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The Common Core State Standards for Mathematics (CCSSSM) suggest many changes to 

secondary mathematics education including an increased focus on conceptual understanding and 

the inclusion of content and processes that are beyond what is currently taught to most high 

school students. To facilitate these changes, students will need opportunities to engage in tasks 

that are cognitively demanding in order to develop this conceptual understanding and to engage 

in such tasks over a breadth of content areas including probability and statistics. However, 

teachers may have a difficult time facilitating a change from traditional mathematics instruction 

to instruction that centers around the use of high-level tasks and a focus on conceptual 

understanding and that include content from the areas of probability and statistics that may go 

beyond their expertise and experience. Therefore, curriculum materials that promote teacher 

learning, as well as student learning, may be a critical element in supporting teachers’ enactment 

of the CCSSM. This study examines three secondary mathematics curriculum materials with the 

intention of determining both the opportunities they provide for students to engage in high-level 

tasks and the opportunities for teacher learning. Tasks in the written curriculum materials 
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involving probability and statistics as defined by the CCSSM will be examined for evidence of 

these opportunities. The results of this examination suggest that one of the three secondary 

mathematics curriculum materials, Core-Plus Mathematics Project (CPMP), contains high-level 

tasks addressing many of the probability and statistics standards from the CCSSM. A second 

curriculum, Interactive Mathematics Program, also contains high-level tasks but has far fewer 

high-level tasks than CPMP. The third curriculum, Glencoe Mathematics (GM), addresses many 

of the probability and statistics standards from CCSSM but does so with low-level tasks. None of 

the three curricula provides ample opportunities for teacher learning in the areas of anticipating 

student thinking and providing transparency of the pedagogical decisions made by the authors 

when designing the materials. 
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1.0  RESEARCH PROBLEM 

This study examines secondary mathematics curriculum materials with the intention of 

determining both the opportunities for students to engage in high-level tasks and the 

opportunities for teacher learning. Tasks in the written curriculum materials involving 

probability and statistics as defined by the Common Core State Standards for Mathematics 

(CCSSM) will be examined for evidence of these opportunities. With that end in mind, this 

chapter will argue the following points in order to justify such a study: 

1) CCSSM will necessitate change in mathematics education 

2) Curriculum materials will play a vital role in the change that CCSSM hopes to facilitate 

3) CCSSM may require student engagement in high-level tasks 

4) Teacher learning may be necessary for high-level tasks to be implemented well 

5) Curriculum materials are one potential source of teacher learning (educative curriculum 

materials) 

6) Probability and statistics are important content areas where high-level tasks and educative 

curriculum materials may be especially useful 
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1.1 CCSSM WILL NECESSITATE CHANGE IN MATEHMATICS EDUCATION 

The Common Core State Standards represent the first time in United States history that common 

standards will be used across most of the country. Forty-three states have adopted the CCSSM 

along with the District of Columbia, four territories, and the Department of Defense Education 

Activity (National Governors Association Center & Council of Chief State School Officers, 

2012). The intention of CCSSM is to provide a more focused, coherent set of goals for what 

students are expected to learn than what currently exists among the states in the United States 

(National Governors Association Center for Best Practices, 2010). The CCSSM emphasizes 

conceptual understanding and additional content beyond what is currently taught in most high 

schools with the goal of college and career readiness for all students (NGACBP, 2010). 

Another addition relative to previous standards in CCSSM specific to mathematics 

(CCSSM) is the inclusion of Standards for Mathematical Practice. According to the CCSSM, 

these Standards for Mathematical Practice incorporate important processes and proficiencies 

from the NCTM process standards and the strands of mathematical proficiency from the National 

Research Council (NGACBP, 2010). These Standards for Mathematical Practice describe to 

educators the processes and proficiencies that should be developed in their students. Including 

practices along with specified content sets the CCSSM apart from many of the state level 

standards that focus on content only. 

The CCSSM were created because of the results of both national and international 

assessments of student performance. For example, poor results from the National Assessment of 

Education Progress (NAEP) led to a Commission on No Child Left Behind (NCLB) leading a 

call for a voluntary national curriculum and assessments that would match (Goertz, 2010). Both 

the original NAEP (2008) which is referred to as the Long-Term Trend assessment (LTT) and 
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the New NAEP (2009) do not demonstrate a significant improvement for secondary students in 

mathematics (Kloosterman & Walcott, 2010). Internationally, 15 year olds from the United 

States do not compare favorably in mathematics, ranking 26th out of 34 countries according to 

the Program for International Student Assessment (PISA) data (OECD, 2013). 

These results were not consistent with the results being reported from state level 

assessments. For example, a state might report that 70% of the students tested were proficient in 

8th grade mathematics. However, NAEP data would suggest that only 30% of the students from 

that state were proficient in 8th grade mathematics. This discrepancy between individual state 

results and a national assessment revealed one of the potential problems with the United States 

educational system. There is disparity between each state’s standards. One would think the 

release of the Curriculum and Evaluation Standards for School Mathematics by the National 

Council of Teachers of Mathematics (NCTM) in 1989 would have facilitated the states coming 

together to teach a common set of standards. While the NCTM provided what could have been a 

guiding document, many states created mathematical standards of their own that were often 

unfocused and lacked coherence (Geortz, 2010). Additionally, the state standards varied greatly 

and often did not match what the NCTM was proposing (Porter et al., 2009; Reyes, 2006). 

The lack of consistent standards across states made it difficult for curriculum developers 

to produce quality curriculum materials that would be suitable across the country. One option 

would have been to create textbooks specific to each state’s individual standards. However, this 

was far too expensive and therefore was only done for states with large populations such as 

California, New York, and Texas. For the rest of the United States, the alternative was that 

curriculum developers made textbooks that were large and incoherent in an attempt to satisfy the 

many different demands of these states. As a result, some have suggested that the textbooks are 
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not adequate and will need to be improved if significant changes in mathematics education are to 

be made (Willoughby, 2010). 

The Curriculum and Evaluation Standards for School Mathematics proposed significant 

changes in mathematics education. The NCTM further developed their recommendations with 

the release of the Principles and Standards for School Mathematics in 2000. This document 

refined the previous recommendations by specifying learning expectations for different grade 

bands beginning with Pre-K all the way through grade 12. These two documents intended to 

facilitate a major shift in mathematics education, to change dramatically the way many think 

about mathematics instruction, and ushered in what is known as the Standards Era. 

 The widespread adoption of the CCSSM, the specificity of the standards, and the 

potential use of assessments that will be aligned to them could accomplish what the NCTM 

started in 1989. Based on the disparity already mentioned between the state standards and 

NCTM Standards, one might conclude that the state standards likely differ greatly from the 

guidelines set forth by CCSSM. This suggests that states will need to make significant changes if 

the guidelines of CCSSM are to be met. Porter et al. (2011) refers to this change as, "An 

unprecedented shift away from disparate content guidelines across individual states" (p. 103). 

Porter et al. (2011) suggest that CCSSM is considerably different than what states currently have 

in their standards and assessments, is more focused than what states standards are in 

mathematics, and is different than what teachers currently report they are teaching. 

 CCSSM hopes to push the level of conceptual understanding for students beyond the 

current U.S. levels. However, accomplishing the goal of increasing conceptual understanding 

may be especially difficult because many current curriculum materials may not support the 

demands of CCSSM. Many of the textbooks used in the United States are conceptually weak 
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which leads to mathematics instruction that is too mechanical (Ginsburg et al., 2005). This may 

be because it is much easier to write curriculum that caters to low-level thought (Willoughby 

2010). 

1.2 CURRICULUM MATERIALS WILL PLAY A VITAL ROLE 

Many researchers agree that textbooks have a significant impact on what students learn (e.g., 

Schmidt, Houang, & Cogan, 2002; Stein, Remillard, & Smith, 2007; Valverde et al., 2002; 

Willoughby, 2010). Research has demonstrated that teachers have a strong dependence on 

textbooks and other resource materials (Remillard, 2005) likely due to their important role in 

supporting both teaching and learning (Fan & Zhu, 2007; Boaler, 2002). Because of the 

important role of textbooks and teacher dependence on them, textbooks are often a way to try to 

influence classroom practices and affect student achievement (Senk & Thompson, 2003). In 

many cases, the textbook is the curriculum (Hudson, Lahann, & Lee, 2010). Other researchers 

suggest that textbooks affect how teachers teach (Ball & Cohen, 1996; Reys, Reys, & Chavez, 

2004). Begle (1973) suggested that changing textbooks may be the only way to affect student 

learning and that textbooks are so powerful that they may have more impact on student learning 

than the teacher does. 

Curriculum materials will play an important role in the CCSSM era if CCSSM is to be 

effective. Shaughnessy (2007) suggests that national standards without curriculum materials to 

accompany them are not useful. Curriculum materials will likely need to adapt and evolve to 

meet the new recommendations set forth in CCSSM. It has been suggested that for a curriculum 

to be effective for the students it must first have an effect on the teachers (Remillard & Bryans, 
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2004). Therefore, curriculum materials should provide opportunities for teacher learning and 

support for teachers in order to maximize the effectiveness of their instruction. 

According to Martin et al. (2001), when the NCTM proposed their new standards in 

1989, no textbooks at the time were consistent with what NCTM was proposing, so new 

curriculum materials were required. NCTM was advocating for students to have opportunities to 

engage in problem solving, communication, reasoning, and extended connections to other 

concepts. As a result, the National Science Foundation (NSF) funded multiple textbook projects 

at the elementary, middle, and high school levels. These NSF funded textbooks are referred to as 

Standards-based textbooks. Even though Standards-based textbooks were designed to address 

the demands of the NCTM Standards, because they differed so greatly from the textbooks that 

had been traditionally used, they were often rejected. In some communities, they were the source 

of considerable controversy (Schoenfeld, 2004). 

The CCSSM may be positioned to enact change at a larger scale than the NCTM Standards 

because there are assessments aligned to CCSSM that provide accountability for schools to 

implement CCSSM. Schools may need to examine every aspect of their mathematics programs 

including which textbooks they are using. If schools are using textbooks that are not consistent 

with the demands of CCSSM, schools will be in the market for new materials. Both traditional 

and Standards-based textbooks are making the claim to being aligned with the CCSSM through 

updated versions of older texts or the publication of new versions, but the legitimacy of those 

claims is still in question. 
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1.3 CCSSM MAY REQUIRE STUDENT ENGAGEMENT IN HIGH-LEVEL TASKS 

The adoption of the CCSSM may force textbook publishers to reevaluate their products and 

improve them. Textbook publishers will need to incorporate tasks that require high-level 

cognitive demand in order to develop conceptual strength. Additionally, school districts will 

need to evaluate their current curriculum materials to determine if they will be able to meet the 

demands of these new standards and assessments. To meet the challenges of the CCSSM, 

schools may need to challenge their students with tasks that place a higher cognitive demand on 

them. One possible step toward meeting these challenges could be the adoption of new 

curriculum materials that would contain these cognitively demanding tasks.  

 In 1979, Doyle initially introduced the notion of task as a potential unit for analysis. 

Doyle (1983) suggested that tasks are important because the intellectual and physical products 

students are expected to create, the operations students are to use to create these products, and 

the resources available for students to use can all be traced back to the task. Doyle's (1983) 

theory of the importance of tasks is driven by the notion that the mathematical concepts students 

are to learn are embedded in the tasks provided by the teacher. If a task is designed to elicit high-

level thinking, students will then have an opportunity to approach a concept with higher order 

thinking. If a task is designed to elicit low-level thinking, students will then only have the 

opportunity to approach the concept with a focus on low-level procedures. Thus, one can reach 

Doyle's (1983) conclusion that tasks are a vital part of mathematical learning. 

 Stein and Lane (1996) and Stein, Grover, and Henningsen (1996) advanced the notion of 

analyzing tasks specifically in mathematics education. Organizations such as NCTM and MAA 

have called for students to develop deeper understandings about mathematics as opposed to 

simple memorization or procedural knowledge. Stein and Lane (1996) suggest that tasks have a 
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significant influence on the kinds of thinking students may engage in and therefore significantly 

influence learning outcomes. The work of Stein et al. (1996) led to the development of the Task 

Analysis Guide found in Appendix C (Stein et al., 2000). The Task Analysis Guide can be used 

to differentiate between mathematical tasks that have the potential for either low or high 

cognitive demand. Low cognitive demand tasks are those that involve either memorization or 

using procedures without connection to meaning. High cognitive demand tasks are those tasks 

that involve using procedure while also making connections or tasks defined as doing 

mathematics. More detail about the Task Analysis Guide will be presented in chapters 2 and 3. 

 Since textbooks are so widely used in secondary mathematics education and tasks tend to 

drive instruction, one could reasonably conclude that it would be important to look at the level of 

tasks found in textbooks. The level of cognitive demand of tasks may also be indicative of the 

potential for a task to engage students in the Standards for Mathematical Practice from the 

CCSSM. Low-level tasks (memorization and procedures without connections) have little 

ambiguity about what needs to be done or how to do it (Smith & Stein, 1998). Based on this 

characterization, many of the Standards for Mathematical Practice are already beyond 

memorization and procedures without connections. For example, making sense of problems, 

reasoning abstractly, constructing arguments, looking for structure and repeated reasoning are all 

components of the Standards for Mathematical Practice that all would require, at a minimum, 

that a task be somewhat ambiguous about what needs to be done or how to do it. Given the 

characterization of low-level tasks from Smith and Stein (1998) which indicates that little 

ambiguity exists, low-level tasks are unlikely to engage students in the Standards for 

Mathematical Practice. Therefore, while the level of cognitive demand will not reveal the extent 

to which students will actually engage in a specific practice, it is reasonable to assume that a 
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high-level task is more likely to provide potential opportunities for students to engage in the 

Standards for Mathematical Practice. 

1.4 TEACHER LEARNING MAY BE NECESSARY 

Adapting to the demands of CCSSM, specifically the increased conceptual level associated with 

CCSSM, may be difficult for teachers. Most teachers were taught in a traditional manner and 

most teachers tend to teach in the same manner in which they were once instructed and find it 

difficult to change their routines (Putnam & Borko, 2000). However, providing students with 

opportunities to engage in tasks that require a high-level cognitive demand will require 

improvements in teaching practices (Boston & Smith, 2009). To improve teaching practices, 

teachers need opportunities to challenge long-held beliefs by thinking about the types of tasks 

students should engage in, what it means to know and understand mathematics, and how to help 

students as they engage in high-level thinking and reasoning (Boston & Smith, 2009). All of 

these suggestions are related to promoting teacher learning in addition to student learning. 

 Davis and Krajcik (2005) suggest that promoting teacher learning is no easy task and 

therefore may not successfully occur through one method. While it may be easy to add new 

ideas, teachers must use knowledge in real time in the classroom and need to make connections 

between the new and existing ideas. These ideas are what Shulman (1986) describes as 

pedagogical content knowledge (PCK). PCK is knowledge that teachers have that differs from 

experts in a field, content knowledge, and general pedagogy shared by all educators, pedagogical 

knowledge. PCK is knowledge of how content and pedagogy are combined into effective 
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instructional practices for specified content. The need for PCK makes promoting teacher learning 

different from promoting student learning. 

Ball and Cohen (1996) suggest that teachers must adapt curriculum to meet the needs of 

their own students. However, Ball and Cohen further suggest that curriculum materials often 

overlook the role of the teacher. The result is that the teachers make adaptations to the 

curriculum that create a gap between what the curriculum writers intended and what is actually 

enacted in the classroom. In some cases, the teacher may even disregard the curriculum 

altogether and create his or her own lesson. Curriculum materials that promote teacher learning 

could assist the teacher in adapting the curriculum to fit their local needs while helping them to 

avoid making changes that would be detrimental to the curriculum. 

 Stein and Kaufman (2010) suggest that curriculum materials that are designed to elicit 

more ambitious forms of student learning will be significantly more challenging for teacher 

learning because they are different from what teachers are used to. Standards-based curriculum 

materials differ greatly from what people in the United States would remember about their own 

educational experiences (Robinson, Robinson, & Maceli, 2000 cited in Senk & Thompson, 

2003). These types of materials challenge currently held beliefs about what of mathematics 

education is important and how these important items would best be taught (Hudson, Lahann, & 

Lee, 2010; Senk & Thompson, 2003). The foreign nature of these curriculum materials is one 

reason that they should strive to be educative in nature (Remillard, 2005). 
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1.5 CURRICULUM MATERIALS ARE ONE POTENTIAL SOURCE FOR 

TEACHER LEARNING 

Educative curriculum materials are materials that aim to promote teacher learning. The notion 

that curriculum materials could promote teacher learning has been suggested by several 

researchers (Ball & Cohen, 1996; Davis & Krajcik, 2005). Curriculum materials that are 

educative have the potential to provide learning and support for teachers while maximizing the 

effectiveness of their instruction. Educative curriculum materials have demonstrated the ability 

to facilitate changes in instruction (Ball & Cohen, 1996). Since, as has already been established 

in this chapter, teachers rely heavily on curriculum materials, including textbooks, educative 

curriculum materials may provide a means of influencing large numbers of teachers and thus 

large numbers of students (Stein & Kim, 2009). 

Ball and Cohen (1996, p. 7) proposed that, "Materials could be designed to place 

teachers' learning central to efforts to improve education." Ball and Cohen assert that the need 

for curriculum materials to be educative is based on how individual teachers shape their 

instruction based on their own understandings about the curriculum materials they are using, 

beliefs about what is important, ideas about students, and a notion of what the role of the teacher 

should be. Curriculum materials then should attempt to address each of these areas. Ball and 

Cohen noted that curriculum developers often overlook the teacher, acting as if their materials 

can work on students without teachers. As a result, many curriculum materials with the potential 

to improve student learning have failed to improve student learning because they have not 

provided enough support to the teacher to implement the curriculum effectively. 

 According to Ball and Cohen (1996), educative curriculum could be valuable by pointing 

out the following areas where school districts miss opportunities by setting the wrong goals for 
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change. School districts often see the adoption of a new curriculum as a way of changing 

instruction, but they miss the opportunity of a new curriculum to facilitate teacher learning. 

Additionally, school districts focus professional development on fidelity of implementation when 

they could focus on developing professionals by promoting increases in their capacity to teach. 

Building the capacity to teach could promote teachers adapting curriculum materials for their 

personal needs while still reaching the instructional goals of the curriculum. The focus would 

shift from fidelity of implementation to fidelity of student learning. 

Educative curriculum materials are important because teacher learning is potentially not 

as simple as student learning. A number of areas that teachers may benefit from learning exist. 

Research has shown that not all teachers are equipped with enough knowledge to teach high 

school mathematics effectively. Specifically, they fail to see the connections between concepts 

that could maximize their effectiveness. Teachers may also benefit from understanding more 

about the goals, rationales, and approaches of the curriculum they are being asked to implement. 

Finally, teachers could benefit from an increased ability to anticipate what students are thinking. 

Students will develop their understandings by connecting new information to prior knowledge, 

so anticipating student thinking is an important part of effective instruction (Stein & Kim, 2009). 

Anticipating student thinking involves considering how students will interpret the problem, the 

strategies they may use to solve the problem, and how those strategies relate to what the teacher 

would like the students to learn (Stein & Kim, 2009). Educative curriculum materials have the 

potential to address each of these three areas. 

 To summarize the argument thus far, the CCSSM is positioned to usher in an era of 

mathematics education that will focus more on conceptual understanding and include content and 

processes that are beyond what is currently taught to most high school students. To facilitate 
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these changes, students will need opportunities to engage in tasks that are cognitively demanding 

in order to develop this conceptual understanding and to engage in such tasks over a breadth of 

content areas. However, teachers may have a difficult time facilitating a change from traditional 

mathematics instruction to instruction that centers around the use of high-level tasks and a focus 

on conceptual understanding and that include content that may go beyond their expertise and 

experience. Therefore, curriculum materials that promote teacher learning, as well as student 

learning, may be a critical element in supporting teachers’ enactment of the CCSSM in 

mathematics. 

1.6 PROBABILITY AND STATISTICS ARE IMPORTANT CONTENT AREAS 

Probability and statistics education has been identified as important for several reasons. These 

include the need to create productive citizens of all students, the emergence of probability and 

statistics in the workplace, and the importance of probability and statistics in many college level 

classes (Jones & Tarr, 2010). 

To elaborate on the need of probability and statistics for productive citizens, Garfield and 

Ahlgren (1988) suggest that all citizens should have knowledge of probability and statistics as a 

part of basic literacy in mathematics because knowledge of probability and statistics could be 

valuable in interpreting data presented in the media, understanding games of chance such as the 

lottery, or other examples that appear in everyday life. Cobb and Moore (1997) argue that 

variability is omnipresent thus making probability and statistics important to study. 

Even though people are surrounded by probability and statistics, their reasoning in these 

areas may be flawed. Researchers have shown that there are widespread, persistent 
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misconceptions (to be discussed in Chapter 2) in these areas that need to be addressed (Garfield 

& Ahlgren, 1988). These misconceptions are similar at all age levels, exist among all levels of 

ability, and are difficult to change (Garfield & Ahlgren, 1988; Konold et al., 1993; Pratt, 2000). 

These reasons are likely a major part of why the NCTM Standards (1989; 2000) included 

two widely ignored content areas, probability and statistics, among its ten content areas. The 

NCTM was advocating for the inclusion of probability and statistics as a vital part of 

mathematics education along the same lines as algebra or geometry (Shaughnessy, 2007). 

CCSSM has included probability and statistics as one of the six conceptual categories for high 

school mathematics and included probability and statistics as a domain in sixth through eighth 

grade. This once again puts probability and statistics on equal ground as the other conceptual 

categories such as algebra and geometry. 

The Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report 

was written to provide recommendations for a comprehensive statistics education program that 

spanned K-12 education. The goal of the report was to promote statistical literacy among all 

high school graduates (Franklin et al., 2007).The GAISE Report argued that statistical literacy 

was needed for the following reasons: 

1) Creating good citizens - Citizens are informed by polls which are based in statistics C 

2) Making good personal choices - Data is presented to us about food quality, drug 

effectiveness, toy safety, investment choices, etc. 

3) Developing better workers - Quality control practices and accountability systems allow 

for the identification of improvements in manufacturing and are based in statistics 

 Teaching probability and statistics will not be easy. Konold (1989) suggests that teaching 

probability and statistics is difficult because students possess strong, often incorrect, conceptions 
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prior to any instruction. More dangerous is that even when these conceptions are inaccurate they 

can sometimes learn quantitative skills well enough to convince the teacher and themselves that 

they have an accurate understanding of probability and statistics concepts. Martin et al. (2001) 

suggests that including probability and statistics could be especially difficult for schools and 

could require school districts to make a significant commitment to developing both pedagogical 

and content knowledge for teachers in their district. In a review of literature, Jones, Langrall, and 

Mooney (2007) found that there was evidence of many issues dealing with teachers' content 

knowledge in probability. Jones and Tarr (2010) suggest that more efforts must be dedicated to 

the education of teachers in the areas of probability and statistics in order to improve student 

understanding of probability and statistics. 

Probability and statistics bring an added level of complexity not typically associated with 

other mathematics content. Shaughnessy (2007) suggests that unlike other mathematics 

problems, statistics problems add the challenge of dealing with bias, contextual issues, and 

uncontrolled variation. Additionally, probability is an area where students have diverse levels of 

reasoning thus making it even more difficult to teach (Jones et al., 2007). 

Some teachers eliminated probability and statistics concepts from instruction altogether 

due to lack of time and a fear that including it might take away from other parts of their 

curriculum (Gattuso & Pannone, 2002). This type of thinking may stem from the era before the 

NCTM Standards and CCSSM when probability and statistics were not a part of mainstream 

curriculum and thus were not seen as important as they are today. Failure to assess these areas 

has provided teachers no motivation to change their thinking. Jones and Tarr (2010) suggest that 

teachers might not provide students with opportunities to learn probability and statistics because 
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they never had such an opportunity themselves. This is especially concerning since researchers 

have identified probability and statistics as a very important area for learning in high school.  

The reasons mentioned here likely contributed to the poor performance by high school 

students in the areas of probability and statistics on national (NAEP) and international (PISA) 

assessments. In some cases, scores from United States students improved when compared to 

previous years (Data analysis, statistics and probability scores for 12th grade were 150 in 2005 

and 153 in 2009 according to NAEP), but despite improvement in these areas, the probability 

and statistics scores were still below proficient levels (only 26% of 12th graders at or above 

proficient in 2009 in mathematics according to NAEP) or the averages of other countries (U.S. 

score of 481 was below the average score of 494 for all countries involved and lower than 29 

other educational systems according to 2012 PISA). One could interpret these data as 

demonstrating that the NCTM did have a positive impact on probability and statistics since there 

was some improvement, but the United States was so far behind that the impact was not enough 

to bring students up to acceptable levels of performance. 

CCSSM and the assessments aligned to them will likely include probability and statistics. 

Because probability and statistics are going to be assessed, school districts nationwide will be 

taking steps to ensure probability and statistics are taught in their classrooms. Given the 

difficulties with instruction, the lack of teacher knowledge, and the importance of probability and 

statistics, educative curriculum could be especially useful in this area. Since probability and 

statistics are often excluded from curricula, school district leadership will need to find a textbook 

that includes them. Since it has been established that textbooks drive curriculum, the inclusion of 

probability and statistics in a textbook could be the best way to ensure their inclusion in the 

curriculum. Finally, based on the literature cited here, it would seem that probability and 
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statistics are areas with severely underdeveloped content knowledge for both teachers and 

students. As a result, the use of high-level tasks would represent an even greater challenge for 

teachers in probability and statistics than in other areas of mathematics. 

1.7 PURPOSE AND RESEARCH QUESTIONS 

The purpose of this study is to evaluate textbooks currently in use in secondary schools for 

teaching mathematics to determine the extent to which those textbooks have the potential to 

prepare students and teachers to meet the demands of the Common Core State Standards with 

regard to probability and statistics. Specifically, this study answers the following research 

questions: 

1) To what extent do current secondary mathematics textbooks provide opportunities for 

students to engage in the probability and statistics content recommended by the Common 

Core State Standards? 

2) What are the cognitive demands of the tasks that are aligned with the Common Core 

State Standards recommendations for mathematical content in probability and statistics? 

3) To what extent does the teachers’ guide provide support for enacting high-level tasks that 

address the Common Core State Standards recommendations related to probability and 

statistics? 

a) To what extent does the teachers’ guide provide suggestions related to anticipation on 

high-level tasks that reflect content recommendations of the Common Core State 

Standards? 
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b) To what extent does the teachers’ guide provide transparency on high-level tasks that 

reflect content recommendations of the Common Core State Standards? 

This study defines anticipation and transparency in the same manner as Stein and Kim 

(2009). Anticipation involves, “Expectations about how students might interpret a problem, the 

array of strategies – both correct and incorrect – they might use to tackle it, and how those 

strategies and interpretations might relate to the mathematical concepts, procedures, and 

practices that the teacher would like her students to learn (Stein & Kim, p. 45, 2009).” 

Transparency involves talking about, “The mathematical and pedagogical ideas underlying these 

tasks – thereby making their agendas and perspectives accessible (Stein & Kim, p. 44, 2009).” 

Stein and Kim (2009) suggest that this goes beyond providing steps to follow, questions to pose 

to the students, and answers to give. Instead, they propose that transparency equips teachers with 

the necessary information to select and adapt tasks. Finally, Stein and Kim suggest transparency 

may include providing information about how the task is connected to other activities in the 

curriculum. In summary, transparency is about making the mathematical purpose of the task 

clear to the teacher. 

Only those tasks coded at high-level cognitive demand were analyzed for anticipation 

and transparency because they are the only tasks that would require such support for the teacher 

(Stein & Kim, 2009). Because low-level tasks offer a restricted path, following previously 

learned algorithms or recalling facts, there is no need for the teacher to anticipate multiple 

strategies and interpretations or be transparent about underlying mathematical and pedagogical 

ideas. However, high-level tasks, specifically doing mathematics tasks, have an open-ended 

nature without a predictable pathway to follow. Therefore, guidance in the areas of anticipation 

and transparency would be very valuable. 
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1.8 SIGNIFICANCE 

There is a variety of groups that could benefit from this study. The largest benefactor would 

likely be those schools or districts considering one of the curricula reviewed for adoption. 

Analyzing the cognitive demand of instructional tasks speaks to both the instructional design and 

the content emphasis of a textbook as suggested by Hudson, Lahann, and Lee (2010). Schools 

can then decide what type of textbook is appropriate for their school climate. Textbooks with 

high-level tasks will require a great deal of professional development, may cause a lot of conflict 

with the beliefs held by teachers, and will be difficult to implement (Hudson, Lahann, & Lee, 

2010). School decision makers will have to decide if they have the time, resources, and staff to 

take on such a challenge. The analysis of the potential for teacher learning provides decision 

makers with an idea of how supportive the curriculum materials are of their own implementation. 

In addition, each textbook was analyzed to determine its alignment with the CCSSM in regards 

to probability and statistics. While most publishers are going to make the claim of alignment, the 

textbooks analyzed have had that claim tested in one specific content area. 

In addition to providing specific information relating to probability and statistics, the 

analysis of tasks provided by this study could serve as a framework for further evaluation of 

curriculum materials. For example, if a district uses curriculum materials that have not been 

reviewed here, they could apply the same analysis on their own to determine how their 

curriculum materials would fit in with those that are reviewed in this study. This study brings 

together research on tasks that require high-level cognitive demand, research on educative 

curriculum materials, and applies them to the CCSSM in such a manner that could be applicable 

to any one of the content areas identified by the CCSSM. Therefore, anyone wishing to evaluate 
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content areas other than probability and statistics as defined by the CCSSM could benefit from 

this study as well. 

Finally, this study provides a foundation for understanding the potential of curriculum 

materials that could be used as an aide when observing teachers using these materials. If an 

observer could be educated in the same way as the teacher, the observer may be able to provide 

feedback to the teacher more effectively. For example, if someone observing had a better 

understanding of anticipated student responses, connections between topics, and transparency 

related to key ideas of a task, he or she might have a different perspective during observation. 

This understanding of the potential of the curriculum could also be beneficial when planning in-

service activities that could work in cooperation with the curriculum materials to maximize 

teacher learning and instructional effectiveness. 

1.9 LIMITATIONS 

The primary limitation of this study is that it only focuses on the written curriculum. According 

to the math task framework, Appendix D, this study is only focusing on the tasks as they appear 

in the curricular/instructional materials. It does not take into account how the teachers will set up 

the task, how the task will be implemented, or what student learning will actually occur. This 

study is only focused on the potential each task has as it is written in the curriculum. Of course, 

the potential of each task is critical since if a task does not have the potential to do something, it 

most likely will not. That makes this study an important first step of many for researchers 

wishing to understand the impact of tasks on student learning. Another limitation is that the study 

focuses on probability and statistics only. There are six different conceptual categories in the 
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CCSSM for high school. Probability and statistics are only one of the six categories. If one or all 

of the other conceptual categories were to be analyzed, they very well may tell a different story 

about each curriculum. Additionally, this study is based on the assumption that high-level tasks 

will better address the Standards for Mathematical Practice than low-level tasks. While this 

assumption is reasonable, it does not tell the entire story. Not every high-level task will address 

all of the eight Standards for Mathematical Practice and not every low-level task fails to address 

all of the eight Standards for Mathematical Practice. An analysis of tasks with a focus on the 

extent to which each of the Standards for Mathematical Practice are addressed would provide 

greater detail about how each of these standards is being addressed in the curriculum materials. 

Finally, this study is limited in that it only analyzes three sets of current curriculum 

materials. These three sets of materials provide a snapshot of the landscape of secondary 

mathematics education materials, but they may not paint the entire picture of what is available. 

Including more curricula from an even wider variety of publishers could reveal more about 

available curriculum materials. 

1.10 SUMMARY 

The following points were argued to justify a study that examined secondary mathematics 

curriculum materials with the intention of determining both the opportunities for students to 

engage in high-level tasks and the opportunities for teacher learning on tasks in the written 

curriculum materials involving probability and statistics as defined by the Common Core State 

Standards: 
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1) CCSSM will necessitate change in mathematics education through more focused, 

coherent goals that emphasize conceptual understanding and specific mathematical 

practices 

2) Curriculum materials will play a vital role in the change that CCSSM hopes to facilitate 

3) CCSSM may require student engagement in high-level tasks 

4) Teacher learning may be necessary for high-level tasks to be implemented well 

5) Curriculum materials are one potential source of teacher learning (educative curriculum 

materials) 

6) Probability and statistics are important content areas where high-level tasks and educative 

curriculum materials may be especially useful 

The next chapter reviews literature, which provides a research foundation for the points, argued 

here.  This literature will provide a basis for why probability and statistics are important, difficult 

to teach, and an overview of the myriad of misconceptions in this content area. The literature will 

also provide information regarding the potential power of curriculum materials to educate not 

only students but teachers as well. The potential of curriculum to be educative in nature could be 

especially important in meeting the demands of CCSSM, which may require schools to provide 

students with opportunities to engage in tasks that require high-level cognitive demand. The 

literature will provide a background on the importance and implementation of high-level tasks in 

mathematics education. Finally, the probability and statistics standards of CCSSM will be 

analyzed in connection with both secondary mathematics education research and the Guidelines 

for Assessment and Instruction in Statistics Education (GAISE) Report. All of the literature 

referenced will further build on the argument made in this chapter while providing the basis for 

the methodology of the study.  
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2.0  REVIEW OF LITERATURE 

Chapter 2 is dedicated to reviewing salient literature related to this study. This chapter begins 

with an examination of research in probability and statistics. This examination includes why 

probability and statistics are important, what makes them difficult to teach, including common 

misconceptions, and connections between the CCSSM and research in probability and statistics. 

