%)
S-ID-7 0 5 2 1 8 (4%)
S-1D-8 0 0 0 0 0 (0%)
S-ID-9 0 0 0 1 1 (1%)
S-1C-1 0 0 1 5 6 (3%)
S-IC-2 0 0 0 8 8 (4%)
S-IC-3 0 0 0 1 1 (1%)
S-IC-4 0 0 0 2 2 (1%)
S-1C-5 0 0 9 5 14 (7%)
S-IC-6 0 0 0 6 6 (3%)
S-CP-1 0 1 15 12 28 (15%)
S-CP-2 0 3 5 5 13 (7%)
S-CP-3 0 0 0 0 0 (0%)
S-CP-4 0 0 1 0 1 (1%)
S-CP-5 0 0 0 0 0 (0%)
S-CP-6 0 0 0 1 1 (1%)
S-CP-7 0 0 0 0 0 (0%)
Total 1 (1%) 55 (29%) 59 (31%) 76 (40%) 191

When organized by textbooks, all but two of the probability and statistics items in the
entire IMP curriculum are found in the first two years of the textbook series as shown in Table
4.12. There is also a slight difference in the level of cognitive demand of the items when sorted
by years. In year one, there is balance between procedures without connections, procedures with
connections, and doing mathematics items with all three being in the forties. However, in year
two, the numbers tend to lean more toward doing mathematics as there are more doing

mathematics items than the other three possible codes combined.
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Table 4.12. Cognitive demand of items in IMP textbooks sorted by textbook

Textbook Memorization Procedures Procedures Doing TOTAL
without with Mathematics
Connections  Connections
Year 1 1 40 45 47 133 (70%)
Year 2 0 13 14 29 56 (29%)
Year 3 0 2 0 0 2 (1%)
Year 4 0 0 0 0 0 (0%)
Total 1 (1%) 55 (29%) 59 (31%) 76 (40%) 191
First 3 1 55 59 76 191 (100%)

When instructional tasks were examined by standard, a majority were coded as doing
mathematics, as shown in Table 4.13. More than 85% of the tasks were considered to have high
cognitive demand as opposed to 70% of the items in Table 4.11. The greater disparity between
high-level and low-level codes in tasks as compared to items may indicate that many of the tasks
contain lower level items within them. Because they appear with high-level items, the low-level

item codes do not show up in the codes for instructional tasks.
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Table 4.13. Cognitive demand of tasks in IMP textbooks sorted by standard

Standard Memorization Procedures Procedures Doing Total
without with Mathematics
Connections  Connections
S-ID-1 0 1 0 1 2 (5%)
S-1D-2 0 0 1 1 2 (5%)
S-ID-3 0 0 0 2 2 (5%)
S-1D-4 0 1 1 0 2 (5%)
S-ID-5 0 3 0 0 3 (7%)
S-1D-6a 0 1 1 3 5 (12%)
S-ID-6b 0 0 0 0 0 (0%)
S-1D-6¢ 0 0 1 0 1 (2%)
S-ID-7 0 0 0 1 1 (2%)
S-1D-8 0 0 0 0 0 (0%)
S-ID-9 0 0 0 1 1 (2%)
S-1C-1 0 0 0 3 3 (7%)
S-IC-2 0 0 0 4 4 (10%)
S-IC-3 0 0 0 1 1 (2%)
S-IC-4 0 0 0 1 1 (2%)
S-1C-5 0 0 1 3 4 (10%)
S-IC-6 0 0 0 3 3 (7%)
S-CP-1 0 0 0 3 3 (7%)
S-CP-2 0 0 2 1 3 (7%)
S-CP-3 0 0 0 0 0 (0%)
S-CP-4 0 0 0 0 0 (0%)
S-CP-5 0 0 0 0 0 (0%)
S-CP-6 0 0 0 1 1 (2%)
S-CP-7 0 0 0 0 0 (0%)
Total 0 (0%) 6 (14%) 7 (17%) 29 (69%) 42

The idea of low-level items appearing in tasks with high-level items, in this case doing
mathematics items, is exemplified by Figure 4.10 and Figure 4.11. These figures are from an
IMP group activity called Making Friends with Standard Deviation. This group activity contains
eleven total items as shown in Table 4.12.

Problem 1 in Making Friends with Standard Deviation begins with item 1a that does not
align with the probability and statistics recommendations of CCSSM. Item 1b is a procedures

without connections item aligned to S-ID-3. Item 1c is also aligned to S-1D-3, but increases in
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level of cognitive demand to procedures with connection. The fourth and final item for problem
1 is a doing mathematics item also aligned to S-1D-3. The bullet points with the fourth item were
not coded as separate items because they provide guidance for students in addressing the initial
portion of the item, “Explain why your pattern should occur” rather than represent independent
items.

Items coded as procedures without connections, procedures with connections, and doing
mathematics are also present in problem 2. All four items in problem 2 are aligned to S-1D-3.
The first two are procedures without connections. The next item is at the level of procedures with
connections. The fourth and final item is at the level of doing mathematics. The third problem in
this group activity does not align with any probability and statistics recommendation of CCSSM.

In summary, the items in this group activity that are aligned with the probability and
statistics recommendations of CCSSM are all aligned to S-1D-3. Since they are all aligned to the
same item, this group activity is considered one instructional task. This one task contains three
procedures without connections items, two procedures with connections items, and two doing
mathematics items. The level of cognitive demand for the task is doing mathematics because that
is the highest potential of any single item in the task. Coding the task at the level of doing

mathematics masks the five codes were not at the level of doing mathematics.
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-' 1 Group Activity

Making Friends with Standard Deviation

You will be working with the concept of standard deviation to decide
which variables actually have an effect on the period of a pendulum. It
will be helpful for you to become familiar with what standard deviation
means.

1. First explore what happens to the mean and the standard deviation
of a set of data when you add the same number to each member in
the set.

a. As a group, make up a set of five numbers that are all different.
Find the mean and the standard deviation of your set.

b. Now choose a nonzero number and add it to each member of
your set. Find the mean and the standard deviation of your
new set.

¢. Repeat part b, using a different nonzero number. Add this
number to each member of your original set of data, and find the
mean and standard deviation of the new set. Keep repeating this
process until you see patterns, and then describe those patterns.

d. Explain why your pattern should occur.

o Explain why the mean changes as it does when you add the
same thing to each member of the set.
© Explain why the standard deviation changes as it does when

you add the same thing to each member of the set.
{ continued ¥

The Pit and the Pendulum: Statistics and the Pendulum 331

Figure 4.10. Items from a group activity in IMP Year 1 (Fendel et al., p. 331, 2009)
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2. Now explore what happens to the mean and the standard deviation
of a sel of data when you multiply each member in the set by the
same number.

a. Begin with the same set of data as in Question la. Choose a
nonzero number other than 1. Multiply each member ol your set
by that number and find the mean and the standard deviation of
the new sel.

b. Choose another nonzero number other than 1, and repeat what
you did in part a.

¢. Keep choosing new nonzero numbers Lo use as multipliers
for each member in your seL. Find the mean and the standard
deviation of each new sel until you see patterns. Describe those
patlerns.

d. Explain why your patterns occur.

3. Make up a set of data that satisfies each of Lhe given conditions as
closely as you can.

i Mean, 6; standard deviation, |

b. Mean. 10: standard deviation, |

¢. Mean, 7; standard deviation, 2

332  INTERACTIVE MATHEMATICS PROGRAM

Figure 4.11. Items from a group activity in IMP Year 1 (Fendel et al., p. 332, 2009)
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Table 4.14. Data from items in Figure 4.10 and Figure 4.11

Series Book Chapter Activity Problem Standard Cognitive
Demand

IMP 1 The Pit and the Making Friends with 1a None
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with  1b S-ID-3 PnC
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with 1c S-ID-3 PwC
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with 1d S-ID-3 DM
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with 2a S-ID-3 PnC
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with  2b S-ID-3 PnC
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with 2c S-ID-3 PwC
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with 2d S-ID-3 DM
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with 3a None
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with  3b None
Pendulum Standard Deviation

IMP 1 The Pit and the Making Friends with  3c None
Pendulum Standard Deviation

When looking at the tasks organized by textbook, both the first and second year have most

tasks at the level of doing mathematics, as shown in Table 4.15. This resembles the results when

looking at cognitive demand by standard.
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Table 4.15. Cognitive demand of tasks in IMP textbooks sorted by textbook

Textbook Memorization Procedures Procedures Doing TOTAL
without with Mathematics
Connections  Connections
Year 1 0 2 6 14 22 (58%)
Year 2 0 3 1 11 15 (39%)
Year 3 0 1 0 0 1 (3%)
Year 4 0 0 0 0 0 (0%)
Total 0 (0%) 6 (16%) 7 (18%) 25 (66%) 38
First 3 0 6 7 25 38 (100%)

4.4.3 Question 3

While less than one third (31%) of the high-level tasks provide opportunities for teacher
learning, Year 1 has eight of the ten total opportunities, as shown in Table 4.16. In Year 1, 40%
of the high-level tasks contain opportunities to learn in the teachers’ guide. Year 2 decreases to a
mere 17%. Additionally, there are no opportunities for teacher learning through transparency. All
ten tasks that contain opportunities for teacher learning do so through anticipation only. Figure
4.12 is part of the online teacher’s guide of IMP. Specifically this part of the teacher’s guide
relates to Figure 4.11, Making Friends with Standard Deviation. The note in the teacher’s guide
refers to different ways students may come to understanding that adding a value to each term

with change the mean but not the standard deviation.
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Discussing and Debriefing the Activity
Focus the discussion on parts ¢ and d of Questions 1 and 2.

Students’ explanations of the patterns they observe in Question 1d may take
several forms. For example, they may picture the data peints on the number line,
so that adding the same thing to each data point just moves the points along and
hence also moves the mean. Or they may see the change in the mean algebraically
(although it's unlikely they will have a full algebraic explanation involving the
distributive law).

Students may attribute the lack of change in the standard deviation to the fact that
the spread doesn’t change when the set of data points is moved along. Or they may
recognize that when all the data are changed the same way, the mean also
changes, so the spread from the mean remains the same.

The explanations for Question 2d will be similar.

Fathom Dynamic Data™ software can be used to provide a visual demonstration of
the effects on a simple data set of adding or multiplying by a constant.

Figure 4.12. Teacher’s guide notes for the task in Figure 4.11 which contain anticipation

Table 4.16. Teacher support on high-level probability and statistics tasks in IMP

Textbook Anticipation  Transparency Total
Year 1 8/20 0/20 8/20
Year 2 2/12 0/12 2/12
Year 3 0/0 0/0 0/0
Year 4 0/0 0/0 0/0
Total 10/32 0/32 10/32
First 3 10/32 0/32 10/32

45  CORE-PLUS MATHEMATICS PROJECT

The Core-Plus Mathematics Proejct (CPMP) curriculum materials were also funded by the NSF
and represent a Standards-based approach to secondary mathematics education much like IMP.
CPMP also represents an integrated approach organized by years like the IMP materials. There

are four years of textbooks intended to be implemented in grades 9 through 12.

