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Location-based social networks (LBSNs) have recently attracted the interest of millions of

users who can now not only connect and interact with their friends - as it also happens

in traditional online social networks - but can also voluntarily share their whereabouts in

real time. A location database is the backbone of a location-based social network and

includes fine-grained semantic information for real-world places. The footprints captured in

a location database represent the socioeconomic activities of city dwellers and urban mobility

at scale. LBSNs bridge the gap between the online and offline physical world, providing an

unprecedented opportunity for researchers to access information that will allow them to place

and understand human movements in the contexts of urban, social and economic activities.

In this dissertation, I design statistical analysis and modeling frameworks to examine

how factors, including social interaction, economic incentives and local events, affect human

movement across places in urban space. The dissertation first shows that people’s visitation

to local places exhibit significant levels of homophily, where peer influence can explain up

to 40% of a geographically localized similarity between friends. We also find that the social

selection mechanism is triggered by non-trivial similarity which is captured by places with

specific network characteristics. Next, our quasi-experimental analysis reveals that online

promotions in LBSNs are not as effective as anecdotal stories might suggest in attracting

customers, and consequently in affecting the underlying city-dweller mobility. These results

can have significant implications on advertisement strategies for local businesses. Finally,

our developed framework is applied to assess the impact of local government decisions on
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urban mobility and economic activities, which can provide a blueprint for future educated

policy making. The outcome of this dissertation is envisioned to help better understand

human urban movements motivated by social, economic and external environmental factors

and further foster applications in sociology, local economy and urban planning.

Keywords: Urban Mobility; Location-based Social Networks; Statistical Modeling; Local

Economy; Peer Influence; Quasi-Experimental Analysis.
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1.0 INTRODUCTION

Urban and transportation planners, as well as, city officials have been trying to understand

the way people act and behave in our cities for many years now. This will allow them to

design cities that can deliver a livable, resilient and sustainable urban environment that is

relevant to the city dwellers needs. These efforts can be seen from the recent rise of open

data plan (e.g., NYC OpenData [117]) launched by many local government that encourage

researchers and data scientists to access and analyze public digital data in order to provide

data-driven solutions and guidance for a better urban planning. However, footprints about

human movements are still far away from being available at scale in terms of number of

participants and geographical reach.

During the last few years a number of location-based services and online social media

has emerged mainly due to the technological advancements in mobile computing and net-

working that have led to the rapid proliferation of powerful mobile devices with location

sensors. People can use these devices to obtain a wide range of information related to the

geographic area they are currently in. Location-based social networks (LBSNs for short)

form a prominent representative mobile service, which allows mobile users to connect and

interact with their friends. More importantly, LBSN users can also explore and connect with

local establishments through check-ins. The latter essentially bridge the gap between offline

and online physical worlds.

A typical LBSN has two distinct components; a social network and a location log for

each user. The social part of the system resembles any other existing online social networks,

where friendships are declared and people can interact with their friends. What differentiates

LBSNs from other digital social networks is the type of interaction that are feasible among

the users. The main feature of this interaction is location sharing, i.e., users share their
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locations with their friends.

Real-world places are at the core of location-based social networks, of which each con-

tains fine-grain location information (e.g., latitude, longitude, street-level address, etc.), rich

semantic information (e.g., venue category) and user-generated contents (e.g., reviews, pho-

tos, etc.). These places serve as the bridge between mobile users, local economy and urban

environment. As users move across places, we can learn about their geographic location,

the types of activities they engage in as well as the temporal and social dynamics of these

activities. The check-ins of people into real places can potentially indicate their interest

and preference in exploring and navigating urban areas. From a user perspective this in-

formation can serve as a signal for the aggregate opinion of users with respect to a specific

establishment, as well as how their opinions with regard to real-world places are shared and

propagated through social connections. From the perspective of a venue LBSNs offer a set

of useful mechanisms that can potentially affect the decision of a user to visit the establish-

ment. Of particular interest for our study is the ability of business owners to offer special,

Groupon-like, deals through the platform. This is essentially an economic incentive that can

affect the mobility and choices of the users.

