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This study used the Monte Carlo method to compare multilevel and single-level models in 

confirmatory factor analysis (CFA) of ordinal items with clustered data. Specifically, model fit 

indices, estimates of factor loading and standard error were compared among three models, two-

level CFA, single-level CFA with adjusted standard error, and single-level CFA with normal 

standard error.  Two different factorial structures were considered, 2 factors at both the within- 

and between-level (W2B2) and 2 factors at the within-level and 1 factor at the between-level 

(W2B1). 

All model fit indices indicated that the two-level CFA model fitted the clustered data 

well. The model fit of the two-level CFA model was better than that of the single-level CFA 

model with adjusted standard error, which was better than that of the normal single-level CFA 

model. Chi-square p value and RMSEA were not as sensitive as CFI and TLI in the small sample 

size to the misspecification of factorial structure. When factor loadings across levels were the 

same in the true model, factor loadings estimated from the single-level models were acceptable. 

The standard error of the within-level factor loading estimated by the normal model was 

significantly smaller than the complex model, which was smaller than the two-level model, 
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suggesting that standard errors are underestimated when the single-level model is used to 

estimate the two-level data. The effect of design factors on the relative bias of the factor loading 

and standard errors between W2B2 model and W2B1 model were similar in most conditions.  

These results suggest applied researchers consider the interest of the study first when 

selecting CFA models of clustered data.  The single-level CFA with adjusted standard error is 

preferred when the interest of the study is at the individual level, while multilevel CFA is 

recommended when the interest is at the cluster level. However, in either case, the 

recommendation is to compare both models to prevent the spurious clustering effect. If there 

truly exists a multilevel data structure, standard errors estimated from the two-level CFA model 

are expected to be significantly larger than adjusted standard errors in the single-level model.  



vi 

TABLE OF CONTENTS 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 STATEMENT OF THE PROBLEM ................................................................. 1 

1.1.1 Multilevel data ................................................................................................. 1 

1.1.2 Ignoring Clustering in Multilevel Data ......................................................... 2 

1.1.3 CFA with Multilevel Data ............................................................................... 3 

1.1.4 Model-Based Approach and Multilevel CFA ................................................ 4 

1.1.5 Design-Based Approach and CFA Adjusting for Standard Error ............. 5 

1.1.6 Design-Based Approach or Model-Based Approach .................................... 6 

1.1.7 Simulation Studies Comparing CFA with MCFA in Clustered Data......... 7 

1.1.8 Estimation methods in CFA............................................................................ 8 

1.2 PURPOSE OF THE STUDY ............................................................................ 10 

1.3 RESEARCH QUESTION ................................................................................. 11 

1.4 SIGNIFICANCE OF THE STUDY ................................................................. 11 

2.0 LITERATURE REVIEW .......................................................................................... 13 

2.1 CONFIRMATORY FACTOR ANALYSIS .................................................... 13 

2.1.1 Introduction to CFA and CCFA .................................................................. 13 

2.1.2 CFA Model Fit and Model Fit Indices ......................................................... 16 



vii 

2.1.3 Estimation Methods of CFA with ordinal variables................................... 17 

2.1.4 Using Estimators for Continuous Variable in Categorical Data ............... 21 

2.2 MULTILEVEL CONFIRMATORY FACTOR ANALYSIS ........................ 24 

2.2.1 Research Background about Organizational Effects in MCFA ................ 25 

2.2.2 Introduction of MCFA .................................................................................. 26 

2.2.3 Model Fit in MCFA ....................................................................................... 29 

2.2.4 Estimation method of MCFA ....................................................................... 30 

2.2.5 Compare the Estimation Methods in the Multilevel CFA Studies ............ 31 

2.3 COMPLEX SAMPLING DESIGN AND METHODS OF ADJUSTING 

STANDARD ERROR ........................................................................................................ 32 

2.3.1 Complex Sampling Design and Clustering .................................................. 32 

2.3.2 Adjusting Standard Error in the Complex Sampling Design.................... 33 

2.4 STUDIES COMPARING SINGLE-LEVEL CFA WITH MCFA ................ 38 

2.5 LITERATURE REVIEW OF APPLIED RESEARCH OF MCFA ............. 41 

3.0 METHODOLOGY ..................................................................................................... 42 

3.1 SIMULATION DESIGN FACTORS ............................................................... 43 

3.1.1 Factorial Structure ........................................................................................ 43 

3.1.2 Item ICC ......................................................................................................... 44 

3.1.3 Sample Size ..................................................................................................... 46 

3.1.4 Model Estimation ........................................................................................... 46 

3.2 EVALUATION CRITERIA ............................................................................. 48 

3.3 DATA GENERATION ...................................................................................... 50 

3.4 DATA VALIDATION ....................................................................................... 54 



viii 

3.4.1 W2B2 model: Two-level CFA with correlated factors at both levels ........ 54 

4.0 RESULTS ................................................................................................................... 57 

4.1 RATES OF IMPROPER SOLUTIONS .......................................................... 57 

4.2 EVALUATION OF MODEL FIT .................................................................... 60 

4.2.1 W2B2 Model ................................................................................................... 60 

4.2.2 W2B1 Model ................................................................................................... 65 

4.3 PARAMETER ESTIMATES ........................................................................... 72 

4.3.1 W2B2 Model ................................................................................................... 72 

4.3.2 W2B1 Model ................................................................................................... 93 

5.0 DISCUSSION ........................................................................................................... 116 

5.1 SUMMARY AND CONCLUSIONS .............................................................. 116 

5.1.1 Model Fit Indices ......................................................................................... 117 

5.1.2 Parameter Estimates of Three Models ...................................................... 118 

5.2 IMPLICATIONS FOR APPLIED RESEARCH .......................................... 121 

5.3 LIMITAIONS AND FUTURE DIRECTIONS ............................................. 123 

APPENDIX A ............................................................................................................................ 124 

BIBLIOGRAPHY ..................................................................................................................... 126 



ix 

LIST OF TABLES 

Table 1. Summary of previous studies and significance of the current study .............................. 12 

Table 2. Simulation factors for three models of different factorial structures .............................. 48 

Table 3. Item thresholds of 10 items ............................................................................................. 52 

Table 4. Item frequency distribution ............................................................................................. 55 

Table 5. Parameter Estimates from the two-level model .............................................................. 56 

Table 6. Rates of improper solutions for cases of negative residuals ........................................... 59 

Table 7. Proportion of the model fit statistics meeting the cut-off criteria for two-level model, 

complex model, and the normal model in W2B2 model .............................................................. 63 

Table 8. Proportion of the model fit statistics meeting the cut-off criteria for the two-level model, 

complex model, and normal model in W2B1 model .................................................................... 68 

Table 9. Summary of 2
pη  for the RB_meanW, RB_meanB, RB_res , RB_cmeanW, and 

RB_nmeanW from Between-subjects ANOVA ........................................................................... 73 

Table 10. The relative bias of the within-level factor loading as a function of the sample sizes . 74 

Table 11. Mean and standard errors of relative bias of mean of between-level factor loading by 

sample size and FactorICC ........................................................................................................... 76 

Table 12. Mean and standard errors of the relative bias of the residual variances by the sample 

sizes ............................................................................................................................................... 77 



x 

Table 13. Mean and standard error of the mean of the factor loading by FactorICC in the 

complex model .............................................................................................................................. 79 

Table 14. Mean and standard error of the mean of the factor loading by FactorICC in the normal 

model............................................................................................................................................. 81 

Table 15. Summary of 2
pη  for the relative bias of the within-level factor loading from mixed 

ANOVA ........................................................................................................................................ 82 

Table 16. Mean and the standard error of the mean of the within-level factor loading by 

FactorICCs .................................................................................................................................... 83 

Table 17. Mean and standard error of the mean of the within-level factor loading by FactorICC 

and model ...................................................................................................................................... 84 

Table 18. Mean and standard error of the mean of the within-level factor loading by sample size 

and model ...................................................................................................................................... 85 

Table 19. Summary of 2
pη  of the standard error of the within-level factor loading in three models

....................................................................................................................................................... 88 

Table 20. Mean and standard error of the mean of standard error of the factor loading by sample 

and model ...................................................................................................................................... 89 

Table 21. Mean and standard error of the mean of standard error of the factor loading by model 

and FactorICC ............................................................................................................................... 91 

Table 22. Summary of 2
pη  for the RB_meanW, RB_meanB, RB_res , RB_cmeanW, and 

RB_nmeanW from Between-subjects ANOVA in the W2B1 Model .......................................... 93 

Table 23. Mean and standard errors of relative bias of mean of within-level factor loading by 

sample size .................................................................................................................................... 94 



xi 

Table 24. Mean and the standard errors of the relative bias of residual variances by the samples

....................................................................................................................................................... 96 

Table 25. Mean and standard error of the mean of the factor loading by factor loading and ICC in 

the complex model ........................................................................................................................ 98 

Table 26. Mean and standard error of the mean of the factor loading by factor and ICC in the 

normal model .............................................................................................................................. 100 

Table 27. Summary of 2
pη  for the relative bias of the within-level factor loading from mixed 

ANOVA ...................................................................................................................................... 101 

Table 28. Mean and the standard error of the mean of the factor loading by model and 

FactorICCs .................................................................................................................................. 104 

Table 29. Mean and standard error of the mean of the factor loading by model and sample size

..................................................................................................................................................... 105 

Table 30. Summary of 2
pη  for the standard error of the within-level factor loading from mixed 

ANOVA ...................................................................................................................................... 108 

Table 31. Mean and standard error of the standard error of the mean of the factor loading by 

FactorICC and model .................................................................................................................. 110 

Table 32. 95% confidence interval for the standard errors of the within-level factor loading of the 

two-level model, the complex model and the normal model in the W2B2 model (In this table, 

“m” represents the multilevel model, “c” represents the complex model, and “n” represents the 

normal model). ............................................................................................................................ 112 

Table 33. 95% confidence interval for the standard errors of the within-level factor loading of the 

two-level model, the complex model and the normal model in the W2B1 model (In this table, 



xii 

“m” represents the multilevel model, “c” represents the complex model, and “n” represents the 

normal model). ............................................................................................................................ 114 



xiii 

LIST OF FIGURES 

Figure 1. Two-Level CFA Model with Correlated Factors at Both Levels .................................. 50 

Figure 2. Relative bias of within-level factor loading as a function of sample size ..................... 74 

Figure 3. Relative bias of between-level factor loading as a function of FactorICC and sample 

size ................................................................................................................................................ 75 

Figure 4. Relative bias of residual variance as a function of FactorICC and sample size ............ 77 

Figure 5.Relative bias of factor loading as a function of FactorICC in the complex model ........ 78 

Figure 6. Relative bias of factor loading as a function of factor loading and ICC in the complex 

model............................................................................................................................................. 79 

Figure 7. Relative bias of factor loading as a function of FactorICC and sample size in the 

normal model ................................................................................................................................ 80 

Figure 8. Relative bias of factor loading as a function of factor loading and ICC in the normal 

model............................................................................................................................................. 81 

Figure 9. Relative bias of factor loading as a function of model and factor loading averaged 

across ICC, sample sizes, and factor correlation .......................................................................... 83 

Figure 10. Relative bias of factor loading as a function of model and sample sizes averaged 

across ICC, factor loading, and factor correlation ........................................................................ 86 

Figure 11. Standard Error as a function of factor loading and model averaged across sample size, 

ICC, and factor correlation ........................................................................................................... 91 



xiv 

Figure 12. Standard error as a function of FactorICC and model averaged across sample size and 

factor correlation ........................................................................................................................... 92 

Figure 13. Relative bias of within-level factor loading as a function of sample size ................... 94 

Figure 14. Relative bias of residual variance as a function of sample size .................................. 96 

Figure 15. Relative bias of factor loading as a function of FactorICC in the complex model ..... 97 

Figure 16. Relative bias of factor loading as a function of factor loading and ICC in the complex 

model............................................................................................................................................. 98 

Figure 17. Relative bias of factor loading as a function of FactorICC in the complex model ..... 99 

Figure 18. Relative bias of factor loading as a function of factor loading and ICC in the normal 

model........................................................................................................................................... 100 

Figure 19. Relative bias of the factor loading as a function of model and factor loading averaged 

across sample sizes, ICCs, and factor correlations ..................................................................... 103 

Figure 20. Relative bias of the factor loading as a function of model and factor loading averaged 

across sample sizes, ICC, and factor correlations ....................................................................... 105 

Figure 21. Relative bias of the standard error of factor loading as a function of model and factor 

loading......................................................................................................................................... 110 

Figure 22. Relative bias of the standard error of factor loading as a function of model and 

FactorICC .................................................................................................................................... 111 



xv 

ACKNOWLEDGEMENT 

I would like to take this opportunity to express my sincere gratitude to all who 

encouraged and supported me to complete this dissertation and my doctoral study. 

First, I would like to extend my greatest appreciation to my dissertation advisor, Dr . 

Feifei Ye, for her guidance and support throughout my doctoral study. I am thankful to Dr Ye, 

for her feedback and valuable advice to all of my questions at every stage of the dissertation. Dr 

Ye gave me lots of advice, instruction, and guidance in developing my knowledge and research 

skills in statistics and writing the dissertation. It was due to her paramount mentorship that I was 

able to complete this dissertation. 

Second, I would like to thank other members in my dissertation committee, Dr. Clem 

Stone, Dr. Lauren Terhorst, and Dr. Yu Lan, for their valuable advice in helping me finish this 

dissertation.  

Finally, I would dedicate my deepest gratitude to my parents. I would like to thank my 

parents who encourage me and support me to finish this dissertation with their enduring love, 

care, and support. 



 1 

1.0  INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

1.1.1 Multilevel data 

In the educational and psychological setting, it is common that data has hierarchical structure. 

For example, to understand students’ perception of math classroom engagement, questionnaires 

are usually handed out to students who are nested within classrooms while classrooms are nested 

within schools. Sampling units in the analysis can be students, classrooms, or schools. Data 

contain not only the information about individual characteristics but also the characteristics of 

classroom and schools.  

Hierarchical data are often collected through the complex sampling design, such as 

cluster sampling, which randomly selects intact groups instead of individuals. Members of each 

selected group are considered to have more similar characteristics than members of different 

groups. Examples of clusters are school districts, schools, and classrooms. Cluster sampling can 

be carried out in stages, named multistage sampling design. For example, a district is selected, 

followed by schools in the district, and then classrooms in the schools are randomly selected 

(Gay, et al., 2006). There could be a various number of stages in the multistage sampling design. 

Two-stage sampling design is very common and as a result, the two-level model is the most 
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commonly used multilevel model to study the clustering effect (Asparouhov & Muthen, 2006). 

In the two-level model, variables at the cluster level can influence variables at the individual 

level. For example, in studying the individual behavior within the organization, the researcher 

need not only measure the individual characteristics but also measure the organizational factors 

that may influence the individual behavior (Hofmann, 1997). 

1.1.2 Ignoring Clustering in Multilevel Data 

Hierarchical data structure is a common phenomenon, but many studies still chose to ignore the 

multilevel structure, as pointed out by Pornprasertmanit et al. (2014).  For example, in the study 

of Cassidy et al. (2005), the quality of child care environment was only measured at the class 

level while the clustering within the school and school district was not taken into account.   The 

factor analysis was only performed on one single-level. The ignorance of multilevel data 

structure could be on purpose because researchers were only interested in the subjects at the 

lowest level in which clustering is only considered a nuisance effect. The ignorance of clustering 

could also be due to the difficulty in identifying the primary sampling units or the complexity of 

the data structure (Wu & Kwok, 2012).  

When subjects are sampled using the simple random sampling, subjects are independent.  

However, when subjects are sampled using the complex sampling such as the cluster sampling, 

subjects in the same group are more likely to be similar than subjects from different groups. 

Therefore, ignoring clustering will result with inaccurate estimates of parameter and standard 

errors(SE) in, e.g., regression models (Moerbeek, 2004; Openakker & Van Damme,2000). It may 

be unable to find the correct relationship among variables if one level is ignored. For example, if 

the relationships between two variables are different across levels, researchers may be unable to 
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obtain the information about the relationship at the ignored level. In addition, the relationship at 

the retained level may also be distorted (Julian, 2001; Raudenbush & Bryk, 2002).  

1.1.3 CFA with Multilevel Data 

CFA has been used in identifying latent constructs underlying observed variables that can be on 

interval or ordinal scales.  When subjects in CFA are cluster sampled, using the single-level CFA 

and ignoring clustering is problematic. Before examining the consequences of using the single-

level CFA in the multilevel data, two traditional approaches for multilevel data are discussed: 

disaggregated and aggregated analysis.    

Disaggregated analysis does not control for the clustering effect. Disaggregated analysis 

ignores the higher level data structure and only models observations at the lower level. In the 

CFA analysis, the bias introduced by ignoring clustering effect depends on the factorial structure 

across levels. According to Wu and Kwok (2012), factor loadings in the single-level CFA of 

multilevel data were more accurate when the factorial structures across levels were the same or 

when the factorial structure of the within-level was more complex than that of the between-level. 

As for the factor covariance, even when the between-level and within-level model were the same 

or when the within-level model was more complex than the between-level model, the factor 

covariance estimated using the single-level model was twice the factor covariance of the true 

model. Pornprasertmanit, et al. (2014) found that the factor loading was overestimated when the 

between-level communality was high and underestimated when the between-level communality 

was low. When the between-level communality was high, the standard error (SE) of factor 

loading estimated using disaggregated analysis was negatively biased. When the between-level 

communality was low, SE of factor loading estimated using disaggregated analysis was 
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positively biased. Also, the Standard error of the factor correlation tended to be high when the 

between-level communality was low.     

The other traditional approach for multilevel data is the aggregated analysis.  Aggregated 

analysis treats the parameter as the “marginal” parameter over clusters. Aggregated analysis 

ignores clustering and focuses on the variable averaged from each macro-level unit (Bollen, 

Tuller, & Oberski, 2013; Pornprasertmanit, et al., 2014; Wu & Kwok, 2012). According to 

Pornprasertmanit, et al., (2014), when the standardized factor loadings were not equal in two 

levels, the factor loadings estimated using aggregated analysis were biased especially when ICC 

was low and cluster size was small. Standard errors of factor loadings estimated by aggregated 

analysis were generally underestimated. The factor correlation and standard errors of the factor 

correlation estimated by aggregated analysis were also biased when the factor correlation was 

not equal across levels. 

1.1.4 Model-Based Approach and Multilevel CFA 

It has been stated that it is problematic to use aggregated analysis and disaggregated analysis in 

the multilevel data. Other approaches have been proposed to account for the phenomenon of 

clustering in the multilevel model. The common approaches are model-based approach and 

design-based approach. The model-based approach analyzes the multilevel data by using the 

hierarchical modeling and specifying the between-level and within-level relationship separately. 

The multilevel model can be used to find the effect of the cluster level variables on the individual 

outcome and the individual level variables on the individual outcome (Raudenbush & Bryk, 

2002).  Using a multilevel approach, within-group and between-group relations are modeled 

simultaneously. 



 5 

Multilevel CFA is purposefully developed for CFA of multilevel data (Pornprasertmanit, 

Lee, & Preacher, 2014; Wu & Kwok, 2012). The two-level CFA model is the extension of 

single-level CFA to the two levels. It can investigate the factorial structure at both the within-

level and the between-level. The multilevel covariance structure model is used to estimate the 

parameters and standard errors in the two-level CFA model. Different from single-level CFA, the 

total covariance matrix is separated into the within-level and between-level covariance matrix. 

Factor loadings, factor covariance matrix, and covariance matrix of error terms are estimated at 

both levels. 

1.1.5  Design-Based Approach and CFA Adjusting for Standard Error 

The design-based approach focuses on how a sample is drawn from a target population in nested 

data. This approach still uses the single-level model but adjusts the standard error so that subjects 

are like being selected using the simple random sampling.   The selection probability is created 

for each unit at the between-level, and for each unit at the within-level accounting for the cluster 

size. Then, the selection probability is used to create the sampling weight for each unit at both 

levels (Stapleton, 2002). 

In the design-based approaches, in order to adjust for standard errors, commonly used 

methods are design effect (DEFT) method, weighing method, and linearization method. The 

DEFT method is to multiply the standard error by square root of the mean of the design effect, 

the weighting approach is to create a new sampling weight by using different scaling methods, 

and the linearization method is to use the Taylor Series algorithm and obtain a weighted 

variation. There has been only one study comparing DEFT method, the weighting method, and 
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the linearization method in the complex sampling design (Stapleton, 2002). It is hard to make a 

conclusion about the advantage and disadvantage of these methods. 

1.1.6 Design-Based Approach or Model-Based Approach 

There is still debate about whether to use the design-based or model-based approach for 

multilevel data. Comparing the single level analysis adjusting for the clustering (i.e., design-

based approach) and the multilevel analysis (i.e., model-based approach), the proportion of over-

rejection of no significant effect of the parameter was reduced when the multilevel modeling was 

considered (Moulton, 1990). Even when the number of individuals within a cluster was reduced, 

the multilevel modeling still performed better than the single-level analysis using clustering 

correction. Chuah (2009) compared among single-level analysis using clustering correction and 

multilevel analysis using a small number of within-cluster observations. It was found that 

multilevel modeling outperformed models with clustered standard errors or normal standard 

errors.  

Bollen, Tueller, and Oberski (2013) indicated that the model-based approach had high 

requirement for model specification while the design-based approach did not depend on correct 

model specification. But the design-based approach was sensitive to small sample size. They also 

indicated that whether design-based or model-based approach should be used in SEM to correct 

for the standard errors in the clustered data depended on various factors such as whether the 

cluster level model had a similar structure to the individual level model. Wu and Kwok (2012) 

claimed that design-based approach had its advantage in that only one single model need to be 

specified, but admitted that in the design-based approach, it was assumed that the within-level 

and between-level relationships were exactly the same.   Wu and Kwok (2012) also thought that 
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single-level model might be preferred when the higher-level was not of the interest or the 

multilevel model was difficult to implement, while the two-level model might be preferred when 

the between-level relationship is of interest.  