151



451 Question1

As shown in Table 4.17, the CPMP curriculum provides opportunities for students to engage in
all of the probability and statistics content suggestion of CCSSM in the student text except S-CP-
5. Some standards were given substantial attention, such as S-1D-6a with 444 items, while others
were minimally addressed, like S-CP-6 with three items. No standard was found only in year
four, which means students only completing three years of mathematics would not be missing
any of the standards not already omitted. In fact, year four only contains 121 of the total 2018
items, which is only 6% of the total for this curriculum. Students can receive 94% of the

opportunities this curriculum has to offer in the first three years of its textbooks.
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Table 4.17. Number of items in CPMP textbooks aligned to CCSSM probability and statistics

Standard Year 1 Year 2 Year 3 Year 4 Total First 3
S-ID-1 181 23 107 2 313 (16%) 311
S-ID-2 169 8 43 0 220 (11%) 220
S-ID-3 36 4 8 0 48 (2%) 48
S-ID-4 0 0 117 0 117 (6%) 117
S-ID-5 0 37 0 0 37 (2%) 37
S-ID-6a 320 90 34 53 497 (25%) 444
S-ID-6b 0 39 1 24 64 (3%) 40
S-ID-6¢ 36 56 0 15 107 (5%) 92
S-ID-7 36 13 5 0 54 (3%) 54
S-ID-8 0 135 3 0 138 (7%) 138
S-1D-9 1 25 2 0 28 (1%) 28
S-IC-1 0 0 27 0 27 (1%) 27
S-IC-2 0 19 0 0 19 (1%) 19
S-IC-3 0 0 52 0 52 (3%) 52
S-IC-4 0 0 4 0 4 (< 1%) 4
S-IC-5 0 0 46 0 46 (2%) 46
S-IC-6 0 18 4 0 22 (1%) 22
S-CP-1 7 28 0 7 42 (2%) 35
S-CP-2 0 10 14 1 25 (1%) 24
S-CP-3 0 29 0 13 42 (2%) 29
S-CP-4 0 44 0 6 50 (2%) 44
S-CP-5 0 0 0 0 0 (0%) 0
S-CP-6 0 3 0 0 3 (< 1%) 3
S-CP-7 39 10 14 0 63 (3%) 63
Total 825 (41%) 591 (29%) 481 (24%) 121 (6%) 2018 1897 (94%)

As shown in Table 4.18, all but two standards (S-1C-4 and S-CP-5) have at least one
instructional task associated with them. However, a majority of the tasks (54 of 96) are
associated with three standards (S-1D-1 has 19, S-ID-2 has 12, and S-ID-6a has 23). This leaves
45 tasks to be spread among the 19 remaining standards. Similar to the item analysis, there are
no standards only addressed in the fourth year of the curriculum. Only four of the total 96 tasks
are found in the fourth year of the curriculum. That means students only completing three years
of mathematics in this curriculum would still have the opportunity to engage with nearly 96% of

the instructional tasks.
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Table 4.18. Number of tasks in CPMP textbooks aligned to CCSSM probability and statistics

Standard Year 1 Year 2 Year 3 Year 4 Total First 3
S-ID-1 11 1 7 0 19 (20%) 19
S-ID-2 7 0 5 0 12 (13%) 12
S-ID-3 1 0 0 0 1 (1%) 1
S-ID-4 0 0 7 0 7 (7%) 7
S-ID-5 0 2 0 0 2 (2%) 2
S-ID-6a 16 5 1 1 23 (24%) 22
S-ID-6b 0 1 0 1 2 (2%) 1
S-1D-6¢ 1 2 0 0 3 (3%) 3
S-ID-7 2 0 0 0 2 (2%) 2
S-ID-8 0 5 0 0 5 (5%) 5
S-1D-9 0 1 0 0 1 (1%) 1
S-IC-1 0 0 1 0 1 (1%) 1
S-IC-2 0 1 0 0 1 (1%) 1
S-IC-3 0 0 2 0 2 (2%) 2
S-IC-4 0 0 0 0 0 (0%) 0
S-IC-5 0 0 1 0 1 (1%) 1
S-IC-6 0 1 0 0 1 (1%) 1
S-CP-1 0 1 0 0 1 (1%) 1
S-CP-2 0 1 1 0 2 (2%) 2
S-CP-3 0 2 0 1 3 (3%) 2
S-CP-4 0 3 0 1 4 (4%) 3
S-CP-5 0 0 0 0 0 (0%) 0
S-CP-6 0 1 0 0 1 (1%) 1
S-CP-7 1 1 0 0 2 (2%) 2
Total 39 (41%) 28 (29%) 25 (26%) 4 (4%) 96 92 (96%)

4.5.2 Question 2

The CPMP curriculum has more high-level items than low-level items much like IMP, as shown
in Table 4.19. Of the 2018 total items, 75% of them were coded at a high-level. Of the high-level

items, 56% were procedures with connections and 44% were doing mathematics.
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Table 4.19. Cognitive demand of items in CPMP sorted by standard

Standard Memorization Procedures Procedures Doing Total

without with Mathematics

Connections  Connections
S-ID-1 1 79 162 71 313 (16%)
S-1D-2 0 42 98 78 218 (11%)
S-ID-3 0 3 26 19 48 (2%)
S-1D-4 2 14 79 22 117 (6%)
S-ID-5 0 29 6 2 37 (2%)
S-1D-6a 3 162 191 142 498 (25%)
S-1D-6b 0 19 22 23 64 (3%)
S-1D-6¢ 2 33 40 32 107 (5%)
S-ID-7 0 6 40 8 54 (3%)
S-1D-8 0 14 47 77 138 (7%)
S-1D-9 1 3 8 16 28 (1%)
S-IC-1 0 0 4 23 27 (1%)
S-IC-2 0 4 5 10 19 (1%)
S-IC-3 0 1 19 32 52 (3%)
S-1C-4 0 3 1 0 4 (< 1%)
S-IC-5 1 2 16 27 46 (2%)
S-I1C-6 0 0 3 19 22 (1%)
S-CP-1 0 17 16 9 42 (2%)
S-CP-2 0 9 10 6 25 (1%)
S-CP-3 0 1 19 23 43 (2%)
S-CP-4 0 18 14 18 50 (2%)
S-CP-5 0 0 0 0 0 (0%)
S-CP-6 0 0 0 3 3 (< 1%)
S-CP-7 1 35 20 7 63 (3%)
Total 11 (1%) 494 (24%) 846 (42%) 667 (33%) 2018

Year one of the series has 565 high-level items out of a total of 825 items with is 68%, as
shown in Table 4.20. Year two represents an increase in the percentage of high-level items as
450 of 582 items are high-level, which is 77% of the total items. Year 3 shows a continuation of
the pattern as the percentage of high-level items increases to 82%, with 394 of the 481 total items

being coded as high-level. Finally, 95 of 119 items (80%) were coded as high-level.
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Table 4.20. Cognitive demand of items in CPMP textbooks sorted by textbook

Textbook Memorization Procedures Procedures Doing Total
without with Mathematics
Connections  Connections
Year 1 1 259 385 180 825 (41%)
Year 2 3 129 185 265 582 (29%)
Year 3 7 80 228 166 481 (24%)
Year 4 0 24 46 49 119 (6%)
Total 11 (1%) 492 (25%) 844 (42%) 660 (33%) 2007
First 3 11 468 798 611 1888 (94%)

Somewhat different from the item analysis are the codes for tasks as shown in Table 4.21.
A majority of the tasks were coded at the level of doing mathematics. This is a direct result of the
coding scheme where the highest coded item within any task determined the level of the task.
The coding scheme was designed to determine the highest potential of a task, not what the

majority of the task was.
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Table 4.21. Cognitive demand of tasks in CPMP sorted by standard

Standard Memorization Procedures Procedures Doing Total
without with Mathematics
Connections  Connections
S-ID-1 0 2 7 10 19 (20%)
S-ID-2 0 0 4 8 12 (13%)
S-ID-3 0 0 0 1 1 (1%)
S-1D-4 0 1 4 2 7 (7%)
S-ID-5 0 0 1 1 2 (2%)
S-ID-6a 0 2 11 10 23 (24%)
S-1D-6b 0 0 1 1 2 (2%)
S-ID-6¢ 0 0 0 3 3 (3%)
S-1D-7 0 0 2 0 2 (2%)
S-ID-8 0 0 0 5 5 (5%)
S-1D-9 0 0 0 1 1 (1%)
S-IC-1 0 0 0 1 1 (1%)
S-IC-2 0 0 0 1 1 (1%)
S-IC-3 0 0 0 2 2 (2%)
S-IC-4 0 0 0 0 0 (0%)
S-IC-5 0 0 0 1 1 (1%)
S-IC-6 0 0 0 1 1 (1%)
S-CP-1 0 0 0 1 1 (1%)
S-CP-2 0 0 0 2 2 (2%)
S-CP-3 0 0 1 2 3 (3%)
S-CP-4 0 0 2 2 4 (4%)
S-CP-5 0 0 0 0 0 (0%)
S-CP-6 0 0 0 1 1 (1%)
S-CP-7 0 0 0 2 2 (2%)
Total 0 (0%) 5 (5%) 33 (34%) 58 (60%) 96

For example, Figure 4.13 shows a task that contains nine items. Of these nine items, five
of them were in alignment with the probability and statistics recommendations of CCSSM.
Specifically, items 2bi, 2bii, 2biii, 2e, and 2fii all aligned with standard S-1D-6a as shown in
Table 4.22. Of these five items, four were coded at the level of procedures without connections
(2bi, 2bii, 2biii, and 2e) and one of them was coded as doing mathematics (2fii). Even though
there are more codes for procedures without connections, the highest potential of the task is

doing mathematics. Therefore, the task was coded as doing mathematics.

157



You could test your ideas about e (fistanee, inben- y) relationship by collecting
data from an experiment. But you can akso pet good ideas by mathematical
raasoning alone. Consider what woukl happen if vou were to enter a dark room
and shine a small flashlight direatly ata flar sueface like o wall, The lashlight
will create o cirdde of light on the wall.

A Compluete entries in the following table that contains measurements of light
ircle diameter for one flashlight that has been held at several distances
from o wall. Distance and diameter measurements are in foet. Lxpress the

are in terms of T
Light Circle Measurements
Distance from LightSource,.x 1 2 3 4 5 6
Diameter of Light Circle, d Z 1416 8 W R
Radivs of Light Circle, r
Arca of Light Circle, A

b. Write rules that show.
ic diameter of light circle as a function of distance from the light source
il radies of light circle as a tunction of distance from the light source.
iii. arca of light circle as a function of distance from the light source

€. Describe the relationships of the geometric variables diameter, radius, and
arca by completing sentences like this: “The variable is
proportional to »withamwtant of proportionality

- Pight energy s mvasured i unit called Tumens. The intensity of hght is

measured in lumens per unitof area. As the tight circle of a Rashlight or
lamp increases in size, theintensity oflight decreases

a

Toexplore how that decrease in light mntensity is related to distance from
source to targed, suppose that the fhashlight that gave (distice, dismeter)
values in Part a produces o0 lumens of light energy. Use the area data from
Part 2 to complete this tabke relating light intensity 1o distance 1.