As millions of user exploit location-based social networks, the user-generated contents

associated with mobility traces enjoy an unprecedented scale in terms of number of users

engaged, geographical reach and spatio-temporal granularity. Access to such large-scale

datasets of mobile activities liberates us from traditional methods used to collect datasets

that describe human movement and interactions in real world. For example, the survey-based

methods that are typically employed by urban planners incur a high cost both in terms of

time and effort. Consequently the data collected are often of small scale. Furthermore,

data describing human movement such as Call Detailed Records (CDR) are owned by large

telecommunication providers and are usually unavailable to the public. Also, the architec-

ture of the cellular network technology does not allow for fine-grained spatial granularity in

CDRs, while spatial semantic information is absent. Finally, the data of origin-destination

transitions and trajectory coming from various urban transportation modes, such as taxis

with GPS sensors installed, city bicycle system and subway system, can provide an accurate

spatial representation of human movement in urban space, but still can not capture the

2



semantic contexts where human movement emerge.

Given the aforementioned reasons, this dissertation focuses on publicly available data

from LBSNs. However, what opportunities exactly does this information really bring? After

all there have been a number of studies that attempt to describe human movement and ac-

tivities in a variety of fields ranging from social to computer and physical sciences. For start,

empirical data on human mobility and socioeconomic activities from LBSNs can be help-

ful for validating models and theories that have been developed by scientists to explain the

regular motives behind human mobility (e.g., the gravity model [157], the intervening oppor-

tunity model [149] etc.). More importantly though, previous work on human movement has

focused on capturing the statistical properties of urban mobility. For instance, a statistical

power-law distribution of human displacement has been identified [22, 69], which empirically

reveals that human movements are often deterred by geographical distance. However, what

are the other factors that can potentially affect human displacement?

Contrary to existing work on modeling of the statistical properties of the human urban

mobility patterns, our main contribution in this dissertation is to tie the latter with the

context they emerge in as captured through LBSNs. These patterns are affected by social

(e.g., social connections), economic (e.g., local business advertisement) and environmental

(e.g., local government decisions and urban events such as street festivals, sport events,

road constructions, etc.) factors. In this dissertation, I design various statistical analysis

frameworks using randomization and quasi-experimental techniques to identify and quantify

the force of such factors that potentially motivate human movement across places in urban

space. This dissertation is envisioned to fill the gap between statistical mobility models and

urban activities, by building modeling frameworks that will enable their joint analysis.

Chapter Outline: The rest of this chapter is organized as follows. I begin in Section 1.1

with a brief overview on how traditional survey-based methods and census dataset initiate

the empirical study of human migration patterns, which is followed by more recent methods

using mobile communication data from cellular networks as well as the mobility data gener-

ated from urban transportation modes. Motivated by the limitations of previously applied

methods, in Section 1.2 I introduce the unique characteristics of data coming from location-

based social networks and then discuss the opportunities LBSNs bring for human movement
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studies in urban contexts. Then in 1.3, I elaborate the research hypothesis examined in this

dissertation on human urban mobility, in the contexts of social interaction, local business

advertising and urban policy making, which can be captured by data from LBSNs. Finally

in Section 1.4, I summarize the contributions of this dissertation by highlighting our findings

in each chapter.

1.1 TRADITIONAL METHODS TO STUDY HUMAN MOVEMENT

In this section, I introduce a historical view of human movement studies using data from

survey-based method and census as well as phone call records in mobile cellular networks.

Then I discuss a more recent emerged type of urban mobility data captured by various

transportation modes that have been favored by researchers in the fields of urban computing

and planning.