1.1.7 Simulation Studies Comparing CFA with MCFA in Clustered Data 

The research about the impact of ignoring clustering in CFA was very limited. Julian (2001) and 

Pornprasertmanit et al. (2014) examined the impact of ignoring clustering for continuous 

indicators, while Stochl et al. (2015) studied the impact of ignoring clustering for ordinal 

indicators.  According to the study of Pornprasertmanit et al. (2014), different factor loading or 

factor correlation across levels resulted with biased parameter estimates and standard error when 

the single-level CFA model was the analysis model. The study varied factor loading, factor 

correlation, ICCs, distribution of factor loading, distribution of ICCs, and sample size.   This 

study provides good guidance about the factors that affect the accuracy of parameter estimates, 

but the study only used the continuous indicators. Julian (2001) also varied within-group sample 

size, between-group sample size, ICC, factor loading, and factor correlation. The model 

parameters were overestimated while standard errors were underestimated by the single-level 

CFA model.  Only the continuous indicators were simulated in this study. 

The limitation of Wu and Kwok (2012) was that the study only varied between-cluster 

and within-cluster sample size, ICCs, and number of factors at the within and between-level. The 

factor loading and factor correlation were fixed. In addition, the study treated the indicators as 

continuous and only used the MLR as the estimation method while mean and variance adjusted 

WLS (WLSMV) was an alternatively recommended estimation method for ordinal indicators 

(Flora & Curran, 2004).  Stochl et al. (2015) mainly focused on comparing the estimation 



 8 

methods and only varied ICC. It was thought that MCMC was more robust than FIML and 

WLSMV in estimating parameters and standard errors when the clustering was ignored. 

1.1.8 Estimation methods in CFA 

Single-level CFA has been applied to variables on an interval scale or an ordinal scale. For 

variables on an interval scale, ML (Maximum Likelihood) or MLR (Maximum Likelihood 

Robust) are the dominant estimation methods depending on whether there is concern with 

violation of multivariate normality. For variables on an ordinal scale, estimation methods include 

those for the continuous variable (ML and MLR) and those specifically developed for ordinal 

variables (e.g., WLSM, WLSMV). Researchers have studied the performance of ML, MLR and 

WLSMV for ordinal variables (Asparouhov & Muthen, 2007; & Herzberg, 2006; Flora & 

Curran, 2004; Lei, 2009; Li, 2010; Raykov, 2012; Rhemtulla, et al., 2012; Wirth & Edwards, 

2007; Yu, 2002).  The number of categories, sample size, and the shape of the distributions affect 

the performance of these estimation methods in the ordinal data.  

When the number of categories is sufficiently large such as equal or greater than five, ML 

and MLR can be used to estimate the ordinal data although they were developed for the 

continuous data. WLSMV was found to more accurately estimate parameters when the number 

of categories were two, three, four, five, and seven (Beauducel & Herzberg, 2006; Orangje, 

2003; Yang, Joreskog, & Luo,2010).  When the threshold was symmetric, MLR could accurately 

estimate the factor loading of the ordinal data. But nonsymmetric thresholds and skewed 

distribution affected the accuracy of parameter estimates using MLR (Rhemtulla et al., 2012; 

Li,2010) . The accuracy of parameter estimates of MLR and WLSMV were affected by small 
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sample size (Lei,2009; Arnold-Berkovits, 2002). The accuracy of parameter estimates of ML did 

not seem to be affected by small sample size (Destifano, 2002; Bentler ,2006).  

There have been very few studies comparing ML, MLR, and WLSMV in the multilevel 

CFA data, so it is unclear whether the performance difference of these three methods in the 

single-level CFA analysis can be extended to multilevel analysis.   

This study aims to examine the consequence of ignoring clustering in CFA for ordinal 

indicator variables.   There have been four simulated studies comparing MCFA with single-level 

CFA adjusting for standard error or using normal standard error, but none of them compared 

multilevel CFA, single-level CFA with adjusted standard error (complex model), and single-

level CFA with normal standard error(normal model) at the same time. This study is the first 

simulation study to compare the accuracy of parameter estimates and related standard errors 

obtained from three methods simultaneously.  This study aims to examine the factors that will 

affect the accuracy of the parameter estimates and standard errors when clustering is ignored. 

Survey and questionnaires are commonly used to collect data in educational, psychological and 

social sciences, thus the analysis of multilevel data cannot be limited in analyzing the continuous 

data. This study aims to compare three methods using the most commonly used five-category 

Likert-type scale. It will examine whether the findings from previous simulation studies using 

the continuous indicators can be extended to the ordinal items and whether findings from 

previous studies using ordinal indicators can be generalized to the current study when different 

simulation factors and different estimation methods are used. It will examine under which 

combination of the sample size, ICC, and factorial structure, the relative bias of the parameter 

estimates and standard errors are the smallest when the clustering structure is ignored.   
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1.2 PURPOSE OF THE STUDY 

This study aims to examine the consequence of ignoring clustering in CFA for ordinal indicator 

variables.   There have been four simulated studies comparing MCFA with complex single-level 

CFA model and normal single-level CFA model, but none of them compared multilevel CFA, 

single-level CFA with adjusted standard error, and single-level CFA with normal error at the 

same time. This study is the first simulation study to compare the accuracy of parameter 

estimates and related standard errors obtained from three methods simultaneously.  This study 

aims to examine the factors that will affect the accuracy of the parameter estimates and standard 

errors when clustering is ignored. Survey and questionnaires are commonly used to collect data 

in educational, psychological and social sciences, thus the analysis of multilevel data cannot be 

limited in analyzing the continuous data. This study aims to compare three methods using the 

most commonly used five-category Likert-type scale. It will examine whether the findings from 

previous simulation studies using the continuous indicators can be extended to the ordinal items 

and whether findings from previous studies using ordinal indicators can be generalized to the 

current study when different simulation factors and different estimation models are used. It will 

examine under which combination of the sample size, ICC, and factorial structure, the relative 

bias of the parameter estimates and standard errors are the smallest when the clustering structure 

is ignored.   
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1.3 RESEARCH QUESTION 

1. What is the difference in terms of model fit indices calculated from the two-level CFA 

model, single-level CFA model with normal standard error or complex standard error? What 

model fit indices, if any, are recommended in model selection?   

2. How are three models compared in estimating the within-level factor loading and their 

standard errors? What design factors may impact the performance of these models?  

3. What factors influence the performance of the two-level CFA model in recovering between-

level factor loading? 

4. What factors affect the performance of the two-level CFA model in recovering residual 

variance? 

1.4 SIGNIFICANCE OF THE STUDY 

Clustered data are commonly encountered in the educational and psychological setting, but 

researchers often missed the identification of clustering either by chance or on purpose. To find 

the consequences of misspecifying the multilevel data is important and meaningful. This study is 

the first simulation study to compare the accuracy of parameter estimates and related standard 

errors using MCFA, complex single-level CFA model, and normal single-level CFA model 

simultaneously. The study extended the simulation study of Julian (2001) and Pornprasertmanit 

et al. (2014) by incorporating the ordinal indicator variables, which made the result of the study 

applicable to the Likert-type questionnaires. Compared with the simulation study of Wu and 

Kwok (2012), this study added the factor loading and factor correlation as the simulation factor 
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and used WLSMV as an estimation method instead of MLR. From Table 1, it is easy to find the 

differences between my study and previous studies. In summary, this study aims to provide a 

comprehensive guideline in terms of comparison of single-level CFA models and multilevel 

CFA in a wide range of conditions commonly encountered in empirical multilevel CFA studies. 

 

Table 1. Summary of previous studies and significance of the current study 

 Type of 
Indicators 

Within-
level 
/Between
-Level 
Factor 
Number 

Estimation  
Method 

Sample size 
(number of 
clusters/number 
of cluster 
members) 

ICC Within 
/Between-Level 
Factor Loading 

Within/ 
Between-Level 
Factor 
Correlation 

Julian (2001) Continuou
s 
indicators 

4/4 
4/2 
4/5 

ML 100/5, 50/10, 
25/20,10/50 

0.05,0.15 
0.45 

Fixed to be 1 Fixed to be 0.5 

Pornprasertmanit, 
et al.  (2014) 

Continuou
s 
indicators 

2/2 ML 100/5, 10/50 
400/20,40/200 

0.05,0.25,
0.5,0.75, 
0.95 

0.7/0.49,0.7, 
0.86 

0.5/0.2, 
0.5,0.8 

Wu and 
Kwok (2012) 

Continuous 
Indicators 

3/1 
3/3 
1/3 

MLR 50, 150, and 
300/10, 50, 
and 200 

0.1,0.5 Fixed to be 0.8 Fixed to be 0.3 

Stochl (2015) Ordinal 
Indicators 

4/ FIML, 
MCMC, 
WLSMV 

Fixed to be 
1000 

0.001-
0.390 
11 levels 

Fixed to be 0.7 Fixed to be 0.4 

Current Study Ordinal 
Indicators 

2/1 
2/2 
 

WLSMV 50/10, 20/25, 
250/10,  
and 100/25 

0.25, 0.45 0.8/0.5; 
0.5/0.8; 
0.5/0.5 

0.3/0.3; 
0.3/0.6; 
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2.0  LITERATURE REVIEW 

The purpose of this chapter is to review (1) confirmatory factor analysis(CFA) in section 2.1; (2) 

multilevel confirmatory factor analysis (MCFA) in section 2.2; (3) complex sampling design and 

methods of adjusting the standard error when clustering is ignored in section 2.3;(4) findings of 

studies comparing single-level CFA with MCFA in section 2.4. 

2.1 CONFIRMATORY FACTOR ANALYSIS 

CFA is an important statistical method in SEM. This section will focus on the measurement 

model of the CFA, the covariance structure of CFA, the theory of CFA using categorical 

variables, the comparison of estimation methods in the CFA, and the model fit of CFA. 

2.1.1 Introduction to CFA and CCFA 

2.1.1.1 CFA 

Structural equation modeling is a statistical modeling technique that can be described as a 

combination of common factor analysis and a set of multiple regressions. It has the ability to 

handle the latent variable, observed variables, and measurement errors at the same time (Hox, 

1998). It is not just a single analysis but a collection of different techniques including path 
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analysis, confirmatory factor analysis (CFA), latent growth curve modeling, multilevel SEM for 

clustered data, and multi-group SEM. In this study, CFA is the focus.  

CFA is a statistical tool to examine the latent common factors underlying a set of 

observed variables (Kline, 2005; Muthen & Muthen ,1998-2002). CFA is commonly used for 

assessing the construct validity, developing and improving measurement instruments, and 

evaluating factor invariance across time or groups (Jackson, Gillaspy, & Purc-Stephenson, 

2009).   

CFA aims to explain the covariance/ correlations among variables using the specified 

model. Technically, it is to test the hypothesis that the observed covariance matrix is equal to the 

model implied covariance matrix. It can be specified as the following: 

    ∑ = )(θ∑                                                (1) 

where  ∑ is population covariance matrix and  )(θ∑  is model implied covariance matrix 

using population parameters. In CFA, the model implied covariance matrix turns to be: 

                                         δθ Θ+ΨΛΛ=∑ ,)( xx                                    (2) 

where Ψ  is covariance matrix of the latent factors , xΛ  is the matrix of factor loadings, 

and δΘ  is the covariance matrix of measurement errors. 

The measurement model for CFA is the regression model that describes the relationship 

between observed variables and latent continuous variables. For the continuous factor indicators, 

the relationship among variables are expressed by linear regression model; for the binary or 

ordered categorical factor indicators, the relationship among variables are expressed by probit or 

logistic regression model; for unordered categorical factor indicators, the relationship among 

variables are expressed by multinomial logistic regression model.  CFA can detect the 
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relationships among factors, and the relationship between factors and observed variables 

(Muthen & Muthen, 1998-2002).  

In the model of linear CFA, the relationship between the latent factor and the continuous 

indicators are specified as the following: 

            ijijjijx δξλτ ++=                               (3) 

where ijx  is an observed variable i loading on factor j, jτ  is an intercept, jλ  is a factor 

loading, iξ  is a specified factor, and ijδ  is the residual of the item. The model linearly relates the 

response variables to the specific factor. The ordinary CFA assumes the observed variables are 

continuous and normally distributed (Kim & Yoon, 2011).  

In order to perform CFA, the researcher needs to know the number of factors and on 

which factor each item loads. CFA can be performed using either correlation or covariance 

matrix.  CFA provides a test of significance for factor loadings. Significant indicators are 

retained in the model while insignificant indicators are candidates for dropping. To identify a 

CFA model, the number of unique elements in a covariance matrix must be greater than or equal 

to the number of parameters.  

2.1.1.2 CCFA 

The ordinary CFA treats dichotomous or polytomous responses as continuous variables and 

ignores the categorical nature of the data, which may lead to biased parameter estimates. CCFA 

assumes that ordered-categorical item responses are discrete representation of continuous latent 

responses. The latent response variables are manifested as discrete scores with a set of 

thresholds.  The distribution of categorical response of a particular variable is determined by the 

latent response distribution with a set of threshold parameters.  



 16 

                   ,cxij = if 1
*

+<< jcijjc x ττ                                     (4) 

where jcτ  is the c ordered response of the jth item and c=0,1,….,C-1.  C is the number of 

categories of an ordinal variable. It assumes that individuals possess a latent score, *
ijx , of 

individual i on item j. The distribution of categorical responses to a particular item is reflected by 

the latent score distribution of *
ijx  corresponding to that item. The threshold parameter τ is the 

point on the continuous latent response scale that separates the manifest discrete responses 

(Wirth & Edwards, 2007). Even the ordinal variables are discrete in nature, it is still assumed 

that the underlying latent responses are continuous (Kim & Yoon, 2011).  

2.1.2 CFA Model Fit and Model Fit Indices 

Model fit indices are important in detecting whether the specified model fit the sample data. An 

initial model specified according to a theory could be inappropriate in reproducing a sample 

covariance matrix, producing large difference between the sample covariance matrix and model 

specified covariance matrix. The chi-square test and other model fit indices will suggest to reject 

the model. Under these circumstances, the model can be modified to improve the model fit.  

Model modification involves freeing fixed parameters or fixing free parameters. Free a fixed 

parameter will increase the number of parameters in the model and decrease the degree of 

freedom while fixing a free parameter will decrease the number of parameters in the model and 

increase the degree of freedom. In the single-level CFA model, the relationship among the 

factors should not be too high. When factors are highly correlated with each other, there could be 

an existence of a higher order factor.   
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The common model fit indices are chi-square test, CFI (Comparative Fit Index), TLI 

(Tucker-Lewis Index), SRMR (Standardized Root Mean-square Residual), and RMSEA (Root 

Mean Square Error of Approximation).  CFI is an incremental fit index. A model with CFI 

95.0≥ is considered with good fit. Tucker-Lewis Index (TLI) is another incremental fit index, 

which ranges from 0-1. A model with TLI 95.0≥ is a good model. A higher value indicates better 

model fit. RMSEA is an absolute fit index. A model with RMSEA ≤ 0.06 is considered a good 

fit while RMSEA≤ 0.08 is considered an acceptable fit. SRMR is another absolute fit index, 

representing geometric mean of residuals. An SRMR≤ 0.08 is considered a good fit. CFI, TLI, 

RMSEA, and SRMR provide different information about model fit, thus it is beneficial to use the 

combination of them. 

2.1.3 Estimation Methods of CFA with ordinal variables 

In SEM, when factor analysis is performed on ordinal variables, treating the observed variable as 

continuous leads to biased parameter estimates. Thus, the ordinal nature of the variables should 

be taken into account.  From the previous studies, the most commonly adopted methods to 

estimate the CFA for ordinal variables are ML, MLR, and WLSMV. These methods are 

specified as the following. 

2.1.3.1 Maximum Likelihood (ML)  

The most common estimation method for CFA is maximum likelihood which assumes that the 

indicators are continuous and normally distributed.  It produces asymptotically unbiased, 

consistent estimators of parameters (Bollen, 1989). Maximum likelihood maximizes the 

likelihood of the observed data. This is equivalent to minimize the discrepancy function FML: 
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                            FML= pSStrace −−∑+∑ − ||ln)]([|)(|ln 1 θθ                             (5) 

 where θ is the vector of the model parameters, )(θ∑   is the model implied covariance 

matrix, S is the sample covariance, and p is the total number of observed variables (Bollen, 

1989).Based on the continuous and normal distribution, the sample covariance matrix is 

computed. When there is adequate sample size, multivariate normal distribution, and correct 

model specification, ML provides consistent, efficient, and unbiased parameter estimates, 

asymptotic standard error, and good model fit.  

ML is not appropriate for the categorical data. It is mainly because that the sample 

product moment relationship such as Pearson correlation or polychoric correlations does not 

perform well with ordinal variables using ML. The chi-square statistic is inflated and parameters 

and related standard errors are negatively biased (Flora & Curran, 2004).   

2.1.3.2 Robust maximum Likelihood (MLR) 

MLR produces maximum likelihood estimation with robust standard error. The corrected 

standard errors are obtained using a sandwich-type estimator, which incorporates an observed 

Fished information matrix, ∆∆ obsI'  , into the asymptotical covariance matrix of the estimated 

parameter vector 
^
θ .  The corrected standard error estimates are calculated by taking the square 

root of the diagonal of the estimated asymptotic covariance matrix. The estimated asymptotic 

covariance matrix is formulated as the following: 

              ])()([)( 1
^^'^^^^^^

1
^^'^

1
^

−−− ∆∆∆Γ∆∆∆= obsobsobsobs IIIINaCov θ                      (6) 

Where ∆∆ obsI'  is the observed Fisher information matrix,  
^
∆  is calculated by taking the 

first derivative of the covariance matrix with respective to θ, and N is the number of observation. 
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^
Γ   is taken as W in the weighted least squares fitting function when variables are continuous 

(Satorra, 1992; Satorra & Bentler, 1994; Muthen & Satorra, 1995). 

MLR considers the distribution properties of the items. MLR can be used to deal with 

both continuous and categorical data. MLR can be used to deal with nonnormal data and missing 

data. MLR produces both a rescaled chi-square test statistics and standard errors that are robust 

to non-normality (Satorra, 1992; Satorra & Bentler, 1994). Parameter estimates are still obtained 

using asymptotically unbiased estimator, but standard errors and chi-square statistics are 

corrected to enhance the robustness of ML to nonnormality.  Thus, the parameter estimates by 

MLR are the same as those estimated by ML. Only the standard errors and chi-square tests are 

different. The mean- and variance-adjusted chi-square statistic in Mplus is also known as the 

Satorra-Bentler scaled X2.  

2.1.3.3 WLS and WLSMV 

The weighted least square approach was proposed to estimate a weight matrix based on the 

asymptotic variances and covariance matrices. Flora and Curran (2004) and Wirth and Edwards 

(2007) discussed the use of WLS in the categorical data.  The WLS function for categorical 

variable was defined as 

                             )()( 1' ρρ −−= − rWrFWLSC                                              (7) 

where W-1 was the inverse of a weight matrix that is positive definite, ρ  was a p×p model  

correlation matrix and r was  a p×p sample correlation matrix which could be tetrachoric or 

polychoric correlation matrix. The weakness of the WLSc was mentioned by previous 

researchers (Wirth and Edwards, 2007; Flora and Curran, 2004). The number of unique variances 

and covariances grew rapidly as the number of indicators increased. In the large model, W was 
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often nonpostive definite and could not be inverted.  WLSC requires a sufficiently large sample to 

estimate an accurate weight matrix.  Wirth and Edwards (2007) pointed out that there was no 

closed form solution to the asymptotic covariance matrix of categorical data in the above 

equation. The computational burden of using full weight matrix was another issue. Thus, it was 

proposed to use only the diagonal elements of the weight matrix instead of using a full weight 

matrix.  

According to Wirth and Edwards (2007), modified WLS for ordered-categorical indictors 

was defined as  

                              )()( 1' ρρ −−= − rWrF DWLSCM                                              (8) 

1−
DW  contained only the diagonal elements of the full weight matrix.  This modification 

greatly reduced the number of nonzero elements and therefore reduced the computational 

burden. Two MWLSc estimators were mean adjusted WLS (WLSM) and mean and variance 

adjusted WLS (WLSMV). Because of the removal of off-diagonal elements, weight matrix was 

not the optimal weight matrix.  MWLSc had the biased standard errors and test statistics. One 

way to correct inaccuracies was to use the Satorra-Bentler scaled chi-square and robust standard 

errors. It adjusted the chi-square test statistic and standard errors of the parameters but did not 

adjust the model degrees of freedom (Satorra & Bentler, 1994; Yuan & Bentler ,1998).   Another 

method proposed by Muthen et.al.(1997) adjusted the chi-square test statistics, standard errors, 

and the model degrees of freedom. WLSMV was appropriate in the small to moderate sample 

size. Chi-square of the WLSMV is computed using the second-order correction of the fit 

function while chi-square of the WLSM uses the first-order correction (Asparouhov & Muthen, 

2007). 
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2.1.4 Using Estimators for Continuous Variable in Categorical Data 

Although previous researchers have used ML, MLR, and WLSMV in estimating ordinal 

variable, WLSMV was specifically proposed to estimate ordinal data while ML and MLR was 

specifically developed to estimate continuous data.  WLSMV makes no distributional 

assumption about the variables. Studies have been performed to examine the performance of 

ML, MLR, WLS, and WLSMV on the categorical data and the advantage of WLSMV over ML 

and WLS was obvious.  The performance of MLR and WLSMV in the ordinal data need to be 

examined and compared, as well as the impact from the number of indicators, the number of 

categories, sample size, and the shape of distributions.  

