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Anxiety represents a state of high arousal and negative valence that leads to enhanced vigilance 

in the absence of concrete and immediate threat. Anxiety has profound impacts on ongoing 

behaviors. It can be an adaptive reaction to stressful or unpredictable life events, but excessive 

and persistent anxiety produces adverse cognitive effects that disrupt ongoing behavior and 

contribute to the clinical manifestation of anxiety disorders. Numerous studies have associated 

anxiety with deficits in cognitive control of behavior, and with perseverative behavioral 

tendencies. In addition, the adverse impact of anxiety is characterized in part by deficits in 

reward-related behavioral domains such as anhedonia and aberrant reward-associated perception. 

This dissertation study focuses on the neural basis of the behavioral impacts of anxiety. 

The neural circuit, comprising the prefrontal cortex (PFC) and the ventral tegmental area (VTA), 

is thought to be critically involved in anxiety-induced behavioral disruptions. Numerous 

neurophysiological and neurochemical studies suggest that the mesoprefrontal circuit 

preferentially responds to aversive stimuli, stressors, and resultant anxiety. However, it is largely 

unknown how VTA and mPFC individual neurons and neuronal ensembles represent cognitive, 

motivational, and emotional behavioral changes in anxiety. To address this, we studied animals 

engaged in well-characterized motivated and cognitive behavioral tasks in the absence or 

presence of varying degrees of an anxiogenic perturbation. By electrophysiologically recording 

the activity of VTA and mPFC single neurons and local field potential (LFP) signals from the 
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task-performing animals, we demonstrate that anxiety-related behavioral alterations can be 

attributed to specific changes in the activity of VTA and mPFC neurons and neuronal 

populations. Collectively, our neurophysiological findings suggest that anxiety “hijacks” the 

VTA-mPFC neural circuit by profoundly modulating the spontaneous and task-related neural 

activity at the individual neuron-, neural population-, and neural circuit levels. Anxiety-induced 

neural changes in the VTA-mPFC circuit were systematically associated with anxiety-like 

changes in motivated and cognitive behaviors, even on a single-trial basis, providing insights that 

could contribute to therapeutic interventions for the behavioral symptoms of anxiety disorders. 
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1.0  INTRODUCTION 

Anxiety represents a state of high arousal and negative valence, leading to elevated vigilance in 

the absence of concrete and immediate threat (Calhoon and Tye, 2015). Anxiety has profound 

impacts on ongoing behaviors. It can be an adaptive reaction to stressful and unpredictable life 

events, as physiological and emotional stress and resultant anxiety may enable animals to avoid 

dangers and to achieve goals. However, excessive and persistent anxiety may cause detrimental 

impacts on cognitive control of behavior: i.e., the ability to flexibly guide behavior to gain/avoid 

appetitive/aversive outcomes, respectively, in an ever-changing environment utilizing 

reinforcement history and learned “rule of the game” (Park et al., 2016). The negative impacts of 

anxiety are characterized in part by profound deficits in reward-related behavioral domains such 

as anhedonia and aberrant reward-associated perception (Russo and Nestler, 2013). Furthermore, 

numerous studies have associated pathological anxiety with deficits in cognitive control of 

behavior, as patients with anxiety disorders exhibit perseverative cognitive and/or emotional 

behavioral patterns: i.e., inability to shift to a novel task strategy or a new affective state (Bishop, 

2007; Eysenck et al., 2007). 

The mesoprefrontal neural circuit comprising the prefrontal cortex (PFC) and the ventral 

tegmental area (VTA) is thought to be critically involved in anxiety-induced behavioral 

disruptions for the following reasons. First, mesoprefrontal neural activity, specifically dopamine 

(DA) neurotransmission in the PFC, plays a role in “normal” cognitive functions in a non-



 2 

anxious state: e.g., cognitive flexibility, working memory and decision making (Arnsten, 2015; 

Floresco, 2013). Either excessive or deficient DA transmission may result in suboptimal 

cognitive performance. Second, the mesoprefrontal DA system preferentially responds to 

stressful and anxiogenic perturbations, even to mild ones that do not affect mesolimbic or 

mesostriatal DA transmission (Abercrombie et al., 1989; Bradberry et al., 1991a; Moghaddam et 

al., 1990; Thierry et al., 1976). Consistent with this, VTA DA neurons projecting to the mPFC 

receive preferential input from the lateral habenula (LHb) neurons that are selectively tuned to 

aversion and omission of reward (Lammel et al., 2012) (Figure 1-1). Furthermore, 

photostimulation of VTA dopaminergic input to the mPFC elicits anxiety-like behavior 

(Gunaydin et al., 2014; Lammel et al., 2012).  

 

 

 

Figure 1-1 A simplified functional circuit mapping of the mesocorticolimbic structures implicated in 

aversion- and reward-related behaviors.   
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The mesocorticolimbic structures that are associated with aversive behavior appear in green, while the structures 

associate with reward-related behavior are in red. Connections among these structures are indicated with different 

types of lines (legend) depending on the primary neurotransmitters in the relevant synapses. mPFC = medial 

prefrontal cortex; NAc = nucleus accumbens; LHb = lateral habenula; VTA = ventral tegmental area; RMTg = 

rostromedial tegmental nucleus; LDT = laterodorsal tegmental nucleus.   

 

 

These lines of evidence converge onto the hypothesis that anxiety may place the VTA-

mPFC neural circuit in an aberrant state of disrupted ongoing and task-relevant neural activity, 

which may result in deficits in flexible cognitive control of behavior. The current dissertation 

study has been designed to test this hypothesis and, more generally, to unravel the nature of PFC 

and VTA neural substrates underlying cognitive and motivated behavioral changes in anxiety. To 

more thoroughly address the neural basis of behavioral changes in anxiety, we used experimental 

designs combining an animal model of anxiety and a behavioral task in which performance has 

been well characterized. While animals performed this task, we recorded the activity of single 

neurons and local field potential (LFP) signals. In the first set of experiments, we investigated 

how the VTA-mPFC neural circuit represents varying degrees of punishment risk and risk-based 

anxiety-like changes in simple instrumental behavior by simultaneously recording the neural 

activity in medial PFC (mPFC) and VTA. In the second set of experiments, we focused on the 

neural basis of disruptions in PFC-dependent cognitive functions in anxiety by recording mPFC 

and orbitofrontal PFC (OFC) activity from rats performing a task requiring cognitive flexibility.  

Before we delve into our findings, we begin by discussing the role of the PFC in the 

cognitive control of goal-directed behavior. We also review the literature describing the 

importance of the mesoprefrontal circuit, especially dopaminergic neuromodulation, for proper 
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PFC-mediated cognitive functions. Then we review human and animal studies illustrating 

cognitive behavioral deficits that are associated with anxiety. Finally, we discuss the literature 

demonstrating the susceptibility of the mesoprefrontal neural circuit to aversive, stressful and 

anxiogenic stimuli, which may engender disruptions of the cognitive functions subserved by the 

VTA-mPFC neural circuit in anxiety.  

1.1 THE ROLE OF PFC IN FLEXIBLE COGNITIVE CONTROL OF BEHAVIOR 

Before discussing prefrontal cortical function in cognitive flexibility, it is informative to consider 

behaviors that do not primarily depend on PFC functions. The PFC is not critically involved in 

performing simple, automatic behaviors, which can be guided by first-order associations between 

a stimulus and an outcome (S-O) or an action and an outcome (A-O) (Balleine and Dickinson, 

1998; Euston et al., 2012; Miller and Cohen, 2001). These behaviors can be innate or learned by 

experience, and can be evoked simply by the right stimulus or context, facilitating prompt 

reactions in familiar situations. On the other hand, behaviors that depend on a simple association 

are prone to form habits, which may be characterized as inflexible, stereotyped behaviors in that 

they are difficult to update, unlearned, and generalized to novel situations. Numerous studies 

have shown that lesion or pharmacological inactivation of the PFC does not impair learning and 

expression of simple S-O or A-O behaviors per se, suggesting that they may primarily depend on 

“bottom-up” processing subserved by subcortical circuits (Balleine and Dickinson, 1998; Birrell 

and Brown, 2000; Miller and Cohen, 2001; Naneix et al., 2009).  

In contrast, the PFC plays a critical role when “top-down” processing is required for 

behavioral guidance. In real-life situations, S-O and/or A-O relationships are abstract, noisy, and 
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ever-changing. Thus, adaptive behavior requires up-to-date representations of the higher-order 

statistics underlying the complex S-O and, A-O relationships. In addition, the internal 

motivational and emotional states that affect animals’ “goal state” in a given situation also vary 

over time. Given these external and internal sources of variance, the “rules of the game” – i.e., 

internal representations of goals and the means to achieve them –  need to be configured in a 

highly flexible manner to achieve the best available outcome. This integrative function has been 

termed “cognitive flexibility” or “behavioral flexibility”. Converging lines of theoretical and 

experimental evidence have suggested cognitive flexibility as a cardinal function of the PFC 

(Cohen and Servan-Schreiber, 1992; Kehagia et al., 2010; Miller and Cohen, 2001; Wise et al., 

1996). Lesions of PFC have been associated with response perseveration – i.e. behavioral 

inflexibility, which renders an animal unable to discontinue a learned response that is no longer 

effective (Fuster, 1989).  

A comprehensive literature has demonstrated that functional integrity of PFC is essential 

for cognitive flexibility in rodents (Ragozzino et al., 2003; Rich and Shapiro, 2009; Stefani et al., 

2003; Stefani and Moghaddam, 2010), non-human primates (Dias et al., 1996; Nakahara et al., 

2002; Wallis et al., 2001; White and Wise, 1999) and humans (Konishi et al., 1998; Nagano-

Saito et al., 2008; Nakahara et al., 2002). Behavioral paradigms that measure cognitive flexibility 

test the ability to guide goal-directed actions based on two or more discriminative rules, and to 

shift from one rule to another on the basis of the feedback (i.e. response outcome). Among many 

versions of these tasks, the Wisconsin Card Sorting Task (WCST; Figure 1-2a) has been used 

most commonly for rule-based flexible control of behavior in humans (Nyhus and Barcelo, 

2009). In the WCST, participants are required to match test cards with a sample card according 

to one of multiple possible rules (Figure 1-2a; e.g. color rule, shape rule), with changes in the 
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matching rule occurring without subjects’ knowledge, thus requiring flexible adjustment of the 

sorting strategy based on feedback. Studies have shown that, when performing the WCST, 

individuals with ventromedial PFC lesion fail to shift to a response strategy that is more 

advantageous in the long run (Bechara et al., 2000; Bechara et al., 1996). This is consistent with 

earlier work demonstrating that human subjects with frontal lobe injury show marked deficits in 

shifting from one mode of solution to another on a sorting task (Milner, 1963). 

 

 

 

 

Figure 1-2 Tasks measuring cognitive flexibility in humans and rodents.  

(a) Example trials in the WCST. The top card is the test card. The bottom three cards are the reference cards. During 

the matching period, the subject selects the reference card that matches the test card based on the currently valid 

sorting rule: e.g., matching based on the color or shape. Feedback is provided after each selection. An extra-
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dimensional set-shift then occurs to another rule on a distinct perceptual dimension; this shift is not signaled to the 

subject, who should respond to the shift according to task feedback. (b) A rodent version of a set-shifting task in an 

operant chamber. In this task, rats learn to guide their instrumental behavior based on two rules in distinct perceptual 

dimensions, and shift between them based on task feedback (reward delivery or omission). In the “light rule,” a nose 

poke (or a lever press) to the illuminated port is correct, whereas in the “side rule,” a nose poke to the valid location 

(e.g. left port) is a correct response regardless of the illumination. The gray arrows indicate the current valid side 

(invisible to rats). (c) A rodent set-shifting task in a plus maze. In the “place rule”, rats are required to enter one goal 

arm (east or west) from both starting arms (north and south). In the “response rule”, one body turn response (right or 

left) should be made from either starting arm. Gray arrows indicate correct trajectories in either rule. 

 

 

Animal studies have successfully used different version of the WCST (Figure 1-2b-c) to 

investigate neural substrates of flexible rule-based decision making in rodents and primates. In 

these tasks, behavior is guided by the currently valid rule among two or more rules that refer to 

distinct perceptual dimensions. Rule shifting can occur between different perceptual dimensions 

(extra-dimensional shifting) or within a dimension (intra-dimensional shifting or reversal). 

Lesions or pharmacological manipulations of the rat medial PFC (mPFC) result in markedly 

impaired performance in these and other set-shifting tasks that assess behavioral flexibility 

(Birrell and Brown, 2000; Bissonette et al., 2008; Darrah et al., 2008; Floresco et al., 2008; 

Ragozzino et al., 2003; Stefani et al., 2003; Stefani and Moghaddam, 2010) (Figure 1-3). This is 

similar to performance deficits observed after dorsolateral PFC lesion in non-human primates 

(Dias et al., 1996, 1997) and in humans with PFC damage (Anderson et al., 1999). 
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Figure 1-3 Set-shifting task performance is impaired by intracranial microinjection of the NMDA receptor 

antagonist MK801 in mPFC.  

(a) The extra-dimensional set-shifting task used for this experiment. In each session, rats performed the operant task 

based on two alternating rules in distinct perceptual dimensions. Three extra-dimensional rule-shifts had to be made 

to complete a session (i.e., a total of four sets with two light- and two side-rule sets interleaved in a pseudo-

randomized order). (b) Rats underwent a total of five sessions with injections made only on the 4th session, 

indicated with an arrow. MK801 significantly increased the number of total trials to complete the task, indicating 

impaired task performance. (c) The most pronounced drug effect was an increased number of perseverative errors, 

scored when rats produced an error by making a choice based on the previously effective rule. This result indicates 

that the blockade of glutamatergic neurotransmission mediated by NMDA receptors in PFC leads to cognitive 

inflexibility. Figure 1-3b-c adapted from Darrah et al. (2008). 
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Cognitive flexibility involves multiple dynamic processes that monitor ongoing actions 

and action-outcome relationships, and then adjusts future actions based on outcome. This process 

can be subdivided into various constructs such as representations of the rule, performance errors, 

conflict among different response tendencies, and the risk/uncertainty contingent on the action. 

Human and primate studies using functional magnetic resonance imaging (fMRI) have shown 

that different but overlapping subregions of the PFC are activated in correlation with these 

constructs using multiple tasks (Carter et al., 1998; Clark et al., 2008; Kerns et al., 2004; 

O'Doherty, 2004). For example, fMRI studies have shown transient activation of PFC during rule 

shifting (Konishi et al., 1998; Nakahara et al., 2002), retrieval, and maintenance of abstract rules 

for decision making (Bunge et al., 2003).  

While human neuroimaging data have informed us about the general involvement of PFC 

subregions in cognitive-flexibility tasks, invasive electrophysiological recordings in laboratory 

animals have demonstrated the dynamic nature of neuronal encoding during these tasks. For 

example, studies in primates have revealed that PFC single neuron firing rates during different 

task states (e.g., baseline, cue, delay and response periods) vary as a function of the current task 

rule (Asaad et al., 2000; Fuster et al., 2000; Hoshi et al., 1998; White and Wise, 1999).  

Electrophysiological studies in rodents have demonstrated that PFC subregions – 

including prelimbic PFC (PL), infralimbic PFC (IL), and orbitofrontal cortex (OFC) – are 

differentially involved in extra-dimensional set-shifting tasks. In an elegant study, Rich and 

Shapiro recorded from single neurons in rats navigating a plus maze with two alternating 

response strategies: one based on egocentric path and one based on spatial location (Figure 1-2c; 

e.g. “go left” or “go west”) (Rich and Shapiro, 2009). Subpopulations of PL and IL neurons 



 10 

encoded the strategy shift, even when neuronal activity during the two strategies was compared 

between trials with seemingly identical navigation. The PL encoding of a strategy shift 

temporally preceded both the behavioral shift and IL encoding, suggesting that dorsal rather than 

ventral medial PFC neurons drive the behavioral shift. Neurons in the OFC have been suggested 

to play a dissociable role that is more specialized for signaling outcome expectancy 

(Schoenbaum et al., 2009). This view is supported by behavioral studies indicating a role of OFC 

in representation of outcome value and expectancy (Bissonette et al., 2008; Burke et al., 2009; 

Dias et al., 1996, 1997; McAlonan and Brown, 2003; Rudebeck et al., 2006). Neurophysiological 

studies suggest that OFC neurons signal outcome expectancy as well as reversal in cue-outcome 

association (Bissonette et al., 2015; Morrison and Salzman, 2009; Roesch and Olson, 2004; 

Simon et al., 2015). 

Recent neurophysiological studies have delved into PFC population-level codes that may 

underlie rule-based flexible control of behavior. Investigating the coordinated activity of neural 

populations is particularly important when examining the neural basis of rule-based behavior 

because such tasks require encoding of multiple task features to which individual PFC neurons 

are dynamically tuned. Dynamic neuronal tuning properties have been uncovered by studies that 

investigated the population-level activity of PFC and other high-order cortical structures during 

flexible decision making (Karlsson et al., 2012; Ma et al., 2014; Mante et al., 2013; Raposo et 

al., 2014; Rigotti et al., 2013). These studies show that the majority of PFC neurons have mixed 

selectivity: i.e., their responses are linearly or nonlinearly correlated with diverse combinations 

of task-relevant features (such as the sensory stimuli, task rules or motor responses) rather than 

being purely selective for individual features (e.g., Figure 1-4). In fact, mixed selectivity is 

suggested to be a key computational property of PFC neurons that leverages the dimensionality 
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of population-activity space related to cognitive task performance (Rigotti et al., 2013). For 

example, Fusi and colleagues have recently demonstrated the advantages of PFC neuronal mixed 

selectivity by showing that the degree of dimensionality of the neuronal population activity space 

is correlated with actual choice behavior (Rigotti et al., 2013; Rigotti et al., 2010), suggesting 

that the high dimensionality of PFC population encoding is causally associated with decision-

making capability. 

 

 

 

 

Figure 1-4 Example of an mPFC neuron with mixed selectivity for multiple task variables, recorded from a 

rat performing the extra-dimensional set-shifting task.  

This neuron encoded three different task variables: the task rule (a), the response outcome (b), and the response 

direction (c), in overlapping or non-overlapping time bins around the time of the action, according to a multiple 

linear regression analysis (Section 3). 

  

 

Recent studies provide convincing evidence that some unique properties of PFC neuronal 

encoding are revealed only when the ensemble-level activity is examined in a high-dimensional 

space. Seamans and colleagues addressed this experimentally by comparing the individual- and 
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population-level neuronal discriminability of simultaneously recorded neurons in the anterior 

cingulate region of the PFC (ACC), and in the dorsal striatum (DS) (Ma et al., 2014). The 

individual neuronal discriminability of different action sequences did not differ between the two 

regions, whereas the ACC outperformed the DS as an ensemble in all ensemble-based 

discriminability measures. This suggests that coordinated activity of PFC neurons leads to more 

information-rich ensembles as compared to the striatum.  

Other studies have used trial-by-trial population trajectories to investigate the dynamic 

properties of PFC-neuronal representations of flexible decision making. Stokes et al. (2013), for 

example, analyzed PFC neural populations in monkeys performing a cue-target matching task 

with three possible cue-target pairs; monkeys were required to choose the matching target after 

viewing a cue in the presence of distractors. By tracing population states in the high-dimensional 

space constructed by all neurons in the network, the authors found that the PFC population was 

dynamically tuned to represent momentary task demands – i.e., cue discrimination during the cue 

period and behavioral choice during the choice period – in a task-context dependent manner. 

This suggests that complex rule-based choices can be mapped onto high-dimensional PFC neural 

states that are tuned to reflect the current task requirement (Stokes et al., 2013). On a larger 

timescale, the PFC rule-learning process has been depicted as a rapid shift in the neuronal 

ensemble state, suggesting that the task-rule shift is represented by a sustained alteration in PFC 

population activity that occurs abruptly – an “a-ha” moment (Durstewitz et al., 2010; Powell and 

Redish, 2016). 

Synchronization via coherent gamma oscillations (γ; 30~120 Hz) may subserve the 

formation and communication of functional ensembles in the PFC and other cortical brain 

regions (Buschman et al., 2012; Cardin et al., 2009; Fries, 2005, 2015; Sirota et al., 2008; Sohal 
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et al., 2009; Uhlhaas and Singer, 2010). During task-related processes, neuronal ensembles tend 

to engage in rhythmic synchronization that can temporally coordinate neuronal activity by 

creating a sequence of excitatory and inhibitory cycles (Figure 1-5). Phase-locking of relevant 

ensembles into coherent excitation-inhibition sequences can facilitate communication between 

them while blocking ‘noise’ from incoherent ensembles. This may provide a mechanism for 

selecting and binding the neural ensembles that encode the currently relevant features of the task 

while deselecting the irrelevant ensembles. 

Consistent with this model, distinctly synchronous PFC ensembles have been shown to 

be associated with different task rules suggesting that a rule-dependent emergence of 

synchronous ensembles may be a neural substrate of the cognitive flexibility (Buschman et al., 

2012). An additional causal relationship has been suggested between task-relevant gamma 

oscillations and cognitive flexibility by Sohal and colleagues (Cho et al., 2015). The authors 

found that disruption of baseline and task-evoked gamma oscillations in a mouse model of 

deficient development of fast-spiking interneurons (FSINs) led to cognitive inflexibility. By 

optogenetically enhancing the activity of FSINs in these mice, the task-related gamma 

oscillations, as well as the rule-shifting behavior, could be rescued, suggesting a role of FSIN-

mediated PFC gamma oscillations in cognitive flexibility. Collectively, these studies suggest that 

cognitive inflexibility may be associated with disruptions in baseline and/or task-evoked 

oscillations in the PFC. 
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Figure 1-5 A rule-based behavior is accompanied by an increase in prefrontal gamma oscillations specifically 

at the time of the action.  

(a) An example mPFC local field potential trace recorded from rats performing the extra-dimensional set-shifting 

task described in Figure 1-2b. This example trace shows enhanced gamma oscillatory power in the 30 to 60 Hz 

band, specifically at the peri-action window. (b-c) The z-score normalized power spectral densities show that the 

peri-action gamma oscillations were discriminative of the task rule, as a much more pronounced increase in gamma 

power was observed in side-rule than light-rule trials. 
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1.2 THE ROLE OF THE VTA-PFC NEURAL CIRCUIT IN COGNITIVE CONTROL 

OF BEHAVIOR 

In the previous section, we reviewed the literature supporting the idea that the PFC plays a 

central role in flexible cognitive control of goal-directed behavior. Mesencephalic dopamine 

(DA) projections from the ventral tegmental area (VTA) exert an important neuromodulatory 

control over a wide variety of cognitive functioning in the mammalian PFC. Even in invertebrate 

nervous systems – e.g., Drosophila – different types of dopamine neurons subserve distinct roles 

in writing and updating appetitive or aversive memories, demonstrating the evolutionarily 

profound role of the DA system in cognition (Aso and Rubin, 2016). Here, we discuss the role of 

dopaminergic neuromodulation in PFC neural processing of cognitive functions.  

As discussed in the previous section, the PFC exerts top-down control of behavior to 

achieve goals via actions appropriate to a given environment. To estimate the most appropriate 

action at the moment, it is critical to represent the possible outcomes associated with each action. 

These action-outcome associations are learned through experiences that reinforce associations 

among stimuli (or contexts), actions and outcomes that successfully lead to a goal state (i.e., 

reward), while weakening the unsuccessful ones. Reinforcement learning theories suggest that 

such learning requires a ‘teaching signal’ that selectively reinforces successful associations, 

while degrading ineffective ones (Mackintosh, 1975; Pearce and Hall, 1980; Rescorla and 

Wagner, 1972; Sutton and Barto, 1998). Mesencephalic dopamine neurons are thought to 

subserve this role by signaling ‘reward prediction errors (RPE)’. The reward prediction error is 

simply the discrepancy between expected rewards and received rewards; for instance, a positive 

RPE is generated (and DA neurons increase their firing) when an animal receives an unexpected 

reward. Importantly, DA neurons no longer respond to the reward per se if it is predicted by 
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experience; instead they will respond to the earliest predictor of the reward – i.e., preceding 

action or stimulus. Conversely, if an expected reward is omitted or a smaller reward is provided, 

a negative RPE is generated and DA neuronal firing is depressed. These positive and negative 

RPE signals are thought to provide a teaching signal by strengthening or weakening the synapses 

that are associated with reward or no reward, respectively. This simple rule turns out to be highly 

powerful in promoting adaptive action selection and decision making even within a complex task 

structure.   

In addition to value-based RPE signaling, DA neurons also encode other environmental 

features that are not intrinsically rewarding, but are relevant for cognitive control of behavior. 

Many DA neurons respond to a salient sensory stimulus (or context) in a value-free manner. For 

example, exposure to a novel stimulus (or “novelty salience”) can activate DA neurons. This fast 

response to novelty is thought to promote attention toward the stimulus, thereby providing an 

opportunity to detect a potential reward association (Bromberg-Martin et al., 2010; Redgrave and 

Gurney, 2006; Schultz, 2016). Further, a subpopulation of DA neurons responds to stimuli with 

high motivational/emotional salience of either valence – including aversive events or punishment 

– or even to stimuli that are simply physically salient. Importantly, such a response pattern is 

distinct from RPE coding: in contrast to RPE-coding neurons, these salience-coding neurons 

treat reward and punishment similarly responding with firing rate changes in the same direction. 

Novel and aversive events are as important as rewarding events in cognitive control of behavior: 

they enable detection of cues of high potential importance and avoidance of unpleasant events. 

Likewise, the salience-signaling DA neurons are thought to play a crucial role in triggering 

attention and cognitive processing of novel and punishing events, thereby contributing to 

achieving goal states in a complex environment.  
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Thus far we have discussed the idea that DA neurons convey two indispensable signals – 

value-based RPE coding and salience coding – that are critical for cognitive control of goal-

directed behavior. Numerous studies have tested the notion that DA transmission in downstream 

frontal and striatal structures are critical for cognitive processing required for adaptive behavioral 

control. For example, some studies use variants of the delayed response task, in which the ability 

to actively maintain an association among stimuli, actions and outcomes – i.e., working memory 

– is critical to guide action or decision. The effects of systemic or local manipulation of DA 

transmission in this task have been tested in monkeys and rats. In a seminal study, Brozoski et al 

(1979) found that the local depletion of DA in dorsolateral PFC (dlPFC) impaired a delayed 

alteration task performance in monkeys. Similar results were found in rodent studies. Likewise, 

clinical studies showed that working memory deficits are present in Parkinsonian patients with 

degeneration of DA neurons (Gotham et al., 1988; Levin et al., 1989).  

Meanwhile, neurophysiological studies have revealed that PFC neurons show persistent 

activation during the delay period in a working memory task, which is thought to be a neural 

substrate of mnemonic representation (Funahashi et al., 1989, 1990; Fuster and Alexander, 1971; 

Kubota and Niki, 1971). Studies suggest that DA neurotransmission in PFC provides a “fine-

tuning” of neuronal delay-period activity, in that pharmacological manipulation of D1 receptors 

generates a characteristic “inverted-U” shaped dose response. In other words, either “too little” 

or “too much” DA exerts detrimental effects on PFC neuronal mnemonic processing as well as 

behavioral working memory performance (Vijayraghavan et al., 2007; Williams and Goldman-

Rakic, 1995). These findings suggest that DA transmission adjusts PFC neuronal cognitive 

processing such that an optimal range of DA-mediated neuromodulation is required for effective 

cognitive coding.     
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Tasks assessing cognitive flexibility require integrated functioning of prefrontal and 

striatal regions. Human and animal studies have revealed that dopamine and other 

neuromodulators play critical roles in frontostriatal cognitive functioning underlying behavioral 

flexibility. One simple form of flexibility is extinction learning, in which a learned association 

between a stimulus/action and an outcome (S-O or A-O relationship) is extinguished due to 

changes in the outcome contingency. Psychopharmacological studies have shown that extinction 

of an appetitive or aversive S-O and A-O association requires dopaminergic neuromodulation in 

the PFC (Mueller et al., 2010; van der Meulen et al., 2007). 