After reviewing research on probability and statistics, this chapter turns its focus to educative 

curriculum materials. Educative curriculum materials are materials that promote teacher learning. 

Most curricula are written with student learning in mind. However, researchers have recently 

suggested that it could be possible for teacher learning to be a consideration in the design of 

curriculum materials. Since this chapter will establish a number of reasons that probability and 

statistics education could be difficult to teach and learn promoting teacher learning will then 

potentially be a very important step in providing enough support to promote student learning. 

Finally, this chapter turns its attention to tasks. The importance of tasks was established by 

Doyle (1983) and has since been elaborated specifically in mathematics education. The latest 

research on tasks discusses the importance of tasks requiring high-level cognitive demand for 

students to complete. An important connection made by Stein and Kim (2009) is that if a task 

potentially requires high-level cognitive demand, it will also put a high-level demand on the 

teacher to implement well. Therefore, it may be even more important for curriculum materials to 

be educative in nature if those materials incorporate many high-level tasks. 
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2.1 PROBABILITY AND STATISTICS 

The primary purpose of this section is to make the following argument: Probability and statistics 

are important topics but are difficult to teach due to many factors including that misconceptions 

are widespread across content and for students at all grade levels. Once this argument has been 

made, the chapter will move on to suggestions related to statistics education. Next research in 

probability and statistics is connected to the curricular suggestions of the CCSSM. Finally, a 

study analyzing the tasks found in textbooks relating to probability from a historical perspective 

is reviewed. 

However, before moving on to the argument, it might be beneficial to define what 

probability and statistics education might entail. The GAISE Report suggests that instructional 

programs should enable all students to do the following (Franklin et al., p. 5, 2007): 

1) Formulate questions that can be addressed with data and collect, organize, and display 

relevant data to answer them; 

2) Select and use appropriate statistical methods to analyze data; 

3) Develop and evaluate inferences and predictions that are based on data; and 

4) Understand and apply basic concepts of probability 

In order to accomplish this, the GAISE Report suggests that students will need to 

understand the nature of variability, the role of context, probability, and chance variability 

(Franklin et al., 2007). 

 After an extensive review of research in statistics education, Garfield et al. (2008) 

suggest the following ideas as being important to statistics education: 

1) Data 

2) Statistical models 
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3) Distribution 

4) Center 

5) Variability 

6) Comparing groups 

7) Sampling and sampling distributions 

8) Statistical inference 

9) Covariation 

One can see many similarities between the GAISE Report (Franklin et al., 2007) suggestions and 

those made by Garfield et al. (2008). The sense of agreement between the two becomes even 

greater when both are investigated in detail. For example, Garfield specifically identifies center 

as an important idea for statistics education. Even though center has not been explicitly listed as 

an instructional goal for the GAISE Report, it spends considerable effort in developing a student 

understanding of center in service of addressing the goals that are explicitly listed. This 

agreement is of no surprise since both the GAISE Report and Garfield et al. are based on prior 

research. 

2.1.1 Probability and statistics are important 

Probability and statistics have been identified as an area of importance by many researchers 

(Casey, 2010; Garfield et al., 2008; Hawkins & Kapadia, 1984; Hirsch & O’Donnell, 2001; 

Jones et al., 1997; Jones et al., 1999; Konold et al., 1993). Some researchers approach the 

importance of probability and statistics by identifying everyday situations where the average 

person may interact with probability and statistics. For example, Garfield et al. (2008) suggests 

that advertising has become more persuasive through presenting data. Because of this Garfield et 
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al. suggest that it would be important for someone to be able to evaluate the claims the 

advertisers are making and be able to make sound arguments themselves as the person in 

question makes decisions. Therefore, all citizens should be educated in statistics. Because of the 

importance of probability and statistics, statistics education is increasing at the elementary, 

middle school, secondary, and post-secondary levels (Casey, 2010; Garfield et al., 2008). Others 

consider the implications of probability and statistics in professional settings. Hirsch and 

O’Donnell (2001) suggest that probability is vital in all careers and most everyday decisions. 

2.1.2 Probability and statistics are difficult to teach 

There are many issues associated with probability and statistics education. One issue is that when 

compared to other areas of research, probability and statistics education is relatively new 

(Garfield et al., 2008). Educational research on probability and statistics has only existed for the 

past twenty years. Prior to the NCTM Standards (1989), probability and statistics were not 

considered part of most mathematics curricula in schools. Research on probability and statistics 

prior to the Standards, was primarily conducted by psychologists in an attempt to understand 

subjects’ judgments in situations of uncertainty and the misconceptions that caused errors in 

judgment (Shaughnessy, 1992). 

Another issue related to research on probability and statistics education is the lack of 

connection between research results and suggestions for instruction (Garfield et al., 2008). 

Garfield et al. elaborate by saying that research is too often conducted in labs using quantitative 

methods that don’t transfer to classrooms. Often this occurs because researchers do not feel that 

qualitative methods would be relevant and the researchers are more comfortable outside of the 

classroom setting. 
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 In addition to these research concerns, teachers often lack preparation specific to teaching 

probability and statistics (Bataner, Godino, & Roa, 2004). Casey (2010) suggests that one cause 

of this may be that few teachers have studied statistics, and the few that have studied statistics 

were taught with an emphasis on procedural knowledge. Most teachers are being asked to teach 

something they have never themselves experienced, reasoning with statistics (Casey, 2010; 

Pfannkuch, 2006). 

Statistical reasoning involves, “Making interpretations based on sets of data, graphical 

representations, and statistical summaries (Garfield, 2002).” Garfield (2002) further suggests that 

statistical reasoning is a combination of ideas about data and chance, making inferences, and 

interpreting results. Even for those who are proficient in mathematical reasoning, there are three 

areas of difficulty associated with statistical reasoning. Statistical reasoning is difficult because it 

is contextual (Garfield, 2003), requires an aggregate view (McGatha, Cobb, & McClain, 1998), 

and can be counterintuitive (Batanero & Sanchez, 2005; Baterno, Henry, & Parzysz, 2005; 

Hawkins & Kapadia, 1984). 

Contextual refers to the need to pay attention to contexts. In statistics, data alone is 

meaningless. The contexts of the data provide all of the meaning. Mathematical reasoning is 

abstract which means it attempts to remove the contexts and focuses on the underlying 

mathematical rule or idea. Because of their stance on contexts, statistical reasoning and 

mathematical reasoning are in direct conflict with one another (Garfield, 2003). An aggregate 

view is a view that considers all the data as a whole instead of focusing on individual data points 

(McGatha et al., 1998). Casey (2010) suggests that the inability to see data from an aggregate 

view causes difficult for secondary students and prevents them from understanding topics that 

are otherwise developmentally appropriate such as correlation coefficient. Reasoning related to 
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probability can be counterintuitive which differs greatly from logical reasoning and causal 

reasoning (Batanero & Sanchez, 2005; Baterno, Henry, & Parzysz, 2005; Hawkins & Kapadia, 

1984). For example, if drug A is better for right handed people and drug A is better for left 

handed people, one would reason that drug A is better for all people which is not necessarily true 

(Hawkins & Kapadia, 1984). Conversely, in mathematics counterintuitive results only occur at 

the highest levels while in probability they occur even at the elementary level (Baterno, Henry, 

& Parzysz, 2005). Therefore, not only are teachers inexperienced in this form of reasoning, but 

the experiences they have in mathematical reasoning can be contradictory to what they would be 

asked to teach in statistical reasoning. It is not unreasonable to conclude that teachers with 

degrees in mathematics may have difficulty teaching probability and statistics (Garfield et al., 

2008). 

Garfield et al. (2008) suggest that both preservice and inservice teachers demonstrate 

difficulty with understanding and teaching the core concepts of probability and statistics at all 

levels K through 12. Teacher knowledge in statistics needs to be developed and determining 

ways to develop such knowledge should be explored (Casey, 2010; Garfield et al., 2008). 

 Garfield et al. (2008) suggest that another problem is that teachers were taught statistics 

via a lecture format and then chose to teach statistics in the same manner. Garfield et al. further 

suggest that even though many efforts are made to lead teachers away from lecture-based 

formats of instruction, few teachers actually change their methods. One suggestion for why this 

takes place is because a lecture is much easier to prepare for than an activity. However, much as 

in other topics in mathematics, lecture oriented approaches fail to develop deep understandings 

and thus leave students with knowledge that quickly disappears (Garfield et al., 2008). 
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Garfield et al. (2008) suggest that studies have demonstrated that students have 

difficulties with even the most basic concepts in statistics. They conclude that promoting student 

learning will be very difficult. In addition, studies have also demonstrated that preservice 

teachers have limited or even incorrect notions related to the concept of sample even after they 

have taken a statistics course. Similarly, Garfield et al. also reference studies that have 

demonstrated participant failure to use relevant content when comparing groups of data even 

after they have taken a methods course. Additionally, studies of students who earned an A in a 

college statistics course showed that shortly after completion of the course, the students had 

limited understandings of mean, standard deviations, and the Central Limit Theorem (Garfield et 

al., 2008). When all of these factors are added together, it makes sense that confidence would be 

a serious issue for anyone being asked to teach statistics (Garfield et al., 2008). 

 Casey (2010) conducted a study of three mathematics teachers that were attempting to 

teach students to think and reason statistically as well as becoming statistically literate. The 

statistics content being taught was correlation coefficient. According to Casey, correlation 

coefficient is developmentally appropriate for secondary students but is difficult to understand 

because students fail to see data as aggregate and rely too much on personal beliefs about the 

data. Additionally, Casey suggests that students struggle the most with inverse associate or 

negative correlation. Casey observed during this study that for teachers to teach anything beyond 

basic calculations of correlation coefficients, the teachers needed to possess a conceptual 

understanding of correlation. This knowledge would include how to compute correlation, why 

correlation is computed in that manner, and what the implications of this computation are. In 

other words, teachers needed to know the meaning of correlation not just the computation. As a 
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result, Casey suggests that teaching statistics requires three knowledge components: knowledge 

of meaning, knowledge of terminology, and knowledge of context. 

 Research by Konold (1995) demonstrated that formal instruction often fails to impact 

students. Konold used questionnaires and interviews to learn about the beliefs of college students 

in relation to their prior education in statistics and found that the beliefs held by the participants 

were unaffected by the classes they had taken. For example, Konold gave a questionnaire to 119 

students asking about the accuracy of the weather forecast that claims a 70% chance of rain both 

before and after they participated in a variety of different statistics courses and workshops. The 

results showed only a 6% increase in the number of correct responses after instruction. 

 Finally Garfield et al. (2008) summarize other issues in statistics education by suggesting 

that statistics is challenging to both teachers and learners for the following reasons: 

1) Concepts and rules are complex and often counterintuitive 

2) Students struggle with the underlying mathematics 

3) Contexts can be misleading 

4) Often confused with mathematics where there is one right answer and problems are not as 

messy 

Perhaps the greatest concern to educators in the areas of probability and statistics are the 

widespread misconceptions in these areas. While misconceptions are an issue in mathematics 

education, their role in probability and statistics education may be significantly stronger. 

2.1.3 Misconceptions are widespread across content and among everyone 

Most of what has been written in regards to probability and statistics focuses on the myriad of 

misconceptions associated with them. There are many misconceptions, primarily among 
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statistically naïve thinkers, but even among those whom have been educated in probability and 

statistics. Therefore, one might suggest that probability and statistics is an area of utmost 

importance in education. However, these misconceptions could also make probability and 

statistics an area of extreme difficulty to teach.  

Hawkins and Kapadia (1984) note that there are many historical examples of 

mathematicians themselves making errors when it comes to basic probability. One example 

given is that a number of mathematicians felt that when flipping two coins, the probabilities of 

both heads, both tails, and one of each were all equally likely (each being 1/3). One should 

realize that flipping one of each is twice as likely (1/2) as the other two (1/4 and 1/4). Similarly, 

Batanero, Henry, and Parzysz (2005) reference a famous mathematician, D’Alembert, who 

argued that the probability of getting at least one tail in the same two flips of a coin situation was 

2/3 even though it should be ¾. 

 Hirsch and O’Donnell (2001) suggest that misconceptions related to probability and 

statistics are developed outside of the classroom through informal experiences. Students are 

exposed to complicated problems and develop heuristics to estimate the probabilities associated 

with these problems. Unfortunately, in many cases these heuristics are faulty. Even though the 

heuristics are faulty, they are deeply held and thus resist changing even with formal instruction 

(Batanero, Henry, & Parzysz, 2005; Hirsch & O’Donnell, 2001; Konold, 1995). Hirsch and 

O’Donnell suggest that students will passively go along with instruction but actually still hold on 

to their misconceptions. As a result, students can choose correct answers to problems without 

correct reasoning behind it. 

Hirsch and O’Donnell (2001) were able to generate evidence of students using faulty 

logic to generate correct answers in their research. Hirsch and O’Donnell gave students multiple 
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choice and open-ended questions related to probability and probabilistic reasoning. The multiple 

choice items would ask students which of the following is either least or most likely. Then there 

would be a follow up multiple-choice item asking students to provide an explanation for their 

answer. The results of this study showed that many students provided correct answers to 

probability questions without providing the correct reasoning on the follow up question. This can 

be especially dangerous for statistics education. Students and teachers would in essence be 

seeing a false positive test. The positive being the correct answer but with false reasoning used to 

determine the correct answer. Teachers may then be compelled to believe that the students have 

mastered the concept due to the positive response without such mastery actually occurring. Since 

the reasoning associated with the concepts is still faulty, future learning may be impeded as well. 

In some cases, instruction in probability and statistics has actually caused students to rely 

more on faulty heuristics. Research by Morsanyi, Primi, Chiesi & Handley (2009) demonstrated 

that psychology students relied on the equiprobability bias heuristic more at the end of their 

college educations than they did at the beginning. An example of how the use of this heuristic 

was assessed is in the following question from Morsanyi et al. (p. 213, 2009): 

The two most common causes of learning difficulties among university students are 

dyslexia and dyscalculia. Out of 15 university students with learning difficulties, approximately 

nine are dyslexic, and six have dyscalculia. Joe is a student with a learning difficulty. Which of 

the following is most likely? 

a) Joe is dyslexic 

b) Joe has dyscalculia 

c) Both are equally likely 
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In this example, the appropriate response is choice A. Based on the data provided, Joe is 

most likely dyslexic because nine of 15 university students with learning difficulties are dyslexic. 

However, students using the equiprobability heuristic respond with C because they falsely 

assume that two outcomes must be equally likely even though they have been provided data that 

demonstrates this assumption to be untrue. 

 Research on misconceptions was initially conducted by psychologists, not educators. As 

a result, reviews of literature on probability and statistics often trace research back to either 

Piaget and Inhelder from the 1950’s or Tversky and Kahneman’s work from the 1970’s 

(Shaughnessy, 1992; Chernoff & Sriraman, 2010; Garfield, 2008). These psychologists 

developed many theoretical perspectives on probability and statistics and identified specific 

heuristics subjects in their studies used to make decisions under conditions of uncertainty that led 

to misconceptions of probability and statistics. Specifically, Tversky and Kahneman (1973) were 

able to establish the existence of the representativeness and availability heuristics, which have 

led them and other researchers to determine many other misconceptions that exist in the areas of 

probability and statistics. A table of identified misconceptions can be found in Appendix A. 

Teachers may benefit from being aware of these common misconceptions. If teachers are 

able to anticipate potential misconceptions that students might have, they might be better able to 

deal with those misconceptions during instruction. Since these misconceptions occur in people at 

all levels of education, the teachers themselves might even have some of these misconceptions. If 

the teacher has a misconception, it is vital that the teacher has an opportunity to change his or her 

thinking. Therefore, tasks that address commonly held misconceptions could be beneficial to 

both the teacher and students. However, since these misconceptions are so strongly held and 

widespread, the curriculum materials containing such tasks will need to be educative in nature in 
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order to support building teacher knowledge. Without such support, it is possible that the 

misconception will either never be addressed or even worse, the misconception could be 

reinforced if it is held by teachers and passed on to students. 

2.2 GUIDELINES FOR ASSESSMENT AND INSTRUCTION IN STATISTICS 

EDUCATION REPORT 

In an attempt to help educators deal with all of the previously mentioned issues, the Guidelines 

for Assessment and Instruction in Statistics Education (GAISE) Report was written. The GAISE 

Report was written on the premise that, “Every high-school graduate should be able to use sound 

statistical reasoning to intelligently cope with the requirements of citizenship, employment, and 

family and to be prepared for a healthy, happy, productive life (Franklin et al., p. 1, 2007).” The 

GAISE Report references advances in technology, a society that is filled with data in the 

information age, and the NCTM as justification for statistics and probability being key 

components to mathematics curriculum beginning as early as pre-K and continuing all the way 

through 12th grade. However, incorporating probability and statistics is not as easy as just adding 

it to the existing curriculum. 

 The GAISE Report concurs with the research previously referenced that suggests that 

teachers have difficulty with teaching probability and statistics for many reasons (Franklin et al., 

2007). As previously suggested, one of these reasons is that probability and statistics are new 

topics for many mathematics teachers. Because of this, teachers have not had the opportunity to 

develop their knowledge of the concepts and underlying practices that they will be teaching. This 

lack of knowledge leads to a vision of the curriculum that lacks cohesion. Another significant 
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difference that was previously mentioned and is suggested by the GAISE Report is that 

mathematics and statistics differ greatly. The GAISE Report notes that mathematics is simply 

about numbers, but statistics and probability are numbers with context. Garfield et al. (2008) 

further explain that in mathematics contexts are discarded because they can be distracting, hence 

the need for abstraction. These fundamental differences cause students to react differently to 

each and therefore teachers need to be prepared differently depending on which one they are to 

teach. 

One area where these differences are evident is that statistics focuses on variability. 

Franklin et al. (2007) define multiple types of variability in the GAISE Report. The basis of 

statistics is comparing natural variability to induced variability. Natural variability refers to the 

idea that measurements on individuals will vary. For example, if one were to measure the heights 

of different people, not everyone is the same height. Induced variability refers to experiments 

that are set up with the intention of creating variation. An example of this would be giving 

someone a drug as compared to giving them a placebo. In addition to these two main types of 

variability, Franklin et al. (2007) define two others, measurement variability and sampling 

variability that are important to statistics. Measurement variability refers to the idea that even 

repeating measurements on the same subjects can yield different results. For example, if a person 

blood pressure is measured more than once, it is possible that the measurements will differ. 

Sampling variability refers to the idea that two samples of the same population will likely yield 

different results. 

 Many other researchers join Franklin et al. (2007) when they propose that all students 

should have statistical literacy (Batanero & Sanchez, 2005; Ben-Zvi & Garfield, 2004; Garfield 

et al., 2008; Jones & Thornton, 2005). Garfield et al. (2008) define statistical literacy as 
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understanding both the language and tools of statistics. They suggest that this includes an 

understanding of terms, symbols and representations of data, and the ability to interpret, 

evaluate, and communicate about data. They further suggest that this occurs through five 

knowledge bases: literacy, statistical, mathematical, context, and critical. Finally, they 

specifically identify three levels of statistical literacy as knowledge of terms, understanding 

terms in context, and critiquing claims. 

 In the GAISE Report, Franklin et al. (2007) suggest that statistical literacy should 

emphasize data collection design, exploring data, and interpreting results. This emphasis is 

evident in the GAISE Report’s suggestions for statistical problem solving. Franklin et al. suggest 

the following four processes be included:  

1) Formulating questions by clarifying the problem and determining what questions the data 

can answer 

2) Collecting data by designing and then employing a plan to collect data appropriate for the 

question 

3) Analyzing data with appropriate numerical and graphical methods 

4) Interpreting results in relation to the original question 

Franklin et al. (2007) suggest that variability plays an important role in the above process and 

that an increased role of variability is indicative of maturation in the process. Specifically they 

note the following:  

1) To be a stats question, there must be variability 

2) Acknowledge the variability and use randomness and other designs to minimize it 

3) Use distributions (confidence intervals) to account for variability 
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4) Generalizations must incorporate additional variability (make data go from sample to 

population) 

Based on all of these ideas, the GAISE Report was created. One purpose of the report was to 

generate a framework that would represent a clear, coherent vision of what statistics education 

might look like in the pre-K through 12 classrooms. The GAISE Statistics Framework consists of 

three developmental levels. These levels are often equated with grade levels, but the intention of 

them is to be based on levels of statistical literacy as opposed to age. Thus, an adult with no 

experience in statistics would begin at level A even though some might consider level A to be 

elementary level statistics. This is an important component of using the framework since it 

would be inappropriate to have high school students working in level C if they have not first 

experience levels A and B in elementary and middle school. 

The distinction between the three levels is the role of variability (Franklin et al., 2007). In 

level A, variability within a group is considered. Level B considered variability between groups 

and covariability. Finally, at level C, students consider modeling aspects of data analysis. 

Franklin et al. provide examples related to word length to illustrate the differences between the 

levels. At level A, one might consider how the lengths of words on a single page differ. At level 

B, one might consider how the lengths of words from third grade books compare to lengths of 

words from fifth grade books and be able to describe the differences with statistical relationships 

such as every grade the words get two letters longer. At level C, one might consider a regression 

line predicting the lengths of words at each grade level book and determine if it predicts the 

lengths well. The framework for each level can be found in appendix B. 
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2.3 COMMON CORE STATE STANDARDS AND PROBABILITY AND 

STATISTICS 

Before moving forward, it may be helpful to summarize this chapter so far. The chapter has 

established that probability and statistics are important topics and should be included in 

mathematics education. It has been established that probability and statistics will be difficult to 

teach because those with the responsibility to teach it are typically experts in mathematics, which 

uses a different type of reasoning than probability and statistics. Mathematical reasoning often 

involves abstraction, which requires eliminating contextual features of a problem. Probability 

and statistics reasoning is just the opposite because the contexts are vital to interpreting the data 

(Garfield, 2003). Probability and statistics are also difficult to teach because of the widespread 

misconceptions strongly held by many people that will likely be present in the students and even 

possibly the teachers. 

2.3.1 Probability and statistics in curricula and standards 

As information on probability and statistics has become available and more prevalent, studies 

have begun to determine how much probability and statistics exist in current curricula and 

standards documents. With the NCTM’s push to make probability and statistics mainstream 

topics, one would expect that textbooks, state standards documents, and assessments would all 

contain a variety of probability and statistics topics. 

 Porter, Polikoff, and Smithson (2009) analyzed state standards and compared them to 

each other and NCTM Standards at the fourth and eighth grade levels. They found that they were 

significantly different. There was nationwide agreement on 13 topics in mathematics, which 
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represented on average only 18.6% of each state’s total curriculum and 21.4% of the NCTM’s 

suggested content. Of the 13 topics, most indicated using low-level cognitive demand. 

This is particularly disturbing since Porter, Polikoff, and Smithson (2009) suggest that 

having clear consistent standards is the first step in standards based reform. However, Porter et 

al. continue by suggesting that just having standards is not enough. In addition, assessments need 

to be created to match the expectations of the standards or the standards will be ineffective. 

Professional development and instructional materials can be aligned with standards and 

assessments to create a coherent system of education that will better promote student learning. 

 CCSSM intend to change all of this. The argument has already been made for how the 

CCSSM will facilitate such a change and therefore provides a fertile basis for this research. 

Therefore, the next step is to analyze the suggestions found in CCSSM. Since this study uses 

CCSSM as its guide to what areas of probability and statistics should be included in the 

curriculum that was analyzed, it makes sense to make connections between suggestions found in 

the literature and suggestions found in the CCSSM as part of a review of literature. 

 The GAISE Report was released in 2007. The authors of the GAISE Report were guided 

by the findings from decades of prior research. CCSSM was released in 2010, which means that 

the GAISE Report was able to influence what suggestions were made by CCSSM. This 

relationship between research influencing GAISE and GAISE influencing CCSSM is 

demonstrated in the tables that follow. There are three tables, each representing one of the 

domains from CCSSM in the area of probability and statistics. 

1) Interpreting Categorical and Quantitative Data 

2) Making Inferences and Justifying Conclusions 

3) Conditional Probability and the Rules of Probability 
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Within each of these domains, there is a cluster of standards. For example, there are nine 

standards in the cluster associated with Interpreting Categorical and Quantitative Data. The rows 

of the tables are organized by specific standards from CCSSM. Any suggestions from the GAISE 

Report and suggestions found in research are summarized in the row with the CCSSM standard 

to which the suggestions correspond. 

The similarities across the rows are not coincidental. The tables demonstrate that the 

GAISE Report influenced CCSSM and that both CCSSM and the GAISE Report were 

influenced by research. Therefore, even if CCSSM were not adopted by many states nationwide, 

it would still provide an appropriate basis for studying probability and statistics since it is based 

on prior research and the GAISE Report. 

2.3.2 Interpreting Categorical and Quantitative Data (S-ID) 

The S-ID standard focuses on interpreting data. Specifically, there is a focus on summarizing, 

representing, and interpreting data. Graphical representations of data are prevalent as well as 

uses of measures of center and spread. A key point of emphasis is that the focus is not just on 

drawing graphs and calculating measures of center and spread. The focus is on interpreting and 

understanding what the graphs represent and what the measures of center and spread mean. The 

keys to these understandings are interpreting each with contexts. In mathematics, contexts are 

often intentionally ignored in favor of abstracting mathematical concepts. In statistics, contexts 

are vital and cannot be ignored. Another key to interpreting data is an aggregate view. Students 

must develop the ability to look at data as a whole rather than focusing on individual data points. 

Table 2.1 provides links for each of the standards in this cluster with the recommendations in the 

GAISE Report and relevant research.
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   Table 2.1. Comparison of CCSSM S-ID cluster to GAISE report and research 

CCSSM Standard GAISE Report Relevant Research 

S-ID-1 

Represent data with 

plots on the real 

number line (dot 

plots, histograms, 

and box plots) 

At level A, students use dot plots 

and box plots to explore 

distributions and association. 

Students begin using histograms 

at level B for summarizing and 

comparing distributions as well as 

more sophisticated uses of dot 

plots and box plots. Potential 

confusion between bar graphs and 

histograms is noted as a misuse of 

statistics in level A. 

Garfield et al. (2008) suggests that 

histograms and box plots cause 

confusion for students because the 

students think they are the same 

thing even though they are 

significantly different. Bakker, 

Biehler, and Konold (2004) suggest 

that boxplots present unique 

challenges for students because the 

median and quartiles are not easily 

understood and individual cases are 

not perceiveable.                                              

S-ID-2 

Use statistics 

appropriate to the 

shape of the data 

distribution to 

compar9e center 

(median, mean) and 

spread (interquartile 

range, standard 

deviation) of two or 

more different data 

sets. 

Measures of center and spread are 

introduced at level A and increase 

in sophistication through levels B 

and C. For example, the mean 

evolves from an interpretation as 

“fair share” to “balance point” 

from level A to level B and then 

sample means are used for 

making statistical inferences. 

Measures of spread start with 

range at level A, progress to the 

Mean Absolute Deviation at level 

B, and then standard deviation 

and applications of measures of 

spread at level C.   

Groth and Bergner (2006) suggest 

that students need to understand 

measures of center including which 

measure is most useful for a given 

problem. Ben-zvi (2004) suggests 

that spread is fundamental to 

statistical thinking. Reading and 

Reid (2006) suggest that variation 

(spread) affects all other areas of 

statistics. Reading (2004) suggests 

that center is overemphasized while 

variability is underemphasized or 

even ignored due to difficulty. 

Delmas and Liu (2005) suggest that 

students will have difficulty with 

variability and as a result cannot 

make inferences or understand 

distributions. Konold and Pollatsek 

(2002) suggest a signal (center) 

amongst the noise (variation) view 

of center and spread. 

 

 

 

 

 

 

 

 

 

(table continues)  
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                    Table 2.1 (continued)  

CCSSM Standard GAISE Report Relevant Research 

S-ID-3 

Interpret differences 

in shape, center, and 

spread in the context 

of the data sets, 

accounting for 

possible effects of 

extreme data points 

(outliers) 

Context is viewed very differently 

in statistics than it is in 

mathematics. In mathematics, we 

strip away contexts, but in 

statistics, context is what gives 

the numbers meaning. Students 

will interpret differences in data 

sets throughout all three levels of 

the framework with degrees of 

sophistication being developed 

throughout.  

Chance (2002) suggests that data 

without context is useless. Casey 

(2010) suggests knowledge of 

context is important in teaching 

statistics. Garfield et al. (2008) 

suggests that making comparisons 

between groups allows students to 

develop an understanding of 

contexts and that boxplots may be 

useful for making such comparisons. 

Pfannkuch (2006) suggests that 

boxplots are difficult for both 

students and teachers because they 

are conceptually demanding, 

obscure information, condense data, 

and summarize data. Pfannkuch 

(2006) also suggests that justifying 

inferences is difficult and that 

traditional statistics instruction 

neglects making inferences with box 

plots. 

S-ID-4 

Use the mean and 

standard deviation of 

a data set to fit it to a 

normal distribution 

and to estimate 

population 

percentages. 

Recognize that there 

are data sets for 

which such a 

procedure is not 

appropriate. Use 

calculators, 

spreadsheets, and 

tables to estimate 

areas under the 

normal curve. 

Students should develop an 

understanding of appropriate 

analysis as analysis that leads to 

inferential statements regarding 

population parameters that can be 

justified. Normal distributions 

should be introduced as a model 

for sampling distributions and 

students should be familiar with 

finding areas under the normal 

curve using appropriate 

technology. 

Pfannkuch (2006) suggests that both 

students and teachers need to 

improve their abilities to 

communicate in the area of 

distribution. Garfield et al. (2008) 

suggests that normal distribution and 

fitting data to normal distribution are 

important topics and prerequisites to 

formal studying of sampling 

distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

(table continues) 
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                    Table 2.1 (continued)  

CCSSM Standard GAISE Report Relevant Research 

S-ID-5 

Summarize 

categorical data for 

two categories in 

two-way frequency 

tables. Interpret 

relative frequencies 

in the context of the 

data (including joint, 

marginal, and 

conditional relative 

frequencies). 

Recognize possible 

associations and 

trends in the data. 

Using a two-way frequency table 

to summarize categorical data for 

two categories is explicitly 

suggested as part of level B. 

Interpretations of data are part of 

this suggestion including 

recognizing associations and 

trends. 

Understanding context is vital 

(Casey, 2010; Chance, 2002; 

Garfield et al., 2008). Batanero et al. 

(1996) studied conceptions of 

association in frequency tables and 

suggest that three misconceptions 

exist: dependence can only exist if 

the two cells containing 

disagreement between variables 

have a frequency of zero; inverse 

association is a form of 

independence; judgments are based 

on the cell that contains the 

maximum frequency and ignores the 

other cells. 

S-ID-6 

Represent data on 

two quantitative 

variables on a scatter 

plot, and describe 

how the variables are 

related. 

Representing two quantitative 

variables on a scatter plot and 

describing how they are related is 

incorporated at all three levels (A, 

B, and C) with varying levels of 

sophistication. These 

comparisons range from basic 

comparisons like as one gets 

larger the other gets larger at level 

A to estimating lines of best fit at 

level B and finally using least 

squares to calculate a line of best 

fit. 

Garfield et al. (2008) suggest that 

processing, analyzing, and 

representing the data is one of four 

stages of data analysis. Hubbard 

(1997) suggests that students are 

presented open-ended questions in a 

standard form leading to 

memorization that teachers 

misinterpret as understanding (i.e., 

create a scatter plot, describe the 

relationship, find the correlation 

coefficient and say if it agrees with 

the suggested relationship, find the 

regression model and write the 

equation, plot regression model, 

state if the model does a good job 

predicting). 

S-ID-7 

Interpret the slope 

(rate of change) and 

the intercept 

(constant term) of a 

linear model in the 

context of the data. 

Interpretations of both slope and 

intercept are both explicitly 

discussed at level C. This 

discussion includes situations in 

which interpretations of intercept 

are unrealistic based on contexts. 

Garfield et al. (2008) suggests that 

contexts are used to explain patterns 

or deviations from patterns when 

generating a model and that models 

are the foundation of statistical 

thinking yet are often neglected in 

statistics courses. Zieffler and 

Garfield (2009) suggest that student 

interpretation of rate of change is 

slow to develop and often is not seen 

as relating to covariation. 

(table continues) 
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                    Table 2.1 (continued)  

CCSSM Standard GAISE Report Relevant Research 

S-ID-8 

Compute (using 

technology) and 

interpret the 

correlation 

coefficient of a 

linear fit. 

At level B, the calculated 

correlation coefficient is the 

Quadrant Count Ratio. This 

notion is built upon to develop the 

use of Pearson’s correlation 

coefficient at level C.  

Falk and Well (1997) suggest that 

correlation coefficient, specifically 

Pearson’s r, is used in education, 

psychology, the social sciences, and 

is central to many statistical 

methods, but current instructional 

practices lead to an impoverished 

understanding of conception of 

correlation. Rumsey (2002) suggests 

time focused on calculating 

correlation coefficients can inhibit 

understanding. 

S-ID-9 

Distinguish between 

correlation and 

causation 

Students begin distinguishing 

between correlation and causation 

at level B and then continue to 

develop the ability to distinguish 

between the two at level C. 

Specific suggestions are given for 

each how to facilitate students 

making this distinction at both 

levels. 