2.1.4.1 Effect of the number of indicators, the number of categories, sample size, and the 

shape of distributions on WLSMV 

The number of indicators did not have effect on WLSMV (Flora & Curran, 2004; Lei, 2010). 

Flora and Curran (2004) found that increasing the number of indicators did not have effect on 

WLSMV.  Lei (2009) also found that the number of indicators did not seem to have a significant 

effect on the relative bias of parameter estimates and convergence rate comparing six variable 

model with nine variable model. 

WLSMV was typically developed for ordinal data. With the increasing of number of 

categories, the performance of WLSMV might not be as good as ML or MLR. However, there is 

no strict rule for the maximum number of the categories for the WLSMV. It was found that 

WLSMV performed well in two, three, and four responses (Beauducel & Herzberg, 2006). 

Oranje (2003) found that WLSMV performed equally well in the parameter estimates for the 

two, three, and five-category responses. Yang, Joreskog, and Luo (2010) found that factor 



 22 

loadings and factor correlations obtained by WLSMV was unbiased regardless of the number of 

categories (two, five, or seven).  

Small sample size affected the parameter estimates of WLSMV (Li, 2010; Lei, 2009; 

Arnold-Berkovits, 2002). Li (2010) found that WLSMV produced moderate overestimation of 

the interfactor correlation when the sample size was as small as 200.  Lei (2009) found that 

WLSMV was sensitive to small sample size when the sample size was as small as 100. The 

standard error estimated from WLSMV became more negatively biased when the sample size 

became small. But Beauducel and Herzberg (2006) found that small sample size did not have 

effect on the parameter estimates since WLSMV performed well even in small sample, large 

model with moderate loadings. 

The shape of the distribution affected the parameter estimates of WLSMV (Li, 2010; 

Flora & Curran, 2004).  Li (2010) found that WLSMV produced moderate overestimation of the 

interfactor correlation when the distributions were moderately nonnormal. Flora and Curran 

(2004) simulated categorical data with skewness up to 1.25 and kurtosis up to 3.75.  It was found 

that increasing the skewness and kurtosis generally increased the relative bias of factor loadings 

and factor correlations across the sample sizes. However, Lei (2010) and Yang, Joreskog, and 

Luo (2010) found that factor loadings and factor correlations obtained by WLSMV was unbiased 

regardless of the shape of distribution (symmetric vs asymmetric). 

2.1.4.2 Effect of the number of indicators, the number of categories, sample size, and the 

shape of distributions on MLR 

The number of indicators did not seem to affect parameter estimates of MLR. Lei (2009) found 

that the number of indicators did not seem to have a significant effect on the relative bias of 
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parameter estimates and convergence rate comparing six variable model with nine variable 

model. 

It was still debate whether MLR should be used for the number of categories larger than 

five (Li, 2010; Raykov, 2012; Rhemtulla, et al. ,2012; Beauducel & Herzberg,2006).  Raykov 

(2012) and Rhemtulla, et al. (2012) thought that MLR was preferred for the number of categories 

equal to or larger than five.  In the study of Rhemtulla, Brosseau-Liard, and Savalei (2012), it 

was found that that the relative bias of MLR was not larger than 10% with five or more 

categories in any of the conditions. It seems that the estimation method developed for the 

continuous variable is also appropriate. When category threshold was generally symmetric, MLR 

was as good as or better than WLSMV.  However, Bequducel and Herzberg (2006) suggested 

that WLSMV should be better than the continuous method for the number of categories equal to 

five, six, and seven.  Also, in the simulation study of Li (2012), it was disappointing that relative 

bias of the factor loading was large for the number of category larger than five and there was 

even substantially negative bias in parameter estimates and standard errors and low rate of the 

coverage of factor loadings using MLR for four- category response. 

The shape of the distribution affected the MLR estimates (Li, 2010). Li (2010) simulated 

the slightly nonnormal distribution with skewness of 0.5 and kurtosis of 1.5 and the moderately 

nonnormal distribution with the skewness of 1.5 and kurtosis of 3.0. MLR underestimated the 

factor loadings. However, Lei (2009) found that MLR estimates were unbiased across the shape 

of the distribution (symmetric, mildly skewed, and moderately skewed).  

2.1.4.3 Compare MLR and WLSMV in the Categorical Confirmatory Factor Analysis 

In conclusion, non-normal distribution affected the performance of both MLR and WLSMV (Li, 

2010). Li (2010) found that WLSMV was more accurate in estimating the factor loading while 
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MLR was more accurate in estimating the factor correlation under non-normality. However, Lei 

(2009) found that the shape of distribution did not seem to affect the relative bias of parameter 

estimates for both MLR and WLSMV.  Small sample size affected the accuracy of parameter 

estimates for both MLR and WLSMV. Lei (2009) and Arnold-Berkovits (2002) found that 

WLSMV was more sensitive to small sample size than MLR when the sample size was as small 

as 100. The minimum sample size for WLSMV should be 250. With the combination of small 

sample size and non-normal distribution, Li (2010) found that MLR outperformed WLSMV in 

estimating the standard error of factor loadings and factor correlations.  

The number of indicators did not seem to significantly affect the relative bias of 

parameter estimates and convergence rate for MLR and WLSMV (Flora and Curran ,2004; Lei, 

2009).  Even there was impact of model size on the standard error of parameter estimates, there 

was slight difference between two methods.  WLSMV is more appropriate than MLR for number 

of categories less than five (Li, 2010). Although WLSMV was developed for categorical data, Li 

(2010) found that WLSMV outperformed MLR in estimating factor loadings even for the 

number of category of 6, 8, and 10. Studies have been performed on comparing ML and 

WLSMV. However, limited studies have been performed on comparing MLR with WLSMV.  

2.2 MULTILEVEL CONFIRMATORY FACTOR ANALYSIS 

This section focuses on the CFA under the circumstance of the multilevel data. MCFA is a 

commonly recommended model-based approach in analyzing the relationship among variables in 

the multilevel data.  MCFA has been demonstrated to be more accurate in the parameter 

estimates (factor loading and factor correlation), their standard errors, and item thresholds than 
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the classical CFA when there is existence of clustering. Fit indices (i.e. CFI, RMSEA, and chi-

square) have also been proved to be more reasonable when clustering is acknowledged (Stochl et 

al., 2015; Pornprasertmanit, Lee, & Preacher, 2014; Wu & Kwok, 2012).  The following section 

will first introduce the background in which MCFA is applied. Then the multilevel covariance 

structure modeling, estimation methods of MCFA, and the definition of the construct and 

parameters in the two-level model will be described.  

2.2.1 Research Background about Organizational Effects in MCFA 

In analyzing the multilevel data in the organizational research, the common difficulties are the 

aggregation bias, misestimated standard errors, and heterogeneity of regression. Aggregation 

bias occurs when a variable may have different effects at different levels of the organization. In 

the area of education, for instance, the average socioeconomic status (SES) may predict student 

achievement above and beyond the individual’s SES. Misestimated standard errors occur in the 

multilevel data when it fails into considering the dependence among individual responses within 

the same organization. This dependence may occur because of the ways individuals are selected 

or the same characteristics shared within the organization. Heterogeneity of regression occurs 

when the prediction of individual characteristics on the outcome measure varies across the 

organization.  The problem of how organizations affect the individuals within the organization 

can be investigated using multilevel model. In the organizational research, at level-1, the units 

are individuals and each individual’s outcome is measured by a set of individual characteristics; 

at level-2, the units are organizations such as schools (Raudenbush &Byrk, 2002).  
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2.2.2 Introduction of MCFA 

2.2.2.1 Theory of MCFA 

Multilevel CFA (MCFA) is merely an extension of CFA to include various levels in the model.  

Multilevel covariance structure models can account for the variability for the data collected 

through the procedure of complex sampling. Multilevel covariance structure modeling allows for 

the different model structures at the between and within-level (Julian,2001; Muthen, 1994). 

The multilevel factor modeling assumes a conventional factor analysis covariance 

structure at both levels. The level-1 subjects can be expressed in terms of the multilevel linear 

factor model as: 

                           bgwigbgbwigwig vx εεηη ++Λ+Λ+=                                    (9) 

where igx  is the response for student i in group g, v is the grand mean, wΛ and  bΛ  are 

factor loading matrices for within and between-group, wigη  is the random factor varying over 

students within the respective schools, bgη  is the factor varying randomly across groups, wigε  

and bgε  are within and between-group errors, and Var( igx )= B∑ + W∑ .  From the above equation, 

it is clear that the factor loading matrices are allowed to differ across levels (Kaplan,2009; 

Muthen, 1994). 

The single-level CFA uses the total variance-covariance matrix. MCFA separates the 

between-level and within-level variability and allows for the simultaneous estimation of 

covariance matrices at both levels.  

                                     BBBBB Θ+ΛΨΛ=∑ '                                        (10) 

and 

                                     WWWWW Θ+ΛΨΛ=∑ '                                      (11) 
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where Λ is a vector of factor loadings, Ψ is a covariance matrix of the factor, Θ is the 

covariance matrix of error terms , and subscripts B and W refer to between-group and within-

group parameters. Thus, when the linear factor analysis is extended to the multilevel, the total 

sample covariance matrix can be expressed in terms of the factor model parameters (Muthen, 

1994; Kaplan, 2009): 

                           BBBBT Θ+ΛΨΛ=∑ ' + WWWW Θ+ΛΨΛ '                           (12) 

Multilevel covariance structure modeling can estimate the parameters and related 

statistics such as ICC accurately. 

The estimation algorithm of the multilevel covariance structure analysis with ML is 

demonstrated as the following.   The total sample covariance matrix ST is a consistent estimator 

for the total population covariance matrix TΣ . The pooled-within sample matrix SPW is an 

unbiased and consistent estimator of population covariance matrix WΣ . The between sample 

matrix SB is an unbiased and consistent estimator of BW cΣ+Σ , where c is common group size in 

the balanced data and close to the mean of the groups sizes in the unbalanced data. Thus, ML 

estimate of BΣ  is c-1(SB - SPW ). It can be told that BΣ  is a function of both SB and  SPW. The 

estimation procedure of multilevel covariance structure analysis is shown in four steps. Step 1 is 

to estimate the total sample covariance matrix; step 2 is to estimate the between sample 

covariance matrix and ICC; step 3 is to estimate the parameters at the within-level; and step 4 is 

to estimate the parameters at the between-level (Muthen,1994). 

2.2.2.2 Definition of construct at the within and between-level 

Latent variable at the within-group level represents the properties of the within-group units.  

Latent variable at the between-group level represents the properties of the between-group units 
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and it reflects the collective properties of the within-level latent variables such as means or 

variances of the within-level latent variables (Pornprasertmanit, Lee, & Preacher,2014). 

In the single-level CFA, standardized factor loadings for an observed variable represent 

the correlation between an observed variable and a latent variable without controlling for 

clustering. Factor loading can be considered as regression coefficient of an observed variable 

predicted by a factor. The squared correlation is the proportion of variation of an observed 

variable explained by a latent variable without considering cluster membership 

(Pornprasertmanit, Lee, & Preacher, 2014). 

In MCFA, within-group parameter estimates represent the relationship among variables 

controlling for the effect of clusters. Between-group parameter estimates in MCFA represent the 

relationship among variables at the between- level. For example, the between-level factor 

loading represents the correlation between a between-level indicator and a between-level latent 

factor.  

When the regression coefficients of the within-level and between-level are the same, they 

will be the regression coefficients for the single-level model. However, when the regression 

coefficient differs across levels, the regression coefficient calculated from a single-level model is 

a weighted average of the effects if a regression coefficient is computed from a two-level model 

(Raudenbush & Bryk, 2002). In the MCFA model, factor loading represents the relationship 

between the observed indicator and the latent factor. But it is not clear whether the factor loading 

in the single-level model is the weighted average of the factor loading calculated from the two-

level model. It was suggested to compare the factor loading of the single-level CFA model to the 

factor loading of the within-level of the MCFA model (Pornprasertmanit, Lee, & Preacher,2014). 
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At the between-level, the squared value of standardized factor loading corresponds to the 

proportion of between-level variations of an indicator explained by a between-level latent 

variable. At the within-level, the squared value of standardized factor loading corresponds to the 

proportion of within-level variance of an indicator explained by a within-level latent variable 

considering the clustering membership. On the standardized scale, the residual variance of an 

indicator is calculated by subtracting the communality from 1 at both the within and between-

level. 

2.2.3 Model Fit in MCFA 

The model fit in MCFA is assessed similar to model fit in the single-level CFA. But the model fit 

in MCFA need to be performed at both the between-level and within-level. According to Hsu et 

al. (2014) and Ryu and West (2009), RMSEA, CFI, and TLI could only detect the model 

misspecification of the within-level model but not the model misspecification of the between-

level model or the entire model. Hsu et al. (2014) manipulated the number of clusters, number of 

cluster members, and item ICCs in the two-level CFA model and found that SRMR was the only 

fit index that could be used to evaluate the within-level model fit regardless of the model 

complexity. Furthermore, RMSEA, CFI, and TLI were more sensitive to the misspecification of 

the factor loading while SRMR was more sensitive to the misspecification of the factor 

covariance. Item-level ICC did not have influence on the performance of the model fit indices. 

The limitation of the study of Hsu et al. (2014) was that the model was misspecified 

through constraining the factor correlations between factors across levels to be 0 or constraining 

the factor loadings to be 0. In fact, there were other types of model misspecification such as the 

misspecified factorial structure. Another limitation was that the data was generated using the 
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multivariate normal distribution, which might make the result of the study unable to be 

generalized to the multilevel CFA model with categorical indicators. Last, this study only 

simulated the model with the equal number of indicators per factor and the equal number of 

subjects within the group. 

2.2.4 Estimation method of MCFA 

2.2.4.1 ML 

The computational algorithm of ML in the two-level CFA has been specified in section 2.2.2.1. 

2.2.4.2 MLR 

MLR calculates the robust standard errors robust to nonnormality and rescaled chi-square test of 

model fit. In the multilevel data, robust chi-squares and standard errors provide certain protection 

against the heterogeneity of subjects and the misspecification of the multilevel model (Hox, et 

al., 2010).  

2.2.4.3 WLSMV 

WLSMV in estimating the multilevel SEM of ordinal variables was proposed.   At the first step, 

univariate ML is used to estimate the vector of means at the between-level and the diagonal 

elements of BΣ  and WΣ . At the second step, the off diagonal elements of BΣ  and WΣ   are 

estimated using the bivariate ML.  At this step, the model parameters of two levels are estimated 

by WLSMV. At last, the asymptotic covariance matrix is obtained.  WLSMV is the mean-and-

variance corrected estimator with robust chi-square.  In the multilevel analysis, the number of 
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parameters in the between-level often tends to be larger than the number of groups, so it is 

preferred to use only the diagonal elements of the matrix (Hox, et al., 2010). 

2.2.5 Compare the Estimation Methods in the Multilevel CFA Studies 

 Several studies compared estimation methods in multilevel CFA. Hox et al. (2010) simulated a 

multivariate normal distribution and found that ML performed better than MLR and WLSMV. 

MLR and WLSMV only accurately estimated the factor loadings when the number of group was 

large. MLR need the larger number of group than WLSMV to make the estimation of the factor 

loading accurate. Standard errors of factor loadings estimated from the WLSMV were as 

accurate as or more accurate than those estimated from ML.  MAAS and Hox (2004) found that 

MLR was more accurate than ML in the multilevel data when the distribution was non-normal. 

But the large sample size was still required.  

For polytomous items, several studies adopted ML or FIML by treating ordinal variables 

as continuous, especially in those studies with number of categories larger than five (Whitton & 

Fletcher, 2014; Brondino et al.,2013). Stochl et al. (2015) compared FIML, WLSMV, and 

MCMC for ordinal variables.  Stochl et al. (2015) found that the factor loading and factor 

correlation estimated by WLSMV using the multilevel model were unbiased regardless of ICC. 

MCMC did not show obvious advantage over FIML and WLSMV when clustering was 

incorporated into the model. MCMC was more robust than FIML and WLSMV in the estimation 

of parameters (factor loading, correlation, and thresholds) when the clustering was ignored. 

However, SE was underestimated regardless of the estimation methods. Without considering the 

clustering, the factor loading estimated by WLSMV was underestimated while the correlation 

was still almost unbiased.  
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Among previous studies about multilevel CFA, maximum likelihood (ML) (Whitton & 

Fletcher,2014; Brondino et al.,2013; Ryu, 2014; Greenbaum, Wang, & Boothroyd, 2011; 

Leonardo Grilli & Carla Rampichini, 2007), maximum likelihood robust (MLR) (Zimprich, 

Perren, & Horung,2005; Haenens, Damme, & Onghena,2012), Muthen maximum 

likelihood(MUML) (Wu, 2009; Dyer et al., 2005; Ryu, 2014),and  WLSMV (Little, J., 2013; 

Pornprasertmanit, Lee, & Preacher, 2014; Stochl et al.,2015) were the common methods. 

Although WLSMV was preferred over other methods for single-level study of the ordinal 

variables, there have been more empirical MCFA studies using the ML and MLR. There have 

been very limited studies comparing the estimation methods of MCFA. It is not certain whether 

the advantage of WLSMV over ML and MLR in the single-level CFA of categorical data can be 

extended to MCFA.  

2.3 COMPLEX SAMPLING DESIGN AND METHODS OF ADJUSTING 

STANDARD ERROR 

This section will first introduce the complex sampling and clustering followed by three methods 

to adjust for the standard errors in the single-level CFA. 

2.3.1 Complex Sampling Design and Clustering 

It has been specified that hierarchical data are often collected through cluster sampling. In 

traditional SEM analysis, assumption is that observations are independent and identically 

distributed. The large survey data are usually collected through multistage sampling or cluster 



 33 

sampling.  Intact groups rather than individual subjects are randomly selected. The intact group 

can be school districts, schools, or classrooms. The example of stratified cluster sampling is that 

schools are selected by stratifying at the appropriate level and then choosing an appropriate 

proportion of schools in each stratum.  Then an appropriate proportion of students are selected in 

each stratum. The underestimation of the sample variance in the complex sampling design are 

the common consideration in previous studies (Thomas & Heck, 2001; Stapleton, 2006; 

Asparouhov & Muthen, 2006; Wu & Kwok, 2013). 

Because of the cluster sampling, subjects obtained from cluster sampling are 

homogeneous in nature. The sample variance estimated from the clustered data is smaller than 

those estimated from the traditional method assuming independent data. If the study ignores the 

complex sampling design and the unequal probability of selection, parameters estimated 

assuming the simple random sampling may depart from the true value. It will cause the inflation 

of Type I error rate and the incorrect assertion of the significant relationship.   

2.3.2 Adjusting Standard Error in the Complex Sampling Design 

The consequences of ignoring the clustering mainly reflect in the downward bias of standard 

error and the inflation of Type I error rate.  When the single-level analysis is performed in the 

multilevel data, the default standard errors are lower than the true standard errors in the clustered 

data.  Except for using the multilevel modeling, another reasonable method is to apply the 

statistical method of adjusting the standard errors for clustering or to adjust variances to account 

for homogeneity within clusters.  It is understandable that with the increase of ICC, the cluster of 

homogeneity increases and the standard error is more negatively biased. The method of adjusting 

standard errors with the single-level model is displayed as the following. 
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2.3.2.1 Make Adjustment by Using Design Effect 

There are various approaches to adjust the variance estimates in a single-level analysis using 

complex sampling design.  The first approach to adjust the standard error is to incorporate an 

inflation factor, the design effect. The design effect (DEFT) is an expected effect of the complex 

sampling design on the sampling variance: 

                        DEFT= 2

2

SRS

complex

SE
SE

                              (13) 

From the above equation, DEFT is the ratio of the sampling variance obtained using the 

complex sampling design to the sampling variance that would have been obtained if the simple 

random sampling is used.   It is to inflate the standard error by multiplying the square root of the 

mean design effect of a variable. Since the DEFT is associated with ICC, it was thought that for 

those ICC smaller than 0.05, there is little need in applying the DEFT (Stapleton, 2002). This 

method is conservative in estimating the sampling error in the complex model with a large 

number of parameters (Stapleton, 2006). Concerning the conservativeness of this approach, the 

parameter should be evaluated at a more liberal level such as 0.05 rather than 0.01 (Thomas & 

Heck,2001). 

2.3.2.2 Make Adjustment by Using Sampling Weight 

The second approach is to create a design-effect adjusted sampling weight. In the complex 

sampling design, a subgroup may have a higher probability of being selected and thus more 

weight is given to a certain group. Not using the weighting in the complex sample design causes 

the underestimation of the true variance of the population. It was found that the standard error 

was negatively biased without using the sampling weight in the complex sampling design 
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(Stapleton, 2006). Make adjustment to the weight will make the relative frequency of the 

observations in the sample in congruence with those in the population (Walker & Young, 2003).  

This adjusted sampling weight is created through dividing the normalized sampling 

weight by the average design effect of a variable. Most commonly used weights are raw weight 

and relative weight.  Sum the raw weight across all observations yields the effective sample size 

N: Nw
i

i =∑
=1

, where iw  is the raw weight for individual i.  The observation of a higher 

probability of selection has a small raw weight. The weighted mean is calculated as sum of 

product of raw weight and sample statistic ix   divided by the sum of the raw weight:  
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And the variance of the weighted mean is calculated as: 
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The relative weight is calculated as  
_

/ wwi  . The relative weight is preferred over the raw 

weight in the complex sampling design because the relative weight can yield the effect sample 

size while still adjusting for oversampling (Walker & Young, 2003).  