Light Intensity Measurements
DistancefromLight. x t 2 3 4 5§
ArcaoflightCircle. A = arx

. . 160 160
Light Intensity, / T Ar

. Write a rule that shows light intensity | as a function of distance x from
source 10 receiving surface.
f. Study the graph of the light intensity function in Part ¢
i. Which of the graph shapes in Problem 1 seems to best model the pattern
of change in light intensity as distance from source lo receiver increases?

ji. Cxplain in words what the pattern of change shown by the light
intensity function and its graph tells about the cffective range of 2

Figure 4.13. Doing mathematics task in CPMP containing items below doing mathematics
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Table 4.22. Cognitive demand of items in Figure 4.13

Series  Textbook Unit Lesson Problem Standard Cognitive Demand
CPMP 2A 1 1 Inv2-2a None

CPMP 2A 1 1 Inv2-2bi S-ID-6a PnC

CPMP 2A 1 1 Inv2-2bii S-ID-6a PnC

CPMP 2A 1 1 Inv 2 —2biii  S-ID-6a  PnC

CPMP 2A 1 1 Inv2-2c None

CPMP 2A 1 1 Inv2-2d None

CPMP 2A 1 1 Inv2-2e S-ID-6a PnC

CPMP 2A 1 1 Inv 2 — 2fi None

CPMP 2A 1 1 Inv2-2fii  S-ID-6a DM

As shown in Table 4.23, examining the tasks found in each textbook reveals a design that
emphasizes high-level tasks. The type of high-level tasks differs from year one to the other years.
Year 1 represents a balance between the two high-level task types with eighteen tasks considered
procedures with connections and eighteen tasks considered doing mathematics. However, the
other years represent a shift to an emphasis on doing mathematics tasks. Finally, it may be worth
noting again that a student only completing three of the four years of the curriculum would not
miss a substantial number of opportunities in comparison from the fourth year when compared to
the previous three.

Table 4.23. Cognitive demand of tasks in CPMP textbooks sorted by textbook

Textbook Memorization Procedures Procedures Doing Total
without with Mathematics
Connections  Connections

Year 1 0 3 18 18 39 (41%)

Year 2 0 0 6 22 28 (29%)

Year 3 0 2 8 15 25 (26%)

Year 4 0 0 1 3 4 (4%)

Total 0 (0%) 5 (5%) 33 (34%) 58 (60%) 96

First 3 0 5 32 55 92 (96%)
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4.5.3 Question 3

As shown in Table 4.24, there is minimal support for teachers enacting the curriculum. Of the 91
high-level tasks, only 13 of them (14%) provide opportunities for teacher learning. There appears
to be a greater emphasis on anticipating student thinking than there is on providing transparency
since 11 of the 13 opportunities for teacher learning are related to anticipation.

Figure 4.14 is part of a task where students are asked to relate a table or a graph to the
Law of Large Numbers. The teacher’s edition of the textbook provides an opportunity for
anticipation as shown in Figure 4.15. Figure 4.15 anticipates two concepts that may cause
conflict with students when it comes to the law of large numbers. Students may understand that
the proportion of heads tends to get closer to the theoretical value of 0.5, but they may find
difficulty in recognizing that the difference between actual value of heads and the expected value

of heads typically increases.

f. Explain how your completed graph and table illustrate the Law of
Large Mumbers.

Figure 4.14. Task supported via anticipation in CPMP Course 1 (Hirsch et al., p. 556, 2015)
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f. The Law of Large Numbers says that as the number of trials increases, the
estimated probability tends to get closer to the theoretical probability. The
graph illustrates this because as the number of flips increases, the proportion
of heads tends to get closer to 0.5.

POSSIBLE MISCONCEPTION Although the proportion of heads is converging\
to 05, the frequency of heads is diverging from the expected frequency.
In the table in Part e, the expected number of heads in 10 flips is 5. The actual
number is 4, for a difference of 1. After 50 flips, the proportion of heads is
closer to 0.5 than for 10 flips, but the number of heads, 22, is 3 away from the
expected number of heads, 25. Notice that while 3 is greater in magnitude
than 1, it represents a smaller percentage of 50 than 1 does of 10.

This is an important idea for students to learn—that as you are flipping
a coin, for example, the percentage of heads tends to get closer and closer
to 50% as the number of flips increases, while the number of heads tends to
get further and further from half the number of tosses. If students do not
understand this, they will believe that the coin must balance out the numbers
of heads and tails in the future by changing the probability that it will be a

head. This idea comes up agdin in Reflections Task 17
o b,

Figure 4.15. Support via anticipation in CPMP Course 1 (Hirsch et al., p. 556T, 2015)

Figure 4.16 is a task from CPMP where the teacher’s edition provides an opportunity for
transparency. Figure 4.17 is the part of the teacher’s edition that corresponds to student edition
task shown in Figure 4.16. These figures demonstrate what typical opportunities for transparency
look like in CPMP textbooks. As shown in Figure 4.17, the underlying focus of the task, use an
informal understanding of conditional probability, is made explicit to the teacher. Additionally,
the teacher is provided with an explanation of how the various methods of completing the task
could be emphasized depending on the prior experience of the students in the class. This allows
the teacher to adapt the task as needed without losing the conceptual understanding that the task

intends to develop.
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B Suppose again the names of six boys and four girls are written on individual
slips of paper and placed in a hat. This time you draw two names withont
replacement. That is, you draw one name, you do nof return the slip of paper
to the hat, then you draw a second name.

a. Find the probability that the first name drawn is a girl’s name and the
second name is a boy’s name.

b. Explain why the answer to Part a is nof -i% X -]%

¢. Show how you can find the probability in Part a using the Multiplication
Principle of Counting and the definition of probability given at the
beginning of this investigation.

d. To find the probability in Part a, you can also use the General
Multiplication Rule for any two events:

If A and B are events, then P(A and B) = P(A) x P(B | A).

The notation P(B | A) is read “probability of B given A.” This means you
find the probability of 8 assuming that you know A happened. Show how
to use the General Multiplication Rule to find:

P(girl's name on first dratw and boy's name on second draw).

Figure 4.16. Task supported via transparency in CPMP Course 4 (Hirsch et al., p. 579, 2015)
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5 K Students may use various methods.

= Using the General Multiplication Rule (which students may use only
implicitly until they get to Part d):

* Using the Multiplication Principle of Counting:

P{girl's name on first draw and boy’s name on second draw) =
number of outcomes corresponding totheevent  4x 6 _ 026

total number of outcomes T10%x9
(See the Mathematics Note in Problem 4 Part a.)

* Using permutations and the Multiplication Principle of Counting:
number of outcomes corresponding to theevent 4 x g 026

total number of outcomes ~P10.2) -

b. Informal response: The second factor is —g-not % because there are 6 boys but
only 9 slips of paper left in the hat.

Formal response: You cannot use the Multiplication Rule for independent

events because the events are not independent. The events in this analysis are

“girl's name on first draw” and "boy's name on second draw.” These events are

not independent because the first slip of paper is not returned to the hat before

the second slip is drawn; therefore, the result of the first draw changes the
probability for the second draw.

¢. Using the definition of probability given at the beginning of this investigation,
you can compute the probability by counting outcomes. An outcome in this
situation is a possible result of drawing two slips of paper when the first is
drawn without replacement. That is, an outcome is a sequence of two names
drawn. Each outcome is equally likely since each slip of paper is just as likely
to be drawn as any other. Since the first slip of paper is not replaced before
drawing the second, the total number of possible outcomes is 10 X 9 = 90,
(Students may see this as P(10, 2).) The number of outcomes corresponding
to the event of “girl’s name on first draw and boy's name on second draw” is

4 % 6 = 24. Thus, P(girl’s name on first draw and boy’s name on second draw) =

number of outcomes corresponding to the event
total number of outcomes

d. P(girf's name on first draw and boy's name on second draw) = P(girl's name

on first draw) x P(boy's name on second draw | girl's name on first draw) =
4 6

e x —

09

=24 _02%
=30 = 026.

INSTRUCTIONAL NOTE

Problem 5 references
conditional probability. The
context allows students

to understand and apply
conditional probability
informally without formal
development. Thus, depending
on your students’ experience
with conditional probability,
you may emphasize a formal
approach to this idea or simply
use an informal approach
restricted to the specific
contexts in this investigation

Figure 4.17. Support via transparency in CPMP Course 4 (Hirsch et al., p. 579T, 2015)
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Table 4.24. Teacher support on high-level probability and statistics tasks in CPMP

Textbook Anticipation ~ Transparency Total
Year 1 5/36 1/36 6/36
Year 2 5/28 0/28 5/28
Year 3 0/23 0/23 0/23
Year 4 1/4 Ya 2/4
Total 11/91 2/91 13/91

46  COMPARISONS BETWEEN CURRICULUM MATERIALS

Looking at each set of curriculum materials individually has many benefits, but these results
should also be examined in comparison with one another. This examination will once again
progress through each of the research questions using the established relevant results to compare

the three sets of curriculum materials.

4.6.1 Question 1

The CPMP curriculum provides the most opportunities for students to engage in all of the
probability and statistics content suggestion of CCSSM based on the number of items in the
student text as shown in Table 4.25. In many cases where CPMP lacks items for a specific
standard, the other two curricula do as well. For example, S-CP-5 is not addressed by either
CPMP or IMP and GM has only one item associated with S-CP-5. However, GM is lacking in S-
ID-5 where the other two are not. IMP has four standards completely unaddressed (S-ID-6b, S-

ID-8, S-CP-3, and S-CP-7) that the other two curricula address in some manner.
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When looking at only the first three years of each curriculum, it is interesting to note that
even though IMP has a much lower number of items than GM (191 compared to 994) as shown
in Table 4.25, the IMP curriculum has more tasks than does the GM curriculum (42 compared to
36) as shown in Table 4.26. This is the result of the GM textbook providing enrichment and
review problems at the end of each section where the IMP curriculum does not as discussed
previously in this chapter. Refer to Figure 4.3 and Figure 4.4 from GM and Figure 4.5 from IMP
from the beginning of this chapter for visual representation of the differences in the two

curricula.
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Table 4.25. Items aligned with CCSSM probability and statistics in each curriculum

Standard Glencoe Glencoe Interactive Interactive Core-Plus Core-Plus
Mathematics Mathematics Mathematics Mathematics Mathematics Mathematics
Total First 3 Program Program Project Project
Total First 3 Total First 3
S-ID-1 161 148 21 21 313 311
S-ID-2 138 99 14 14 220 220
S-ID-3 27 26 14 14 48 48
S-ID-4 257 80 10 10 117 117
S-ID-5 8 8 20 20 37 37
S-ID-6a 266 96 20 20 497 444
S-ID-6b 17 9 0 0 64 40
S-ID-6¢c 86 59 3 3 107 92
S-ID-7 36 27 8 8 54 54
S-ID-8 81 55 0 0 138 138
S-1D-9 21 21 1 1 28 28
S-IC-1 31 14 6 6 27 27
S-IC-2 65 2 8 8 19 19
S-IC-3 70 70 1 1 52 52
S-IC-4 65 28 2 2 4 4
S-IC-5 4 2 14 14 46 46
S-IC-6 11 11 6 6 22 22
S-CP-1 51 51 28 28 42 35
S-Cp-2 31 31 13 13 25 24
S-CP-3 56 56 0 0 42 29
S-CP-4 17 17 1 1 50 44
S-CP-5 1 1 0 0 0 0
S-CP-6 2 2 1 1 3 3
S-CP-7 82 81 0 0 63 63
Total 1584 994 191 191 2018 1897