Another commonly studied form of cognitive flexibility is reversal learning. Reversal 

learning requires the ability to switch responding to a previously non-reinforced stimulus while 

simultaneously withdrawing from responding to an outdated cue. Unlike extra-dimensional set-

shifting, reversal learning paradigms require rule-switching within the same stimulus dimension: 

i.e., use the same basic principle, but respond to a different stimulus. Reversal shifts comprise 

dual problems: inhibiting response to an outdated cue, while promoting response to a newly 

effective cue. This bidirectional modulation of the two competing associations can be framed 

within reinforcement learning theory in that positive and negative prediction errors may provide 

the teaching signal for reversal. Lesions or pharmacological manipulations of the orbital PFC 

(OFC) and medial striatum resulted in deficits in reversal shifts that were associated with 

disruptions in positive and negative reinforcement processes (Clarke et al., 2008; Kehagia et al., 

2010; van der Meulen et al., 2007). Impaired reversal in association with the reinforcement 

process suggest disruptions in DA neuronal activity and DA neuromodulation in frontostriatal 

functioning. Correspondingly, a reversal shift enhances DA concentration in the rat mPFC, 

especially in the early but not the late phase of the reversal in which the prediction error 
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signaling is thought to be more pronounced (van der Meulen et al., 2007). Further, human 

neuroimaging studies have demonstrated a linkage between abnormal DA neuromodulation and 

impairments in the reversal related OFC neural activation as well as reversal behavior (Cohen et 

al., 2007; Jocham et al., 2009). 

 In the natural environment, animals confront even more convoluted tasks requiring shifts 

between strategies and rules based on distinct perceptual dimensions, such that attention needs to 

be focused on distinct aspects of the complex environment. This phenomenon referred to as 

extradimensional or attentional set-shifting may involve switching between different types of 

strategies that depend on sensory cues vs an internal representation of space. Extradimensional 

set-shifting involves a multitude of cognitive constructs involving the DA neuronal teaching 

signal. First, shifting between strategies must be guided by the outcome (feedback) of each 

action – i.e., delivery or omission of reward – which may be provided by VTA DA neuronal 

positive and negative prediction error signaling. Second, attention to a novel aspect of 

environmental context may require DA neuronal encoding of motivational and/or novelty 

salience.  

Collectively, the literature suggests that DA neuromodulation in PFC might play a critical 

role in extradimensional set-shifting. In support of this, using in vivo microdialysis Stefani and 

Moghaddam (2006) showed that PFC DA concentration increases during learning of the initial 

rule and rule shifting. Importantly, the authors did not observe this DA increase in yoked control 

animals that experienced a similar amount of reward randomly provided regardless of animals’ 

choice, demonstrating that PFC DA levels are specifically sensitive to rule learning and shifting. 

Likewise, psychopharmacological studies have revealed that dopaminergic neuromodulation 
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facilitates attentional set-shifting; for example, blockade of mPFC D1 receptors induced severe 

perseverative errors (Ragozzino, 2002).  

Some important distinctions have been suggested between the role of PFC DA 

neuromodulation in working memory vs extradimensional set-shifting. First, unlike the lack of 

effects observed on working memory, D2 receptor blockade resulted in poor set-shifting 

performance (Floresco et al., 2006). Secondly, stimulating D1 receptor activity did not impact 

set-shifting performance, in contrast to the inverted U-shaped relationship observed in working 

memory. Furthermore, D4 receptor activity blockade or stimulation resulted in impaired or 

enhanced set-shifting performance, respectively. Collectively, these data illustrate that DA-

mediated neuromodulation is critical for the fine-tuning of PFC neural activity that enables PFC-

dependent cognitive functioning such as working memory and cognitive flexibility. Likewise, 

disruptions in PFC and mesoprefrontal neural processing may underlie anxiety-related changes 

in cognitive control of behavior. In the next section, we discuss evidence for the sensitivity of the 

mesoprefrontal neural circuit to stressful and anxiogenic situations.  

1.3 IMPACT OF ANXIETY ON FLEXIBLE COGNITIVE CONTROL OF 

BEHAVIOR 

Numerous human and animal studies have demonstrated anxiety-related deficits in flexible 

cognitive control of goal-directed behavior such as cognitive and emotional perseveration and 

biases in decision-making. Here, we review some of these important studies, and discuss the 

current state of the field, as well as remaining questions that motivated my dissertation study.    
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1.3.1 Human studies 

Human behavioral and neuroimaging studies have investigated the impact of anxiety on 

decision-making in healthy individuals and in patients with clinical anxiety (Hartley and Phelps, 

2012). For example, Bishop et al. have shown that PFC recruitment during attentional control 

over conflict elicited by distractors is reduced in individuals with high trait anxiety in correlation 

with impaired cognitive task performance (Bishop et al., 2004; Bishop, 2009). In addition, a 

series of human neuroimaging studies have used fear conditioning and extinction paradigms to 

model perseverative conditioned fear responses – i.e., “emotional perseveration” – revealing PFC 

involvement (Phelps et al., 2004; Pitman et al., 2012; Shin et al., 2001). In these studies, a 

neutral conditioned stimulus (CS) is paired with an aversive outcome (i.e., mild shock) during 

the conditioning session. This is then followed by an extinction session during which the CS is 

repeatedly presented without the aversive outcome. fMRI results show that successful extinction 

is correlated with increased activation of the ventromedial PFC (vmPFC) but reduced activation 

of the amygdala (for a review, see Pitman et al., 2012). This bidirectional modulation of the 

vmPFC-amygdala circuitry is impaired in PTSD patients with perseverative conditioned fear 

responses even after extinction (Phelps et al., 2004; Pitman et al., 2012; Rauch et al., 2006). 

Related neuroimaging studies have reported dysregulated prefrontal control of subcortical neural 

activity in a population genetically vulnerable to developing anxiety disorders (Bertolino et al., 

2005; Hariri et al., 2005; Hariri et al., 2003; Hariri et al., 2002; Meyer-Lindenberg et al., 2006; 

Pezawas et al., 2005).  

Collectively, human studies suggest that anxiety biases information processing during 

flexible behavior. This can be manifested in at least two ways. First, anxiety biases attention to 

threat-related stimuli. This is measured as a faster response time detecting threat-related stimuli 
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and as increased distractibility by these stimuli at the expense of attention to task-relevant stimuli 

(Bar-Haim et al., 2007; Cisler and Koster, 2010; Mogg and Bradley, 1998). Likewise, anxiety 

also results in heightened distractibility by non-threatening stimuli, as suggested by poor 

concentration and reduced multi-tasking capability in anxious individuals (Eysenck et al., 2007; 

Mineka et al., 1998). Second, anxious individuals favor negative interpretations of neutral or 

ambiguous stimuli. When presented with emotionally ambiguous stimuli, such as facial 

expressions or face-voice pairings, anxious individuals disproportionately interpret these stimuli 

as possessing negative valence (Koizumi et al., 2011; Richards et al., 2002). Anxiety also is 

associated with increased expectation of negative outcomes in decision making involving risk or 

ambiguity in the action-outcome relationship. On a variety of choice tasks, anxious individuals 

show heightened risk aversion and favor safe alternatives (Anderson et al., 2012; Hartley and 

Phelps, 2012; Maner et al., 2012; Raghunathan and Pham, 1999). 

These anxiety-related behavioral biases most likely involve PFC-mediated cognitive 

processing.  Notably, there is an association between disrupted PFC neural activity and anxiety-

related behavioral phenotypes, such as impulsivity and risk-aversion in healthy individuals, 

although the association needs to be further examined in patients with clinical anxiety (Giorgetta 

et al., 2012; Knoch et al., 2006; Li et al., 2009; Perugi et al., 2011). In addition, studies of blood 

oxygenation level dependent (BOLD) signals during risk-based decision-making tasks, which 

may be associated with increased anxiety, show reduced activity in PFC subregions in contrast to 

increased activity in subcortical regions such as the amygdala and the ventral striatum 

(Christopoulos et al., 2009; Clark et al., 2008; Fecteau et al., 2007; Knoch et al., 2006). Along 

the same lines, economic decision-making studies show that BOLD activity in the dorsolateral 

PFC is enhanced when the subject chooses the larger but more delayed reward during 
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intertemporal choices, whereas an impulsive choice was associated with decreased BOLD signal 

(Kim and Lee, 2011; McClure et al., 2004). Collectively, these data suggest that dysregulated 

prefrontal control of subcortical neural activity may be associated with anxiety-related 

behavioral biases such as risk-aversion and/or impulsive decision-making.  

1.3.2 Animal studies: Current state of the field  

Numerous studies have focused on PFC individual neuronal representations of fear and anxiety 

(Baeg et al., 2001; Burgos-Robles et al., 2009; Davis, 2006; Milad and Quirk, 2002; Morgan and 

LeDoux, 1995; Quirk and Beer, 2006). Findings from these studies have been corroborated by 

recent research that has further dissected the functional neuroanatomy of fear using various 

techniques of circuit manipulation, such as optogenetics (for a review, see Calhoon and Tye, 

2015). These studies have confirmed that highly interlinked neural structures comprising the 

amygdala, the bed nucleus of the stria terminalis, the ventral hippocampus and the mPFC 

represent information about threats, defensive behavior, and constructs relevant to anxiety 

(Adhikari et al., 2010; Duvarci and Pare, 2014; Felix-Ortiz et al., 2013; Herry et al., 2008; Kim 

et al., 2013; Lesting et al., 2011; Likhtik et al., 2014; Namburi et al., 2015). In PFC, 

subpopulations of neurons respond preferentially to a conditioned stimulus associated with an 

aversive event, tracking alterations in the CS-US association – e.g. extinction (Baeg et al., 2001; 

Burgos-Robles et al., 2009; Courtin et al., 2014; Milad and Quirk, 2002). Moreover, the PFC 

interacts with other regions such as the amygdala and the ventral and dorsal hippocampus via 

pair-wise neuronal correlations and neural synchrony – particularly theta oscillations – to 

regulate conditioned fear responses and explorative behavior in anxiogenic environments such as 
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the open field test and the elevated plus maze test (Adhikari et al., 2010; Karalis et al., 2016a; 

Kumar et al., 2014; Lesting et al., 2011; Likhtik et al., 2014; Livneh and Paz, 2012). 

While these studies have provided key information about how the PFC represents fear or 

anxiety per se, little is known about how anxiety affects PFC processing of cognitively relevant 

behavior. This includes a near-total lack of neurophysiological studies that have investigated the 

impact of anxiety on PFC neural correlates of cognitive flexibility. To this end, an important 

prerequisite for these studies is an appropriate experimental model of anxiety that mimics the 

physiological and behavioral phenotypes of anxiety while allowing animals to perform cognitive 

tasks. Fear conditioning paradigms are limited in two ways for this purpose: first, animals’ 

fearful responses (freezing and/or avoidance) disrupt cognitive task performance. Second, a 

fearful state elicited by an imminent and concrete threat might be dissimilar to an anxious state, 

which is a temporally diffuse state often not associated with a specific event, and which may 

even be internally generated (Sylvers et al., 2011). Behavioral tests of anxiety based on 

explorative behavior – e.g. the open-field test and the elevated plus maze test – also are limited 

due to the lack of cognitive behavioral constructs in these assays.  

In order to investigate the impact of anxiety on cognitive processing, experimental 

models that produce a sustained state of anxiety while allowing for cognitive task performance 

need to be designed and implemented. Only by using such models can we unravel anxiety-

induced changes in cognitive flexibility at individual neuronal and neural population levels in the 

PFC on multiple timescales. Therefore, my dissertation study utilized experimental designs that 

combine an animal model of anxiety and performance of a well-characterized goal-directed 

behavior with simultaneous electrophysiological monitoring of VTA and mPFC neural activity. 
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1.4 SENSITIVITY OF THE MESOPREFRONTAL NEURAL CIRCUIT TO 

AVERSION AND ANXIETY 

In the current section, we review evidence suggesting that the mesoprefrontal (VTA-mPFC) 

neural circuit preferentially responds to aversive, stressful and anxiogenic behavioral states. In 

this regard, the role of the dopaminergic projection to the mPFC has been extensively studied. 

We begin by reviewing classic and recent works suggesting that the VTA DA projection to 

mPFC comprises a specific subpopulation of DA neurons tuned for aversive stimuli. Then we 

briefly discuss evidence demonstrating the roles of VTA non-DA neurons and reciprocal mPFC-

to-VTA projections in representing aversive states. 

Classic works have suggested that DA neurons generate characteristic phasic excitation 

to reward and reward-predicting stimuli (Schultz, 1997; Ungless et al., 2004). Extensive 

recording studies have suggested that the DA neuronal reward response profile was associated 

with signaling the temporal reward prediction error (RPE): i.e., the difference in value between a 

received reward and a predicted reward at each moment in time (for a review, see Schultz, 2016).  

In addition to robust evidence in support of the RPE hypothesis, numerous studies have 

shown that subpopulations of DA neurons are activated by non-rewarding and even aversive 

events. Indeed, it is well established that aversive, stressful and anxiogenic events can activate 

midbrain DA neurons and enhance DA release in target regions (Abercrombie et al., 1989; 

Bradberry et al., 1991b; Brischoux et al., 2009; Butts et al., 2011; Guarraci and Kapp, 1999; 

Murphy et al., 1996b; Ungless et al., 2010; Young, 2004). Recent recording studies targeted 

pharmacologically or optogenetically labeled DA neurons, and found that equivalent proportions 

of them exhibited excitatory or inhibitory responses to aversive stimuli (Cohen et al., 2012; 

Zweifel et al., 2008). Importantly, microdialysis studies found that the mesoprefrontal neural 
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circuit was preferentially activated by stressful and anxiogenic manipulations as evidenced by 

greater increase in DA release in PFC compared to other target structures such as the striatum 

(Abercrombie et al., 1989; Bradberry et al., 1991a; Moghaddam et al., 1990; Thierry et al., 

1976). These results suggested functional and anatomical segregation of the mesoprefrontal 

circuit from the mesolimbic (VTA-NAc) circuit, such that the two pathways may comprise 

different DA neuron populations with distinct responses to rewarding vs aversive events.  

Likewise, recent recording studies have found that subpopulations of identified VTA DA 

neurons exhibit ‘unconventional’ electrophysiological properties, opposing the traditionally used 

profile for classification of DA neurons (Ikemoto, 2007; Lammel et al., 2008; Margolis et al., 

2008). In addition, these unorthodox DA neurons tended to be localized in the medial VTA 

nuclei, whereas DA neurons with a conventional profile were situated in the lateral VTA and 

SNc (Lammel et al., 2011). Combining viral tracing and electrophysiology, recent studies have 

found that distinct VTA DA neuron populations with different physiological and geographical 

profiles displayed separable input-output connectivity (Lammel et al., 2012). The DA neurons 

with conventional properties tended to project to the lateral shell of the NAc, and received 

excitatory input from the laterodorsal tegmentum (LDT). The unconventional DA neurons 

projected to the mPFC, the medial shell of the NAc, and the amygdala, and received projections 

from the lateral habenula (LHb).  

Importantly, the excitatory input from LDT generates phasic bursting in the 

‘conventional’ DA neurons that in turn project to the lateral shell of the NAc, which plays an 

important role in reward-mediated reinforcement process (Forster and Blaha, 2000; Lodge and 

Grace, 2006) (Figure 1-1). On the other hand, LHb neurons are activated by aversive events and 

omission of reward (Hikosaka, 2010; Hong et al., 2011). The LHb innervates the DA neurons 
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that project to the mPFC as well as the GABA neurons in the rostromedial tegmental nucleus 

(RMTg), which exerts inhibitory control over the DA neurons projecting to the NAc lateral shell 

(Lammel et al., 2012; Stamatakis and Stuber, 2012) (Figure 1-1). Collectively, these data 

illustrate parallel circuits involving distinct DA neuron groups with heterogeneous profiles and 

input-output connectivity, which may be functionally diversified to selectively represent 

rewarding vs aversive states.  

Lammel et al. (2011) provided evidence supporting this parallel circuit notion, first by 

showing that the excitatory input synapses of the mesoprefrontal and mesolimbic DA neurons 

were selectively potentiated by aversive vs rewarding stimuli, respectively. Further, the same 

group optogenetically stimulated the LDT innervated mesolimbic DA neurons or the LHb 

innervated mesoprefrontal DA neurons, and found that stimulating the two pathways resulted in 

conditioned place preference vs aversion, respectively (Lammel et al., 2012). Consistent with 

this, photostimulation of NAc projecting VTA DA neurons resulted in prosocial behavior, 

whereas stimulation of the VTA DA terminals in mPFC led to antisocial and anxiety-related 

behaviors (Gunaydin et al., 2014). These results suggest that parallel mesoprefrontal and 

mesolimbic pathways arise from separable DA neuronal subpopulations with distinct afferent 

inputs, such that the two pathways are associated with profoundly different behavior.  

Approximately 20-40% of VTA cells are GABAergic, comprising most of the non-DA 

neuronal population in the VTA (Carr and Sesack, 2000a; Nair-Roberts et al., 2008; Swanson, 

1982). VTA GABA neurons consist of local inhibitory interneurons innervating neighboring DA 

neurons and long-range projection neurons that innervate target structures such as the NAc and 

mPFC (Fields et al., 2007; Omelchenko and Sesack, 2009). The GABAergic projection 

comprises approximately 58% of all mesoprefrontal neurons in the VTA (Carr and Sesack, 
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2000a). Recent studies have shown that photostimulation of VTA GABA neurons elicited 

aversive behavior such as conditioned place aversion, disrupted food consumption, and 

extinction of appetitive associative memory, which were mediated by inhibition of VTA DA 

neurons (Pan et al., 2013; Tan et al., 2012; van Zessen et al., 2012). Although the functional 

significance of the VTA GABA projection to the mPFC remains to be addressed, it is plausible 

that the VTA GABA neurons may comprise a critical component in the mesoprefrontal 

representation of aversive behavioral states. 

 The mPFC sends excitatory projections to the VTA specifically onto the DA neurons 

projecting back to mPFC, completing the mesoprefrontal ‘loop’, while the mPFC projection 

targets VTA GABA neurons projecting to the NAc (Carr and Sesack, 2000a). The mPFC 

neuronal innervation of mesoprefrontal DA neurons is consistent with electrophysiological data 

showing that mPFC stimulation produces a short latency response in DA neurons antidromically 

activated from the PFC (Gariano and Groves, 1988; Thierry et al., 1979). Likewise, 

neurochemical data show that stimulation of mPFC by local infusion of glutamate agonists 

increases DA levels within the PFC (Jedema and Moghaddam, 1996). Collectively, these data 

suggest that the mPFC neuronal subpopulation activated by aversive stimuli may contribute to 

preferential activation of the mesoprefrontal DA cells in stressful and anxiogenic situations. In a 

recent study, Ye et al. (2016) used activity-dependent whole brain mapping to show that mPFC 

neuronal populations projecting to distinct target structures differently responded to rewarding vs 

aversive experiences. The mPFC axonal projections to LHb and VTA responded to an aversive 

stimulus to a much greater degree compared to the mPFC-to-NAc projection, which 

preferentially responded to an appetitive but not to an aversive stimulus (Ye et al., 2016). Taken 
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together these data suggest that the reciprocal mesoprefrontal circuit plays a vital role in 

representing aversive behavioral states in stressful and anxiogenic situations. 

1.5 PURPOSE OF DISSERTATION 

This dissertation study addresses the mesoprefrontal (VTA-mPFC) neural basis of the adaptive 

and maladaptive behavioral impacts of anxiety. As discussed in previous sections, the 

mesoprefrontal neural circuit plays a critical role in flexible cognitive control of goal-directed 

behavior (Floresco, 2013). Importantly, the mesoprefrontal circuit exhibits preferential responses 

to aversive, stressful and anxiogenic stimuli, compared to other circuits within the 

mesocorticolimbic system (Abercrombie et al., 1989; Bradberry et al., 1991b; Moghaddam et al., 

1990). Therefore, investigating how spontaneous and task-related mesoprefrontal neural activity 

is modulated in association with behavioral changes in anxiety may be the key for understanding 

the neural basis of behavioral impacts of anxiety.      

To this end, we first set out to unravel how the mesoprefrontal neural circuit encodes 

anticipation of an aversive event – i.e., punishment risk – that induces anxiety-like behavioral 

changes. Although the general activation of the mesoprefrontal circuit in an aversive state has 

long been established, it remains to be addressed how individual neurons and ensembles of 

neurons encode punishment risk and risk-based anxiety-like behavioral changes. Importantly, the 

lack of simultaneous recording data from mPFC and VTA has hindered 1) valid characterization 

and comparison between VTA and mPFC neural coding schemes, 2) discovery of interregional 

neural codes for punishment. To address this, we designed a risky reward-seeking task, in which 

rats engaged in a simple instrumental action with varying degrees of punishment risk contingent 
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on the action. We confirmed that punishment risk induced anxiety-like changes in the 

instrumental behavior, which was reversed by pretreatment with an anxiolytic, diazepam. Using 

in vivo electrophysiology, we recorded single-unit spike activity and local field potentials 

simultaneously in VTA and mPFC from task-performing animals. Using exhaustive data 

analyses, we found that the mesoprefrontal circuit utilizes multiple layers of coding schemes to 

represent punishment and risk-based anxiety-like behavioral modulation at the individual 

neuronal, neural population, and neural circuit levels. 

In a separate set of experiments, we focused on the detrimental aspects of anxiety, since 

anxiety has been associated with disruptions in PFC-mediated executive functions, such as 

flexible cognitive control of behavior. We trained animals on a rodent task requiring cognitive 

flexibility: an extradimensional set-shifting task. The task required rats to select their 

instrumental action based on two rules involving distinct perceptual dimensions, and to switch 

between the rules based on the task feedback. Previous studies have suggested that the set-

shifting task requires higher-order, hierarchical neural processing in the network of cortical and 

subcortical structures, with the PFC playing an integrative role. By recording neural activity in 

animals performing this task, we could examine PFC neuronal encoding of task variables 

relevant to cognitive set-shifting in a non-anxious state.  Then, within the same task context, 

we applied a clinically substantiated anxiogenic treatment to induce a sustained state of anxiety. 

It is important to note that the anxiogenic drug (FG7142) we used has been shown to activate the 

mesoprefrontal neural circuit in association with anxiety-like behavioral changes, including 

cognitive deficits in rodents, primates, and even in humans (Dorow, 1987; Evans and Lowry, 

2007; Murphy et al., 1996b; Ninan et al., 1982). Therefore, we concluded that the 

pharmacological model of anxiety was appropriate to our purpose of investigating the 



 31 

mesoprefrontal neural basis of anxiety. Animals performed the set-shifting task under systemic 

injection of different doses of the anxiogenic drug (FG7142). The impact of anxiety was subtle; 

however, consistent with human data, behavior was selectively impaired when previously correct 

conditions were presented as conflicting choices. This impairment was associated with reduced 

recruitment of mPFC neurons that selectively represented task rules at the time of action. We 

also examined how the spontaneous activity of PFC neurons was modulated in the sustained state 

of anxiety, and found that anxiety induced persistent suppression of PFC neuronal spike activity 

– i.e., hypofrontality.   

Collectively, findings from my dissertation study demonstrate that anxiety “hijacks” the 

mesoprefrontal neural circuit by profoundly modulating spontaneous and task-related neural 

activity at the individual neuron-, neural population-, and neural circuit levels. Anxiety-induced 

neural changes in the mesoprefrontal circuit were systematically associated with anxiety-like 

changes in motivated and cognitive behaviors, providing insights relevant to the therapeutic 

interventions for the behavioral symptoms of anxiety disorders. 
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2.0  VTA AND PFC NEURAL REPRESENTATION OF THE IMPACT OF 

PUNISHMENT RISK ON REWARD-SEEKING BEHAVIOR 

2.1 INTRODUCTION 

Avoiding danger and approaching reward are fundamental functions of all nervous system. In a 

causally and socially complex world, this dual problem often needs to be concurrently resolved, 

as a reward-seeking behavior may involve risk of an aversive event, i.e., punishment risk, e.g. an 

animal foraging with risk of encountering a predator. Proper neural representations of 

punishment risk and accordingly guiding behavior are critical for survival and adaptive behavior. 

Deficient or exaggerated representation of risk is associated with maladaptive behavioral patterns 

observed in neuropsychiatric conditions such as addiction or anxiety-related disorders (Bechara 

et al., 2000; Gillan et al., 2016; Hartley and Phelps, 2012; Lee, 2013; Mineka et al., 1998). 

In the present study, we sought to unravel how risk of punishment contingent on reward-

seeking behavior is encoded in the neural circuit comprising the midbrain ventral tegmental area 

(VTA) and the medial prefrontal cortex (mPFC). We focused on the two regions first because 

they have been implicated in flexible cognitive control of goal-directed behavior (Floresco et al., 

2006; Kehagia et al., 2010; Mueller et al., 2010; Popescu et al., 2016; Ragozzino, 2002; Stefani 

and Moghaddam, 2006). In addition, the VTA and mPFC have long been implicated in signaling 

aversive behavioral states. The mPFC neurons encode innate and conditioned aversive states to 
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modulate aversive behavior in concert with diverse cortical and subcortical structures (Adhikari 

et al., 2010; Karalis et al., 2016b; Kumar et al., 2014; Likhtik et al., 2014; Ye et al., 2016). VTA 

dopamine (DA) neurons have long been suggested to primarily encode reward-related events 

such as the reward prediction error (RPE), i.e. discrepancy between expected and actual 

outcomes (Cohen et al., 2012; Roesch et al., 2007; Schultz, 1998; Wise, 2004). However, 

mounting evidence suggests that various motivational features of appetitive, aversive and 

alerting events might be coded by heterogeneous subgroups of VTA DA and non-DA neurons 

(Bromberg-Martin et al., 2010; Horvitz, 2000; Kim et al., 2010; Matsumoto et al., 2016; 

Matsumoto and Hikosaka, 2009; Tan et al., 2012; van Zessen et al., 2012). At the neural circuit 

level, the mPFC and VTA (both DA and non-DA neurons) send reciprocal projections to each 

other (Berger et al., 1976; Carr and Sesack, 2000a, b). The DA neurons projecting to mPFC has 

been shown to preferentially respond to stressful and anxiogenic perturbations even to mild ones 

that scarcely affect the mesolimbic or mesostriatal DA transmission (Abercrombie et al., 1989; 

Bradberry et al., 1991a; Moghaddam et al., 1990; Thierry et al., 1976). In line with this, the VTA 

DA neurons projecting to the mPFC receive preferential input from the lateral habenula (LHb) 

neurons that are selectively tuned to aversion and omission of reward (Lammel et al., 2012). 

Further, photostimulation of the VTA dopaminergic input to the mPFC elicited anxiety-like 

behavior (Gunaydin et al., 2014; Lammel et al., 2012), suggesting a more causal role of this 

neural circuit in aversive behavior. Together these suggest that the VTA and mPFC may play a 

key role in representation of punishment risk contingent on a reward-seeking action and risk-

based modulation of the action. However, the lack of simultaneous recording data from the two 

regions in reward-seeking animals with risk of punishment has hindered 1) valid characterization 
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and comparison of the VTA and mPFC coding schemes, and 2) discovery of interregional neural 

codes, for punishment risk and risk-based modulation of appetitive behavior. 

Here we recorded single unit and local field potential (LFP) signals from rats performing 

a risky reward-seeking task, wherein an instrumental action constantly procured a reward but 

probabilistically led to punishment with varying degrees of risk. Our data show that the majority 

of VTA and mPFC neurons encode punishment risk and risk-based behavioral modulation. 

Accordingly, punishment risk could be accurately decoded from the activity of both VTA and 

mPFC neuronal populations. Furthermore, the neuronal population activity even tracked the risk-

based trial-to-trial behavioral variation, demonstrating a solid link between aversive behavior and 

neuronal population activity in the presence of punishment risk. At the neural circuit level, we 

found that coherent theta oscillations synchronized the VTA and mPFC in a bottom-up direction, 

effectively phase-modulating the neuronal spike activity in the two regions during the risk-free 

actions. This oscillation-mediated neural synchrony declined as a function of risk, suggesting 

that the asynchrony between the two regions may signal risk of punishment contingent on the 

reward-seeking action. Taken together, these results demonstrate multiple layers of VTA-mPFC 

coding schemes for punishment risk at the single neuronal-, neuronal population- and circuit-

levels.  
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2.2 METHODS 

2.2.1 Subjects and surgical procedure 

Male Long Evans rats weighing 300~400 g (Harlan) were singly housed on a 12 h light/dark 

cycle (lights on at 7 p.m.). All data were collected during the dark cycle. Microelectrode arrays 

were surgically implanted in ipsilateral mPFC and VTA (N = 10) or bilateral mPFC (N = 4) of 

isoflurane-anesthetized rats (Figure 2-3a). All mPFC electrode arrays were placed in the 

prelimbic subregion of the mPFC. The following coordinates relative to the bregma were used: 

mPFC = AP +3.0 mm, ML 0.7 mm, DV 4.0 mm; VTA = AP -5.3 mm, ML 0.8 mm, DV 8.2 mm 

(Paxinos and Watson, 1998). Behavioral training began after 1 week of postsurgical recovery. At 

the completion of all recordings, rats were anesthetized with 400 mg/kg chloral hydrate and 

perfused with saline and 10 % buffered formalin. Coronal brain slices of mPFC and VTA were 

collected and cresyl-violet stained. Placements of electrode arrays were verified under a light 

microscope. All procedures were in accordance with the National Institute of Health’s Guide to 

the Care and Use of Laboratory Animals, and were approved by the University of Pittsburgh 

Institutional Animal Care and Use Committee. 