In the multistage stratified sampling, sampling weights are assigned to one of the levels 

or to both levels.  The lower level of the clustering had the greater effect on the parameter 

estimates than the higher-level (Asparouhov & Muthen, 2006). The sampling weight on the 

between-cluster level is jj pw /1= , where jp  is the probability that cluster j is included in the 

sample. The sampling weight on the within-cluster level is jiji pw // /1= , where jip /  is the 
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probability for individual i in cluster j of being selected given the cluster j is selected. The 

within-cluster weights are commonly scaled to improve the estimation. For example, weights are 

standardized so that they can be summed to the sample size of the cluster. Scaling to the cluster 

sample size will give the most robust performance.  

The scaled within-level weight for individual i in the cluster j  is calculated as 
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where nj is the size of cluster j and j
i

ji nw =∑
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* . For the jth cluster, the scaled weight is 

calculated as 
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where jw  is the raw weight for the cluster j and G is the number of clusters 

(Stapleton,2002).  The accuracy of the weight method depends on the cluster size, 

informativeness of the within-level weights, ICC, and the unequal weighting effect (Asparouhov 

& Muthen, 2006). The advantage of the weighting method is the simple calculation of the 

weight. In addition, it is simple to adjust all standard errors simultaneously by applying just one 

change in the weight instead of manually multiply each standard error by an inflation 

factor(Stapleton,2006). 

2.3.2.3 Linearization Method 

The third approach is to estimate the sampling variance by using linearization. Using the Taylor 

Series linearization method, the variance is calculated as a weighted combination of the variation 

measured by the first-order derivatives across the primary sampling units within the same 
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stratum (Kalton, 1983a).  Muthen and Satorra (1995) extended this linearization method to 

model the covariance structure in the complex survey data.  The mean is a   p×1 vector of 

simple weighted means. To calculate the asymptotic sample covariance matrix across all stratum 

and primary sampling units is equivalent to calculate a weighted covariance matrix across all 

elements in the data. The vector of parameter estimates is calculated by minimizing the 

likelihood function: 
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where ijklx  is the observation for the lth student in the kth school within the ith strata and 

jth primary sampling units and )|(
^
θijklyf  is the distribution for ijklx given the parameter 

^
θ . The 

standard error for the complex sampling design data is calculated via the asymptotic covariance 

matrix, 11
^
)cov( −− Γ= IIa θ .  I is the information matrix and Γ  is a measure of the pooled 

variability across ith strata and jth primary sampling units. If there is no effect due to complex 

sampling, the elements on the diagonal of the final resulting matrix will be one and the scaling 

factor will also become one. This method mainly includes replacing sampling covariance matrix 

with the weighted sample covariance matrix and replacing fisher information with a sandwich 

estimator of variance (Bollen, Uueller, & Oberski, 2013). 

Stapleton (2006) has been the only study that compared three methods. It is hard to make 

a conclusion about the advantage and disadvantage of the methods based on one study. Except 

for the above methods, balanced repeated replication, jack-knife and bootstrapping techniques 

are applicable (Thomas & Heck,2001). 
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2.4 STUDIES COMPARING SINGLE-LEVEL CFA WITH MCFA 

There have been very limited simulation studies comparing the single-level CFA with multilevel 

CFA in the clustering data. The results from these studies are briefly summarized as the 

following: Pornprasertmanit et al. (2014) compared single-level CFA with two correlated factors 

and two-level CFA with two correlated factors at both levels. The two-level CFA was 

demonstrated to fit the data better when the data was simulated with clustering structure.  It was 

found that the standardized factor loadings were not biased when the factor loadings across 

levels were simulated to be the same. When the factor loadings were simulated to be different 

across levels, the factor loading estimated from two-level CFA model and single-level CFA 

model differed.  When the average of the item ICC was less than 0.25, the absolute difference of 

the factor loading was within a reasonable range.  The factor loading was overestimated when 

the between-level communality was high and underestimated when the between-level 

communality was low. When the between-level communality was high, the standard error (SE) 

of factor loading estimated using disaggregated analysis was negatively biased. When the 

between-level communality was low, SE of factor loading estimated using disaggregated 

analysis was positively biased. When the factor correlations across levels were simulated to be 

the same or ICC was smaller than 0.25, the absolute bias was within 0.05.  Also, the standard 

error of the factor correlation tended to be higher when the between-level communality was 

lower, and vice versa.  

Julian (2001) compared the single-level CFA model with four factors, the two-level CFA 

model with four factors at both levels, the model with four factors at the within-level and two 

factors at the between-level, and the model with four factors at the within-level and five factors 

at the between-level. It was demonstrated that model parameters (i.e. factor loading, variance, 
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and covariance) tended to be overestimated, corresponding standard errors tended to be 

underestimated, and chi-square statistics was inflated when the two-level CFA was estimated 

using the single-level CFA. The relative bias of factor loading and standard errors were not 

affected by different factorial structures. The relative bias of standard error increased as the ratio 

of groups to group members decreased when ICC was larger than 0.05. Except when ICC was as 

large as 0.45, relative bias of parameter estimates was not affected by the ratio of groups to 

group members. When ICC was 0.45, the relative bias of the factor loading in three models 

increased from 0.02 to 0.14, from 0.02 to 0.10, and from 0.04 to 0.13 when the ratio of groups to 

group members decreased from 20 to 0.2. The ignoring of clustering could be neglected when 

ICC was smaller than 0.05 and group size was small. The relative bias of factor covariance was 

affected by different factorial structure. The relative bias of factor covariance was smaller when 

the factorial structures across levels were the same or when the between-level was simpler than 

the within-level; the relative bias of the factor covariance was larger when the between-level was 

more complex than the within-level. 

Stochl et al. (2015) simulated a five-factor model at the within-level and it was proved 

that ignoring the clustering would underestimate the factor loading, related standard error, and 

item threshold for the multilevel data using WLSMV and the relative bias increased with ICC. 

But the estimate of factor correlation was almost unbiased even when ICC was large. 

Wu and Kwok (2012) compared the single-level design-based approach with model-

based two-level approach in the clustering data. It was found that factor loadings estimated from 

the single-level CFA model were accurate when the factorial structures were the same at the 

within and between-level but were seriously biased when the factorial structures were different 

across levels. Factor loadings on the single item were still unbiased when the within-level 



 40 

factorial structure was more complex than that of the between-level.  But factor loadings were 

seriously biased when the between-level factorial structure was more complex than that of the 

within-level and the degree of bias increased with the increase of ICC. The two-level model 

accurately estimated the factor variance, covariance, and residual variances in three factorial 

structures. Single-level CFA model could not accurately estimate the factor variances and 

residual variances when the between-level model was more complex than the within-level 

model. Factor variances were underestimated and residual variances were overestimated using 

the single-level CFA model. Even when the between-level and within-level model were the same 

or when the within-level model was more complex than the between-level model, the factor 

covariance estimated using the single-level model was twice the factor covariance of the true 

model. 

Based on the limited simulation studies, the following conclusions could be made: First, 

the accuracy of the disaggregated parameter estimates (factor loading, factor correlation, and 

residual variances) and related standard errors were affected by the factorial structure of the true 

model. Second, the disaggregated factor loading, factor correlation, and related standard errors 

could be overestimated or underestimated depending on the between-level communality of the 

true model.  Third, the accuracy of parameter estimates and related standard errors were affected 

by ICC. When the item-level ICC increased, the relative bias of parameters estimated from the 

single-level CFA using adjusted standard error increased. Fourth, the ratio of the number of 

groups to number of group members affected the accuracy of standard errors of parameter 

estimates. The effect from sample size was not as large as the effect from ICC. 

In addition to the previous simulation studies, Stapleton, Yang, and Hancock (2016) 

stated that when a construct measured had cluster-level dependency, the single-level model with 
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a correction of standard error was also appropriate. Complex single-level CFA model and MCFA 

model were compared. The study used  χ2, CFI, RMSEA, and SRMR to examine the model fit. It 

was found that two-level model did not perform well when the ICC was low or the within-cluster 

persons were smaller than 50 based on the χ2 while the single-level model with designed-based 

adjusted standard error performed well.  

2.5 LITERATURE REVIEW OF APPLIED RESEARCH OF MCFA 

Using the database of PsycINFO, among 15 empirical studies about MCFA using likert-type 

questionnaires (Breevaart, 2012;Brondino, et al., 2013; Dedrick & Greenbaum, 2010; Dyer, 

2005;Grilli & Rampichini, 2007; Gajewski &  Boyle,2013; Greenbaum et al., 2011; Haenens, et 

al., 2012 ; Klangphahol et al., 2010; Little, 2013;Ryu,2013; Whitton & Fletcher, 2014; Wu, 

2009; Zimprich et al., 2005;Zhang & Wang, 2005),  the following findings were obtained: 

1. The between-level factorial structure was the same as or simpler than the within-level 

factorial structure. 

2. The item-level ICC ranged from 0.028 to 0.55. Most of item-level ICCs were larger 

than 0.10. 

3. In majority of the studies, the factor loadings at the between-level were higher than 

those of the within-level. 

4. The factor correlation at the between-level was substantially higher than that of the 

within-level in most models.  Dedrick and Greebaum(2010) suggested to use the one-

factor model at level-2 when the factor correlation at level-2 was as high as 0.9. 

http://www.apa.org/pubs/databases/psycinfo/
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3.0  METHODOLOGY 

The main goal of the study is to examine and compare the performance of three approaches for 

CFA with multilevel data: model-based approach using two-level CFA, single-level CFA with 

standard errors adjusting for clustering effect, and the single-level CFA with normal standard 

error.  A Monte Carlo study was conducted to examine the conditions under which the bias 

resulting from using the single-level model in the multilevel data is consequential. The 

manipulated simulation design factors include: 1) number of cluster members, 2) number of 

clusters, 3) factor correlation, 4) factor loading, and 5) Item ICC. According to previous 

empirical studies, the within-level model could be more complex, simpler or the same as the 

between-level model. In this study, two models with different factorial structures were examined: 

the two-level model with correlated factors at both levels and the two-level model with the 

correlated factor at the within-level and one factor at the between-level.  MPLUS is used to 

generate the data based on the multilevel covariance structure modeling. Data analysis are also 

performed in MPLUS. 

The following sections will first introduce manipulated simulation design factors 

including factorial structure (number of factors at two levels, factor loading, and factor 

correlation at two levels), ICC, and sample size (number of cluster members and number of 

clusters), and then present evaluation criteria, data generation model and data generation 

validation.  
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3.1 SIMULATION DESIGN FACTORS 

3.1.1 Factorial Structure 

For the studies comparing the single-level CFA with MCFA, previous simulation studies adopted 

same or different factorial structures at the between and within-level.  The between-level 

factorial structure can be more complex or simpler than the within-level factorial structure. 

Julian (2001) incorporated the four-factor model at the within-level and four factor or two factor 

or five factor model at the between-level. All parameters were simulated on the unstandardized 

scale. Wu and Kwok (2012) used a three-factor model either at the within or between-level or 

both.  The factor correlations among factors were set to be 0.3, the single item factor loadings 

were all set to be 0.8, and the complex item factor loadings were all set to be 0.4. The study 

constrained the factor loadings across the levels to be the same. Pornprasertmanit, Lee, and 

Preacher (2014) simulated the two-factor model with the same factorial structure across levels. 

At the between-level, the factor correlation was simulated to be 0.2, 0.5, or 0.8.  At the within-

level, the factor correlation was fixed to be 0.5. The factor loadings were all set to be 0.7 at the 

within-level and were all set to be 0.49, 0.7, or 0.86 at the between-level. Stochl et al. (2015) 

simulated data using a five-factor CFA model at the within-level and no common factors at the 

between-level. All factor loadings were set to be 0.7 and factor correlations were set to be 0.4. 

Pornprasertmanit et al. (2014) has been the only study to simulate the two correlated 

factor model at the within-level. The model with two correlated factors is the simplest form in 

the educational and psychological setting. Therefore, this study used the two correlated factors at 

the within-level or both levels, and each factor has five ordinal item indicators.  From the study 

of Wu and Kwok (2012), the parameter estimates were accurate if the clustering was ignored 
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when the factorial structures were the same across levels.  In order to compare the effect of 

different factorial structures on the relative bias of the parameters in ignoring the clustering, the 

data generation models of the current study were the 1) two-level CFA model with two 

correlated factors at both levels (W2B2); 2) two-level CFA model with two correlated factors at 

the within-level and the one factor at the between-level (W2B1). The factor correlation at the 

within and/or between-level were set to be 0.3 or 0.6 to represent small and medium correlation 

respectively. In Model 1 (W2B2), the factor correlation at the within level was lower (.3 vs .6) or 

the same (.3 vs .3). 

According to Pornprasertmanit et al. (2014), the distribution of the factor loading did not 

significantly contribute to the accuracy of parameter estimates, and thus all items were 

constrained to have the same factor loading at the within- or between-level. In applied research, 

factor loading of 0.6 is considered moderate and factor loading of 0.8 is considered high. For 

Model 1 (W2B2), factor loadings at the within-level was set to be higher, lower, or equal to those 

at the between-level. More specifically, factor loading was set to be 0.8 at within-level versus 0.5 

at the between-level, or 0.5 at the within-level versus 0.8 at the between-level, or 0.5 at two 

levels.  

3.1.2 Item ICC 

Item ICC measures the proportion of variance in an item that is due to the between-group 

clustering, which can be calculated from parameters in two-level CFA. According to  

Julian (2001), the item-level ICC was calculated as the following: 
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where B∑  and  W∑  are between-level and within-level covariance, respectively. jj refers to the 

jth diagonal element of the covariance matrix of variable j . jλ  is the factor loading of the jth 

variable, BΨ  and WΨ  are the between-level and within-level covariance matrix of  the factors, 

and BΘ  and WΘ  are the between-level and within-level matrix of residual variances 

(Julian,2001).  Since ICC is to assess the homogeneity within the cluster, it is an important 

factor. The large ICC states that the degree of clustering is high.  

From the previous empirical studies of MCFA, item ICC ranged from 0.028 to 0.55. ICC 

smaller than 0.05 was considered negligible in studying clustering effect (Stapleton, 2002). In the 

simulation studies, Julian (2001) used ICC of 0.05, 0.15, and 0.45;  Pornprasertmanit, et al. 

(2014) used ICC of 0.05, 0.25, 0.50 , 0.75, and 0.95; Wu and Kwok(2012) used ICC of 0.1 and 

0.5; Stochl et al. (2015) simulated 11 levels of ICCs ranging from 0.001 to 0.390.  Based on the 

national representative sample, Hedges and Hedberg (2007) stated that the average ICC was 0.22 

for all schools and 0.19 for schools of low socioeconomic status.  Hox and Maas (2001) stated 

that ICCs were below 0.2 in most educational research while ICCs were above 0.33 when group 

characteristics such as socio-econometric status was studied. According to Pornprasertmanit, et 

al. (2014), ICCs of indicators of the same factor could be same or different.  

Julian (2001),  Pornprasertmanit, et al. (2014) , and Wu and Kwok (2012) all manipulated 

item ICC in the simulation study instead of the latent factor ICC. In the current study, two 
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conditions of ICCs were set:  0.25 and 0.45. According to Pornprasertmanit et al. (2014), the 

distribution of ICCs did not significantly contribute to the accuracy of parameter estimates, thus 

the distribution of ICCs was not varied for this study. 

3.1.3 Sample Size 

From previous empirical studies of MCFA, within-level sample size ranged from 6 to 72,899 and 

between-level sample size ranged from 25 to 4,783. In the study of Julian (2001), the ratio of the 

number of clusters to the number of cluster members was set to be 100/5, 50/10, 25/20, and 

10/50. In the study of Pornprasertmanit, Lee, and Preacher (2014), the ratio of the number of 

clusters to the number of cluster members was set to be 100/5, 10/50, 400/20, and 40/200.  Wu 

and Kwok (2012) selected the cluster sizes at 10, 50, and 200, and the cluster number at 50,150, 

and 300. In the MCFA study of Hox and Maas (2001), it was found that the smallest sample size 

for the accurate parameter estimate was 10 observations within 50 clusters.  Based on the results 

of previous studies, the ratio of the size of between-cluster to the within-cluster in the current 

study was 50/10, 20/25,250/10, and 100/25. When the within-cluster sample sizes or the total 

sample sizes are the same, the effect of sample size on the accuracy of parameter estimates can 

be better investigated. In the current study, the total sample size for the small sample was 500 

and the total sample size for the large sample was 2500.   

3.1.4 Model Estimation 

Based on Section 2.0, WLSMV estimates parameters more accurately than ML and MLR in CFA 

of ordinal items considering the robustness of its performance to the two, three, and four-
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category items. The number of indicators did not affect WLSMV’s performance. The 

performance of WLSMV was not affected by the distribution of the thresholds while the 

performance of MLR was affected by the distribution of the thresholds in the ordinal data.   This 

study intends to examine the accuracy of parameter estimation of factor loading, factor 

correlation, and residual variances using WLSMV. 

In summary, there were 4 (combination of within-level and between-level sample size) 

×2 (combination of between-level and within-level correlation) ×3 (combination of between-

level and within-level factor loading) ×2 (ICC) =48 conditions for the first MCFA model in the 

original design. To make all residual variances of the between-level positive, the combination of 

within-level factor loading of 0.5 and between-level factor loading of 0.8 could not be set up 

with ICC of 0.25. Therefore, finally there were 40 conditions for W2B2 model.  Similarly, there 

were 4 (combination of within-level and between-level sample size) ×2 (within-level correlation) 

×3 (combination of between-level and within-level factor loading) ×2 (ICC)=48 conditions for 

the second MCFA model in the original design. But finally 40 conditions were adopted for 

W2B1 model for the same reason as in W2B2 model. In each condition, 100 datasets were 

generated, and each generated dataset was analyzed with WLSMV by three models: two-level 

CFA model, single-level CFA model using normal error, and single-level CFA model using 

complex error.  Table 2 lists the simulation factors for two data generation models of different 

factorial structures. 
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Table 2. Simulation factors for three models of different factorial structures 

 Within-Cluster 

/Between-Cluster 

Factor 

Correlation(2)  

within-cluster/ 

between-cluster 

sample size (4) 

ICC 

(2) 

within-cluster and 

between-cluster 

factor loading(3) 

Estimation 

Method(1) 

W2B2 

model 

0.3/ 0.6; 

0.3/ 0.3; 

 

10/50, 25/20 ,10/250 

, and 25/100 

0.25 and 0.45 0.5 and 0.8; 

0.5 and 0.5; 

0.8 and 0.5 

WLSMV 

W2B1 

model 

0.3/; 

0.6/ 

10/50, 25/20 ,10/250 

, and 25/100 

0.25 and 0.45 0.5 and 0.8; 

0.5 and 0.5; 

0.8 and 0.5 

WLSMV 

 

3.2 EVALUATION CRITERIA 

 

Before examining the outcome variables, it is necessary to look at the rates of improper solutions 

across simulation conditions. An improper solution means nonconvergence or a solution that 

converges but there exits one or more out-of-bound parameters. The improper solutions need to 

be removed from the final analysis (Flora & Curran, 2004). In this study, the improper solution 

could be that the residual variance is negative. 

The outcome variables to be investigated include model fit indices, the relative bias of the 

factor loading, residual variance, and their related standard errors (Hoogland & Boomsma, 
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1998). Chi-square, RMSEA, CFI, TLI, and SRMR are used to evaluate the model fit. Relative 

bias of parameter estimate (including factor loading and residual variance) is calculated as: 

(24)

where  is the true value of the ith parameter, and  is the mean of the ith parameter estimates 

across the 100 replications. Relative bias less than 5% is the trivial bias, between 5% and 10% is 

the moderate bias, and greater than 10% is the substantial bias (Wallentin, Joreskog, & 

Luo,2010). 

Following Flora and Curran (2004), the pooled mean of the factor loading at each level is 

examined instead of examining the factor loading of each individual item.  

Pooled Mean= ∑
=

−
n

i
in

1

^
1 λ (22) 

where n is the number of indicators and 
^

iλ  is the mean across replications of each factor loading.

It is to first calculate the mean of factor loading across replications of each cell. Then the pooled 

mean of the factor loading of all items are calculated. In this study, for the within-level and 

between-level, the pooled mean of the factor loading is calculated across 10 items, respectively. 

The pooled standard deviation of the factor loading is calculated.  

           Pooled SD= ∑
=

−
n

i
iVARn

1

^
1 )(λ (23) 

where )(
^

iVAR λ  is the sample variance of each factor loading across replications. In this study, 

the pooled standard deviation is calculated across 10 items for the within-level and between-

level, respectively.  
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3.3 DATA GENERATION 

The first data generation model was two-level CFA model (see Figure 1) with correlated factors 

at both levels. The continuous item scores were first generated based on a two-level CFA model 

with specifically defined ICC, factor loading, factor variance, and item residual variance. The 

continuous item scores were then transformed into five-category ordinal data by incorporating 

threshold parameters. For the five-category data, four thresholds were needed.  

Figure 1. Two-Level CFA Model with Correlated Factors at Both Levels 

Figure 1 is a two-level CFA model with three indicators loading on each factor of each 

level. According to Figure 1, it can be told that the latent variable at the within-level is explained 

by a factor at the within-level and the circle represents the residual variance of the variable that 

cannot be explained by the factor. The similar rule mechanism is applied to the between-level. 