As shown in Table 4.26, when examining the textbooks by task, the CPMP curriculum
provides the most opportunities for students to engage in all of the probability and statistics
content suggestion of CCSSM. When CPMP lacks tasks for a specific standard, the other two
curricula do as well. The only exception is in standard S-1C-4 where the GM textbooks have
three tasks and the IMP textbooks have one task. However, there are multiple examples of the

other two textbook series not having a task for a specified textbook series but CPMP having at
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least one. There is even one standard, S-CP-4, where both GM and IMP do not have a task
corresponding to the standard, but CPMP has four.
Table 4.26. Tasks aligned with CCSSM probability and statistics in each curriculum
Standard  Glencoe Glencoe Interactive Interactive Core-Plus Core-Plus
Mathematics Mathematics Mathematics Mathematics Mathematics Mathematics

Total First 3 Program Program Project Total Project
Total First 3 First 3

S-1D-1
S-ID-2
S-ID-3
S-ID-4
S-ID-5
S-ID-6a
S-ID-6b
S-ID-6¢
S-ID-7
S-1D-8
S-1D-9
S-IC-1
S-IC-2
S-IC-3
S-IC-4
S-IC-5
S-IC-6
S-CP-1
S-CP-2
S-CP-3
S-CP-4
S-CP-5
S-CP-6
S-CP-7
Total

N

19 19
12 12
1

\l

w
N

QQWOOOMNDMNMNNREFPFPWWWNORAERNENOOWNO ©
WWOOOMNMNMMNPFPOPRPWORPRONEDNPFPWOELEDNO D
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ONPFPOWNDNMNREFPPFPPFPONRPRPPFPONWEDNDDN

(o]
N

There are 24 individual standards related to probability and statistics in CCSSM. As
shown in Figure 4.18, The GM series addressed all 24 standards with at least one item. This
number is accurate when both the entire curriculum and only the first three years of the
curriculum are considered. However, only 19 of the 24 probability and statistics standards are

addressed by tasks over all four years of the GM curriculum and even less, 17, are addressed by
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the first three years of the curriculum. Both the entire CPMP series and the first three years of
CPMP address 23 of the 24 probability and statistics standards with at least one item. The CPMP
series addresses 22 of the 24 with a task both in the entire series and in the first three years.
Finally, IMP addresses 19 of 24 probability and statistics standards with at least one item while
addressing 18 of 24 with at least one task in the entire series. These numbers stay the same when

only the first three years of the curriculum are considered.

Iltems - Entire Series Tasks - Entire Series Items - First 3 Years Tasks - First 3 Years

24

1

o]

1

"]

()]

o

EGM mCPMP mIMP

Figure 4.18. Number of CCSSM probability and statistics standards in each curriculum
Figure 4.19 shows the total number of items found in each curriculum that address any

probability and statistics standard from CCSSM. The GM series has 1584 items in the entire
series and 994 items in the first three year of the curriculum addressing probability and statistics
standards from CCSSM. The CPMP series has 2018 items addressing probability and statistics
standards from CCSSM in the entire curriculum and 1897 items in the first three years. Finally,
IMP has 191 items in both the entire series and in the first three years since IMP has no
probability and statistics content in alignment with CCSSM in the fourth year of the curriculum.
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Figure 4.19. Number of items addressing CCSSM probability and statistics in each series
Figure 4.20 shows the total number of tasks found in each curriculum that address any
probability and statistics standard from CCSSM. The GM series has 59 tasks in the entire series
and 36 tasks in the first three year of the curriculum addressing probability and statistics
standards from CCSSM. The CPMP series has 96 tasks addressing probability and statistics
standards from CCSSM in the entire curriculum and 92 tasks in the first three years. Finally, IMP

has 42 tasks in both the entire series and in the first three years.
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Figure 4.20. Number of tasks addressing CCSSM probability and statistics in each series

4.6.2 Question 2

As shown in Table 4.27, the GM curriculum is dominated by low-level items. Nearly 83% of the
items in the GM curriculum are low-level. Contrarily, the IMP curriculum and CPMP curriculum
have mostly high-level tasks with 71% of the IMP items and 75% of the CPMP items being
high-level. In order to contrast the IMP and CPMP curriculums, a closer examination of the
high-level tasks is necessary. In the IMP curriculum, 56% of the high-level tasks are doing
mathematics. On the other hand, 56% of the high-level tasks in CPMP are procedures with

connection.
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Table 4.27. Cognitive demand of probability and statistics items in each curriculum

Textbook Memorization Procedures Procedures Doing Total
Series without with Mathematics
Connections  Connections

Glencoe 18 1259 212 56 1545
Mathematics

Total

Glencoe 9 799 89 22 919
Mathematics

First 3

Interactive 1 55 59 76 191
Mathematics

Program

Total

Interactive 1 55 59 76 191
Mathematics

Program

First 3

Core-Plus 11 492 844 660 2007
Mathematics

Project

Total

Core-Plus 11 468 798 611 1888
Mathematics

Project

First 3

Figure 4.21 is a graphical representation of the same data found in Table 4.27. Figure
4.21 clearly demonstrates the previously discussed tendency toward procedures without
connections items in the GM series. The CPMP series has some low-level items, but there are
more of each type of high-level item (procedures with connections and doing mathematics) than

there are low-level items combined. The number of items in IMP increases with the cognitive

demand. In other words, the higher the level of cognitive demand, the more items there are.
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Figure 4.21. Cognitive demand of probability and statistics items in each curriculum
Much like the item analysis, the task analysis shown in Table 4.28 makes the traditional
versus Standards-based designs visible with results. Only 34% of the tasks in the GM curriculum
are high-level. However, both the IMP and CPMP curriculums have more than 60% of their

tasks coded as being high-level.
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Table 4.28. Cognitive demand of probability and statistics tasks in each curriculum

Textbook Memorization Procedures Procedures Doing TOTAL
Series without with Mathematics
Connections  Connections

Glencoe 0 39 15 5 59
Mathematics

Total

Glencoe 0 32 4 0 36
Mathematics

First 3

Interactive 0 6 7 25 38
Mathematics

Program

Total

Interactive 0 6 7 25 38
Mathematics

Program

First 3

Core-Plus 0 5 33 58 96
Mathematics

Project

Total

Core-Plus 0 5 32 55 92
Mathematics

Project

First 3

Once again, Figure 4.22 represents the data from Table 4.28 graphically. As shown in
Figure 4.21, The GM series contains mostly procedures without connections tasks, has a few
procedures with connections tasks, and even less doing mathematics tasks. The other two

textbook series, CPMP and IMP, both have mostly doing mathematics tasks with some

procedures with connections and procedures without connections tasks as well.
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Figure 4.22. Cognitive demand of probability and statistics tasks in each curriculum

4.6.3 Question 3

As shown in Table 4.29, the IMP curriculum materials clearly provide the most support
for teacher learning per high-level task. The GM curriculum does not provide more than one
opportunity for teacher learning even though there are twenty tasks that are highly cognitively
demanding for the students and thus demanding for the teacher to implement well. The ten
opportunities for teacher learning in the IMP curriculum are close to the thirteen in the CPMP
curriculum. However, ten opportunities out of 32 tasks means 31% of the high-level tasks in the
IMP curriculum has opportunities for teacher learning. Thirteen opportunities out of 91 tasks
means only 14% of the high-level tasks in the CPMP curriculum provide opportunities for

teacher learning.
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Table 4.29. Teacher support on high-level probability and statistics tasks in each curriculum

Textbook Series Anticipation Transparency Total
Glencoe Mathematics Total 1/20 0/20 1/20
Glencoe Mathematics First 3 0/4 0/4 0/4
Interactive Mathematics Program Total 10/32 0/32 10/32
Interactive Mathematics Program First3  10/32 0/32 10/32
Core-Plus Mathematics Project Total 11/91 2/91 13/91
Core-Plus Mathematics Project First 3 10/87 1/87 11/87

As shown in Table 4.23, none of the curricula provides teacher support in the form of
opportunities for teacher learning through anticipation or transparency on most of the high-level
tasks found in them. The CPMP curriculum has the most opportunities, but CPMP also has the
highest number of high-level tasks. The IMP curriculum has nearly the same number of
opportunities, 10 compared to 13, but only has 32 high-level tasks that would benefit from such
opportunities compared to 91 high-level tasks in CPMP. The GM curriculum has both the fewest

number of opportunities and the fewest number of high-level tasks among the three curricula.

100
90
80
70
60
50
40
30

20
0

GM CPMP IMP

B Supported M Unsupported

Figure 4.23. Supported and unsupported high-level tasks in each curriculum
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4.7 CHAPTER 4 SUMMARY

The key results of the study can be summarized by the following:

1) CPMP has the most items (2018) and tasks (96) that address the probability and statistics
standards found in CCSSM.

2) GM addresses the highest number of the 24 probability and statistics standards found in
CCSSM via items (24/24) while CPMP addresses the highest number via tasks (22/24).

3) The majority of items found in the CPMP and IMP textbooks were of a high-level
cognitive demand (75% high-level in CPMP and 71% high-level in IMP) while only 17%
of the items in GM were high-level.

4) The majority of the tasks found in the CPMP and IMP textbooks were of a high-level
cognitive demand (95% high-level in CPMP and 86% high-level in IMP) while only 34%
of the tasks in IMP were high-level.

Less than one third of the high-level tasks in each of the three curricula provided opportunities

for teacher learning (14% in CPMP, 31% in IMP, and 5% in GM)
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5.0 DISCUSSION

This chapter contains a discussion of the results presented in chapter 4 and how the results
provide insights regarding which secondary mathematics curriculum materials have the potential
to support teacher and students learning of probability and statistics. Specifically, the purpose of
this study was to analyze current secondary mathematics textbooks to determine the extent to
which those textbooks have the potential to prepare students and teachers to meet the demand of
the CCSS related to statistics and probability. Rather than repeating the results presented in
chapter 4, here the results are used to consider which textbook would be the optimal choice for
teaching probability and statistics. The extent to which this potential exists can be examined in
multiple ways. The following questions will frame the discussion that follows:
1) Which textbook series provides the most comprehensive coverage of the CCSSM
probability and statistics standards for content?
2) Which textbook series provides the most comprehensive coverage of the Standards for
Mathematical Practice by providing high-level opportunities for students to engage in?
3) Which textbook series provides the most support for the teachers enacting the probability
and statistics content?
The chapter begins by defining comprehensive coverage. Next, there is a discussion of each
textbook series’ inferred philosophy of how students learn. Then there is a discussion of the three

framing questions. This will be followed in turn by discussion of: the limitations of the results;
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the implications of the study; and the potential contributions of the study. Finally, concluding

remarks including suggestions for future research are made.

5.1 DEFINING COMPREHENSIVE COVERAGE

It is important to notice the idea of comprehensive coverage showing up twice in these framing
questions. Coverage is typically associated with content. However, the manner in which the
content is addressed is as important as the content itself. If the demands of CCSSM are to be met,
the content must be addressed in such a manner as to elicit the kind of thinking that would be
required for one to engage in the Standards for Mathematical Practice that accompany the
content standards of CCSSM. It has previously been suggested that high-level tasks will be
required to elicit this type of thinking. Therefore, the concept of coverage must involve both
content and cognitive demand.