There is a common misconception 

that correlation implies causation. 

(Chance, 2002; Delmas et al., 2007; 

Garfield, 2003) 

 

Throughout Table 2.1, the influence of the GAISE Report and research on CCSSM can 

be seen. The GAISE Report and research suggested much of the same content found in CCSSM 

prior to CCSSM being released. In addition to these content suggestions, the GAISE Report and 

research also emphasize a focus on understanding, how each fits into the big picture of statistics, 

and cautions associated with each. Additionally, misconceptions and errors in emphasis during 

instruction are identified as important points to be made about how these suggestions should be 

taught. Both GAISE and research emphasize the importance of contexts in probability and 

statistics education. The authors of CCSSM incorporated all these content suggestions and the 

emphasis on contexts. 
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2.3.3 Making Inferences and Justifying Conclusions (S-IC) 

The S-IC standard focuses on making inferences and conclusions about a population based on a 

sample of that population. The focus is not just on being able to make an inference or draw a 

conclusion, but to understand why one can make such an inference or draw such a conclusion. In 

addition, students are expected to understand the role of randomness in these inferences and 

conclusions. Additionally, students should be able to look at the inferences and conclusions of 

others and decide if they are appropriate. 
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Table 2.2. Comparison of CCSSM S-IC cluster to GAISE report and research 

CCSSM Standard GAISE Report Relevant Research 

S-IC-1 

Understand statistics 

as a process for 

making inferences 

about population 

parameters based on 

a random sample 

from that population 

One of the four components 

identified is the process 

component. At level A, students do 

not make inferences. At level B, 

making inferences is considered 

reasonable by students. At level C, 

students are able to make 

inferences about the population. 

Garfield et al. (2008) suggest 

making inferences based on 

samples is a central idea of 

statistics but students are reluctant 

to make inferences about a 

population regardless of the 

sample. They further suggest that 

students have multiple difficulties 

and multiple misconceptions in 

the area of sampling. 

S-IC-2 

Decide if a specified 

model is consistent 

with results from a 

given data-

generating process, 

e.g., using 

simulation. For 

example, a model 

says a spinning coin 

falls heads up with 

probability 0.5. 

Would a result of 5 

tails in a row cause 

you to question the 

model? 

Possible reasons for inconsistent 

models are provided. At level C, p-

values are used to make judgments 

when a model is in question. The 

specific example of determining if 

a coin is fair by using 5 tosses is 

explicitly discussed in the 

introduction. 

Garfield et al. (2008) suggest that 

students should understand how 

data are produced, how data are 

collected, where data comes from, 

the types of analysis, and the 

conclusions that can be made. 

They further suggest that students 

lack an understanding of the 

importance of sample size. 

Sample size is important to 

consider in the case of tossing a 

coin 5 times. 

S-IC-3 

Recognize the 

purposes of and 

differences among 

sample surveys, 

experiments, and 

observational 

studies; explain how 

randomization 

relates to each. 

Collect data is one of the four 

identified process components. At 

level A, the differences are not 

considered. At level B, differences 

begin to be considered with sample 

surveys and comparative 

experiments being used. At level 

C, students develop a full 

understanding of each type of 

statistical study and how 

randomization is important to each. 

Garfield et al. (2008) suggest that 

students should understand the 

differences between random 

sampling and random assignment. 

Smith and Sugden (1988) suggest 

that surveys, experiments, and 

observational studies are 

important to the work of applied 

statistics and propose a framework 

for examining each. 

 

 

 

 

 

 

(table continues) 
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                    Table 2.2 (continued)  

CCSSM Standard GAISE Report Relevant Research 

S-IC-4 

Use data from a 

sample survey to 

estimate a 

population mean or 

proportion; develop 

a margin of error 

through the use of 

simulation models 

for random 

sampling. 

At level C, an appropriate analysis 

is defined as one where justifiable 

inferential statements about 

population parameters can be 

made. Specifically, population 

mean is identified for numerical 

data and population proportion is 

identified for categorical data. 

Multiple explicit suggestions for 

estimating a population mean or 

proportion and a margin of error 

calculated based on the sampling 

distribution are provided. 

Garfield et al. (2008) suggest 

making inferences based on 

samples is a central idea of 

statistics and should include how 

data are produced, how data are 

collected, where data comes from, 

the types of analysis, and the 

conclusions that can be made. 

Yilmaz (1996) suggests statistics 

education is important for many 

students not majoring in statistics 

yet has been ineffective. Yilmaz 

suggests a course design that 

includes studying population, 

sampling, drawing conclusions, 

and statements regarding error 

using appropriate technology. 

S-IC-5 

Use data from a 

randomized 

experiment to 

compare two 

treatments; use 

simulations to decide 

if differences 

between parameters 

are significant. 

Level C provides specific 

suggestions regarding randomized 

experiments including using 

simulations to approximate a p-

value and decide if the differences 

are significant. 

No specific references to this 

particular standard were found in 

the research. 

S-IC-6 

Evaluate reports 

based on data. 

An overall theme of the report is 

that data governs our lives. It 

suggests that students understand 

how statistics are commonly 

misused in reports so that students 

may be equipped to identify such 

things in the real world. Historical 

examples of these misuses are 

presented. 

Garfield et al. (2008) suggest that 

advertising has become more 

persuasive through presenting 

data, so it would be important for 

someone to be able to evaluate the 

claims the advertisers are making. 
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The GAISE Report initially suggested many of the concepts later identified by CCSSM 

and provided suggestions for developing these concepts throughout varying levels of 

sophistication. For example, the GAISE Report suggests that students first consider making 

inferences about the population at level B and are unable to make such inferences until level C. 

Building on this idea, CCSSM suggests that students understand making inferences about the 

population as one of the standards found in under the domain of Making Inferences and 

Justifying Conclusions. Therefore, we can once again see that the suggestions found in CCSSM 

are built upon the suggestions of the previously released GAISE Report. Research also plays an 

influential role as many cautions that educators need to made aware of including areas where 

students have misconceptions, reluctance, or tend to lack understanding are addressed. For 

example, Garfield et al. (2008) suggests that students will be reluctant to make inferences based 

on a scholarly review of research. Understanding this suggestion from research could be why the 

GAISE Report does not address making inferences until its highest level of sophistication, level 

C, and suggests that students will not even consider making inferences until level B. 

2.3.4 Conditional Probability and the Rules of Probability (S-CP) 

The S-CP standard focuses on independence, conditional probability, and rules of probability. 

Multiple interpretations of independence are addressed both using and not using rules of 

probability. Rules of probability are addressed with suggested example problems and methods of 

interpreting results that may demonstrate appropriate understanding of each. 
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Table 2.3. Comparison of CCSSM S-CP cluster to GAISE report and research 

CCSSM Standard GAISE Report Relevant Research 

S-CP-1 

Describe events as subsets 

of a sample space (the set of 

outcomes) using 

characteristics (or 

categories) of the outcomes, 

or as unions, intersections, 

or complements of other 

events (“or,” “and,” “not”). 

While describing events as 

subsets of sample space using 

these characteristics is not 

explicitly addressed, the use of 

two-way frequency tables and 

suggestions regarding 

association require an 

understanding of unions, 

intersection, and complements. 

Batanero, Henry, & Parzysz 

(2005) suggest that sample 

space and compound events 

are important concepts for 

probability instruction. Jones 

& Thornton (2005) suggest 

that middle school and high 

school age students struggle 

with sample space. 

S-CP-2 

Understand that two events 

A and B are independent if 

the probability of A and B 

occurring together is the 

product of their 

probabilities, and use this 

characterization to 

determine if they are 

independent. 

Acknowledges the importance 

of students understanding 

independence, but defines 

independence in the context of 

random sampling providing 

independent observations as 

opposed to using the product 

of probabilities as a 

characterization. 

Independence is an important 

concept (Batanero, Henry, & 

Parzysz, 2005; Batanero & 

Sanchez, 2005). However, 

Batanero, Godino, and Roa 

(2004) suggest that although 

independence can be expressed 

by this multiplicative rule, 

probability instruction is 

moving away from this 

characterization because it 

often leads to an incomplete 

understanding of 

independence. Hirsch & 

O’Donnell (2001) suggest that 

students may be able to 

demonstrate use of formal 

rules while still holding on to 

misconceptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(table continues) 
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               Table 2.3 (continued)  

CCSSM Standard GAISE Report Relevant Research 

S-CP-3 

Understand the conditional 

probability of A given B as 

P(A and B)/P(B), and 

interpret independence of A 

and B as saying that the 

conditional probability of A 

given B is the same as the 

probability of A, and the 

conditional probability of B 

given A is the same as the 

probability of B. 

While not stating the rule 

explicitly, the GAISE Report 

interprets independence in the 

same manner by suggesting 

that independence is the 

chance of one outcome not 

being effected by knowledge 

of another outcome (if a coin 

landed on heads on the second 

flip that doesn’t change the 

probabilities associated with 

the fourth flip of that coin). 

Independence is an important 

concept (Batanero, Henry, & 

Parzysz, 2005; Batanero & 

Sanchez, 2005). Batanero, 

Godino, and Roa (2004) make 

instructional suggestions for 

developing an understanding 

of conditional probability and 

independence that include 

playing a game with three 

cards. One card is red on both 

sides, one blue on both sides, 

and one that is red on one side 

and blue on the other. Cards 

are randomly drawn with 

replacement and only one side 

shown to students. Students are 

then asked to predict what 

color the other side is. 

S-CP-4 

Construct and interpret two-

way frequency tables of data 

when two categories are 

associated with each object 

being classified. Use the 

two-way table as a sample 

space to decide if events are 

independent and to 

approximate conditional 

probabilities. For example, 

collect data from a random 

sample of students in your 

school on their favorite 

subject among math, 

science, and English. 

Estimate the probability that 

a randomly selected student 

from your school will favor 

science given that the 

student is in tenth grade. Do 

the same for other subjects 

and compare the results. 

Suggestions addressing this 

standard are introduced at level 

A and then further developed 

at levels B and C with the 

explicit use of a two-way table. 

Rossman and Short (1995) 

suggest that an intuitive 

understanding of conditional 

probability can be developed 

using genuine data and two-

way frequency tables. They 

present multiple examples and 

suggest that conditional 

probability provides 

opportunities for important and 

interesting examples to be 

included in statistics education. 

Batanero & Sanchez (2005) 

suggest that students will 

benefit from working with real 

data and have multiple 

misconceptions in conditional 

probability. Chance (2002) 

suggests that students will 

benefit from working through 

the entire statistical process as 

opposed to textbook problems 

that eliminate steps for them. 

(table continues) 

                Table 2.3 (continued)  
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CCSSM Standard GAISE Report Relevant Research 

S-CP-5 

Recognize and explain the 

concepts of conditional 

probability and 

independence in everyday 

language and everyday 

situations. For example, 

compare the chance of 

having lung cancer if you 

are a smoker with the 

chance of being a smoker if 

you have lung cancer. 

Acknowledges the importance 

of students understanding 

independence, but defines 

independence in the context of 

random sampling providing 

independent observations. 

Specifically addresses an 

observational study involving 

smoking and lung cancer at 

level C. 

Rossman and Short (1995) 

suggest that the distinction 

between P(A/B) and P(B/A) is 

subtle yet crucial. They 

specifically reference an 

example where students are 

asked to interpret a two-way 

table of data and assess the 

statement “most Democratic 

senators are women” and 

“most women senators are 

Democrats” and refer to 

making such an interpretation 

as an essential skill. 

S-CP-6 

Find the conditional 

probability of A given B as 

the fraction of B’s outcomes 

that also belong to A, and 

interpret the answer in terms 

of the model. 

While this standard is not 

explicitly addressed, other 

suggestions are closely related 

and could be used in a manner 

consistent with the suggestion 

of CCSSM. For example, 

suggestions for discussing 

association as an interpretation 

of conditional probabilities 

readily lend themselves to this 

suggested understanding of 

conditional probability. 

No specific references to this 

particular view of conditional 

probability were found in the 

research. 

S-CP-7 

Apply the Addition Rule, 

P(A or B) = P(A) + P(B) – 

P(A and B), and interpret 

the answer in terms of the 

model. 

Once again, while this standard 

is not explicitly addressed, 

using the suggestions 

regarding association could 

easily incorporate the addition 

rule and then interpreting the 

results of the addition rule in 

terms of the population based 

on the model. 

Hansen, McCann, and Myers 

(1985) research demonstrates 

that students who learned from 

text that focused on conceptual 

learning as opposed to rote 

learning were able to apply six 

formulas including P(A or B) – 

P(A) + P(B) – P(A and B) 

more effectively due to their 

ability to categorize problems 

by underlying concepts as 

opposed to surface features 

which could be misleading. 
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 Both the GAISE Report and research likely influenced the authors of CCSSM in the area 

of independence. Both make the assertion that an understanding of independence is vital to 

probability and statistics, which was then adopted by CCSSM. What is interesting is the stance 

each takes on how that understanding is developed. The primary influence of the research is 

cautioning against the use of formal rules because of how formal rules have the ability to mask 

misconceptions. Because of this suggestion from research, the GAISE Report suggests formal 

rules should be saved for advanced classes such as discrete mathematics or calculus and opts for 

a more informal approach to developing an understanding of independence in earlier classes. 

CCSSM incorporates multiple ways of understanding including both informal methods and the 

use of formal rules. For example, standard S-CP-3 seems to reflect the suggestions of the GAISE 

Report even though it relies on an application of a formal rule for conditional probability. 

Standard S-CP-2 seems to contradict the suggestions of both GAISE and research since it 

focuses on using a formal rule to define independence. 

2.4 TEXTBOOK STUDIES 

As argued in chapter 1, textbooks represent a way to influence classroom practices and affect 

student achievement (Senk & Thompson, 2003). In some cases, research has suggested that 

textbooks have more of an impact on student learning than the teacher (Begle, 1973). This is 

because textbooks impact what students have the opportunity to learn (Schmidt, Houang, & 

Cogan, 2002; Stein, Remillard, & Smith, 2007; Valverde et al., 2002; Willoughby, 2010) and the  

teachers are dependent on them (Remillard, 2005). For these reasons, analyzing textbooks has 

been an important method of research employed in both probability and mathematics education. 
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2.4.1 Analysis of probability in textbooks 

Jones and Tarr (2007) set out to determine the nature of probability topics in middle 

school textbooks with a specific focus on the levels of cognitive demand. Jones and Tarr selected 

two textbooks from four different eras of mathematics education published over the last 50 years. 

Those four eras are New Math (1957 – 1972), Back to Basics (1973 – 1983), a focus on Problem 

Solving (1984 – 1993), and the National Council of Teachers of Mathematics Standards (1994 – 

2004) era. The textbooks were selected based on their popularity, which was determined by the 

market share during a given era. Due to a lack of data, the popularity of textbooks during the 

New Math era was determined by a consensus of mathematics educators familiar with the 

curriculum during that era. In order to qualify for selection, textbooks must have been intended 

for average students in grades 6, 7, and 8. For example, algebra textbooks were not considered 

because they would have been intended for advanced students. Only student editions of the 

textbooks were analyzed because Jones and Tarr were only concerned with tasks students may 

have encountered. 

In addition to examining popular textbooks, Jones and Tarr (2007) also analyzed what 

they referred to as alternative textbooks. Alternative textbooks were ones that were identified by 

the previously mentioned consensus of mathematics educators as being potentially innovative, 

influential, or being a departure from the current popular series. Table 2.4 is a list of the eras, 

popular textbooks, and alternative textbooks analyzed by Jones and Tarr. 

 Jones and Tarr (2007) used the task analysis guide (Appendix C) from Smith and Stein 

(1998) as the basis for their analysis. Table 2.5 shows the codes from Smith and Stein and the 

resulting description used by Jones and Tarr for their research in probability. 

Table 2.4. Textbooks selected for analysis from different mathematical eras 
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Era Popular (Publisher) Alternative (Publisher) 

New Math 

(1957 – 1972) 

Modern School Mathematics: 

Structure and Use 6 

Modern School Mathematics: 

Structure and Method 7 & 8 

(Houghton Mifflin) 

Mathematics for the Elementary 

School, Grade 6 

Mathematics for Junior High School, 

Vols. I & II 

(Yale University Press) 

Back to Basics 

(1973 – 1983) 

Holt School Mathematics: 

Grades 6, 7, & 8 

(Holt, Rinehart, & Winston) 

Real Math: Levels 6, 7, & 8 

(Open Court) 

Problem Solving 

(1984 – 1993) 

Mathematics Today: 

Levels 6, 7, & 8 

(Harcourt Brace Jovanovich) 

Math 65: An Incremental Development 

Math 76: An Incremental Development 

Math 87: An Incremental Development 

(Saxon Publishers) 

Standards 

(1994 – 2004) 

Mathematics: 

Applications and Connections: 

Courses 1, 2, & 3 

(Glencoe/McGraw-Hill) 

Connected Mathematics 

(Dale Seymour) 

Note. From “An examination of the levels of cognitive demand required by probability tasks in 

middle grades mathematics textbooks,” by Jones & Tarr, 2007, Statistics Education Research 

Journal, 6(2), p. 12. Reprinted pending permission 

Table 2.5. Comparison of codes from Smith and Stein (1998) to Jones and Tarr (2007) 

Smith and Stein (1998) Jones and Tarr (2007, p. 8) 

Memorization Simply memorize information 

Procedures without Connections Routinely perform algorithms without giving any 

attention to the meaning or development of the 

procedure 

Procedures with Connections Focus on the meaning of a procedure or algorithm 

Doing Mathematics Explore and analyze the mathematical features of a 

situation 

 

 Jones and Tarr (2007) found that most probability tasks across textbooks were at the level 

of procedures without connections. However, two textbooks contained both more high-level 

tasks and a higher percentage of high-level tasks than all others did. Those textbooks were the 

standards era alternative series (Connected Mathematics) and the Back to Basics era alternative 

series (Real Math: Levels 6, 7, & 8). The standards era alternative series was particularly 

impressive because a majority (59%) of its tasks required high-level cognitive demand. By 
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applying the finding that tasks either stay at the same level or decline during implementation 

(Stein et al., 1996), Jones and Tarr suggest that most textbooks across each of the four eras 

analyzed would have only provided students with opportunities for engagement at lower levels 

of cognitive demand and thus severely limit their views and understandings of probability. 

2.4.2 Textbook studies in mathematics education 

Other studies where textbooks were analyzed also provide important insights for the proposed 

study. Thompson, Senk, and Johnson’s (2012) analysis of high school mathematics textbooks for 

opportunities to learn reasoning and proof is of particular interest. Thompson et al. (2012) 

claimed that, “Textbook analysis is a first, but important, step in understand students’ 

opportunities to learn reasoning and proof (p. 282).” Thompson et al. analyzed both the 

narratives and exercises of textbooks in order to determine what opportunities to engage in this 

process were available in U.S. secondary textbooks. Thompson et al. analyzed the narratives 

because they provide opportunities for teachers to introduce reasoning and proof to students. 

Thompson et al. analyzed the exercises because they provide opportunities for students to 

practice with reasoning and proof. 

 Thompson et al. (2012) analyzed a variety of textbooks for their study. They began with 

the Algebra I, Algebra II, and Precalculus textbooks from each of the large textbook publishing 

companies (Glencoe, Holt, and Prentice-Hall). These major companies were included in the 

study because they represent a majority of the textbooks being used by secondary schools. They 

also analyzed Interactive Mathematics Program textbooks because of their reputation for 

developing innovative curriculum materials. Finally, they analyzed textbooks from two different 

curriculum development projects, Core-Plus Mathematics (courses 1 – 4) and the University of 
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Chicago School Mathematics Project (Algebra I, Algebra II, Functions, Statistics, and 

Trigonometry, and Precalculus and Discrete Mathematics). This sample of textbooks allowed 

them to analyze both traditional and Standards-based textbooks. 

 Thompson et al. (2012) suggest that students have few opportunities to engage in proof 

and reasoning in both the narratives and exercises. Furthermore, many of the justifications found 

in the Algebra I textbooks that were analyzed were related to a specific case rather than a general 

case. Thompson et al. suggest that this focus on justifications with specific cases may contribute 

to the willingness many students have to confuse an argument based on a specific example as a 

proof. 

 Another key finding by Thompson et al. (2012) is the differences between the curriculum 

materials based on their pedagogical design. Thompson et al. found that Core-Plus Mathematics 

contained the largest percentage of proof and reasoning exercises with Interactive Mathematics 

Program and the University of Chicago School Mathematics Project also rating as above average 

in the percentage of proof and reasoning exercises. However, the style of the proof and reasoning 

opportunities were not the same. Core-Plus Mathematics and Interactive Mathematics Program 

provided students with more opportunities for making conjectures while the University of 

Chicago School Mathematics Project provided more opportunities for students to read proofs. 

Thompson et al. suggest that this is because Core-Plus Mathematics and Interactive Mathematics 

Program are both investigation based while the University of Chicago School Mathematics 

Project focuses more on the study of mathematical properties. 

 These results suggest that including textbooks in the current study that differ with respect 

to the underlying philosophy of teaching and learning may also lead to differences with respect 

to the level of cognitive demand the tasks require of students. In other words, investigation-based 
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materials may require a different level of cognitive demand than materials that focus on 

mathematical properties. On a related note, teachers may require more support to implement one 

type of curriculum material than another may. Depending on the nature of the tasks found in 

each textbook, teachers may be required to learn as much or more than the students are required 

to learn in order for the curriculum to be implemented with fidelity. 

2.5 EDUCATIVE CURRICULUM 

Educative curriculum materials are curriculum materials that are written to educate the teachers 

and students as opposed to those curriculum materials that only have student learning in mind. 

The argument has just been made that probability and statistics are important topics but are 

difficult to teach due to many factors including that misconceptions are widespread across 

content and for students at all grade levels. Because of this argument, educating teachers along 

with students may be vital in probability and statistics education. 

2.5.1 The birth of educative curriculum materials 

Ball and Cohen (1996) are often credited with initiating the notion that curriculum materials 

could be written with the intention of educating the teacher along with the students. Ball and 

Cohen suggest that textbooks represent an important avenue to teacher education because they 

are a central fixture in teaching, intimately connected to teaching, well positioned to influence 

individual teachers, and already a part of the routine of schools. Ball and Cohen suggest the 
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drawback of using curriculum materials to influence instruction is that the teachers and 

sometimes parents will reject the new textbooks. 

 Ball and Cohen (1996) suggest that curriculum materials often fail because they overlook 

the teacher and all the needs the teacher will have in order to implement the curriculum well. 

They suggest that since teachers shape instruction based on their understanding of the material, 

their personal beliefs about what is important, and their perception of the roles students and 

teachers should play in instruction, curriculum materials may be doomed to fail without strong 

curricular guidance. Unfortunately, Ball and Cohen also suggest that lacking this guidance is a 

common characteristic in our educational system. 

 One would assume that curriculum developers would prefer that their curriculum 

materials be implemented with fidelity. However, Ball and Cohen (1996) suggest that teachers 

often adapt curriculum materials to fit local needs that curriculum developers may not have been 

able to predict. In addition, Ball and Cohen suggest that the educational system we operate in 

often disparages textbooks and promotes the notion that the best teachers do not follow 

textbooks. Ball and Cohen suggest that there is a significant gap between teachers and textbook 

designers with little work being done to bridge this gap or study the relationship between the 

two. 

 The premise of this work by Ball and Cohen (1996) is that “Curriculum materials could 

contribute to professional practice if they were created with closer attention to processes of 

curriculum enactment” (p. 7). Ball and Cohen later assert that, “Materials could be designed to 

place teachers in the center of curriculum construction and make teachers’ learning central to 

efforts to improve education” (p. 7). Based on this belief, the notion of educative curriculum 

materials was born. 
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 Ball and Cohen (1996) suggest that there are five intersecting domains teachers work 

across while enacting curriculum materials (p. 7): 

1) Teachers are influenced by what they think about their students, what students bring 

to instruction, students’ probable ideas about the content at hand, and the trajectories 

of their learning that content. 

2) Teachers work with their own understanding of the material, which shapes their 

interpretations of what the central ideas are, how they hear, evaluate, and respond to 

students’ ideas, and how they decide how to focus and frame the material for students 

3) Teachers fashion the material for students, choose tasks or models, and navigate 

instructional resources such as textbooks in order to design instruction. 

4) Teachers must keep their eye on the group, and on the ways of knowing, interacting, 

and working that seem possible. This requires attention to patterns and norms of 

discourse, the nature of tasks, and the roles played by the teacher and student. 

5) Teachers are influenced by their views of the broader community and policy contexts 

in which they work, and by the expressed ideas of parents, administrators, and 

professional organizations. 

 

Ball and Cohen (1996) suggest that curriculum materials could be designed to take into 

account the work that teachers must do in each of these five domains. They use knowledge of 

students as an example. Ball and Cohen suggest that while each individual student may differ 

some from the others, much of what students may think or do can be anticipated. Ball and Cohen 

continue by suggesting that teachers’ guides could then offer examples of student work with 
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comments on the meaning of each example to aide teachers in interpretation and anticipation of 

student thinking. 

Ball and Cohen also suggest that teachers’ guides could support teachers in learning 

content better. This could be done by providing alternative representations and the connections 

between them and the merits each would provide. Curriculum guides may be able to illuminate 

the possibilities of curriculum materials that may have gone unnoticed by teachers. 

Ball and Cohen (1996) also suggest that curriculum developers could make their 

pedagogical judgments explicit to teachers. If teachers were made aware of pedagogical thinking 

that went into specific tasks, their decisions on adaptation or omission of a task may be impacted. 

In addition, teachers may be able to better present the materials if the pedagogy behind them 

were made explicit instead of being kept secret. 

Ball and Cohen (1996) suggest that rather than approaching a new curriculum with the 

previously mentioned goal of fidelity of implementation, perhaps it would be more beneficial to 

think of new curriculum materials as an opportunity for professional development. Ball and 

Cohen acknowledge the difficulty in such a task. Curriculum materials would need to change the 

way they are designed to incorporate things such as examples anticipated student work. 

However, Ball and Cohen suggest that the results could be an increased capacity to teach. 

2.5.2 Design heuristics for educative curriculum 

Davis and Krajcik (2005) state that teacher learning is: 

Developing and integrating one's knowledge base about content, teaching, and learning; 
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Becoming able to apply that knowledge in real time to make instructional decisions; 

participating in the discourse of teaching; and becoming enculturated into (and engaging 

in) a range of teacher practices. Teacher learning is situated in teachers' practice. (p. 3) 

Davis and Krajcik's (2005) definition of teacher learning is multifaceted, complex, and has many 

components. Teacher learning requires subject matter knowledge, pedagogical knowledge, and 

pedagogical content knowledge as suggested by Shulman (1986). Davis and Krajcik (2005) 

further suggest that connections between ideas must be established as a part of teacher learning 

while new instructional approaches are being developed and teaching principles are addressed. 

Careful consideration must be given to possible student ideas that might arise. 

 Given all the needs and difficulties of teachers learning, what can educative curriculum 

materials do? The positive potential of educative curriculum materials was described by Ball and 

Cohen in 1996 and was advanced by Davis and Krajcik in 2005. Davis and Krajcik make five 

suggestions regarding educative curriculum materials. These five suggestions then lead Davis 

and Krajcik into developing nine design heuristics. 

The first suggestion from Davis and Krajcik (2005) is based on Ball and Cohen (1996) 

suggesting that educative curriculum materials could help teachers to anticipate student thinking 

and help teachers consider what to do in reaction to this anticipated thinking during instruction. 

Davis and Krajcik suggest that curriculum materials could also explain why the students might 

be thinking that way. Additional support related to anticipating and dealing with student thinking 

could include knowledge of different instructional representations such as analogies, models, or 

diagrams. 

 The second suggestion by Davis and Krajcik (2005) is to promote teachers’ learning of 

subject matter. Once again, this suggestion is based on Ball and Cohen (1996). The typical 
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notion of subject matter knowledge should obviously be included here, but one could also 

consider the disciplinary practices associated with a subject area. This would lend itself to the 

notion of doing mathematics as a mathematician might instead of in the procedural world that 

mathematics education often becomes in traditional classrooms. 

 The third suggestion made by Davis and Krajcik (2005) is that educative curriculum 

could help teachers relate units during the year. Once again, this suggestion is based on Ball and 

Cohen (1996). Davis and Krajcik suggest that this could move beyond providing teachers with 

simple objectives. Instead, teachers could have lesson objectives presented in such a way that 

they promoted the teachers reflecting on the lesson and how it fit into the context of the bigger 

picture of the curriculum. This could promote a more coherent instructional program overall and 

foster some discussions between teachers as they consider the courses they teach in relation to 

the courses taught by their colleagues. 

 A fourth suggestion by Ball and Cohen (1996) that was expanded upon by Davis and 

Krajcik (2005) is that educative curriculum materials could make the curriculum developers' 

pedagogical judgments visible to the teachers using them. Davis and Krajcik suggest that by 

providing rationales to the teachers, teachers will be able to better integrate their knowledge 

bases and stronger connections will be made between theory and practice. This could improve 

the flexibility with which the knowledge could be applied and could promote autonomy by 

helping teachers make decisions about adapting curriculum materials to their own classrooms. 

 The fifth and final suggestion by Davis and Krajcik (2005) is that curriculum materials 

might promote a teacher's ability to use resources either provided in the curriculum or provided 

personally to adapt curriculum materials to fit local conditions while still achieving productive 

instructional goals. They refer to this ability in a teacher as pedagogical design capacity. The 
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theory behind this idea is that teachers enact a curriculum with their students in the classroom. 

This enactment ideally may involve changes that are made to the curriculum materials but the 

essence of the original curriculum materials are still addressed. In other cases, the teacher may 

intentionally move away from the essence of the original materials, which could also be 

acceptable. However, teachers may move away from the essence of the original curriculum 

materials in such a way that is devastating to the intended learning of the materials. Given these 

possible scenarios, it could be important to arm teachers with an improved ability to make 

decisions regarding the enactment of curriculum materials in productive ways. 

 These five suggestions led to the creation of Davis and Krajcik's (2005) nine design 

heuristics. The heuristics are listed in Table 2.6.  These heuristics are based in science, but the 

authors speculate that they are widely applicable to other fields, which could include 

mathematics. This would seem to be a reasonable suggestions since the challenges faced by 

teachers of science would seem to be similar to the challenge faced by teachers of mathematics. 

The need to anticipate student thinking or make connections across topics does not change just 

because the content does. Each of the nine heuristics includes what the curriculum materials 

should provide the teacher, how the materials could assist the teacher in understanding rationales 

behind decisions that were made by the developer, and how teachers could infuse their own ideas 

into instruction 

 

Table 2.6. Educative curriculum design heuristics (Davis & Krajcik, 2005) 

Design Heuristic Description 

Supporting Teachers in 

Engaging Students with Topic-

Specific Scientific Phenomena 

Materials should provide tasks for students to engage in, 

rationales for the teacher explaining why the tasks are 

appropriate, and suggestions for implementing the tasks 

well including potential difficulties and proper sequencing 

Supporting Teachers in Using Materials should provide instructional representations 
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Scientific Instructional 

Representations 

such as models or diagrams, rationales for the teacher 

explaining why the representations are appropriate, and 

suggestions for using the representation well including 

what features are the most salient and support in adapting 

the representations 

Supporting Teacher in 

Anticipating, Understanding, 

and Dealing with Students’ 

Ideas About Science 

Materials should identify likely student ideas and provide 

suggestions to help the teacher in dealing with those ideas 

Supporting Teachers in 

Engaging Students in Questions 

Materials should provide questions for teachers to use to 

frame the unit, guide class discussion, and engage 

students in asking and answering their own questions 

while providing rationales for why the provided questions 

are appropriate 

Supporting Teachers in 

Engaging Students With 

Collecting and Analyzing Data 

Materials should provide suggestions for approaches to 

help students collect, compile, and use evidence across 

multiple topics and provide the teachers with rationales 

for why using evidence is important 

Supporting Teachers in 

Engaging Students in Designing 

Investigations 

Materials should support teachers in helping students 

design their own investigations including ideas for 

appropriate designs and suggestions for improving 

inappropriate designs 

Supporting Teachers in 

Engaging Students in Making 

Explanations Based on 

Evidence 

Materials should provide suggestions for helping students 

make evidence based explanations including rationales for 

why engaging students in making evidence based 

explanations is important 

Supporting Teachers in 

Promoting Scientific 

Communication 

Materials should provide suggestions for helping students 

communicate productively including rationales for why 

engaging students in productive communication is 

important 

Supporting Teachers in the 

Development of Subject Matter 

Knowledge 

Materials should support teachers in developing 

knowledge of the content beyond the students level 

including possible student conceptions and 

misconceptions and relationships to real-world 

phenomena 

 

 While not the first to suggest the potential for curriculum materials to be educative, Davis 

and Krajcik (2005) are one of the most influential. Davis and Krajcik took the notions suggested 

by the likes of Ball and Cohen in 1996 and developed design heuristics that could help readers 

understand the potential for curriculum materials to promote teacher learning and thus be 

educative. They posed the question, "How can K-12 curriculum materials be designed to support 
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teacher learning, and what might teacher learning with educative curriculum materials look 

like?" (Davis & Krajcik, p. 4, 2005). To answer this question, the design heuristics were intended 

to act as a guide to curriculum developers and a basis for discussion on how specific features of a 

curriculum might promote teacher learning. 