2.2.2 Risky reward-seeking task 

After the postsurgical recovery, rats were kept at 85 % of their free-feeding weight on a 

restricted diet of 13 g food pellets a day with free access to water. In an operant chamber, rats 

were fully trained to make an instrumental nose poke to the cue port to receive a sugar pellet at 

the food trough located in the opposite side of the chamber on the fixed ratio schedule of one, 
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namely FR1 (Figure 2-1a-b). After completion of three FR1 sessions consisting of 150 trials in 

60 mins, rats were trained with the risky reward-seeking task consisting of three blocks, each 

containing 50 trials. Each block was assigned a punishment risk – 0, 0.06, or 0.1, i.e. the 

conditional probability of receiving an electric foot shock (0.3 mA, 300 ms) given an action. The 

action–reward contingency was kept at 1 across all training and recording sessions, i.e. every 

nose poke led to a reward delivery even in the shock trials, so there was no reward risk in our 

task. To minimize generalization of risk across blocks, they were organized in an ascending 

shock probability order – Block1: 0, Block2: 0.06, Block3: 0.1, and interleaved with 2-min 

timeout. In block 2 and 3 of each session, 3 and 5 trials were pseudo-randomly selected and 

followed by an electric foot shock. No explicit cue was provided on shock trials to keep the 

shock occurrence unpredictable (the cue onset only signaled initiation of a trial). Animals were 

informed of the block shift and risk increase by the 2-min darkened timeout in between blocks. 

In addition, the first shock trial of block 2 and the first two shock trials of block 3 were randomly 

selected from the initial 5 trials of each block. Also, animals completed two complete sessions of 

the risky reward-seeking task before the recording session, thus the shock occurrence and the 

task design including the ascending punishment risk were not novel to them at the time of the 

recording session. All training and recording sessions were terminated if not completed in 180 

mins, and data from the completed sessions only were analyzed. Animals displayed stable 

behavioral performance overall without any sign of contextual fear conditioning as they 

performed fearless in the safe block across all sessions. In addition, there was no evidence for 

habituation to the shock as they showed equivalent risk-based behavioral changes across 

sessions. For the diazepam pretreatment experiment, a separate group of rats (N = 9) were 

trained using abovementioned procedure, and they underwent three test sessions with 
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intraperitoneal pretreatment of saline – diazepam (2 mg/kg, Hospira, Inc.) – saline. Injected 

animals were returned to their homecage for 10 minutes before they were placed in the operant 

chamber. Three days of washout period was allowed between sessions. 

2.2.3 Electrophysiology 

Single-unit activity and local field potentials (LFPs) were recorded simultaneously via a pair of 

eight channel Teflon-insulated stainless steel 50 µm microwire arrays (NB Laboratories). Unity-

gain junction field effect transistor headstages were attached to a headstage cable and a 

motorized commutator nonrestrictive to the animals’ movement. Signals were amplified via a 

multichannel amplifier (Plexon). Spikes were bandpass filtered between 220 Hz and 6 kHz, 

amplified ×500, and digitized at 40 kHz. Single-unit activity was then digitally high-pass filtered 

at 300 Hz and LFP were low-pass filtered at 125 Hz. Continuous single-unit and LFP signals 

were stored for offline analysis. Single units were sorted using the Offline Sorter software 

(Plexon). Only the single-units with a stable waveform throughout the recording session were 

further analyzed. If a unit presented a peak of activity at the time of the reference unit’s firing in 

the cross-correlogram, only either of the two was further analyzed.   

2.2.4 Neural data analysis 

Single unit and LFP data analyses were conducted with Matlab (MathWorks) and SPSS 

statistical software (IBM). For single unit data analyses, 1-ms binned spike count matrix of the 

peri-cue, action, and reward periods (starting 2 s before each event and ending 2 s after each 
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event) were produced for each unit. The baseline period was a 2-s time window beginning 2.5 s 

before the trial onset. 

2.2.4.1 Trial-averaged firing-rate analysis 

Spike count matrices were further binned using a 200 ms rectangular moving window 

with steps of 50 ms within the -2 to 2 s epoch aligned to the task event occurring at time = 0 for 

the firing rate analysis. Binned spike counts were transformed to firing rates and averaged across 

trials. The trial-averaged firing rate of each unit was Z-score normalized using the mean and 

standard deviation of its baseline firing rate. 

2.2.4.2 VTA cell classification 

 The VTA single units were classified into putative dopamine (DA) or non-dopamine 

(non-DA) neurons based on two criteria. First, units whose mean baseline firing rate slower than 

12 Hz, waveform width greater than 1.2 ms were considered as potential DA units (Grace and 

Bunney, 1984; Kim et al., 2015; Schultz and Romo, 1987). This traditional classification, 

however, has been suggested to be potentially inaccurate (Margolis et al., 2006). Thus, the 

second criterion utilized the neuronal reward response properties for the putative DA and non-

DA cell identification. Receiver-operating characteristic (ROC) curves were calculated by 

comparing the distribution of firing rates across trials in 100 ms bins (starting 0.5 s before reward 

delivery and ending 1 s after reward delivery) to the distribution of baseline firing rates (starting 

2.5 s before the trial onset and ending 0.5 s before the trial onset). Principal component analysis 

was conducted using the singular value decomposition of the area under the ROC (auROC). 

Units were mapped in the 3-d space consisting of the top three principal components. Within the 

3-d PC space, unsupervised clustering was conducted by fitting Gaussian mixture models using 
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the expectation-maximization algorithm. This method found two clusters: one with phasic 

excitation to reward (Type 1), one with sustained excitation or suppression to reward (Type 2) 

(Figure 2-4c-e). Units in the former class were classified as putative DA units, as previous 

studies have shown that optogenetically tagged DA neurons displayed similar phasic excitatory 

reward responses (Cohen et al., 2012; Eshel et al., 2015). Taken together, we defined a VTA unit 

satisfying both criteria as a putative DA unit and a unit that met either or none of the criteria as a 

putative non-DA unit (Figure 2-4). mPFC units were not classified based on their firing and 

spike-waveform properties. Only 2 out of the total 293 mPFC single units had the mean baseline 

firing rates higher than 20 Hz, thus few fast-spiking interneurons should be included in our data 

analysis. 

2.2.4.3 Spike rate selectivity 

To quantify single neuronal encoding of blockwise punishment risk, we computed a bias-

corrected percent explained variance (ωPEV) statistic with binned spike counts calculated in a 

200 ms rectangular window moving with steps of 50 ms within the 2-s peri-event epochs (-1 to 1 

s with an event occurring at time = 0).  

ωPEV =  
𝑆𝑆𝐵𝐵𝑜𝑐𝑐𝑐 − 𝑑𝑑𝐵𝐵𝑜𝑐𝑐𝑐𝑀𝑆𝐸𝐸𝐸𝑜𝐸

𝑆𝑆𝑇𝑜𝑇𝑇𝐵 +  𝑀𝑆𝐸𝐸𝐸𝑜𝐸
 

where SSBlocks and SSTotal are the between-blocks (punishment risk) and total sums of squares, 

dfBlocks is the blocks degrees of freedom, and MSError is the mean squared error. This formulation 

resulted in an unbiased metric with an expected value of zero when there is no difference across 

blocks (Buschman et al., 2012; Keren, 1979). A unit was determined to encode punishment risk 

if its peri-event ωPEV surpassed ‘the global ωPEV band’, which was defined as the upper bound 

of the 99 % confidence interval of the trial-shuffled (1,000 times) surrogate ωPEV distribution, 
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i.e., fewer than 1 % of the trial-shuffled ωPEVs crossed the global band across all time bins in 

the peri-event epoch (α = 0.01). To find the global ωPEV band, we computed the mean and 

standard deviation of the trial-shuffled ωPEV distribution. By stepping up from the mean by one-

hundredth of the standard deviation, we found the pointwise band at each time bin and the global 

band across time bins both at α = 0.01 (Figure 2-5). This approach effectively resolves the issue 

of multiple comparisons that can arise as statistical comparisons made separately across multiple 

time bins increase the rate of false rejection of the null hypothesis (Fujisawa et al., 2008). We 

repeated this analysis using the mutual information metric, and found that the two metrics 

yielded similar results. 

2.2.4.4 Linear regression analysis 

For a standardized quantification of the individual neuronal encoding of punishment risk 

in peri-event epochs, we computed the standardized regression coefficient of the following linear 

regression model for each unit: 

SC = β 𝐸𝑟𝑐𝑐x +  ε 

where SC denotes binned spike counts calculated in a 200 ms moving window with steps of 50 

ms, βrisk regression coefficients for the independent variable, blockwise punishment risk (1, 

shock prob. = 0; 2, shock prob. = 0.06; 3, shock prob. = 0.1), respectively. The regression 

coefficients were standardized by β×(Sx/Sy), where Sx, Sy denote the standard deviations of 

independent and dependent variables, respectively. 

2.2.4.5 Population decoding analysis 

The population-level encoding of punishment risk was quantified using the Poisson naïve 

Bayes classifier. In general, a decoding method works by training the classifier to ‘learn’ which 
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patterns of neuronal activity are indicative of particular task conditions. In the training phase, the 

association of different patterns of neuronal activity with different task conditions is learned 

from a subset of data (training set). In the test phase, the reliability of the association is assessed 

with a separate set of data (test set) based on how accurately the classifier can predict the present 

task conditions from the neuronal activity. For training and testing, we used a cross-validation 

procedure with the following steps. (1) For each unit, data from 50 trials of each risk block were 

taken in 200-ms window sliding in steps of 50 ms within the 4-s peri-cue and action epochs. For 

each of these trials, data from all units were concatenated to create a pseudo-population response 

vector (i.e., units that were recorded under the same conditions but in separate sessions were 

treated as if they had been recorded simultaneously). (2) These pseudo-population vectors are 

grouped into 5 splits of the sampled data, with each split containing 10 pseudo-population 

response vector of each risk block. (3) A classifier was trained using 4 splits of the data, and 

tested with the remaining split. This procedure was repeated 20 times, leaving a different split at 

each time (i.e., a 5-fold leave-one-split-out cross-validation was used). 

Specifically, in each repetition, we have a Poisson likelihood function given by  

𝑃�𝑥𝑇�𝐶𝑐�  =  �
𝜆𝑐𝑟,𝑇
𝑥𝑖,𝑡 𝑒−𝜆𝑘𝑖,𝑡

𝑥𝑟,𝑇!

𝐷

𝑟=1

 

where xt is a pseudo-population vector of spike counts at tth sliding window within a trial, Ck 

indicates block ID with varying risk, and thus k takes on 1, 2 or 3. i indicates unit label, 1 to D. 

λki,t is the parameter for the Poisson distribution estimated by the following.  

𝜆𝑐𝑟,𝑇 =  
1
𝑁𝑐

� 𝑥𝑛𝑟,𝑇
𝑛∈𝐶𝑘

 

The posterior probability for a particular risk given the spike count vector is provided by Bayes’ 

theorem:   
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𝑃�𝐶𝑐�𝑥𝑇�  =  
𝑃�𝑥𝑇�𝐶𝑐�𝑃(𝐶𝑐)

𝑃(𝑥𝑇)
 

We have a flat prior probability, and thus P(Ck) is a constant. Hence, the classifier predicts the 

current risk with maximum probability given the pseudo-population activity.  

𝐶𝑐� =  𝑎𝑎𝑎𝑎𝑎𝑥𝑐𝑃�𝑥𝑇�𝐶𝑐� 

This procedure (steps 1-3) was repeated 50 times repeatedly resampling matching numbers of 

units from each region (n = 100) to for a valid interregional comparison of the decoding 

accuracy.  

2.2.4.6 Gaussian-process factor analysis (GPFA) 

GPFA extracts a smooth low-dimensional neural trajectory from simultaneously recorded 

neuronal time series data (binned spike counts). GPFA performs smoothing and dimensionality 

reduction in a common probabilistic framework. The GPFA model simply consists of a set of 

factor analyzers, one at each time bin, that are linked together in the low-dimensional state space 

by a Gaussian process. We provide a simple mathematical description of GPFA below. Yu et al. 

(2009) provides a thorough analytical and practical discussion of the GPFA model. Let 𝑦:,𝑇 ∈

 ℝ𝑞×1 be the high-dimensional vector of square-rooted spike counts recorded at time point t = 1, 

. . . , T, where q is the number of simultaneously recorded single units. We extract a 

corresponding low-dimensional latent neural state 𝑥:,𝑇 ∈  ℝ𝑝×1, at each time point, where p is the 

dimensionality of the neural state space (p < q). We define a linear-Gaussian relationship 

between 𝑦:,𝑇 and 𝑥:,𝑇.  

𝑦:,𝑇|𝑥:,𝑇 ~ 𝒩�𝐶𝑥:,𝑇 + 𝑑,𝑅� 
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where 𝐶 ∈ ℝ𝑞×𝑝, 𝑑 ∈ ℝ𝑞×1, and 𝑅 ∈ ℝ𝑞×𝑞 are model parameters to be fitted. The neural states 

𝑥:,𝑇at different time points are linked through Gaussian processes. A separate GP is defined for 

each dimension of the neural state space indexed by i = 1, . . . , p  

𝑥𝑟,: ~ 𝒩(0,𝐾𝑟) 

where 𝑥 ∈ ℝ1×𝑇 is the ith row of 𝑥:,𝑇=1,…,𝑇  and 𝐾𝑟 ∈ ℝ𝑇×𝑇  is the covariance matrix for ith GP.     

The parameters of the GPFA model above were fitted using the expectation-maximization 

algorithm, which finds the model parameters that maximize the probability of the observed data. 

Using the learned GPFA model, we extract neural trajectories E[𝑥:,:|𝑦:,:] from the observed data. 

These low-dimensional neural trajectories can be related to the high-dimensional observed 

activity using the GPFA model above, which defines a linear mapping 𝐶 between the two spaces. 

Each column of 𝐶  defines an axis in the high-dimensional space, and the ith element in 

𝑥:,𝑇specifies the location along each axis. Columns of 𝐶 were orthonormalized for a “PCA-like” 

visualization, and the neural trajectories were plotted in the orthonormalized low-dimensional 

space. The dimensionality was determined based on the distribution of cross-validated data 

likelihoods across different dimensionalities. We found that data likelihoods peaked or plateaued 

around the dimensionality of five in all neural populations, thus 5D was used across all 

populations for better comparability. We also tested other dimensionalities, and found that 

similar behavioral and neural correlations held at different dimensionalities. GPFA model fitting 

and extraction of population neural trajectories were implemented using the open-source GPFA 

matlab code package (Yu et al., 2009).   
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2.2.4.7 LFP power spectra and coherence 

The local field potential (LFP) power spectral densities were quantified using the chronux 

routine mtspecgramc (Bokil et al., 2010). Briefly, the LFP time series within the peri-event 

epochs were Fourier transformed in a 500 ms moving window with steps of 50 ms with the 

multi-taper method applied: 

𝑆 =  
1
𝐾
��� 𝑢𝑐(𝑡)𝑥(𝑡)𝑒−2𝜋𝑟𝜋𝑇 𝑑𝑡

𝑇

0
�
2𝐾

𝑐=1

 

where 𝑢𝑐(𝑡) is the multi-tapers (9 tapers were used), 𝑥(𝑡) is the LFP time series in a moving 

window. The baseline normalized power spectra (Z-score) were calculated using the mean and 

standard deviation of the baseline power spectra across trials. In addition, we inspected the trial-

by-trial spectro-temporal representations of LFP time series applying the continuous wavelet 

transform. We confirmed that comparable representations were attained by the Fourier- and 

wavelet-based time-frequency analyses.  

The magnitude squared coherence (MSC) between time series recorded from mPFC and 

VTA was calculated in the same moving window with the 9 multi-tapers applied using the 

chronux routine cohgramc. Briefly, the MSC was quantified as:  

𝐶𝑥𝑥(𝑑) =  
�𝑆𝑥𝑥(𝑑)�

2

𝑆𝑥(𝑑)𝑆𝑥(𝑑)
 

Where 𝑆𝑥𝑥(𝑑)  is the cross spectral density of LFP time series in the two regions, and 

𝑆𝑥(𝑑),  𝑆𝑥(𝑑) are the autospectral density for each region. 

2.2.4.8 Bivariate Granger causality analysis 

To examine mutual influences (directionality) between LFP oscillations in the two 

regions, we quantified Granger causality between the simultaneously recorded peri-action LFP 
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traces (-2 to 2 s around the action occurring at time = 0). The bivariate Granger causality (G-

causality) infers causality between two time series data based on temporal precedence and 

predictability (Barnett and Seth, 2014; Granger, 1969). That is, a variable X1 ‘Granger causes’ a 

variable X2 if information in the past of X1 helps predict the future of X2 with better accuracy 

than is possible when considering only information already in the past of X2 itself. In this 

framework, two time series X1(t) and X2(t) recorded from mPFC and VTA can be described by 

a bivariate autoregressive model:  

𝑋1(𝑡) =  �𝐴11,𝑗𝑋1(𝑡 − 𝑗)
𝑝

𝑗=1

+  �𝐴12,𝑗𝑋2(𝑡 − 𝑗)
𝑝

𝑗=1

+  𝜀1(𝑡) 

𝑋2(𝑡) =  �𝐴21,𝑗𝑋1(𝑡 − 𝑗)
𝑝

𝑗=1

+  �𝐴22,𝑗𝑋2(𝑡 − 𝑗)
𝑝

𝑗=1

+  𝜀2(𝑡) 

where p is the model order (the maximum number of time-lagged observations included in the 

model), which was estimated by the Akaike information criterion. We then estimated parameters 

of the model; 𝐴 contains the coefficients of the model, and 𝜀1, 𝜀2 are residuals (prediction errors) 

with covariance matrix Σ for each time series.  

 Once the model coefficients Aj and Σ are estimated, the spectral matrix can be 

obtained as:  

S(𝑑) =  〈𝑋(𝑑)𝑋 ∗ (𝑑)〉 = 𝐻(𝑑)𝛴𝐻 ∗ (𝑑) 

where the asterisk denotes matrix transposition and complex conjugation, Σ is the noise 

covariance matrix, and the transfer function 𝐻(𝑑)is defined as the inverse matrix of the Fourier 

transform of the regression coefficients:  

𝐻(𝑑) = (𝐼 −�𝐴𝑗𝑒−2𝜋𝑟𝑐𝜋)
𝑝

𝑗=1

−1

         0 ≤  𝑑 ≤ 2𝜋 
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The spectral G-causality from 1 to 2 is then obtained by: 

𝐼1→2(𝑑)  =  −ln �1 −  
(𝛴11 − 𝛴212 /𝛴22))|𝐻21(𝑑)|2

𝑆22(𝑑)
� 

The spectral G-causality measure lacks known statistical distribution, thus a random permutation 

method was used to generate a surrogate distribution, by which the upper bound of the 

confidence interval was found at α = 0.001. This procedure was implemented using an open-

source matlab toolbox, the Multivariate Granger Causality Toolbox (Barnett and Seth, 2014). 

2.2.4.9 LFP-Spike phase-locking analysis 

To quantify the individual neuronal spike time synchrony with the local and interregional 

8 Hz oscillations were quantified as follows. The mPFC and VTA LFPs during the baseline and 

peri-action 4-s time windows were bandpass filtered to isolate oscillations within 5 – 15 Hz 

frequency range. The instantaneous phase of each filtered LFP segment was determined using 

the Hilbert transform and each spike was assigned the phase of its contemporaneous LFP 

segment. The phase-locking value (PLV) of each unit was defined as the circular concentration 

of the resulting phase angle distribution, which was quantified as the mean resultant length 

(MRL) of the phase angles. The MRL is the sum of unit vectors indicating instantaneous phases 

of each spike occurrence normalized by the number of spikes, thus the MRLs were bound to take 

a value between 0 (no phase-locking) to 1 (perfect phase-locking). 

𝑀𝑅𝑀 =  
1
𝑁
��𝑒𝑗Φ𝑛

𝑁

𝑛=1

� 

where Φ𝑛 represents the phase assigned to nth spike occurrence, and 𝑁 is the total number of 

spikes. Since the MRL statistic is sensitive to the number of spikes, we calculated MRL 1,000 

times with 100 spikes of each unit randomly selected for each iteration, and the PLV was the 
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MRL averaged across all iterations. As comparing PLVs across blocks with varying levels of 

risk was of our central interest, PLV was computed per each block. Only the units with their 

peri-action spike counts within each block greater than 100 in all three blocks were included in 

the phase-locking analysis. Units passing the Rayleigh’s z-test at α = 0.05 were determined to be 

significantly phase-locked. The directionality of the LFP and spike phase relationship was 

inferred by a time-lagged phase-locking analysis, in which the spike times were shifted relative 

to the LFP time series, stepping by 4 ms within the range of -100 to 100 ms (Likhtik et al., 2014; 

Spellman et al., 2015). At each time lag, the PLV of each single unit and its significance were 

assessed, and the maximum PLV across all time lags was found for each unit. We repeated the 

analysis with different time lags and analysis windows, and confirmed that the results were very 

similar across different parameters.  

2.2.4.10 Statistical analysis 

Parametric statistical tests were used for z-score normalized data and non-normalized 

data that are conventionally tested using a parametric test. Nonparametric approaches, such as 

conventional nonparametric tests or bootstrapping were used for a hypothesis test of data, of 

which statistical distribution is unknown, e.g. phase-locking values (PLVs). For all tests, the 

Greenhouse–Geisser correction was applied as necessary due to violations of sphericity. All 

statistical tests were specified as two-sided. Multiple testing correction was applied for all tests 

including multiple comparisons using the Bonferroni correction. 
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2.3 RESULTS 

2.3.1 Anxiety-like behavioral changes as a function of punishment risk 

Punishment risk varying across blocks induced anxiety-like aversive behavioral changes (Figure 

2-1a-b), as the mean response time (RT) markedly increased as a function of risk (Figure 2-1c; 

GLM repeated measures, F2, 32 = 24.94, p < 0.001). We also measured time spent in immobility 

during RT, a widely used behavioral measure of anxiety in rodents, and observed a significant 

increase in immobile RT (Figure 2-1c; GLM repeated measures, F2, 32 = 22.44, p < 0.001), 

demonstrating that the increased RT may involve anxiety. The increase in RT could not be 

explained by changes in motivation for the reward, as the time for reward retrieval (reward RT) 

remained consistent across blocks regardless of risk (Figure 2-1c inset; GLM repeated measures, 

F2, 32 = 2.97, p = 0.07). Punishment risk induced a pronounced increase in the trial-to-trial 

variability in RT beyond the level of increase expected corresponding to the mean increase 

(Figure 2-1d; GLM repeated measures, F2, 32 = 13.89, p < 0.001). This increase in behavioral 

variability was associated with shock occurrences, as the RT varied as a function of the trial lag 

from the previous shock (Figure 2-1e), indicating that animals systematically adjusted their 

behavior across trials even in the same block. When animals performed the same number of trials 

and blocks in the absence of punishment throughout a session, namely ‘no-shock control 

session’, the mean and variance RT did not differ across blocks (Figure 2-2). 

In an attempt to ensure that the risk-dependent increase in RT was pertinent to anxiety, 

we tested whether the anxiolytic diazepam could block the increase in RT. Systemic pretreatment 

of diazepam (2 mg/kg) significantly averted the RT increment in the high risk block, compared 



 49 

with saline pretreatment (Figure 2-1f, left; Repeated measures ANOVA, F4, 48 = 3.27, p = 0.019; 

post hoc test, block 3, p values < 0.01). Likewise, diazepam pretreatment blocked the risk-

induced increase in the trial-to-trial RT variability (Figure 2-1f, right; GLM repeated measures, 

F2, 16 = 0.46, p = 0.638). Diazepam or saline injected animals showed equivalent levels of reward 

RT (Figure 2-1f, left; Repeated measures ANOVA, F4, 48 = 0.34, p = 0.852; post hoc test, p 

values > 0.51).  

 

 

 

Figure 2-1 Punishment risk induces anxiety-like changes in reward-seeking behavior. 

(a) A schematic diagram, illustrating the task design. (b) Representative behavioral trajectories in block 1 (left, 10 

trials) and block 3 (right, 10 trials). (c) Significant increases in RT (filled bars) and immobile RT (slashed bars) were 

observed as a function of risk. (Inset) Latency from reward delivery to retrieval (reward RT) did not differ across 

blocks. (d) Punishment risk increased variability in RT. The gray curve indicates the expected variance RT as a 

function of mean RT, considering the RT as time intervals of a Poisson point process. Each dot indicates each 

animal’s data. Note that variances of RT in block 2 & 3 appear above the gray curve. (Inset) The coefficient of 
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variation was significantly increased as a function of risk. (e) RT varied systematically as a function of the trial lag 

from the previously punished trial in risky blocks. (f) Animals performed three sessions of the task with 

pretreatment of saline (Day1) – diazepam (2 mg/kg) – saline (Day2). Left, Pretreatment of an anxiolytic diazepam (2 

mg/kg), but not the saline injection, averted a risk-induced increase in the mean RT. **p < 0.005; post hoc test. (left 

inset) Injections did not influence the reward RT. Right, Diazepam pretreatment also prevented an increase in the 

variance RT, which was observed in saline-pretreated performance (right inset). 

 

 

 

 

Figure 2-2 Behavior does not change across blocks in the absence of punishment risk.  

(a) RT, immobile RT, and reward RT (inset) did not change across blocks in the absence of punishment. (b) The 

trial-to-trial variability in RT did not differ across blocks. 

 

2.3.2 Individual neuronal encoding of punishment risk 

During the task performance, total 167 mPFC and 102 VTA single units were recorded from 

histologically verified electrodes (Figure 2-3a). For all single unit data analyses, VTA units were 

classified into putative dopamine (DA, n = 55) and non-dopamine (non-DA, n = 47) subtypes 
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(Figure 2-4, Methods). We first examined the trial-averaged neuronal activity of mPFC, VTA 

DA and non-DA units to compare their general tuning properties during the cue onset, action and 

reward delivery. The vast majority of VTA DA units displayed phasic excitatory responses at 

task-event occurrences (Schultz et al., 1993), whereas non-DA and mPFC units showed weaker 

and temporally diffuse responses (Figure 2-3; Repeated measures ANOVA, post-cue, F2, 266 = 

22.05; peri-action, F2, 266 = 43.78; post-reward, F2, 266 = 48.93, p values < 0.001). 

We then quantified single neuronal encoding of punishment risk using a percent 

explained variance (ωPEV) statistic (Buschman et al., 2012), i.e. how much of the variance in a 

neuron’s firing rate can be explained by punishment risk (Methods). To identify risk-encoding 

units, we compared the ωPEV statistic of the original spike trains with the ωPEV distribution of   

surrogate spike trains created by shuffling block labels (Methods, Figure 2-5). Representative 

risk-encoding mPFC, VTA DA, and non-DA units are illustrated in Figure 2-6. Substantial 

proportions of units in both regions (mPFC, 49 %; VTA DA, 65 %; VTA non-DA, 77 %) 

encoded punishment risk especially at the time of the action (Figure 2-7a, Figure 2-8). Hence, 

subsequent analyses focused on the peri-action epoch. A significant interaction between time and 

unit groups was observed in the peri-action ωPEV (Figure 2-7a; Repeated measures ANOVA, 

F38, 5054 = 2.68, p < 0.001), indicating distinct time-varying patterns in risk encoding by different 

unit groups. But the main effect of the unit group was not significant, indicating equivalent levels 

of peri-action encoding of punishment risk (F2, 266 = 1.21, p = 0.30). 
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Figure 2-3 mPFC, VTA DA and non-DA single units show distinct tuning properties at task events.  