Figures 5.1 and 5.2 have been provided to make this argument clear. The tasks in both
Figure 5.1 and 5.2 could be considered as covering the content of CCSSM Standard S-1D-1.
However, the manner in which that coverage occurs is very different. The task in Figure 5.1
instructs students to construct two specific graphs, a histogram and a cumulative frequency
histogram with specified values, from a data set that is provided by the textbook. While this task
does involve representing data with plots on a real number line, the task is of low cognitive
demand since they involve following a specified procedure without any connections being made.
The task in Figure 5.2 also asks students to create a graph. However, students generate the data
themselves and are not instructed on the type of graph that should be drawn. Additionally,

students are asked to write a paragraph discussing their observations and summarizing the
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results. Finally, students are asked to make connections between this task and a task they have

previously completed. This task would be at the level of doing mathematics.

Ty [ Frequeney

2. PLAYS The frequency table at the right

shows t}ie ages of people attending a high i " o=
school play.
a. Make a histogram to display the data. 20-89 | AT LA A B L 5
b. Make a cumulative frequency histogram 40-59 | H IHT IHE JHT W1 A 31
showing the number of people attending 60-79 el 8
who were less than 20, 40, 60, or
80 years old.

Figure 5.1. Procedures without connections items in GM Algebra 1 (Carter et al., p. 45, 2010)

. g Activity

Rollin’, Rollin’, Rollin’

Roll a pair of dice 50 times. With each roll, find the sum of the dice.
Keep a record of your sums in an organized way.

1. Draw a graph of the data you gathered.

2. Write a paragraph about your results. You
should summarize your observations about the
data and discuss why the results came out the
way they did.

3. What new thoughts does this
experiment give you about how to
play the counters game?

Figure 5.2. Doing mathematics items in IMP Year 1 (Fendel et al., p. 104, 2009)

Given these two examples of tasks covering the same content in different ways, now
consider them in the context of the Standards for Mathematical Practice from CCSSM (National
Governors Association Center for Best Practices, Council of Chief State School Officers, 2010):

1) Make sense of problems and persevere in solving them

2) Reason abstractly and quantiatatively

3) Construct viable arguments and critique the reasoning of others
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4) Model with mathematics

5) Use appropriate tools strategically

6) Attend to precision

7) Look for and make use of structure

8) Look for and express regularity in repeated reasoning

The doing mathematics task, Figure 5.2, provides students with an opportunity to engage
in multiple Standards for Mathematical Practice. Because students must generate their own data
set and are not given a specific type of graph to create, students are required to make sense of the
problem and persevere in solving it, have the opportunity to look for and make use of structure,
and may look for an express regularity in repeated reasoning. Requiring students to summarize
their observations and discuss the results encourages the students to reason abstractly and
quantitatively as well as look for and make use of structure. Finally, having students reflect on a
previous task, the task shown in Figure 5.2 promotes students constructing viable arguments and
critiquing the reasoning of others by having them reflect on a previously constructed argument
and consider it in light of the new task.

The procedures without connections task, Figure 5.1, do not provide students with
opportunity to engage in the Standards for Mathematical Practice because students are given the
data set and provided specific instructions on what to do. By not allowing students to generate
their own data or make a decision about what type of graph to create, students are not being
engaged in the Standards for Mathematical Practice. Additionally, once the graphs are created,
students do not do anything with them. There is no opportunity to use the graph or data for any

high-level thinking.
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5.2 INFERRED PHILOSOPHY OF HOW STUDENTS LEARN

Each textbook series has its own philosophy regarding how students learn that can be inferred
from the examination of the materials. Glencoe Mathematics (GM) is a traditional textbook
series where students are presented a few examples and then provided with many items to
practice that mirror the examples and review previous lessons from other sections, chapters, or
even textbooks. The GM philosophy appears to be one where students look at specific, detailed
algorithms presented in the textbook or by the teacher who follows the steps found in the
textbook and then uses the algorithm repeatedly on similar problems. Once the procedures has
been observed and then mimicked, students are then provided opportunities to apply the
procedure to more challenging items and review previously learned procedures. Thus, the
inferred philosophy is that students learn best when provided an algorithm that they can repeat
until it is locked into their memories. To ensure algorithms are not forgotten due to lack of use,
items requiring their use may show up in subsequent sections for further repetition.

Interactive Mathematics Program (IMP) is a Standards-based curriculum where students are
given activities to work through that are intended to develop student understanding of
mathematics while students complete them. Rather than being provided algorithms, the students
are encouraged to work through problems independently or in small groups. The teacher’s role is
to provide support as opposed to direct instruction. The philosophy is that the students will
develop meaning as they work through each of the activities. The IMP curriculum does not
provide items for students to practice or review what they have learned. The philosophy instead
is that students will have developed their own meaning and understanding. Since students have

developed understandings on their own, there is no need for practice and review.
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Core-Plus Mathematics Project (CPMP) is a blend of the two approaches. CPMP
provides students with activities to work through, that they term investigations, which are
intended to develop student understanding much like IMP. However, CPMP also provides
exercises for student practice and review like GM. Supporters of the CPMP philosophy would
assert that deep, meaningful understandings are developed through the investigations with the
review and practice problems available to allow for repetition if needed. The potential impact of
these inferred philosophies regarding how students learn will be part of the discussion

throughout this chapter.

53 COMPREHENSIVE COVERAGE OF CONTENT STANDARDS

When considering the coverage of content standards, multiple grain sizes of analysis are
possible. At the most detailed level of analysis, one could consider individual items in
relationship to individual standards as was presented in chapter 4 (see Table 4.25). However,
both the examination of individual standards and looking at items may be too detailed to capture
the big picture of each curriculum. Rather than being bogged down by the detail of individual
standards and items, a big picture approach using clusters of standards and instructional tasks
will be used for the discussion of content coverage.

The 24 probability and statistics standards from CCSSM are grouped into three clusters by
CCSSM. These clusters are Interpreting Categorical and Quantitative Data (S-1D), Making
Inferences and Justifying Conclusions (S-1C), and Conditional Probability and the Rules of
Probability (S-CP). These clusters represent the big ideas of statistics that students should learn

while in high school. Looking at clusters instead of individual standards is justifiable because the
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absence of an individual standard may not be a glaring omission based on research in probability
and statistics. In chapter 2, an extensive review of literature established a strong overall
relationship between scholarly research and CCSSM overall. Additionally, the GAISE Report
was also examined to determine the strength of the relationship between the GAISE Report and
CCSSM, which was once again strong. However, when one considers individual standards, these
two relationships were did not always exist. For example, S-CP-6 from CCSSM was not
explicitly addressed in the GAISE report and no specific reference from the review of literature
was found in relationship to this standard (see Table 2.3 for more). Given the lack of agreement
between the GAISE Report, scholarly research, and CCSSM on an individual level, it may be
reasonable to examine a larger grain size for a textbook analysis of coverage.

The notion of using instructional tasks instead of individual items is justified for multiple
reasons. First, items that do not appear as part of the instructional section of the textbook are less
likely to be engaged in by students than those that appear as part of an instructional task. While it
was important to consider all parts of the textbook in the analysis, such as review and enrichment
problems, students are going to be given opportunities to engage initially through instruction.
Secondly, the item analysis yielded similar results to the task analysis. Looking at tasks instead
of items will not have a great impact on the outcome. Those textbooks that primarily used high-
level items were the same that primarily used high-level tasks. Similarly, those that used low-
level items also had low-level tasks. While the number of items will be referenced occasionally
to further develop the discussion of each curricula’s inferred philosophy regarding how students
learn, the focus of the discussion of comprehensive coverage will be on tasks.

Based on these arguments, the following will be examined to determine comprehensive

coverage of content:
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1) How many tasks related to each cluster of the CCSSM probability and statistics standards
are addressed by each textbook series?

2) How many items and tasks related to the CCSSM probability and statistics standards are
present in each textbook series?

3) Where do the opportunities for learning probability and statistics appear in the 4-year

high school curriculum?

5.3.1 Coverage of clusters of standards

As shown in Table 5.1 and Figure 5.3, all three textbook series cover each of the content clusters
from the probability and statistics standards of CCSSM. Recall that the three clusters are
Interpreting Categorical and Quantitative Data (S-1D), Making Inferences and Justifying
Conclusions (S-1C), and Conditional Probability and the Rules of Probability (S-CP). It is
interesting to note that while IMP has the least number of S-ID and S-CP tasks, but it has the
most S-1C tasks of the three curricula. Also of interest is the balance of coverage within each
curriculum. In the GM curriculum, 37 of 59 tasks or 63% of the tasks are associated with the S-
ID cluster. The CPMP has 80%, 77 of 96, of the tasks associated with the S-ID cluster. IMP is
the only curriculum that does not invest a majority of its instructional tasks in probability and
statistics to the S-ID standard by having 45% of its tasks in the S-1D cluster. This approach is
more balanced than the GM and CPMP approaches. Finally, it is interesting to note that with
exception to the high number of tasks in the S-ID cluster, the three curricula are relatively similar

in the number of tasks in alignment with the probability and statistics standards of CCSSM.
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Table 5.1. Clusters of tasks aligned with CCSSM probability and statistics in each series

Cluster GM Tasks IMP Tasks CPMP Tasks

S-1ID 37 19 77
S-IC 13 16 6
S-CP 9 7 13
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Figure 5.3. Clusters of tasks aligned with CCSSM probability and statistics in each series

The overall emphasis of the S-ID cluster over the S-CP cluster is not surprising given a
similar emphasis in the assessments created by the Partnership for Assessment of Readiness for
College and Careers (PARCC). PARCC is a collaborative effort representing multiple states and
the District of Columbia to create assessments aligned with CCSS in both mathematics and
English language arts. PARCC has organized CCSSM in both by traditional content (Algebra I,
Geometry, and Algebra Il) and in an integrated sequence (Mathematics Course 1, 2, and 3) with
the idea of an end of courses assessment for each course. In each of these content structures, the
standards from CCSSM are identified in order of importance as major content, supporting
content, or additional content. As shown in Table 5.2, standards from the S-ID cluster are at least

at the level of supporting standards and in some cases are considered major content in two of the
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three courses whether organized by content or integrated. S-CP is deemphasized as it appears in

only one of the three courses and is considered additional content, which is the lowest level of

importance in the PARCC framework.