Davis and Krajcik (2005) acknowledge the difficulties inherent in promoting teacher 

learning. They suggest that teacher learning includes developing and integrating a teacher's 

knowledge base regarding the content they are teaching, the pedagogy of teaching, and the 

teacher's own learning. Then the knowledge must be applied in real time during instruction all 

while trying to provide meaningful content to assist students to meet instructional goals in the 

context of authentic activities. Further complicating matters is the diverse nature of classrooms 

where all students are expected to succeed. Davis and Krajik suggest that all of this learning is 

situated in practice. This practice may include planning and modifying lessons, assessments, 

collaboration with colleagues, and communicating with parents. 

 To aide readers in understanding the complexity of teacher learning, Davis and Krajcik 

(2005) provide a comparison between student learning and teacher learning. Students are given a 

structured environment in school where they are provided a set of learning experiences intended 

to increase subject matter knowledge. Teachers are not placed in a structured learning 

environment and thus have to control their own learning. Teachers must also develop subject 

matter knowledge much like the students, but teachers must also develop pedagogical knowledge 

and pedagogical content knowledge as suggested by Shulman (1986). Since teachers are to apply 

their knowledge while making real time decisions in the classroom, teachers must acquire a 

much more flexible knowledge than students must. Because of these factors, one might suggest 
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as Davis and Krajcik have that promoting teacher learning is different from promoting student 

learning. 

 Davis and Krajcik (2005) acknowledge that they have not empirically tested their design 

heuristics and thus do not refer to them as principles or standards. The term heuristic was 

specifically selected to suggest that their research is intended to provide useful suggestions that 

take research one-step closer to such principles or standards but that may require multiple 

iterations and revisions before such a goal may be obtained. 

 Davis and Krajcik (2005) acknowledge some limitations of educative curriculum 

materials. The educative nature of the curriculum may not be important if the content of the base 

curriculum is not of high quality. This means that a curriculum that is educative but filled with 

low-level tasks is not a good curriculum. A second limitation may be the teacher. Personal 

characteristics of the teachers using the curriculum are likely to have a significant impact on the 

effectiveness of the curriculum. The prior knowledge, beliefs held by the teacher, and the 

teacher's attitude toward improving his or her own instruction will all be possible factors in 

determining the effectiveness of how educative a curriculum can be. Finally, educative 

curriculum is not enough to facilitate change on its own. Multiple avenues of professional 

development should be used for maximum effectiveness. 

If teachers can be educated through the curriculum materials, then instructional 

effectiveness could be maximized and curriculum could be implemented with fidelity. The next 

question one might ask is whether a specific curriculum is worth implementing well. Research in 

mathematics education suggests that the most worthwhile curriculum uses tasks that require 

high-level cognitive demand for students to complete (Boaler & Staples, 2008; Stein & Lane, 
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1996). It would not be a stretch to think that the research on high-level tasks in mathematics 

could apply to probability and statistics education as well. 

2.5.3 Educative curriculum and CCSSM 

Porter et al. (2011) suggest that CCSSM is considerably different than what states currently call 

for and what teachers are currently teaching. This suggests that for CCSSM to be implemented 

effectively, change must occur. For this change to occur, it may be necessary to have an impact 

on teacher knowledge. Even if a teacher does not need to be impacted to promote the changes by 

CCSSM, improving teacher knowledge can still be beneficial to instruction. 

 However, many approaches to improving teacher knowledge or even teaching in general 

are ineffective. Putnam & Borko (2000) suggest that learning experiences aimed at teachers that 

take place outside of the classroom do not have a meaningful impact because they are too 

removed from the day-to-day work of teaching. As a result, teacher educators are challenged 

with finding a way to facilitate learning experiences that actually relate to the work that teachers 

do. One way to facilitate learning experiences related to the work teachers do, may be with 

educative curriculum materials. Since teachers use curriculum materials as part of their day-to-

day teaching duties, it seems logical that curriculum materials could represent a possible avenue 

for improvement in instruction that could have a meaningful impact since it is part of the day-to-

day work of teaching. 
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2.5.4 Educative curriculum in mathematics education 

The study most closely related to the current study was conducted by Stein and Kim (2009). 

Stein and Kim set out to analyze both the demands and opportunities for teacher learning of two 

Standards-based elementary school mathematics curricula. The rational for comparing two 

Standards-based curricula was that if Standards-based curricula were assumed desirable, what 

features make Standards-based materials different and therefore able to impact changes in 

instruction differently. District leaders could then consider the needs of their individual district, 

and decide which of these two desirable curricula would be better suited for their district. The 

two elementary school, Standards-based mathematics curricula Stein and Kim analyzed were 

Everyday Mathematics and Investigation in Number, Data, and Space. 

 Stein and Kim (2009) defined a few terms that are useful in the proposed study as well. 

Stein and Kim define base curriculum materials to mean, "That portion of the materials that is 

directly pitched to students and their learning (p. 10, 2009)." Stein and Kim define teacher 

materials as, "The parts intended to guide teachers as they use the materials (p. 10, 2009)." Much 

like the analysis by Stein and Kim, the proposed study focuses on both the base curriculum 

materials and the teacher materials. 

 The curricula chosen by Stein and Kim (2009) were carefully selected due to some 

specific features noted by the authors. Both curricula are designed to place an emphasis on the 

strategies used by students with special attention being paid to multiple representations as 

opposed to just correctness of solutions. Everyday Mathematics is a spiral curriculum in that 

students are exposed to concepts repeatedly but with increasing depth as they revisit the concepts 

throughout elementary school. Investigations is a module based curriculum where conceptual 



 69 

themes are developed into separate booklets and the order and pacing of the curriculum are less 

important than mastery of individual modules. 

 Stein and Kim (2009) randomly selected lessons from each curricula to analyze for their 

study. The main instructional task of each lesson was coded according to the math task 

framework, which is based on research by Stein et al. (1996). Each task was coded as either 

memorization, procedures without connections, procedures with connection, or doing 

mathematics. Next, the teacher materials were examined for evidence of transparency and 

anticipation of student thinking. 

 As expected, most of the tasks found in both curricula were high-level tasks meaning 

they were procedures with connections or doing mathematics. The Everyday Mathematics 

curricula had mostly procedures with connections (79%) while the Investigations curricula had 

mostly doing mathematics (89%). Although both types of tasks are challenging to implement 

well, the doing mathematics tasks are significantly more challenging for teachers because there is 

no specified pathway for students to follow in approaching these tasks. Therefore, teachers are 

charged with understanding both the right and wrong approaches student may use while 

completing doing mathematics tasks which makes a significant demand on teacher knowledge. 

Procedures with connections tasks tend to have a limited number of pathways for student 

thinking that makes them much more predictable than doing mathematics tasks. 

Based on these differences, Stein and Kim (2009) coded doing mathematics tasks as 

placing high-level demand on teacher learning while procedures with connections tasks placed 

low-level demand on teacher learning. This is not to suggest that procedures with connections 

tasks are easy to implement. In fact, research would suggest otherwise (Stein et al., 1996; 

Henningsen & Stein, 1997). However, the challenges associated with procedures with 
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connections tasks are not as demanding as those associated with doing mathematics. These 

results lead Stein and Kim to conclude that the Investigations curricula would place a higher 

demand on teacher learning than Everyday Mathematics due to the high number of doing 

mathematics tasks teachers would be asked to implement. 

 Based on the work of Ball and Cohen (1996) and then Davis and Krajcik (2005), Stein 

and Kim (2009) identified the potential for teacher learning as information in the teacher 

materials that provide teachers with the curriculum developers' rationales for including a 

particular task in the curriculum and information that will assist teachers in anticipating student 

thinking. Stein and Kim (2009) note that the notion of making curriculum developers' rationales 

visible to the teacher is referred to as being transparent. Stein and Kim reference Davis and 

Krajcik (2005) in suggesting that transparency could lead to teachers seeing connections between 

suggested activities rather than having teachers feel like they are completing a list of 

unconnected concepts. Stein and Kim suggest that many teachers' manuals fail to include 

rationales, assumptions or agendas that underscore the actions requested of the teachers and 

therefore limit the teacher's ability to intelligently select and adapt tasks. Stein and Kim (2009) 

elaborate on anticipating student responses by suggesting that curricula could provide teachers 

with discussion of typical student responses to tasks along with examples of student work. This 

suggestion stems from research suggesting that effective teacher preparation involves active 

envisioning of how students might approach a task both correctly and incorrectly. 

 Stein and Kim (2009) found that Investigations provide more opportunities for teacher 

learning than did Everyday Mathematics. Investigations was judged transparent for 80% of the 

tasks analyzed where Everyday Mathematics was only transparent for 21% of the tasks. 

Similarly, Everyday Mathematics only included examples of student work and thinking 30% of 
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the time compared to Investigations where 91% of the tasks included some form of student 

responses, work, examples of potential difficulties, and/or explanations of how students may 

interpret the task. These results led Stein and Kim to classify Investigations as having a high 

number of opportunities for teacher learning while Everyday Mathematics had a low number of 

opportunities for teacher learning. 

 To summarize the findings of Stein and Kim (2009), Investigations places a higher 

demand on teacher learning than Everyday Mathematics to be implemented well, but also 

provides more support for teacher learning. A school leader must then consider the needs of his 

or her staff when deciding which of these two curricula he or she might choose. A staff that has a 

high rate of turnover with a high number of at risk students may not benefit as much from the 

same curricula as a staff with a low rate of turnover and a low number of at risk students. 

2.6 HIGH-LEVEL TASKS 

Stein and Kim (2009) were able to take two areas of research and combine them into one study. 

This chapter has already discussed educative curriculum materials, which is one area, 

represented in the Stein and Kim study. The other area is high-level tasks. Research on high-

level tasks began with Doyle in 1983. Doyle’s work established the importance of tasks in 

education. As part of this important work on tasks, Doyle was also the first to classify tasks. 

However, Doyle’s work was not focused on any specific content area. Researchers in 

mathematics education (Stein, Grover, & Henningsen, 1996) then picked up where Doyle left off 

and refined his work to apply more specifically to mathematics education. 
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2.6.1 Establishing the importance of tasks 

In 1983, Doyle explored the nature of academic work in both elementary and secondary schools. 

Doyle also hoped to discover what adaptations to academic work might improve student 

achievement. Doyle’s approach to this analysis was to view curriculum as a collection of tasks. 

Doyle (1983) felt that, “tasks form the basic treatment unit in classrooms (p. 162)” and defined 

the focus of a task as follows (p. 161): 

(a) The products students are to formulate, such as an original essay or answers to a set of 

test questions 

(b) The operations that are to be used to generate the product, such as memorizing a list of 

words or classifying examples of a concept 

(c) The givens or resources available to students while they are generating a product, such as 

a model of a finished essay supplied by the teacher or a fellow student 

Doyle further clarified tasks as being defined by the answers students produce and the paths that 

the students use to obtain those answers. 

Doyle (1983) distinguished the types of tasks by acknowledging that tasks influence 

learners because they direct the attention of learners to specific aspects of the curriculum and 

specific ways of processing the information. Doyle noted that this could be particularly important 

if the task directs the learner to process information in such a way that is based in meaning as 

compared to processing information based simply in surface features. Doyle also acknowledged 

that the resources provided with the task had a significant impact on the cognitive demand of the 

task. The cognitive demand of a task could be significantly lowered depending on the additional 

resources offered to the students. 

Doyle (1983) categorized tasks four ways (p. 162): 
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1) Memory tasks in which students are expected to recognize or reproduce information 

previously encountered 

2) Procedureal or routine tasks in which students are expected to apply a standardized 

and predictable formula or algorithm go generate answers 

3) Comprehension or understanding tasks in which students are expected to (a) 

recognize transformed or paraphrased versions of information previously 

encountered, (b) apply procedures to new problems or decide from among several 

procedures those which are applicable to a particular problem, or (c) draw inferences 

from previously encountered information or procedures 

4) Opinion tasks in which students are expected to state a preference for something 

Doyle (1983) makes an important assertion that could be applied to explain the 

arguments made by those who support either traditional or Standards-based approaches to 

teaching mathematics. Dolye suggests that the completing one type of task can interfere with the 

goals of another type of task. Doyle specifically cites an example that learning an algorithm does 

not enable one to understand why it works or when to use it much like a supporter of Standards-

based instruction would. Doyle further supports this view by noting that his analysis does not 

support the notion that drill and practice are required for acquisition of understanding. However, 

Doyle also suggests that understanding why an algorithm works and when to use it does not 

always lead to being able to use it correctly much like a supporter of traditional instruction might 

argue. 
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2.6.2 The relationship between cognitive demands of tasks as set up and implemented 

Stein, Grover, and Henningsen (1996) advanced the notion of the importance of high-level tasks 

and brought task analysis to the forefront of research in mathematics education. Their research 

analyzed the characteristics, levels of cognitive demand, and fidelity of implementation of the 

level of cognitive demand of 144 tasks in classrooms in a reform-oriented mathematics project. 

The focus of the research was the relationship between when the teacher set the tasks up and how 

the tasks were actually implemented. Their goal was to examine the instructional tasks used and 

determine what causes high-level tasks either to be maintained at a high-level or to decline to a 

low-level. 

 Stein et al. (1996) have identified three phases that tasks must pass through as part of the 

math task framework. First, the task appears in the curriculum materials or instructional 

materials. Second, the teacher sets up the task. Third, the students implement them. Each of these 

phases can influence student learning. This relationship is illustrated in Appendix D. 

 The notion of engaging students in high-level mathematical tasks was inspired by 

national publications from the National Council of Teachers of Mathematics, the Mathematical 

Association of America, and the National Research Council suggesting students develop deep 

understandings of mathematics (Stein et al., 1996). The notion is that students should strive to 

"do mathematics" just as a mathematician might. Stein et al. define this as "framing and solving 

problems, looking for patterns, making conjectures, examining constraints, making inferences 

from data, abstracting, inventing, explaining, justifying, challenging, and so on (p. 456)."  Stein 

et al. and their colleagues suggest that for students to be able to "do mathematics" students must 

be given the opportunity to engage in tasks that require high-level cognitive demand. 

Unfortunately, most mathematics classrooms follow an all too common problem of the teacher 
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presenting a problem with a prescribed algorithm and then assigning a set of similar problems for 

students to practice individually. This type of instruction leads to either memorization or 

practicing procedures without understanding why the procedure works or when to use it. 

 Stein, Grover, and Henningsen (1996) conducted their research as part of the QUASAR 

Project.  QUASAR (Quantitative Understanding: Amplifying Student Achievement and 

Reasoning) was a reform oriented project at the University of Pittsburgh aimed at studying the 

development and implementation of mathematics instructional programs in economically 

disadvantaged middle schools. QUASAR was a school level reform where teachers received 

professional development in an attempt to improve instructional opportunities for students who 

typically are not given an opportunity to participate in meaningful and challenging learning 

environments. 

 Stein, Grover, and Henningsen (1996) based the idea of analyzing mathematical tasks on 

Doyle's (1983) assertion of the importance of academic tasks. The authors note that a 

mathematical task is not a new task unless the underlying mathematical idea changes. Therefore, 

a lesson may be made up of multiples problems but if they were all focused on a single 

mathematical concept, they would be classified as one task. 

 Stein, Grover, and Henningsen (1996) categorized their codes into four categories: task 

description, task set up, task implementation, and factors of decline or maintenance. These codes 

included the duration of each task, the percentage of class time used for the task, the resources 

the task was based on, the mathematical topic that was the focus of the task, the context of the 

task, and if the set up was a collaborative effort among students.  Codes specific to the set up and 

implementation of the task included the cognitive demands of the tasks, number of solution 
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strategies, number and types of representations, and the requirements for communication, 

reasoning, or justification from students. 

 Of particular interest to the current study are the codes for the level of cognitive demand. 

Low-level tasks were coded as either memorizations or procedures without connection. The 

high-level tasks were coded as either procedures with connections or doing mathematics. The 

authors made a judgment call when faced with tasks that included multiple types of cognitive 

activity. Their decision was to code the task based on the task during set up and what a majority 

of the students were doing during implementation. 

2.6.3 High-level tasks and student learning 

The Math Task Framework, Appendix D, suggests that tasks pass through three phases prior to 

student learning. The first phase is the task as it appears in the curricular materials. The second 

phase is the task as set up by the teacher. The third phase is the task as implemented by the 

students. Stein and Lane (1996) investigated the link between tasks as set up by the teacher and 

student learning at four middle schools as part of the QUASAR Project.  

Stein and Lane (1996) noted three possibilities for tasks as they moved from being set up 

by the teacher to being implemented by the students. The first is that high-level tasks were 

maintained throughout implementation and thus were implemented at high-level cognitive 

demand. The second was that tasks that were set up by the teacher to demand high-level 

cognitive demand were implemented at low-level cognitive demand. The third was that tasks that 

were set up by the teacher at low-level cognitive demand stayed at low-levels throughout 

implementation.  
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Stein and Lane (1996) suggest that the highest gains in student learning were from 

classrooms where the instruction was focused on high-level tasks. Conversely, classroom where 

the instruction focused on tasks that were set up and implemented with low-level cognitive 

demand demonstrated the lowest gains in student learning. Tasks that were set up with high-level 

cognitive demand even outperformed tasks that were set up with low-level cognitive demand 

when they were not implemented with fidelity. In other words, even when both implemented at 

low-levels, tasks set up for high-level cognitive demand still outperformed those set up for low-

level cognitive demand. 

A second study aimed at studying the use of high-level tasks and their impact on student 

achievement was conducted by Boaler and Staples (2008). Boaler and Staples analyzed student 

achievement and attitudes over a period of five years in three different schools. One of the 

schools, Railside, offered all students the same curriculum that the teachers had designed 

collaboratively using Standards-based resources such as IMP. In addition to designing their own 

curriculum, the teachers also developed their own method of enacting the curriculum that 

emphasized students working in groups on high-level tasks. Students were not grouped by ability 

level. Instead, every student at Railside was enrolled in the same Algebra course when entering 

the high school. The other two schools offered both traditional courses and IMP in classes that 

were grouped by ability level. Most students in these schools enrolled in the traditional courses. 

An assessment based in middle school mathematics administered to first year students at 

the beginning of the study demonstrated that students at Railside achieved at significantly lower 

levels than students at the other two schools. This outcome was not unexpected since Railside is 

situated in an urban, low-income setting. The other schools were in a suburban setting. At the 

end of the first year, an algebra assessment indicated that the Railside students were still 
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performing at a significantly lower level, but that they had closed the distance between the 

schools. At the end of year two, an assessment containing both algebra and geometry (which all 

students had received instruction in) demonstrated that the Railside students had not only 

surpassed the students from the other schools, but they scored significantly higher than those 

students did on the assessment. Additionally, students at Railside ended up taking more 

advanced mathematics classes their senior year than students at the other two schools. 

 In summary, students from a disadvantaged school with a significantly lower level of 

initial achievement were able to surpass their peers in only two years of instruction because of 

being given the opportunity to engage in high-level tasks. This study demonstrates the important 

relationship between high-level tasks and student learning. This study also demonstrates that 

instruction focusing on engaging students in high-level tasks can be more effective than 

traditional mathematics instruction. 

2.7 SUMMARIZING CHAPTER 2 

Probability and statistics are important topics because all people interact with them in a variety 

of ways. Additionally, probability and statistics are growing in importance in most professional 

careers. Because of their importance, probability and statistics education are becoming more 

prevalent at all levels of schooling. This educational importance is acknowledged at the 

secondary level by CCSSM since probability and statistics represents one of the six conceptual 

categories for high school mathematics. The probability and statistics standards found in CCSSM 

are built on suggestions by both the GAISE Report and scholarly research thus making these 

suggestions an appropriate basis for research in probability and statistics. 



 79 

 CCSSM represents a change from what mathematics instruction currently takes place in 

many classrooms across the United States. In order to meet the demands of CCSSM, students 

may need opportunities to engage in high-level tasks. Additionally, instruction focusing student 

engagement with high-level tasks will be the most effective way to promote student learning. 

However, high-level tasks are difficult to implement well and therefore teachers will need 

additional support to implement a curriculum designed to provide students with opportunities to 

engage in high-level tasks. Additionally, probability and statistics may be difficult for teachers 

implement well since most of these teachers are experts in mathematics and not probability and 

statistics. Finally, probability and statistics tasks are difficult to implement well because 

misconceptions are widespread, strongly held, and occur at all levels. 

The combination of probability and statistics being exceptionally difficult to teach and 

high-level tasks being more difficult to implement well may suggest that teachers will need more 

support to meet the probability and statistics standards of CCSSM than any other conceptual 

category. One way to provide additional support to many of these teachers is through the 

curriculum materials they will be using. Curriculum materials that promote teacher learning in 

addition to student learning, known as educative curriculum materials, may be beneficial in 

aiding teachers in implementing the probability and statistics standards of CCSSM. 

Based on this summary, it is appropriate to examine tasks found in secondary mathematics 

textbooks that correspond to the probability and statistics standards of CCSSM. One way to 

analyze these tasks would be to determine the potential of the task to engage students in 

cognitively demanding work. The higher the level of cognitive demand, the more potential the 

task will have in meeting the expectations of CCSSM. Once the level of cognitive demand has 

been established, it may be important to note the potential for teacher learning. Tasks of high 
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demand will require more opportunities for teacher learning than those of low demand. When all 

of this data has been collected and analyzed, a clear picture of the potential a curriculum has to 

meet the expectations of CCSSM in probability and statistics will be available. 
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3.0  METHODOLOGY 

Chapter 3 will focus on the methodology of the study. This chapter begins with a review of the 

purpose of the study and the research questions intended to address that purpose. The chapter 

will then discuss the textbooks that were included in the study and how the textbooks were 

selected. Next, the specific methodology for this study will be discussed. Finally, the chapter will 

connect the methodology of the study to the purpose of the study by discussing how the data that 

is collected will relate to the research questions. 

3.1 PURPOSE AND RESEARCH QUESTIONS 

The purpose of the study is to determine the extent to which secondary mathematics textbooks 

have the potential to prepare students and teachers to meet the demands of the content 

recommendations in the domain of probability and statistics as specified in the Common Core 

State Standards for Mathematics. Specifically, this study answers the following research 

questions:  

1) To what extent do current secondary mathematics textbooks provide opportunities for 

students to engage in the probability and statistics content recommended by the Common 

Core State Standards? 
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2) What are the cognitive demands of the tasks that are aligned with the Common Core 

State Standards recommendations for mathematical content in probability and statistics? 

3) To what extent does the teachers’ guide provide support for enacting high-level tasks that 

address the Common Core State Standards recommendations related to probability and 

statistics? 

a) To what extent does the teachers’ guide provide suggestions related to anticipation on 

high-level tasks that reflect content recommendations of the Common Core State 

Standards? 

b) To what extent does the teachers’ guide provide transparency on high-level tasks that 

reflect content recommendations of the Common Core State Standards? 

3.2 TEXTBOOK SELECTION 

All of the research questions focus on the analysis of items and tasks as they appear in the 

written curriculum. Therefore, the curriculum selection is a vital part of the methodology of this 

study. Analyzing textbooks has proven to be a valuable avenue for research in the past with 

many examples of significant contribution being available in mathematics education alone (Jones 

& Tarr, 2007; Ross, 2011; Stein & Kim, 2009; Stylianides, 2009; Thompson, Senk, & Johnson 

2012). Three secondary mathematics textbooks series (Core-Plus Mathematics, Glencoe 

Mathematics, and Interactive Mathematics Program) and the teachers’ guides that accompany 

them were analyzed. Each of the identified textbooks series is described, including how it was 

selected, in the sections that follow. 



 83 

 The goal of the study was to analyze at least one traditional and one Standards-based 

curriculum. The traditional curriculum would be selected based on widespread use. Selection of 

the Standards-based curriculum began with an examination of the five curricula that were funded 

by the National Science Foundation (Core-Plus Mathematics Project, Interactive Mathematics 

Program, Math Connections, Mathematics: Modeling Our World, and SIMMS Integrated 

Mathematics). Of these five, the curricula selected to represent Standards-based materials would 

be that which had been suggested as being the most promising. For example, Martin et al. (2001) 

references mathematics programs identified by the U.S. Department of Education’s Mathematics 

and Science Expert Panel as being exemplary. These exemplary programs include two of the 

National Science Foundation funded materials listed above, Core-Plus Mathematics Project and 

Interactive Mathematics Program. Additionally, researchers have examined the performance of 

students on multiple measures of achievement when using Core-Plus Mathematics Project or 

Interactive Mathematics Program as compared to traditional mathematics curriculum (Chavez et 

al., 2015; Grouws et al., 2013; Senk & Thompson, 2003; Tarr et al., 2013). In each case, the two 

Standards-based curricula have performed as well or better than their traditional counterparts 

have. 

3.2.1 Glencoe Mathematics (GM) 

The GM series is included because it represents a widely used textbook series (Ross, 2011). The 

GM series represents a traditional approach to mathematics education. The traditional approach 

means that the student editions include example problems with worked out solutions and 

explanations provided to guide students through the steps of the solutions. Then there are 

exercises at the end of each section often corresponding directly to one of these worked out 
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examples. Additionally, the GM textbooks are organized by mathematical content meaning there 

is a book dedicated solely to Algebra I, another book specifically focused on Geometry, etc. The 

GM textbooks are published by McGraw-Hill and hold both the greatest collective market share 

and each textbook holds the greatest individual market share relative to other textbooks of type 

according to Ross (2011).1 The GM textbook series is made up of four textbooks: 

 Algebra I (Carter et al., 2014) 

 Geometry (Carter et al., 2014) 

 Algebra 2 (Carter et al., 2014) 

Advanced Mathematical Concepts: Precalculus with Application (Precalculus) (Holliday, 

Cuevas, McClure, Carter, & Marks, 2014) 

The worked out example problems, the exercises at the end of each section, and the narratives 

were included in the analysis. A small sample from the GM Algebra textbook has been provided 

to exemplify each. Figure 3.1 is a worked out example from lesson 0-13 of the GM Algebra 

textbook. This example contains two items. The term items refers to the individual parts of a 

task. In Figure 3.1, the first item asks students to make a histogram of the frequency. The second 

item in Figure 3.1 asks students to make a histogram of the cumulative frequency. Figure 3.2 is 

one of the corresponding exercises from lesson 0-13 of the GM Algebra textbook. Once again, 

the exercise contains two items. Exactly like the worked out example, the first item asks students 

to graph the frequency, and the second item asks students to graph the cumulative frequency. 

Figure 3.3 is the part of the narrative of lesson 0-13 that is located prior to the worked out 

example and is indicative of the entire narrative for lesson 0-13. 

                                                 

1 GM held the largest market share in 2011 and no data is currently available regarding the 2014 

edition. 
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Figure 3.1. Example aligned to S-ID-1 from GM Algebra 1 (Carter et al., p. 41, 2010) 

 

Figure 3.2. Exercise related to Figure 3.1 from GM Algebra 1 (Carter et al., p. 45, 2010) 

 

Figure 3.3.Narrative found prior to Figures 3.1 from GM Algebra 1 (Carter et al., p. 41, 2010) 
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3.2.2 Core-Plus Mathematics Project (CPMP) 

The CPMP curriculum materials were funded by the National Science Foundation (NSF) 

and represent a Standards-based approach to secondary mathematics education. The CPMP 

curriculum materials have been identified as being an exemplary mathematics program by the 

U.S. Department of Education’s Mathematics and Science Expert Panel (Martin et al., 2001). 

Additionally, research by Martin et al. (2001) demonstrated that five NSF funded curricula, 

including CPMP, were aligned with the NCTM Standards. Due to the existence of evidence 

suggesting alignment with NCTM, there was optimism that CPMP would also align well with 

CCSSM. Rather than have textbooks identified by content area, the CPMP textbook series 

organizes textbooks by years. There are four years of textbooks intended to be implemented in 

grades 9 through 12. 

Core-Plus Mathematics, Course 1 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., 

& Watkins, A. E., 2015) 

Core-Plus Mathematics, Course 2 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., 

& Watkins, A. E., 2015) 

Core-Plus Mathematics, Course 3 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., 

& Watkins, A. E., 2015) 

Core-Plus Mathematics, Course 4 (Hirsch, C. R., Fey, J. T., Hart, E. W., Schoen, H. L., 

& Watkins, A. E., 2015) 

The CPMP curriculum materials are divided into years (1, 2, 3, and 4) which are then 

subdivided into units, and then lessons. Each lesson contains at least two investigations and an 

on your own section. Each investigation typically contained multiple items for instruction, 

summarizing, and checking for understanding. Each individual item was coded to paint a picture 
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of the quantity of individual items as opposed to grouping all of the related items together as a 

single main instructional task and potentially masking the levels of cognitive demand of some 

parts of the curricula. In addition to coding items from the investigations, any items from the on 

your own section that correspond to the probability and statistics standards from CCSSM and the 

narrative parts of the text were also coded. 

The following figures are from the first year of the CPMP textbook and exemplify what a 

typical investigation looks like. Figure 3.4 is from Year 1, Unit 2, Lesson 1, Investigation 1 of 

the CPMP curricula. It contains five items (note a-i and a-ii make up two of the five). Figure 3.5 

is from Year 1, Unit 2, Lesson 1, Investigation 1. It contains four items. Figure 3.6 is the items at 

the end of Year 1, Unit 2, Lesson 1, Investigation 1 that are intended to summarize the 

investigation and be used for students to check their understanding. Finally, Figure 3.7 is the 

narrative part of Year 1, Unit 2, Lesson 1, Investigation 1. 

 

 

 



 88 

 

Figure 3.4. Items aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 76, 2015) 
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Figure 3.5. Items aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 76-77, 2015) 
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Figure 3.6. Items aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 83, 2015) 

 

Figure 3.7. Narrative aligned to S-ID-1 from CPMP Course 1 (Hirsch et al., p. 76, 2015) 
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3.2.3 Interactive Mathematics Program (IMP) 

Much like the CPMP curriculum materials, the IMP curriculum materials were funded by the 

NSF and represent a Standards-based approach to secondary mathematics education. The IMP 

curriculum materials were also identified as being an exemplary mathematics program by the 

U.S. Department of Education’s Mathematics and Science Expert Panel (Martin et al., 2001). 

IMP was also one of the five NSF funded curricula that demonstrated alignment with the NCTM 

Standards according to Martin et al. (2001). Once again, due to the existence of evidence 

suggesting alignment with NCTM, there was optimism that IMP would also align well with 

CCSSM. In the same fashion as CPMP, the IMP textbook series organizes textbooks by years. 

There are four years of textbooks intended to be implemented in grades 9 through 12. 

Interactive Mathematics Program Year 1 (Fendel, D., Resek, D, Alper, L., & Fraser, S., 

2009) 

Interactive Mathematics Program Year 2 (Fendel, D., Resek, D, Alper, L., & Fraser, S., 

2009) 

Interactive Mathematics Program Year 3 (Fendel, D., Resek, D, Alper, L., & Fraser, S., 

2009) 

Interactive Mathematics Program Year 4 (Fendel, D., Resek, D, Alper, L., & Fraser, S., 

2009) 

 The IMP curriculum materials were also divided into years (1, 2, 3, and 4) which were 

then subdivided into categories that are referred to as units although they were not explicitly 

called units by the curriculum materials. Each unit also had its own subcategories that resembled 

the lessons from CPMP. Each lesson then contains activities, group activities, and problems of 

the week. All three and any narrative sections were coded in the IMP curricula. Figure 3.8 is a 
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group activity from the IMP curriculum called What Are the Chances?. This group activity 

contains ten items. Figure 3.9 is an activity from the IMP curriculum called Rollin’, Rollin’, 

Rollin’. This activity contains three items. Figure 3.10 is a problem of the week called A Sticky 

Gum Problem. Figure 3.11 is the narrative found at the beginning of the unit containing the 

group activity, activity, and problem of the week that are shown. 

 

Figure 3.8. Items aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 92-93, 2009) 
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Figure 3.9. Items aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 104, 2009) 

 

Figure 3.10. Items aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 83-84, 2009) 
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Figure 3.11. Narrative aligned to S-ID-1 from IMP Year 1 (Fendel et al., p. 81, 2009) 

3.3 METHODOLOGY 

Stein and Kim’s (2009) work in analyzing tasks found in the written curriculum of elementary 

mathematics textbooks provides the foundation of the methodology used for this study. Stein and 

Kim analyzed the demands and opportunities for teacher learning of two widely used elementary 
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mathematics programs, Everyday Mathematics and Investigations in Number, Data, and Space. 

These textbooks both represent Standards-based curricula. Stein and Kim (2009) analyzed both 

the textbooks intended for the students, referred to as base materials, and the materials intended 

for the teachers, referred to as teacher materials, found in the teacher’s edition of the textbook in 

close proximity to the lesson for the student. Stein and Kim did this because survey research in 

the districts where they did their analysis demonstrated that a majority of teachers did not consult 

materials in books that are separate from those intended for daily use. The base materials were 

analyzed to determine the level of cognitive demand of the textbooks using the Task Analysis 

Guide (Smith & Stein, 1998). The teacher materials were analyzed to determine what 

opportunities for teacher learning were available. Specifically, the teacher materials were 

analyzed for transparency, which refers to the curriculum writers being explicit about the 

mathematical purpose of the task, and anticipation, which refers to helping teachers to anticipate 

student responses. 