Item thresholds were adopted from the empirical data on the school engagement scale 

(Wang, et al., under review), which has 38 items that are all ordinal on a 5-point Likert scale: 
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ranging from 1 (no at all like me) to 5 (very much like me). Each student reported on his or her 

own (a) behavioral engagement, using four items expressing their effort and investment while 

participating in school activities; (b) behavioral disengagement, using eight items expressing 

their avoidance, defiance, opting out of school activities; (c) emotional engagement, using five 

items expressing their positive emotions in school; (d) emotional disengagement, using 5 items 

expressing their negative emotions in school; (e) cognitive engagement, using five items 

expressing their persistence, planning, and strategy use during school activities; (f) cognitive 

disengagement, using two items expressing their lack of perseverance and withdrawal from 

school activities; (g) social engagement, using five items expressing their collaboration with 

peers and engagement in relationships in school; and (h) social disengagement, using four items 

expressing their lack of interest and involvement in social interactions and relationship with 

others in school.  School engagement was conceptualized to consist of school engagement and 

disengagement dimensions. Five items with high factor loading on the engagement factor and 

disengagement factor were selected respectively. The factor loading on the general factor ranged 

from 0.404 to 0.792. The correlation between the two dimensions was .4. Table 3 presents the 

item thresholds of the ten selected items, with the first five on school engagement, and the last 

five on school disengagement.  
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Table 3. Item thresholds of 10 items 

 b1 b2 b3 b4 

Item 1 -1.464 -1.298 -0.258 0.682 

Item 2 -1.410 -1.273 -0.252 0.719 

Item 3 -1.829 -1.647 -0.632 0.261 

Item 4 -1.591 -1.422 -0.332 0.605 

Item 5 -1.150 -0.739 -0.135 0.470 

Item 6 -2.081 -1.884 -1.063 -0.262 

Item 7 -1.274 -0.980 0.069 0.929 

Item 8 -1.384 -1.145 -0.082 0.886 

Item 9 -0.509 0.049 1.051 1.653 

Item 10 -0.584 0.561 1.319 1.793 

  

The minimum number of items loading on one factor was three to make a factor 

identifiable. Flora and Curran (2004) stated that a factor with 5 item indicators was commonly 

seen in practice. In this study, the number of items loading on the first factor and second factor 

were 5 at both the within and between-level.  

In the first data generation model, the within-level factor loading was set to be 0.5 and the 

between-level factor loading was set to be 0.8. The factor correlations of both levels were set to 

be 0.3. The setup of factor loading and factor correlation were not affected by the item-level 

ICC. According to equation (10), the between-level covariance matrix was:  
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According to equation (11), the within-level covariance matrix was: 
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The between-level residual variances depended on the item ICC.  According to equation 

(21), when the between-level residual variance of item j was 0.383, the within-level residual 

variance of item j was 1, the factor loading of the within-level was 0.5, the factor loading of the 

between-level was 0.8, the factor variance of within- and between-level were both 1, the ICC 

was calculated as the following: 
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                (28) 

In Mplus, the probit link is available for WLSMV. In the probit regression, residual is 

normally distributed with variance of 1. Thus, the within-level residual variance , WΘ , was 1.    

The within-level factor variance and between-level factor variance were set to be 1 so that the 

factor loadings are directly the correlation between factors and items, following the 

recommendation of the use of standardized loading in Pornprasertmanit, et. al. (2014).  

The second data generation model was two-level CFA model with two factors at the 

within-level and one factor at the between-level. The item thresholds were the same as those in 

the first simulation model.  The factor correlation between two factors at the within-level was 0.3 

or 0.6.  The factor loading, factor variances, and residual variances were set the same as those in 

W2B2 model.  

3.4 DATA VALIDATION 

3.4.1 W2B2 model: Two-level CFA with correlated factors at both levels 

In the data validation part, the data generation model was the model with correlation of 0.3 at 

both levels and the factor loading of 0.5 at the within-level and 0.8 at the between-level. The 

item ICCs were all set to be 0.45. The number of clusters was set to be 100 with 25 subjects 

within the cluster. Table 4 presents relative frequency of the items among 2500 observations, 
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several items were right skewed such as item 1 and several items were left skewed such as item 9 

and item 10. Most items had smallest frequency at the second category. 

Table 4. Item frequency distribution 

Relative 

Frequency  

Category 1 Category 2 Category 3 Category 4 Category 5 

Item 1 0.156 0.033 0.241 0.252 0.318 

Item 2 0.160  0.028 0.250 0.263 0.299 

Item 3 0.102 0.026 0.220 0.262 0.390 

Item 4 0.134 0.025 0.235 0.263 0.343 

Item 5 0.179 0.087 0.148 0.163 0.423 

Item 6 0.076 0.028 0.131 0.201 0.564 

Item 7 0.176 0.066 0.264 0.246 0.248 

Item 8 0.174 0.044 0.267 0.239 0.275 

Item 9 0.363 0.149 0.253 0.116 0.119 

Item 10 0.337 0.325 0.166 0.070 0.102 

 

A two-level CFA was conducted. The chi-square p value was 0.884, CFI was 1.00, TLI 

was 1.00, RMSEA was 0, SRMR was 0.02 for within-level, and 0.085 for the between-level. The 

ICCs of items ranged from 0.342 to 0.462. The model fit was generally good. The SRMR_B was 

a little above the cutoff criterion value. The unstandardized factor loadings of the within-level 

ranged from 0.454 to 0.597 and the average was 0.52, which was quite close to the true value of 

0.5. The within-level correlation was 0.274.  
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The between-level factor loadings ranged from 0.509 to 0.953 and the average was 0.747, 

which did not deviate a lot from the true value of 0.8.    The between-level factor correlation was 

0.229 and it deviated from the true value of 0.3.  The average of the between-level residual 

variance was 0.389, which was quite close to the true value of 0.383. The recovery of the factor 

loadings and the factor correlation at the within-level was better than that of the between-level.   

 

Table 5. Parameter Estimates from the two-level model 

 Within-level 

factor  

correlation 

True: 0.3 

Within-

level  

Factor 

loading 

True: 0.5 

Between-level 

factor 

correlation 

True : 0.3 

Between-level 

factor loading 

True: 0.8 

Between-

level residual 

Variance 

True: 0.383 

ICC 

 

True: 

0.45 

W2B2 model:       

Average   0.274 0.52 0.229 0.747 0.389  

Relative Bias:  -0.086 0.04 -0.236 -0.066 0.016  
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4.0  RESULTS 

The results were presented in the following order: 1) the rate of improper solutions, 2) model fit 

indices including the significance level (p value) of chi-square statistic, SRMR at the within level 

(SRMR_W) and the between level (SRMR_B), RMSEA, CFI, and TLI for each model, 3) 

parameter estimates for each model 4) a comparison of three models in terms of model parameter 

estimates and standard errors. In each section, results were presented for the W2B2 model first 

and then the W2B1 model. 

4.1 RATES OF IMPROPER SOLUTIONS  

Table 6 presents the rates of improper solutions obtained with WLSMV. All replications 

converged in all conditions.  Improper solutions resulted from the negative residual variances at 

the between-level in the two-level CFA. In W2B2 model, totally 498 cases had the negative 

residual variances and the improper solutions mostly occurred in the small sample sizes 

especially when the between-level sample size is small. Negative residual variances appeared 

most when the factor loadings were 0.5 at both levels and ICC was 0.25.  

W2B1 model had obviously fewer cases with the negative residuals variances than W2B2 

model. In W2B1 model, there were totally 58 cases had the negative residual variances and most 

occurred in the small sample sizes regardless of the small within-level sample size or small 
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between-level sample size. The condition that had the most cases of the negative residual 

variances was when the within-level and between-level factor loading were both 0.5, ICC was 

0.25, the within-level sample size was 25 and the between-level sample size was 20. 7 and 10 

cases had the negative residual variances for different factor correlations, respectively. When the 

within-level and between-level factor loading were both 0.5, ICC was 0.25, the within-level 

sample size was 10, and the between-level sample size was 50, 4 and 6 cases had the negative 

residual variances, respectively. 
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Table 6. Rates of improper solutions for cases of negative residuals 

 W2B2 Model     W2B1 Model  

 Within-level / 
Between-level 
Factor Loading 

ICC Sample Size Within-level 
/Between-level Factor 
Correlation 

Cases with 
Negative 
Residuals 

Within-level 
Factor Correlation 

Cases with 
Negative 
Residuals 

1 0.5/ 0.8 0.45 50(10) 0.3/0.3 8 0.3 0 
2    0.3/0.6 4 0.6 0 
3   20(25) 0.3/0.3 38 0.3 0 
4    0.3/0.6 34 0.6 2 
5   250(10) 0.3/0.3 0 0.3 0 
6    0.3/0.6 0 0.6 0 
7   100(25) 0.3/0.3 0 0.3 0 
8    0.3/0.6 0 0.6 0 
9 0.5/0.5 0.45 50(10) 0.3/0.3 13 0.3 1 
10    0.3/0.6 6 0.6 0 
11   20(25) 0.3/0.3 33 0.3 4 
12    0.3/0.6 27 0.6 4 
13   250(10) 0.3/0.3 0 0.3 0 
14    0.3/0.6 0 0.6 0 
15   100(25) 0.3/0.3 1 0.3 0 
16    0.3/0.6 0 0.6 0 
17 0.5/0.5 0.25 50(10) 0.3/0.3 26 0.3 4 
18    0.3/0.6 21 0.6 6 
19   20(25) 0.3/0.3 57 0.3 7 
20    0.3/0.6 51 0.6 10 
21   250(10) 0.3/0.3 0 0.3 0 
22    0.3/0.6 0 0.6 0 
23   100(25) 0.3/0.3 0 0.3 0 
24    0.3/0.6 0 0.6 0 
25 0.8/0.5 0.45 50(10) 0.3/0.3 24 0.3 1 
26    0.3/0.6 17 0.6 1 
27   20(25) 0.3/0.3 32 0.3 4 
28    0.3/0.6 23 0.6 1 
29   250(10) 0.3/0.3 0 0.3 0 
30    0.3/0.6 0 0.6 0 
31   100(25) 0.3/0.3 2 0.3 0 
32    0.3/0.6 0 0.6 0 
33 0.8/0.5 0.25 50(10) 0.3/0.3 10 0.3 2 
34    0.3/0.6 7 0.6 2 
35   20(25) 0.3/0.3 40 0.3 4 
36    0.3/0.6 24 0.6 5 
37   250(10) 0.3/0.3 0 0.3 0 
38    0.3/0.6 0 0.6 0 
39   100(25) 0.3/0.3 0 0.3 0 
40    0.3/0.6 0 0.6 0 
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4.2 EVALUATION OF MODEL FIT  

4.2.1 W2B2 Model  

Table 7 presented the proportion of the model fit statistics that met the cut-off criteria for the 

two-level model, complex model, and normal model in the W2B2 model. According to the 

recommended cut-off criteria, chi-square p value larger than 0.05 is considered good fit. 

According to the recommended cut-off criteria, the two-level model is considered good fit when 

SRMR_W and SRMR_B are smaller than 0.08. According to recommend cut-off criteria, the 

model is considered good fit when RMSEA is smaller than 0.06, CFI and TLI are larger than 

0.95.  

4.2.1.1 Chi-square test statistics 

Looking at p values of the chi-square of the two-level model and complex model, at least 90% of 

the p value in the two-level model and complex model were above 0.05, indicating the good fit 

of the models. When the normal model was used to estimate the clustered data, proportion of the 

p value that was above 0.05 was very low especially under the condition of high ICC. The 

influence of the high ICC was larger than the influence of the small sample size. 

4.2.1.2 SRMR_W and SRMR_B 

Looking at the SRMR_W and SRMR_B of the two-level model, all SRMR_Ws were smaller 

than 0.08, indicating the good model fit of the within-level model. At least 81.6% of the 

SRMR_B were smaller than 0.08 when sample size was large. The between-level model had 
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poorer fit when sample size was small. In most conditions with the small sample size, SRMR_B 

was smaller than 0.08 in less than 5% of the replications. 

SRMR_W and SRMR_B were good fit indices to evaluate the fit of the two-level model 

while other fit indices previously developed for the single-level model were not as good as them. 

In this study, SRMR_W and SRMR_B found that the within-level fit the data well across all 

conditions while the between-level was affected by the small sample size.  This phenomenon 

could not be detected by the chi-square p value. p value of the chi-square statistics seemed to be 

more affected by the ICC. 

4.2.1.3   RMSEA, CFI, and TLI 

Looking at RMSEA, the two-level model fit the data well. Looking at CFI and TLI of the two-

level model, the proportion that indices meeting the criteria was not as high as that of the chi-

square p value in the small sample size. But generally model still fit well looking at these 

indices. Looking at RMSEA of the complex model, the complex model fit the data well. Looking 

at CFI and TLI of the complex model, the complex model fit the data well when sample size was 

large. When sample size was small, the proportion that the index was within the cut-off criteria 

was as low as 63.8% when the sample size was 50(10) and as low as 43.3% when sample size 

was 20(25). When the sample size was small, the complex model fit the data better when ICC 

was low than when ICC was high. 

Looking at RMSEA, CFI, and TLI of the normal model, the normal data fit the data 

better when the sample size was large than when the sample size was small. When the sample 

size was small, the normal model fit to the data a little better when the between-level sample size 

was 50 than when the between-level sample size was 20.  The proportion of the indices within 

the cut-off criteria was lower in the 0.8 0.5 0.45 and 0.5 0.5 0.45 than in the 0.5 0.8 0.45 
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especially when the sample size was 20(25). Also, when the sample size was small, the normal 

model fit the data better when ICC was low than when ICC was high. Similar to the findings 

from the chi-square p value, the normal model did not fit the data as well as the two-level model 

and the complex model.   

In general, it was found that when the complex model was used to estimate the clustered 

data, the model still fit the data looking at p value and RMSEA and model fit better with the 

large sample size looking at CFI and TLI. When the normal model was used to estimate the two-

level data, the model fit was not good as good as the complex model especially when ICC was 

high and sample size was small (Table 7).  
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Table 7. Proportion of the model fit statistics meeting the cut-off criteria for two-level model, complex 

model, and the normal model in W2B2 model 

 Sample 
Size 

ICC Within-
level and 
Between-
level 
Factor 
Loading 

Within-
level and 
Between-
level 
Factor 
Correlation 

Model Chi-
square 
p 

RMSEA CFI TLI SRMR_W SRMR_B 

1 50(10) 0.45 0.5/0.8 0.3/0.3  1    0.989 1 0.967 0.902 1 0.326 

      2 0.967 1 0.989 0.957   

      3 0.359 0.989 0.967 0.924   

2    0.3/0.6  1    1 1 0.448 0.396 1 0.781 

      2 0.938 1 1 0.958   

      3 0.292 1 1 0.938   

3 50(10) 0.45 0.5/0.5 0.3/0.3  1    0.989 1 0.851 0.690 1 0 

      2 0.954 1 0.759 0.678   

      3 0.057 0.908 0.138 0.069   

4    0.3/0.6  1    0.979 1 0.809 0.681 1 0 

      2 0.915 1 0.638 0.638   

      3 0.021 0.830 0.106 0.043   

5 50(10) 0.25 0.5/0.5 0.3/0.3  1    0.946 1 0.838 0.743 1 0.014 

      2 0.973 1 0.986 0.959   

      3 0.824 1 1 0.959   

6    0.3/0.6  1    0.899 1 0.759 0.633 1 0.089 

      2 0.975 1 0.962 0.962   

      3 0.810 1 0.987 0.975   

7 50(10) 0.45 0.8/0.5 0.3/0.3  1    0.987 1 1 1 1 0 

      2 0.974 1 0.947 0.855   

      3 0.053 0.868 0.395 0.237   
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Table 7 (continued) 

Sample 
Size 

ICC Within-
level and 
Between-
level 
Factor 
Loading 

Within-
level and 
Between-
level 
Factor 
Correlation 

Model Chi-
square 
p 

RMSEA CFI TLI SRMR_W SRMR_B 

8 0.3/0.6  1   1 1 1 1 1 0 

 2 0.952 1 0.964 0.880 

 3 0.072 0.867 0.446 0.253 

9 50(10) 0.25 0.8/0.5 0.3/0.3  1   0.956 1 1 1 1 0 

 2 0.967 1 1 1 

 3 0.711 1 1 1 

10 0.3/0.6  1   0.957 1 1 0.978 1 0.011 

 2 0.957 1 1 1 

 3 0.688 1 1 1 

11 20(25) 0.45 0.5/0.8 0.3/0.3  1   1 1 1 1 1 0.081 

 2 0.935 1 0.790 0.742 

 3 0.016 0.677 0.645 0.435 

12 0.3/0.6  1   1 1 1 1 1 0.212 

 2 0.955 1.000 0.848 0.803 

 3 0.030 0.742 0.818 0.652 

13 20(25) 0.45 0.5/0.5 0.3/0.3  1   1 1 1 1 1 0 

 2 0.955 1 0.478 0.433 

 3 0 0.119 0 0 

14 0.3/0.6  1   1 1 1 1 1 0 

 2 0.918 1 0.507 0.438 

 3 0 0.151 0 0 
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Table 7 (continued) 

Sample 
Size 

ICC Within-
level and 
Between-
level 
Factor 
Loading 

Within-
level and 
Between-
level 
Factor 
Correlation 

Model Chi-
square 
p 

RMSEA CFI TLI SRMR_W SRMR_B 

15 20(25) 0.25 0.5/0.5 0.3/0.3  1   1 1 0.907 0.884 1 0 

 2 0.953 1 0.884 0.814 

 3 0.651 1 0.907 0.791 

16 0.3/0.6  1   1 1 0.837 0.816 1 0.082 

 2 0.939 1 0.878 0.837 

 3 0.571 1 0.878 0.816 

17 20(25) 0.45 0.8/0.5 0.3/0.3  1   1 1 1 1 1 0 

 2 0.941 1 0.574 0.500 

 3 0 0.044 0 0 

18 0.3/0.6  1   1 1 1 1 1 0 

 2 0.948 1 0.571 0.519 

 3 0 0.052 0.013 0 

19 20(25) 0.25 0.8/0.5 0.3/0.3  1   1 1 1 1 1 0 

 2 0.967 1 1 0.967 

 3 0.250 0.983 0.983 0.933 

20 0.3/0.6  1   0.974 1 1 1 1 0 

4.2.2 W2B1 Model 

Table 8 presented the proportion of the model fit statistics that met the cut-off criteria for the 

two-level model, complex model, and normal model in the W2B1 model.  
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4.2.2.1 Chi-square test statistics 

Looking at p values of the chi-square of the two-level model and complex model, all p values of 

two-level model and complex model were far above 0.05, indicating the good fit of the two-level 

model and complex model. When the normal model was used to estimate the clustered data, all p 

values of chi-square were larger than 0.05 when ICC was 0.25. It indicated that when ICC was 

low, the normal model could still fit the data that had clustering. When ICC was 0.45, all p 

values were smaller than 0.05 with the within/between level factor loading of 0.5 0.5 and 0.8 0.5. 

4.2.2.2 SRMR_W and SRMR_B 

Looking at the SRMR_W and SRMR_B of the two-level model, all SRMR_Ws were smaller 

than 0.08, indicating the good model fit of the within-level model. At least 87% of the 

replications had SRMS_Bs smaller than 0.08 for the large sample size, indicating the good model 

fit of the between-level model when the sample size was as large as 2500.  However, the 

between-level model did not fit the data that well when the sample size was small. 

SRMR_W and SRMR_B were good fit indices to evaluate the fit of the two-level model 

while other fit indices previously developed for the single-level model were not as good as them. 

In this study, SRMR_W and SRMR_B found that the within-level fit the data well across all 

conditions while the between-level was affected by the small sample size.  This phenomenon 

could not be detected by the chi-square p value. 

4.2.2.3 RMSEA, CFI, and TLI 

Looking at RMSEA, CFI, and TLI of the two-level model, two-level model fit the data well in 

most conditions, which was similar to the chi-square p value. 
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Looking at RMSEA, CFI, and TLI of the complex model, all RMSEAs were smaller than 

0.06 regardless of the sample size. Almost all CFI and TLI were larger than 0.95 when the 

sample size was large. However, when sample size was 20(25) and ICC was 0.45, CFI and TLI 

was typically low, indicating the bad fit of the complex model under this condition. 

Looking at RMSEA, CFI, and TLI of the normal model, when ICC was low, the normal 

model still fit the data, but when ICC was high, the fit indices indicated the bad fit of the model. 

The result from the p value and result from RMSEA, CFI, and TLI generally agreed with each 

other. 