(a) Histologically verified placements of mPFC and VTA electrodes. Rats were implanted in ipsilateral VTA and 

mPFC (N=10) or bilateral mPFC (N=4). (b) Baseline-normalized peri-event activity of mPFC units averaged across 

all trials. (c) Peri-event activity of putative DA (top) and non-DA (bottom) VTA units. (d) Peri-event activity 

averaged across all units of each neuronal subtype. Dual-colored bars above indicate significant pairwise differences 

at corresponding time bins according to the post hoc analysis (p < 0.05). The green shadows indicate time windows 

of statistical analyses. 
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Figure 2-4 Classification of VTA single units to putative dopamine (DA) or non-dopamine (non-DA) units. 

(a) Representative spike waveforms of a putative DA (top) and a non-DA (bottom) units. (b) Units were first 

classified based on their mean baseline firing rate and width of the spike waveform. Units whose mean baseline 

firing rate slower than 12 Hz, waveform width greater than 1.2 ms were considered to be putative DA units (blue 

circles). (c) To characterize each unit’s reward response, ROC curves were calculated by comparing the firing-rate 

distributions of reward delivery vs baseline epochs. (d) Principal component analysis (PCA) was conducted on 

auROC values. (e) Units were mapped onto a 3-d space comprising the top three principal components. 

Unsupervised clustering was conducted by fitting Gaussian mixture models which yielded two clusters of units: one 

with phasic excitation to reward (blue circles), the other with sustained excitation or suppression to reward (red 

circles). Units in the former cluster were classified as putative DA units. Only the units satisfying both criteria (b) 

and (e) were finally labelled as putative DA units, and the rest of units were putative non-DA units. 



 54 

 

 

Figure 2-5 Identification of single units discriminating their firing rates across different blocks as a function 

of risk.  

(a) Left, A raster plot showing a representative mPFC unit’s peri-action spike activity across blocks with spike 

density functions of different blocks superimposed. (a) Right, To quantify each unit’s encoding of risk, percent 

variance in the unit’s firing rate explained by blockwise punishment risk (ωPEV) was calculated (Methods). To 

determine the global ωPEV band, trial-shuffled surrogate ωPEV distribution (light blue curves) was acquired, and 

the pointwise and global ωPEV bands were found from the distribution at α = 0.01 (Methods). A unit whose ωPEV 

curve crosses the global band was determined as a risk-encoding unit. (b) Left, A representative VTA unit’s peri-

action activity across blocks. (b) Right, This VTA unit satisfied the risk-encoding criterion.    
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Figure 2-6 Representative risk-encoding mPFC (a-b), VTA DA (c-d) and non-DA (e-f) single units.  

In each plot, data are for 150 trials of action (one row per trial, ticks mark spike times) with three varying levels of 

punishment risk (color-coded). The horizontal axis represents time around the action occurring at time = 0. Spike 

density functions of different blocks are superimposed as mean ± s.e.m. (shaded area). The right vertical axis 

indicates firing rates. 
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Figure 2-7 mPFC, VTA DA and non-DA single units encode punishment risk with bidirectional activity 

modulation. 

(a) The mean ± s.e.m. (shaded area) ωPEV averaged across all units in each neuron group. (b) All single units are 

distributed across the horizontal axis based on modulation of their peri-action activity across blocks as a function of 

punishment risk. Standardized regression coefficients (SRC) were computed for a normalized quantification of each 

unit’s peri-action activity modulation by punishment risk (Methods). In each distribution, units with positive or 

negative activity modulation as a function of risk are located in the right or left portion of the distribution. The risk-

encoding units are solid-colored, while the non-encoding units are pale-colored. 
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Figure 2-8 Blockwise firing rate changes in the presence vs absence of punishment risk varying across blocks. 

(a) Proportion of mPFC units showing significant firing-rate changes across blocks during the peri-action epoch in 

the presence vs absence (no-shock control) of punishment risk. (b) Left, Percent variance in the mPFC unit firing 

rates explained by the block shift (ωPEV) in the presence vs absence of punishment risk (mean ± s.e.m.). Right, 

Maximum peri-action ωPEV of mPFC units differed in the presence vs absence of risk (Student’s t-test, t291 = 3.81, 

p < 0.001). (c) Proportion of VTA DA units showing significant firing-rate changes across blocks. (d) Left, ωPEV of 

VTA DA units in the presence or absence of risk. Right, Maximum peri-action ωPEV of VTA DA units in the 

presence vs absence of risk (t81 = 4.19, p < 0.001). (e) Proportion of VTA non-DA units showing significant firing-

rate changes across blocks. (f) Left, ωPEV of VTA non-DA units in the presence vs absence of risk. Right, 
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Maximum peri-action ωPEV of VTA non-DA units in the presence vs absence of risk (t74 = 2.25, p = 0.028). *p <  

0.05, **p < 0.005. 

 

 

To further characterize individual neuronal risk-encoding schemes, we examined the sign 

(direction) of neuronal activity modulation as a function of risk (Methods). Equivalent fractions 

of mPFC, VTA DA, and non-DA units encoded punishment risk with excitatory or inhibitory 

activity modulation, i.e., some increased their firing rates, whereas others decreased their firing 

rates as a function of risk (Figure 2-7b). This indicated that the mesoprefrontal representation of 

punishment risk may not be simply described as activation or inhibition of one particular cell 

group in one region. Rather, the bi-directionality observed even within the same cell group 

(Figure 2-7b) indicates that distinct neuronal subgroups may encode distinct motivational 

properties related to punishment risk.   

Punishment can exert long-lasting behavioral impacts, which may involve persistent 

neuronal activity modulation outlasting the task-event epochs (Cohen et al., 2015; Somerville et 

al., 2013). Thus, we examined whether individual units modulated their baseline firing rate 

during the inter-trial interval as a function of punishment risk. Consistent with previous 

neurophysiological studies showing stress-induced DA neuronal baseline activity (Grace, 2016; 

Holly and Miczek, 2016), we found that VTA DA units tended to increase their baseline firing 

rate in an aversive context (Figure 2-9; GLM repeated measures, F2, 108 = 2.94, p = 0.066). VTA 

non-DA and mPFC units did not significantly differ their firing rates as a function of risk (Figure 

2-9; GLM repeated measures, VTA non-DA, F2, 92 = 0.618, p = 0.484; mPFC, F2, 332 = 1.084, p = 

0.325).  
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Figure 2-9 Blockwise baseline firing rate changes across blocks. 

(a) The mean baseline firing rate within the 2-s baseline period during the inter-trial interval was calculated for each 

mPFC unit per block. Each dot corresponds to each mPFC unit. The mPFC units with a significant change in the 

baseline firing rate, according to the criterion described in Figure 2-5, are solid-colored, whereas the rest of units are 

pale-colored. (b) The mean baseline firing rates of the VTA DA units (b) and non-DA units (c). Conventions are 

same as (a).  

 

 

To disentangle neuronal encoding of risk from other confounding factors that may affect 

blockwise changes in the neuronal activity – such as satiety, fatigue, and/or spontaneous changes 

over time, additional 126 mPFC and 57 VTA single units (putative DA, n = 28; putative non-

DA, n = 29) were recorded during performance in the no-shock control session. During this 

session, much weaker blockwise changes in firing rates were observed, (Figure 2-8), indicating 

negligible impact of confounding factors on the neuronal encoding of risk.   
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2.3.3 Neuronal population representation of punishment risk 

Given the prevalent single neuronal encoding of risk, the mPFC and VTA neuronal population 

activity is likely to be informative of risk in a given trial. To test this, we performed a population 

decoding analysis, using the Poisson naïve Bayes classifier (Methods). From both populations, 

blockwise punishment risk in a given trial could be decoded with high accuracies well above the 

chance level (33.3 %) (Figure 2-10a). Combined with the single neuronal data, these data suggest 

that both mPFC and VTA precisely represent the blockwise punishment risk at the single 

neuronal and neuronal population levels.   

Our behavioral data indicated remarkable trial-to-trial variability in RT, and the 

variability increased as a function of risk (Figure 2-1d), meaning that the RT varied across trials 

even within the same block. To more rigorously test the link between the behavioral and neural 

data, we examined whether and to what extent the behavioral variability could be explained by 

the mPFC and VTA neuronal activity. At the single neuron level, we found that only small 

fractions of single units exhibited significant correlation between their firing rate and the RT 

across trials (mPFC, 10.2 %; VTA DA, 36.4 %; VTA non-DA, 25.5 %). This result indicated 

that inferring trial-by-trial behavior from single neuronal activity was much limited. Given this 

limitation, we attempted to leverage statistical power of the single-trial analysis by correlating 

the RT with the neural population activity. A classic approach to measure the neuronal 

population activity is averaging across neurons, but the bi-directionality in risk-encoding 

observed across individual neurons (Figure 2-7b) undermined validity of such approach. 

Alternatively, we identified the low-dimensional state space that captured patterns of activity co-

modulation among the simultaneously recorded mPFC and VTA populations comprising ten or 

more single units. Trial-by-trial neural population trajectories were extracted within this state 
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space using a dimensionality reduction method Gaussian process factor analysis (GPFA; 

Methods) (Yu et al., 2009). Then we examined the correlation between the neural population 

trajectory and the RT across trials. The mPFC and VTA population trajectories tracked the trial-

to-trial variation in RT, as the deviation (Euclidean distance) of each trial’s neural trajectory 

from the block 1 mean trajectory was significantly correlated with the deviation of each trial’s 

RT from the block 1 mean RT. That is, the further each trial’s neural trajectory deviated from the 

block 1 mean trajectory, the greater the RT appeared (Figure 2-10b-e). Significant correlations 

were observed in all four mPFC and three VTA populations comprising 10 to 25 single units 

subjected to this analysis (Figure 2-10, 2-11, 2-12). We further examined the neural and 

behavioral correlation within each block to probe if the neural population trajectories could even 

track the behavioral variation within each block. As our behavioral data indicated more 

pronounced trial-to-trial variability in RT in the high risk block (Figure 2-1d), we focused on this 

block and asked whether the increased behavioral variability was correlated with the neural 

population trajectories. Significant correlations were observed specifically in the high risk block 

in two of the four mPFC populations (Figure 2-11), indicating that the neural and behavioral 

correlation emerged as the behavioral variability arose with risk. Similarly, significant 

correlations were detected in two of the three VTA populations in the high risk block (Figure 

2-12).  

We extracted trial-by-trial trajectories of neural population activity recorded from the no-

shock control sessions. Consistent with the lack of correlation observed in the absence of risk 

(Block 1; Figure 2-10, 2-11, 2-12), none of the mPFC and VTA population activity showed a 

significant correlation with behavioral RT in the no-shock control session. These results indicate 



 62 

that distinct neural population activity emerged and tracked behavior only in the presence of but 

not in the absence of punishment risk (Figure 2-11, 2-12).  

 

 

 

Figure 2-10 Representation of punishment risk in mPFC and VTA neural populations. 

(a) Accuracy of decoding punishment risk (block label) from the VTA and mPFC neural populations. Decoding 

accuracy was calculated with a 5-fold leave-one-split-out cross-validation (Methods). (b-e) Single-trial analysis of 

neural population activity reveals the linkage between neural and behavioral variability. (b) Representative mPFC 

neural population trajectories visualized in the top three orthonormalized dimensions of the neuronal activity co-
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modulation space. The dimensionality of state space was determined to be five for all populations, based on the 

cross-validated data likelihood (Methods). This example mPFC population comprises 16 units. Each trajectory 

corresponds to -0.5 to 0.5 s peri-action epoch (action occurring at time = 0). Filled circles indicate initial points of 

neural trajectories. For simplicity, ten trials were randomly selected per block 1 and 3. Heavy lines indicate the mean 

trajectory averaged across all trials in each block. The purple-colored block 3 neural trajectory represents a single 

trial with an outlying RT similar to a block 1 trial. (c) A scatter plot indicating behavioral deviation from the block 1 

mean RT and neural deviation from the block 1 mean trajectory of the mPFC population shown in (b). RT was log 

transformed for proper scaling. Superimposed color-coded lines indicate regression slopes per block. The dark gray 

line indicates the regression slope for total trials pooled across blocks. The behavioral and neural correlation 

coefficients calculated on total trials and trials per block are indicated. *p < 0.05, **p < 0.005. (d) Neural population 

trajectories of a representative VTA population comprising 10 units.  (e) A scatter plot indicating behavioral 

deviation from the block 1 mean RT vs neural deviation from the block 1 mean trajectory of the VTA population 

shown in (d). 

 

 

 

 

Figure 2-11 Single-trial analysis of mPFC neural population activity reveals the linkage between neural and 

behavioral variability during risky reward-seeking. 
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(a-d) Scatter plots represent each animal’s behavioral deviation from the block 1 mean RT vs neural deviation from 

the block 1 mean neural population trajectory. RT was log transformed for proper scaling. In each plot, the animal’s 

ID, the number of units comprising the neural population, and the state space dimensionality are indicated. 

Superimposed color-coded lines indicate regression slopes per block. The dark gray line indicates the regression 

slope for total trials pooled across blocks. The behavioral and neural correlation coefficients calculated on total trials 

and trials per block are indicated. *p < 0.05, **p < 0.005. (e-h) Data from no-shock control sessions. Note the lack 

of behavioral and neural correlation in the absence of risk. 

 

 

 

Figure 2-12 Single-trial analysis of VTA neural population activity reveals the linkage between neural and 

behavioral variability during risky reward-seeking. 

(a-c) Scatter plots represent each animal’s behavioral deviation from the block 1 mean RT vs neural deviation from 

the block 1 mean neural population trajectory. (d-f) Data from no-shock control sessions, indicating the lack of 

behavioral and neural correlation in the absence of punishment risk. Conventions are same as Figure 2-11. 
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2.3.4 Punishment-induced decline in the VTA and mPFC neural synchrony 

At the neural circuit and network level, synchronous oscillations can provide temporal 

coordination among local and interregional neural groups, thereby promoting various cognitive, 

emotional, and motivational functions (Adhikari et al., 2010; Buschman et al., 2012; Fries, 2015; 

Fujisawa et al., 2008; Fujisawa and Buzsaki, 2011; Karalis et al., 2016b; Kim et al., 2012; Kim et 

al., 2010; Likhtik et al., 2014). We examined whether such oscillation-mediated neural 

synchrony subserved encoding of the instrumental action and punishment risk contingent on the 

action. 

During risk-free performance in the block 1, LFP oscillations in the 6 to 10 Hz band 

specifically arose in both regions preceding and during the action (Figure 2-13a-d). For 

simplicity, we refer to this as 8 Hz oscillation hereafter. The 8 Hz oscillation was markedly 

reduced as a function of risk in both regions (Figure 2-13e-f), even though animals’ motor 

activity was kept similar across trials due to execution of the action in the peri-action epoch. A 

significant interaction between risk and the frequency band was detected in LFP power during 

post-cue and pre-action time periods in both regions (Repeated measures ANOVA, VTA, post-

cue, F52, 1092 = 5.11; pre-action, F52, 1092 = 7.78, p values < 0.001; mPFC, post-cue, F52, 1872 = 

1.60, p = 0.005; pre-action, F52, 1872 = 2.29, p < 0.001, Figure 2-13g-h). The 8 Hz oscillations 

appeared to be coherent between the two regions during the risk-free action, but the coherence 

significantly reduced as a function of risk (Figure 2-13i). A significant interaction between risk 
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and the frequency band was observed in LFP coherence during the pre-action period (Repeated 

measures ANOVA, post-cue, F52, 1092 = 0.93, p = 0.62; pre-action, F52, 1092 = 2.45, p < 0.001).  

To examine the mutual influences (directionality) of the LFP time series between the two 

regions, we quantified Granger causal influences (GC) in the VTA-to-mPFC and mPFC-to-VTA 

directions (Methods). During the risk-free action in the block 1, the 8 Hz oscillation was driven 

by VTA, as mPFC was GC influenced by VTA significantly greater than the GC influence of the 

other direction (Figure 2-13j). A significant interaction between directionality and the frequency 

band was observed in GC coefficients in all blocks, indicating that the oscillation directionality 

varied across frequency bands (Figure 2-13j; Repeated measures ANOVA, Block 1, F25, 700 = 

2.05, p = 0.002; Block 2, F25, 700 = 2.38, p < 0.001; Block 3, F25, 700 = 5.59, p < 0.001). But 

importantly post hoc analysis revealed significantly greater VTA-to-mPFC directionality in 

frequency bands including the 8 Hz in block 1, and the directionality declined in blocks 2 & 3 

(Figure 2-13j). Taken together, these results suggest that VTA-driven 8 Hz oscillations entrain 

the mesoprefrontal circuit during the risk-free action. Decline in this entrainment may represent 

punishment contingent on the action, as power, coherence, and directionality of the 8 Hz 

oscillation declined as a function of punishment risk. Analyses of no-shock control data revealed 

that these risk-dependent changes in the mesoprefrontal 8 Hz oscillation were not evident in the 

absence of punishment risk (Figure 2-14).  
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Figure 2-13 Punishment risk declines the 8 Hz oscillation-mediated neural synchrony in the mesoprefrontal 

circuit. 

(a) Representative VTA peri-event LFP traces in a block 1 trial. Bandpass filtered LFP signal (heavy line) is 

superimposed on the raw trace (thin line). (b) Simultaneously recorded mPFC LFP traces. (c) Baseline-normalized 

VTA power spectral densities (PSDs) averaged across block 1 trials (left: peri-cue PSD, right: pre-action PSD). 

mPFC block 1 PSDs are in (d). (e) Diminished VTA 8 Hz PSD in block 3. (f) Similar diminishment observed in 
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mPFC 8 Hz PSD. (g) Mean ± s.e.m. (shaded area) normalized VTA PSDs of each block corresponding to 1 s post-

cue (left) and pre-action (right) epochs. Dual-colored bars below indicate significant pairwise differences at 

corresponding frequency bins according to post hoc analyses (p < 0.05). (h) Normalized mPFC PSDs in post-cue 

(left) and pre-action (right) epochs. (i) Normalized VTA-mPFC LFP coherence in post-cue (left) and pre-action 

(right) epochs. Insets represent non-normalized LFP coherences of each block. (j) Granger-causality, representing 

mutual influences (directionality) between VTA and mPFC peri-action LFP time series in block 1 (left) & 3 (right). 

Blue and orange curves represent mPFC-to-VTA and VTA-to-mPFC Granger-causal influences, respectively. 

Shaded areas indicate s.e.m. Thin colored-lines below indicate upper bounds of confidence intervals (α = 0.001) 

acquired by the random permutation resampling of time bins. An asterisk indicates significant difference between 

bidirectional Granger-causal influences at the corresponding frequency bin (p < 0.05). 

 

 

 

 

Figure 2-14 The mesoprefrontal 8 Hz oscillations barely change across blocks in the absence of punishment 

risk. 

(a) Mean ± s.e.m. (shaded area) normalized VTA PSDs of each block corresponding to 1 s pre-action epoch. Dual-

colored bars below indicate significant pairwise differences at corresponding frequency bins according to post hoc 
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analyses (p < 0.05). (b) Normalized mPFC PSDs. (c) Normalized VTA-mPFC LFP coherence of each block in the 

pre-action epoch. Insets represent non-normalized LFP coherences. (d) Granger-causality, representing mutual 

influences (directionality) between VTA and mPFC peri-action LFP time series in block 1 (left) & 3 (right). Blue 

and orange curves represent mPFC-to-VTA and VTA-to-mPFC Granger-causal influences, respectively. Shaded 

areas indicate s.e.m. Thin colored-lines below indicate upper bounds of confidence intervals (α = 0.001) acquired by 

the random permutation resampling of time bins. An asterisk indicates significant difference between bidirectional 

Granger-causal influences at the corresponding frequency bin (p < 0.05). 

 

2.3.5 Punishment-induced decline in the local and interregional LFP–spike synchrony 

Synchronous oscillations can provide temporal coordination of spike activity of local and 

interregional neuron groups by creating rhythmic sequences of neuronal excitation and 

inhibition, thereby enhancing ‘neuronal communication’ between coherently timed neuron 

groups (Fries, 2015; Harris and Gordon, 2015). The presence of such LFP-mediated spike timing 

coordination was examined by measuring phase-locking of the neuronal spike activity to the 

local and interregional 8 Hz oscillations in the peri-action epoch (Methods). 

When probed within each region, substantial proportions of VTA (37 %) and mPFC (23 

%) single units that were subjected to the phase-locking analysis (Methods) were significantly 

phase-locked to the local 8 Hz oscillation in the risk-free block 1 according to the Rayleigh z-test 

for non-uniformity of the spike phase distribution (Figure 2-15). Consistent with the temporally 

specific increase in 8 Hz spectral power (Figure 2-13c-d), the phase synchrony specifically arose 

during the action from the baseline level in the phase-locked units in both regions (Figure 2-15a 

& d; Signed-rank test, p values < 0.001). Enhanced phase-locking but to a lesser degree was 

observed even in units that failed the Rayleigh’s test (Figure 2-15a & d; Signed-rank test, p 
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values < 0.001), indicating widespread influence of the 8 Hz oscillation on the local neuronal 

spike timing. The temporal relationship (directionality) between the spike outputs and the local 8 

Hz oscillation was examined using a time-lagged phase-locking analysis (Likhtik et al., 2014; 

Spellman et al., 2015). The spike-LFP phase-locking was quantified using spike times lagged 

relative to the local or interregional LFP to infer the directionality in the LFP-spike interaction 

(Methods). We found that in block 1 greater proportions of units appeared to be phase-locked 

with negative time lags. The vast majority of phase-locked units (VTA, 74 %; mPFC, 67 %) had 

their maximum phase-locking values (PLVs; Methods) with a negative lag (Figure 2-15b & e; 

Signed-rank test, p values < 0.005). These indicated entrainment of spike timing by preceding 

cycles of the oscillation, i.e. directionality from the 8 Hz oscillation to spike activity. To examine 

the modulation of LFP-spike phase-locking by punishment risk, we compared the PLVs across 

different blocks. A trend toward reduction in PLV was found in block 3 compared with block 1 

in mPFC (Figure 2-15c; Signed-rank test, p = 0.077), and a significant reduction was found in 

VTA (Figure 2-15f; p = 0.006). Likewise, the proportion of phase-locked units declined in block 

3 compared with block 1 in both regions (Figure 2-15b & e; Chi-square test, mPFC, χ2
1 = 3.25, p 

= 0.071; VTA, χ2
1 = 4.31, p = 0.038). We examined VTA DA and non-DA neuronal phase-

locking separately. Greater fraction of DA units (45 %) appeared to be phase-locked compared 

with non-DA units (23 %) in block 1 (Figure 2-15g; Chi-square test, χ2
1 = 5.04, p = 0.025). The 

DA neuronal PLV in block1 significantly declined as a function of risk in block 2 & 3 (Figure 

2-15h; Signed-rank test, p values < 0.01), by contrast, the non-DA neuronal PLV did not differ 

across blocks (p values > 0.43). These indicated that the punishment-induced reduction in the 

VTA neuronal phase-locking was predominated by the DA neuronal asynchrony.  
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Figure 2-15 Punishment risk declines mesoprefrontal neuronal synchrony to the local 8 Hz oscillation. 

(a-c) Modulation of mPFC neuronal synchrony to the mPFC 8 Hz oscillation by risk. (a) Fold change from baseline 

in the strength of the neuronal phase-locking during peri-action epoch in units that passed Rayleigh z-test (Sig.) and 

rest of the units (N.S.). (b) Top, Normalized PLVs in block 1 across a range of lags for all phase-locked mPFC units, 

aligned by peak lag. Bottom, Percentage of significantly phase-locked mPFC units in block 1 vs 3 across a range of 

lags. (c) Mean ± s.e.m. PLVs across different blocks. Inset, PLVs including significantly phase-locked units only. 

(d-h) Modulation of VTA neuronal synchrony to the VTA 8 Hz oscillation. (d) Fold change from baseline in the 

strength of the neuronal phase-locking. (e) Top, Normalized PLVs in block 1 for all phase-locked VTA units. 

Bottom, Percentage of significantly phase-locked VTA units. (f) Mean ± s.e.m. PLVs across different blocks. (g) 

Percentage of phase-locked VTA DA vs non-DA units. (h) PLVs of VTA DA and non-DA units plotted separately. 
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Next we examined the interregional LFP-spike phase-locking between VTA and mPFC. 

Based on the Granger causal influence indicating VTA-to-mPFC directionality in 8 Hz 

oscillations, we anticipated stronger mPFC neuronal synchrony to the VTA 8 Hz than that of the 

other direction. Consistent with this, we found that a substantial proportion of mPFC units (31 

%) were phase-locked to the VTA 8 Hz oscillation in block 1. A representative mPFC unit with 

significant phase-locking is shown in Figure 2-16a-b. The interregional spike-phase synchrony 

emerged specifically during the action compared with the baseline (Figure 2-16c, Signed-rank 

test, p values < 0.001). We examined directionality of the LFP-spike synchrony using the time-

lagged phase-locking analysis. In block 1, the majority of phase-locked units had their peak 

PLVs with a negative lag (Figure 2-16d; Signed-rank test, p = 0.066). Likewise, greater 

proportions of phase-locked units were observed on negative lags (Figure 2-16d). In addition, the 

mean PLV across negative time lags appeared to be greater than that of the positive lags (Figure 

2-16e; Signed-rank test, p = 0.023). These indicate mPFC neuronal entrainment to preceding 

VTA 8 Hz oscillatory cycles, i.e. VTA-to-mPFC directionality. When compared across blocks, 

the mPFC neuronal entrainment by the VTA 8 Hz declined as a function of risk (Figure 2-16e-g, 

Signed-rank test, p = 0.003). As the degree of phase-locking diminished, the VTA-to-mPFC 

directionality also was obscured (Figure 2-16d-e). We also examined the VTA neuronal phase-

locking to the mPFC 8 Hz. The degree of phase-locking appeared to be much weaker regardless 

of punishment risk in both DA and non-DA units, corroborating the VTA-to-mPFC directionality 

in the 8 Hz-mediated spike phase modulation (Figure 2-17).  

In sum, we found a coherent 8 Hz oscillation temporarily synchronized the VTA-mPFC 

neural circuit during the risk-free action. This synchrony declined as a function of punishment 

risk. Analyses of no-shock control data showed unchanging mesoprefrontal synchrony across 
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blocks in the absence of punishment risk (Figure 2-18, 2-19), suggesting the mesoprefrontal 

asynchrony as a specific circuit state representing punishment contingent on the action.   

 

 

 

Figure 2-16 Punishment risk declines mPFC neuronal synchrony to the VTA 8 Hz oscillation. 

(a) Top, Example raw (thin line) and bandpass filtered (heavy line) VTA LFP traces. Bottom, Neuronal spikes of a 

simultaneously recorded mPFC unit. This unit’s preferred phase is indicated with light blue columns superimposed 

on LFP traces. (b) Distribution of spike-phase angles of the example mPFC unit relative to the VTA 8 Hz oscillation 

(Rayleigh’s p < 0.001). (c) Fold change from baseline in the strength of mPFC neuronal phase-locking (PLV) during 
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the peri-action epoch in units that passed Rayleigh z-test (Sig.) and rest of the units (N.S.). PLVs were quantified by 

averaging 1,000 mean resultant lengths (MRLs) of the circular phase angle distribution comprising 100 resampled 

spikes at each iteration (Methods). (d) Top, Normalized PLVs in block 1 across a range of time lags for all phase-

locked mPFC units, aligned by peak lag. Bottom, Percentage of significantly phase-locked units in block 1 vs 3 (e) 

Left, PLVs calculated with different time lags applied to spike trains relative to LFP time series. Right, Mean ± 

s.e.m. PLVs of all units across different blocks. Inset, PLVs including significantly phase-locked units only. (f-g) 

Each polar plot represents the distribution of spike-phase angles of an example mPFC unit in block 1 vs 3. To 

quantify the circular concentration of phase angles, we calculated the MRL indicated as a superimposed bar on each 

polar plot. 

 

 

 

 

Figure 2-17 VTA single units show weak phase synchrony to the mPFC 8 Hz oscillation. 

(a) Fold change from baseline in the strength of the neuronal phase-locking. (b) Top, Normalized PLVs in block 1 

for all phase-locked VTA units. Bottom, Percentage of significantly phase-locked VTA units. (c) Mean ± s.e.m. 