 This study also analyzed both base materials and teacher materials to determine the level 

of cognitive demand based on the Task Analysis Guide and the opportunities for teacher learning 

in the areas of transparency and anticipation. However, multiple grain sizes of analysis were 

used. Stein and Kim (2009) analyzed what they referred to as the main instructional task of each 

lesson. To ensure a complete picture of each curriculum, both a smaller grain size and more 

widespread analysis than looking only at the main instructional task was used for this study. The 

analysis began by following the Thompson, Senk, and Johnson (2012) methodology in 

identifying smaller pieces than tasks to be coded. These individual pieces are referred to as 

items. Thompson, Senk, and Johnson coded the lesson’s narratives and all exercises within the 

lesson including review exercises. Anything in the textbook that represents an opportunity to 
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learn was considered in their analysis. Once these data were collected, the individual items were 

then grouped together to form the main instructional tasks as defined by Stein and Kim (2009) 

and examined in a manner consistent with their methodology as well. By analyzing the textbooks 

using both the item view and task view, a clearer picture of the textbook was available than by 

simply looking at one or the other. 

 A task is defined as, “A classroom activity, the purpose of which is to focus students’ 

attention on a particular mathematical idea (Stein et al., p. 460, 1996).” Grouping items into tasks 

required looking at the mathematical idea behind each item. It is important to note that none of 

the narratives, review exercises, or parts of a curriculum that are not intended for instructional 

use such as the Problems of the Week in the IMP curriculum were coded at the level of task. 

For the IMP textbooks, the tasks were the activities or group activities since they are intended to 

be the instructional component of the curriculum and are organized to contain multiple items all 

focused on developing some common mathematical idea. For the CPMP textbooks, the 

investigations are divided into exercises for the student to work though. Each exercise would 

represent multiple items focused on the same mathematical idea, so each exercises often 

represented a task. If consecutive exercises represented the same mathematical idea, then they 

were group together and coded as a single task. The GM textbooks typically have multiple 

exercises grouped under the same set of directions. For example, the directions might say for 

problems 15 – 23 find the mean of the set of data. Since all of the problems from 15 – 23 involve 

finding the mean, they would be considered one instructional task. Because the GM textbooks 

follow the traditional pattern of providing an example and then providing exercises that 

correspond to that example, exercises were often grouped together with others that relate to the 

same example. This grouping of exercises constituted a task because they related to the same 
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previous example and thus the same mathematical idea. For example, Figure 3.1 and Figure 3.2 

would be consider a single instructional task because the exercise in Figure 3.2 was exactly like 

the example in Figure 3.1. 

3.3.1 Identifying the items to be analyzed 

Each of the curricula selected has an online resource that aligns the curriculum materials to the 

CCSSM. Only parts of the textbook identified in this online resource as being aligned to one of 

the standards for probability and statistics in the CCSSM were analyzed. However, there were 

cases where a subset of the sections identified by the online resource did not align to the CCSSM 

in the areas of probability and statistics. This often occurred because the item was included for 

review purposes. Only those items identified by the online resource that were verified as actually 

aligning with CCSSM in probability and statistics were analyzed. 

A spreadsheet was created containing entries for every item where a curricula claims 

alignment with CCSSM. In the case of the CPMP textbooks, either page numbers or a page 

number with the specific items in alignment with the specified standard were identified. The GM 

curricula choose to identify alignment with a standard by providing a chapter and section 

number. For example, 12-3 would represent chapter 12, section 3. The IMP curriculum identified 

activities by titles that align to a specified standard. Table 3.1 is an example of that spreadsheet 

with a focus on standard S-ID-1. 
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Table 3.1. Sections aligned to S-ID-1 

Standard Textbook Section 

S-ID-1 CPMP-1 67 

S-ID-1 CPMP-1 73-101 

S-ID-1 CPMP-1 106 

S-ID-1 CPMP-1 108-142 

S-ID-1 CPMP-1 144-147 

S-ID-1 CPMP-1 231 #29 

S-ID-1 CPMP-1 454 #31 

S-ID-1 CPMP-1 554-556 

S-ID-1 CPMP-1 558 

S-ID-1 CPMP-1 560-562 

S-ID-1 CPMP-1 564 

S-ID-1 CPMP-1 571-575 

S-ID-1 CPMP-1 587 

S-ID-1 GM-A1 0-13 

S-ID-1 GM-A1 12-3 

S-ID-1 GM-A1 12-4 

S-ID-1 IMP-1 What Are the Chances? 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 

S-ID-1 IMP-1 Waiting for a Double 

 

Once the online identification of sections of the textbooks was established, the next step 

was to identify the items within those sections that were in alignment with the given standard (in 

this case S-ID-1). Since the goal of this research was to gain a clear understanding of the 

opportunities that might exist in the areas of probability and statistics in a given set of curriculum 

materials, all parts of those curriculum materials were considered. Consistent with the 

methodology of Thompson, Senk, and Johnson (2012) both the narrative of the lesson and the 

exercises in the lesson were analyzed. This included those exercises intended for review. 

Thompson, Senk, and Johnson believed the narrative provided opportunities for teachers to 

introduce reasoning and proof (the focus of their analysis) while the exercises provide the 

students opportunities to engage in practice with reasoning and proof. In this case, an item may 

be introduced by the narrative or engaged in during the exercises and thus both require analysis. 
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Rather than look at all of the sections indicated as being in alignment with S-ID-1, it may 

be more beneficial to discuss the methodology with a more focused approach. Therefore, from 

this point forward, a subset of the sections will be used to continue this discussion of 

methodology. Table 3.2 is a subset of the same example spreadsheet from Table 3.1 with the 

“Item” column completed. This column is used to identify the parts of the identified sections that 

are aligned to the specified standard (in this case S-ID-1) from CCSSM. Often, multiple items 

were found in alignment with the specified standard in any one identified section. It is important 

to note that in some cases, in some cases, no alignment was found between the item and the 

identified standard from CCSSM. For example, “Waiting for a Double” in the IMP curriculum 

does not actually align with the standard S-ID-1 because the data are never represented with a 

plot on the real number line (see last row in Table 3.2). 
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Table 3.2. Items aligned to S-ID-1 from sections in Table 3.1 

Standard Textbook Section Item 

S-ID-1 CPMP-1 73-101: U2-L1-I1 Narrative 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1a-i 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1a-ii 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1c 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2c 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 3a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 3b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 3c 

S-ID-1 CPMP-1 73-101: U2-L1-I1 3d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 4a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 4b-i 

S-ID-1 CPMP-1 73-101: U2-L1-I1 4b-ii 

S-ID-1 CPMP-1 73-101: U2-L1-I1 4c-i 

S-ID-1 CPMP-1 73-101: U2-L1-I1 4c-ii 

S-ID-1 CPMP-1 73-101: U2-L1-I1 4d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 5a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 5b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 6a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 6b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 7a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 7b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 7c 

S-ID-1 CPMP-1 73-101: U2-L1-I1 7d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 8a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 8b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 8c 

S-ID-1 CPMP-1 73-101: U2-L1-I1 8d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 9a 

S-ID-1 CPMP-1 73-101: U2-L1-I1 9b 

S-ID-1 CPMP-1 73-101: U2-L1-I1 9c 

S-ID-1 CPMP-1 73-101: U2-L1-I1 9d 

S-ID-1 CPMP-1 73-101: U2-L1-I1 SM1 

S-ID-1 CPMP-1 73-101: U2-L1-I1 SM2 

S-ID-1 CPMP-1 73-101: U2-L1-I1 SM3 

S-ID-1 CPMP-1 73-101: U2-L1-I1 CYUa 

S-ID-1 CPMP-1 73-101: U2-L1-I1 CYUb 

S-ID-1 CPMP-1 73-101: U2-L1-I1 CYUc 

(table continues) 



 101 

  Table 3.2 (continued)  

Standard Textbook Section Item 

S-ID-1 GM-A1 0-13 Narrative 

S-ID-1 GM-A1 0-13 Example 2 

S-ID-1 GM-A1 0-13 Example 4 

S-ID-1 GM-A1 0-13 Example 6 

S-ID-1 GM-A1 0-13 Example 7a 

S-ID-1 GM-A1 0-13 Example 7b 

S-ID-1 GM-A1 0-13 Example 7c 

S-ID-1 GM-A1 0-13 Example 8a 

S-ID-1 GM-A1 0-13 Example 8b 

S-ID-1 GM-A1 0-13 Exercise 2a 

S-ID-1 GM-A1 0-13 Exercise 2b 

S-ID-1 GM-A1 0-13 Exercise 3 

S-ID-1 GM-A1 0-13 Exercise 4 

S-ID-1 GM-A1 0-13 Exercise 5 

S-ID-1 GM-A1 0-13 Exercise 7 

S-ID-1 GM-A1 0-13 Exercise 8a 

S-ID-1 GM-A1 0-13 Exercise 8b 

S-ID-1 GM-A1 0-13 Exercise 8c 

S-ID-1 GM-A1 0-13 Exercise 9a 

S-ID-1 GM-A1 0-13 Exercise 9b 

S-ID-1 GM-A1 0-13 Exercise 9c 

S-ID-1 GM-A1 0-13 Exercise 10 

S-ID-1 GM-A1 0-13 Exercise 11 

S-ID-1 GM-A1 0-13 Exercise 12 

S-ID-1 GM-A1 0-13 Exercise 13a 

S-ID-1 GM-A1 0-13 Exercise 13b 

S-ID-1 GM-A1 0-13 Exercise 13c 

S-ID-1 GM-A1 0-13 Exercise 13d 

S-ID-1 GM-A1 0-13 Exercise 14a 

S-ID-1 GM-A1 0-13 Exercise 14b 

S-ID-1 GM-A1 0-13 Exercise 14c 

S-ID-1 GM-A1 0-13 Exercise 14d 

S-ID-1 IMP-1 What Are the Chances? Part I – A 

S-ID-1 IMP-1 What Are the Chances? Part I – B 

S-ID-1 IMP-1 What Are the Chances? Part I – C 

S-ID-1 IMP-1 What Are the Chances? Part I – D 

S-ID-1 IMP-1 What Are the Chances? Part I – E 

S-ID-1 IMP-1 What Are the Chances? Part I – F 

S-ID-1 IMP-1 What Are the Chances? Part I – G 

S-ID-1 IMP-1 What Are the Chances? Part I – H 

S-ID-1 IMP-1 What Are the Chances? Part I – I 

S-ID-1 IMP-1 What Are the Chances? Part II 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 1 

(table continues) 
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  Table 3.2 (continued)  

Standard Textbook Section Item 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 2 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 3 

S-ID-1 IMP-1 Waiting for a Double No alignment 

 

Within a single page or section of a textbook, there were often many items to be 

analyzed. Once again, in an effort to focus this discussion of methodology, a subset of the items 

will be used to continue this discussion. Each textbook has a different approach to instruction 

and thus an item in one textbook may look different than an item does in another. 

 Data was collected on how many items in a given textbook and in a given series are 

related to probability and statistics. Which textbook the items are found in may also be important 

since many states require only 3 years of mathematics. Any textbooks beyond the first three of 

each curricula (GM – Advanced Mathematical Concepts, CPMP – Year 4, IMP – Year 4) are 

more likely to be omitted for students completing only the minimum state requirements for 

graduation. Each of these more likely to be omitted textbooks was still analyzed for this research 

because they still represent opportunities for engagement. The results and discussion of this 

study include two analyses. The first analysis considers each curricula in its entirety. The second 

analysis considers only the first three years of each curricula. 

3.3.2 Identify level of cognitive demand 

Items were coded using the Task Analysis Guide as found in Smith and Stein (1998) (see 

Appendix C). The Task Analysis Guide specifies the characteristics of tasks in each of four 

categories: memorization, procedures without connections, procedures with connections, and 
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doing mathematics. Each item was coded based on the highest potential level of cognitive 

demand it could achieve. 

 Once each item was assigned a code, both the frequency of each code and the percentage 

of items receiving each code are reported. These data are reported by standard, by textbook, and 

by overall curriculum. This was done to establish an overall rating of the cognitive demand in 

each manner described. In other words, the data rates the cognitive demand for each standard, 

each textbook, and each series overall. 

 Once again, to focus the discussion, a subset of the items presented earlier will be used to 

facilitate the discussion from this point. The items from Figure 3.2 from the GM textbook, Figure 

3.4 and Figure 3.5 from the CPMP textbook, and Figure 3.8 and Figure 3.9 from the IMP 

textbook will be analyzed further. The items are shown in Table 3.3 with codes for cognitive 

demand. The CPMP examples highlight the rationale behind the methodology of coding each 

individual item. In both cases, if the analysis were limited to only coding the main instructional 

task, both would have received a code of doing mathematics. However, upon further inspection, 

in the first task from CPMP (Figure 3.4), three items are doing mathematics, one item is 

procedures with connections and one item is procedures without connections. In the second task 

from CPMP (Figure 3.5), one item is doing mathematics, two items are procedures with 

connections and one item is procedures without connections. By analyzing each individual item 

as opposed to only the task as a whole, a clearer picture of the curriculum may be available. 

In some cases, there is not as much of a distinction. For example, all ten items of the IMP 

task What Are the Chances? are examples of procedures with connections because students are 

given suggested pathways that have connections to underlying conceptual ideas and multiple 

representations. Another example from IMP is that all three items of Rollin’, Rollin’, Rollin’ are 



 104 

examples of doing mathematics because students are presented with open ended questions and 

must make a number of choices along the way as well as analyzing their own findings in a 

paragraph. The items from the GM textbook are coded as procedures without connections. 

Students are expected to use a learned procedure on the exercise with little connection to 

underlying concepts. A complete list of codes for the previously referenced items with the level 

of cognitive demand section completed is shown in Table 3.3 and with reference to the figures 

presented earlier. 
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Table 3.3. Items aligned to S-ID-1 from Table 3.2 with level of cognitive demand codes 

Standard Textbook Section Item Cognitive 

Demand 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1a-i (Figure 3.4) PWC 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1a-ii (Figure 3.4) DM 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1b (Figure 3.4) PNC 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1c (Figure 3.4) DM 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1d (Figure 3.4) DM 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2a (Figure 3.5) PWC 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2b (Figure 3.5) DM 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2c (Figure 3.5) PNC 

S-ID-1 CPMP-1 73-101: U2-L1-I1 2d (Figure 3.5) PWC 

S-ID-1 GM-A1 0-13 Exercise 2a (Figure 3.2) PNC 

S-ID-1 GM-A1 0-13 Exercise 2b (Figure 3.2) PNC 

S-ID-1 IMP-1 What Are the Chances? I-A (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-B (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-C (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-D (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-E (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-F (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-G (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-H (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? I-I (Figure 3.8) PWC 

S-ID-1 IMP-1 What Are the Chances? II (Figure 3.8) PWC 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 1 (Figure 3.9) DM 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 2 (Figure 3.9) DM 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ 3 (Figure 3.9) DM 

 

Defining a task in these smaller units also allows for a more fair comparison between the 

curricula. If Figure 3.2 from the GM textbook is one task, Figure 3.4 or Figure 3.5 from the 

CPMP textbook is one task, and Figure 3.8 or Figure 3.9 from the IMP textbook is one task, the 

size of a task is dramatically different in each curricula. Coding Figure 3.4 and Figure 3.5 from 

CPMP as five items and four items respectively and Figure 3.8 and Figure 3.9 from IMP as three 

items and ten items respectively brings them much closer to the grain size of Figure 3.2 in the 

GM textbook, which is only two items. 
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3.3.3 Identify educative opportunities for teachers 

The final step in the analysis was to examine the opportunities for teacher learning on the 

main instructional tasks, which were designated to be highly cognitively demanding in the 

curriculum materials. It is important to emphasize that this analysis is occurring at the level of 

main instructional task and not the item level. Items were grouped together consistent with the 

methodology from Stein et al. (1996), so items aimed at a particular mathematical idea were 

grouped together to form one main instructional task. The cognitive demand of these 

instructional tasks was also determined by using the highest code on any item within that task. 

While one might consider the average code or most frequent code to be more appropriate for an 

instructional task, these two alternative designations were not appropriate for the research 

questions posed in this study. It may be possible that lower cognitive demand items are included 

in a task in service of the higher demand item. Based on this possibility, the lower demand items 

are not the focus of the task. Additionally, the goal of this study was to examine the potential of 

the curriculum. If part of a task has the potential to be high-level, it would be inappropriate to 

suggest that the task is not high-level. Table 3.4 represents the same items from Table 3.3 

collapsed into the level of task instead of item. Only the main instructional tasks of the textbooks 

that are designed to elicit high-level cognitive demand were coded for anticipation and 

transparency. 
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Table 3.4. Items aligned to S-ID-1from Table 3.3 grouped to form tasks 

Standard Textbook Section Task Cognitive 

Demand 

S-ID-1 CPMP-1 73-101: U2-L1-I1 1 and 2 (Figure 3.4 and 3.5) DM 

S-ID-1 GM-A1 0-13 Exercise 2 (Figure 3.2) PNC 

S-ID-1 IMP-1 What Are the Chances? Entire Section (Figure 3.8) PWC 

S-ID-1 IMP-1 Rollin’, Rollin’, Rollin’ Entire Section (Figure 3.9) DM 

 

 Figure 3.12 is part of a task where students are asked to relate a table or a graph to the 

Law of Large Numbers. The teacher’s edition of the textbook provides an opportunity for 

anticipation as shown in Figure 3.13. Figure 3.13 anticipates two concepts that may cause 

conflict with students when it comes to the law of large numbers. Students may understand that 

the proportion of heads tends to get closer to the theoretical value of 0.5, but they may find 

difficulty in recognizing that the difference between actual value of heads and the expected value 

of heads typically increases. 

 

Figure 3.12. Task supported via anticipation in CPMP Course 1 (Hirsch et al., p. 556, 2015) 
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Figure 3.13. Support via anticipation in CPMP Course 1 (Hirsch et al., p. 556T, 2015) 

Figure 3.14 is a task from CPMP where the teacher’s edition provides an opportunity for 

transparency. Figure 3.15 is the part of the teacher’s edition that corresponds to student edition 

task shown in Figure 3.14. These figures demonstrate what typical opportunities for transparency 

look like in CPMP textbooks. As shown in Figure 3.15, the underlying focus of the task, use an 

informal understanding of conditional probability, is made explicit to the teacher. Additionally, 

the teacher is provided with an explanation of how the various methods of completing the task 

could be emphasized depending on the prior experience of the students in the class. This allows 

the teacher to adapt the task as needed without losing the conceptual understanding that the task 

intends to develop. 
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Figure 3.14. Task supported via transparency in CPMP Course 4 (Hirsch et al., p. 579, 2015) 
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Figure 3.15. Support via transparency in CPMP Course 4 (Hirsch et al., p. 579T, 2015) 
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3.3.4 Reliability measures 

To determine the reliability of the coding assignments, a stratified random sample of items were 

coded independently by the primary researcher and a secondary researcher. Stratified random 

sample refers to randomly selecting items from each of the textbook series individually as 

opposed to randomly selecting sections from all of the textbooks as a whole regardless of which 

textbook they were found in. One hundred forty seven items were selected for reliability coding. 

Using a stratified random sample as opposed to a random sample ensured representation by each 

textbook series. The CPMP and GM textbook series have many more items than the IMP series, 

so there was a concern that a random sample may have excluded IMP completely. 

Once the items were selected, those items found near the selected items were also coded 

by the second coder. This allowed the second coder the opportunity to make judgments about not 

only the codes that should be assigned to items, but also what items should be group together to 

form tasks. This format of selection also ensures that the second coder reviewed both items and 

tasks from each of the individual textbooks. Training sessions were completed prior to coding 

the actual items used for this study to ensure reliability between the primary and secondary 

coders. These training sessions involved coding items and discussing discrepancies until the 

coders were able to provide consistent codes on randomly selected items reliably. 

Cohen’s κ was run to determine if there was agreement between the two coders’ 

judgement on item alignment to the standards for probability and statistics of CCSSM. There 

was a moderate agreement between the two coders’ judgments, κ = .561, p < .0005. Cohen’s κ 

was also run to determine if there was agreement between the two coders’ judgement on the level 

of cognitive demand of the items identified as being in alignment to the standards for probability 
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and statistics of CCSSM. There was good agreement between the two coders’ judgments, κ = 

.618, p < .0005. Finally, Cohen’s κ was run to determine if there was agreement between the two 

coders’ judgement on the presence of anticipation and transparency on high-level tasks. There 

was good agreement between the two coders’ judgments, κ = .615, p = .006. In all cases, since   

p < .01, the kappa (κ) coefficients are statistically significantly different from zero. 

3.4 HOW THE DATA RELATES TO THE RESEARCH QUESTIONS 

The first research question was, “To what extent do current secondary mathematics textbooks 

provide opportunities for students to engage in the probability and statistics content 

recommended by the Common Core State Standards?” The following data are reported to answer 

this question: 

1) Number of items identified as being in alignment with probability and statistics as 

defined by CCSSM in individual textbooks, curriculum materials overall, and the first 

three year of the series by individual standard (i.e. CPMP has 181 items in Year 1, 23 

items in Year 2, 107 items in Year 3, 2 items in Year 4, 313 items overall, and 311 items 

in the first three years relating to standard S-ID-1). The total number of items for all 

probability and statistics standards in each textbook will also be reported 

2) Number of tasks identified as being in alignment with probability and statistics as defined 

by CCSSM in individual textbooks, curriculum materials overall, and the first three year 

of the series by individual standard (i.e. CPMP has 11 tasks in Year 1, 1 task in Year 2, 7 

tasks in Year 3, 0 tasks in Year 4, 19 tasks overall, and 19 tasks in the first three years 
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relating to standard S-ID-1). The total number of tasks for all probability and statistics 

standards in each textbook will also be reported 

These data quantify the extent to which the textbooks provide opportunities for students to 

engage in the probability and statistics content recommended by the CCSSM. Additionally, the 

data quantifies the shortcomings of the curricula with respect to the probability and statistics 

recommendations of CCSSM. For example, a curriculum with zero items and tasks aligned to a 

specified standard could be identified as being deficient in relation to that specific standard. 

As previously mentioned, most states require only three years of mathematics in high school. 

Any textbooks beyond the first three in a series may be less likely to be used for all students. If a 

textbook series saves all of the probability and statistics items and tasks for a fourth year or more 

advanced textbook, the opportunities for engagement in those items and tasks may not be taken 

advantage of for all students. To address this concern, the findings for just the first three books of 

each curricula are also reported. 

The second research question is, “What are the cognitive demands of the tasks that are 

aligned with the Common Core State Standards recommendations for mathematical content in 

probability and statistics?” The following data are reported to answer this question: 

1) The number of items and tasks in each textbook and each curricula receiving each of the 

codes for cognitive demand reported by standard and as an overall count (memorization, 

procedures without connections, procedures with connection, doing mathematics) 

2) The percentage of items and tasks in each textbook and each curricula receiving each of 

the codes for cognitive demand reported by standard and as an overall count. 

These data speak to the nature of the items and tasks in each textbook and each curricula 

overall. By reporting the number of items with each code, the number of opportunities for 
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students to engage in high-level tasks in the area of probability and statistics is revealed. By 

reporting the number of tasks with each code, the number of opportunities for instruction with 

high-level tasks in the area of probability and statistics is revealed. Additionally, since high-level 

tasks are more difficult to implement with fidelity, especially doing mathematics tasks, this 

provides a report of the number of tasks that are likely to be challenging for the teacher to 

implement well. These data speak to the amount of support a district and the teacher materials 

would need to provide the teacher to promote proper use of these curriculum materials. 

 Reporting the percentage of items and tasks in each textbook and curricula receiving each 

code allows for some sense of the overall design of the textbook and curricula. Textbooks with a 

high percentage of doing mathematics items and tasks will demand much more from both 

students and teachers than those with higher percentages of memorization or procedures without 

connections codes. As previously argued in Chapter 1 (Section 1.3), a curriculum with high-level 

items and tasks will be more likely to promote students engagement in the Standards for 

Mathematical Practice. Additionally, reporting the percentage of items and tasks in each 

textbook and curricula receiving each of the codes for cognitive demand will also give an 

impression of how much support a district and the teacher materials would need to provide the 

teacher to promote implementation with fidelity. Finally, by reporting percentages for each 

individual textbook some interesting patterns emerge that can be used to reveal an inferred 

philosophy regarding how students learn of each curriculum. 

 The third research question is, “To what extent does the teachers’ guide provide support 

for enacting high-level tasks that address the Common Core State Standards recommendations 

related to probability and statistics?” The following data are reported to answer this question: 
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1) The number of high-level tasks in each textbook and in each curricula receiving each 

of the codes for teacher learning (anticipation and transparency). 

2) The percentage of high-level tasks in each textbook and in each curricula receiving 

each of the codes for teacher learning. 

These data speak to the extent that each textbook and each curricula overall support the 

teacher in enacting the probability and statistics recommendations of CCSSM. By reporting the 

number of high-level tasks with each code, the number of opportunities for teacher learning is 

revealed. Reporting the percentage of high-level tasks in each textbook and curricula receiving 

each code allows for some sense of the overall design of the textbook and curricula. Textbooks 

with a high percentage of high-level tasks receiving codes for anticipation and transparency 

provide more support for teachers than those with a low percentage of high-level tasks receiving 

those codes. 

 While more support will be needed to implement the curricula well, understanding what 

contributions the curriculum materials make to promoting teacher learning will help school 

districts decide what other types of support will be needed to promote proper use of these 

curriculum materials. With all of this data in hand, one could decide which curricula meets the 

needs of a given school district. Curricula with high-level tasks and little teacher support may be 

difficult to implement well without significant spending on other sources of teacher support. 

Curricula with low-level tasks may not need teacher support to be implemented with fidelity, but 

it may not suit the needs of a district looking to promote higher order thinking in preparation for 

CCSSM. In an area like probability and statistics where mathematics teachers are less likely to 

be comfortable with content and have a deep understanding of the concepts, understanding the 
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demands the tasks place on both students and teachers and the support offered to teachers on 

tasks that will be highly demanding may be critical to a school district’s success. 
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4.0  RESULTS 

This chapter reports the results of the analysis described in Chapter 3. The research questions 

that guided this study, and the analyses conducted to answer them, are as follows:  

1) To what extent do current secondary mathematics textbooks provide opportunities for 

students to engage in the probability and statistics content recommended by the Common 

Core State Standards? 

-determine the number of items identified as being in alignment with probability and 

statistics as defined by CCSSM in individual textbooks 

-determine the number of tasks identified as being in alignment with probability and 

statistics as defined by CCSSM in individual textbooks 

-determine the number of items identified as being in alignment with probability and 

statistics as defined by CCSSM in the entire curriculum 

-determine the number of tasks identified as being in alignment with probability and 

statistics as defined by CCSSM in the entire curriculum 

-determine the number of items identified as being in alignment with probability and 

statistics as defined by CCSSM in the first three textbooks of the curriculum 

-determine the number of tasks identified as being in alignment with probability and 

statistics as defined by CCSSM in the first three textbooks of the curriculum 
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2) What are the cognitive demands of the tasks that are aligned with the Common Core 

State Standards recommendations for mathematical content in probability and statistics? 

-the number of items receiving each of the codes for cognitive demand reported by 

standard and for all standards in the entire curriculum 

-the number of tasks receiving each of the codes for cognitive demand reported by 

standard and for all standards in the entire curriculum 

-the number of items receiving each of the codes for cognitive demand reported by 

textbook and in all textbooks for all standards 

-the number of items receiving each of the codes for cognitive demand reported by 

textbook and in all textbooks for all standards 

3) To what extent does the teachers’ guide provide support for enacting high-level tasks that 

address the Common Core State Standards recommendations related to probability and 

statistics? 

a) To what extent does the teachers’ guide provide suggestions related to anticipation on 

high-level tasks that reflect content recommendations of the Common Core State 

Standards? 

b) To what extent does the teachers’ guide provide transparency on high-level tasks that 

reflect content recommendations of the Common Core State Standards? 

-number of high-level tasks coded for teacher learning organized by textbook 

-number of high-level tasks coded for teacher learning for the entire series 
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4.1 DESCRIPTION OF TASKS AND ITEMS 

The results are initially organized by textbook series, followed by a comparison between series. 

The term “task” refers to the main instructional task as defined by Stein and Kim (2009). A task 

can consist of many components or activities intended to focus students on a particular idea. As 

described in Chapter 3, the term “item” refers to each individual component of a task but also 

includes narratives, review problems, extra practice, or any other opportunity that students might 

have to engage in content that appears in the textbook (Thompson, Senk, & Johnson, 2012). 

Recall, this distinction was made to facilitate a more widespread analysis than looking only at the 

main instructional task. Additionally, this distinction will allow for more comparable grain sizes 

since the items in each curriculum are of similar size while the tasks are not. Figures 4.1 through 

4.5 are pages from each of the different textbook series that exemplify the difference between 

items and tasks. 

Figure 4.1 is page 124 of the CPMP curriculum book 1A. This page is representative of 

the typical instructional portion of CPMP. As shown in Table 4.1, this page contains eleven 

individual items. The narrative at the top of the page poses a question for students to consider. 

This narrative is not considered part of an instructional task, but is included in the item analysis 

because it contains a question for consideration. The other ten items on this page comprise a 

single instructional task for this lesson. Item 1a is aligned with S-ID-1. Items 2b and 3a are not 

aligned with any of the probability and statistics standards of CCSSM. The other seven items on 

this page (1b, 1c, 2a, 2c, 2d, 2e, and 2f) are all aligned with S-ID-2. Because most of what the 

textbook refers to as number 1 (which includes three items 1a, 1b, and 1c) is aligned to S-ID-2, 

number 1 would be considered a task aligned to S-ID-2. Similarly, what the textbook refers to as 

problem 2 (which includes 2a, 2b, 2c, 2d, 2e, and 2f) is aligned with S-ID-2, number 2 would be 
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considered a task aligned with S-ID-2. Since these two collections of items appear consecutively 

and have a majority of items aligned to the same standard, they would then be combined to form 

a single instructional task. Therefore, Figure 4.1, which is page 124 of CPMP book 1A, contains 

one task made up of nine individual items. Items 2b and 3a are not included in the analysis since 

they are not aligned with CCSSM content.  
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Figure 4.1. Instructional items in CPMP Course 1 (Hirsch et al., p. 124, 2015) 
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Table 4.1. Data associated with items from Figure 4.1 

Series Textbook Chapter Lesson Section Standard Cognitive 

Demand 

CPMP 1A 2 2 Inv 5 – Narr S-ID-1 DM 

CPMP 1A 2 2 Inv 5 – 1a S-ID-1 DM 

CPMP 1A 2 2 Inv 5 – 1b S-ID-2 PwC 

CPMP 1A 2 2 Inv 5 – 1c S-ID-2 DM 

CPMP 1A 2 2 Inv 5 – 2a S-ID-2 DM 

CPMP 1A 2 2 Inv 5 – 2b None  

CPMP 1A 2 2 Inv 5 – 2c S-ID-2 DM 

CPMP 1A 2 2 Inv 5 – 2d S-ID-2 PnC 

CPMP 1A 2 2 Inv 5 – 2e S-ID-2 PnC 

CPMP 1A 2 2 Inv 5 – 2f S-ID-2 PnC 

CPMP 1A 2 2 Inv 5 – 3a None  

 

Figure 4.2 on page 129, is also taken from, CPMP 1A. CPMP is organized by chapters, 

which are divided into lessons. Each lesson contains multiple investigations. Figure 4.1 was from 

the Investigation 5 of Chapter 2 Lesson 2. At the end of each lesson there are problems referred 

to as “On Your Own”. These problems are intended as extensions, reviews, and connection 

making problems that students can work on after instruction as opposed to being part of the 

investigations, which make up the instructional portion of the textbook. Since these problems are 

not intended to be the focus of instruction, they are not considered a task. However, each portion 

of them can be considered an item. Therefore, Figure 4.2 contains six items that were analyzed 

but no instructional tasks 
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Figure 4.2. Items from On Your Own section in CPMP Course 1 (Hirsch et al., p. 129, 2015) 
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 Figure 4.3 and Figure 4.4 are the last two pages from section 12-4 of the GM Algebra I 

textbook. At the bottom of Figure 4.3 there are problems referred to as Higher Order Thinking 

Problems. Higher Order Thinking Problems are intended for enrichment and do not always relate 

to the example problems from the lesson in which they are found. For example, section 12-4 has 

example problems aligned to both S-ID-2 and S-ID-3. However, item 23 is aligned with S-ID-1. 

Because they are intended for enrichment as opposed to instruction, the Higher Order Thinking 

Problems are not considered instructional tasks. The items in the GM textbook that are intended 

for instruction have examples for the students and instructional notes for teacher. In the case of 

the Higher Order Thinking Problems, there are no examples for the students and the Teacher’s 

Edition of the textbook provides the answer to the problem but no instructional notes.  Therefore, 

even if the items address the same standard as the examples (section 12.4 items 21, 22, 24, and 

25), they are not considered a task if they are found in the Higher Order Thinking Problems. 

Those items found prior to the Higher Order Thinking designation (18, 19, and 20) were 

considered a task since they appear in the main body of the exercises following the example 

problems. 

Figure 4.4 contains three groups of items referred to as Standardized Test Practice, Spiral 

Review, and Skills Review. Item 30 is aligned to S-ID-1, which, once again, was not the focus of 

section 12-4. The other 21 items on the page are not aligned to any of the probability and 

statistics standards of CCSSM, so they clearly are not in alignment with the examples from the 

section in which they are found, 12-4, which is aligned with S-ID-2 and S-ID-3. These problems 

are designed as review problems, so they are not considered a task. However, since they are 

available for students, they were a part of the item analysis. 
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Figure 4.3. End of section items in GM Algebra 1 (Carter et al., p. 777, 2010) 
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Figure 4.4. End of section items in GM Algebra 1 (Carter et al., p. 778, 2010) 
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 Figure 4.5 is from the IMP curriculum and contains three items that together form a 

single task. The first two items both align to S-ID-1. The third item does not align with any of 

the probability and statistics standards of CCSSM. Since most of the items are aligned to S-ID-1, 

the three items would be combined into one instructional task that is intended to address S-ID-1. 