In general, it was found that when the complex model was used to estimate the two-level 

data, the model fit the data in all conditions looking at p value and RMSEA and the model fit the 

data better with the large sample size looking at CFI, and TLI.  It was also found that when the 

normal model was used to estimate the two-level data, the model fit was not good especially 

when ICC was high (Table 8).  
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Table 8. Proportion of the model fit statistics meeting the cut-off criteria for the two-level model, 

complex model, and normal model in W2B1 model 

Sample 
Size 

ICC Within-
level and 
Between-
level 
Factor 
Loading 

Within-
level and 
Between-
level 
Factor 
Correlation 

Model Chi-
square 
p 

RMSEA CFI TLI SRMR_W SRMR_B 

1 50(10) 0.45 0.5/0.8 0.3/0.3  1   0.95 1 1 0.78 1 0.97 

 2 0.960 1 0.990 0.950 

 3 0.540 1 0.990 0.990 

2 0.3/0.6  1  0.98 1 1 0.89 1 0.97 

 2 0.970 1 1 0.980 

 3 0.530 1 1 1 

3 50(10) 0.45 0.5/0.5 0.3/0.3  1   0.979 1 1 0.727 1 0.030 

 2 0.969 1 0.797 0.727 

 3 0.080 0.949 0.797 0.191 

4 0.3/0.6  1   0.990 1 1 0.780 1 0.040 

 2 0.960 1 0.840 0.770 

 3 0.090 0.920 0.840 0.250 

5 50(10) 0.25 0.5/0.5 0.3/0.3  1   0.927 1 1 0.739 1 0.260 

 2 0.947 1 0.968 0.968 

 3 0.864 1 0.968 0.989 
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Table 8 (continued) 

Sample 
Size 

ICC Within-
level and 
Between-
level 
Factor 
Loading 

Within-
level and 
Between-
level 
Factor 
Correlation 

Model Chi-
square 
p 

RMSEA CFI TLI SRMR_W SRMR_B 

6 0.3/0.6  1   0.914 1 1 0.777 1 0.276 

 2 0.936 1 0.978 0.968 

 3 0.808 1 0.978 1 

7 50(10) 0.45 0.8/0.5 0.3/0.3  1   0.989 1 1 0.989 1 0 

 2 0.949 1 0.959 0.888 

 3 0.050 0.878 0.959 0.333 

8 0.3/0.6  1   0.989 1 1 1 1 0.020 

 2 0.949 1 0.969 0.939 

 3 0.050 0.818 0.969 0.394 

9 50(10) 0.25 0.8/0.5 0.3/0.3  1   0.928 1 1 0.979 1 0.051 

 2 0.948 1 1 1 

 3 0.775 1 1 1 

10 0.3/0.6  1   0.969 1 1 0.979 1 0.061 

 2 0.939 1 1 1 

 3 0.714 1 1 1 
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Table 8 (continued) 

Sample 
Size 

ICC Within-
level and 
Between-
level 
Factor 
Loading 

Within-
level and 
Between-
level Factor 
Correlation 

Model Chi-
square 
p 

RMSEA CFI TLI SRMR_W SRMR_B 

11 20(25) 0.45 0.5/0.8 0.3/0.3  1   1 1 1 0.99 1 0.480 

 2 0.970 1 0.880 0.780 

 3 0.110 0.890 0.880 0.840 

12 0.3/0.6  1   1 1 1 0.989 1 0.438 

 2 0.969 1 0.918 0.846 

 3 0.102 0.897 0.918 0.857 

13 20(25) 0.45 0.5/0.5 0.3/0.3  1   1 1 1 1 1 0 

 2 0.938 1 0.489 0.427 

 3 0 0.197 0.489 0 

14 0.3/0.6  1   1 1 1 1 1 0 

 2 0.958 1 0.614 0.521 

 3 0 0.229 0.614 0 

15 20(25) 0.25 0.5/0.5 0.3/0.3  1   0.989 1 1 0.784 1 0.204 

 2 0.903 1 0.903 0.860 

 3 0.580 1 0.903 0.946 
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Table 8 (continued) 

16 0.3/0.6  1   0.977 1 1 0.844 1 0.188 

 2 0.911 1 0.944 0.889 

 3 0.622 1 0.944 0.956 

17 20(25) 0.45 0.8/0.5 0.3/0.3  1   1 1 1 1 1 0 

 2 0.947 1 0.635 0.541 

 3 0 0.062 0.635 0 

18 0.3/0.6  1   1 1 1 1 1 0 

 2 0.979 1 0.767 0.686 

 3 0 0.040 0.767 0.010 

19 20(25) 0.25 0.8/0.5 0.3/0.3  1   0.989 1 1 1 1 0.010 

 2 0.917 1 1 0.968 

 3 0.343 0.989 1 0.958 

20 0.3/0.6  1   1 1 1 1 1 0.021 

 2 0.947 1 1 1 

 3 0.305 1 1 0.989 
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4.3 PARAMETER ESTIMATES 

This section examines the effect of the factors on the relative bias of the mean of the within-level 

factor loading, between-level factor loading, and the residual variance in the two-level model, 

and effect of factors on the relative bias of the factor loading in the complex model, and normal 

model. A 5×4×2 between-subjects ANOVA was first performed on the relative bias of mean of 

within-level factor loading, between-level factor loading, residual variance as a function of 

factor, ICC, sample size, and correlation. The combination of factor and ICC (FactorICC) was a 

between-subject variable with five levels (0.5 0.8 0.45, 0.5 0.5 0.45, 0.5 0.5 0.25, 0.8 0.5 0.45, 

0.8 0.5 0.25); sample size was a between-subject variable with four levels (50(10), 20(25), 

250(10), 100(25)); between-level and within-level factor correlation was a between-subject 

variable with two levels (0.3/ 0.3 and 0.3/0.6).     

Next, a 5×4×2×3 mixed ANOVA was performed on relative bias of mean of within-level 

factor loading as a function of FactorICC , sample size, correlation, and different models. The 

within-subjects independent variable was modeled with 3 levels (two-level model, complex 

model, and normal model). It intended to examine the effect of factors on the relative bias of 

within-level factor loading in three models.  The analysis was first performed on W2B2 model 

followed by W2B1 model. 

4.3.1 W2B2 Model 

For outcome variables that have significant interaction or main effects, simple effect analysis 

was conducted. The effect is considered significant and warrants further investigation when the p 

value was smaller than .05 and 2
pη >.01. Table 9 provides a summary of ANOVA results for the 
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relative bias of within-level mean factor loading (RB_meanW) and between-level mean factor 

loading (RB_meanB) of two-level model, residual variance (RB_res), and within-level factor 

loading in the complex (RB_cmeanW) and normal model (RB_nmeanW).  

Table 9. Summary of 2
pη  for the RB_meanW, RB_meanB, RB_res , RB_cmeanW, and RB_nmeanW 

from Between-subjects ANOVA 

Source 

Two-Level 
Model 

RB_meanW 

Two-Level Model 
RB_meanB 

Two-Level Model 
RB_res 

Complex Model 
RB_cmeanW 

Normal Model 
RB_nmeanW 

sample .033* .028* .044* .001 .001 
corr .000 .001 0 .001 .001 
FactorICC .003 .012* .007 .959* .959* 
sample * corr .000 .002 .001 .001 .001 
sample * 
FactorICC 

.003 .011* .005 .002 .002 

corr * 
FactorICC 

.000 .000 .000 .000 .000 

sample * corr * 
FactorICC .000 .000 .001 .000 .000 

factor*icc 0 0 0 .053* .053* 
factor .002 .009 .004 / / 
icc .002 .006 .005 / / 

4.3.1.1 Relative bias of mean of within-level factor loading 

Only sample size had significant effect on the relative bias of the mean of the within-level factor 

loading (Table 9). From the result of ANOVA, relative bias of the small sample size was 

significantly larger than the large sample size, but there were no significant differences between 

two small sample sizes and two large sample sizes. The mean and standard error of the relative 

bias of the within-level factor loading among sample sizes was reported in Table 10.   In general, 

the relative bias of the within-level factor loadings was trivial.   As shown in Figure 2, the 
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relative bias of the within-level factor loading was within 0.02 across all conditions. The relative 

bias of the within-level factor loading decreased when the sample size increased from 500 to 

2500.  

Figure 2. Relative bias of within-level factor loading as a function of sample size 

Table 10. The relative bias of the within-level factor loading as a function of the sample sizes 

Sample         N M         SE 
50(10) 864 .017 .001 
20(25) 641 .016 .002 
250(10) 1000 .002 .001 
100(25) 997 .001 .001 

4.3.1.2 Relative bias of mean of between-level factor loading 

The interaction of sample and FactorICC, sample, and FactorICC all had significant effect on the 

relative bias of the mean of the between-level factor loading (Table 9), but none of the following 

marginal comparison and simple comparison was significant. Looking at the Figure 3, the 
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relative bias of the between-level factor loading was all within 0.05 except when the within-level 

sample size was 25 and the between-level sample size was 20. Negative relative bias exceeded  

-0.1 when the sample size was 20(25), the ICC was 0.45, and the factor loadings were 0.5 0.5 or

0.8 0.5. It indicated that the estimation of the true model could not be good when the ICC was 

high and the between-level sample size was small (Figure 3).  

Figure 3. Relative bias of between-level factor loading as a function of FactorICC and sample size 
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Table 11. Mean and standard errors of relative bias of mean of between-level factor loading by sample size 

and FactorICC 

sample FactorICC M SE 
50(10) 0.5 0.8 0.45 -.010 .010 

0.5 0.5 0.45 -.034 .010 
0.5 0.5 0.25 -.024 .011 
0.8 0.5 0.45 -.042 .011 
0.8 0.5 0.25 -.036 .010 

20(25) 0.5 0.8 0.45 -.018 .012 
0.5 0.5 0.45 -.096 .012 
0.5 0.5 0.25 -.052 .014 
0.8 0.5 0.45 -.140 .011 
0.8 0.5 0.25 -.080 .012 

250(10) 0.5 0.8 0.45 -.005 .010 
0.5 0.5 0.45 -.008 .010 
0.5 0.5 0.25 -.009 .010 
0.8 0.5 0.45 -.013 .010 
0.8 0.5 0.25 -.011 .010 

100(25) 0.5 0.8 0.45 -.014 .010 
0.5 0.5 0.45 -.026 .010 
0.5 0.5 0.25 -.018 .010 
0.8 0.5 0.45 -.032 .010 
0.8 0.5 0.25 -.024 .010 

4.3.1.3 Relative bias of the residual variance 

Only the sample size had the significant effect on the relative bias of the residual variance (Table 

9). The relative bias of the residual variances was negatively biased and it was within -0.1(Table 

12). Looking at the plot, the relative bias looked larger when the sample size was small than 

when the sample size was large. The relative bias with 20(25) was significantly larger than 

relative bias with other sample sizes, p<.001, respectively.  The relative bias with 50(10) was 

significantly larger than that with 250(10), p<.001. However, there was no significant difference 

in the relative bias between 50(10) and 100(25). The relative bias with 250(10) was significantly 
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smaller than that with 100(25), p<.001. The relative bias looked larger when the ICC was high 

than when the ICC was low, however, the ICC did not have significant effect on the relative bias 

of the residual variance in terms of the statistical test (Figure 4). 

Figure 4. Relative bias of residual variance as a function of FactorICC and sample size 

Table 12. Mean and standard errors of the relative bias of the residual variances by the sample sizes 

sample    M SE 
50(10) -.034 .003 
20(25) -.064 .004 
250(10) -.004 .003 
100(25) -.025 .003 

4.3.1.4 Relative bias of mean of factor loading in the complex model 

The interaction of factor loading and ICC had significant effect on the relative bias of the factor 

loading averaged across other factors (Table 9). When the factor loadings were estimated from 
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the single-level complex model, the relative bias of the factor loadings was within 0.1 when the 

factor loadings across levels were the same.  As shown in Figure 5, when the factor loadings 

across levels were different, the relative bias of the factor loadings were larger than 0.2. 

Figure 5.Relative bias of factor loading as a function of FactorICC in the complex model 

Concerning the result of the ANOVA, the relative bias with 0.5 0.5 was significantly 

smaller than that with 0.8 0.5 for each ICC averaged across sample size and factor correlation 

(Figure 6). The mean and standard error of the relative bias of the factor loading by different ICC 

and factor loading was reported in Table 13. 
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Figure 6. Relative bias of factor loading as a function of factor loading and ICC in the complex model 

Table 13. Mean and standard error of the mean of the factor loading by FactorICC in the complex model 

ICC factor loading M SE N 
0.45 0.5 0.5  -.063 .002 720 

0.8 0.5  -.313 .002 702 
0.25 0.5 0.5  .091 .002 645 

0.8 0.5  -.203 .002 719 

4.3.1.5 Relative bias of mean of factor loading in the normal model 

The interaction of factor loading and ICC had significant effect on the relative bias of the factor 

loading averaged across other factors (Table 9). When the factor loadings were estimated from 

the single-level normal model, the relative bias of the factor loadings was within 0.1 when the 

factor loadings across levels were the same.  As shown in Figure 7, when the factor loadings 

across levels were different, the relative bias of the factor loadings were larger than 0.2.  
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Figure 7. Relative bias of factor loading as a function of FactorICC and sample size in the normal model 

Concerning the result of the ANOVA, the relative bias with 0.5 0.5 was significantly 

smaller than that with 0.8 0.5 for each ICC averaged across sample size and factor correlation 

(Figure 8). The mean and standard error of the relative bias of the factor loading by different ICC 

and factor loading was reported in Table 14. 
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Figure 8. Relative bias of factor loading as a function of factor loading and ICC in the normal model 

Table 14. Mean and standard error of the mean of the factor loading by FactorICC in the normal model 

ICC factor loading M SE N 
0.45 0.5 0.5  -.065 .002 720 

0.8 0.5  -.315 .002 702 
0.25 0.5 0.5  .090 .002 645 

0.8 0.5  -.204 .002 719 

4.3.1.6 Compare the relative bias of mean of within-level factor loading in three models 

A 5×4×2×3 mixed analysis of variance was performed on relative bias of mean of within-level 

factor loading as a function of FactorICC, sample size, correlation, and different models. The 

within-subjects independent variable was model with 3 levels (two-level model, complex model, 

and normal model). The assumption of homogeneity of variance and homogeneity of covariance 

were not met, Box’ M=11378.205, F (234, 2742364.109)=48.005, p<.001, Mauchly’s W=.022.  

The pattern of difference on relative bias of mean of within-level factor loading among 

models was significantly different among sample sizes, F(3.068,3540.172)=24.919, p<.001, 

2
pη =.021. The pattern of difference on relative bias of mean of within-level factor loading among 

models was significantly different among FactorICCs, F(4.090, 3540.172)=15270.344, p<.001, 

2
pη =.946.  There was a significant difference on the relative bias of the mean of within-level 

factor loading among models averaged across FactorICCs, sample sizes and correlations, 

F(1.023, 3540.172)=5032.482, p<.001, 2
pη =.592.  There was a significant difference on relative 

bias of the mean of within-level factor loading among FactorICCs averaged across models , 

sample sizes, and factor correlations, F(4,3462)=12804.584, p<.001, 2
pη =.937. However, there 
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was no significant difference on relative bias of the mean of within-level factor loading among 

sample sizes averaged across models, FactorICCs, and factor correlations, F(3, 3462)=9.146, 

p<.001, 2
pη =.008. Table 15 reported the partial effect size for the relative bias of the within-level 

factor loading for three models. 

Table 15. Summary of 2
pη  for the relative bias of the within-level factor loading from mixed ANOVA 

Source RB_meanW 

model*sample*corr*FactorICC 0 

model*corr*FactorICC 0 

model*sample*FactorICC .004 

model*sample*corr 0 

model*FactorICC .946* 

model*corr 0 

model*sample .021* 

model .592* 

sample .008 

corr .001 

FactorICC .937* 

factor*icc*model .040* 

factor*model .471* 

The pattern of difference among three models on the relative bias of the mean of the 

within-level factor loading  among factor loadings and between low ICC and high ICC was 

significantly different averaged across sample size, F(2, 3461)=72.369, p<.001, 2
pη =.040.  The 
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pattern of difference among models among factor loadings was significantly different averaged 

across ICC, factor correlation, and sample size, F(2,3461)=10973.807, p<.001, 2
pη =. 864 (Figure 

9) (Table 16).

Figure 9. Relative bias of factor loading as a function of model and factor loading averaged across ICC, 

sample sizes, and factor correlation 

Table 16. Mean and the standard error of the mean of the within-level factor loading by FactorICCs 

FactorICC M SE N 
0.5 0.8 0.45 16.845 .132 716 
0.5 0.5 0.45 -3.897 .130 720 
0.5 0.5 0.25 6.312 .143 645 
0.8 0.5 0.45 -20.641 .132 702 
0.8 0.5 0.25 -13.404 .131 719 

There was a significant difference among models averaged across ICC and sample size 

for 0.5 0.5 , F(2, 3461)=1796.356, p<.001, 2
pη =.509.   The relative bias of the two-level model 

was significantly smaller than that of the complex model and normal model, F(1, 3462) = 
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3548.265,  p<.001, 2
pη =.506; F(1, 3462)=3591.231, p<.001, 2

pη =.509, respectively.   However, 

the relative bias estimated from the complex model was not significantly smaller than that 

estimated by the normal model, F(1, 3462)=30.034, p<.001, 2
pη =.009. There was a significant 

difference among models averaged across ICC and sample size for 0.8 0.5 , F(2, 3461) = 

1016.744, p<.001, 2
pη =. 370. The relative bias of the two-level model was significantly smaller 

than that of the complex model and normal model, F(1, 3462)=2011.914, p<.001, 2
pη =.368; F(1, 

3462)=2033.393, p<.001, 2
pη =.370, respectively.   However, the relative bias estimated from the 

complex model was not significantly smaller than that estimated by the normal model, F(1, 

3462)=14.158, p<.001, 2
pη =.004 . The mean and standard error of the relative bias of the within-

level factor loading among three models at different factor loading and ICC was reported in 

Table 17.  

Table 17. Mean and standard error of the mean of the within-level factor loading by FactorICC and model 

FactorICC          Model      M         SE 
0.5 0.8 0.45 1 1.158 .156 

2 24.736 .155 
3 24.640 .157 

0.5 0.5 0.45 1 1.080 .155 
2 -6.296 .154 
3 -6.476 .155 

0.5 0.5 0.25 1 .824 .170 
2 9.084 .169 
3 9.029 .171 

0.8 0.5 0.45 1 .844 .157 
2 -31.314 .156 
3 -31.452 .157 

0.8 0.5 0.25 1 .522 .156 
2 -20.339 .155 
3 -20.394 .156 
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There was a significant difference in the relative bias among models for each sample size 

averaged across other factors, F(1, 863.246)=73.422, p<.001, 2
pη =.078; F(1.003, 641.646) 

=96.229, p<.001, 2
pη =.131;F(1,999.012)= 62.094, p<.001, 2

pη =.059; F(1,996.048)= 60.432, 

p<.001, 2
pη =.057.    The relative bias of mean of within-level factor loading of two-level model 

was significantly smaller than that of complex model for each sample size, p<.001, respectively. 

The relative bias of mean of within-level factor loading of two-level model was significantly 

smaller than that of normal model for each sample size, p<.001, respectively. The relative bias of 

mean of within-level factor loading of complex model was significantly smaller than that of 

normal model for each sample size, p<.001, respectively (Figure 10) (Table 18). 

Table 18. Mean and standard error of the mean of the within-level factor loading by sample size and model 

Sample       Model       M          SE 
50(10) 1 1.668 .141 

2 -4.659 .140 
3 -4.753 .141 

20(25) 1 1.633 .165 
2 -4.779 .164 
3 -5.050 .165 

250(10) 1 .155 .130 
2 -4.918 .129 
3 -4.932 .130 

100(25) 1 .086 .130 
2 -4.947 .129 
3 -4.987 .130 
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Figure 10. Relative bias of factor loading as a function of model and sample sizes averaged across ICC, 

factor loading, and factor correlation 

From the result of analysis of variance, it was found that the relative bias of the within-

level factor loading estimated by the two-level model was significantly smaller than that 

estimated by the complex model and the normal model for each factor loading averaged across 

ICC, sample sizes, and factor correlations. However, the relative bias of the within-level factor 

loading estimated by the complex model was not significantly smaller than that estimated by the 

normal model for each factor loading averaged across ICC, sample sizes, and factor correlations. 

In conclusion, when the two-level model was used to estimate the parameters, the large 

relative bias of the within-level factor loading was affected by the small total sample size. There 

was no difference whether the within-level or the between-level sample size was large or small. 

As for the single-level complex model and normal model, sample size did not have any effect on 

the relative bias of the factor loading.  
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When the factor loadings across levels were the same, the factor loadings estimated from 

the single-level complex model and single-level normal model were all within 0.1, which were 

still acceptable. However, the factor loadings estimated from the single-level model when factor 

loadings across levels in the true model were different were much larger than those when factor 

loadings across levels in the true model were the same (Figure 9). This conclusion had been 

proved by the study of  Porprasertmanit et al.(2014) and Wu and Kwok(2012).   

Julian found that ignoring the clustering overestimated the factor loading using ML. 

Stochl et al. (2015) found that ignoring the clustering underestimated the factor loading using 

WLSMV. The conclusion from this study was different from Stochl et al. (2015) and Julian 

(2001). When the single-level model was used to estimate the clustered data, the factor loading 

was positively biased and above 0.1 when the between-level factor loading was higher than the 

within-level factor loading in the true model. The factor loading was negatively biased and above 

-0.1 when the within-level factor loading was higher than the between-level factor loading

regardless of the ICC and sample size. Under the condition of the same factor loadings across 

levels, the higher ICC resulted in the higher relative bias in the single-level model, which was 

also proved by Pornprasertmanit et al. (2014) and Stochl et al. (2015).    

4.3.1.7 Compare the standard error among three models 

A 5×4×2×3 mixed analysis of variance was performed on the standard error of the mean of 

within-level factor loading as a function of FactorICC, sample size, correlation, and different 

models. Table 19 reports the partial effect size of the standard errors of the within-level factor 

loading in three models. The within-subjects independent variable was model with 3 levels (two-

level model, complex model, and normal model).  Table 19 reported the partial effect size for the 

standard errors of the within-level factor loading for three models. 
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Table 19. Summary of 2
pη  of the standard error of the within-level factor loading in three models 

Source 2
pη

model .931* 
model * sample .750* 
model * FactorICC .548* 
model * sample  *  FactorICC .375* 
sample .969* 
FactorICC .819* 
sample * FactorICC .565* 
model*factor .292* 
corr 0 
corr * FactorICC .002 
sample * corr * FactorICC .001 
Model*corr .001 
Model*sample*corr 0 
Model*sample*FactorICC*corr 0 

The pattern of difference among samples, models, and FactorICCs was significantly 

different averaged across factor correlation, F(14.590, 4209.122)=173.152,  p<.001, 2
pη =.375. 

The pattern of the difference among different models among different samples was significantly 

different averaged across other factors, F(3.647, 4209.122)=3470.479, p<.001, 2
pη =.750(Table 

20).   
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Table 20. Mean and standard error of the mean of standard error of the factor loading by sample and model 

sample model M SE 
50(10) 1 9.838 .030 

2 6.706 .015 
3 4.968 .008 

20(25) 1 11.807 .036 
2 8.284 .017 
3 4.910 .009 

250(10) 1 4.573 .028 
2 3.161 .013 
3 2.264 .007 

100(25) 1 4.610 .028 
2 4.148 .013 
3 2.261 .007 

The pattern of the difference among different FactorICCs among models was 

significantly different averaged across other factors, F(4.863, 4209.122)=1049.930,  p<.001, 

2
pη =.548.  There was a significant difference in the SE among different models, F(1.216, 

4209.122)=46789.749,  p<.001, 2
pη =.931. There was a significant difference among different 

samples averaged across other factors, F(3, 3462)=36521.363,  p<.001, 2
pη =.969. There was a 

significant difference among different FactorICCs averaged across other factors, 

F(4,3462)=3911.927, p<.001, 2
pη =.819. The pattern of the difference among different samples 

and FactorICCs was significantly different averaged across other factors, F(12,3462)=374.585,  

p<.001, 2
pη =.565 . 