PLVs across different blocks. (d) Percentage of phase-locked VTA DA vs non-DA units. (e) PLVs of VTA DA and 

non-DA units plotted separately. 
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Figure 2-18 mPFC neuronal synchrony to mPFC and VTA 8 Hz oscillations barely changes across blocks in 

the absence of punishment risk (No-shock control). 

(a-c) mPFC neuronal phase-locking to the mPFC 8 Hz oscillation. (a) Fold change from baseline in the strength of 

the neuronal phase-locking during peri-action epoch in units that passed Rayleigh z-test (Sig.) and rest of the units 

(N.S.). (b) Top, Normalized PLVs in block 1 across a range of time lags for all phase-locked mPFC units, aligned by 

peak lag. Bottom, Percentage of significantly phase-locked mPFC units in block 1 vs 3 across a range of lags. (c) 

Mean ± s.e.m. PLVs across different blocks. Inset, PLVs including significantly phase-locked units only. (d-f) 

mPFC neuronal phase-locking to the VTA 8 Hz oscillation. Conventions are same as above. 
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Figure 2-19 VTA neuronal synchrony to VTA and mPFC 8 Hz oscillations barely changes across blocks in 

the absence of punishment risk (No-shock control). 

(a-e) VTA neuronal phase-locking to the VTA 8 Hz oscillation. (a) Fold change from baseline in the strength of the 

neuronal phase-locking during peri-action epoch in units that passed Rayleigh z-test (Sig.) and rest of the units 

(N.S.). (b) Top, Normalized PLVs in block 1 across a range of time lags for all phase-locked mPFC units, aligned by 

peak lag. Bottom, Percentage of significantly phase-locked mPFC units in block 1 vs 3 across a range of lags. (c) 

Mean ± s.e.m. PLVs across different blocks. Inset, PLVs including significantly phase-locked units only. (d) 

Percentage of phase-locked VTA DA vs non-DA units. (e) PLVs of VTA DA and non-DA units plotted separately. 

(f-j) VTA neuronal phase-locking to the mPFC 8 Hz oscillation. Conventions are same as above. 
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2.4 DISCUSSION 

To unravel the VTA and mPFC neural representation of punishment risk contingent on a goal-

directed behavior, we engaged animals in a risky reward-seeking task, wherein an instrumental 

action constantly procured a reward but probabilistically led to punishment. The majority of 

VTA and mPFC neurons encoded risk of punishment by modulating their firing rates as a 

function of risk. Likewise, risk of punishment at a given trial could be accurately decoded from 

both VTA and mPFC neuronal population activity. Further, the trial-by-trial neural population 

trajectories were significantly correlated with the trial-to-trial behavioral variability. These 

results demonstrate pronounced spike-rate mediated coding of punishment risk by the VTA and 

mPFC individual neurons and neuronal populations. At the neural circuit level, we found that 

punishment risk induced asynchrony between the two regions, as the coherent theta oscillation 

that emerged during the risk-free instrumental actions significantly declined as a function of risk. 

Together these findings suggest that the neural circuit comprising VTA and mPFC utilizes 

multiple layers of coding schemes including spike-rate and LFP-mediated neural synchrony 

codes to represent punishment risk contingent on a goal-directed behavior.   

2.4.1 Individual neuronal encoding of punishment risk 

Using a novel behavioral paradigm, we could model and systematically measure the anxiety-like 

changes in reward-seeking actions as a function of punishment risk contingent on the action. We 

demonstrated that the vast majority of individual VTA and mPFC neurons encoded punishment 

risk by modulating their firing rates. The individual neuronal encoding was most pronounced at 
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the time of the action, compared to the other task events, suggesting that the risk-encoding 

neurons represented contingency between the action and punishment. 

 Equivalent proportions of risk-encoding neurons in both regions encoded punishment risk 

by increasing or decreasing their peri-action firing rates. The sign (direction) of a neuron’s 

response to punishment may inform its function in motivational control. While heterogeneous 

response patterns have been widely observed in PFC neuronal encoding of punishment 

(Kobayashi et al., 2006; Matsumoto et al., 2007; Seo and Lee, 2009; Ye et al., 2016), active 

debates are ongoing whether VTA DA neurons encode punishment with excitatory vs inhibitory 

responses (Bromberg-Martin et al., 2010; Schultz, 2016). The conventional theory and data 

suggest that the canonical RPE-coding DA neurons respond to appetitive vs aversive events with 

opposite signs by excitation and inhibition, respectively (Joshua et al., 2008; Matsumoto and 

Hikosaka, 2009; Schultz, 1998). We found that a subset of VTA DA neurons conformed to this 

pattern. These neurons responded to the risk-free (purely appetitive) action with phasic 

excitation, which was inhibited as a function of punishment risk. By contrast, a sizable 

proportion of DA neurons showed excitatory encoding of punishment risk, i.e., they treated 

appetitive and aversive components in the same direction, and responded to punishment risk with 

further excitation. Previous studies reported a subpopulation of DA neurons showing similar 

excitatory responses to appetitive and aversive stimuli (Brischoux et al., 2009; Joshua et al., 

2008; Matsumoto and Hikosaka, 2009; Valenti et al., 2011). An integrating theory suggests that 

such dichotomous (bidirectional vs unidirectional) DA neuronal encoding of appetitive and 

aversive events may reflect different DA neuron groups conveying distinct motivational signals 

of an event (Bromberg-Martin et al., 2010). Punishment is an event of negative valence 

associated with avoidance, but of high salience deserving prioritized attention, and both aspects 
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of punishment need to be represented for a proper behavioral coping. Our observation of 

bidirectional encoding of punishment by equivalent proportions of VTA DA, non-DA, and 

mPFC neurons suggests that different neuron groups may convey distinct motivational properties 

of punishment. 

2.4.2 Neuronal population encoding of punishment risk 

We examined the population-level encoding of punishment risk in a neuronal population state 

space that captured patterns of activity co-modulation among the simultaneously recorded mPFC 

or VTA neurons on a trial-by-trial basis. This approach was motivated by the following reasons. 

First, we observed that different neuron groups represented punishment risk with bidirectional 

and time-varying activity modulations. This suggests that punishment may not be signaled 

simply as activation or inhibition of one specific type of neurons at one particular time point in 

the VTA-mPFC circuit. Rather, our data suggest that punishment should be represented as a net 

result of heterogeneous and time-varying activity modulations in the population of neurons. In 

this regard, simply averaging across neurons, time or trials may lead to significant loss of 

information. Second, we observed that animals varied their behavior trial-to-trial even within a 

block of the same degree of risk, and the behavioral variability was elevated as a function of 

punishment risk. Explaining the behavioral variability with the neural data may establish a 

stronger association between the behavioral and neural data. But we found that individual 

neurons were limited in representing the trial-to-trial behavioral variability. Thus, we intended to 

leverage the statistical power of the single-trial analysis by correlating the behavioral data with 

the neuronal population activity (Cunningham and Yu, 2014).    
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 By examining the neural population trajectories, we confirmed that punishment risk was 

represented as distinct trial-by-trial neural population trajectories in both regions. Distinct 

trajectories manifested in a behaviorally relevant manner, as the trial-by-trial neural population 

trajectories were significantly correlated with the trial-to-trial behavioral variability in RT in all 

VTA and mPFC populations. Furthermore, in some neural populations the correlations with RTs 

appeared to be significant even when measured within each block of same risk. The behavioral 

and neural association at the population level was observed, even though the majority of single 

neurons failed to track the trial-to-trial RT variability. These findings suggest that the neuronal 

population activity tracked the punishment-based behavioral variation on a single-trial basis. 

2.4.3 The degree of VTA-mPFC neural synchrony varies with punishment risk 

At the neural circuit level, we observed that coherent theta oscillations synchronized the VTA 

and mPFC specifically during risk-free actions, effectively phase-modulating the neuronal spike 

activity in the two regions. Analyses of the temporal relationship indicated that the neural 

synchrony arose in the VTA-to-mPFC direction. That is, the VTA driven bottom-up theta 

oscillation entrained the mesoprefrontal LFPs and neuronal spike activity during the action in the 

absence of punishment risk. The theta oscillation preferentially entrained DA neurons but much 

fewer non-DA neurons in the VTA. Considering the phasic excitatory responses of the DA 

neurons during the action, the theta-oscillation-mediated neural synchrony may promote the 

phase-coupling between VTA DA and mPFC neurons specifically during the risk-free action. As 

the synchrony declined as a function of punishment risk, the phase-coupling might also collapse, 

resulting in a distinct pattern of DA transmission in the VTA-mPFC synapses during the risky 

action.  



 81 

 The mechanism underlying the theta rhythmogenesis is not clear yet. However, our data 

showing preferential DA neuronal phase-locking suggest the link between DA neuronal activity 

and the theta oscillation. In line with this, previous studies suggested that the DA 

neurotransmission is critical for theta oscillations in PFC. Blockade of D1 receptors in mPFC 

diminished theta oscillations (Parker et al., 2014). On the other hand, local infusion of dopamine 

in mPFC enhanced theta oscillations as well as the theta coherence between mPFC and 

hippocampus (Benchenane et al., 2010). In addition, theoretical models suggest that bursting of 

the VTA dopaminergic input onto the PFC may synchronize cortical oscillators (Buhusi and 

Meck, 2005). These evidences suggest that the theta oscillation mediated by DA neuronal 

activity and DA transmission in the mPFC may synchronize the VTA and mPFC during the risk-

free reward-seeking actions. 

 When considering interregional LFP signals, it should be noted that field potentials in one 

brain region can be volume conducted through the brain tissue, and some LFP signals can be 

recorded far away from the source (Buzsaki et al., 2012). We demonstrated LFP-spike synchrony 

via phase-locking of the spike activity to both local and interregional 8 Hz oscillations. This 

argues against the possibility that the oscillation-mediated neural synchrony shown here is an 

artifact due to the volume conduction of the LFP oscillation occurring elsewhere. First, because 

neuronal spike activities are not subject to volume conduction artifacts, in addition the presence 

of LFP-spike phase-locking within each region show local relevance of the LFPs (Adhikari et al., 

2010; Buzsaki et al., 2012). In addition, the theta-oscillation-mediated neural synchrony 

observed here may involve other mesocorticolimbic brain structures implicated in a reward-

seeking behavior. In this regard, it is likely that the 8 Hz oscillation may be transmitted from 

VTA to mPFC indirectly via another brain region. This possibility can be hardly ruled out, unless 
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one monitors all possible connectivity simultaneously. However, our observation that a 

substantial proportion of mPFC neurons displayed a significant phase-locking to the VTA 8 Hz 

suggests that the neural synchrony may be mediated via the mesoprefrontal circuit. 

 The VTA-mPFC neural synchrony was predominantly mediated by the 8 Hz oscillation, 

which is distinguished from the 4 Hz oscillation in mPFC reported by recent studies during fear-

conditioned freezing in synchrony with the amygdala (Dejean et al., 2016; Karalis et al., 2016a; 

Likhtik et al., 2014). Considering the distinct behavioral states associated with the 8 Hz vs 4 Hz 

oscillations in mPFC, these findings together suggest that the mPFC may be entrained by distinct 

bands of theta oscillations in appetitive vs aversive states. The fast vs slow mPFC theta 

oscillations may occur in preferential synchrony with VTA and amygdala in appetitive vs 

aversive states, thereby the bottom-up information transfer from the two subcortical regions can 

be routed depending on the behavioral context. This scenario would predict that the 8 Hz-

mediated mesoprefrontal synchrony would diminish in the presence of punishment risk, whereas 

4 Hz oscillation may arise in the mPFC. In accord with this, our results showed that the 

mesoprefrontal 8 Hz-mediated synchrony significantly declined as a function of risk. We did not 

observe the emergence of 4 Hz oscillation presumably because animals in our task engaged in 

instrumental actions unlike the fear conditioned animals that generated freezing for the most part. 

Entrainment of a neural circuit with varying frequency oscillations as a function of a task 

variable has been widely observed in sensory cortical circuits (Bosman et al., 2012; Jia et al., 

2013). Such frequency modulation, along with the power modulation, could promote selection 

and binding of task-relevant neuronal ensembles to give rise to a functional neural network 

(Fries, 2015). Likewise, our data may reflect the rise and fall of coherent VTA and mPFC 
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neuronal ensembles that may promote a flexible control of instrumental behavior as a function of 

punishment risk. 

 In a broader perspective, the neural synchrony mediated by different theta bands in 

distinct behavioral states may also implicate neuron groups in the other mesocorticolimbic 

structures such as amygdala, nucleus accumbens and lateral habenula that are critical for 

appetitive and aversive behaviors. Mounting evidence suggests that distinct VTA and mPFC 

neuron groups within the same region selectively respond to appetitive vs aversive events 

(Lammel et al., 2012; Ye et al., 2016). Importantly, these studies have shown that the neuron 

groups differentially tuned for appetitive vs aversive events display discrepant patterns of input-

output connectivity within the mesocorticolimbic system (Lammel et al., 2012; Ye et al., 2016). 

This projection specificity may be the foundation for the selective recruitment of distinct neuron 

groups in distinct-valence experiences. However, the anatomical connectivity alone may not be 

sufficient to bind the appetitively or aversively tuned neuron groups into a functional neural 

network in a timely manner. In this regard, the neural synchrony mediated by coherent 

oscillations may play a key role for the rise and fall of the functional neural networks depending 

on the behavioral context. While our data may provide a partial demonstration, future studies 

with simultaneous recording of multiple mesocorticolimbic structures would ultimately address 

the hypothesis that the neural synchrony mediated by distinct oscillations subserve the brain-

wide formation of appetitive vs aversive neural networks in a behaviorally and timely relevant 

manner. 
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2.4.4 Conclusion 

Signaling risk and its contingency on a stimulus and/or an action is a fundamental problem the 

brain needs to resolve to promote adaptive behavior and survival. Previous studies have 

implicated the mesoprefrontal neural circuit in this process by indicating general activation of 

this neural circuit or by stimulating this neural circuit resulting in aversive behavior. Our data 

further extend these findings by revealing dynamic coding schemes of the mesoprefrontal neural 

circuit in representing punishment and risk-based aversive behavioral modulation. In the clinical 

perspective, overcoming an excessive aversive behavior in the absence of commensurate threat is 

thought to be the key therapeutic goal in treating pathological anxiety. Our data suggest that the 

mesoprefrontal circuit can be a promising target for a circuit-based intervention. Particularly, 

recovering the synchronous theta oscillations in this circuit can be a viable approach with 

currently available tools for deep brain stimulation. 
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3.0  IMPACT OF ANXIETY ON FLEXIBLE RULE-BASED COGNITIVE CONTROL 

OF GOAL-DIRECTED BEHAVIOR AND ITS PFC NEURONAL CORRELATES 

3.1 INTRODUCTION 

Anxiety can be an adaptive reaction to stressful or unpredictable life events but it produces 

adverse cognitive effects that impede ongoing behavior and contribute to clinical manifestation 

of anxiety disorders (Bishop, 2007; Eysenck et al., 2007). Anxiety also is one of the more 

debilitating symptoms of psychiatric disorders including post-traumatic stress disorder, 

obsessive-compulsive disorder, mood disorders, schizophrenia and autism (Hamilton et al., 2014; 

Luthi and Luscher, 2014; Owens et al., 2005; Ruglass et al., 2014; Solomon et al., 2008). In 

addictive disorders, for example, co-morbidity with anxiety, as well as the anxiety associated 

with drug withdrawal during abstinence, are major contributing factors to relapse (Luthi and 

Luscher, 2014; Ruglass et al., 2014). 

Human behavioral and imaging investigations have described a complex impact of 

anxiety on prefrontal cortex (PFC)-related cognitive functions including deficits in flexible 

control of behavior (Bishop, 2007; Eysenck et al., 2007; Shin et al., 2001). Multiple models have 

been proposed for proper coping or pathological response to anxiety (Adhikari, 2014; Ouimet et 

al., 2009; Robinson et al., 2013) and stress (Arnsten, 2009; Hains and Arnsten, 2008). However, 
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the impact of anxiety on spontaneous and phasic activity of PFC neuronal ensembles during 

cognitive-behavioral performance is largely unknown. 

Animal electrophysiological studies of PFC neurons during anxiety have focused 

primarily on fearful or avoidance behaviors (Adhikari et al., 2010, 2011; Burgos-Robles et al., 

2009; Sotres-Bayon et al., 2004). While these studies have informed us about the representation 

of fear-related events such as freezing behavior, anxiety is not limited to a rapid neuronal or 

behavioral event, but often is an enduring state that is sustained for many minutes to hours. More 

importantly, the negative impact of anxiety extends beyond an aversive feeling and influences 

ongoing goal-directed behaviors that utilize cognitive and affective processing at the service of 

cognitive flexibility. 

We sought to determine the impact of a sustained anxiety state on PFC neural processing 

of a behavior that involved cognitive flexibility. The anxiety state was induced by a 

pharmacological model with excellent clinical validity. Specifically, extensive literature 

indicates that inverse agonists of allosteric benzodiazepine binding sites in GABAA receptors, 

such as FG7142, produce anxiety-like physiological, neurochemical and behavioral effects in 

rodents (Evans and Lowry, 2007), primates (Murphy et al., 1996a; Murphy et al., 1996b; Ninan 

et al., 1982) and humans (Dorow, 1987). We combined this experimental model of anxiety with 

unit recording in two subregions of the PFC with particular importance for cognitive control and 

emotional regulation: the dorsomedial and orbitofrontal PFC (dmPFC and OFC) (Darrah et al., 

2008; Durstewitz et al., 2010; Floresco et al., 2008; Lee, 2013; Likhtik et al., 2014; Schoenbaum 

et al., 2009; Stefani and Moghaddam, 2005). We assessed the impact of FG7142 on spontaneous 

activity of dmPFC and OFC neurons while rats freely moved in their home cage during wake 

cycle and while they engaged in a rewarded extradimensional set-shifting task. The task, similar 
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to other rodent set-shifting tasks, required rats to guide their instrumental behavior based on two 

rules involving distinct perceptual dimensions, and switch between the rules. This particular task 

has been well characterized (Darrah et al., 2008; Floresco et al., 2008) and was selected for its 

feasibility for multiple extradimensional shifts within each session with electrophysiological 

recordings. 

We found that the anxiogenic treatment induced sustained suppression of the spontaneous 

activity of subpopulations of dmPFC and OFC neurons. During task performance, this treatment 

produced modality-specific behavioral impairment that correlated with reduced recruitment of 

dmPFC, but not OFC, neurons that encode conflict related actions. 

 

3.2 METHODS 

3.2.1 Subjects and surgical procedure 

Male Sprague Dawley rats (~400 g, Harlan) were singly housed on a 12 h light/dark cycle (lights 

on at 7 p.m.). All data were collected during the dark cycle. Animals were not previously 

exposed to any drugs or behavioral training. Microelectrode arrays were implanted in the dmPFC 

and contralateral OFC or bilateral dmPFC (home cage; n = 11, set-shifting task; n = 8 rats) of 

isoflurane-anesthetized rats, and secured with dental cement for chronic recording. The 

following coordinates (Paxinos and Watson, 1998) were used (relative to bregma): dmPFC 

(home cage) = 3.0 mm anterior, 0.7 mm lateral, 2.2 mm ventral from skull; dmPFC (set-shifting 

task) = 3.0 mm anterior, 0.7 mm lateral, 4 mm ventral; OFC (home cage and set-shifting task) = 
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3.0 mm anterior, 3.3 mm lateral, 4.5 mm ventral. Recording sessions began after one week of 

postoperative recovery. At the completion of all recordings, rats were anesthetized with 400 

mg/kg i.p. chloral hydrate and perfused with saline and 10 % buffered formalin. Coronal slices of 

PFC were collected from each brain and cresyl-violet stained. Placements of electrode arrays 

were confirmed via light microscope. All procedures were in accordance with the National 

Institute of Health’s Guide to the Care and Use of Laboratory Animals, and were approved by 

the University of Pittsburgh Institutional Animal Care and Use Committee. 

3.2.2 Experimental design 

3.2.2.1 Home-cage recording 

In a home cage recording experiment, single-unit activity was recorded from a freely 

moving rat in a clear polycarbonate home cage with bedding. After 30 min of baseline recording, 

each rat received an i.p. injection of FG7142 (5 or 10 mg/kg in vehicle) or 1.0 ml/kg vehicle (one 

drop tween 80 in 10 ml distilled water). Neuronal activity was recorded for 120 min after 

injection. The order of injections was randomized across rats with at least 3 days of washout 

period between injections.  

3.2.2.2 Set-shifting task 

In a set-shifting experiment, a rat received an i.p. injection of vehicle, 5 or 10 mg/kg 

FG7142. Ten minutes were allowed after the injection before placing the rat in the operant 

chamber. After a 3 min habituation period in the chamber, the task was initiated. The order of 

injection was randomized for each rat with at least 3 days of washout period before the next 

injection. 
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3.2.3 Training and testing of the set-shifting task 

Rats were placed on a restricted diet of 13g of food/rat/day with free access to water to maintain 

approximately 85 % of their free-feeding weight. Rats were trained on an extra-dimensional set-

shifting task that requires instrumental action according to two discrimination rules, each 

involving a distinct perceptual dimension, spatial position and a light cue (Figure 3-2a). For 

training parameters and detailed characterization of this task, see Darrah et al (2008). Both 

perceptual dimensions in this task involve a light cue presented at one of the two cue ports. 

Performance according to the ‘Light’ discrimination rule (light rule) requires a nose poke to the 

illuminated cue port, regardless of its spatial location for a reward pellet (Figure 3-2a). 

Performance according to the ‘Side’ discrimination rule (side rule) requires a nose poke to the 

cue port at a designated spatial location (valid side; left or right), regardless of illumination 

(Figure 3-2a). In side rule trials, the light cue was presented in the pseudo-randomly selected side 

to ensure that the cue was presented at each side no more than two consecutive trials. Rats were 

trained on an initial rule (dimension) to a performance criterion of ten consecutive correct 

(rewarded) responses, and then immediately switched to the alternate rule.  

After pre-training, rats were trained daily on the set-shifting task, being required to shift 

their response patterns between the light and side rules. Each session consisted of four sets. The 

first set was pseudo-randomly assigned with either light or side rule. After ten consecutive 

correct responses, the next set with the alternate rule commenced. Set-shifting was not explicitly 

signaled, thus rats had to learn it by trial and error based on delivery or omission of the reward. 

A successful training session consisted of 4 sets completed in 90 min. For the counterbalancing 

of the poke direction, the light cue was not presented in the same port more than twice. In 

addition, each session included two side rule sets using right and left ports as the valid side, thus 
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the side rule trials included equivalently mixed right- and left-poking trials. After establishing 

stable baseline performance (at least 3 consecutive successful sessions), rats were subjected to 

electrode implantation surgery. The first recording was initiated only after the recovery of the 

stable baseline performance.  

In each trial, a correct response was rewarded with a sugar pellet, while an incorrect 

response was not rewarded. Occurrence of an incorrect response reset the number of consecutive 

trials to zero. Immediately after each response, the food trough in the opposite wall of the 

chamber was illuminated, regardless of the accuracy of response, until rats poked to the trough to 

end the trial. After 10 s inter-trial interval, the next trial was initiated as the light cue was turned 

on. 

3.2.4 Electrophysiology 

Single unit activity was recorded simultaneously via bilateral eight-channel Teflon-insulated 

stainless steel 50 µm microwire arrays (NB Laboratories, Denison, TX). Unity-gain junction 

field effect transistor headstages were attached to a headstage cable and commutator 

nonrestrictive to the animals’ movement. Signals were amplified via a multichannel amplifier 

(Plexon, Dallas, TX). Spikes were bandpass filtered between 220 Hz and 6 kHz, amplified 500× 

and digitized at 40 kHz. Single unit activity was then digitally high-pass filtered at 300 Hz and 

LFP were low-pass filtered at 125 Hz. Threshold crossing spike waveforms were stored for 

offline analysis. Single units were sorted using the Offline Sorter software package (Plexon). 

Single unit activity was further analyzed only if the unit displayed a stable waveform throughout 

the recording session. To prevent analysis of the same unit recorded on different channels, we 

examined cross-correlograms. If a unit presented a peak of activity at the time of the reference 
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unit’s firing, only one of the two was further analyzed. Because each animal was allowed at least 

3 days of washout between recording sessions, we treated units recorded in different sessions as 

different units despite the fact that the same unit may have been serially recorded. This approach 

allowed for the most conservative assessment of unit identity. Units meeting these criteria were 

used in all single unit analyses. We did not exclude putative fast-spiking interneurons from our 

samples. Only 1.9 % of total units displayed the mean firing rates higher than 20 Hz. 

3.2.5 Neural data analysis for the home cage recording 

Analyses of single unit data were conducted with Matlab (MathWorks) and SPSS statistical 

software (IBM). The drug-free baseline period was 27 min consisting of 9 × 3-min bins, and the 

post-injection period was 108 min of 36 × 3-min bins. Each unit’s activity in the baseline and 

post-injection periods was Z-score normalized using the mean and the standard deviation of the 

baseline firing rate. Differences in baseline firing rate between dose groups were assessed with 

the Kruskal–Wallis test. Two-way repeated-measures ANOVA was used to assess the effects of 

dose, time period and their interaction on the population activity. Post hoc analyses with 

Bonferroni correction were used for between- and within- dose group comparisons subsequently. 

For all tests, the Greenhouse–Geisser correction was applied as necessary. All statistical tests 

were specified as two-sided. 

To examine how the FG7142-induced inhibitory effect on population activity was 

manifested in individual units, each unit was classified based on modulation of its post-injection 

activity. For classification, the upper and lower bounds of the 95 % confidence interval of the 

normalized activity was used (Homayoun and Moghaddam, 2007). Units crossing the upper or 

lower bound in 3 consecutive 3-min bins were classified into the ‘Activated’ or ‘Inhibited’ 
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subgroup respectively. Units that satisfied both criteria in different time bins were grouped as 

‘Bidirectional.’ The remaining units were labeled as ‘No-change.’ The distribution of units in 

these subgroups was compared between dose groups using the fisher’s exact test. All α levels 

were set to 0.05. 

3.2.6 Behavioral data analysis for the set-shifting task experiment 

All behavioral performance measures – the numbers of trials to criterion, errors, percent of 

correct trials and reaction time – were quantitated including all corresponding trials. For all eight 

rats, a binomial test (one-tailed) was used to examine whether each rat performed the task 

significantly above the chance level. One-way ANOVA was used to assess the dose effect on 

total trials and time to complete the task. Two-way repeated-measures ANOVA was used to 

examine the effect of dose, rule and their interaction on the number of trials to criterion, the 

number of errors, the percent of correct trials, and the reaction time for action or food trough 

entry. Post hoc tests utilized the Bonferroni procedure. 

3.2.7 Neural data analysis for the set-shifting task experiment 

3.2.7.1 Baseline and peri-action activity analysis 

To examine how FG7142 affected the baseline neuronal activity during task performance, 

the firing rate of each unit was measured within the 3 s window beginning 3.5 s before each trial 

onset, averaged across trials, and compared across dose groups. To assess the individual neuronal 

activity within peri-action time periods, each unit’s firing rate was computed in 50 ms bins 

within the peri-action windows (-2 to 2 s relative to the action occurring at time = 0). The firing 
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rate of each unit was averaged across trials. The trial-averaged firing rate of each unit was Z-

score normalized to that of its baseline period. Units were categorized as ‘Activated’ or 

‘Inhibited’ within pre- (-2 to 0 s) and post-action (0 to 2 s) relative to the action occurring at time 

= 0 periods, if their average normalized activity contained two or more consecutive 50 ms bins 

with Z > 1.96 or Z < -1.96, respectively. The remaining units were categorized as ‘No-change.’ 

These criteria were validated using a bootstrap analysis on the baseline period (a 2 s window 

beginning 2.5 s before the trial onset) of each unit. For each unit, the baseline window was 

randomly sampled with replacement 10,000 times. The proportion of 2 s windows that resampled 

activity reached the significance criteria is a measure of the expected false-positive rate for that 

unit during any 2 s window. The expected false-positive rate was α = 0.0023. Differences in the 

distribution of neuronal responses (activated, inhibited or no-change) between dose groups were 

assessed with Fisher’s exact test. The normalized population activity in the pre- or post-action 

period was compared across dose groups, using one-way ANOVA. 