 

Figure 4.5. Rollin’, Rollin’, Rollin’ from IMP Year 1 (Fendel et al., p. 104, 2009) 

 As shown in Figure 4.2, Figure 4.3, and Figure 4.4, the CPMP and GM textbooks provide 

problems at the end of each section for students to work on independently for the purpose of 

enrichment or review. These independent practice problems are not part of any instructional task. 

The tendency to provide many problems at the end of a section that are not part of the 

instructional portion of the text causes the CPMP and GM textbooks to have a high number of 
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items when compared to the number of tasks. IMP does not provide these practice problems in 

the textbook. The lack of practice problems causes IMP to have fewer items per task than the 

other two curricula. 

4.2 ONLINE STANDARD IDENTIFICATION LEADING TO ITEMS THAT DIDN’T 

CORRESPOND 

In total 5283 items were analyzed from the three textbook series. Of the 5283 items, 3743 

corresponded to the probability and statistics recommendations of CCSSM. There were 1540 

items that did not correspond to the probability and statistic recommendations of CCSSM. These 

items were often the result of how the online resources referred to alignment with CCSSM. 

The Core-Plus Mathematics Project online resource referred to pages in the textbook. For 

example, the Core-Plus Mathematics Project online resource suggested that items for S-ID-1 

were on pages 108 to 142. That required the researcher to examine every task on those 35 pages. 

While many of the items did align with S-ID-1, not all of the items did. In many cases, there 

were problems that did not align with any of the probability and statistics recommendations of 

CCSSM so many items received a code of no correspondence. Figure 4.1, from page 124, and 

Figure 4.2, from page 129, both include tasks that fall in the range of pages identified by the 

online resource as containing S-ID-1 items. However, Table 4.1 shows that only two of eleven 

items in Figure 4.1 actually were aligned to S-ID-1. Two others were not aligned to any 

probability and statistics standard at all. A greater disparity between the online resource and the 

actual text is evident in Figure 4.2. None of the six items on this page is aligned with the 

probability and statistics standards of CCSSM let alone S-ID-1. The online resource identifies 
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pages 108 to 142 because these pages are the investigations for Chapter 2 Lesson 2 of the 

textbook. Since S-ID-1 is one of the main focal points of this lesson, the online resource 

identified the entire lesson as being aligned to S-ID-1. However, there are parts of this lesson that 

are not actually aligned. Generalizing alignment in this manner caused the researcher to review 

many items from CPMP that did not actually align to any of the probability and statistics 

standards in CCSSM. 

Similarly, the Glencoe Mathematics curriculum referred to sections of the book that 

contained many items. For example, S-ID-1 was found in the Glencoe Algebra I book in chapter 

12 section 4. There are more than 50 items in chapter 12 section 4 that had to be analyzed based 

on this suggestion. However, not all of them actually corresponded to S-ID-1. Recall that Figure 

4.3 and Figure 4.4 were both from chapter 12 section 4. As previously mentioned, one of the 

items in Figure 4.3 did not align to any probability and statistics standards of CCSSM. More 

dramatically, 21 of 22 items in Figure 4.4 did not align to any probability and statistics standards 

of CCSSM. Much like with the CPMP curriculum, the GM curriculum generalized sections of 

the textbook that addressed a specific standard even though that section contains problems at the 

end that often do not align. This caused the researcher to review many items from GM that did 

not actually align to any of the probability and statistics standards of CCSSM. 

Because of the design of IMP, there were very few items identified as being in alignment 

that were not. IMP did not contain review problems or exercises for independent practice. 

Occasionally an item or items within a task would not align to a probability and statistic 

standards of CCSSM, but this was a rare occurrence. Item 3 in Figure 4.5 is an example of one 

such occurrence. 
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The 1540 items that did not correspond to the probability and statistics recommendations 

of CCSSM were removed from the analysis. The remaining 3743 items were grouped into a mere 

193 tasks. It is expected that there would be many more items than tasks. However, there are 

more than 19 times as many items than there are tasks. This ratio does not suggest that typical 

tasks contain 19 individual items. This is more the result of many practice and review problems 

provided by the CPMP and GM curriculums that are not part of any instructional task as 

previously discussed. 

4.3 GLENCOE MATHEMATICS 

Glencoe Mathematics (GM) is a traditional approach high school mathematics textbook series 

organized by content (Algebra I, Algebra II, Geometry, and Precalculus) that is widely used 

based on market share data in Ross (2011). The traditional approach means that the student 

editions include example problems with worked out solutions and explanations provided to guide 

students through the steps of the solutions. Then there are exercises at the end of each section 

often corresponding directly to one of these worked out examples. Each example and its 

corresponding exercises are coded individually as items and then combined to form a task. 

Figure 4.6 is a worked out example from lesson 0-13 of the GM Algebra textbook. This 

example contains two items. The first item asks students to make a histogram of the frequency. 

The second item asks students to make a histogram of the cumulative frequency. Figure 4.7 is 

one of the corresponding exercises from lesson 0-13 of the GM Algebra textbook. Once again, 

the exercise contains two items. Exactly like the worked out example, the first item asks students 

to graph the frequency, and the second item asks students to graph the cumulative frequency. 
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These two figures represent four items as shown in Table 4.2. The four items would be combined 

to form a single instructional task since they address the same standard in the same manner. 

Table 4.2. Data associated with Figure 4.6 and Figure 4.7 

Standard Textbook Section Item Cognitive Demand 

S-ID-1 GM-A1 0-13 Example 2 Histogram (Figure 4.6) PNC 

S-ID-1 GM-A1 0-13 Example 2 Cummulative (Figure 4.6) PNC 

S-ID-1 GM-A1 0-13 Exercise 2a (Figure 4.7) PNC 

S-ID-1 GM-A1 0-13 Exercise 2b (Figure 4.7) PNC 

 

 

Figure 4.6. Example aligned to S-ID-1 from GM Algebra 1 (Carter et al., p. 41, 2010) 

 

Figure 4.7. Exercise related to Figure 4.6 from GM Algebra 1 (Carter et al., p. 45, 2010) 
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4.3.1 Question 1 

GM contains 1545 items that corresponded to the probability and statistics recommendations of 

CCSSM. Of the 1545 items, 822 (53%) of them correspond to only four of the standards (S-ID-1 

has 161 items, S-ID-2 has 138 items, S-ID-4 has 257 items, and S-ID-6a has 266 items). That 

means the remaining 723 items are spread out over 20 remaining standards. The Algebra I, 

Algebra II, and Precalculus textbooks each have more than 400 items in them. However, the 

Geometry textbook only contains 146. Some standards have most of the items corresponding to 

them in the Precaluclus textbook. For example, S-IC-2 has 63 of 65 items in the Precalculus 

textbook. However, there are no standards that are solely addressed in Precalculus, so even 

though many opportunities would be lost by a student not enrolling in Precalculus as part of the 

GM program, nothing would be eliminated. 

As shown in Table 4.3, the GM curriculum provides opportunities for students to engage 

in at least one item for every probability and statistics content suggestion of CCSSM. However, 

the number of opportunities varies greatly from one standard to another (S-CP-5 has only one 

item while S-ID-6a has 266 items). Of particular concern are the standards highlighted in Table 

4.3, S-CP-5, S-CP-6, S-IC-5, and S-ID-5, which all had less than ten total items in the entire GM 

curriculum. 
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Table 4.3. Number of items in GM textbooks aligned to CCSSM probability and statistics 

Standard Algebra I Algebra II Geometry Precalculus Total First 3 

S-ID-1 60 55 33 13 161 (10%) 148 

S-ID-2 70 29 0 39 138 (9%) 99 

S-ID-3 14 12 0 1 27 (2%) 26 

S-ID-4 4 76 0 177 257 (16%) 80 

S-ID-5 6 0 2 0 8 (< 1%) 8 

S-ID-6a 59 37 0 170 266 (17%) 96 

S-ID-6b 5 4 0 8 17 (1%) 9 

S-ID-6c 35 24 0 27 86 (5%) 59 

S-ID-7 4 23 0 9 36 (2%) 27 

S-ID-8 23 32 0 26 81 (5%) 55 

S-ID-9 5 16 0 0 21 (1%) 21 

S-IC-1 0 14 0 17 31 (2%) 14 

S-IC-2 0 2 0 63 65 (4%) 2 

S-IC-3 21 49 0 0 70 (4%) 70 

S-IC-4 1 27 0 37 65 (4%) 28 

S-IC-5 0 2 0 2 4 (< 1%) 2 

S-IC-6 9 2 0 0 11 (1%) 11 

S-CP-1 24 0 27 0 51 (3%) 51 

S-CP-2 16 0 15 0 31 (2%) 31 

S-CP-3 25 1 30 0 56 (4%) 56 

S-CP-4 9 0 8 0 17 (1%) 17 

S-CP-5 0 0 1 0 1 (< 1%) 1 

S-CP-6 0 0 2 0 2 (< 1%) 2 

S-CP-7 53 0 28 1 82 (5%) 81 

Total 524 (33%) 405 (26%) 146 (9%) 590 (37%) 1584 994 (63%) 

 

As shown in Table 4.4, the GM curriculum contains 59 total tasks that correspond to the 

probability and statistics standards of CCSSM. Of particular interest are the five standards from 

CCSSM that lack an instructional task (S-ID-5, S-ID-9, S-CP-4, S-CP-5, and S-CP-6). While all 

of the standards had at least one item associated with them, not all were part of an instructional 

task. This could mean they were part of an enrichment section or a special part of the homework 

exercises, but they were not included in the examples and main body of the homework exercises.  
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Table 4.4. Number of tasks in GM textbooks aligned to CCSSM probability and statistics 

Standard Algebra I Algebra II Geometry Precalculus Total First 3 

S-ID-1 3 1 0 4 8 (14%) 4 

S-ID-2 4 1 0 1 6 (10%) 5 

S-ID-3 1 1 0 0 2 (3%) 2 

S-ID-4 0 1 0 2 3 (5%) 1 

S-ID-5 0 0 0 0 0 (0%) 0 

S-ID-6a 2 1 0 3 6 (10%) 3 

S-ID-6b 1 0 0 1 2 (3%) 1 

S-ID-6c 1 1 0 2 4 (7%) 2 

S-ID-7 0 1 0 1 2 (3%) 1 

S-ID-8 1 1 0 2 4 (7%) 2 

S-ID-9 0 0 0 0 0 (0%) 0 

S-IC-1 0 1 0 1 2 (3%) 1 

S-IC-2 0 0 0 3 3 (5%) 0 

S-IC-3 1 2 0 0 3 (5%) 3 

S-IC-4 0 1 0 2 3 (5%) 1 

S-IC-5 0 0 0 1 1 (2%) 0 

S-IC-6 1 0 0 0 1 (2%) 1 

S-CP-1 1 0 1 0 2 (3%) 2 

S-CP-2 1 0 1 0 2 (3%) 2 

S-CP-3 1 0 1 0 2 (3%) 2 

S-CP-4 0 0 0 0 0 (0%) 0 

S-CP-5 0 0 0 0 0 (0%) 0 

S-CP-6 0 0 0 0 0 (0%) 0 

S-CP-7 2 0 1 0 3 (5%) 3 

Total 20 (34%) 12 (20%) 4 (7%) 23 (39%) 59 36 (61%) 

 

Figure 4.8 shows the Higher Order Thinking Problems section at the end of chapter 13 

section 5 of the GM Geometry textbook. Problem 27 is the only item in the entire GM textbook 

series that aligns with S-CP-5 from CCSSM. There is no example in this section related to this 

problem. Instead of being part of an instructional task, this problem is provided as enrichment at 

the end of a section with instructional tasks dedicated to S-CP-2 and S-CP-3. 
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Figure 4.8. Higher Order Thinking Problems from GM Geometry (Carter et al., p. 777, 2010) 

4.3.2 Question 2 

When examining the number of items receiving each code for cognitive demand by standard, the 

most glaring result shown in Table 4.5 is that the GM curriculum is dominated by procedures 

without connections items. Most of the individual standards have more items coded as 

procedures without connections than the other three possible codes combined. The few 

individual standards that do not have mostly procedures without connections items have only 

sixteen total items dedicated to them combined. Procedures without connections tasks represent 

more than 81% (1293 of a total 1584) of the items in the curriculum overall. 
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Table 4.5. Cognitive demand of items in GM textbooks sorted by standard 

Standard Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

S-ID-1 3 133 20 5 161 (10%) 

S-ID-2 0 106 31 1 138 (9%) 

S-ID-3 0 24 3 0 27 (2%) 

S-ID-4 5 228 22 2 257 (16%) 

S-ID-5 0 7 1 0 8 (1%) 

S-ID-6a 1 178 61 26 266 (17%) 

S-ID-6b 0 15 2 0 17 (1%) 

S-ID-6c 0 77 7 2 86 (5%) 

S-ID-7 0 30 4 2 36 (2%) 

S-ID-8 1 61 17 2 81 (5%) 

S-ID-9 0 15 5 1 21 (1%) 

S-IC-1 3 20 4 4 31 (2%) 

S-IC-2 0 53 12 0 65 (4%) 

S-IC-3 2 64 4 0 70 (4%) 

S-IC-4 1 57 6 1 65 (4%) 

S-IC-5 1 1 2 0 4 (< 1%) 

S-IC-6 0 2 1 8 11 (1%) 

S-CP-1 0 45 4 2 51 (3%) 

S-CP-2 0 31 0 0 31 (2%) 

S-CP-3 1 52 3 0 56 (4%) 

S-CP-4 0 12 3 2 17 (1%) 

S-CP-5 0 0 1 0 1 (< 1%) 

S-CP-6 0 2 0 0 2 (< 1%) 

S-CP-7 0 80 2 0 82 (5%) 

Total 18 (1%) 1293 (82%) 215 (14%) 58 (4%) 1584 

 

When examining the level of cognitive demand of items by textbook, it is clear that 

procedures without connections dominate each textbook as well. As shown in Table 4.6, Algebra 

I contains 368 procedures without connections items out of 433 items. Algebra II has 329 items 

that are procedures without connections and 373 total items. There are 113 total items in the 

Geometry textbook, and 102 of them are at the level of procedures without connections. Finally, 

in the Precalculus textbook 460 out of 626 items are procedures without connection. 

Additionally, over half of the high-level items in the GM curriculum are found in the Precalculus 
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text (157 of 268). During the first three years of the curriculum, students will have the 

opportunity to engage in 808 low-level items and only 111 high-level items. 

Table 4.6. Cognitive demand of items in GM textbooks sorted by textbook 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

Algebra I 0 368 53 12 433 (28%) 

Algebra II 8 329 29 7 373 (24%) 

Geometry 1 102 7 3 113 (7%) 

Precalculus 9 460 123 34 626 (41%) 

Total 18 (1%) 1259 (81%) 212 (14%) 56 (4%) 1545 

First 3 9 799 89 22 919 (59%) 

 

 When organized by instructional tasks as opposed to items, the results once again contain 

mostly procedures without connections codes as shown in Table 4.7. Approximately 66% of the 

tasks were coded at the procedures without connections level. Tasks may have multiple 

components, and codes were given at the highest level of any individual component, so if any 

part of a task was at a high-level, the entire task was credited for being high-level. In other 

words, even coded generously, most of the tasks are low-level tasks. 
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Table 4.7. Cognitive demand of tasks in GM textbooks sorted by standard 

Standard Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

S-ID-1 0 6 2 0 8 (14%) 

S-ID-2 0 3 3 0 6 (10%) 

S-ID-3 0 2 0 0 2 (3%) 

S-ID-4 0 2 1 0 3 (5%) 

S-ID-5 0 0 0 0 0 (0%) 

S-ID-6a 0 1 2 3 6 (10%) 

S-ID-6b 0 1 1 0 2 (3%) 

S-ID-6c 0 2 1 1 4 (7%) 

S-ID-7 0 1 0 1 2 (3%) 

S-ID-8 0 3 1 0 4 (7%) 

S-ID-9 0 0 0 0 0 (0%) 

S-IC-1 0 2 0 0 2 (3%) 

S-IC-2 0 0 3 0 3 (5%) 

S-IC-3 0 3 0 0 3 (5%) 

S-IC-4 0 3 0 0 3 (5%) 

S-IC-5 0 0 1 0 1 (2%) 

S-IC-6 0 1 0 0 1 (2%) 

S-CP-1 0 2 0 0 2 (3%) 

S-CP-2 0 2 0 0 2 (3%) 

S-CP-3 0 2 0 0 2 (3%) 

S-CP-4 0 0 0 0 0 (0%) 

S-CP-5 0 0 0 0 0 (0%) 

S-CP-6 0 0 0 0 0 (0%) 

S-CP-7 0 3 0 0 3 (5%) 

Total 0 (0%) 39 (66%) 15 (25%) 5 (8%) 59 

 

 As shown in Table 4.8, the level of cognitive demand of tasks once again demonstrates 

the dominance of procedures without connections in the GM series with one exception. The 

Precalculus textbook actually has more high-level tasks (16) than low-level tasks (7). However, 

the rest of the textbooks have at least 85% of their tasks at the level of procedures without 

connections. When Precalculus is considered as part of the analysis, there are 39 low-level tasks 

and 20 high-level tasks, which represent 66% and 34% of the tasks respectively. When 

Precalculus is removed from the analysis, there are still 32 low-level tasks but only 4 high-level 
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tasks representing 89% and 11% of the tasks respectively. The curriculum overall is limited in 

the number of opportunities for students to engage in high-level tasks related to probability and 

statistics. This limitation is magnified when the fourth textbook is not part of the curriculum. 

Table 4.8. Cognitive demand of tasks in GM textbooks sorted by textbook 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

Algebra I 0 17 3 0 20 (34%) 

Algebra II 0 11 1 0 12 (20%) 

Geometry 0 4 0 0 4 (7%) 

Precalculus 0 7 11 5 23 (39%) 

Total 0 (0%) 39 (66%) 15 (25%) 5 (8%) 59 

First 3 0 32 4 0 36 (61%) 

 

4.3.3 Question 3 

Only one high-level task in the GM series, Advanced Mathematical Concepts: Precalculus with 

Applications section 11-1 examples 1, 2, and 3, provide support related to either anticipation or 

transparency. Specifically, this task anticipated students having a misconception about what 

skewed data looks like graphically, as shown in Figure 4.9. Other than this one task, the teachers’ 

guide did not provide support for enacting high-level tasks in probability and statistics. 
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Figure 4.9. Teacher support via anticipation in GM precalculus (Holliday, p. 655-657, 2014) 

4.4 INTERACTIVE MATHEMATICS PROGRAM 

Interactive Mathematics Program (IMP) curriculum materials were funded by the NSF and 

represent a Standards-based approach to secondary mathematics education. Instead of being 

organized by content as the GM textbooks were, IMP represents an integrated approach 

organized by years. There are four years of textbooks intended to be implemented in grades 9 

through 12. 

4.4.1 Question 1 

The highlighted entries in Table 4.9 are the probability and statistics content suggestions of 

CCSSM that the IMP curriculum does not provide opportunities in which students can engage. 

While the online resources for teachers did suggest online lessons that could be used to address 

these standards, S-ID-6b, S-ID-8, S-CP-3, S-CP-5, and S-CP-7 were not addressed in the student 

textbook and thus were not included in this study. No standard was addressed by more than 28 

items and very few were addressed in more than one year of the textbook series. Of the 191 total 

items shown in Table 4.9, 189 are found in the first two years of the textbook series. If the four 
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years of this textbook series are used during grades nine through twelve, then 99% of the 

opportunities found in the series will be available in ninth and tenth grade. That also means that 

probability and statistics will go unaddressed during the junior and senior years of students who 

attend schools using this textbook series. 

Table 4.9. Number of items in IMP textbooks aligned to CCSSM probability and statistics 

Standard Year 1 Year 2 Year 3 Year 4 Total First 3 

S-ID-1 21 0 0 0 21 (11%) 21 

S-ID-2 14 0 0 0 14 (7%) 14 

S-ID-3 14 0 0 0 14 (7%) 14 

S-ID-4 10 0 0 0 10 (5%) 10 

S-ID-5 0 20 0 0 20 (10%) 20 

S-ID-6a 18 0 2 0 20 (10%) 20 

S-ID-6b 0 0 0 0 0 (0%) 0 

S-ID-6c 3 0 0 0 3 (2%) 3 

S-ID-7 8 0 0 0 8 (4%) 8 

S-ID-8 0 0 0 0 0 (0%) 0 

S-ID-9 0 1 0 0 1 (< 1%) 1 

S-IC-1 0 6 0 0 6 (3%) 6 

S-IC-2 1 7 0 0 8 (4%) 8 

S-IC-3 0 1 0 0 1 (< 1%) 1 

S-IC-4 0 2 0 0 2 (1%) 2 

S-IC-5 1 13 0 0 14 (7%) 14 

S-IC-6 1 5 0 0 6 (3%) 6 

S-CP-1 28 0 0 0 28 (15%) 28 

S-CP-2 13 0 0 0 13 (7%) 13 

S-CP-3 0 0 0 0 0 (0%) 0 

S-CP-4 0 1 0 0 1 (< 1%) 1 

S-CP-5 0 0 0 0 0 (0%) 0 

S-CP-6 1 0 0 0 1 (< 1%) 1 

S-CP-7 0 0 0 0 0 (0%) 0 

Total 133 (70%) 56 (29%) 2 (1%) 0 (0%) 191 191 (100%) 

 

An examination of the results of the task analysis, as shown in Table 4.10, confirms the 

conclusions reached from the item analysis. There are five or less tasks associated with each 

standard. Most of the standards have tasks only in one year of the textbook series. 
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Table 4.10. Number of tasks in IMP textbooks aligned to CCSSM probability and statistics 

Standard Year 1 Year 2 Year 3 Year 4 Total First 3 

S-ID-1 2 0 0 0 2 (5%) 2 

S-ID-2 2 0 0 0 2 (5%) 2 

S-ID-3 2 0 0 0 2 (5%) 2 

S-ID-4 2 0 0 0 2 (5%) 2 

S-ID-5 0 3 0 0 3 (7%) 3 

S-ID-6a 4 0 1 0 5 (12%) 5 

S-ID-6b 0 0 0 0 0 (0%) 0 

S-ID-6c 1 0 0 0 1 (2%) 1 

S-ID-7 1 0 0 0 1 (2%) 1 

S-ID-8 0 0 0 0 0 (0%) 0 

S-ID-9 0 1 0 0 1 (2%) 1 

S-IC-1 0 3 0 0 3 (7%) 3 

S-IC-2 1 3 0 0 4 (10%) 4 

S-IC-3 0 1 0 0 1 (2%) 1 

S-IC-4 0 1 0 0 1 (2%) 1 

S-IC-5 0 4 0 0 4 (10%) 4 

S-IC-6 1 2 0 0 3 (7%) 3 

S-CP-1 3 0 0 0 3 (7%) 3 

S-CP-2 3 0 0 0 3 (7%) 3 

S-CP-3 0 0 0 0 0 (0%) 0 

S-CP-4 0 0 0 0 0 (0%) 0 

S-CP-5 0 0 0 0 0 (0%) 0 

S-CP-6 1 0 0 0 1 (2%) 1 

S-CP-7 0 0 0 0 0 (0%) 0 

Total 24 (57%) 17 (40%) 1 (2%) 0 (0%) 42 42 (100%) 

 

4.4.2 Question 2 

As shown in Table 4.11, the IMP curriculum has more high-level items than low-level items. 

With 31% of items being at the level of procedures with connections and 40% doing 

mathematics, the IMP curriculum has opportunities for students to engage in high-level items 

71% of the time.  
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Table 4.11. Cognitive demand of items in IMP textbooks sorted by standard 

Standard Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

S-ID-1 0 15 3 3 21 (11%) 

S-ID-2 0 3 7 4 14 (7%) 

S-ID-3 0 3 3 8 14 (7%) 

S-ID-4 1 7 2 0 10 (5%) 

S-ID-5 0 13 4 3 20 (10%) 

S-ID-6a 0 5 4 11 20 (10%) 

S-ID-6b 0 0 0 0 0 (0%) 

S-ID-6c 0 0 3 0 3 (2%) 

S-ID-7 0 5 2 1 8 (4%) 

S-ID-8 0 0 0 0 0 (0%) 

S-ID-9 0 0 0 1 1 (1%) 

S-IC-1 0 0 1 5 6 (3%) 

S-IC-2 0 0 0 8 8 (4%) 

S-IC-3 0 0 0 1 1 (1%) 

S-IC-4 0 0 0 2 2 (1%) 

S-IC-5 0 0 9 5 14 (7%) 

S-IC-6 0 0 0 6 6 (3%) 

S-CP-1 0 1 15 12 28 (15%) 

S-CP-2 0 3 5 5 13 (7%) 

S-CP-3 0 0 0 0 0 (0%) 

S-CP-4 0 0 1 0 1 (1%) 

S-CP-5 0 0 0 0 0 (0%) 

S-CP-6 0 0 0 1 1 (1%) 

S-CP-7 0 0 0 0 0 (0%) 

Total 1 (1%) 55 (29%) 59 (31%) 76 (40%) 191 

 

When organized by textbooks, all but two of the probability and statistics items in the 

entire IMP curriculum are found in the first two years of the textbook series as shown in Table 

4.12. There is also a slight difference in the level of cognitive demand of the items when sorted 

by years. In year one, there is balance between procedures without connections, procedures with 

connections, and doing mathematics items with all three being in the forties. However, in year 

two, the numbers tend to lean more toward doing mathematics as there are more doing 

mathematics items than the other three possible codes combined. 
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Table 4.12. Cognitive demand of items in IMP textbooks sorted by textbook 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

Year 1 1 40 45 47 133 (70%) 

Year 2 0 13 14 29 56 (29%) 

Year 3 0 2 0 0 2 (1%) 

Year 4 0 0 0 0 0 (0%) 

Total 1 (1%) 55 (29%) 59 (31%) 76 (40%) 191 

First 3 1 55 59 76 191 (100%) 

 

When instructional tasks were examined by standard, a majority were coded as doing 

mathematics, as shown in Table 4.13. More than 85% of the tasks were considered to have high 

cognitive demand as opposed to 70% of the items in Table 4.11. The greater disparity between 

high-level and low-level codes in tasks as compared to items may indicate that many of the tasks 

contain lower level items within them. Because they appear with high-level items, the low-level 

item codes do not show up in the codes for instructional tasks. 
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Table 4.13. Cognitive demand of tasks in IMP textbooks sorted by standard 

Standard Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

S-ID-1 0 1 0 1 2 (5%) 

S-ID-2 0 0 1 1 2 (5%) 

S-ID-3 0 0 0 2 2 (5%) 

S-ID-4 0 1 1 0 2 (5%) 

S-ID-5 0 3 0 0 3 (7%) 

S-ID-6a 0 1 1 3 5 (12%) 

S-ID-6b 0 0 0 0 0 (0%) 

S-ID-6c 0 0 1 0 1 (2%) 

S-ID-7 0 0 0 1 1 (2%) 

S-ID-8 0 0 0 0 0 (0%) 

S-ID-9 0 0 0 1 1 (2%) 

S-IC-1 0 0 0 3 3 (7%) 

S-IC-2 0 0 0 4 4 (10%) 

S-IC-3 0 0 0 1 1 (2%) 

S-IC-4 0 0 0 1 1 (2%) 

S-IC-5 0 0 1 3 4 (10%) 

S-IC-6 0 0 0 3 3 (7%) 

S-CP-1 0 0 0 3 3 (7%) 

S-CP-2 0 0 2 1 3 (7%) 

S-CP-3 0 0 0 0 0 (0%) 

S-CP-4 0 0 0 0 0 (0%) 

S-CP-5 0 0 0 0 0 (0%) 

S-CP-6 0 0 0 1 1 (2%) 

S-CP-7 0 0 0 0 0 (0%) 

Total 0 (0%) 6 (14%) 7 (17%) 29 (69%) 42 

 

The idea of low-level items appearing in tasks with high-level items, in this case doing 

mathematics items, is exemplified by Figure 4.10 and Figure 4.11. These figures are from an 

IMP group activity called Making Friends with Standard Deviation. This group activity contains 

eleven total items as shown in Table 4.12. 

Problem 1 in Making Friends with Standard Deviation begins with item 1a that does not 

align with the probability and statistics recommendations of CCSSM. Item 1b is a procedures 

without connections item aligned to S-ID-3. Item 1c is also aligned to S-ID-3, but increases in 
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level of cognitive demand to procedures with connection. The fourth and final item for problem 

1 is a doing mathematics item also aligned to S-ID-3. The bullet points with the fourth item were 

not coded as separate items because they provide guidance for students in addressing the initial 

portion of the item, “Explain why your pattern should occur” rather than represent independent 

items. 

Items coded as procedures without connections, procedures with connections, and doing 

mathematics are also present in problem 2. All four items in problem 2 are aligned to S-ID-3. 

The first two are procedures without connections. The next item is at the level of procedures with 

connections. The fourth and final item is at the level of doing mathematics. The third problem in 

this group activity does not align with any probability and statistics recommendation of CCSSM. 

In summary, the items in this group activity that are aligned with the probability and 

statistics recommendations of CCSSM are all aligned to S-ID-3. Since they are all aligned to the 

same item, this group activity is considered one instructional task. This one task contains three 

procedures without connections items, two procedures with connections items, and two doing 

mathematics items. The level of cognitive demand for the task is doing mathematics because that 

is the highest potential of any single item in the task. Coding the task at the level of doing 

mathematics masks the five codes were not at the level of doing mathematics. 
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Figure 4.10. Items from a group activity in IMP Year 1 (Fendel et al., p. 331, 2009) 
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Figure 4.11. Items from a group activity in IMP Year 1 (Fendel et al., p. 332, 2009) 
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Table 4.14. Data from items in Figure 4.10 and Figure 4.11 

Series Book Chapter Activity Problem Standard Cognitive 

Demand 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

1a None  

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

1b S-ID-3 PnC 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

1c S-ID-3 PwC 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

1d S-ID-3 DM 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

2a S-ID-3 PnC 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

2b S-ID-3 PnC 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

2c S-ID-3 PwC 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

2d S-ID-3 DM 

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

3a None  

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

3b None  

IMP 1 The Pit and the 

Pendulum 

Making Friends with 

Standard Deviation 

3c None  

 

When looking at the tasks organized by textbook, both the first and second year have most 

tasks at the level of doing mathematics, as shown in Table 4.15. This resembles the results when 

looking at cognitive demand by standard. 
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Table 4.15. Cognitive demand of tasks in IMP textbooks sorted by textbook 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

Year 1 0 2 6 14 22 (58%) 

Year 2 0 3 1 11 15 (39%) 

Year 3 0 1 0 0 1 (3%) 

Year 4 0 0 0 0 0 (0%) 

Total 0 (0%) 6 (16%) 7 (18%) 25 (66%) 38 

First 3 0 6 7 25 38 (100%) 

 

4.4.3 Question 3 

While less than one third (31%) of the high-level tasks provide opportunities for teacher 

learning, Year 1 has eight of the ten total opportunities, as shown in Table 4.16. In Year 1, 40% 

of the high-level tasks contain opportunities to learn in the teachers’ guide. Year 2 decreases to a 

mere 17%. Additionally, there are no opportunities for teacher learning through transparency. All 

ten tasks that contain opportunities for teacher learning do so through anticipation only. Figure 

4.12 is part of the online teacher’s guide of IMP. Specifically this part of the teacher’s guide 

relates to Figure 4.11, Making Friends with Standard Deviation. The note in the teacher’s guide 

refers to different ways students may come to understanding that adding a value to each term 

with change the mean but not the standard deviation. 
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Figure 4.12. Teacher’s guide notes for the task in Figure 4.11 which contain anticipation 

Table 4.16. Teacher support on high-level probability and statistics tasks in IMP 

Textbook Anticipation Transparency Total 

Year 1 8/20 0/20 8/20 

Year 2 2/12 0/12 2/12 

Year 3 0/0 0/0 0/0 

Year 4 0/0 0/0 0/0 

Total 10/32 0/32 10/32 

First 3 10/32 0/32 10/32 

 

4.5 CORE-PLUS MATHEMATICS PROJECT 

The Core-Plus Mathematics Proejct (CPMP) curriculum materials were also funded by the NSF 

and represent a Standards-based approach to secondary mathematics education much like IMP. 