Since the pattern of difference among FactorICC and models averaged across sample size 

and factor correlation was significantly different, F(2,3461)=80.496,  p<.001, 2
pη =.044, the two-
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way interaction of the model and factor loading was performed. The pattern of difference among 

models and factor loadings was significantly different averaged across ICC, factor correlation, 

and sample size,  F(2,3461)=713.013,  p<.001, 2
pη =.292. There was a significant difference 

among models averaged across ICC and sample size for 0.5 0.5 , F(2,3461)= 7457.889,  p<.001, 

2
pη =.812.  The standard error of the two-level model was significantly larger than  that of the 

complex model and the normal model, F(1,3462)= 963,884,  p<.001, 2
pη =.146; F(1,3462) 

=715.340,  p<.001, 2
pη =.104, respectively.  The standard error of the complex model was 

significantly larger than that of the normal model, F(1,3462)=14612.412,  p<.001, 2
pη =.808. 

There was a significant difference among models averaged across ICC and sample size for 0.8 

0.5 , F(2,3461)= 5968.333,  p<.001, 2
pη =.775.  The standard error of the two-level model was 

significantly larger than  that of the complex model and the normal model, F(1,3462)= 351.228, 

p<.001, 2
pη =.092; F(1,3462)=441.010,  p<.001, 2

pη =.113, respectively.  The standard error of the 

complex model was significantly larger than that of the normal model, F(1,3462)=11780.439, 

p<.001, 2
pη =.773 (Figure 11)(Table 21). 
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Figure 11. Standard Error as a function of factor loading and model averaged across sample size, ICC, and 

factor correlation 

Table 21. Mean and standard error of the mean of standard error of the factor loading by model 

and FactorICC 

FactorICC model M SE 
0.5 0.8 0.45 1 8.198 .034 

2 5.296 .016 
3 3.135 .009 

0.5 0.5 0.45 1 8.295 .033 
2 7.604 .016 
3 4.335 .009 

0.5 0.5 0.25 1 6.620 .037 
2 4.705 .018 
3 3.721 .010 

0.8 0.5 0.45 1 8.590 .034 
2 6.467 .016 
3 3.753 .009 

0.8 0.5 0.25 1 6.832 .034 
2 3.803 .016 
3 3.058 .009 
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Therefore, standard errors estimated from the two-level model were the largest, followed 

by the complex model and the normal model.   For three models, the standard errors in the 

condition of factor loadings of 0.5 across levels and ICC of 0.25 were generally the smallest. In 

the study of Porprasertmanit et al. (2014), it was found that SE was affected by the between-level 

standardized factor loading. When the between-level standardized factor loading was low, SEs 

was higher; when the between-level standardized factor loading was high, SEs was lower. In this 

study, it was also found that when ICC was the same, the lower between-level factor loading 

resulted in the higher SE and the higher between-level factor loading resulted in the lower SE in 

the single-level model (Figure 12).  

Figure 12. Standard error as a function of FactorICC and model averaged across sample size and factor 

correlation 

Julian (2001) and Stapleon (2006) stated that the standard errors were underestimated if 

the clustering structure in the data was not accounted for. Our ANOVA results corroborated their 
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findings with the standard error estimated from the two-level model consistently larger than the 

complex model and normal model across different levels of FactorICCs. The standard error 

estimated from the complex model was consistently larger than the normal model across the 

FactorICCs.  

4.3.2 W2B1 Model 

For outcome variables that have significant interaction or main effects, simple effect analysis 

were conducted. The effect is considered significant and warrants further investigation when the 

p value was smaller than .05 and 2
pη >.01. Table 22 provides a summary of ANOVA results for 

RB_meanW, RB_meanB, RB_res, RB_cmeanW, and RB_nmeanW. 

 Table 22. Summary of 2
pη  for the RB_meanW, RB_meanB, RB_res , RB_cmeanW, and RB_nmeanW 

from Between-subjects ANOVA in the W2B1 Model 

Source Two-Level Model 

RB_meanW 

Two-Level Model 

RB_meanB 

Two-Level Model 

RB_res 

Complex Model 

RB_cmeanW 

Normal Model 

RB_nmeanW 
sample .029* .008 .073* .001 .001 
corr .000 .000 .000 .000 .000 
FactorICC .002 .002 .002 .946* .946* 
sample * corr .000 .000 .000 .000 .000 
sample * FactorICC .002 .002 .004 .002 .002 
corr * FactorICC .000 .000 .000 .000 .000 
sample * corr * 
FactorICC .000 .000 .000 .000 .000 

Factor*icc 0 0 0 .038* .039* 
factor .001 .001 .002 / / 
icc .001 .001 .001 / / 
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4.3.2.1 Relative bias of mean of within-level factor loading 

Only sample size had significant effect on the relative bias of the mean of the within-level factor 

loading (Table 23). From the result of ANOVA, relative bias of the small sample size was 

significantly larger than that of the large sample size, but there were no significant differences 

between two small sample sizes and two large sample sizes (Table 23). In general, the relative 

bias of the within-level factor loadings was trivial.   The relative bias of the within-level factor 

loading was within 0.02 across all conditions. The relative bias of the within-level factor loading 

decreased when the sample size increased from 500 to 2500 (Figure 13).  

Figure 13. Relative bias of within-level factor loading as a function of sample size 

Table 23. Mean and standard errors of relative bias of mean of within-level factor loading by sample size 

Sample        M           SE            N 
50(10) .017 .001 983 
20(25) .016 .001 959 
250(10) .001 .001 1000 
100(25) .001 .001 1000 
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4.3.2.2 Relative bias of mean of between-level factor loading 

ANOVA demonstrated that none of the factors had significant effect on the relative bias of the 

between-level factor loading. 

4.3.2.3 Relative bias of the residual variance 

Only the sample size had the significant effect on the relative bias of the residual variance (Table 

24). The relative bias of the residual variances was negatively biased and it was within -0.1. 

Looking at the plot, the relative bias looked larger when the sample size was small than when the 

sample size was large. The relative bias with 20(25) was significantly larger than relative bias 

with other sample sizes, p<.001, respectively. The relative bias with 50(10) was significantly 

larger than relative bias of 250(10), p<.001. However, there was no significant difference in the 

relative bias of the residual between 50(10) and 100(25). The relative bias with 250(10) was 

significantly smaller than that with 100(25), p<.001. The relative bias looked larger when the 

ICC was high than when the ICC was low, however, the ICC did not have significant effect on 

the relative bias of the residual variance in terms of the statistical test (Figure 14) (Table 24). 
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Figure 14. Relative bias of residual variance as a function of sample size 

Table 24. Mean and the standard errors of the relative bias of residual variances by the samples 

Sample M SE N 
50(10) -.032 .003 983 
20(25) -.075 .003 959 
250(10) -.006 .003 1000 
100(25) -.026 .003 1000 

4.3.2.4 Relative bias of mean of factor loading in the complex model 

The interaction of factor loading and ICC had significant effect on the relative bias of the factor 

loading averaged across other factors (Table 23). When the factor loadings were estimated from 

the single-level complex model, the relative bias of the factor loadings was within 0.1 when the 

factor loadings across levels were the same.  As shown in Figure 15, when the factor loadings 

across levels were different, the relative bias of the factor loadings were larger than 0.2.  
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Figure 15. Relative bias of factor loading as a function of FactorICC in the complex model 

Concerning the result of the ANOVA, the relative bias with 0.5 0.5 was significantly 

smaller than that with 0.8 0.5 for each ICC averaged across sample size and factor correlation 

(Figure 16) (Table 25). 
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Figure 16. Relative bias of factor loading as a function of factor loading and ICC in the complex model 

Table 25. Mean and standard error of the mean of the factor loading by factor loading and ICC in the 

complex model 

          ICC        Factor Loading M SE N 
0.45 0.5 0.5 -.060 .002 791 

0.8 0.5 -.313 .002 793 
0.25 0.5 0.5 .094 .002 773 

0.8 0.5 -.202 .002 787 

4.3.2.5 Relative bias of mean of factor loading in the normal model 

The interaction of factor loading and ICC had significant effect on the relative bias of the factor 

loading averaged across other factors (Table 23). When the factor loadings were estimated from 

the single-level normal model, the relative bias of the factor loadings was within 0.1 when the 
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factor loadings across levels were the same.  As indicated in Figure 17, when the factor loadings 

across levels were different, the relative bias of the factor loadings were larger than 0.2.  

Figure 17. Relative bias of factor loading as a function of FactorICC in the complex model 

Concerning the result of the ANOVA, the relative bias with 0.5 0.5 was significantly 

smaller than that with 0.8 0.5 for each ICC averaged across sample size and factor correlation 

(Figure 18) (Table 26). 
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Figure 18. Relative bias of factor loading as a function of factor loading and ICC in the normal model 

Table 26. Mean and standard error of the mean of the factor loading by factor and ICC in the normal model 

ICC factor loading M SE N 
0.45 0.5 0.5 -.062 .002 791 

0.8 0.5 -.315 .002 793 

0.25 0.5 0.5 .093 .002 773 

0.8 0.5 -.203 .002 787 

4.3.2.6 Compare the relative bias of mean of within-level factor loading in three models 

A 5×4×2×3 mixed analysis of variance was performed on relative bias of mean of within-level 

factor loading as a function of FactorICC, sample size, correlation, and different models. The 

within-subjects independent variable was model with 3 levels (two-level model, complex model, 

and normal model). The assumption of homogeneity of variance and homogeneity of covariance 

were not met, Box’ M=11311.980, F(234, 4698031.627)=57.789, p<.001, Mauchly’s W=.016. 
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The interaction of model, factor, and ICC, the interaction of factor loading and model, the 

interaction of sample and model, and model all had significant effect on the relative bias of the 

within-level factor loading. Table 27 reported the partial effect size of the relative bias of the 

within-level factor loading in three models. 

Table 27. Summary of 2
pη  for the relative bias of the within-level factor loading from mixed ANOVA 

Source RB_meanW 

Model*sample*corr*FactorICC 0 

Model*corr*FactorICC 0 

Model*sample*FactorICC .004 

Model*sample*corr 0 

Model*FactorICC .929* 

Model*corr 0 

Sample*FactorICC .001 

Model*sample .015* 

model .508* 

sample .007 

corr 0 

FactorICC .922* 

Factor*icc*model .028* 

Factor*model .462* 

The pattern of difference on relative bias of mean of within-level factor loading among 

models was significantly different among sample sizes averaged across factor correlation and 

factor loading, F(3.055,3973.264)=20.371, p<.001, 2
pη =.015. The pattern of difference on 

relative bias of mean of within-level factor loading among models was significantly different 

among FactorICCs averaged across sample sizes and factor correlation, F(4.033,3973.264)= 

12729.334, p<.001, 2
pη =.929 .  There was a significant difference on the relative bias of the mean 
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of within-level factor loading among models averaged across FactorICCs, sample sizes and 

correlations, F(1.018, 3540.172)= 4023.571 ,  p<.001, 2
pη =.508.  There was a significant 

difference on relative bias of the mean of within-level factor loading among FactorICCs 

averaged across models , sample sizes, and factor correlations, F(4,3902)= 11517.462 ,  p<.001, 

2
pη =.922. However, there was no significant difference on relative bias of the mean of within-

level factor loading among sample sizes averaged across models, FactorICCs, and factor 

correlations, F(3, 3902)= 9.192 , p<.001, 2
pη =.007. 

The pattern of difference among three models on the relative bias of the mean of the 

within-level factor loading  among  factor loadings and between ICCs was significantly different 

averaged across sample size, F(2, 3901)=72.369, p<.001, 2
pη =.028.  The pattern of difference 

among models among factor loadings was significantly different averaged across ICC, factor 

correlation, and sample size, F(2, 3901)=9465.315, p<.001, 2
pη =.829 .  

There was a significant difference among models averaged across ICC and sample size 

for 0.5 0.5 , F(2, 3901)=1567.827, p<.001, 2
pη =.446.   The relative bias of the two-level model 

was significantly smaller than that of the complex model and normal model, F(1, 3902) = 

2957.418, p<.001, 2
pη =.431; F(1, 3902)=3049.333, p<.001, 2

pη =.439, respectively.   Also, the 

relative bias estimated from the complex model was significantly smaller than that estimated by 

the normal model, F(1, 3902)=56.90, p<.001, 2
pη =.014. There was a significant difference among 

models averaged across ICC and sample size for 0.8 0.5 , F(2, 3901)= 856.915, p<.001, 

2
pη =. 305. The relative bias of the two-level model was significantly smaller than that of the 

complex model and normal model, F(1, 3902)=1622.242, p<.001, 2
pη =.294; F(1, 3902) 
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=1671.029,  p<.001, 2
pη =.300, respectively.   However, the relative bias estimated from the 

complex model was not significantly smaller than that estimated by the normal model, F(1, 

3902)=27.565, p<.001, 2
pη =.007(Figure 19). The mean and standard error of the relative bias of 

the within-level factor loading among three models at different factor loading and ICC was 

reported in Table 28.  

Figure 19. Relative bias of the factor loading as a function of model and factor loading averaged across 

sample sizes, ICCs, and factor correlations 
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Table 28. Mean and the standard error of the mean of the factor loading by model and FactorICCs 

FactorICC model      M        SE 
0.5 0.8 0.45 1 1.145 .160 

2 24.801 .171 
3 24.648 .171 

0.5 0.5 0.45 1 .914 .161 
2 -5.982 .172 
3 -6.217 .172 

0.5 0.5 0.25 1 .932 .163 
2 9.369 .174 
3 9.291 .174 

0.8 0.5 0.45 1 .836 .161 
2 -31.291 .172 
3 -31.468 .172 

0.8 0.5 0.25 1 .593 .161 
2 -20.238 .172 
3 -20.306 .172 

There was a significant difference in the relative bias among models for each sample size 

averaged across other factors, p<.001 , respectively; 2
pη =.082, 2

pη =.083, 2
pη =.055, 2

pη =.055, 

respectively. The relative bias of mean of within-level factor loading of two-level model was 

significantly smaller than that of complex model for each sample size, p<.001, respectively. The 

relative bias of mean of within-level factor loading of two-level model was significantly smaller 

than that of normal model for each sample size, p<.001, respectively. The relative bias of mean 

of within-level factor loading of complex model was significantly smaller than that of normal 

model for each sample size, p<.001, respectively (Figure 20) (Table 29). 
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Figure 20. Relative bias of the factor loading as a function of model and factor loading averaged across 

sample sizes, ICC, and factor correlations 

Table 29. Mean and standard error of the mean of the factor loading by model and sample size 

sample model        M         SE 
50(10) 1 1.704 .144 

2 -4.469 .154 
3 -4.602 .154 

20(25) 1 1.623 .146 
2 -4.580 .156 
3 -4.923 .156 

250(10) 1 .098 .143 
2 -4.826 .153 
3 -4.850 .153 

100(25) 1 .110 .143 
2 -4.798 .153 
3 -4.866 .153 

In conclusion, similar to the ANOVA result of W2B2 model, it was found that the 

relative bias of the within-level factor loading estimated by the two-level model was significantly 
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smaller than the complex model and the normal model for each factor loading averaged across 

ICC , sample sizes, and factor correlations.  

Similar to the result of W2B2 model, when the two-level model was used to estimate the 

parameters, the large relative bias of the within-level factor loading was affected by the small 

total sample size. There was no difference whether the within-level or between-level sample size 

was large or small. As for the single-level complex model and normal model, sample size did not 

have any effect on the relative bias of the factor loading. When the factor loadings across levels 

were the same, the factor loadings estimated from the single-level complex model and single-

level normal model were all within 0.1, which were still acceptable. However, the factor loadings 

estimated from the single-level model when factor loadings across levels in the true model were 

different were much larger than those when factor loadings across levels in the true model were 

the same.   

Similar to the result of W2B2 model, when the single-level model was used to estimate 

the clustered data, the factor loading was positively biased and above 0.1 when the between-level 

factor loading was higher than the within-level factor loading in the true model. The factor 

loading was negatively biased and above -0.1 when the within-level factor loading was higher 

than the between-level factor loading regardless of the ICC and sample size. Under the condition 

of the same factor loadings across levels, the higher ICC resulted in the higher relative bias in the 

single-level model. 

Different from the result of W2B2 model, the between-level factor loading was not 

affected by any of the factors. Different from the result of W2B2 model, the relative bias of the 

within-level factor loading estimated by the complex model was significantly smaller than that 
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estimated by the normal model for 0.5 0.5 averaged across ICC, sample sizes, and factor 

correlations (Figure 19). 

4.3.2.7 Compare the standard error among three models in W2B1 Model 

A 5×4×2×3 mixed analysis of variance was performed on the standard error of the mean of 

within-level factor loading as a function of FactorICC, sample size, correlation, and different 

models. The within-subjects independent variable was model with 3 levels (two-level model, 

complex model, and normal model). The pattern of difference among samples, models, and 

FactorICCs was significantly different averaged across other factors, F(15.150, 4926.123)= 

206.019, p<.001, 2
pη =.388. All three-way interactions, two-way interactions, and main effects 

had significant effect on the standard error of the factor loading. Table 30 reported the partial 

effect size of standard errors in three models. 
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Table 30. Summary of 2
pη  for the standard error of the within-level factor loading from mixed ANOVA 

Source 2
pη

model .934* 

Model*sample .756* 

Model*corr .040* 

Model*FactorICC .522* 

Model*sample*corr .029* 

Model*sample*FactorICC .388* 

Model*corr*FactorICC .013* 

Model*sample*corr*facoricc .009 

Model*factor .268* 

Sample .971* 

Corr .208* 

FactorICC .804* 

Sample*corr .069* 

Sample*FactorICC .580* 

Corr*FactorICC .022* 

Sample*corr*FactorICC .012* 

Since the pattern of difference among FactorICC and models averaged across sample size 

and factor correlation was significant, F(2,3901)=69.498, p<.001, 2
pη =.034, the two-way 

interaction of factor loading and model was performed.  The pattern of difference among models 
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and factor loadings was significantly different averaged across ICC, factor correlation, and 

sample size,  F(2,3901)=714.885,  p<.001, 2
pη =.268 (Figure 21). There was a significant 

difference among models averaged across ICC and sample size for 0.5 0.5, F(2,3901)= 6499.264,  

p<.001, 2
pη =.769.  The standard error of the two-level model was significantly larger than  that of 

the complex model and the normal model, F(1,3902)= 649.379,  p<.001, 2
pη =.143; 

F(1,3902)=429.580,  p<.001, 2
pη =.099, respectively.  The standard error of the complex model 

was significantly larger than that of the normal model, F(1, 3902)=12511.227,  p<.001, 2
pη =.762. 

There was a significant difference among models averaged across ICC and sample size 

for 0.8 0.5 , F(2,3901)= 4864.763,  p<.001, 2
pη =.714.  The standard error of the two-level model 

was significantly larger than  that of the complex model and the normal model, F(1,3902)= 

310.939,  p<.001, 2
pη =.074; F(1,3902)=499.180,  p<.001, 2

pη =.113, respectively.  The standard 

error of the complex model was significantly larger than that of the normal model, 

F(1,3902)=9515.193,  p<.001, 2
pη =.709(Figure 21)(Table 31). 
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Table 31. Mean and standard error of the standard error of the mean of the factor loading by FactorICC and 

model 

FactorICC model M SE 
0.5 0.8 0.45 1 7.734 .030 

2 5.010 .015 
3 2.867 .009 

0.5 0.5 0.45 1 7.900 .030 
2 7.127 .015 
3 3.980 .009 

0.5 0.5 0.25 1 6.397 .031 
2 4.500 .016 
3 3.460 .009 

0.8 0.5 0.45 1 8.408 .030 
2 6.219 .015 
3 3.597 .009 

0.8 0.5 0.25 1 6.728 .030 
2 3.765 .015 
3 2.970 .009 

Figure 21. Relative bias of the standard error of factor loading as a function of model and factor loading 
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Therefore, similar to W2B2 model, standard errors estimated from the two-level model 

were the largest, followed by the complex model and the normal model.  For three models, the 

standard errors in the condition of factor loadings of 0.5 across levels and ICC of 0.25 were 

generally the smallest. Also, similar to W2B2 model, when ICC was the same, the lower 

between-level factor loading resulted in the higher SE and the higher between-level factor 

loading resulted in the lower SE in the single-level model (Figure 22). 

Figure 22. Relative bias of the standard error of factor loading as a function of model and FactorICC 

There were statistically significant differences in the standard errors between two-level 

CFA model and complex single-level CFA model, and between complex single-level CFA 

model and normal single-level CFA model. To look at the practical differences of the standard 

errors among these three models, the empirical 95% confidence interval of the standard errors 

were examined for each model by calculating the 2.5th and 97.5th percentile of the empirical 

distribution of standard errors computed from simulated datasets in each condition.  It was found 
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that there was no overlap in the confidence intervals among three models in the W2B2 model 

(Table 32) and W2B1 model (Table 33). Standard errors had obvious biases when the single-

level normal CFA model was used to estimate the two-level data for both W2B2 model and 

W2B1 model. 

Table 32. 95% confidence interval for the standard errors of the within-level factor loading of the two-level 

model, the complex model and the normal model in the W2B2 model (In this table, “m” represents the multilevel 

model, “c” represents the complex model, and “n” represents the normal model). 