3.2.7.2 Linear regression analysis 

A multiple linear regression model was used to investigate how each unit encoded task-

relevant information. The following multiple linear regression model was used:  

𝑆𝑆𝑆𝑆𝑒 𝐶𝐶𝑢𝐶𝑡 =  𝛽0 + 𝛽1TR(t) + 𝛽2R(t) + 𝛽3R(t − 1) + 𝛽4D(t) + 𝛽5D(t − 1) + 𝛽6RT(t) 

where TR(t) represented the task rule on trial t (0 if light, 1 if side), R(t) is the response outcome 

on trial t (1 if correct, 0 if incorrect), R(t-1) is the previous response outcome on trial t-1 (1 if 

correct, 0 if incorrect), D(t) is the poke direction on trial t (1 if right, 0 if left), D(t-1) is the poke 

direction on trial t-1 (1 if right, 0 if left), RT(t) is the reaction time on trial t (1 if high, 0 if 

medium, -1 if low latency, for each animal). To investigate the neural representation of the task 

rule specifically in CF trials, we used a slightly modified regression model (below) in which we 
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selected CF trials in both side and light rule sets, and then examined the encoding of CF trials of 

one rule, relative to the trials of the other rule.   

𝑆𝑆𝑆𝑆𝑒 𝐶𝐶𝑢𝐶𝑡 =  𝛽0 + 𝛽1TR(t; CF) + 𝛽2R(t) + 𝛽3R(t − 1) + 𝛽4D(t) + 𝛽5D(t − 1) + 𝛽6RT(t) 

where TR(t; CF) represented CF trials of one rule (1) and all trials of the other rule (0), and all 

the other terms were represented identically as in the above regression model. Initial trials of 

each set were excluded from the regression analysis to ensure that rats were aware of the set-

shifting. Both correct and incorrect trials after the 5th correct response of each set were included. 

The regression analysis was conducted for the spike count of each unit, in a window of 1-s width 

that slides in steps of 0.2 s within the range of 2 s before and after the instrumental action. Units 

that had 1) three or more consecutive or 2) four or more sliding windows with significant 

coefficients (p < 0.05, based on the t-test) for each covariate (β1 to β6) during the peri-action 

time period of interest were considered to encode the corresponding variable. The stringency of 

this criterion was verified by calculating the false-positive rate when the regression was 

performed on bootstrap resampled trials (1,000 samples; the expected false-positive rate < 0.05). 

To compare the proportions of units signaling trial types, current or previous response outcome 

between dose groups, Fisher’s exact test was used. 

To investigate how the dmPFC neural representation of the task rule evolved from early 

to late phases of a set, trials in each session were divided into two subsets, one comprising the 1st 

half of the trials in each set and the other comprising the 2nd half of the trials. We then quantified 

the neuronal selectivity for the two rules using a sliding receiver operating characteristic (ROC) 

analysis (Figure 3-8c). The area under the ROC curve was utilized as an index of neuronal 

selectivity. A value of 0.5 was indicative of no selectivity between two conditions, whereas a 

value of 1 was interpreted as complete discriminability. ROC values were calculated with a 
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sliding 0.4 s window in 0.2 s steps. The peak ROC values in the pre-action period were used for 

comparison. A ROC analysis also was applied to the rule-encoding dmPFC units to quantify 

their discriminability of the rule in side CF and light CF trials (Figure 3-10c). 

3.2.7.3 Population decoding analysis 

After examining the individual neuronal encoding of task variables, we quantified the 

population level coding using a Poisson naïve Bayes classifier. In general, this decoding method 

works by training the classifier to “learn” which patterns of neural activity are indicative of 

particular task conditions (e.g., which is the current rule). In the training phase, the association of 

different patterns of neural activity with different task conditions is learned from a subset of data 

(training set). In the test phase, the reliability of the association is then assessed with a separate 

set of data (test set) based on how accurately the classifier can predict the present task 

conditions.  

For training and testing, we used a cross-validation procedure with the following steps. 

(1) For each neuron, data from 20 trials were randomly selected for each of the 2 conditions (e.g. 

light and side rules). For each of these trials, data from all neurons were concatenated to create a 

pseudo-population response vector (i.e., neurons that were recorded under the same conditions 

but in separate sessions were treated as if they had been recorded simultaneously). (2) These 

pseudo-population vectors are grouped into 20 splits of the sampled data, with each split 

containing one pseudo-population response vector for each task condition. (3) A classifier was 

trained using 19 splits of the data, and tested with the remaining split. This procedure was 

repeated 20 times, leaving a different split at each time (i.e., a 20-fold leave-one-split-out cross-

validation was used) (Meyers et al., 2012). This procedure (steps 1-3) was repeated 50 times for 

each 200-ms window sliding in steps of 50 ms within the 4-s peri-action period. 
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Specifically in each repetition, we have a Poisson likelihood function given by  

𝑃�𝑥𝑇�𝐶𝑐�  =  �
𝜆𝑐𝑟,𝑇
𝑥𝑖,𝑡 𝑒−𝜆𝑘𝑖,𝑡

𝑥𝑟,𝑇!

𝐷

𝑟=1

 

where 𝑥𝑇 is a pseudo-population vector of spike counts at tth sliding window within a trial, 𝐶𝑐 

indicates a particular rule (side or light) or a response outcome (correct or incorrect response), 

and thus 𝑆 takes on either 1 or 2. 𝑆 indicates unit label, 1 to 𝐷. 𝜆𝑐𝑟,𝑇 is the parameter for the 

Poisson distribution estimated by the following: 

𝜆𝑐𝑟,𝑇 =  
1
𝑁𝑐

� 𝑥𝑛𝑟,𝑇
𝑛∈𝐶𝑘

 

The posterior probability of a particular rule or an outcome given the spike count vector is 

provided by Bayes’ theorem:   

𝑃�𝐶𝑐�𝑥𝑇�  =  
𝑃�𝑥𝑇�𝐶𝑐�𝑃(𝐶𝑐)

𝑃(𝑥𝑇)
 

We assumed a flat prior probability, and thus 𝑃(𝐶𝑐) is a constant. Hence, the classifier predicts 

the task condition with maximum probability given the pseudo-population activity. 

𝐶𝑐� =  𝑎𝑎𝑎𝑎𝑎𝑥𝑐𝑃�𝑥𝑇�𝐶𝑐� 

The result of population decoding analysis was quantified as the percentage of correctly 

predicted test splits, which we termed as “decoding accuracy.” The mean and standard deviation 

of decoding accuracy were calculated across the scores of 50 re-sampling procedure. 

To examine whether there are dynamic temporal patterns in the dmPFC neuronal 

signaling of the task rule, i.e. do the neurons encode the task rule differentially at different times, 

we ran a temporal-cross-training analysis (Meyers et al., 2012) (Figure 3-9c-e). In this analysis, a 

classifier is trained with data from one time point and then tested on data from different trials 
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that were taken either from the same time period or a different time period, using the same steps 

(1-4) described above. 

3.2.8 Behavioral testing on the elevated plus maze 

Although numerous previous reports have established the anxiogenic effects of FG7142 (Atack 

et al., 2005; Cole et al., 1995; Pellow and File, 1986), we assessed the effect of FG7142 versus 

vehicle on the elevated plus maze (EPM) to ensure that a similar effect is replicated in our hands. 

Ten minutes after injection, rats were transported into the testing room and placed on the center 

of the EPM with their heads facing an open arm. The experimenter then left the room and the 

rat’s behavior was video recorded for 5 min. The EPM consisted of two open arms (45 × 10 cm) 

with transparent 1-cm-high edging, and two closed arms (45 × 10 × 48 cm) diverging from a 

common central platform (10 × 10 cm) elevated 90 cm above the floor. Video records were 

analyzed using an automatic video tracking software (ANY-maze, Stoelting, Wood Dale, IL) to 

quantify (1) time spent in the open arms, closed arms or center platform, (2) number of entries 

made into open and closed arms and (3) total distance traveled on the maze. These measures 

were compared between vehicle and FG7142-injected groups using independent-samples t test. 
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3.3 RESULTS 

3.3.1 Inhibitory effect of FG7142 on PFC neuronal population activity 

In total, 138 dmPFC and 184 OFC units were recorded from histologically verified electrodes of 

11 freely behaving rats in home cages (Figure 3-1a); the mean baseline firing rate before 

administration of drug was 5.67 ± 0.50 Hz in dmPFC and 4.47 ± 0.35 Hz in OFC. There was no 

difference in these levels across dose groups in either subregion (Kruskal–Wallis test, dmPFC; 

χ2
2 = 3.32, p = 0.19, OFC; χ2

2 = 2.03, p = 0.36).  

We examined the impact of doses of FG7142 (5 and 10 mg/kg) that produces 

physiological, neurochemical and cognitive deficits (Evans and Lowry, 2007; Mikkelsen et al., 

2005; Murphy et al., 1996b; Pehrson et al., 2013) without inhibiting the animals’ motor abilities. 

Treatment with FG7142 (10 mg/kg i.p.) reduced the spontaneous firing rate of subpopulations of 

dmPFC and OFC units (Figure 3-1b-e). We quantified the impact of FG7142 on both population 

activity (Z-score) and on individual units. For the latter, units that fired significantly below or 

above pre-injection baseline in 3 consecutive 3-min bins were classified as ‘Inhibited’ and 

‘Activated.’ Units that were both inhibited and activated were classified as ‘Bidirectional.’ The 

remaining units were classified as ‘No-change.’ In the dmPFC, a significant interaction between 

dose group and time period was observed (Two-way repeated measures ANOVA, F2, 135 = 8.58, 

p < 0.001). Both 5 and 10 mg/kg doses of FG7142 suppressed population activity compared to 

baseline or vehicle (Figure 3-1f; post hoc test, p values < 0.01). A substantial proportion of units 

inhibited, whereas fewer units increased or bidirectionally modulated their firing rates. The 

distribution of units in inhibited, activated and bidirectional subgroups was significantly different 



 99 

from that of vehicle units (Figure 3-1g; Chi-square test, 5 mg/kg; χ2
3 = 10.61, p = 0.014, 10 

mg/kg; χ2
3 = 17.51, p = 0.0006). OFC population activity was suppressed by FG7142 in a similar 

manner. A significant interaction between dose group and time period was detected (Two-way 

repeated measures ANOVA, F2, 179 = 8.39, p = 3.0 × 10-4). FG7142 at 5 mg/kg significantly 

suppressed population activity compared to baseline or vehicle (Figure 3-1h; post hoc test, p 

values < 0.0001). A significant suppression was observed compared to that of the baseline (post 

hoc test, p = 0.009), as well as a trend toward suppression compared to that of vehicle injection 

(post hoc test, p = 0.07) after 10 mg/kg injection. A substantial proportion of units inhibited their 

activity, and the distribution of inhibited, activated and bidirectional subgroups was significantly 

different from that of vehicle units (Figure 3-1i; Chi-square test, 5 mg/kg; χ2
3 = 17.42, p = 

0.0006, 10 mg/kg; χ2
3 = 9.56, p = 0.023). In both dmPFC and OFC, we verified that the 

interactions between dose group and time period were significant, when examined using the raw 

firing rates without Z-score normalization (Two-way repeated measures ANOVA, dmPFC; F2, 

135 = 3.16, p < 0.05, OFC; F2, 179 = 10.21, p < 1.0 × 10-4). Similarly in both regions, we observed 

significant suppression of the raw population activity from the baseline after 5 or 10 mg/kg 

injection of FG7142 (post hoc test, p values < 0.003).  
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Figure 3-1 Modulation of PFC single unit and population activity by FG7142.  

(a) Histologically verified placements of dmPFC (squares) and OFC (circles) electrodes used for home cage and set-

shifting task recording. (b-c) The baseline-normalized activity (Z-score) of all dmPFC single units before and after 

vehicle (b) or 10 mg/kg FG7142 (c) injection. Baseline activity is normalized to zero, and injection occurred at time 

= 0. Each row depicts activity of an individual unit arranged by direction and magnitude of activity change. The 

number of units (n) and rats (N); vehicle n = 44, N = 8; 5 mg/kg n = 47, N = 7; 10 mg/kg n = 47, N = 7. (d-e) The 

baseline-normalized activity of all OFC single units; vehicle n = 76, N = 9; 5 mg/kg n = 71, N = 10; 10 mg/kg n = 

37, N = 8. (f) Left, The normalized dmPFC population activity before and after FG7142 or vehicle injection, 

displayed as mean ± standard error (shaded area). Right, The mean population activity averaged across the entire 

post-injection period. Asterisks and number signs (#) indicate statistically significant difference compared to pre-

injection baseline and vehicle, respectively. Error bars indicate standard errors. FG7142 injection led to suppression 

of the population activity, compared to the pre-injection baseline or the vehicle control. (g) Proportion of dmPFC 

units classified based on the post-injection activity. A number sign indicates significant difference in the distribution 

of classified units, compared to the vehicle. Increased proportions of FG7142 injected units were classified as 

inhibited compared to vehicle units. (h) The normalized OFC population activity and the mean population activity 

during the post-injection period. (i) Proportion of OFC units classified based on the post-injection activity. 
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3.3.2 Impact of FG7142 on set-shifting task performance 

We investigated changes in dmPFC and OFC neural correlates that may underlie alterations in 

cognitive behavior in anxiety. Rats were trained in an operant set-shifting task (Darrah et al., 

2008). This task demands a high cognitive load and requires rule-based control of instrumental 

behavior by requiring rats to discriminate between two rules, each involving a distinct perceptual 

dimension: spatial location and a light stimulus (Figure 3-2a). Thus the task requires rats to form 

associations between a stimulus, a response and an outcome for each rule, and then flexibly 

switch between the two rules based on the response outcome. Animals were trained before 

electrode implantation to successfully perform 3 consecutive extradimensional shifts per test 

session, with sets pseudo-randomized for each session. Stable baseline performance (3 

consecutive successful sessions) was reached in 18 ± 3.0 training sessions. Performance 

remained consistent after the surgical implantation of electrode arrays (Total trials; One-way 

ANOVA, F1, 14 = 0.44, p = 0.52, Total time; One-way ANOVA, F1, 14 = 0.53, p = 0.48, The 

number of trials to criterion; Two-way repeated measures ANOVA, F1, 14 = 1.74, p = 0.21, The 

number of errors; Two-way repeated measures ANOVA, F1, 14 = 1.58, p = 0.23). 

Systemic injection of FG7142 did not impede the ability of animals to engage in, and to 

complete the set-shifting task. Animals performed well above the chance level (binomial test, p 

values < 2.32 × 10-7) and did not display overt performance impairment. The number of total 

trials required to complete the task, i.e., to perform three consecutive extradimensional shifts, 

was similar across vehicle and dose groups (Figure 3-2b; One-way ANOVA, F2, 21 = 1.28, p = 

0.30). Total time taken to complete the task also was not significantly different across groups 

(Figure 3-2b; One-way ANOVA, F2, 21 = 1.91, p = 0.17). This allowed us to move forward with 
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analyzing specific aspects of rule-dependent performance without confounding effects of the 

anxiogenic treatment producing motor and indiscriminate cognitive impairments. We then 

compared the number of trials to criterion (10 consecutive correct trials) in the light- and side-

rule sets across dose groups. A significant interaction between dose and rule was found, as rats 

that received FG7142 reached the criterion with fewer trials in the light rule, but with more trials 

in the side-rule sets compared to when they received vehicle injection (Figure 3-2c; Two-way 

repeated measures ANOVA, F2, 21 = 4.26, p = 0.028, post hoc test, 10 mg/kg, p = 0.012). The 

rule-dependent modulation of performance was echoed in the number of errors. A significant 

interaction between dose and rule was found with the number of errors in side-rule sets 

increasing, and that of the light-rule sets decreasing after FG7142 injection (Figure 3-2d; Two-

way repeated measures ANOVA, F2, 21 = 5.93, p = 0.009; post hoc test, 10 mg/kg, p < 0.001). 

Similar numbers of trials to criterion and errors were detected in the side- and light-rule sets 

during performance after vehicle injection (post hoc test, vehicle, p values > 0.21). 

Performance during the side-rule sets was further subtyped based on correspondence 

between illuminated and correct side (Figure 3-2a bottom right). Specifically, in approximately 

half of the pseudo-randomly selected side-rule trials, the correct choice was the illuminated side 

[non-conflict (NCF) trials], whereas the incorrect choice side was illuminated in the rest of the 

trials [conflict (CF) trials]. Trials in the light-rule set also were subtyped based on 

correspondence between illuminated and previously correct side (Figure 3-2a bottom left). In 

about half of the light-rule trials, a light cue was presented in the previously correct side (NCF 

trials), whereas the light cue was presented in the previously incorrect side in the other half of the 

trials (CF trials). A significant effect of trial type was found on the percent correct, indicating 

distinct performance depending on trial types (Figure 3-2e; Two-way repeated measures 
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ANOVA, F3, 63 = 172.15, p < 1.0 × 10-4). As expected, animals’ performance was more prone to 

errors in CF trials compared to NCF trials especially during the side-rule trials (Figure 3-2e; post 

hoc test, p values < 0.032). Treatment with FG7142 significantly modified the error rates in the 

side CF trials. A significant interaction between dose and trial type was found (F6, 63 = 4.05, p = 

0.002), and post hoc analysis revealed that the percent correct in the side-rule CF trials was lower 

during performance after 10 mg/kg injection, compared to that of vehicle injection (Figure 3-2e; 

post hoc test, p = 0.049). Percent correct in light CF trials was higher than that of side CF trials, 

and did not differ across dose groups (Figure 3-2e; post hoc test, p values > 0.18). Performance 

in NCF trials was equivalent (side rule) or even greater (light rule) after FG7142 injection. 

Collectively, these performance patterns indicate that anxiety induces a response bias toward the 

light cue, leading to increased distractibility by the irrelevant cue in the side rule, but equivalent 

or even enhanced performance in light-rule trials. Reaction time (RT), the latency from the cue 

onset to the action (nose poke), also was measured separately for each trial type. In all trial types, 

RT trended toward a dose-dependent increase, but did not significantly differ across dose groups 

(Figure 3-2f; Two-way repeated measures ANOVA, post hoc test, p values > 0.06). The latency 

for reward retrieval was similar across dose groups, indicating that the increase in RT is not 

associated with indiscriminate changes in locomotion or motivation for reward (Two-way 

repeated measures ANOVA, post hoc test, p values > 0.9). 
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Figure 3-2 Modulation of set-shifting task performance by FG7142.  

(a) Top left, Example correct performance in the light rule, where a nose poke to the illuminated port is rewarded. 

Bottom left, Light-rule trials were subtyped to conflict or non-conflict trials, based on correspondence between 

illuminated and previously valid side indicated with dotted arrows. Top right, Example correct performance in the 

side rule, where a nose poke to the valid side (e.g. the left port) is rewarded, regardless of illumination. Bottom right, 
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Side-rule trials were subtyped to conflict or non-conflict trials, based on correspondence between illuminated and 

valid side indicated with solid arrows. (b) The number of total trials and total time to complete the task were 

equivalent across dose groups. Each circle represents an individual data point. A horizontal bar indicates the mean of 

each dose group. (c) The number of trials to reach the set-shifting criterion (10 consecutive correct trials) in light- 

and side-rule sets was displayed for each dose group. (d) The number of errors in light and side rule sets was 

displayed for each dose group. An asterisk indicates a significant difference in the number of trials to the criterion or 

errors between light- and side-rule sets. (e) Distinct choice accuracy was observed in different trial types. All rats 

were more prone to errors in conflict trials. Such error propensity was more pronounced under the side rule, 

especially in the 10 mg/kg treated rats. Asterisks indicate significant difference compared to the vehicle treated rats. 

(f) The RT from the cue onset to the action trended toward a dose-dependent increase in all trial types. 

3.3.3 Impact of FG7142 on neural correlates of set-shifting task performance 

The PFC neural correlates of task performance in response to FG7142 were analyzed at 

individual neuronal and population levels, based on single unit activity recorded from 

histologically verified electrodes in dmPFC and OFC (Figure 3-1a). We first quantified the 

baseline firing rate and the baseline-normalized peri-action activity across all trials. The time of 

action was identified by the detection of an entry to the nose-poke port, and all pre- or post-

action neuronal activity was aligned to timing of the port entry. Consistent with the home cage 

recording result, dmPFC units in FG7142 treated groups had lower baseline firing rates 

compared to the vehicle treated units (Figure 3-3d; One-way ANOVA, F2, 188 = 5.90, p = 0.003). 

However, the trial-averaged normalized activity (Figure 3-3e; One-way ANOVA, F2, 188 = 0.82, 

p = 0.44) and the fraction of activated units (Figure 3-3f; Chi-square test, p values > 0.07) within 

the pre- or post-action period did not differ across dose groups. 
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Figure 3-3 dmPFC peri-action neuronal activity during the set-shifting task. 

(a-c) The baseline-normalized peri-action activity of vehicle or FG7142 treated units with the action occurring at 

time = 0, aligned to the time of the nose poke detected by the beam break at the cue port. dmPFC units tended to 

start modulating their activity preceding the action. The number of units (n) and rats (N); vehicle n = 63, N = 8; 5 

mg/kg n = 67, N = 8; 10 mg/kg n = 61, N = 7. (d) The mean baseline firing rates of FG7142 injected units, measured 

during inter-trial intervals, were significantly lower than vehicle units, consistent with the effect observed in home 

cage recording. Error bars indicate standard errors. An asterisk indicates statistically significant difference compared 

with vehicle. (e) Left, The normalized population activity during the peri-action period is displayed as mean ± 

standard error (shaded area). Right, The mean population activity within the 2-s pre-action period. (f) The 

percentages of units classified as ‘Activated’ in pre- and post-action periods were not significantly different across 

dose groups. Few units were classified as ‘Inhibited.’    
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Figure 3-4 OFC peri-action neuronal activity during the set-shifting task. 

(a-c) The baseline-normalized peri-action activity of vehicle or FG7142 treated units with the action occurring at 

time = 0. OFC units tended to modulate their activity during the post-action period. The number of units (n) and rats 

(N); vehicle n = 34, N = 5; 5 mg/kg n = 29, N = 5; 10 mg/kg n = 24, N = 4. (d) The mean baseline firing rate of 

FG7142 exposed units was numerically lower than vehicle units, consistent with the effect observed during home 

cage recording. Error bars indicate standard errors. (e) Left, The normalized population activity during the post-

action period is displayed as mean ± standard error (shaded area). Right, The mean population activity within the 2-s 

post-action period. (f) The percentages of units classified as ‘Activated’ in pre- and post-action periods did not 

significantly differ across dose groups. Few units were classified as ‘Inhibited.’    
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In OFC, a non-significant reduction in the baseline firing rate was observed in FG7142 

treated units (Figure 3-4d; One-way ANOVA, F2, 84 = 0.78, p = 0.46). This contrasted the 

significant reduction observed during home cage recording and may be due to the impact of 

context (operant box vs. home cage) on the baseline spontaneous activity of OFC neurons, or the 

difference in the statistical power given the different sample sizes. Unlike dmPFC units, and as 

expected, OFC units responded more robustly during the post-action (outcome) period (Figure 

3-4a-c). This post-action OFC response was not affected by FG7142, as similar trial-averaged 

normalized activity (Figure 3-4e; One-way ANOVA, F2, 84 = 0.14, p = 0.87) and fraction of 

activated units (Figure 3-4f; Chi-square test, p values > 0.24) were observed across dose groups. 

We then examined the individual neuronal encoding of various task-relevant variables, 

such as the rule, current and previous response outcomes, poke direction and RT, using a 

multiple linear regression model (Methods). We first examined the neuronal encoding of the 

response outcome of previous and current trials, which are the two critical features for the 

outcome-based guidance of behavior during the task. With all predictive variables accounting for 

variability in neuronal activity, some dmPFC and OFC units encoded the response outcome of 

the previous and/or the current trial especially during the pre- and post-action period, 

respectively, consistent with the literature (Strait et al., 2014; Sul et al., 2010) (Figure 3-5 & 3-6). 

Encoding of the previous response outcome was neither region-specific nor affected by FG7142 

(Figure 3-5a-b & Table 3-1; Chi-square test, p values > 0.08). To test how reliably the previous 

response outcome could be decoded at the population level, we carried out a decoding analysis 

with the entire dmPFC population of each dose group, using a linear classifier (Methods). The 

response outcome of the previous trial could be decoded from the dmPFC population well above 

the chance level across the peri-action period in all dose groups (Figure 3-5c-d). Greater 
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proportions of dmPFC and OFC units encoded the response outcome of the current trial, 

particularly in the post-action period, regardless of vehicle or FG7142 injection (Figure 3-6a-b & 

Table 3-1; Chi-square test, p values > 0.10). The classifier generated a highly accurate decoding 

of the current response outcome, especially during the post-action period, consistent with the 

individual neuronal encoding (Figure 3-6c-d). In summary, substantial dmPFC and OFC units 

encoded previous and/or current response outcome, but this encoding was not significantly 

affected by the anxiogenic manipulation, suggesting that the trial-to-trial signaling of the 

response outcome were intact in anxiety. 

The regression analysis also indicated that FG7142 treatment did not influence the 

fraction of units encoding previous and current poke direction in dmPFC (Previous direction: 

vehicle, 17 %; 5 mg/kg, 12 %; 10 mg/kg, 11 %, Current direction: vehicle, 25 %; 5 mg/kg, 31 %; 

10 mg/kg, 20 %) and OFC (Previous direction: vehicle, 6 %; 5 mg/kg, 21 %; 10 mg/kg, 13 %, 

Current direction: vehicle, 15 %; 5 mg/kg, 31 %; 10 mg/kg, 29 %). Similar lack of effect was 

observed in units that encoded the RT for the action in dmPFC (vehicle, 17 %; 5 mg/kg, 12 %; 

10 mg/kg, 11 %) and OFC (vehicle, 6 %; 5 mg/kg, 21 %; 10 mg/kg, 13 %). 
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Figure 3-5 dmPFC encoding of the previous response outcome – R(t-1). 

(a) Spike raster plots of two example dmPFC units encoding the previous response outcome during the pre-action 

period. Each row represents each trial, and each tick mark denotes a spike. The horizontal axis represents time 

before and after the action occurring at time = 0. The left vertical axis indicates the number of trials, and the right 

vertical axis indicates the firing rate. The spike density functions for previously correct and incorrect trials estimated 

with a Gaussian kernel (σ = 100 ms) are superimposed in each raster plot. (b) Proportions of vehicle, 5 and 10 mg/kg 

exposed units encoding the previous response outcome were not significantly different (n = 13, 7, 7, respectively). 

(c) Representation of the previous response outcome in the dmPFC population, measured by the decoding accuracy 

of a linear classifier. Each color-coded line indicates the decoding accuracy for the previous response outcome in 

each dose group (vehicle, 63; 5 mg/kg, 67; 10 mg/kg, 61 units), displayed as mean ± standard deviation (shaded 

area) across 50 re-samplings. The black dotted line indicates the level of decoding expected by chance. (d) Shuffling 

the trial ID quenched the decoding accuracy for the previous response outcome to around the chance level. 
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Figure 3-6 dmPFC encoding of the current response outcome – R(t). 

(a) Spike raster plots of two example dmPFC units that encoded the current response outcome during the post-action 

period. (b) Proportions of vehicle, 5 and 10 mg/kg exposed units encoding the current response outcome were 

similar (n = 37, 36, 27, respectively). (c) The decoding accuracy for the current response outcome was highly 

accurate during the post-action period in all dose groups. (d) Trial-shuffling extinguished the decoding accuracy for 

the current response outcome to around the chance level. 
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Table 3-1 The number and percentage of OFC single units encoding each task variable, according to the 

multiple linear regression analyses (Methods). 

Equivalent proportions of OFC units encoded each task variable, as none of the examined variables differ 

significantly across dose groups. 

 

 

We next analyzed the neural representation of the task rule. For this, we focused on the 

encoding during the pre-action period because it is the temporal window that immediately 

precedes the action, and thus encoding within this window may guide the action. A substantial 

fraction of vehicle-treated dmPFC units, as exemplified in Figure 3-7, encoded the rule in the 

pre-action period (Figure 3-8a). The anxiogenic treatment significantly reduced the proportion of 

rule-encoding units (Figure 3-8a; Chi-square test, χ2
1 = 5.11, p = 0.02). The standardized 

regression coefficients (SRC) for the task rule covariate of all rule-encoding and non-encoding 

units are shown across the peri-action time period in Figure 3-8b. The neural representation of 

the task rule may gradually evolve after shifting, as the animals initially try to figure out the valid 

rule by trial-and-error, and finally attain the rule in the later phase of the set. We tested this by 
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comparing the degrees of neural discriminability based on the rule in the two subsets of data 

comprising the 1st half and the 2nd half trials of each set, using a sliding ROC analysis (Methods). 