Table 5.2. CCSSM content emphasis from PARCC Assessment Framework (PARCC, 2014)

Course S-1D Cluster S-IC S-CP

Cluster Cluster

Algebra | 3 Major 0 Major 0 Major
5 Supporting 0 Supporting 0 Supporting
3 Additional 0 Additional 0 Additional

Geometry 0 Major 0 Major 0 Major
0 Supporting 0 Supporting 0 Supporting
0 Additional 0 Additional 0 Additional

Algebra Il 0 Major 4 Major 0 Major
3 Supporting 2 Supporting 0 Supporting
1 Additional 0 Additional 7 Additional

Mathematics 1 3 Major 0 Major 0 Major
5 Supporting 0 Supporting 0 Supporting
3 Additional 0 Additional 0 Additional

Mathematics 2 0 Major 0 Major 0 Major
0 Supporting 3 Supporting 0 Supporting
0 Additional 0 Additional 7 Additional

Mathematics 3 0 Major 0 Major 0 Major
4 Supporting 2 Supporting 0 Supporting
0 Additional 4 Additional 0 Additional

5.3.2 Number of tasks in the textbook series

A second method to addressing coverage of probability and statistics content is to examine the
number of tasks each textbook series contains that are in alignment with the CCSSM probability
and statistics standards. As shown in Table 5.3 and Figure 5.4, CPMP has 96 total tasks, the GM

series has 59 tasks, and the IMP series has 42 tasks.
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Table 5.3. Tasks aligned with CCSSM probability and statistics in each series

Textbook Series Number of Tasks

GM 59
IMP 42
CPMP 96
120
100
80
60
40
. l . l
0
Entire Series First 3 Years

EGM mCPMP mIMP

Figure 5.4. Tasks aligned with CCSSM probability and statistics in each series

5.3.3 Where the opportunities appear in the curriculum

A third consideration in addressing the question of which textbook series has the most
comprehensive coverage is the location of the opportunities appear in the curriculum. Two points
of discussion came from the results. One is the differences that emerge when comparing only the
first three years of the textbook series as opposed to considering the entire series. The second is

the integration of probability and statistics across the textbooks each curriculum.
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Comparing the first three textbooks of each series

It is important to compare only the first three years of the textbook series because most
states, 30 including the District of Columbia, only require three years of high school mathematics
to graduate. Based on the three course minimum requirement, many students will not receive all
four years of instruction in any of these curricula. Therefore, it may be important to consider
what would be required in most or all states as opposed to the potential of the curriculum in its
entirety.

When considering only the first three textbook of any series, the data for the number of
tasks may tell a different story than when all four years are considered, as was the case in Table
5.3. There are differences for two of the curricula in this study, CPMP and GM. As shown in
Table 5.4, the CPMP curriculum has 92 tasks in the first three books of the series. Recall that in
Table 5.3, the CPMP curriculum had 96 tasks. This means a student only completing the first
three years of the CPMP curriculum will have the opportunity to engage in 96% of the
instructional tasks, as shown in Figure 5.4, in the curriculum. The GM curriculum loses a much
higher percentage of opportunities when the Precalculus book is not considered in the data. Table
5.4 shows that the GM curriculum has 36 tasks in the first three years of the curriculum. When
compared to the data in Table 5.3, which shows 59 tasks, there are 23 tasks, as shown in Figure
5.4, lost by not including the fourth year of the curriculum. This means that a student only
completing the first three years of the curriculum would only receive 61% of the opportunities
from tasks available in the curriculum.

Table 5.4. Probability and statistics tasks in the first three years of each series
Textbook Number of Tasks
GM First Three 36

IMP First Three 42
CPMP First Three 92

188



There is no difference in the total number of tasks found in the IMP curriculum as shown
in Tables 5.3 and 5.4 and Figure 5.4. This means that a student only completing the first three
years of the IMP curriculum will not miss any of the opportunities to engage in probability and
statistics content found in IMP.

The CPMP and IMP curricula show little and no change respectively when only the first
three years of each series is examined. However, the GM curriculum does change when only
considering the first three years of the curriculum. Of particular interest is the number of tasks in
the GM curriculum when compared to IMP. When all four years are considered, the GM
curriculum has more tasks associated with probability and statistics (59 compared to 42). That
comparison looks differently when only the first three years are compared as the GM curriculum
has six less tasks in the first three years (36 compared to 42).

Integration of Probability and Statistics into the curriculum

A second point of discussion that emerges from the data is how each textbook series
integrates the CCSSM probability and statistics standards into the curriculum. One of the
characteristics of a traditional approach, as seen in the GM series, is the dedication of textbooks
to specified content. The GM series has books specially dedicated to Algebra I, Algebra 11,
Geometry, and Precalculus. The Standards-based approach is typically characterized by a more
integrated curriculum where each textbook contains a variety of topics blended together in order
to facilitate students making connection between the topics more easily. Both IMP and CPMP
follow this integrated approach as indicated by the labels of their textbooks as years (Year 1,

Year 2, Year 3, and Year 4) rather than content.
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As shown in Table 5.5, each of the three textbook series follows a similar pattern of
having the most tasks in the first textbook of the series with the number of tasks in each textbook
after being less than the one that preceded it. The only exception to this pattern is the GM
Precalculus book. The GM series starts with 20 tasks in Algebra I, decreases to 12 tasks in
Algebra Il, decreases again to 4 tasks in Geometry, but then increases to 23 tasks (39% of the

tasks in the entire GM series) in the Precalculus textbook.

Table 5.5. Tasks aligned with CCSSM probability and statistics in each textbook

Textbook Number of Tasks
GM Algebra | 20
GM Algebra Il 12
GM Geometry 4
GM Precalculus 23
IMP Year 1 24
IMP Year 2 17
IMP Year 3 1
IMP Year 4 0
CPMP Year 1 39
CPMP Year 2 28
CPMP Year 3 25
CPMP Year 4 4

The data in Table 5.5 leads to a discussion of the integration of probability and statistics
in each curriculum. Because there are tasks throughout each of the four textbooks in the GM
textbook series, it would appear that probability and statistics have been integrated throughout
the curriculum. However, since there are no tasks in the IMP Year 4 textbook and only in the
IMP Year 3 textbook, these data suggest that probability and statistics has not been integrated
throughout the IMP curriculum. This finding is of particular interest since, as previously
discussed, the GM series follows a traditional design while the IMP curriculum follows a

Standards-based approach. Drilling a little deeper into the data, 97% of the tasks in the IMP
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textbook series are in the first two books. Therefore, a student enrolling in four years of high
school mathematics instruction based on IMP (assuming Year 1 as a freshman, Year 2 as a
sophomore, Year 3 as a junior, and Year 4 as a senior), would stop engaging in probability and
statistics content after completing his or her sophomore year. The CPMP series is more balanced
than IMP is, but not as much as GM. The CPMP series has 70% of the probability and statistics
tasks in the first two year of the curriculum as opposed to GM, which has only 54% of the tasks
in the first two year. In summary, these data suggest that the traditional textbook series with
content-based textbooks, GM, has integrated probability and statistics throughout all four
textbooks better than the two textbook series, IMP and CPMP, which are typically characterized

as being integrated approaches.

54  COMPREHENSIVE COVERAGE OF THE STANDARDS FOR

MATHEMATICAL PRACTICE

The second point of discussion related to comprehensive coverage is associated with providing
high-level opportunities (i.e. tasks) for students to engage in that will foster the development of
the Standards for Mathematical Practice. It has been previously argued that CCSSM emphasizes
conceptual understanding beyond what is currently taught in most high schools (NGACBP,
2010). Additionally, it has already been argued in Chapter 2 that one could reasonably assume
that the Standards for Mathematical Practice will necessitate student engagement in high-level
tasks. These two points necessitate an examination of the level of cognitive demand of the items

and tasks found in alignment with the CCSSM probability and statistics standards.
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As shown in Table 5.6 and Figure 5.6, only 33% of the instructional tasks in the GM
curriculum are high-level. The IMP series has 84% of its tasks at a high-level. The CPMP series

has 94% of its tasks at a high-level.

Table 5.6. Cognitive demand of probability and statistics tasks in each series

Textbook Memorization Procedures  Procedures  Doing TOTAL
without with Mathematics
Connections Connections
GM Series 0 (0%) 39 (66%) 15 (25%) 5 (8%) 59
IMP Series 0 (0%) 6 (16%) 7 (18%) 25 (66%) 38
CPMP Series 0 (0%) 5 (5%) 33 (34%) 58 (60%) 96
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Figure 5.5. Cognitive demand of probability and statistics tasks in each series
There is a substantial difference in the level of cognitive demand of the opportunities
found in the traditional curriculum, GM, when compared to the two Standards-based curricula,
IMP and CPMP. Most of the items and tasks in the GM curriculum will likely not prepare

students for the increased emphasis on conceptual understanding and the Standards for
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Mathematical Practice in CCSS. However, both the IMP and CPMP series have the potential to
engage students at a level that will allow them to meet these demands. Even if the high-level
tasks from IMP and CPMP are not implemented with fidelity, they may still have increased
opportunities to learn. Stein and Lane (1996) concluded that students who were in classrooms
where high-level tasks were used but the cognitive demand not maintained during instruction
still learned more than students who only had opportunities to work on low-level tasks. This
conclusion suggests that even if IMP and CPMP are not implemented well, students with the
opportunity to engage in the tasks in these textbooks will learn more than those students engaged
in the GM curriculum,

As shown in Table 5.6 and Figure 5.6, the IMP and CPMP textbook series both have a
higher level of cognitive demand than the GM curriculum. The lack of cognitive demand in the
GM curriculum is more apparent when the GM Precalculus book is not considered. The GM
Precalculus book contains 157 of the 268 high-level items and 16 of the 20 high-level tasks in
the curriculum. Once again, if the fourth year of the curriculum is not required, students not
given the opportunity to engage in the Precalculus textbook will not have the opportunity to

engage in 59% of the high-level items and 80% of the high-level tasks in the curriculum.

55 SUPPORT FOR TEACHERS

The third question framing the discussion is, “Which textbook series provides the most support
for the teachers enacting the probability and statistics content?”” Support for teachers was
examined in two ways. The first was an examination of anticipation. The second was an

examination of transparency. Only high-level tasks were examined for indications of providing
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support for the teacher because low-level tasks do not require support to be implemented with
fidelity.

As shown in Table 5.7 and Figure 5.7, less than one third of the high-level tasks found in
each textbook series provide support for the teacher. The GM curriculum has the fewest
occurrences of support (1), which represent 5% of the high-level tasks found in it. The CPMP
has only 13 opportunities even though there are 91 high-level tasks in the curriculum. There is
only support provided for the teacher on 14% of the high-level tasks found in the curriculum.
The IMP curriculum provides the highest percentage of support with 31% of the high-level tasks
having anticipation (none contained transparency).

Table 5.7. Teacher support on high-level probability and statistics tasks in each series

Textbook Series  Anticipation Transparency Total

GM 1/20 0/20 1/20
IMP 10/32 0/32 10/32
CPMP 11/91 2/91 13/91
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Figure 5.6. Supported and Unsupported high-level tasks in each curriculum
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The IMP curriculum not only provides the highest percentage of support for teacher of
the three textbook series, but it also provides the support for the teacher in a manner that may
best promote the development of the program by providing the most support in the first year.
Eight of the ten indication of support for the teacher occur in the first year of the IMP
curriculum. Despite having nearly three times as many high-level tasks, the CPMP curriculum
has only three more indications of support for the teacher than IMP. Finally, the GM curriculum
does not provide any support for the teacher other than one instance, but there is not really a need
for support since the curriculum will be much easier to implement at its highest potential, which
is low-level.