Obs cond true_m 2.5_m 97.5_m true_c 2.5_c 97.5_c true_n 2.5_n 97.5_n 

1 111 0.112 0.099 0.101 0.064 0.061 0.063 0.064 0.043 0.044 

2 112 0.112 0.100 0.102 0.063 0.062 0.064 0.063 0.042 0.044 

3 121 0.117 0.127 0.141 0.087 0.079 0.083 0.088 0.043 0.045 

4 122 0.118 0.126 0.139 0.087 0.079 0.083 0.088 0.041 0.043 

5 131 0.046 0.046 0.046 0.028 0.029 0.029 0.029 0.020 0.020 

6 132 0.046 0.046 0.046 0.028 0.029 0.029 0.028 0.019 0.020 

7 141 0.047 0.047 0.048 0.040 0.039 0.039 0.040 0.020 0.020 

8 142 0.046 0.047 0.048 0.040 0.040 0.040 0.041 0.019 0.020 

9 211 0.112 0.099 0.102 0.098 0.088 0.091 0.098 0.060 0.062 

10 212 0.106 0.099 0.102 0.095 0.087 0.090 0.096 0.058 0.060 

11 221 0.125 0.134 0.145 0.146 0.112 0.117 0.149 0.058 0.061 

12 222 0.123 0.132 0.142 0.112 0.111 0.115 0.138 0.056 0.058 

13 231 0.048 0.046 0.047 0.135 0.043 0.043 0.043 0.028 0.028 

14 232 0.048 0.046 0.046 0.043 0.042 0.043 0.042 0.027 0.027 

15 241 0.046 0.048 0.049 0.042 0.058 0.059 0.059 0.028 0.028 

16 242 0.047 0.048 0.049 0.059 0.058 0.059 0.059 0.027 0.027 

17 311 0.102 0.091 0.093 0.059 0.058 0.060 0.059 0.051 0.052 

18 312 0.104 0.092 0.094 0.059 0.058 0.060 0.060 0.050 0.052 

19 321 0.101 0.085 0.089 0.060 0.067 0.070 0.068 0.051 0.053 

20 322 0.104 0.086 0.089 0.068 0.067 0.070 0.071 0.050 0.052 
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Table 32 (continued) 

Obs cond true_m 2.5_m 97.5_m true_c 2.5_c 97.5_c true_n 2.5_n 97.5_n 

21 331 0.044 0.044 0.044 0.070 0.027 0.028 0.027 0.023 0.023 

22 332 0.044 0.044 0.044 0.027 0.027 0.028 0.027 0.023 0.023 

23 341 0.043 0.042 0.042 0.027 0.032 0.033 0.033 0.023 0.023 

24 342 0.042 0.042 0.042 0.033 0.033 0.033 0.033 0.023 0.023 

25 411 0.116 0.104 0.106 0.033 0.075 0.077 0.084 0.051 0.053 

26 412 0.117 0.104 0.106 0.084 0.075 0.078 0.083 0.051 0.052 

27 421 0.122 0.138 0.149 0.083 0.094 0.099 0.116 0.050 0.052 

28 422 0.124 0.139 0.149 0.116 0.094 0.098 0.114 0.050 0.051 

29 431 0.048 0.048 0.048 0.113 0.036 0.037 0.035 0.024 0.024 

30 432 0.048 0.048 0.048 0.036 0.036 0.037 0.035 0.024 0.024 

31 441 0.048 0.050 0.050 0.036 0.049 0.050 0.049 0.024 0.024 

32 442 0.049 0.049 0.050 0.049 0.049 0.050 0.050 0.023 0.024 

33 511 0.105 0.095 0.096 0.050 0.047 0.049 0.050 0.042 0.043 

34 512 0.104 0.095 0.096 0.049 0.048 0.049 0.050 0.042 0.043 

35 521 0.109 0.089 0.093 0.050 0.053 0.056 0.058 0.042 0.043 

36 522 0.107 0.089 0.092 0.057 0.054 0.057 0.059 0.041 0.042 

37 531 0.045 0.045 0.045 0.059 0.022 0.022 0.022 0.019 0.019 

38 532 0.045 0.045 0.045 0.022 0.022 0.023 0.022 0.019 0.019 

39 541 0.044 0.042 0.043 0.022 0.026 0.027 0.027 0.019 0.019 

40 542 0.044 0.043 0.043 0.027 0.027 0.027 0.027 0.019 0.019 



114 

Table 33. 95% confidence interval for the standard errors of the within-level factor loading of the two-level 

model, the complex model and the normal model in the W2B1 model (In this table, “m” represents the multilevel 

model, “c” represents the complex model, and “n” represents the normal model). 

Obs cond true_m 2.5_m 97.5_m true_c 2.5_c 97.5_c true_n 2.5_n 97.5_n 

1 111 0.116 0.099 0.101 0.062 0.059 0.060 0.062 0.040 0.041 

2 112 0.105 0.091 0.093 0.059 0.057 0.058 0.060 0.038 0.039 

3 121 0.117 0.127 0.136 0.088 0.077 0.080 0.088 0.039 0.041 

4 122 0.109 0.111 0.118 0.084 0.074 0.077 0.085 0.038 0.040 

5 131 0.047 0.046 0.046 0.027 0.028 0.028 0.027 0.018 0.018 

6 132 0.045 0.043 0.043 0.026 0.027 0.027 0.026 0.017 0.018 

7 141 0.046 0.047 0.048 0.039 0.038 0.039 0.039 0.018 0.018 

8 142 0.043 0.043 0.044 0.037 0.037 0.037 0.037 0.017 0.018 

9 211 0.113 0.100 0.102 0.095 0.085 0.088 0.095 0.056 0.057 

10 212 0.103 0.092 0.094 0.088 0.080 0.082 0.089 0.053 0.054 

11 221 0.122 0.132 0.141 0.131 0.108 0.112 0.133 0.054 0.056 

12 222 0.110 0.116 0.123 0.121 0.101 0.105 0.123 0.051 0.053 

13 231 0.048 0.046 0.047 0.040 0.041 0.041 0.040 0.026 0.026 

14 232 0.044 0.043 0.043 0.037 0.038 0.039 0.037 0.024 0.025 

15 241 0.047 0.048 0.049 0.057 0.056 0.057 0.057 0.026 0.026 

16 242 0.043 0.044 0.044 0.054 0.053 0.054 0.054 0.024 0.025 

17 311 0.106 0.092 0.094 0.059 0.057 0.058 0.060 0.048 0.049 

18 312 0.097 0.085 0.087 0.056 0.054 0.055 0.056 0.046 0.047 

19 321 0.108 0.086 0.089 0.073 0.067 0.069 0.073 0.048 0.050 

20 322 0.098 0.078 0.081 0.069 0.063 0.065 0.069 0.046 0.047 

21 331 0.045 0.044 0.044 0.026 0.027 0.027 0.026 0.022 0.022 

22 332 0.042 0.041 0.041 0.024 0.025 0.026 0.024 0.021 0.021 

23 341 0.043 0.042 0.042 0.033 0.032 0.033 0.033 0.022 0.022 

24 342 0.040 0.039 0.039 0.031 0.031 0.031 0.031 0.021 0.021 
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Table 33 (continued) 

Obs cond true_m 2.5_m 97.5_m true_c 2.5_c 97.5_c true_n 2.5_n 97.5_n 

25 411 0.116 0.104 0.106 0.084 0.075 0.078 0.084 0.051 0.052 

26 412 0.110 0.099 0.101 0.078 0.070 0.072 0.078 0.048 0.049 

27 421 0.121 0.141 0.150 0.112 0.095 0.098 0.112 0.049 0.051 

28 422 0.115 0.127 0.134 0.103 0.086 0.089 0.104 0.047 0.048 

29 431 0.048 0.048 0.048 0.035 0.036 0.037 0.035 0.023 0.024 

30 432 0.046 0.046 0.047 0.033 0.034 0.034 0.033 0.022 0.022 

31 441 0.049 0.049 0.050 0.050 0.050 0.050 0.050 0.023 0.023 

32 442 0.048 0.047 0.048 0.046 0.045 0.046 0.046 0.022 0.022 

33 511 0.106 0.095 0.096 0.051 0.048 0.049 0.052 0.041 0.042 

34 512 0.102 0.091 0.093 0.048 0.046 0.047 0.049 0.040 0.040 

35 521 0.108 0.090 0.093 0.060 0.055 0.057 0.060 0.041 0.042 

36 522 0.101 0.085 0.088 0.057 0.052 0.054 0.057 0.039 0.040 

37 531 0.045 0.045 0.045 0.022 0.022 0.023 0.022 0.019 0.019 

38 532 0.044 0.043 0.044 0.021 0.021 0.022 0.020 0.018 0.018 

39 541 0.044 0.043 0.043 0.027 0.027 0.028 0.028 0.019 0.019 

40 542 0.042 0.041 0.041 0.026 0.026 0.026 0.026 0.018 0.018 
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5.0  DISCUSSION 

5.1 SUMMARY AND CONCLUSIONS 

Researchers are looking into different techniques to deal with the data obtained from the 

complex sampling design. It is questionable whether the multilevel CFA is superior to the single-

level CFA with or without the adjustment of the standard errors. This study used the simulation 

method to compare multilevel and single-level models in CFA of ordinal items with clustered 

data. Specifically, the purpose of the study is to compare the accuracy of estimating the factor 

loading and relative standard errors among the two-level model, complex single-level model 

with adjusted standard error, and the normal single-level model.  The study also aims to examine 

the impact on the model performance from 1) factorial structure, 2) number of cluster members, 

3) number of clusters, 4) factor correlation, 5) factor loading, and 6) Item ICC.  The result will be

discussed in the order of the proposed research questions: 

1. What is the difference in terms of model fit indices calculated from the two-level

CFA model, single-level CFA model with normal standard error or complex standard

error? What model fit indices, if any, are recommended in model selection?

2. How are three models compared in estimating the within-level factor loading and

their standard errors? What design factors may impact the performance of these

models?
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3. What factors influence the performance of the two-level CFA model in recovering 

between-level factor loading? 

4. What factors affect the performance of the two-level CFA model in recovering 

residual variance? 

 

5.1.1 Model Fit Indices 

All fit indices succeeded in identifying the misfit of the normal single-level model. In the 

complex single-level CFA model, the model fit indices are also adjusted according to Stapleton, 

Yang, and Hancock (2016). However, their performance is different. Chi-square p value and 

RMSEA suggest a good fit while CFI and TLI indicate worse fit when compared to the two-level 

model  in the conditions with small sample sizes. The complex model fit the multilevel data well 

in the conditions of the large sample sizes. In the study of Hsu, Kwok, Lin, and Acosta (2014), it 

stated that CFI and TLI were sensitive to the misspecification of the factor loading at the within-

level. In this study, since the two-level model is the true model, it indicates that the chi-square p 

value and RMSEA is not as sensitive as the CFI and TLI in the small sample size.  The 

difference among RMSEA, CFI, and TLI is that RMSEA is absolute fit index while CFI and TLI 

are comparative fit indices. 

Wu (2010) indicated that when the higher-level was neglected, the χ2 statistic tended to 

be small and could not identify the bad model fit. This study corroborates prior research in 

supporting the use of CFI and TLI as goodness of fit index in the complex single-level CFA 

model.  
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5.1.2 Parameter Estimates of Three Models 

In addition to the model fit, the recovery of the factor loading at both levels, the recovery of the 

residual variance in the two-level model, and the standard errors of the within-level factor 

loadings were examined to decide whether the single-level CFA model could be good alternative 

to the two-level CFA model in the multilevel data. If the differences among the relative bias of 

the factor loadings of three models are not large, then it is promising to use the single-level CFA 

model in the multilevel data and the single-level model is easier to implement than the multilevel 

model.  

However, it was found that only when the factor loadings across levels were the same, 

the relative bias of the within-level factor loadings estimated from the single-level complex 

model and normal model were within 0.1, which were acceptable. When factor loadings were 

different across levels, the relative bias of the within-level factor loading were as large as 0.3. 

Wu and Kwok (2012) and Porprasertmanit et al. (2014) also found that when the factor loadings 

were the same across levels, the factor loading estimated from the single-level complex model 

were more accurate than when the factor loadings were different across levels . So it is thought 

that when factor loadings across levels are the same and the model fit of the complex model is 

also good, the complex single-level CFA model could be used to estimate the two-level data.  

In addition to the influence of the factor loading across levels, the influence of the ICC 

should be noted. In the study, it was found that under the condition of same factor loading, the 

higher ICC resulted in a larger relative bias of factor loading in both complex model and normal 

model. The effect of ICC on the parameter estimate in the complex model and normal model had 

also been demonstrated by Pornprasertmanit et al. (2014) and Stochl et al. (2015). The smallest 

ICC of this study is 0.25. According to the result of the current study, the complex model is not 
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recommended to replace the two-level model when the ICC was 0.25 or 0.45 because both ICCs 

resulted with biased estimates of factor loadings especially when factor loadings are different at 

the two levels.   

The relative bias of the between-level factor loading in W2B2 model and W2B1 model 

looked small in most conditions, indicating the good recovery of the between-level factor loading 

in the true model. The relative bias of the residual variance looked small in most conditions in 

the W2B2 model and W2B1 model, indicating the good recovery of the residual variance in the 

true model. Relative bias of the residual variance was a little larger when the sample size was 

small than when the sample size was large. 

There are some differences in the findings between W2B2 model and W2B1 model 

comparing the complex model and normal model. The relative bias of the within-level factor 

loading estimated by the complex model was significantly smaller than that estimated by the 

normal model for factor loading of 0.5 0.5 while averaged across ICC, sample sizes, and factor 

correlations in W2B1 model. However, the relative bias of the factor loading estimated by the 

complex model in the W2B2 model was not significantly different than that estimated by the 

normal model for various factor loading conditions. 

The effect of simulation design factors on the relative bias of the factor loading and 

standard errors between W2B2 model and W2B1 model were similar in most conditions.  In both 

W2B2 model and W2B1 model, only sample size significantly affected the relative bias of the 

within-level factor loading in the two-level CFA model; only the interaction of factor loading 

and ICC significantly affected the relative bias of the factor loading in the complex model and 

normal model.  The most obvious difference was that the between-level factor loading in the 
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W2B2 model was affected by the interaction of the sample and FactorICC while the between-

level factor loading in the W2B1 model was not affected by any of the factors.  

As for the standard errors, the standard errors of the within-level factor loading estimated 

by the normal model was significantly smaller than that estimated by the two-level model and 

the complex model. This finding agreed with the result from Stapleton (2006) and Julian (2001) 

that the standard error was biased if the standard error was not adjusted in the complex sampling 

design. The deflation of the standard errors is concerning when the single-level model is used to 

estimate the two-level data. In this study, the standard errors estimated from the complex model 

were just a bit smaller than those estimated from the two-level model, but the difference was still 

significant and there was no overlap between the 95% confidence interval between the standard 

errors estimated from the two-level model and complex model. 

In conclusion, the estimate of the relative bias of the factor loading from the two-level 

model was more accurate than that estimated from the complex model. Model fit indices (CFI 

and TLI) and ANOVA result reached to the same conclusion. It is recommended that when the 

researcher considers which model should be used for the multilevel data, the researcher should 

consider not only the model fit, but also the accuracy of the factor loading and the related 

standard errors.   

There is certain circumstance that the research should use the complex model adjusting 

for the standard error instead of the two-level model in the multilevel data structure. Stapleton, 

Yang, and Hancock (2016) found that a construct may appear to be meaningful at both levels 

while in fact the construct was theoretically meaningful at the individual level. In this context, 

the complex model resulted with better fit than the two-level model looking at the model fit 
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indices. It is important to examine whether the construct is really a cluster-level construct or it 

just reflects a spurious clustering effect.   

In this study, when the true model is the two-level CFA model, the relative bias of the 

within-level factor loading of the two-level CFA model was significantly smaller than that of the 

complex model. In the study of Porprasertmanit et al. (2014), the factor loading could be 

overestimated or underestimated using the single-level CFA model when factor loadings across 

levels were different.  Julian (2001) also found that the factor loading could be overestimated 

using the single-level CFA model. Based on the results of the previous studies and the current 

study, consistent estimates of within-level factor loadings between the two-level CFA model and 

the complex CFA model might indicate that either the factor loadings are the same at the two 

levels or there is no true multilevel structure of the data and the clustering effect is actually 

spurious.  

5.2 IMPLICATIONS FOR APPLIED RESEARCH 

One of the most relevant implications from the present study for the applied researchers is to 

decide whether the two-level CFA model or the single-level CFA model should be used in the 

hierarchical data. In educational and psychological research, it is common to have the data with 

the multilevel structure, but the information about the higher level might not always be available. 

Under this circumstance, the design-based approach using adjusted standard error is a good 

choice. In addition, the single-level CFA model adjusting for the standard error is much easier to 

implement than the two-level CFA model.  
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In practice, it is suggested that the analysist should first consider whether the interest of 

the measurement was at the individual level or at the cluster level.  If the interest of the research 

is at the individual level, the complex single-level model is a good choice. The researcher still 

need to examine the standard error of the parameter estimate of the complex model. One reason 

that the single-level model was criticized was the deflation of the standard error. Although the 

standard error was adjusted in the complex model, there was still significant difference in the 

standard error between the complex model and the two-level model in the current study. If the 

standard error looked unreasonably small, the researcher could perform the two-level CFA 

model and compare the standard errors between two models.   

Even when the interest of the research is at the individual level, the researchers could 

perform the two-level model. It is possible that the target data is not suitable for the single-level 

analysis. It is important to perform the model fit of two models. If the two-level model fit the 

data but the single-level model does not fit the data, the data is not suitable for the single-level 

analysis.  

On the other hand, if the researcher’s interest is at the cluster level and the data does look 

like having the multilevel structure, there still exists the possibility that the clustering effect is 

spurious like it is described in the study of Stapleton, Yang, and Hancock (2016). Under this 

circumstance, it is important for the researcher to compare the multilevel model with the 

complex model. A better model fit of a multilevel model suggests the data truly has the 

multilevel structure, while a similar model fit suggests possibility of spurious between-level 

factor. 
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5.3 LIMITAIONS AND FUTURE DIRECTIONS 

Limitations of the current study were recognized. First, the combination of the within-level and 

between-level factor loadings was limited to 0.5 0.8, 0.5 0.5, and 0.8 0.5 and the ICC was limited 

to 0.45 and 0.25. Porprasertmanit et al. (2014) used 5 levels of ICC and Stochl et al. (2015) used 

11 levels of ICC. In the future, more combinations of the factor loading and ICC should be 

conducted especially the low ICCs such as 0.10. 

Second, this study did not investigate the condition while the between-level factor 

structure is more complex than the within-level one. Even though such condition is not common 

in applied educational and psychological studies, Wu and Kwok (2012) examined this condition 

and found that the single-level model demonstrated the poor fit and the factor loading was 

seriously biased. Julian (2001) also examined this condition and found moderate bias of the 

factor loading. In the future, the condition with the between-level structure more complex than 

the within-level structure can be examined. 

 

 

 

 



 124 

APPENDIX A 

MPLUS CODE FOR DATA GENERATION OF W2B2 MODEL WITH FACTOR 

LOAING OF 0.5 AT WITHIN-LEVEL, 0.8 AT BETWEEN-LEVEL, ICC OF 0.45, AND 

FACTOR CORRELATION OF 0.3 AT BOTH LEVELS 

      MONTECARLO: 
              NAMES ARE u1-u10; 
              NOBSERVATIONS = 500; 
              SEED = 4526; 
              GENERATE=u1-u10(4); 
              CATEGORICAL=u1-u10; 
              NREPS=50; 
              NCSIZES=1; 
              CSIZES=50(10); 
              REPSAVE=ALL; 
          save=model1CFA*.dat; 
      MODEL POPULATION: 
              %WITHIN% 
            fw1 by u1*0.5 u2*0.5 u3*0.5 u4*0.5 u5*0.5 ; 
             fw2 by  u6*0.5 u7*0.5 u8*0.5 u9*0.5 u10*0.5 ; 
              fw1 with fw2*0.30; 
           fw1*1; 
        fw2*1; 
 
 
              %BETWEEN% 
           fb1 by u1*0.8 u2*0.8 u3*0.8 u4*0.8 u5*0.8 ; 
             fb2 by  u6*0.8 u7*0.8 u8*0.8 u9*0.8 u10*0.8 ; 
              fb1 with fb2*0.30; 
           fb1*1; 
        fb2*1; 
 
        u1*0.383; 
        u2*0.383; 
u3*0.383; 
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u4*0.383; 
  u5*0.383;u6*0.383; 
  u7*0.383;u8*0.383; 
        u9*0.383; 
u10*0.383; 
 
 
  [u1$1*-1.464 u2$1*-1.410 u3$1*-1.829 u4$1*-1.591 
  u5$1*-1.150 u6$1*-2.081 u7$1*-1.274 u8$1*-1.384 
  u9$1*-0.509 u10$1*-0.584]; 
  [u1$2*-1.298 u2$2*-1.273 u3$2*-1.647 u4$2*-1.422 
   u5$2*-0.739 u6$2*-1.884 u7$2*-0.980 u8$2*-1.145 
  u9$2*0.049 u10$2*0.561]; 
  [u1$3*-0.258 u2$3*-0.252 u3$3*-0.632 u4$3*-0.332 
    u5$3*-0.135 u6$3*-1.063 u7$3*0.069 u8$3*-0.082 
   u9$3*1.051 u10$3*1.319 ]; 
   [u1$4*0.682 u2$4*0.719 u3$4*0.261 u4$4*0.605 
   u5$4*0.470 u6$4*-0.262 u7$4*0.929 u8$4*0.886 
  u9$4*1.653 u10$4*1.793 ]; 
 
         ANALYSIS: 
                TYPE=TWOLEVEL; 
                ESTIMATOR=WLSMV; 
       !         parameterization=theta; 
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