We found that the vast majority of the rule-encoding dmPFC units in the vehicle (19/24 units, 

Paired t-test, t23 = 3.35, p = 0.003) and the 5 mg/kg (15/21 units, Paired t-test, t20 = 3.69, p = 

0.001) groups showed enhanced selectivity in the late compared to the early phase of a set 

(Figure 3-8c). The emerging ROC values from the 1st to 2nd half of trials corresponded to low 

and high behavioral accuracy (Figure 3-8d; Overall percent correct: 66 % and 87 %), 

demonstrating the association between emerging neural representation of the rule and growing 

behavioral accuracy. The emerging pattern of rule selectivity was weakened after animals 

received the 10 mg/kg dose (Figure 3-8c; 7/12 units, Paired t-test, t11 = 1.34, p = 0.21), even 

when the behavioral choice accuracy appeared high in the 2nd half (Figure 3-8d).  

 

 

 

Figure 3-7 Example dmPFC units encoding the task rule during the pre- and post-action periods. 
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Figure 3-8 dmPFC neuronal representation of the task rule. 

(a) The bar plot illustrates the proportion of dmPFC units encoding the rule during the pre-action period (vehicle, 24; 

5 mg/kg, 21; 10 mg/kg, 12 units). The number sign indicates a significantly different proportion of encoding units 

compared to that of the vehicle units. (b) Standardized regression coefficients (SRC) for the task rule covariate of 

the multiple linear regression model are plotted. Dark-colored lines indicate SRCs for rule-encoding dmPFC units in 

each dose group, whereas light-colored lines indicate SRCs for the non-encoding units. Positive-valued SRCs 

indicate greater firing rates (FRs) in the side rule compared to the light rule, whereas negative-valued SRCs indicate 

greater firing rates in the light rule. (c) The degrees of neural discriminability based on the rule were examined in the 

two subsets of data comprising the 1st half and the 2nd half trials of each set, using a ROC analysis. For each dose 

group, the left and right filled circles indicate the pre-action ROC values of the 1st and the 2nd half trials of the rule-

encoding units. An emerging trend of rule selectivity was observed from 1st to 2nd half trials, which was blunted in 

the 10 mg/kg treated units. (d) The percentage of correct choices for the 1st half (left asterisks) and the 2nd half 

(right asterisks) trials of each animal is indicated for a comparison with the ROC data.      
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Figure 3-9 Representation of the task rule in the dmPFC population, measured by the decoding accuracy of a 

linear classifier. 

(a) Each color coded line indicates the decoding accuracy of each dose group (vehicle, 63; 5 mg/kg, 67; 10 mg/kg, 

61 units), displayed as mean ± standard deviation (shaded area) across 50 re-samplings. FG7142 injection, 

especially 10 mg/kg, is associated with lower decoding accuracy across the peri-action period. The black dotted line 

indicates the level of decoding expected by chance. (b) Shuffling the trial ID quenched the decoding accuracy to 

around the chance level. (c-e) Results from training a classifier at one time period (vertical axis) and testing the 

classifier at a different time period (horizontal axis) for decoding the task rule (temporal-cross-training analysis). 

High classification accuracy was observed from the vehicle population (c), only when the classifier was trained and 

tested using data from around the matching time periods, which indicates that dynamic patterns of neuronal activity 

convey task-rule information at different time points. A comparable result was seen from the 5 mg/kg population 

(d), but not from the 10 mg/kg population (e).   
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Reduced individual neuronal rule representation should be associated with diminished 

encoding of the rule at the population level. We corroborated this using the linear classifier. The 

classifier decoded the task rule corresponding to current trials with high accuracy from the 

vehicle population, but with far lower accuracy from the 10 mg/kg population, indicating that the 

anxiogenic manipulation was associated with reduced rule representation by the dmPFC 

population (Figure 3-9). 

We next investigated the impact of the anxiogenic treatment on neural representation of 

the task rule in CF trials. We identified the CF trials in either side- or light-rule sets (Figure 

3-2a), and then examined the encoding of CF trials of one rule, relative to the trials of the other 

rule, using a multiple linear regression model (Methods). Examples of individual dmPFC units 

that encoded side CF trials relative to light-rule trials are shown in Figure 3-10a. Figure 3-10b 

illustrates that the proportion of side-CF trial encoding dmPFC units was significantly reduced 

by 10 mg/kg FG7142 compared to vehicle (Chi-square test, χ2
1 = 5.83, p = 0.016). This is 

consistent with the behavior data (Figure 3-2e) showing increased error propensity in side CF 

trials at this dose. Fewer rule-encoding units were found in CF trials of the light rule, regardless 

of the dose (Figure 3-10b; Chi-square test, p values > 0.39), which is consistent with the 

comparable performance across dose groups observed in these trials (Figure 3-2e). The 

difference between the fractions of rule-encoding units in side CF and light CF trials may reflect 

differential degrees of rule representation between these trials, i.e. more robust rule 

representation may be observed in side CF than light CF trials. To test this, we applied a ROC 

analysis to the rule-encoding dmPFC units identified earlier without subdivision of CF and NCF 

trials (Figure 3-8a) and quantified their discriminability of the rule for side CF and light CF trials 

(Methods). We found that greater numbers of rule-encoding dmPFC units in the vehicle (15/24 
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units, Paired t-test, t23 = 2.36, p = 0.027) and the 5 mg/kg (14/21 units, Paired t-test, t20 = 2.28, p 

= 0.034) groups showed enhanced discriminability in the side CF than light CF trials (Figure 

3-10c). This difference was dampened in 10 mg/kg treated units (6/12, Paired t-test, t11 = 0.91, p 

= 0.38) (Figure 3-10c). Thus, the dmPFC neural representation of the task rule in CF trials was 

more pronounced under the side rule, where the conflicting light stimulus was presented 

explicitly and continuously throughout a set. The reduction of this representation by the 

anxiogenic treatment may underlie its effect on increased error propensity and performance bias.  

Weaker task-rule representation was observed in the OFC, as fewer proportions of rule-

encoding OFC units were found, without a significant difference across dose groups (Table 3-1; 

Chi-square test, p values > 0.25). Likewise, the OFC rule representation in CF trials was not 

evident, and was not affected by anxiety (Table 3-1; Chi-square test, p values > 0.18). These 

suggest that, unlike dmPFC neurons, OFC neurons do not encode anxiety-induced changes in 

rule-based task performance. 
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Figure 3-10 dmPFC neuronal encoding of the task rule, examined specifically in conflict trials. 

(a) The spike raster plots of example dmPFC units that discriminatively represented side (conflict) and light trials 

during the pre-action period. Format same as spike raster plots above. (b) The bar plot illustrates the proportion of 

dmPFC rule-encoding units in side CF (vehicle, 21; 5 mg/kg, 18; 10 mg/kg, 9 units) and light CF (vehicle, 13; 5 

mg/kg, 12; 10 mg/kg, 9 units) trials during the pre-action period. The proportion of rule-encoding units in side CF 

trials decreased in a dose-dependent manner. The number sign indicates a significantly different proportion of 

encoding units compared to that of the vehicle units. (c) The neural discriminability of light CF or side CF trials, 

relative to the trials of the other rule was quantified using a ROC analysis. Each line segment represents an 

individual rule-encoding unit’s ROC value for the light CF trials (left filled circle) and the side CF trials (right filled 

circle).   
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3.3.4 FG7142 effect on anxiety-like behavior and locomotion measured on the elevated 

plus maze 

Consistent with previous reports (Atack et al., 2005; Cole et al., 1995; Evans and Lowry, 2007; 

Pellow and File, 1986), FG7142 induced an anxiety-like state when measured using the elevated 

plus maze (EPM) (Figure 3-11a-b). Rats placed on the EPM after injection of FG7142 showed 

significantly fewer entries (Figure 3-11c; Independent t-test, t12 = 3.03, p = 0.01) and reduced 

time (Figure 3-11d; Independent t-test, t12 = 3.01, p = 0.02) spent in open arms, compared to 

vehicle injected rats. The total distance traveled on the maze did not differ significantly between 

vehicle and FG7142 injected groups (Figure 3-11e; Independent t-test, t12 = 1.93, p = 0.08), thus 

the anxiety-like behavior was not attributed to an overt deficit in locomotion.  

 

 

 

 

Figure 3-11 Anxiogenic effect of FG7142 measured on the elevated plus maze.  

(a-b) A representative trajectory of a vehicle (a) or 10 mg/kg FG7142 (b) injected rat. (c) The number of open arm 

entries. (d) Time spent in the open arms. (e) Total distance traveled on the maze. The number of rats (N); vehicle N 

= 7; 10 mg/kg N = 7. Error bars indicate standard errors. An asterisk indicates statistically significant difference 

compared with vehicle. 
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3.4 DISCUSSION 

Anxiety has been studied extensively as a stand-alone construct in laboratory animals (e.g., 

Adhikari et al., 2010, 2011; Calhoon and Tye, 2015; Milad and Quirk, 2012). The results have 

contributed to our understanding of the brain circuits that are altered in anxious and fearful 

animals. Detrimental impacts of human anxiety, however, extend well beyond a general aversive 

“fearful” state and involve disruption of ongoing goal-directed behaviors that are necessary for 

day-to-day functioning. A critical example is disruption of PFC-mediated cognitive functions 

such as flexible shifting to new behavioral strategies or overcoming distracting stimuli (Bishop, 

2007; Eysenck et al., 2007). Here we sought to fill a fundamental void in the literature by 

addressing how a background state of anxiety influences encoding of flexible decision making 

by PFC neurons. We used a clinically relevant experimental model of anxiety while recording 

from dmPFC and OFC neurons of rats at wakeful rest or while they were engaged in an 

extradimensional set-shifting task. We find that anxiety engrosses a substantial number of 

spontaneously active PFC neurons and, more importantly, leads to diminished representation of 

conflict-related action by dmPFC neurons in correlation with behavioral impairment.  

 

3.4.1 The challenge of modeling sustained anxiety in behaving animals 

Anxiety is a construct in Research Domain Criteria (RDoC) of NIMH’s Strategic Plan and a 

debilitating symptom of most psychiatric disorders. Anxiety generally is not a rapid neuronal 

“event” but a “state” that may be sustained for many minutes to hours. In a real-life situation, the 

impact of anxiety extends beyond its general aversive state and impairs ongoing behaviors that 
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utilize cognitive and affective processing. The neurodynamic nature of this impairment has been 

difficult to address, in part, because previous electrophysiological studies focused on fear 

conditioning and avoidance paradigms as a potential measure of anxiety. While these studies 

have revealed a role for PFC in regulating freezing and avoidance behaviors (Burgos-Robles et 

al., 2009; Milad and Quirk, 2002), they cannot reveal how the PFC neural correlates of cognitive 

and motivated behavioral events are modulated by anxiety.  

To study anxiety-related PFC neural processing during cognitive and motivated 

behaviors, it would be ideal to produce a sustained state of anxiety in animals that does not 

prevent their task performance. We used a pharmacological model of sustained anxiety that has 

excellent cross-species validity. Inverse agonists of allosteric benzodiazepine binding sites in 

GABAA receptors produce an anxiogenic state (Evans and Lowry, 2007). This is an “old” 

approach, with one of the initial studies (Ninan et al., 1982) reporting a behavioral syndrome in 

rhesus monkeys that mimicked physiological and affective features of human anxiety. While 

these drugs produce freezing or may have pro-convulsive properties at very high doses, their 

symptomatic impact at moderate doses is relatively specific in the context of anxiety, in that 

behavioral and perceptual effects unrelated to anxiety (such as hallucination) are not reported. A 

well-characterized drug in this class is FG7142, which has been shown to produce PFC-mediated 

cognitive deficits (Murphy et al., 1996a), as well as anxiety-related cardiovascular, and 

neurochemical effects in humans and laboratory animals (Evans and Lowry, 2007). This 

approach provided a practical tool for studying the impact of sustained anxiety on cognitive task 

performance.  
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3.4.2 Effects of anxiety on spontaneous PFC neuronal activity 

Anxiety induced by FG7142 suppressed dmPFC and OFC population activity. This effect 

contrasts the increase in PFC firing rate shown previously in traditional rodent models of anxiety 

(Adhikari et al., 2011). Our findings, however, are consistent with human imaging studies that 

have reported reduced activation of PFC in patients with anxiety disorders (Phelps et al., 2004; 

Shin et al., 2001). These data further suggest that the ‘hypofrontality’ commonly associated with 

a general state of anxiety is caused by suppression of the spontaneously active PFC neurons.  

Anxiogenic compounds including FG7142 decrease the chloride flux via GABAA 

receptors, which should produce a direct excitatory effect on firing rate of single neurons. The 

observed inhibitory influence, therefore, suggests the involvement of networks of GABA 

interneurons and multiple inhibitory processes mediated by them (White et al., 2000). 

Alternatively, similar to stress, indirect mechanisms such as activation of noradrenergic or 

dopaminergic projections to the PFC may be involved (Arnsten, 2000; Gamo et al., 2015; 

Goldstein et al., 1996; Reinhard et al., 1982). DA recently has been implicated in mediating 

anxiety-like behaviors (Lammel et al., 2012). Selective activation of DA release in mPFC by the 

fiber photometry had anxiogenic effects in mice (Gunaydin et al., 2014). A hyper-reactive 

mesoprefrontal circuit was associated with clinical anxiety in humans (Cha et al., 2014). 

Consistent with PFC activation of DA release being anxiogenic, FG7142 produces a sustained 

increase in DA release selectively in the PFC (Bradberry et al., 1991b; Murphy et al., 1996a). 

Importantly, the time course of increase in DA release is similar to the duration of PFC neuronal 

inhibition we observed (Bradberry et al., 1991b). Post-synaptic effects of DA on PFC neurons 

are primarily inhibitory (Gorelova et al., 2002; Seamans et al., 2001; Sesack and Bunney, 1989), 

thus the anxiety-induced reduction in PFC neuronal activity may be mediated, in part, by 



 123 

selective activation of DA release in PFC. Of note, high levels of dopamine D1 or noradrenergic 

alpha-1 receptor stimulation, similar to the impact of FG7142, reduce PFC neuronal firing in 

monkeys (Arnsten, 2009). 

 

3.4.3 Modality specific deficits in set-shifting task performance 

The dose of the anxiogenic compound used here did not prevent animals from successfully 

completing trials in the set-shifting task. This allowed us to unveil selective and clinically 

relevant anxiety-induced deficits in rule-shifting behavior. A critical aspect of our task was that it 

included multiple extradimensional shifts within each session. Animals had been well trained 

with the discrimination rules as well as shifting between them before the test session, thus the 

task was sensitive to measure the flexible switching between rules based on the action-outcome 

contingency. FG7142 injected rats readily shifted from the side to the light rule, as evidenced by 

fewer errors and trials to criterion in the light rule. However, when shifting to the side rule, 

increased errors were observed during what we coined “conflict trials” (i.e. trials where light was 

presented in the incorrect side). This selective deficit suggests impaired capacity to disengage 

from the previously relevant sensory dimension, especially when the outmoded cue was visible. 

This deficit is consistent with increased perseverative errors after acute stress in rodents (Butts et 

al., 2013) and monkeys (Murphy et al., 1996a; Murphy et al., 1996b), and perseverative 

behavioral patterns in patients with anxiety-related disorders (Eysenck et al., 2007; Purcell et al., 

1998).  

Our observation further suggests that the detrimental impact of anxiety on rule shifting is 

modality specific and especially vulnerable when a shift is required in the presence of previously 



 124 

relevant sensory stimuli. From a broader standpoint, these behavioral findings indicate that 

anxiety may bias decision making to a sensory-based process that is less flexible and more prone 

to visual and other sensory distractors. These findings, therefore, support the notion that, under 

anxiety, behavioral selection is skewed by salient environmental stimuli at the expense of 

flexible top-down guided choices.  

 

3.4.4 Neuronal encoding of deficits in behavioral rule shifting in anxiety 

The baseline firing rates of dmPFC and OFC neurons were similarly inhibited by the anxiogenic 

treatment during home cage recording and task performance. During task performance, varying 

degrees of neuronal encoding of the response outcome, choice direction, and RT were observed 

in both regions, and signaling of these variables involving a trial-to-trial processing was not 

significantly affected by anxiety. In contrast, the dmPFC neural representation of task rules was 

selectively diminished. Encoding the task rule is a higher-order process that involves 

representation of relationships among the task-relevant cues, actions and outcomes. Thus, our 

finding suggests that the higher-order processing, subserved by dmPFC, may be particularly 

susceptible to anxiety. 

Further analyses of the neural representation of the task rule revealed dynamic aspects of 

the dmPFC rule encoding and its vulnerability to anxiety. First, the rule representation gradually 

evolved after the set-shifting. This growing representation is unlikely to be an epiphenomenon of 

the enhanced correct choices or increased ‘confidence’ in choice because equivalent 

enhancement in behavioral accuracy was observed in both rules. Thus, the growing rule-

representation may contribute to the gradual improvement in choice accuracy. This emerging 
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pattern in the rule representation collapsed in anxiety, suggesting that this component of rule 

representation is vulnerable to anxiety. Second, we observed that dmPFC rule representation was 

different in side vs. light CF trials. This can be attributed to the fact that conflict arises more 

explicitly in the side rule due to the continuous presence of the salient light cue. The rule 

representation in the side CF trials was disrupted in anxiety in correlation with increased 

performance errors. Collectively, these data indicate that the anxiety-related alterations in task 

performance are associated with deteriorated dmPFC representation of the task rule. 

Our analyses revealed that fewer proportions of OFC, compared to dmPFC, neurons 

signaled rule-relevant information. The majority of OFC neurons modulated their activity in the 

post-action period when the response outcome was presented, suggesting specialized roles of 

dmPFC and OFC in encoding distinct information during a rewarded and complex cognitive 

task, i.e., task rule vs. response outcome, consistent with previous literature (Bissonette et al., 

2008; Dias et al., 1997; McAlonan and Brown, 2003). It should be underscored that these 

findings do not discount a role for OFC in mediating other adverse effects of anxiety.  

3.4.5 Conclusion 

The model of anxiety used here has been validated in humans and monkeys. While this model is 

different from conventional rodent models of anxiety, the fact that the type of cognitive deficits 

and the hypofrontality associated with this model parallel observations in the human anxiety 

literature, enhances the clinical relevance of our electrophysiology and computational results. 

These results provide mechanistic insight for how anxiety diminishes rule-based guidance of 

behavior, leading to performance bias, and increased error propensity in decision making under 
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conflict. They also single out encoding of actions by PFC neurons as particularly vulnerable to 

anxiety.   
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4.0  GENERAL DISCUSSION 

4.1 SUMMARY AND INTERPRETATION OF MAIN FINDINGS 

This dissertation study sought to delineate the neural basis of cognitive and motivated behavioral 

changes in anxiety. To this end, we first investigated the VTA and mPFC neural encoding of 

instrumental action in simple and complex behavioral tasks in a “normal” state – i.e., a non-

anxious state. Then, we examined how the neural encoding was altered in association with 

behavioral changes in anxiety. The following is a summary and interpretation of the main 

findings.  

4.1.1 The impact of anxiety on simple instrumental behavior 

The negative effects of anxiety are characterized in part by profound deficits in reward-related 

behavioral domains such as anhedonia and aberrant reward-associated perception (Russo and 

Nestler, 2013). To investigate the neural basis of anxiety-related disruptions in reward-related 

behavior, we trained animals to engage in a simple instrumental action leading to a food reward 

with varying degrees of punishment risk contingent on the action. Animals exhibited anxiety-like 

behavioral changes as a function of punishment risk. The neurophysiological data suggest that 

the VTA-mPFC neural circuit reflects these punishment-based anxiety-like behavioral changes 
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using multiple coding schemes at the single neuronal, neural population, and neural circuit 

levels.  

4.1.1.1 A novel task that elicits punishment-based anxiety-like behavior  

A neuro-mechanistic study on behavioral impact of anxiety needs to isolate a neural 

activity related to a specific behavior, then monitor how it varies as a function of anxiety. 

Commonly used Pavlovian paradigms such as the classical fear conditioning, although relevant 

when studying the neural basis of aversive conditioning, do not involve performance of goal-

directed behavior. Therefore, we designed a new task in which animals engage in reward-

motivated instrumental action with varying risk of punishment (Figure 2-1). This paradigm 

provided a systematic quantification of punishment-based aversive behavioral changes, 

represented by: 1) increase in the mean RT, and 2) increase in the trial-to-trial variability in RT 

as a function of risk. We confirmed that these behavioral changes were pertinent to anxiety, since 

a systemic pretreatment with the anxiolytic diazepam reversed the behavioral effects. 

Importantly, the behavioral changes were specific to the action on which punishment was 

contingent, as the reward retrieval and consumption occurring after the action were not affected. 

This corroborates that the behavioral changes were based on contingency of punishment on the 

action, not due to changes in general motivation and/or mobility. Collectively, these results 

validate our behavioral paradigm as a model to study behavioral and neurophysiological impact 

of anxiety.    

4.1.1.2 Individual neuronal encoding of action in a non-anxious state 

We first examined individual neuronal response profiles in the absence of punishment 

risk. The majority of VTA and mPFC neurons responded to one or more task events – cue onset, 
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action, and/or reward delivery – indicating the involvement of the mesoprefrontal neural circuit 

in the instrumental behavior. When compared across different cell types, VTA DA neurons 

exhibited phasic excitatory response at task events, whereas non-DA and mPFC neurons 

displayed weaker and more temporally diffuse responses. The prominent task-related excitatory 

neuronal responses in DA neurons are consistent with the notion that midbrain DA neurons play 

a key role in initiating and executing a motivated behavior toward reward (Aberman and 

Salamone, 1999; Jin and Costa, 2010; Mingote et al., 2005; Wassum et al., 2012).  

4.1.1.3 Theta-oscillation-mediated VTA-mPFC neural synchrony in a non-anxious state  

We found that coherent theta oscillations around the frequency band of 8 Hz emerged and 

synchronized the VTA-mPFC neural circuit specifically during preparation and generation of the 

action in the absence of punishment risk. Granger-causality analysis revealed VTA-to-mPFC 

directionality of the 8 Hz oscillation. The VTA-driven 8 Hz oscillation provided temporal 

coordination of neuronal spike activity in both regions, as substantial proportions of the 

individual neurons tended to emit a spike at a preferred phase of the 8 Hz oscillation. This is one 

of the first observations suggesting that LFP-mediated neural synchrony may promote neural 

communication between VTA and mPFC during motivated behavior (Fujisawa and Buzsaki, 

2011).  

LFP-based neural synchrony, especially when mediated by a low-frequency oscillation, is 

thought to be a network-wide phenomenon that may involve two or more brain areas even at a 

distance (Fries, 2015; Kopell et al., 2000). Thus, it is likely that the 8 Hz-mediated neural 

synchrony we demonstrated may involve other mesocorticolimbic areas, such as the NAc, dorsal 

striatum, amygdala, and hippocampus that are critically involved in appetitive behavior –  i.e., 

the brain’s reward network. This hypothesis could be addressed by simultaneous recording from 
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these regions in future studies. If this were the case, it would suggest that 8 Hz-mediated 

network-wide neural synchrony may facilitate neural communication across groups of neurons 

throughout the network, promoting appetitive behaviors leading to reward.    

4.1.1.4 Individual neuronal encoding of punishment-based anxiety-like behavior 

We found that the vast majority of VTA and mPFC single neurons of all cell types 

encoded punishment risk by modulating their firing rates. Individual neuronal encoding appeared 

to be most pronounced at the time of the action, compared with other task events, suggesting that 

the majority of individual neurons represented the contingency between the action and 

punishment. 

When neuronal encoding properties were closely examined, distinct temporal and 

directional tuning properties were observed in a region- and cell-type specific manner. Similar to 

their action-evoked responses in general, we found that VTA DA neurons exhibited phasic 

encoding around the time of action, whereas VTA non-DA and mPFC neurons displayed 

temporally diffuse encoding. These results suggest that VTA and mPFC neurons are collectively 

capable of representing the behavioral impact of punishment on both short and extended 

timescales (Cohen et al., 2015; Somerville et al., 2013). 

The sign (direction) of neuronal responses to aversive events is thought to carry 

information about the motivational properties of an event. While heterogeneous response 

patterns have been commonly observed in PFC neuronal encoding of punishment (Kobayashi et 

al., 2006; Matsumoto et al., 2007; Seo and Lee, 2009; Ye et al., 2016), active debates are 

ongoing particularly with regard to the VTA DA neuronal response properties: in particular, 

whether they encode punishment with excitatory vs inhibitory responses (Bromberg-Martin et 

al., 2010; Schultz, 2016). Mounting evidence indicates that, in fact, distinct DA neuron groups 
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encode punishment with excitatory or inhibitory responses (Brischoux et al., 2009; Joshua et al., 

2008; Matsumoto and Hikosaka, 2009; Valenti et al., 2011). In other words, some DA neurons – 

including the typical RPE-coding neurons – treat rewarding and aversive events with opposite 

signs, while others treat them with the same sign. An integrative theory suggests that this 

dichotomy in DA neuronal encoding may reflect distinct motivational signals conveyed by 

distinct DA neuron groups to code the motivational value vs the salience of an event (Bromberg-

Martin et al., 2010; Schultz, 2016). Punishment is an event of negative value associated with 

avoidance, but it also has high salience deserving prioritized attention, and both aspects need to 

be encoded to ensure an adaptive behavioral response. Our observation of bidirectional encoding 

of punishment by equivalent proportions of VTA DA, non-DA, and mPFC neurons suggest that 

the VTA-mPFC neural circuit conveys distinct motivational properties of punishment. 

4.1.1.5 Neural population encoding of punishment-based anxiety-like behavior 

Given the prevalent individual neuronal encoding of punishment, VTA and mPFC 

neurons as a population would be expected to convey a high level of information about 

punishment risk. Indeed, we could accurately decode risk from the activity of the VTA and 

mPFC neural populations, corroborating the individual neuronal representation of punishment 

risk.  

Our behavioral data indicated remarkable trial-to-trial behavioral variability in RT, and 

the variability increased as a function of risk. To establish a more robust association between the 

behavioral and neural data, we examined to what extent the behavioral variability could be 

explained by the neural data. We initially found that individual neurons were limited in 

representing the trial-to-trial behavioral variability. However, we found that much more reliable 

inference of trial-by-trial behavior was possible from joint activity of the simultaneously 
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recorded neural populations: the neural population activity states (trajectories) varied 

systematically in correlation with the behavioral RT across trials. Importantly, in many cases, the 

trial-by-trial neural population trajectories could track the trial-to-trial behavioral variability even 

within the same block – especially in the high-risk block, where the highest degree of behavioral 

variability was observed. These findings suggest that VTA and mPFC neural population activity 

tracked anxiety-induced behavioral variation on a single-trial basis.  

4.1.1.6 Desynchronization of the VTA-mPFC circuit in anxiety  

At the circuit level, the VTA-mPFC neural synchrony we observed, which was mediated 

by a VTA-driven 8 Hz oscillation during risk-free actions, declined as a function of punishment 

risk. The power, coherence, and directionality of the 8 Hz oscillation diminished in both areas. 

Likewise, the phase-locking of mPFC and VTA neuronal spike activity to the VTA-driven 8 Hz 

oscillation significantly diminished as a function of punishment risk. These results suggest that 

punishment-based anxiety may involve a deficit in the functional network of neuron groups, 

linked via 8 Hz-mediated neural synchrony, that emerges in an appetitive behavioral state. In an 

aversive and anxiogenic state, distinct neuron groups that preferentially process punishment and 

aversive behavior may emerge, possibly with synchrony mediated by an oscillation at a distinct 

frequency band. Consistent with this hypothesis, recent studies have demonstrated that a slower 

oscillation (4 Hz) synchronized mPFC and amygdala, which may reflect the formation of an 

“aversive” neural network (Dejean et al., 2016; Karalis et al., 2016b).  
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4.1.2 Impact of anxiety on PFC-mediated flexible cognitive control of behavior  

Anxiety has been associated with detrimental effects on PFC-mediated cognitive control of 

behavior in complex task situations wherein rule-based decision-making and/or flexible shift to a 

new strategy are required. By examining the prefrontal neural correlates of extradimensional set-

shifting in a sustained state of anxiety, we found that cognitive inflexibility – i.e., inability to 

shift to a new task rule – was associated with disrupted neuronal encoding of task rules in 

dmPFC, but not OFC, as well as sustained suppression of the spontaneous PFC neuronal activity. 