Another point of discussion is the overall lack of transparency provided by any of the
textbooks. There are only indication of support for the teacher through transparency (both in the
CPMP series) in all three curricula combined. Transparency allows the teacher to select and
adapt tasks by providing him or her with the mathematical purpose of the task (Stein & Kim,
2009). Teachers need to adapt the curriculum to meet the needs of their students (Ball & Cohen,
1996). However, without support for the teachers via transparency, the abilities of the teachers to
make these necessary adaptations while maintaining fidelity of implementation may not exist.
Given the argument by Stein and Kim (2009) that doing mathematics tasks are even more
difficult to enact well than procedures with connection, the lack of transparency may be even

more detrimental to tasks receiving the doing mathematics code.

195



56 CHOOSING A CURRICULUM FOR TEACHING PROBABILITY AND

STATISTICS

There are multiple points to consider when choosing a curriculum for teaching probability and
statistics. While many start with the notion that more is better, quantity should not be the only
consideration. The discussion may begin with a count of how many standards are addressed or
how many opportunities there are, but the quality of those opportunities must be considered.
When considering quality, the level of cognitive demand becomes the focus of the discussion.
However, highly demanding tasks are difficult for teacher to implement well. Therefore, any
curriculum worth teaching will be more difficult to teach. Support for the teacher will be
necessary if the curriculum is to be implemented with fidelity. Ball and Cohen (1996) suggest
that curriculum materials often overlook the teacher, which leads to the enacted curriculum not
matching the intentions of the written curriculum. It may not matter how many high-level
opportunities a textbook provides if that same textbook does not take steps to ensure the teacher
enacts them with fidelity.

School districts choosing a curriculum would be faced with a difficult decision given
these curricular options. Both IMP and CPMP have the potential to provide students with
opportunities to engage in high-level tasks and items related to probability and statistics. Both of
these curricula will require substantial work by the teachers to implement well. While CPMP has
more learning opportunities for students overall, IMP provides more support for the teacher.
However, one must consider whether either curriculum provides enough support to be
implemented with fidelity.

Part of the decision will likely involve the school district’s philosophy regarding how

students learn. The IMP curriculum materials are clearly a Standards-based curriculum. The
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design focuses on high-level, instructional tasks that the students work through in order to
develop a deep, conceptual understanding of mathematical content. The CPMP blends a similar
Standards-based approach with some of the traditional opportunities for student practice
problems and review exercises that many educators and students are accustomed to using. How
the school district’s philosophy matches with the philosophy of each curriculum will be an

important component of the decision making process.

5.7 LIMITATIONS OF THE STUDY

One limitation of this study is that it only focuses on the CCSSM probability and statistics
standards. There are six different conceptual categories in the CCSSM for high school.
Probability and statistics represent only one of the six categories. It is possible that analyzing one
or all of the other conceptual categories could tell a different story about each curriculum. This
limitation would be true of a focus on any of the conceptual categories of CCSSM (for example
if the study focused on functions), but is especially true of probability and statistics because these
two areas have historically been widely ignored (Shaughnessy, 2007) and are still not up to the
level of national document suggestions (Jones, Langrall, & Mooney, 2007). However, the
philosophy of how students learn found in each curriculum is unlikely to be different for the
other conceptual categories. Since the philosophy is the same, the other conceptual categories
likely received similar treatment with regard to level of cognitive demand and teacher support
when compared to the findings regarding probability and statistics. Therefore, it is likely that

these findings do provide insight into the curriculum more broadly. The findings regarding
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content coverage may be different for the other conceptual categories and would require further
investigation.

Another limitation is that this study only analyzes three sets of current curriculum
materials. These three sets of materials provide a snapshot of the landscape of secondary
mathematics education materials, but they may not paint the entire picture of what is available.
Since only three curricula were included, it is not possible to conclude that any of the three is the
best available in any of the dimensions analyzed. Including more curricula from an even wider

variety of publishers could reveal more about available curriculum materials.

5.8 IMPLICATIONS AND POTENTIAL CONTRIBUTIONS OF THE STUDY

There is a variety of groups that could benefit from this study. The largest benefactor would
likely be those schools or districts considering one of the curricula reviewed for adoption.
Analyzing the cognitive demand of instructional tasks speaks to both the instructional design and
the content emphasis of a textbook as suggested by Hudson, Lahann, and Lee (2010). Schools
can then decide what type of textbook is appropriate for their school’s philosophy regarding how
students learn. Textbooks with high-level tasks will require a great deal of professional
development, may cause a lot of conflict with the beliefs held by teachers, and will be difficult to
implement (Hudson, Lahann, & Lee, 2010). School decision makers will have to decide if they
have the time, resources, and staff to take on such a challenge. The analysis of the support
provided for teachers will provide decision makers with an idea of how supportive the
curriculum materials are of their own implementation. In addition, each textbook was analyzed

to determine its alignment with the CCSSM in regards to probability and statistics. While most
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publishers are going to make the claim of alignment, the textbooks analyzed had that claim tested
in one specific content area.

In addition to providing specific information related to probability and statistics, the
analysis of tasks provided by this study could serve as a framework for further evaluation of
curriculum materials. For example, if a district uses curriculum materials that have not been
reviewed here, they could apply the same analysis on their own to determine how their
curriculum materials would fit in with those that are reviewed in this study. This study brings
together research on tasks that require high-level cognitive demand, research on educative
curriculum materials, and applies them to the CCSSM in such a manner that could be applicable
to any one of the content areas identified by the CCSSM. Therefore, anyone wishing to evaluate
content areas other than probability and statistics as defined by the CCSSM could benefit from
this study as well.

Finally, teachers who create their own curriculum could benefit from this study. In
today’s online world, many resources are available to teachers via the internet. However, not all
of the resources are good ones. Teachers who design their own curriculum could benefit from
this research because it provides information on what they might look for as they search through
online resources. This research will help teachers to understand better the impact that the level of
cognitive demand has on student learning. This research also provides teachers with an

understanding of the importance of anticipation and transparency.
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5.9 CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE RESEARCH

Despite each of the three curricula claiming to be aligned with CCSSM, the nature of that
alignment varies considerably. Each presented a different approach (traditional, Standards-based,
and blended) to addressing the CCSSM probability and statistics standards. While this study
accomplished the goal of providing insight regarding the potential of these secondary curriculum
materials to promote student and teacher learning in the areas of probability and statistics, the
effectiveness of a curriculum is not based solely on potential. In order to determine which
curriculum is actually the most effective, much more research needs to be done.

Establishing the CPMP and IMP curricula as having many more high-level items and
tasks than low-level is merely one-step in the right direction. As has been argued previously,
teachers will need to improve their teaching practices if students are to engage in high-level tasks
(Boston & Smith, 2009; Stein & Kaufmann, 2010) because high-level tasks are more difficult to
implement with fidelity. One-step in facilitating these improved practices would to be providing
opportunities for teacher learning through the curriculum (Ball & Cohen, 1996; Davis & Krajcik,
2005). Will teachers take advantage of these opportunities? A logical next step would be to
examine teachers as they set up high-level tasks to determine how, if at all, the teachers use the
teacher materials. While it is important for a curriculum to provide opportunities for teacher
support through anticipation and transparency, it is only useful if teacher take advantage of those
opportunities. Understanding how teachers make use of the teacher materials could provide
insight for textbook writers and publishers into how they can provide teachers with support they
will be willing to use.

Previous research has already suggested that both IMP and CPMP perform at least equal

to and in many cases better than their traditional counterparts on multiple forms of assessment.
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For example, Senk and Thompson (2003) suggest that students in schools using NSF funded
curriculum, which includes IMP and CPMP, perform as well as those students in schools using
traditional curriculum, which characterizes GM, on assessments of procedural knowledge.
However, on problem solving based assessments, the NSF curricula outperform their traditional
counterparts. This is to suggest that the NSF curricula do no harm to procedural learning while
improving problem solving ability.

A series of studies focusing on CPMP in comparison to traditional textbooks also
suggests that CPMP performs as well or better than its traditional counterparts performs (Chavez
et al., 2015; Grouws et al., 2013; Tarr et al., 2013). These studies focused primarily on the
benefits of an integrated curriculum as opposed to one that separates textbooks by content but
also incorporated other fields of research to their methodology. Grouws et al. (2013) compared
CPMP Year 1 to Algebra | textbooks from traditional textbook series since both represented the
first textbook in their respective series. Students with the opportunity to engage in CPMP Year 1
as opposed to traditional Algebra | textbooks scored significantly higher on all three
measurement tools use in the study: a common objectives test, a problem solving and reasoning
test, and a standardized achievement test. Additionally, Grouws et al. suggest that the number of
opportunities to learn student were provided and teacher experience were also significant factors
in predicting success on the three assessment tools. Tarr et al. (2013) compared CPMP Course 2
to Geometry since both are commonly used as the second textbook in their respective series. The
same three types of measurement tools were used. The CPMP Course 2 students outperformed
the Geometry students on the standardized achievement test. The two groups performed similarly
on the other two assessments: common objectives test and problem solving and reasoning test.

Once again, student opportunity to learn was a significant predictor of results. Finally, Chavez et
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al. (2015) compared third year CPMP to traditional Algebra Il courses as a comparison of the
third textbook in each series. Again, a common objectives test and standardized achievement test
were used. The CPMP Year 3 students scored higher on the common objectives test. Both scored
roughly the same on the standardized achievement test. Interestingly, opportunity to learn was
not a substantial factor in the Chavez et al. (2015) study. Instead, Chavez et al. suggest that
teacher beliefs and orientation about reform-oriented practices were significant factors.

These three more detailed studies (Chavez et al., 2015; Grouws et al., 2013; Tarr et al.,
2013) confirm the previous suggestions of Senk and Thompson (2003). The CPMP curriculum
performs as well or better than its traditional counterpart on multiple measures of student
performance does. In other words, CPMP will do no harm overall while providing improvements
in many areas.

The current study has addressed some of the suggestions made by these recent studies.
Chavez et al. (2015) and Grouws et al. (2013) suggest that future research should incorporate an
examination of more than one integrated curriculum. The current study has taken a step in this
direction by analyzing both CPMP and IMP. Grouws et al. (2013) suggest that research
specifically dedicated to examining how the opportunities provided for students to learn impact
achievement is needed. Specifically, Grouws et al. suggest that a more detailed examination of
the opportunities and more frequent classroom visits are necessary. The detailed examination of
the opportunities provided by the three curricula in the current study provides the first step in
addressing this suggestion by Grouws et al.