CPMP also represents an integrated approach organized by years like the IMP materials. There 

are four years of textbooks intended to be implemented in grades 9 through 12. 
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4.5.1 Question 1 

As shown in Table 4.17, the CPMP curriculum provides opportunities for students to engage in 

all of the probability and statistics content suggestion of CCSSM in the student text except S-CP-

5. Some standards were given substantial attention, such as S-ID-6a with 444 items, while others 

were minimally addressed, like S-CP-6 with three items. No standard was found only in year 

four, which means students only completing three years of mathematics would not be missing 

any of the standards not already omitted. In fact, year four only contains 121 of the total 2018 

items, which is only 6% of the total for this curriculum. Students can receive 94% of the 

opportunities this curriculum has to offer in the first three years of its textbooks. 
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Table 4.17. Number of items in CPMP textbooks aligned to CCSSM probability and statistics 

Standard Year 1 Year 2 Year 3 Year 4 Total First 3 

S-ID-1 181 23 107 2 313 (16%) 311 

S-ID-2 169 8 43 0 220 (11%) 220 

S-ID-3 36 4 8 0 48 (2%) 48 

S-ID-4 0 0 117 0 117 (6%) 117 

S-ID-5 0 37 0 0 37 (2%) 37 

S-ID-6a 320 90 34 53 497 (25%) 444 

S-ID-6b 0 39 1 24 64 (3%) 40 

S-ID-6c 36 56 0 15 107 (5%) 92 

S-ID-7 36 13 5 0 54 (3%) 54 

S-ID-8 0 135 3 0 138 (7%) 138 

S-ID-9 1 25 2 0 28 (1%) 28 

S-IC-1 0 0 27 0 27 (1%) 27 

S-IC-2 0 19 0 0 19 (1%) 19 

S-IC-3 0 0 52 0 52 (3%) 52 

S-IC-4 0 0 4 0 4 (< 1%) 4 

S-IC-5 0 0 46 0 46 (2%) 46 

S-IC-6 0 18 4 0 22 (1%) 22 

S-CP-1 7 28 0 7 42 (2%) 35 

S-CP-2 0 10 14 1 25 (1%) 24 

S-CP-3 0 29 0 13 42 (2%) 29 

S-CP-4 0 44 0 6 50 (2%) 44 

S-CP-5 0 0 0 0 0 (0%) 0 

S-CP-6 0 3 0 0 3 (< 1%) 3 

S-CP-7 39 10 14 0 63 (3%) 63 

Total 825 (41%) 591 (29%) 481 (24%) 121 (6%) 2018 1897 (94%) 

 

As shown in Table 4.18, all but two standards (S-IC-4 and S-CP-5) have at least one 

instructional task associated with them. However, a majority of the tasks (54 of 96) are 

associated with three standards (S-ID-1 has 19, S-ID-2 has 12, and S-ID-6a has 23). This leaves 

45 tasks to be spread among the 19 remaining standards. Similar to the item analysis, there are 

no standards only addressed in the fourth year of the curriculum. Only four of the total 96 tasks 

are found in the fourth year of the curriculum. That means students only completing three years 

of mathematics in this curriculum would still have the opportunity to engage with nearly 96% of 

the instructional tasks. 
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Table 4.18. Number of tasks in CPMP textbooks aligned to CCSSM probability and statistics 

Standard Year 1 Year 2 Year 3 Year 4 Total First 3 

S-ID-1 11 1 7 0 19 (20%) 19 

S-ID-2 7 0 5 0 12 (13%) 12 

S-ID-3 1 0 0 0 1 (1%) 1 

S-ID-4 0 0 7 0 7 (7%) 7 

S-ID-5 0 2 0 0 2 (2%) 2 

S-ID-6a 16 5 1 1 23 (24%) 22 

S-ID-6b 0 1 0 1 2 (2%) 1 

S-ID-6c 1 2 0 0 3 (3%) 3 

S-ID-7 2 0 0 0 2 (2%) 2 

S-ID-8 0 5 0 0 5 (5%) 5 

S-ID-9 0 1 0 0 1 (1%) 1 

S-IC-1 0 0 1 0 1 (1%) 1 

S-IC-2 0 1 0 0 1 (1%) 1 

S-IC-3 0 0 2 0 2 (2%) 2 

S-IC-4 0 0 0 0 0 (0%) 0 

S-IC-5 0 0 1 0 1 (1%) 1 

S-IC-6 0 1 0 0 1 (1%) 1 

S-CP-1 0 1 0 0 1 (1%) 1 

S-CP-2 0 1 1 0 2 (2%) 2 

S-CP-3 0 2 0 1 3 (3%) 2 

S-CP-4 0 3 0 1 4 (4%) 3 

S-CP-5 0 0 0 0 0 (0%) 0 

S-CP-6 0 1 0 0 1 (1%) 1 

S-CP-7 1 1 0 0 2 (2%) 2 

Total 39 (41%) 28 (29%) 25 (26%) 4 (4%) 96 92 (96%) 

 

4.5.2 Question 2 

The CPMP curriculum has more high-level items than low-level items much like IMP, as shown 

in Table 4.19. Of the 2018 total items, 75% of them were coded at a high-level. Of the high-level 

items, 56% were procedures with connections and 44% were doing mathematics. 
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Table 4.19. Cognitive demand of items in CPMP sorted by standard 

Standard Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

S-ID-1 1 79 162 71 313 (16%) 

S-ID-2 0 42 98 78 218 (11%) 

S-ID-3 0 3 26 19 48 (2%) 

S-ID-4 2 14 79 22 117 (6%) 

S-ID-5 0 29 6 2 37 (2%) 

S-ID-6a 3 162 191 142 498 (25%) 

S-ID-6b 0 19 22 23 64 (3%) 

S-ID-6c 2 33 40 32 107 (5%) 

S-ID-7 0 6 40 8 54 (3%) 

S-ID-8 0 14 47 77 138 (7%) 

S-ID-9 1 3 8 16 28 (1%) 

S-IC-1 0 0 4 23 27 (1%) 

S-IC-2 0 4 5 10 19 (1%) 

S-IC-3 0 1 19 32 52 (3%) 

S-IC-4 0 3 1 0 4 (< 1%) 

S-IC-5 1 2 16 27 46 (2%) 

S-IC-6 0 0 3 19 22 (1%) 

S-CP-1 0 17 16 9 42 (2%) 

S-CP-2 0 9 10 6 25 (1%) 

S-CP-3 0 1 19 23 43 (2%) 

S-CP-4 0 18 14 18 50 (2%) 

S-CP-5 0 0 0 0 0 (0%) 

S-CP-6 0 0 0 3 3 (< 1%) 

S-CP-7 1 35 20 7 63 (3%) 

Total 11 (1%) 494 (24%) 846 (42%) 667 (33%) 2018 

 

Year one of the series has 565 high-level items out of a total of 825 items with is 68%, as 

shown in Table 4.20. Year two represents an increase in the percentage of high-level items as 

450 of 582 items are high-level, which is 77% of the total items. Year 3 shows a continuation of 

the pattern as the percentage of high-level items increases to 82%, with 394 of the 481 total items 

being coded as high-level. Finally, 95 of 119 items (80%) were coded as high-level. 
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Table 4.20. Cognitive demand of items in CPMP textbooks sorted by textbook 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

Year 1 1 259 385 180 825 (41%) 

Year 2 3 129 185 265 582 (29%) 

Year 3 7 80 228 166 481 (24%) 

Year 4 0 24 46 49 119 (6%) 

Total 11 (1%) 492 (25%) 844 (42%) 660 (33%) 2007 

First 3 11 468 798 611 1888 (94%) 

 

 Somewhat different from the item analysis are the codes for tasks as shown in Table 4.21. 

A majority of the tasks were coded at the level of doing mathematics. This is a direct result of the 

coding scheme where the highest coded item within any task determined the level of the task. 

The coding scheme was designed to determine the highest potential of a task, not what the 

majority of the task was. 

 

 

 

 

 

 

 

 

 

 

 

 



 157 

Table 4.21. Cognitive demand of tasks in CPMP sorted by standard 

Standard Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

S-ID-1 0 2 7 10 19 (20%) 

S-ID-2 0 0 4 8 12 (13%) 

S-ID-3 0 0 0 1 1 (1%) 

S-ID-4 0 1 4 2 7 (7%) 

S-ID-5 0 0 1 1 2 (2%) 

S-ID-6a 0 2 11 10 23 (24%) 

S-ID-6b 0 0 1 1 2 (2%) 

S-ID-6c 0 0 0 3 3 (3%) 

S-ID-7 0 0 2 0 2 (2%) 

S-ID-8 0 0 0 5 5 (5%) 

S-ID-9 0 0 0 1 1 (1%) 

S-IC-1 0 0 0 1 1 (1%) 

S-IC-2 0 0 0 1 1 (1%) 

S-IC-3 0 0 0 2 2 (2%) 

S-IC-4 0 0 0 0 0 (0%) 

S-IC-5 0 0 0 1 1 (1%) 

S-IC-6 0 0 0 1 1 (1%) 

S-CP-1 0 0 0 1 1 (1%) 

S-CP-2 0 0 0 2 2 (2%) 

S-CP-3 0 0 1 2 3 (3%) 

S-CP-4 0 0 2 2 4 (4%) 

S-CP-5 0 0 0 0 0 (0%) 

S-CP-6 0 0 0 1 1 (1%) 

S-CP-7 0 0 0 2 2 (2%) 

Total 0 (0%) 5 (5%) 33 (34%) 58 (60%) 96 

 

For example, Figure 4.13 shows a task that contains nine items. Of these nine items, five 

of them were in alignment with the probability and statistics recommendations of CCSSM. 

Specifically, items 2bi, 2bii, 2biii, 2e, and 2fii all aligned with standard S-ID-6a as shown in 

Table 4.22. Of these five items, four were coded at the level of procedures without connections 

(2bi, 2bii, 2biii, and 2e) and one of them was coded as doing mathematics (2fii). Even though 

there are more codes for procedures without connections, the highest potential of the task is 

doing mathematics. Therefore, the task was coded as doing mathematics. 
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Figure 4.13. Doing mathematics task in CPMP containing items below doing mathematics 
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Table 4.22. Cognitive demand of items in Figure 4.13 

Series Textbook Unit Lesson Problem Standard Cognitive Demand 

CPMP 2A 1 1 Inv 2 – 2a None  

CPMP 2A 1 1 Inv 2 – 2bi S-ID-6a PnC 

CPMP 2A 1 1 Inv 2 – 2bii S-ID-6a PnC 

CPMP 2A 1 1 Inv 2 – 2biii S-ID-6a PnC 

CPMP 2A 1 1 Inv 2 – 2c None  

CPMP 2A 1 1 Inv 2 – 2d None  

CPMP 2A 1 1 Inv 2 – 2e S-ID-6a PnC 

CPMP 2A 1 1 Inv 2 – 2fi None  

CPMP 2A 1 1 Inv 2 – 2fii S-ID-6a DM 

 

As shown in Table 4.23, examining the tasks found in each textbook reveals a design that 

emphasizes high-level tasks. The type of high-level tasks differs from year one to the other years. 

Year 1 represents a balance between the two high-level task types with eighteen tasks considered 

procedures with connections and eighteen tasks considered doing mathematics. However, the 

other years represent a shift to an emphasis on doing mathematics tasks. Finally, it may be worth 

noting again that a student only completing three of the four years of the curriculum would not 

miss a substantial number of opportunities in comparison from the fourth year when compared to 

the previous three. 

Table 4.23. Cognitive demand of tasks in CPMP textbooks sorted by textbook 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

Year 1 0 3 18 18 39 (41%) 

Year 2 0 0 6 22 28 (29%) 

Year 3 0 2 8 15 25 (26%) 

Year 4 0 0 1 3 4 (4%) 

Total 0 (0%) 5 (5%) 33 (34%) 58 (60%) 96 

First 3 0 5 32 55 92 (96%) 
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4.5.3 Question 3 

As shown in Table 4.24, there is minimal support for teachers enacting the curriculum. Of the 91 

high-level tasks, only 13 of them (14%) provide opportunities for teacher learning. There appears 

to be a greater emphasis on anticipating student thinking than there is on providing transparency 

since 11 of the 13 opportunities for teacher learning are related to anticipation. 

Figure 4.14 is part of a task where students are asked to relate a table or a graph to the 

Law of Large Numbers. The teacher’s edition of the textbook provides an opportunity for 

anticipation as shown in Figure 4.15. Figure 4.15 anticipates two concepts that may cause 

conflict with students when it comes to the law of large numbers. Students may understand that 

the proportion of heads tends to get closer to the theoretical value of 0.5, but they may find 

difficulty in recognizing that the difference between actual value of heads and the expected value 

of heads typically increases. 

 

 

Figure 4.14. Task supported via anticipation in CPMP Course 1 (Hirsch et al., p. 556, 2015) 
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Figure 4.15. Support via anticipation in CPMP Course 1 (Hirsch et al., p. 556T, 2015) 

Figure 4.16 is a task from CPMP where the teacher’s edition provides an opportunity for 

transparency. Figure 4.17 is the part of the teacher’s edition that corresponds to student edition 

task shown in Figure 4.16. These figures demonstrate what typical opportunities for transparency 

look like in CPMP textbooks. As shown in Figure 4.17, the underlying focus of the task, use an 

informal understanding of conditional probability, is made explicit to the teacher. Additionally, 

the teacher is provided with an explanation of how the various methods of completing the task 

could be emphasized depending on the prior experience of the students in the class. This allows 

the teacher to adapt the task as needed without losing the conceptual understanding that the task 

intends to develop. 
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Figure 4.16. Task supported via transparency in CPMP Course 4 (Hirsch et al., p. 579, 2015) 



 163 

 

Figure 4.17. Support via transparency in CPMP Course 4 (Hirsch et al., p. 579T, 2015) 
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Table 4.24. Teacher support on high-level probability and statistics tasks in CPMP 

Textbook Anticipation Transparency Total 

Year 1 5/36 1/36 6/36 

Year 2 5/28 0/28 5/28 

Year 3 0/23 0/23 0/23 

Year 4 1/4 ¼ 2/4 

Total 11/91 2/91 13/91 

 

4.6 COMPARISONS BETWEEN CURRICULUM MATERIALS 

Looking at each set of curriculum materials individually has many benefits, but these results 

should also be examined in comparison with one another. This examination will once again 

progress through each of the research questions using the established relevant results to compare 

the three sets of curriculum materials. 

4.6.1 Question 1 

The CPMP curriculum provides the most opportunities for students to engage in all of the 

probability and statistics content suggestion of CCSSM based on the number of items in the 

student text as shown in Table 4.25. In many cases where CPMP lacks items for a specific 

standard, the other two curricula do as well. For example, S-CP-5 is not addressed by either 

CPMP or IMP and GM has only one item associated with S-CP-5. However, GM is lacking in S-

ID-5 where the other two are not. IMP has four standards completely unaddressed (S-ID-6b, S-

ID-8, S-CP-3, and S-CP-7) that the other two curricula address in some manner. 
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When looking at only the first three years of each curriculum, it is interesting to note that 

even though IMP has a much lower number of items than GM (191 compared to 994) as shown 

in Table 4.25, the IMP curriculum has more tasks than does the GM curriculum (42 compared to 

36) as shown in Table 4.26. This is the result of the GM textbook providing enrichment and 

review problems at the end of each section where the IMP curriculum does not as discussed 

previously in this chapter. Refer to Figure 4.3 and Figure 4.4 from GM and Figure 4.5 from IMP 

from the beginning of this chapter for visual representation of the differences in the two 

curricula. 
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Table 4.25. Items aligned with CCSSM probability and statistics in each curriculum 

Standard Glencoe 

Mathematics 

Total 

Glencoe 

Mathematics 

First 3 

Interactive 

Mathematics 

Program 

Total 

Interactive 

Mathematics 

Program 

First 3 

Core-Plus 

Mathematics 

Project 

Total 

Core-Plus 

Mathematics 

Project   

First 3 

S-ID-1 161 148 21 21 313 311 

S-ID-2 138 99 14 14 220 220 

S-ID-3 27 26 14 14 48 48 

S-ID-4 257 80 10 10 117 117 

S-ID-5 8 8 20 20 37 37 

S-ID-6a 266 96 20 20 497 444 

S-ID-6b 17 9 0 0 64 40 

S-ID-6c 86 59 3 3 107 92 

S-ID-7 36 27 8 8 54 54 

S-ID-8 81 55 0 0 138 138 

S-ID-9 21 21 1 1 28 28 

S-IC-1 31 14 6 6 27 27 

S-IC-2 65 2 8 8 19 19 

S-IC-3 70 70 1 1 52 52 

S-IC-4 65 28 2 2 4 4 

S-IC-5 4 2 14 14 46 46 

S-IC-6 11 11 6 6 22 22 

S-CP-1 51 51 28 28 42 35 

S-CP-2 31 31 13 13 25 24 

S-CP-3 56 56 0 0 42 29 

S-CP-4 17 17 1 1 50 44 

S-CP-5 1 1 0 0 0 0 

S-CP-6 2 2 1 1 3 3 

S-CP-7 82 81 0 0 63 63 

Total 1584 994 191 191 2018 1897 

 

As shown in Table 4.26, when examining the textbooks by task, the CPMP curriculum 

provides the most opportunities for students to engage in all of the probability and statistics 

content suggestion of CCSSM. When CPMP lacks tasks for a specific standard, the other two 

curricula do as well. The only exception is in standard S-IC-4 where the GM textbooks have 

three tasks and the IMP textbooks have one task. However, there are multiple examples of the 

other two textbook series not having a task for a specified textbook series but CPMP having at 
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least one. There is even one standard, S-CP-4, where both GM and IMP do not have a task 

corresponding to the standard, but CPMP has four. 

Table 4.26. Tasks aligned with CCSSM probability and statistics in each curriculum 

Standard Glencoe 

Mathematics 

Total 

Glencoe 

Mathematics 

First 3 

Interactive 

Mathematics 

Program 

Total 

Interactive 

Mathematics 

Program 

First 3 

Core-Plus 

Mathematics 

Project Total 

Core-Plus 

Mathematics 

Project    

First 3 

S-ID-1 8 4 2 2 19 19 

S-ID-2 6 5 2 2 12 12 

S-ID-3 2 2 2 2 1 1 

S-ID-4 3 1 2 2 7 7 

S-ID-5 0 0 3 3 2 2 

S-ID-6a 6 3 5 5 23 22 

S-ID-6b 2 1 0 0 2 1 

S-ID-6c 4 2 1 1 3 3 

S-ID-7 2 1 1 1 2 2 

S-ID-8 4 2 0 0 5 5 

S-ID-9 0 0 1 1 1 1 

S-IC-1 2 1 3 3 1 1 

S-IC-2 3 0 4 4 1 1 

S-IC-3 3 3 1 1 2 2 

S-IC-4 3 1 1 1 0 0 

S-IC-5 1 0 4 4 1 1 

S-IC-6 1 1 3 3 1 1 

S-CP-1 2 2 3 3 1 1 

S-CP-2 2 2 3 3 2 2 

S-CP-3 2 2 0 0 3 2 

S-CP-4 0 0 0 0 4 3 

S-CP-5 0 0 0 0 0 0 

S-CP-6 0 0 1 1 1 1 

S-CP-7 3 3 0 0 2 2 

Total 59 36 42 42 96 92 

 

 There are 24 individual standards related to probability and statistics in CCSSM. As 

shown in Figure 4.18, The GM series addressed all 24 standards with at least one item. This 

number is accurate when both the entire curriculum and only the first three years of the 

curriculum are considered. However, only 19 of the 24 probability and statistics standards are 

addressed by tasks over all four years of the GM curriculum and even less, 17, are addressed by 
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the first three years of the curriculum. Both the entire CPMP series and the first three years of 

CPMP address 23 of the 24 probability and statistics standards with at least one item. The CPMP 

series addresses 22 of the 24 with a task both in the entire series and in the first three years. 

Finally, IMP addresses 19 of 24 probability and statistics standards with at least one item while 

addressing 18 of 24 with at least one task in the entire series. These numbers stay the same when 

only the first three years of the curriculum are considered. 

 

Figure 4.18. Number of CCSSM probability and statistics standards in each curriculum 

 Figure 4.19 shows the total number of items found in each curriculum that address any 

probability and statistics standard from CCSSM. The GM series has 1584 items in the entire 

series and 994 items in the first three year of the curriculum addressing probability and statistics 

standards from CCSSM. The CPMP series has 2018 items addressing probability and statistics 

standards from CCSSM in the entire curriculum and 1897 items in the first three years. Finally, 

IMP has 191 items in both the entire series and in the first three years since IMP has no 

probability and statistics content in alignment with CCSSM in the fourth year of the curriculum. 
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Figure 4.19. Number of items addressing CCSSM probability and statistics in each series 

 Figure 4.20 shows the total number of tasks found in each curriculum that address any 

probability and statistics standard from CCSSM. The GM series has 59 tasks in the entire series 

and 36 tasks in the first three year of the curriculum addressing probability and statistics 

standards from CCSSM. The CPMP series has 96 tasks addressing probability and statistics 

standards from CCSSM in the entire curriculum and 92 tasks in the first three years. Finally, IMP 

has 42 tasks in both the entire series and in the first three years. 
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Figure 4.20. Number of tasks addressing CCSSM probability and statistics in each series 

4.6.2 Question 2 

As shown in Table 4.27, the GM curriculum is dominated by low-level items. Nearly 83% of the 

items in the GM curriculum are low-level. Contrarily, the IMP curriculum and CPMP curriculum 

have mostly high-level tasks with 71% of the IMP items and 75% of the CPMP items being 

high-level. In order to contrast the IMP and CPMP curriculums, a closer examination of the 

high-level tasks is necessary. In the IMP curriculum, 56% of the high-level tasks are doing 

mathematics. On the other hand, 56% of the high-level tasks in CPMP are procedures with 

connection. 
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Table 4.27. Cognitive demand of probability and statistics items in each curriculum 

Textbook 

Series 

Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

Total 

Glencoe 

Mathematics 

Total 

18 1259 212 56 1545 

Glencoe 

Mathematics 

First 3 

9 799 89 22 919 

Interactive 

Mathematics 

Program   

Total 

1 55 59 76 191 

Interactive 

Mathematics 

Program     

First 3 

1 55 59 76 191 

Core-Plus 

Mathematics 

Project      

Total 

11 492 844 660 2007 

Core-Plus 

Mathematics 

Project       

First 3 

11 468 798 611 1888 

 

Figure 4.21 is a graphical representation of the same data found in Table 4.27. Figure 

4.21 clearly demonstrates the previously discussed tendency toward procedures without 

connections items in the GM series. The CPMP series has some low-level items, but there are 

more of each type of high-level item (procedures with connections and doing mathematics) than 

there are low-level items combined. The number of items in IMP increases with the cognitive 

demand. In other words, the higher the level of cognitive demand, the more items there are.  
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Figure 4.21. Cognitive demand of probability and statistics items in each curriculum 

Much like the item analysis, the task analysis shown in Table 4.28 makes the traditional 

versus Standards-based designs visible with results. Only 34% of the tasks in the GM curriculum 

are high-level. However, both the IMP and CPMP curriculums have more than 60% of their 

tasks coded as being high-level.  
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Table 4.28. Cognitive demand of probability and statistics tasks in each curriculum 

Textbook 

Series 

Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

Glencoe 

Mathematics 

Total 

0 39 15 5 59 

Glencoe 

Mathematics 

First 3 

0 32 4 0 36 

Interactive 

Mathematics 

Program   

Total 

0 6 7 25 38 

Interactive 

Mathematics 

Program     

First 3 

0 6 7 25 38 

Core-Plus 

Mathematics 

Project      

Total 

0 5 33 58 96 

Core-Plus 

Mathematics 

Project       

First 3 

0 5 32 55 92 

 

 Once again, Figure 4.22 represents the data from Table 4.28 graphically. As shown in 

Figure 4.21, The GM series contains mostly procedures without connections tasks, has a few 

procedures with connections tasks, and even less doing mathematics tasks. The other two 

textbook series, CPMP and IMP, both have mostly doing mathematics tasks with some 

procedures with connections and procedures without connections tasks as well. 
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Figure 4.22. Cognitive demand of probability and statistics tasks in each curriculum 

4.6.3 Question 3 

As shown in Table 4.29, the IMP curriculum materials clearly provide the most support 

for teacher learning per high-level task. The GM curriculum does not provide more than one 

opportunity for teacher learning even though there are twenty tasks that are highly cognitively 

demanding for the students and thus demanding for the teacher to implement well. The ten 

opportunities for teacher learning in the IMP curriculum are close to the thirteen in the CPMP 

curriculum. However, ten opportunities out of 32 tasks means 31% of the high-level tasks in the 

IMP curriculum has opportunities for teacher learning. Thirteen opportunities out of 91 tasks 

means only 14% of the high-level tasks in the CPMP curriculum provide opportunities for 

teacher learning. 
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Table 4.29. Teacher support on high-level probability and statistics tasks in each curriculum 

Textbook Series Anticipation Transparency Total 

Glencoe Mathematics Total 1/20 0/20 1/20 

Glencoe Mathematics First 3 0/4 0/4 0/4 

Interactive Mathematics Program Total 10/32 0/32 10/32 

Interactive Mathematics Program First 3 10/32 0/32 10/32 

Core-Plus Mathematics Project Total 11/91 2/91 13/91 

Core-Plus Mathematics Project First 3 10/87 1/87 11/87 

 

As shown in Table 4.23, none of the curricula provides teacher support in the form of 

opportunities for teacher learning through anticipation or transparency on most of the high-level 

tasks found in them. The CPMP curriculum has the most opportunities, but CPMP also has the 

highest number of high-level tasks. The IMP curriculum has nearly the same number of 

opportunities, 10 compared to 13, but only has 32 high-level tasks that would benefit from such 

opportunities compared to 91 high-level tasks in CPMP. The GM curriculum has both the fewest 

number of opportunities and the fewest number of high-level tasks among the three curricula. 

 

Figure 4.23. Supported and unsupported high-level tasks in each curriculum  
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4.7 CHAPTER 4 SUMMARY 

The key results of the study can be summarized by the following: 

1) CPMP has the most items (2018) and tasks (96) that address the probability and statistics 

standards found in CCSSM. 

2) GM addresses the highest number of the 24 probability and statistics standards found in 

CCSSM via items (24/24) while CPMP addresses the highest number via tasks (22/24). 

3) The majority of items found in the CPMP and IMP textbooks were of a high-level 

cognitive demand (75% high-level in CPMP and 71% high-level in IMP) while only 17% 

of the items in GM were high-level. 

4) The majority of the tasks found in the CPMP and IMP textbooks were of a high-level 

cognitive demand (95% high-level in CPMP and 86% high-level in IMP) while only 34% 

of the tasks in IMP were high-level. 

Less than one third of the high-level tasks in each of the three curricula provided opportunities 

for teacher learning (14% in CPMP, 31% in IMP, and 5% in GM) 
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5.0  DISCUSSION 

This chapter contains a discussion of the results presented in chapter 4 and how the results 

provide insights regarding which secondary mathematics curriculum materials have the potential 

to support teacher and students learning of probability and statistics. Specifically, the purpose of 

this study was to analyze current secondary mathematics textbooks to determine the extent to 

which those textbooks have the potential to prepare students and teachers to meet the demand of 

the CCSS related to statistics and probability. Rather than repeating the results presented in 

chapter 4, here the results are used to consider which textbook would be the optimal choice for 

teaching probability and statistics. The extent to which this potential exists can be examined in 

multiple ways. The following questions will frame the discussion that follows: 

1) Which textbook series provides the most comprehensive coverage of the CCSSM 

probability and statistics standards for content? 

2) Which textbook series provides the most comprehensive coverage of the Standards for 

Mathematical Practice by providing high-level opportunities for students to engage in? 

3) Which textbook series provides the most support for the teachers enacting the probability 

and statistics content?  

The chapter begins by defining comprehensive coverage. Next, there is a discussion of each 

textbook series’ inferred philosophy of how students learn. Then there is a discussion of the three 

framing questions. This will be followed in turn by discussion of: the limitations of the results; 
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the implications of the study; and the potential contributions of the study. Finally, concluding 

remarks including suggestions for future research are made. 

5.1 DEFINING COMPREHENSIVE COVERAGE 

It is important to notice the idea of comprehensive coverage showing up twice in these framing 

questions. Coverage is typically associated with content. However, the manner in which the 

content is addressed is as important as the content itself. If the demands of CCSSM are to be met, 

the content must be addressed in such a manner as to elicit the kind of thinking that would be 

required for one to engage in the Standards for Mathematical Practice that accompany the 

content standards of CCSSM. It has previously been suggested that high-level tasks will be 

required to elicit this type of thinking. Therefore, the concept of coverage must involve both 

content and cognitive demand. 

 Figures 5.1 and 5.2 have been provided to make this argument clear. The tasks in both 

Figure 5.1 and 5.2 could be considered as covering the content of CCSSM Standard S-ID-1. 

However, the manner in which that coverage occurs is very different. The task in Figure 5.1 

instructs students to construct two specific graphs, a histogram and a cumulative frequency 

histogram with specified values, from a data set that is provided by the textbook. While this task 

does involve representing data with plots on a real number line, the task is of low cognitive 

demand since they involve following a specified procedure without any connections being made. 

The task in Figure 5.2 also asks students to create a graph. However, students generate the data 

themselves and are not instructed on the type of graph that should be drawn. Additionally, 

students are asked to write a paragraph discussing their observations and summarizing the 
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results. Finally, students are asked to make connections between this task and a task they have 

previously completed. This task would be at the level of doing mathematics. 

 

 

Figure 5.1. Procedures without connections items in GM Algebra 1 (Carter et al., p. 45, 2010) 

 

 

Figure 5.2. Doing mathematics items in IMP Year 1 (Fendel et al., p. 104, 2009) 

 Given these two examples of tasks covering the same content in different ways, now 

consider them in the context of the Standards for Mathematical Practice from CCSSM (National 

Governors Association Center for Best Practices, Council of Chief State School Officers, 2010): 

1) Make sense of problems and persevere in solving them 

2) Reason abstractly and quantiatatively 

3) Construct viable arguments and critique the reasoning of others 



 180 

4) Model with mathematics 

5) Use appropriate tools strategically 

6) Attend to precision 

7) Look for and make use of structure 

8) Look for and express regularity in repeated reasoning 

The doing mathematics task, Figure 5.2, provides students with an opportunity to engage 

in multiple Standards for Mathematical Practice. Because students must generate their own data 

set and are not given a specific type of graph to create, students are required to make sense of the 

problem and persevere in solving it, have the opportunity to look for and make use of structure, 

and may look for an express regularity in repeated reasoning. Requiring students to summarize 

their observations and discuss the results encourages the students to reason abstractly and 

quantitatively as well as look for and make use of structure. Finally, having students reflect on a 

previous task, the task shown in Figure 5.2 promotes students constructing viable arguments and 

critiquing the reasoning of others by having them reflect on a previously constructed argument 

and consider it in light of the new task. 

The procedures without connections task, Figure 5.1, do not provide students with 

opportunity to engage in the Standards for Mathematical Practice because students are given the 

data set and provided specific instructions on what to do. By not allowing students to generate 

their own data or make a decision about what type of graph to create, students are not being 

engaged in the Standards for Mathematical Practice. Additionally, once the graphs are created, 

students do not do anything with them. There is no opportunity to use the graph or data for any 

high-level thinking. 
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5.2 INFERRED PHILOSOPHY OF HOW STUDENTS LEARN 

Each textbook series has its own philosophy regarding how students learn that can be inferred 

from the examination of the materials. Glencoe Mathematics (GM) is a traditional textbook 

series where students are presented a few examples and then provided with many items to 

practice that mirror the examples and review previous lessons from other sections, chapters, or 

even textbooks. The GM philosophy appears to be one where students look at specific, detailed 

algorithms presented in the textbook or by the teacher who follows the steps found in the 

textbook and then uses the algorithm repeatedly on similar problems. Once the procedures has 

been observed and then mimicked, students are then provided opportunities to apply the 

procedure to more challenging items and review previously learned procedures. Thus, the 

inferred philosophy is that students learn best when provided an algorithm that they can repeat 

until it is locked into their memories. To ensure algorithms are not forgotten due to lack of use, 

items requiring their use may show up in subsequent sections for further repetition. 

Interactive Mathematics Program (IMP) is a Standards-based curriculum where students are 

given activities to work through that are intended to develop student understanding of 

mathematics while students complete them. Rather than being provided algorithms, the students 

are encouraged to work through problems independently or in small groups. The teacher’s role is 

to provide support as opposed to direct instruction. The philosophy is that the students will 

develop meaning as they work through each of the activities. The IMP curriculum does not 

provide items for students to practice or review what they have learned. The philosophy instead 

is that students will have developed their own meaning and understanding. Since students have 

developed understandings on their own, there is no need for practice and review. 
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Core-Plus Mathematics Project (CPMP) is a blend of the two approaches. CPMP 

provides students with activities to work through, that they term investigations, which are 

intended to develop student understanding much like IMP. However, CPMP also provides 

exercises for student practice and review like GM. Supporters of the CPMP philosophy would 

assert that deep, meaningful understandings are developed through the investigations with the 

review and practice problems available to allow for repetition if needed. The potential impact of 

these inferred philosophies regarding how students learn will be part of the discussion 

throughout this chapter. 

5.3 COMPREHENSIVE COVERAGE OF CONTENT STANDARDS 

When considering the coverage of content standards, multiple grain sizes of analysis are 

possible. At the most detailed level of analysis, one could consider individual items in 

relationship to individual standards as was presented in chapter 4 (see Table 4.25). However, 

both the examination of individual standards and looking at items may be too detailed to capture 

the big picture of each curriculum. Rather than being bogged down by the detail of individual 

standards and items, a big picture approach using clusters of standards and instructional tasks 

will be used for the discussion of content coverage. 