4.1.2.1 Impact of anxiety on set-shifting task performance 

The most pronounced behavioral impact of anxiety was difficulty in shifting to a new 

rule: as the animals treated with the anxiogenic FG7142 displayed impaired ability to shift to a 

new rule – i.e., cognitive inflexibility. Animals treated with the anxiogenic drug were 

specifically impaired when shifting from the light rule to the side rule; most errors were 

committed in conflict trials, wherein the light stimulus was presented on the invalid side. It is 

important to note that the anxiogenic-treated animals readily shifted from the side rule to the 

light rule. In general, the anxiogenic-treated animals tended to select the cue port with the light 

stimulus regardless of the rule. Therefore, we concluded that anxiety biased animals’ action 

toward the light stimulus. Such behavioral bias may not be problematic in the absence of 

conflict, but it may be detrimental when a choice is required against the bias; i.e., when a choice 

based on a different perceptual dimension is required in the presence of conflict due to the 

irrelevant stimulus – i.e., a distractor. From a broader standpoint, these behavioral findings 

indicate that anxiety may bias decision making toward a sensory-based “bottom-up” process that 

is less flexible and more prone to distractions by irrelevant visual and other sensory distractors. 
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These findings, therefore, support the notion that, under anxiety, action selection is skewed by 

salient environmental stimuli at the expense of flexible top-down guided choices. It is important 

to note that such anxiety-related behavioral bias may be beneficial in hazardous and 

unpredictable situations when detection of potential threats and reflexive responses are required, 

wherein reflective, rule-based behavioral guidance may not be feasible.  

4.1.2.2 PFC neural correlates of set-shifting 

Cognitive flexibility – operationalized as flexible set-shifting in our study – involves a 

higher-order process requiring PFC neural encoding of multiple task-relevant variables such as 

the task rule and the response outcome signaled by delivery or omission of reward. A task rule 

comprises a permutation of relevant cues, actions, and outcomes; it defines an effective action 

leading to a desired outcome given the environmental stimuli at the moment. Once the action is 

executed, a neural representation of the outcome provides either a positive or negative 

reinforcement, allowing animals to retain the current rule or shift to an alternative rule in 

subsequent trials. We found that substantial proportions of dmPFC and OFC single neurons 

encoded the two critical task covariates – the task rule, and the response outcome of the previous 

and current trials. The single-neuronal encoding was corroborated by highly accurate decoding 

of the task variables achieved at the neural population level. Comparing PFC subregions, we 

found that dmPFC neurons tended to encode the task rule more robustly before and during the 

time of action, whereas OFC neurons displayed stronger encoding of the response outcome 

following the action, suggesting specialized roles subserved by the dmPFC and OFC for 

cognitive flexibility.   
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4.1.2.3 Impact of anxiety on PFC neuronal baseline activity   

The anxiogenic perturbation induced sustained suppression of dmPFC and OFC neuronal 

activity. The inhibitory effect of the anxiogenic was commonly observed in animals freely 

behaving in a home cage or performing the set-shifting task in an operant chamber. Such 

“hypofrontality” is consistent with human neuroimaging studies reporting reduced activation of 

the PFC in patients with anxiety disorders (Phelps et al., 2004; Shin et al., 2001). It is also 

consistent with studies showing stress-induced structural plasticity, such as general atrophy of 

dendrites and loss of spines that may lead to reduced excitatory tone in the PFC (Russo and 

Nestler, 2013; Shansky et al., 2009).  

Mechanistically, anxiety-related PFC neuronal suppression is likely to be attributed to the 

increased prefrontal DA transmission due to activation of the mesoprefrontal circuit. Converging 

lines of evidence point to this DA hypothesis. First, rodent and non-human primate studies have 

consistently demonstrated that the anxiogenic compound (FG7142), similar to other types of 

stressors, increased the DA concentration in PFC (Abercrombie et al., 1989; Bradberry et al., 

1991a; Moghaddam et al., 1990; Thierry et al., 1976). Likewise, hyper-reactive mesoprefrontal 

circuit was associated with clinical anxiety in humans (Cha et al., 2014). Second, the 

mesoprefrontal VTA DA neurons receive preferential input from the LHb, a brain area that 

selectively responds to aversive behavioral states. Accordingly, stimulation of VTA DA 

terminals in the PFC induced anxiety-like behavior (Gunaydin et al., 2014). Finally, the post-

synaptic effects of DA on PFC neurons are known to be complex, but primarily inhibitory when 

examined in vivo (Gorelova et al., 2002; Seamans et al., 2001; Sesack and Bunney, 1989). Thus, 

the anxiety-induced reduction in PFC neuronal activity may be mediated, in part, by selective 

activation of dopamine release in PFC. 
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4.1.2.4 Impact of anxiety on the PFC neural correlates of set-shifting   

We next investigated how the anxiogenic perturbation affected PFC neuronal encoding of 

task-relevant variables in task performing animals. The most pronounced impact of the 

anxiogenic was a significant decline in the dmPFC (but not OFC) neuronal encoding of the task 

rule preceding the action, suggesting that dmPFC-mediated rule-based action selection is 

disrupted in anxiety. The impaired dmPFC rule encoding was demonstrated as reduced 

proportion of rule-encoding neurons, as well as declined accuracy in decoding the task rule from 

the dmPFC neural population activity. By contrast, dmPFC and OFC neuronal encoding of task 

covariates reflecting animals’ trial-by-trial behavior – such as the response outcome, direction, 

and latency – remained intact when the system was perturbed by administration of the 

anxiogenic drug. Together these findings suggested susceptibility of the dmPFC neuronal 

encoding of the task rule to the anxiogenic perturbation.  

Disrupted dmPFC neuronal encoding of the task rule has been also demonstrated as the 

lack of the emerging neuronal selectivity between rules which was observed when animals 

learned set-shifting across trials in the absence of the anxiogenic perturbation. To associate this 

reduced dmPFC neural representation of the task rule with the specific behavioral deficit 

observed in conflict trials during the light-to-side rule shift, we further examined dmPFC 

neuronal rule discriminability specifically in conflict vs non-conflict trials. From the neural data 

recorded in the absence of anxiogenic perturbation, we observed that dmPFC neurons 

discriminated their firing activity compared with that of the other rule, which may be required to 

direct their behavior in the presence of the conflict. The anxiogenic perturbation diminished 

dmPFC neuronal rule discriminability in the conflict trials during the light-to-side shift, which 
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was consistent with the specific behavioral impairment in these trials – i.e., conflict trials in the 

side rule.  

Taken together, these results suggest that dmPFC neuronal encoding of the task rule was 

susceptible to the anxiogenic perturbation, leading to errors specifically when the rule-based 

guidance of behavior is required due to the presence of explicit distractors. The critical question 

is why the neuronal encoding of the task rule is specifically vulnerable to anxiogenic 

perturbation. We currently have an incomplete answer to this. Encoding the task rule is a higher-

order process that involves the representation of relationships among the task-relevant cues, 

actions, and outcomes, unlike the encoding of other task covariates that could be processed on a 

trial-by-trial basis. PFC neuronal encoding of a construct comprising complex cognitive-

perceptual structures may involve fine-tuned ensemble activity of numerous neurons, which 

might be more susceptible to perturbations. Thus, our findings suggest that the higher-order 

processing subserved by dmPFC may be particularly vulnerable to anxiety.   

4.2 THE NEURAL BASIS FOR THE BEHAVIORAL IMPACT OF ANXIETY 

In this section, we discuss how our findings relate to and further advance our current 

understanding of the neural basis of anxiety and behavioral its impact. Our data suggest that the 

neural basis of behavioral effects of anxiety may not be described simplistically as activation or 

inhibition of one specific type of neurons at one particular time point. Rather, the results suggest 

that anxiety affects both spontaneous and task-related activity of single neurons, neural 

populations, and network-level neural oscillations in the VTA-mPFC circuit, leading to aberrant 

cognitive and motivational processing.   
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4.2.1 Current models explaining the behavioral impact of anxiety 

For the recent decades, converging data have supported the hypothesis that mood disorders, 

including anxiety and depression, are characterized in part by a loss of excitatory and inhibitory 

PFC control over subcortical structures that process reward and punishment, such as the 

amygdala and, ventral and dorsal striatal areas, leading to aberrant affective and cognitive 

behaviors (Calhoon and Tye, 2015; Luthi and Luscher, 2014; Russo and Nestler, 2013; Tovote et 

al., 2015). This anomalous PFC control has been associated with changes in spontaneous and 

task-related PFC neural functioning (Arnsten, 2015; Maren and Holmes, 2016). Likewise, 

structural changes such as stress-induced synaptic plasticity, atrophy of neuronal dendrites and, 

loss of spines have suggested reduction of the excitatory tone in PFC (Liu et al., 2012; Shansky 

et al., 2009). In this framework, the VTA-mPFC circuit comprises a critical node, since stress-

induced activation of the mesoprefrontal circuit, as well as a sustained increase in the PFC DA 

tone, have both been associated with anxiety-related disruptions in PFC neural functioning 

(Arnsten, 2009; Hains and Arnsten, 2008). 

While this simplistic model remains conceptually valid, a more integrative and updated 

model needs to be synthesized, as our understanding of the PFC and mesocorticolimbic neural 

bases for cognitive, motivational, and affective processing has grown rapidly. Most importantly, 

mounting evidence has demonstrated that the PFC comprises highly heterogeneous neuron 

groups that encode different task events with distinct patterns of activity (Matsumoto et al., 2007; 

Pinto and Dan, 2015; Seo and Lee, 2009; Ye et al., 2016).  In fact, such heterogeneity – i.e., 

mixed selectivity – has been suggested as a key computational property that is essential for 

cognitive functions of the PFC (Ma et al., 2014; Rigotti et al., 2013). We reason that this 
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heterogeneous patterns of neuronal response, under “normal” or anxious conditions would be 

best revealed when an animal is cognitively and affectively engaged within a task.  

Functional heterogeneity observed in mesocorticolimbic brain areas is often associated 

with anatomical input-output connectivity, such that neurons that are similarly tuned for a task 

variable are more likely to be connected to each other (Lammel et al., 2011; Lammel et al., 

2012).  In addition to anatomical connectivity, enormous evidence has shown that functional 

connectivity may arise in association with a task-related construct in the form of neuron-to-

neuron interaction and/or network-wide interaction through coherent oscillations (Adhikari et al., 

2010; Buschman et al., 2012; Fries, 2015; Fujisawa et al., 2008; Fujisawa and Buzsaki, 2011; 

Karalis et al., 2016b; Kim et al., 2012; Kim et al., 2010; Likhtik et al., 2014). Such circuit- or 

network-level neural phenomena may only be revealed through the simultaneous monitoring of 

two or more neural structures from task performing animals. Therefore, we focused on how 

specific neural functioning was modulated by an anxiogenic perturbation with simultaneous 

recording from the VTA-mPFC neural circuit or different PFC subregions.   

4.2.2 Synthesizing an advanced model to explain the behavioral impact of anxiety 

Some of our findings are in partial agreement with the classic model for the PFC and 

mesoprefrontal role in the representation of anxiety. Numerous studies have suggested that the 

VTA-mPFC circuit preferentially responds to stressors and the resultant anxiety. 

Neurophysiological studies have shown that subpopulations of VTA DA neurons tend to increase 

their firing rates in response to aversive stimuli (Barik et al., 2013; Brischoux et al., 2009; Holly 

and Miczek, 2016; Thierry et al., 1976; Valenti et al., 2011; Zweifel et al., 2008). Meanwhile, 

neurochemical studies have shown elevation of DA concentration in the PFC in response to 
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stressful and anxiogenic manipulations (Abercrombie et al., 1989; Bradberry et al., 1991b; 

Moghaddam et al., 1990). It should be noted that many of these results was obtained while 

animals were anesthetized or freely behaving without task performance, corresponding to the 

baseline period in our experiments. Indeed, our baseline neuronal activity data were consistent 

with these previous findings (Figure 2-9). We found VTA DA neurons displayed elevated 

baseline firing rates in anxiety; on the other hand, we observed sustained suppression of baseline 

PFC neuronal activity by the anxiogenic treatment (Figure 3-1). Thus, the classic view on the 

mesoprefrontal representation of anxiety may fit the overall basal circuit state of anxiety: hyper- 

and hypo-activity of VTA DA neurons and PFC neurons, respectively. However, when we 

examined task-related neuronal activity under the anxiety condition, we observed highly 

heterogeneous modulations of neuronal activity. We believe that interpreting these 

heterogeneous activity modulations and their relationship to behavioral alterations is the key to 

understand the neural basis of anxiety.        

4.2.2.1 Examination of task-related neuronal activity reveals neural functioning susceptible 

to anxiety 

Considering the abovementioned functional heterogeneity of VTA and mPFC neurons, it 

is critical to tease out which neuronal functions are specifically affected by anxiety in connection 

with a specific behavioral disruption. In a translational perspective, such specificity is of great 

importance in discovering therapeutic targets for specific behavioral symptoms related to stress 

and anxiety. Collectively, our findings demonstrate that the VTA and mPFC neuronal encoding 

of action is specifically more prone to disruptions in anxiety, while the sustained impact of 

anxiety also involves moderate alterations in baseline neuronal activity (Figure 4-1). This 

susceptibility of peri-action encoding to the effects of anxiety was observed throughout our 
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experiments, in which the action involved a complex decision making or distinct action-outcome 

contingencies. Specifically, we observed that mPFC neuronal encoding of the task rule required 

for the rule-based action selection was selectively impaired in anxiety (Section 3). In addition, 

we observed that the mPFC and VTA neuronal activity during a simple instrumental action was 

profoundly modulated as a function of punishment risk contingent on the action. By contrast, the 

impact of anxiety on neuronal activity at the time of the task outcome or at the time of the cue 

appeared to be less pronounced. 

 

 

 

 

Figure 4-1 Fictive illustrations of trial-by-trial neuronal population activity represented in the neural 

population state space (hypothetical data).  

(a) Trial-by-trial neural population states/trajectories during the peri-action epoch can be extracted by dimensionality 

reduction methods. Each dot represents the neural population state within the population state space defined based 

on the neuronal population activity co-modulation structure. The peri-action neural population trajectories may 

differ as a function of a task covariate relevant to the control of the action. For instance, a trajectory from one task 

rule (green) may be differentiated from that of another rule (red) in a cognitive decision-making task. Each line 

depicts a time-evolving neural population trajectory from the beginning and end of each trial. (b) Our data suggest 

that anxiety induces sustained changes in the ongoing activity of the individual neurons and neuronal populations 

(depicted with a gray arrow) that may be associated with sustained anxiety-related behavioral and affective changes 
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on a large time scale. (c) Furthermore, our neural data analyses reveal that anxiety specifically disrupts the peri-

action activity of the individual neurons and neural populations (depicted with small gray arrows) on top of the 

sustained changes in the baseline activity (depicted with a large gray arrow). This specific alteration of the peri-

action neuronal activity was associated with the disruption of goal-directed action involving motivational and 

cognitive processing in anxiety.   

 

 

The selective susceptibility of the neuronal encoding of action to perturbation by anxiety 

reveals an important principle underlying the behavioral impact of anxiety: that is, the impact of 

anxiety may be more pronounced when the system is actively engaged in processing of task-

relevant covariates to produce an adaptive behavior. To select and generate a goal-directed 

action, processing of diverse task-relevant covariates is required, which involves heterogeneous 

fine-tuned neuronal activity as a function of the task covariates. This dynamic state of the system 

may be more vulnerable to anxiogenic perturbations, resulting in cognitive errors or emotional 

responses as observed in our study and elsewhere (Arnsten, 2015). In support of this idea, we 

observed that the peri-action neuronal activity per se as well as the peri-action neuronal encoding 

of task covariates were more sensitive to anxiogenic manipulations. Furthermore, we noted that 

the peri-action neural oscillatory activity in the VTA-mPFC circuit displayed susceptibility to 

anxiety. We observed that mesoprefrontal theta oscillations arose specifically at the time of the 

action during the risky reward-seeking task in a non-anxious state, effectively phase-modulating 

the VTA and mPFC neuronal spike activity. Both neural oscillation and oscillation-mediated 

neural synchrony are known to arise as a net result of dynamic excitatory and inhibitory 

interactions amongst distinct types of principal neurons and local interneurons (Buzsaki et al., 
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2012). The observed disruption of the peri-action neural oscillations supports the notion that a 

dynamic state of the neural system may enhance its vulnerability to anxiety.   

4.2.2.2 Functional heterogeneity may represent the mesocorticolimbic “appetitive” vs 

“aversive” network 

We observed profound functional heterogeneity when we examined how mPFC and VTA 

neurons modulated their peri-action activity as a function of punishment risk contingent on the 

action. In both regions, we found that equivalent proportions of neurons exhibited excitatory vs 

inhibitory activity modulations –  i.e., some increased their firing rates, while others decreased 

their firing rates as a function of punishment risk (Section 2, Figure 2-7b). While this functional 

heterogeneity could be interpreted as encoding of distinct motivational properties by different 

groups of neurons, as discussed in Section 2, critical questions remain: how do these distinct 

neuronal responses arise? Do neurons that show similar responses across different brain regions 

comprise functional networks that preferentially represent appetitive or aversive behavioral 

states? Specifically, do the VTA and mPFC neurons that increased or decreased their activity as 

a function of punishment risk comprise aversive vs appetitive neuronal networks? 

Accumulating evidence suggests that neuron groups responding to appetitive vs aversive 

task events may be segregated by their distinct input-output connectivity – i.e., projection 

specificity (Beier et al., 2015; Lammel et al., 2011; Lammel et al., 2012; Menegas et al., 2015; 

Ye et al., 2016). Remarkably, recent findings indicate that distinct groups of neurons even within 

the same region possess distinct appetitive vs aversive tuning based on their input-output 

connectivity, in contrast to the classic way of thinking that tended to assign one brain region 

exclusively to either side. For example, a series of studies have demonstrated that distinct DA 

neuron groups were distinguished by their input-output connectivity and anatomical localization 
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within the VTA (Beier et al., 2015; Lammel et al., 2008; Lammel et al., 2011; Lammel et al., 

2012). Optogenetic activation of these distinct circuits led to appetitive or aversive behavioral 

consequences, supporting the notion that distinct functional neural networks may exist in the 

mesocorticolimbic system (Gunaydin et al., 2014; Lammel et al., 2012). Likewise, Ye et al., 

(2016) found that distinct mPFC neuron groups emerged in response to appetitive or aversive 

behavioral experiences. Using brain-wide axonal projection mapping, the authors demonstrated 

that the mPFC neurons that selectively responded to appetitive vs aversive events preferentially 

projected to the NAc or LHb, respectively (Ye et al., 2016). Collectively, these results suggest 

that distinct functional neural networks, comprising neuron groups from overlapping and non-

overlapping mesocorticolimbic regions, may represent distinct-valence experiences. In this 

framework, anxiety can be redefined as a neural state wherein the mesocorticolimbic neural 

networks of representing negative and positive valence are hyper- and hypo-active, respectively. 

Accordingly, the heterogeneous VTA and mPFC neuronal groups with distinct responses to 

punishment risk may represent the increased and decreased activation, respectively, of the 

aversive and appetitive networks in a risky situation. Admittedly, the lack of interrogation of 

projection specificity in our study prevents us from fully testing this hypothesis. Future studies 

using electrophysiology from neurons with their input-output connectivity revealed by viral 

tracing will be necessary for a rigorous test of this hypothesis. 

4.2.2.3 Oscillation-based neural synchrony may mediate the activation of an “aversive” cell 

assembly and deactivation of an “appetitive” cell assembly in anxiety 

While the anatomical input-output connectivity may be the foundation for the appetitive 

and aversive neural networks, it alone may not be sufficient to resolve the “binding problem”:  

i.e., how are the neuron groups within the network recruited together selectively, in a temporally 
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specific manner, within the proper behavioral context? In this regard, the neural synchrony 

mediated by coherent oscillations may play a key role in activation or deactivation of a specific 

functional neural network depending on the behavioral context. We believe that the 8 Hz-

oscillation-mediated neural synchrony in the VTA-mPFC circuit may play this role for the 

following reasons (Figure 4-2). First, if an oscillation-mediated synchrony is used for selective 

binding of appetitive or aversive neuron groups, the oscillation itself should be discriminative of 

the behavioral state. The mesoprefrontal 8 Hz oscillation satisfies this, as it exhibited sensitivity 

for punishment risk. Second, the 8 Hz oscillation appeared to be coherent across different brain 

regions; in addition, the VTA-driven 8 Hz oscillation could coordinate neuronal spike activity in 

both VTA and mPFC. This interregional coherence and synchrony are thought to be crucial 

criteria for an oscillation to support a brain-wide functional neural network. Third, a functional 

neural network is thought to emerge specifically at the moment when an appetitive (approach) or 

an aversive (avoidance) behavior is required – i.e., it should exhibit temporal specificity. The 8 

Hz oscillation arose specifically during preparation and execution of the appetitive action in the 

absence of risk. Considering these properties, we propose that the 8 Hz-osillation-mediated 

neural synchrony promotes the formation of the appetitive neural network in an appetitive 

behavioral state by synchronizing the activity of the neurons emitting spikes during risk-free 

reward-seeking actions. Although we only recorded from the VTA and mPFC, it has been shown 

in many studies that neural oscillations, especially low-frequency oscillations, often represent a 

network-level phenomenon implicating multiple neural structures (Adhikari et al., 2010; 

Fujisawa and Buzsaki, 2011; Karalis et al., 2016b; Kopell et al., 2000). Therefore, a future study 

with simultaneous recording of more mesocorticolimbic structures will ultimately be needed to 
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test the hypothesis that the 8 Hz-mediated neural synchrony is a manifestation of the brain-wide 

formation of a network for appetitive behavior.  

A critical remaining question is whether there is other oscillation-based neural synchrony 

between VTA and PFC that are selective for an aversive state. In our study, we have not 

observed the emergence of a distinct oscillation in the VTA-mPFC circuit that is clearly 

associated with an anxious state, while we observed the decline of the 8 Hz-mediated neural 

synchrony. However, we note that other groups recently have shown that a slower theta band 

oscillation (4 Hz) arose in mPFC in synchrony with the amygdala during a conditioned fearful 

state (Dejean et al., 2016; Karalis et al., 2016b; Likhtik et al., 2014). This suggests that the 

slower 4 Hz theta oscillation may contribute to the formation of an “aversive” cell assembly, in 

contrast to the faster 8 Hz theta oscillation that we believe contributes to an “appetitive” cell 

assembly. This scenario would predict that the appetitive cell assembly mediated by the faster 

theta rhythm may diminish in the presence of punishment risk, whereas we would expect the 

aversive cell assembly based on the slower theta to arise in the mesoprefrontal circuit. Consistent 

with this prediction, we showed that the mesoprefrontal 8 Hz-mediated synchrony significantly 

declined as a function of risk. However, we did not observe the emergence of a 4 Hz oscillation; 

we speculate that this is the case because animals in our task engaged in instrumental actions 

even in the presence of risk unlike the fear-conditioned animals that generated freezing, for the 

most part – i.e., primarily an avoidance response – in other studies.  
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Figure 4-2 Punishment risk disrupts individual neuron and neuronal population activity as well as 8 Hz-

oscillation-mediated neural synchrony in the VTA-mPFC neural circuit. 

Punishment risk contingent on the action was represented by the majority of individual VTA and mPFC neurons 

with bidirectional modulation of their activity. This heterogeneous individual neuronal activity modulation gave rise 

to distinct neural population activity states, from which trial-by-trial risk-based behavior could be accurately 

inferred. At the neural circuit level, punishment risk reduced the 8 Hz-oscillation-mediated neural synchrony in the 

mesoprefrontal circuit that emerged during the purely appetitive action in the absence of punishment risk. Neural 

synchrony mediated by an 8 Hz oscillation may subserve binding of the mesoprefrontal neurons responding to the 

appetitive action into the “appetitive” neural network. Our observation of the decline in 8 Hz-mediated neural 

synchrony may reflect reduced activation of the appetitive neural network in the presence of punishment risk.      
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In sum, our findings and recent findings from others suggest that anxiety may be a state 

supported by the activation of a brain-wide aversive neural network and deactivation of the 

appetitive network, each of which involving distinct neural oscillations and oscillation-mediated 

neural synchrony. From a translational perspective, it will be important to address whether 

recovering the faster theta rhythmicity associated with appetitive behavior might promote 

recovery from pathological aversive behaviors observed in anxiety and other mood disorders. 

4.3 CONCLUSION AND FUTURE DIRECTIONS 

The current dissertation work focused on gaining a better understanding of the nature of VTA 

and PFC neural representations of anxiety and its impact on cognitive and motivated behavior. 

Some older models suggested that stress and resultant anxiety are associated with hyperactivity 

of the mesoprefrontal circuit, which leads to aberrant cognitive and motivational processing in 

the PFC. Our findings suggest that this simplistic model may partially fit the basal, non-task-

related state of the mesoprefrontal circuit in anxiety. However, analyses of the neural and 

behavioral data during task events have revealed important aspects of the mesoprefrontal neural 

representation of anxiety and its behavioral impacts. 

First, we found that mPFC and VTA neuronal activity and neuronal encoding of task 

covariates, before and during the action was specifically susceptible to anxiogenic perturbation. 

The peri-action period is a dynamic state, wherein complex functions amongst cue, action, and 

outcome are represented with fine-tuned patterns of neuronal activity that presumably facilitate 

the selection and generation of an adaptive action. We observed that the peri-action neuronal 

activity and the peri-action neuronal encoding of task covariates, such as the task rule, were 
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particularly prone to disruptions in anxiety. This suggests that a dynamic state of the nervous 

system may increase vulnerability to anxiogenic perturbations.    

Second, we found that distinct mPFC and VTA neuron groups displayed excitatory or 

inhibitory activity modulations in anxiety. This functional heterogeneity suggests that distinct 

groups of neurons may be preferentially tuned for appetitive vs aversive behavioral states. 

Mounting evidence suggests that neuron groups with similar behavioral tuning tend to be 

anatomically connected to one another (Beier et al., 2015; Lammel et al., 2011; Lammel et al., 

2012; Menegas et al., 2015; Ye et al., 2016); this supports the notion that distinct functional 

neural networks, comprising groups of neurons with similar behavioral valence tuning, may be 

activated or suppressed to promote an appetitive or aversive behavior. Extending this notion, we 

propose that coherent oscillation-mediated neural synchrony may bind distinct neuron groups 

across the mesocorticolimbic system into a cell assembly that gives rise to an aversive or 

appetitive behavior (Figure 4-2). Under this framework, anxiety may be best defined as a biased 

neural state supported by overactivation of the brain-wide aversive neural network and 

underactivation of the appetitive network, each of which involves distinct neural oscillations and 

oscillation-mediated neural synchrony. These neural states may promote representation of 

environmental stimuli of high salience and negative valence, and lead to execution of appropriate 

behavioral responses. Importantly, however, our data indicate that the behavioral coping may 

come at the expense of disruptions in flexible top-down control of behavior. 

Our model must be further developed and verified in future studies. Within the PFC and 

mesoprefrontal neural circuit, further interrogations of neuronal activity, in combination with 

viral and/or optogenetic tagging of input-output connectivity and/or cell-type specificity, may 

allow us to draw connections among certain types of activity modulation of specific cell groups 
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with specific behavioral changes in anxiety. We suggest that distinct brain-wide functional 

neural networks, mediated by coherent oscillations across mesocorticolimbic structures, may 

bind neurons together into a cell assembly that respond preferentially to an appetitive or an 

aversive state. To test this notion experimentally, simultaneous multi-site electrophysiological 

recording will be necessary to capture the ebbs and flows of functional neural networks 

underlying anxiety-like behaviors.   

 Clinically, the current findings suggest that the VTA-mPFC circuit might be a promising 

target for a circuit-based intervention with currently available tools for deep brain stimulation or 

transcranial stimulation that have been effective in treating other psychiatric and neurological 

symptoms (Laxton et al., 2010; Mayberg et al., 2005; Stefani et al., 2007). To this end, our data 

suggest that recovering the VTA-driven theta oscillations in the mesoprefrontal and 

mesocorticolimbic networks could be a viable approach to drive goal-directed behavior, 

potentially overcoming the behavioral impact of anxiety. 
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