Next steps from the current study are similar to those suggested by Chavez et al. (2015),
Grouws et al. (2013), and Tarr et al. (2013). All three of these studies suggest that more

information is needed to determine which characteristics of a curriculum are important and under
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what circumstances they are effective. Specifically, Tarr et al. (2013) suggests researchers need
to examine teacher enactment and student achievement to gauge curricular effectiveness. Chavez
et al. (2015) suggests that future research could use a variety of implementation measures along
multiple student outcome measures. Armed with the details regarding the potential of the three
curricula analyzed in the current study, researchers could take these steps as suggested. Those
researchers wishing to incorporate additional integrated curricula into their study, as suggested
by Grouws et al. (2013), could start by repeating the methodology outlined by the current study

in preparation for the next steps previously suggested.
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APPENDIX A

PROBABILITY AND STATISTICS MISCONCEPTIONS IDENTIFIED IN RESEARCH

Table A.1. Probability and statistics misconceptions identified in research

Misconception Citation Description Example
Availablity Tversky People rely on recall The letters K, L, N, R, and V are
and in place of statistics more likely to be the 3" letter in a
Kahneman and therefore word than the 1% but it is easier to
(1973) underestimate things think of examples where they are first
that are difficult to so subjects think 1% is more likely.
recall.
Repesentativeness Kahneman People favor samples When flipping a coin 10 times, the
and that look like result HTTHTHHTHT is considered
Tversky population more likely than HHHHTTHHHH
(1973) characteristics instead but they are equally likely.
of using statistics.
Base Rate Fallacy Bar-Hillel People tend to ignore The taxi problem: the percent of
(1980) base rates in favor of green cabs in a city is ignored in
other information. favor of witness testimony even
though both should be considered.
Conjunction Tversky People will choose It considered more likely someone is
Fallacy and conjunctions as more a lawyer who plays golf than
Kahneman likely than the someone is a lawyer even though
(1983) individual outcomes.  being a lawyer must be more likely
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because it would include being a
lawyer who plays golf and those who
don’t.

(table continues)



Table A.1 (continued)

Misconception Citation Description Example
Outcome Konold Probability is seen as If the weather forecast is calls for
Approach (1989) the ability to predict 70% chance of rain and it does not
what will happen on rain, then the forecast is considered
the next individual wrong even though it allowed for a
trial. 30% chance of no rain.
Equiprobability Tempelaar, Random events are When rolling a die the probability of
Gijselaers, always equally likely.  rolling a 6 and not rolling a 6 are both
and  van considered 50% even though it
der Loeff should be 1/6 and 5/6 respectively.
(2006)
Simpson’s Hawkins If a/b > c/d and e/f > If drug A is better for right-handed
Paradox and g/h, then (a + e)/(b + people and drug A is better for left
Kapadia f) <(c+g)/(d + h). handed people it is assumed drug A is
(1984) better for all people but it is not
necessarily true.
Birthday Paradox  Hawkins People assume that In aroom of 30 people, it is actually
and nobody will have the very likely that two have the same
Kapadia same birthday even in birthday but it will be assumed
(1984) a crowded room. unlikely.
Combinatorial Hawkins There are  more Given 10 people, it is assumed that
Naivety and combinations of small there are more committees of 3 than
Kapadia groups then there are there are committees of 7 even
(1984) large groups because though they are the same
they are easier to think
of.
Gambler’s Hawkins The absence of a Inroulette if red has not come up in a
Fallacy and random outcome while it’s due to be next even though
Kapadia makes it more likely  the probability is independent of prior
(1984) outcomes.
Positive Recency Hawkins A repeated outcome In roulette if red has come up a lot it
Effect and becomes more likely  is more likely to do so again even
Kapadia though the probability is independent
(1984) of prior outcomes.
Correlation is Casey If A and B have a If hours sleeping and test scores are
Transitive (2010) positive  correlation positively correlated, test scores and
and B and C have a hours studying are positively
positive  correlation, correlated, then it will be assumed
then A and C must that hours sleeping and hours

also have a positive
correlation

studying are positively correlated
even though there may be no or even
a negative correlation.

(table continues)
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Table A.1 (continued)

Misconception Citation Description Example
Law of Small Tempelaar, Small samples are A sample of 12 can have all the same
Numbers Gijselaers, judged to have the tests applied to it as a sample of 30.
and van same characteristics as
der Loeff large samples
(2006)
Existence Casey Correlation is judged A correlation of .49 means no
Correlation (2010) on existence instead correlation exists but .51 means a

of intensity

positive  correlation exists even
though these are roughly the same
intensity of positive correlation.
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APPENDIX B

GAISE REPORT BY FRANKLIN ET AL. (P. 14-15, 2007)

Process Component Level A Level B Level C
Question inni of | Students can make the
of the statisti i the isti i
istincti istinctic distinction
Teachers pose questions of | Students begin to pose Students pose their own
interest their own questions of questions of interest
Questionsrestricted tothe | INeest Questions seek
classroom Questions not restricted to | generalization
the classroom
Il Collect Data Do not yet design for Beginning awareness of | Students make design for
differences design for differences differences
Census of classroom Sample surveys;beginto | Sampling designs with
Simple experiment use random selection random selection
i designs with

Ill. Analyze Data

IV.Interpret Results

begin to use random
allocation

randomization

Use particular properties of | Learn to use particular Understand and use
istributions in the context ies of distributi istributions in analysis
of a specific example as tools of analysis asa global concept

Display variability within a
group

Compare individual to

Quantify variability within
agroup

Compare group to group in

individual displays
Compare individual to Acknowledge sampling
group. error

£ |s ification of
group to group association; simple models
Observe association forassocation
between two variables
Students do not look Students acknowledge
beyond the data that looking beyond the
No generalization beyond | 9ata s feasible
the classroom Acknowledge that a
Note difference between | 2mple may or may not
two indivi with be representative of the
different conditions i
Observe association in Note the difference
e between two groups

with different conditions
Aware of distinction
servational
study and experiment
Note differencesin
strength of association
Basic interepretation of
models for association
Aware of the distinction
between association and
cause and effect
e

Measure variability within a
group; measure variability
between groups
Compare group to group
using displays and
measures of variability
Describe and quantify
sampling error
Quantification of
association; fitting of
models for association

Students are able to look
beyond the data in some
contexts

Generalize from sample to
population

Aware of the effect of
randomization on the
results of experiments
Understand the difference
between observational
studies and experiments
Interpret measures of
strength of association
Interpret models

of association

Distinguish between
conclusions from
association studies and
experiments

—
Nature of Variability

Focus on Variability

Figure A.1. Process levels from the GAISE Report (Franklin et al., p.

Measurement variability
Natural variability
Induced variability
Variability within a group

Sampling variability

Variability within a group
and variability between
groups

Covariability
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Chance variability

Variability in model fitting
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B.1 RECOMMENDATIONS AT LEVEL A BY FRANKLIN ET AL. (P. 23-24, 2007)

I. Formulate the Question

—  Teachers help pose questions (questions in
contexts of interest to the student).

—  Students distinguish between statistical
solution and fixed answer.

Il. Collect Data to Answer the Question

—  Students conduct a censns of the classroom.

—  Students understand individnal-to-individual
natural vaciability.

—  Students conduct simple experiments with
nonrandom assignment of treatments.

—  Students understand induced vaciability
attributable to an experimental condition.

lll. Analyze the Data

—  Students compare individual to individual.
—  Students compare individual to a group.

i

Students become aware of group to group
comparison.

Students understand the idea of a distabution.
Students describe a distribution.
Students obsecve association between two vanables.

Students use tools for exploring distributions
and association, including:

® Bar Graph

® Dotplot

®  Stem and Leaf Plot
®  Scatterplot

YL

®  Tables (using counts)
® Mean, Median, Mode, Range
® Modal Category

V. Interpret Results
—  Students infer to the classroom.

—  Students acknowledge that results may be
different in another class or group.

—  Students recognize the limitation of scope of
inference to the classroom.

Figure A.2. GAISE Report recommendations for level A (Franklin et al., p. 23-24, 2007)
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B.2 RECOMMENDATIONS AT LEVEL B BY FRANKLIN ET AL. (P.37, 2007)

I. Formulate Questions

—  Students begin to pose their own questions.

—  Students address questions involving a group
larger than their classroom and begin to
recognize the distinction among a population, 2
census, and a sample.

Il. Collect Data

—  Students conduct censuses of two or more
classrooms.

—  Students design and conduct nonrandom
sample surveys and begin to use random
selection.

—  Students design and conduct comparative
expeciments and begin to use random assignment.

lll. Analyze Data

—  Students expand their understanding of a data
distribution.

—  Students quantify vaciability within a group.

—  Students compare two or more distributions
using graphical displays and mumerical summaries.

—  Students use more sophisticated tools for
summarizing and comparing distributions,
inchnding:

® Histograms

® The IQR (Interquartile Range) and MAD

(Mean Absolute Deviation)

® Five-Number Summaries and boxplots

Students acknowledge sampling error.

Students quantify the strength of association

between two vagiables, develop simple models

for association between two numerical
vatiables, and nse expanded tools for
exploging association, inchuding:
® Contingency tables for two categorical
variables

® Time series plots

® The QCR (Quadrant Count Ratio) as a
measuce of strength of association

® Simple lines for modeling association be-
tween two numerical variables

L

IV. Interpret Results

—  Students descube differences between two
or more groups with respect to center, spread,
and shape.

—  Students acknowledge that a sample may not
be representative of a lasger population.

—  Students nnderstand basic interpretations of
measnres of association.

—  Students begin to distingnish between an
observational study and a designed experiment.

—  Students begin to distinguish between
“association” and “cause and effect.”

—  Students recognize sampling variability in
summary statistics, such as the sample mean
and the sample proportion.

Figure A.3. GAISE Report recommendations for level B (Franklin et al., p. 37, 2007)
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B.3 RECOMMENDATIONS AT LEVEL C BY FRANKLIN ET AL. (P. 61-62, 2007)

I. Formulate Questions

—  Students should be able to formmlate questions
and determine how data can be collected and
analyzed to provide an answer.

Il. Collect Data

—  Students should understand what constitutes
good practice in conducting a sample sucvey.

—  Students should understand what constitutes
good practice in conducting an experiment.

—  Students should understand what constitutes
good practice in conducting an observational
study.

—  Students should be able to design and
implement a data collection plan for
statistical studies, including observational
studies, sample sucveys, and simple
comparative experiments.

lll. Analyze Data

—  Students should be able to identify
appropriate ways to summacize numerical or
categorical data using tables, graphical
displays, and numerical summary statistics.
—  Students shonld understand how sampling
distributions (developed through simulation)
are used to describe the sample-to-sample
variability of sample statistics.

—  Students should be able to recognize
association between two categorical vaciables.

—  Students should be able to recognize when

the relationship between two mumerical
vagiables is reasonably linear, know that
Pearson’s correlation coefficient is a measnce of
the strength of the linear relationship between
two mumerical variables, and understand the
least squares crtegion in line fitting.

IV. Interpret Results

—  Students should nnderstand the meaning of
statistical significance and the difference
between statistical significance and practical
significance.

—  Students should nndesstand the role of p-values
in determining statistical significance.

—  Students should be able to interpret the margin
of error associated with an estimate of a
population characteristic.

Figure A.4. GAISE Report recommendations for level C (Franklin et al., p. 61-62, 2007)
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APPENDIX C

TASK ANALYSIS GUIDE FROM SMITH AND STEIN (1998)

Tovels of Demaands
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® Cazsct be solved usng procedizes te & procedute docs not exint of because O lime
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Figure A.5. Task Analysis Guide from Smith and Stein (1998)
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APPENDIX D

D.1 MATH TASK FRAMEWORK FROM STEIN AND SMITH (P. 270, 1998)

N

- / ‘\

TASKS TASKS TASKS [
as they appear a5 setup hy &5 implemented H'II \\
in curricular/ # lEachers s DY students \
| instructional | _ / Student
| matenals | /' Learning

£ X!

Figure A.6. Math Task Framework from Stein and Smith (p. 270, 1998)
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