The 24 probability and statistics standards from CCSSM are grouped into three clusters by 

CCSSM. These clusters are Interpreting Categorical and Quantitative Data (S-ID), Making 

Inferences and Justifying Conclusions (S-IC), and Conditional Probability and the Rules of 

Probability (S-CP). These clusters represent the big ideas of statistics that students should learn 

while in high school. Looking at clusters instead of individual standards is justifiable because the 
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absence of an individual standard may not be a glaring omission based on research in probability 

and statistics. In chapter 2, an extensive review of literature established a strong overall 

relationship between scholarly research and CCSSM overall. Additionally, the GAISE Report 

was also examined to determine the strength of the relationship between the GAISE Report and 

CCSSM, which was once again strong. However, when one considers individual standards, these 

two relationships were did not always exist. For example, S-CP-6 from CCSSM was not 

explicitly addressed in the GAISE report and no specific reference from the review of literature 

was found in relationship to this standard (see Table 2.3 for more). Given the lack of agreement 

between the GAISE Report, scholarly research, and CCSSM on an individual level, it may be 

reasonable to examine a larger grain size for a textbook analysis of coverage. 

The notion of using instructional tasks instead of individual items is justified for multiple 

reasons. First, items that do not appear as part of the instructional section of the textbook are less 

likely to be engaged in by students than those that appear as part of an instructional task. While it 

was important to consider all parts of the textbook in the analysis, such as review and enrichment 

problems, students are going to be given opportunities to engage initially through instruction. 

Secondly, the item analysis yielded similar results to the task analysis. Looking at tasks instead 

of items will not have a great impact on the outcome. Those textbooks that primarily used high-

level items were the same that primarily used high-level tasks. Similarly, those that used low-

level items also had low-level tasks. While the number of items will be referenced occasionally 

to further develop the discussion of each curricula’s inferred philosophy regarding how students 

learn, the focus of the discussion of comprehensive coverage will be on tasks. 

Based on these arguments, the following will be examined to determine comprehensive 

coverage of content: 
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1) How many tasks related to each cluster of the CCSSM probability and statistics standards 

are addressed by each textbook series? 

2) How many items and tasks related to the CCSSM probability and statistics standards are 

present in each textbook series? 

3) Where do the opportunities for learning probability and statistics appear in the 4-year 

high school curriculum? 

5.3.1 Coverage of clusters of standards 

As shown in Table 5.1 and Figure 5.3, all three textbook series cover each of the content clusters 

from the probability and statistics standards of CCSSM. Recall that the three clusters are 

Interpreting Categorical and Quantitative Data (S-ID), Making Inferences and Justifying 

Conclusions (S-IC), and Conditional Probability and the Rules of Probability (S-CP). It is 

interesting to note that while IMP has the least number of S-ID and S-CP tasks, but it has the 

most S-IC tasks of the three curricula. Also of interest is the balance of coverage within each 

curriculum. In the GM curriculum, 37 of 59 tasks or 63% of the tasks are associated with the S-

ID cluster. The CPMP has 80%, 77 of 96, of the tasks associated with the S-ID cluster. IMP is 

the only curriculum that does not invest a majority of its instructional tasks in probability and 

statistics to the S-ID standard by having 45% of its tasks in the S-ID cluster. This approach is 

more balanced than the GM and CPMP approaches. Finally, it is interesting to note that with 

exception to the high number of tasks in the S-ID cluster, the three curricula are relatively similar 

in the number of tasks in alignment with the probability and statistics standards of CCSSM. 
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Table 5.1. Clusters of tasks aligned with CCSSM probability and statistics in each series 

Cluster GM Tasks IMP Tasks CPMP Tasks 

S-ID 37 19 77 

S-IC 13 16 6 

S-CP 9 7 13 

 

 

Figure 5.3. Clusters of tasks aligned with CCSSM probability and statistics in each series 

 The overall emphasis of the S-ID cluster over the S-CP cluster is not surprising given a 

similar emphasis in the assessments created by the Partnership for Assessment of Readiness for 

College and Careers (PARCC). PARCC is a collaborative effort representing multiple states and 

the District of Columbia to create assessments aligned with CCSS in both mathematics and 

English language arts. PARCC has organized CCSSM in both by traditional content (Algebra I, 

Geometry, and Algebra II) and in an integrated sequence (Mathematics Course 1, 2, and 3) with 

the idea of an end of courses assessment for each course. In each of these content structures, the 

standards from CCSSM are identified in order of importance as major content, supporting 

content, or additional content. As shown in Table 5.2, standards from the S-ID cluster are at least 

at the level of supporting standards and in some cases are considered major content in two of the 
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three courses whether organized by content or integrated. S-CP is deemphasized as it appears in 

only one of the three courses and is considered additional content, which is the lowest level of 

importance in the PARCC framework. 

Table 5.2. CCSSM content emphasis from PARCC Assessment Framework (PARCC, 2014) 

Course S-ID Cluster S-IC 

Cluster 

S-CP 

Cluster 

Algebra I 3 Major 

5 Supporting 

3 Additional 

0 Major 

0 Supporting 

0 Additional 

0 Major 

0 Supporting 

0 Additional 

Geometry 0 Major 

0 Supporting 

0 Additional 

0 Major 

0 Supporting 

0 Additional 

0 Major 

0 Supporting 

0 Additional 

Algebra II 0 Major 

3 Supporting 

1 Additional 

4 Major 

2 Supporting 

0 Additional 

0 Major 

0 Supporting 

7 Additional 

Mathematics 1 3 Major 

5 Supporting 

3 Additional 

0 Major 

0 Supporting 

0 Additional 

0 Major 

0 Supporting 

0 Additional 

Mathematics 2 0 Major 

0 Supporting 

0 Additional 

0 Major 

3 Supporting 

0 Additional 

0 Major 

0 Supporting 

7 Additional 

Mathematics 3 0 Major 

4 Supporting 

0 Additional 

0 Major 

2 Supporting 

4 Additional 

0 Major 

0 Supporting 

0 Additional 

 

5.3.2 Number of tasks in the textbook series 

A second method to addressing coverage of probability and statistics content is to examine the 

number of tasks each textbook series contains that are in alignment with the CCSSM probability 

and statistics standards. As shown in Table 5.3 and Figure 5.4, CPMP has 96 total tasks, the GM 

series has 59 tasks, and the IMP series has 42 tasks. 
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Table 5.3. Tasks aligned with CCSSM probability and statistics in each series 

Textbook Series Number of Tasks 

GM 59 

IMP 42 

CPMP 96 

 

 

Figure 5.4. Tasks aligned with CCSSM probability and statistics in each series 

 

5.3.3 Where the opportunities appear in the curriculum 

A third consideration in addressing the question of which textbook series has the most 

comprehensive coverage is the location of the opportunities appear in the curriculum. Two points 

of discussion came from the results. One is the differences that emerge when comparing only the 

first three years of the textbook series as opposed to considering the entire series. The second is 

the integration of probability and statistics across the textbooks each curriculum. 
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Comparing the first three textbooks of each series 

 It is important to compare only the first three years of the textbook series because most 

states, 30 including the District of Columbia, only require three years of high school mathematics 

to graduate. Based on the three course minimum requirement, many students will not receive all 

four years of instruction in any of these curricula. Therefore, it may be important to consider 

what would be required in most or all states as opposed to the potential of the curriculum in its 

entirety. 

When considering only the first three textbook of any series, the data for the number of 

tasks may tell a different story than when all four years are considered, as was the case in Table 

5.3. There are differences for two of the curricula in this study, CPMP and GM. As shown in 

Table 5.4, the CPMP curriculum has 92 tasks in the first three books of the series. Recall that in 

Table 5.3, the CPMP curriculum had 96 tasks. This means a student only completing the first 

three years of the CPMP curriculum will have the opportunity to engage in 96% of the 

instructional tasks, as shown in Figure 5.4, in the curriculum. The GM curriculum loses a much 

higher percentage of opportunities when the Precalculus book is not considered in the data. Table 

5.4 shows that the GM curriculum has 36 tasks in the first three years of the curriculum. When 

compared to the data in Table 5.3, which shows 59 tasks, there are 23 tasks, as shown in Figure 

5.4, lost by not including the fourth year of the curriculum. This means that a student only 

completing the first three years of the curriculum would only receive 61% of the opportunities 

from tasks available in the curriculum. 

Table 5.4. Probability and statistics tasks in the first three years of each series 

Textbook Number of Tasks 

GM First Three 36 

IMP First Three 42 

CPMP First Three 92 
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There is no difference in the total number of tasks found in the IMP curriculum as shown 

in Tables 5.3 and 5.4 and Figure 5.4. This means that a student only completing the first three 

years of the IMP curriculum will not miss any of the opportunities to engage in probability and 

statistics content found in IMP. 

The CPMP and IMP curricula show little and no change respectively when only the first 

three years of each series is examined. However, the GM curriculum does change when only 

considering the first three years of the curriculum. Of particular interest is the number of tasks in 

the GM curriculum when compared to IMP. When all four years are considered, the GM 

curriculum has more tasks associated with probability and statistics (59 compared to 42). That 

comparison looks differently when only the first three years are compared as the GM curriculum 

has six less tasks in the first three years (36 compared to 42). 

Integration of Probability and Statistics into the curriculum 

A second point of discussion that emerges from the data is how each textbook series 

integrates the CCSSM probability and statistics standards into the curriculum. One of the 

characteristics of a traditional approach, as seen in the GM series, is the dedication of textbooks 

to specified content. The GM series has books specially dedicated to Algebra I, Algebra II, 

Geometry, and Precalculus. The Standards-based approach is typically characterized by a more 

integrated curriculum where each textbook contains a variety of topics blended together in order 

to facilitate students making connection between the topics more easily. Both IMP and CPMP 

follow this integrated approach as indicated by the labels of their textbooks as years (Year 1, 

Year 2, Year 3, and Year 4) rather than content. 
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As shown in Table 5.5, each of the three textbook series follows a similar pattern of 

having the most tasks in the first textbook of the series with the number of tasks in each textbook 

after being less than the one that preceded it. The only exception to this pattern is the GM 

Precalculus book. The GM series starts with 20 tasks in Algebra I, decreases to 12 tasks in 

Algebra II, decreases again to 4 tasks in Geometry, but then increases to 23 tasks (39% of the 

tasks in the entire GM series) in the Precalculus textbook. 

 

Table 5.5. Tasks aligned with CCSSM probability and statistics in each textbook 

Textbook Number of Tasks 

GM Algebra I 20 

GM Algebra II 12 

GM Geometry 4 

GM Precalculus 23 

IMP Year 1 24 

IMP Year 2 17 

IMP Year 3 1 

IMP Year 4 0 

CPMP Year 1 39 

CPMP Year 2 28 

CPMP Year 3 25 

CPMP Year 4 4 

 

The data in Table 5.5 leads to a discussion of the integration of probability and statistics 

in each curriculum. Because there are tasks throughout each of the four textbooks in the GM 

textbook series, it would appear that probability and statistics have been integrated throughout 

the curriculum. However, since there are no tasks in the IMP Year 4 textbook and only in the 

IMP Year 3 textbook, these data suggest that probability and statistics has not been integrated 

throughout the IMP curriculum. This finding is of particular interest since, as previously 

discussed, the GM series follows a traditional design while the IMP curriculum follows a 

Standards-based approach. Drilling a little deeper into the data, 97% of the tasks in the IMP 
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textbook series are in the first two books. Therefore, a student enrolling in four years of high 

school mathematics instruction based on IMP (assuming Year 1 as a freshman, Year 2 as a 

sophomore, Year 3 as a junior, and Year 4 as a senior), would stop engaging in probability and 

statistics content after completing his or her sophomore year. The CPMP series is more balanced 

than IMP is, but not as much as GM. The CPMP series has 70% of the probability and statistics 

tasks in the first two year of the curriculum as opposed to GM, which has only 54% of the tasks 

in the first two year. In summary, these data suggest that the traditional textbook series with 

content-based textbooks, GM, has integrated probability and statistics throughout all four 

textbooks better than the two textbook series, IMP and CPMP, which are typically characterized 

as being integrated approaches. 

5.4 COMPREHENSIVE COVERAGE OF THE STANDARDS FOR 

MATHEMATICAL PRACTICE 

The second point of discussion related to comprehensive coverage is associated with providing 

high-level opportunities (i.e. tasks) for students to engage in that will foster the development of 

the Standards for Mathematical Practice. It has been previously argued that CCSSM emphasizes 

conceptual understanding beyond what is currently taught in most high schools (NGACBP, 

2010). Additionally, it has already been argued in Chapter 2 that one could reasonably assume 

that the Standards for Mathematical Practice will necessitate student engagement in high-level 

tasks. These two points necessitate an examination of the level of cognitive demand of the items 

and tasks found in alignment with the CCSSM probability and statistics standards. 
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 As shown in Table 5.6 and Figure 5.6, only 33% of the instructional tasks in the GM 

curriculum are high-level. The IMP series has 84% of its tasks at a high-level. The CPMP series 

has 94% of its tasks at a high-level. 

 

Table 5.6. Cognitive demand of probability and statistics tasks in each series 

Textbook Memorization Procedures 

without 

Connections 

Procedures 

with 

Connections 

Doing 

Mathematics 

TOTAL 

GM Series 0 (0%) 39 (66%) 15 (25%) 5 (8%) 59 

IMP Series 0 (0%) 6 (16%) 7 (18%) 25 (66%) 38 

CPMP Series 0 (0%) 5 (5%) 33 (34%) 58 (60%) 96 

 

 

Figure 5.5. Cognitive demand of probability and statistics tasks in each series 

 There is a substantial difference in the level of cognitive demand of the opportunities 

found in the traditional curriculum, GM, when compared to the two Standards-based curricula, 

IMP and CPMP. Most of the items and tasks in the GM curriculum will likely not prepare 

students for the increased emphasis on conceptual understanding and the Standards for 
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Mathematical Practice in CCSS. However, both the IMP and CPMP series have the potential to 

engage students at a level that will allow them to meet these demands. Even if the high-level 

tasks from IMP and CPMP are not implemented with fidelity, they may still have increased 

opportunities to learn. Stein and Lane (1996) concluded that students who were in classrooms 

where high-level tasks were used but the cognitive demand not maintained during instruction 

still learned more than students who only had opportunities to work on low-level tasks. This 

conclusion suggests that even if IMP and CPMP are not implemented well, students with the 

opportunity to engage in the tasks in these textbooks will learn more than those students engaged 

in the GM curriculum. 

 As shown in Table 5.6 and Figure 5.6, the IMP and CPMP textbook series both have a 

higher level of cognitive demand than the GM curriculum. The lack of cognitive demand in the 

GM curriculum is more apparent when the GM Precalculus book is not considered. The GM 

Precalculus book contains 157 of the 268 high-level items and 16 of the 20 high-level tasks in 

the curriculum. Once again, if the fourth year of the curriculum is not required, students not 

given the opportunity to engage in the Precalculus textbook will not have the opportunity to 

engage in 59% of the high-level items and 80% of the high-level tasks in the curriculum. 

5.5 SUPPORT FOR TEACHERS 

The third question framing the discussion is, “Which textbook series provides the most support 

for the teachers enacting the probability and statistics content?” Support for teachers was 

examined in two ways. The first was an examination of anticipation. The second was an 

examination of transparency. Only high-level tasks were examined for indications of providing 
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support for the teacher because low-level tasks do not require support to be implemented with 

fidelity. 

 As shown in Table 5.7 and Figure 5.7, less than one third of the high-level tasks found in 

each textbook series provide support for the teacher. The GM curriculum has the fewest 

occurrences of support (1), which represent 5% of the high-level tasks found in it. The CPMP 

has only 13 opportunities even though there are 91 high-level tasks in the curriculum. There is 

only support provided for the teacher on 14% of the high-level tasks found in the curriculum. 

The IMP curriculum provides the highest percentage of support with 31% of the high-level tasks 

having anticipation (none contained transparency). 

Table 5.7. Teacher support on high-level probability and statistics tasks in each series 

Textbook Series Anticipation Transparency Total 

GM 1/20 0/20 1/20 

IMP 10/32 0/32 10/32 

CPMP 11/91 2/91 13/91 

 

 

Figure 5.6. Supported and Unsupported high-level tasks in each curriculum 
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 The IMP curriculum not only provides the highest percentage of support for teacher of 

the three textbook series, but it also provides the support for the teacher in a manner that may 

best promote the development of the program by providing the most support in the first year. 

Eight of the ten indication of support for the teacher occur in the first year of the IMP 

curriculum. Despite having nearly three times as many high-level tasks, the CPMP curriculum 

has only three more indications of support for the teacher than IMP. Finally, the GM curriculum 

does not provide any support for the teacher other than one instance, but there is not really a need 

for support since the curriculum will be much easier to implement at its highest potential, which 

is low-level. 

Another point of discussion is the overall lack of transparency provided by any of the 

textbooks. There are only indication of support for the teacher through transparency (both in the 

CPMP series) in all three curricula combined. Transparency allows the teacher to select and 

adapt tasks by providing him or her with the mathematical purpose of the task (Stein & Kim, 

2009). Teachers need to adapt the curriculum to meet the needs of their students (Ball & Cohen, 

1996). However, without support for the teachers via transparency, the abilities of the teachers to 

make these necessary adaptations while maintaining fidelity of implementation may not exist. 

Given the argument by Stein and Kim (2009) that doing mathematics tasks are even more 

difficult to enact well than procedures with connection, the lack of transparency may be even 

more detrimental to tasks receiving the doing mathematics code. 
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5.6 CHOOSING A CURRICULUM FOR TEACHING PROBABILITY AND 

STATISTICS 

There are multiple points to consider when choosing a curriculum for teaching probability and 

statistics. While many start with the notion that more is better, quantity should not be the only 

consideration. The discussion may begin with a count of how many standards are addressed or 

how many opportunities there are, but the quality of those opportunities must be considered. 

When considering quality, the level of cognitive demand becomes the focus of the discussion. 

However, highly demanding tasks are difficult for teacher to implement well. Therefore, any 

curriculum worth teaching will be more difficult to teach. Support for the teacher will be 

necessary if the curriculum is to be implemented with fidelity. Ball and Cohen (1996) suggest 

that curriculum materials often overlook the teacher, which leads to the enacted curriculum not 

matching the intentions of the written curriculum. It may not matter how many high-level 

opportunities a textbook provides if that same textbook does not take steps to ensure the teacher 

enacts them with fidelity. 

School districts choosing a curriculum would be faced with a difficult decision given 

these curricular options. Both IMP and CPMP have the potential to provide students with 

opportunities to engage in high-level tasks and items related to probability and statistics. Both of 

these curricula will require substantial work by the teachers to implement well. While CPMP has 

more learning opportunities for students overall, IMP provides more support for the teacher. 

However, one must consider whether either curriculum provides enough support to be 

implemented with fidelity. 

Part of the decision will likely involve the school district’s philosophy regarding how 

students learn. The IMP curriculum materials are clearly a Standards-based curriculum. The 
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design focuses on high-level, instructional tasks that the students work through in order to 

develop a deep, conceptual understanding of mathematical content. The CPMP blends a similar 

Standards-based approach with some of the traditional opportunities for student practice 

problems and review exercises that many educators and students are accustomed to using. How 

the school district’s philosophy matches with the philosophy of each curriculum will be an 

important component of the decision making process. 

5.7 LIMITATIONS OF THE STUDY 

One limitation of this study is that it only focuses on the CCSSM probability and statistics 

standards. There are six different conceptual categories in the CCSSM for high school. 

Probability and statistics represent only one of the six categories. It is possible that analyzing one 

or all of the other conceptual categories could tell a different story about each curriculum. This 

limitation would be true of a focus on any of the conceptual categories of CCSSM (for example 

if the study focused on functions), but is especially true of probability and statistics because these 

two areas have historically been widely ignored (Shaughnessy, 2007) and are still not up to the 

level of national document suggestions (Jones, Langrall, & Mooney, 2007). However, the 

philosophy of how students learn found in each curriculum is unlikely to be different for the 

other conceptual categories. Since the philosophy is the same, the other conceptual categories 

likely received similar treatment with regard to level of cognitive demand and teacher support 

when compared to the findings regarding probability and statistics. Therefore, it is likely that 

these findings do provide insight into the curriculum more broadly. The findings regarding 
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content coverage may be different for the other conceptual categories and would require further 

investigation. 

Another limitation is that this study only analyzes three sets of current curriculum 

materials. These three sets of materials provide a snapshot of the landscape of secondary 

mathematics education materials, but they may not paint the entire picture of what is available. 

Since only three curricula were included, it is not possible to conclude that any of the three is the 

best available in any of the dimensions analyzed. Including more curricula from an even wider 

variety of publishers could reveal more about available curriculum materials. 

5.8 IMPLICATIONS AND POTENTIAL CONTRIBUTIONS OF THE STUDY 

There is a variety of groups that could benefit from this study. The largest benefactor would 

likely be those schools or districts considering one of the curricula reviewed for adoption. 

Analyzing the cognitive demand of instructional tasks speaks to both the instructional design and 

the content emphasis of a textbook as suggested by Hudson, Lahann, and Lee (2010). Schools 

can then decide what type of textbook is appropriate for their school’s philosophy regarding how 

students learn. Textbooks with high-level tasks will require a great deal of professional 

development, may cause a lot of conflict with the beliefs held by teachers, and will be difficult to 

implement (Hudson, Lahann, & Lee, 2010). School decision makers will have to decide if they 

have the time, resources, and staff to take on such a challenge. The analysis of the support 

provided for teachers will provide decision makers with an idea of how supportive the 

curriculum materials are of their own implementation. In addition, each textbook was analyzed 

to determine its alignment with the CCSSM in regards to probability and statistics. While most 
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publishers are going to make the claim of alignment, the textbooks analyzed had that claim tested 

in one specific content area. 

In addition to providing specific information related to probability and statistics, the 

analysis of tasks provided by this study could serve as a framework for further evaluation of 

curriculum materials. For example, if a district uses curriculum materials that have not been 

reviewed here, they could apply the same analysis on their own to determine how their 

curriculum materials would fit in with those that are reviewed in this study. This study brings 

together research on tasks that require high-level cognitive demand, research on educative 

curriculum materials, and applies them to the CCSSM in such a manner that could be applicable 

to any one of the content areas identified by the CCSSM. Therefore, anyone wishing to evaluate 

content areas other than probability and statistics as defined by the CCSSM could benefit from 

this study as well. 

Finally, teachers who create their own curriculum could benefit from this study. In 

today’s online world, many resources are available to teachers via the internet. However, not all 

of the resources are good ones. Teachers who design their own curriculum could benefit from 

this research because it provides information on what they might look for as they search through 

online resources. This research will help teachers to understand better the impact that the level of 

cognitive demand has on student learning. This research also provides teachers with an 

understanding of the importance of anticipation and transparency. 
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5.9 CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE RESEARCH 

Despite each of the three curricula claiming to be aligned with CCSSM, the nature of that 

alignment varies considerably. Each presented a different approach (traditional, Standards-based, 

and blended) to addressing the CCSSM probability and statistics standards. While this study 

accomplished the goal of providing insight regarding the potential of these secondary curriculum 

materials to promote student and teacher learning in the areas of probability and statistics, the 

effectiveness of a curriculum is not based solely on potential. In order to determine which 

curriculum is actually the most effective, much more research needs to be done. 

 Establishing the CPMP and IMP curricula as having many more high-level items and 

tasks than low-level is merely one-step in the right direction. As has been argued previously, 

teachers will need to improve their teaching practices if students are to engage in high-level tasks 

(Boston & Smith, 2009; Stein & Kaufmann, 2010) because high-level tasks are more difficult to 

implement with fidelity. One-step in facilitating these improved practices would to be providing 

opportunities for teacher learning through the curriculum (Ball & Cohen, 1996; Davis & Krajcik, 

2005). Will teachers take advantage of these opportunities? A logical next step would be to 

examine teachers as they set up high-level tasks to determine how, if at all, the teachers use the 

teacher materials. While it is important for a curriculum to provide opportunities for teacher 

support through anticipation and transparency, it is only useful if teacher take advantage of those 

opportunities. Understanding how teachers make use of the teacher materials could provide 

insight for textbook writers and publishers into how they can provide teachers with support they 

will be willing to use.  

 Previous research has already suggested that both IMP and CPMP perform at least equal 

to and in many cases better than their traditional counterparts on multiple forms of assessment. 
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For example, Senk and Thompson (2003) suggest that students in schools using NSF funded 

curriculum, which includes IMP and CPMP, perform as well as those students in schools using 

traditional curriculum, which characterizes GM, on assessments of procedural knowledge. 

However, on problem solving based assessments, the NSF curricula outperform their traditional 

counterparts. This is to suggest that the NSF curricula do no harm to procedural learning while 

improving problem solving ability. 

 A series of studies focusing on CPMP in comparison to traditional textbooks also 

suggests that CPMP performs as well or better than its traditional counterparts performs (Chavez 

et al., 2015; Grouws et al., 2013; Tarr et al., 2013). These studies focused primarily on the 

benefits of an integrated curriculum as opposed to one that separates textbooks by content but 

also incorporated other fields of research to their methodology. Grouws et al. (2013) compared 

CPMP Year 1 to Algebra I textbooks from traditional textbook series since both represented the 

first textbook in their respective series. Students with the opportunity to engage in CPMP Year 1 

as opposed to traditional Algebra I textbooks scored significantly higher on all three 

measurement tools use in the study: a common objectives test, a problem solving and reasoning 

test, and a standardized achievement test. Additionally, Grouws et al. suggest that the number of 

opportunities to learn student were provided and teacher experience were also significant factors 

in predicting success on the three assessment tools. Tarr et al. (2013) compared CPMP Course 2 

to Geometry since both are commonly used as the second textbook in their respective series. The 

same three types of measurement tools were used. The CPMP Course 2 students outperformed 

the Geometry students on the standardized achievement test. The two groups performed similarly 

on the other two assessments: common objectives test and problem solving and reasoning test. 

Once again, student opportunity to learn was a significant predictor of results. Finally, Chavez et 
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al. (2015) compared third year CPMP to traditional Algebra II courses as a comparison of the 

third textbook in each series. Again, a common objectives test and standardized achievement test 

were used. The CPMP Year 3 students scored higher on the common objectives test. Both scored 

roughly the same on the standardized achievement test. Interestingly, opportunity to learn was 

not a substantial factor in the Chavez et al. (2015) study. Instead, Chavez et al. suggest that 

teacher beliefs and orientation about reform-oriented practices were significant factors. 

 These three more detailed studies (Chavez et al., 2015; Grouws et al., 2013; Tarr et al., 

2013) confirm the previous suggestions of Senk and Thompson (2003). The CPMP curriculum 

performs as well or better than its traditional counterpart on multiple measures of student 

performance does. In other words, CPMP will do no harm overall while providing improvements 

in many areas. 

 The current study has addressed some of the suggestions made by these recent studies. 

Chavez et al. (2015) and Grouws et al. (2013) suggest that future research should incorporate an 

examination of more than one integrated curriculum. The current study has taken a step in this 

direction by analyzing both CPMP and IMP. Grouws et al. (2013) suggest that research 

specifically dedicated to examining how the opportunities provided for students to learn impact 

achievement is needed. Specifically, Grouws et al. suggest that a more detailed examination of 

the opportunities and more frequent classroom visits are necessary. The detailed examination of 

the opportunities provided by the three curricula in the current study provides the first step in 

addressing this suggestion by Grouws et al. 

 Next steps from the current study are similar to those suggested by Chavez et al. (2015), 

Grouws et al. (2013), and Tarr et al. (2013). All three of these studies suggest that more 

information is needed to determine which characteristics of a curriculum are important and under 
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what circumstances they are effective. Specifically, Tarr et al. (2013) suggests researchers need 

to examine teacher enactment and student achievement to gauge curricular effectiveness. Chavez 

et al. (2015) suggests that future research could use a variety of implementation measures along 

multiple student outcome measures. Armed with the details regarding the potential of the three 

curricula analyzed in the current study, researchers could take these steps as suggested. Those 

researchers wishing to incorporate additional integrated curricula into their study, as suggested 

by Grouws et al. (2013), could start by repeating the methodology outlined by the current study 

in preparation for the next steps previously suggested. 
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APPENDIX A 

PROBABILITY AND STATISTICS MISCONCEPTIONS IDENTIFIED IN RESEARCH 

Table A.1. Probability and statistics misconceptions identified in research 

Misconception Citation Description Example 

Availablity Tversky 

and 

Kahneman 

(1973) 

People rely on recall 

in place of statistics 

and therefore 

underestimate things 

that are difficult to 

recall. 

The letters K, L, N, R, and V are 

more likely to be the 3rd letter in a 

word than the 1st but it is easier to 

think of examples where they are first 

so subjects think 1st is more likely. 

Repesentativeness Kahneman 

and 

Tversky 

(1973) 

People favor samples 

that look like 

population 

characteristics instead 

of using statistics. 

When flipping a coin 10 times, the 

result HTTHTHHTHT is considered 

more likely than HHHHTTHHHH 

but they are equally likely. 

Base Rate Fallacy Bar-Hillel 

(1980) 

People tend to ignore 

base rates in favor of 

other information. 

The taxi problem: the percent of 

green cabs in a city is ignored in 

favor of witness testimony even 

though both should be considered. 

Conjunction 

Fallacy 

Tversky 

and 

Kahneman 

(1983) 

People will choose 

conjunctions as more 

likely than the 

individual outcomes. 

It considered more likely someone is 

a lawyer who plays golf than 

someone is a lawyer even though 

being a lawyer must be more likely 

because it would include being a 

lawyer who plays golf and those who 

don’t. 

 

 

 

 

                                  (table continues) 
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  Table A.1 (continued)  

Misconception Citation Description Example 

Outcome 

Approach 

Konold 

(1989) 

Probability is seen as 

the ability to predict 

what will happen on 

the next individual 

trial. 

If the weather forecast is calls for 

70% chance of rain and it does not 

rain, then the forecast is considered 

wrong even though it allowed for a 

30% chance of no rain. 

Equiprobability  Tempelaar, 

Gijselaers, 

and van 

der Loeff 

(2006) 

Random events are 

always equally likely. 

When rolling a die the probability of 

rolling a 6 and not rolling a 6 are both 

considered 50% even though it 

should be 1/6 and 5/6 respectively. 

Simpson’s 

Paradox 

Hawkins 

and 

Kapadia 

(1984) 

If a/b > c/d and e/f > 

g/h, then (a + e)/(b + 

f) < (c + g)/(d + h). 

If drug A is better for right-handed 

people and drug A is better for left 

handed people it is assumed drug A is 

better for all people but it is not 

necessarily true. 

Birthday Paradox Hawkins 

and 

Kapadia 

(1984) 

People assume that 

nobody will have the 

same birthday even in 

a crowded room. 

In a room of 30 people, it is actually 

very likely that two have the same 

birthday but it will be assumed 

unlikely. 

Combinatorial 

Naivety 

Hawkins 

and 

Kapadia 

(1984) 

There are more 

combinations of small 

groups then there are 

large groups because 

they are easier to think 

of. 

Given 10 people, it is assumed that 

there are more committees of 3 than 

there are committees of 7 even 

though they are the same 

Gambler’s 

Fallacy 

Hawkins 

and 

Kapadia 

(1984) 

The absence of a 

random outcome 

makes it more likely 

In roulette if red has not come up in a 

while it’s due to be next even though 

the probability is independent of prior 

outcomes. 

Positive Recency 

Effect 

Hawkins 

and 

Kapadia 

(1984) 

A repeated outcome 

becomes more likely 

In roulette if red has come up a lot it 

is more likely to do so again even 

though the probability is independent 

of prior outcomes. 

Correlation is 

Transitive 

Casey 

(2010) 

If A and B have a 

positive correlation 

and B and C have a 

positive correlation, 

then A and C must 

also have a positive 

correlation 

If hours sleeping and test scores are 

positively correlated, test scores and 

hours studying are positively 

correlated, then it will be assumed 

that hours sleeping and hours 

studying are positively correlated 

even though there may be no or even 

a negative correlation. 

 

 

                                  (table continues) 
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  Table A.1 (continued)  

Misconception Citation Description Example 

Law of Small 

Numbers 

Tempelaar, 

Gijselaers, 

and van 

der Loeff 

(2006) 

Small samples are 

judged to have the 

same characteristics as 

large samples 

A sample of 12 can have all the same 

tests applied to it as a sample of 30. 

Existence 

Correlation 

Casey 

(2010) 

Correlation is judged 

on existence instead 

of intensity 

A correlation of .49 means no 

correlation exists but .51 means a 

positive correlation exists even 

though these are roughly the same 

intensity of positive correlation. 

 



 207 

APPENDIX B 

GAISE REPORT BY FRANKLIN ET AL. (P. 14-15, 2007) 

 

Figure A.1. Process levels from the GAISE Report (Franklin et al., p. 14-15, 2007) 
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B.1 RECOMMENDATIONS AT LEVEL A BY FRANKLIN ET AL. (P. 23-24, 2007) 

 

Figure A.2. GAISE Report recommendations for level A (Franklin et al., p. 23-24, 2007) 
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B.2 RECOMMENDATIONS AT LEVEL B BY FRANKLIN ET AL. (P.37, 2007) 

 

Figure A.3. GAISE Report recommendations for level B (Franklin et al., p. 37, 2007) 
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B.3 RECOMMENDATIONS AT LEVEL C BY FRANKLIN ET AL. (P. 61-62, 2007) 

 

Figure A.4. GAISE Report recommendations for level C (Franklin et al., p. 61-62, 2007) 
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APPENDIX C 

TASK ANALYSIS GUIDE FROM SMITH AND STEIN (1998) 

 

Figure A.5. Task Analysis Guide from Smith and Stein (1998) 
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APPENDIX D 

D.1 MATH TASK FRAMEWORK FROM STEIN AND SMITH (P. 270, 1998) 

 

Figure A.6. Math Task Framework from Stein and Smith (p. 270, 1998) 
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