1.1.1 Survey-based and Census Data

The first empirical study on human movement would be traced back to the seminal work

published by Ravenstein [128] in 1885, namely “The Laws of Migration”. In particular,

Ravenstein analyzed the census data in United Kingdom which includes migration move-

ments of million of individuals, where some important patterns of human movement were

highlighted: (i) movements are often over only a short distance; (ii) distant migration of-

ten go to urban areas with commerce and industry; and (iii) migrations are stimulated by

economic factors. These statements indicate that human movement are deterred by geo-

graphical distance but economic incentives can stimulate migrations. The work was one of

the attempts to frame the understanding of human movement. Since then, a large amount

of work has appeared aiming to analyze and model human migration [142, 97, 71]. However,

the census data covering a large corpus of population are usually updated every several years,

thus only provide a very static viewpoint of human movement. Also the locations reported

from participants are typically at country and city levels. There are little knowledge about
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what the exact places and contexts people transit between. Therefore, the census data suffers

from limited spatial and temporal granularity to understand human movement.

While the research using census data still provide an unprecedented insight into human

migration patterns at a large scale, it is not able to capture the large daily snapshots of human

movement within urban space. With the rapid urbanization, understanding the pulse of a

city through the mobility of its dwellers and visitors has become central to geographical and

social sciences as well as to urban and transportation planning. Previously survey-based

methods were often applied to acquire knowledge about how people commute from home to

work [18] and how urban space are used [139, 34]. These surveys have also made it possible

to obtain contextual information about the origins and destinations of trips in a city [80] as

well as the transport means employed by commuters. However, survey-based method often

conduct over a limited size of population representatives (often due to the high cost) and

it is not applicable to capture the temporal dynamics of human movement and activities in

urban space.

1.1.2 Mobile Phone Call Records

With the rapid development of telecommunication and mobile devices since the last decade in

the 20th century, mobile communications have been brought into the daily life of millions of

people. It is the first chance that human movement can be tracked at seconds with a relative

high location accuracy, large geographical scale and population size. When people make a

call or send a SMS message, their locations associated with the nearest Base Transceiver

Station (BTS) are recorded.

However, privacy concerns have been the major barrier for such data to be easily accessed

by researchers and scientists. It is only in recent years, the Phone Detailed Records (CDR)

are sporadically becoming available to a limited number of research groups. One of the

first studies using CDR to model human movement was published in Nature [69]. Together

with an earlier novel study [22] by tracking the dollar notes as proxies of human movement,

both work verify that human displacement at the country level follow a statistical power-law

distribution. This finding aligns well with the statements on human migration patterns in
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the early stage that human movements often cover short distances. After that, there are

quite a few work followed utilizing CDRs to understand the properties of human movement

in various spatial granularities and contexts [145, 155, 26].

Although the CDRs have provided a breakthrough opportunity for human movement

study, the data is still only available under some specific agreement with telecommunication

providers but not accessible to the public. Also, the spatial granularity of human movement

represented by CDRs is not accurate enough, with only up to a few hundred meters depending

on the coverage and distribution of mobile cellular towers. Also, the location information

represented by the cellular tower only capture the coarse whereabouts of human movement,

but no contextual and semantic knowledge are attached to the places where people go.

The latter is critical to capture and help researchers understand the social and economic

motivations of human movement. To fill these gaps, the recent emergence of location-based

services and online geo-social media enable recoding human movement and their associated

socio-economic activities at much finer-grain spatial and temporal granularities.

1.1.3 Urban Mobility Data Captured by Transportation Modes

The transportation infrastructures in urban cities often shape the way that people commute

and travel. When people move by taking and interacting with a specific transportation mode

(e.g., subway, bus, taxi or bicycle), their mobility can be recorded and represented in some

formats. For example, when one picks up (drops off) a bike in a city bicycle-sharing system

or enters (exits) the subway stations using the metro card, the origin and destination of

a trip can be obtained by the station locations. With the GPS sensor deployed in taxis,

the transitions or even a full trajectory of the passengers can be tracked. The data sensed

from transportation infrastructures can represent urban mobility at a much more accurate

granularity (e.g., the typical accuracy of GPS is 10-20m) compared to that of CDRs. As

transportation infrastructures become indispensable parts of urban dwellers’ daily life and

are dedicated to connect every corner across urban space, we can learn intra-urban human

movement and dynamics and at large scale in terms of population size and spatio-temporal

granularity.
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In recent years, these types of data gradually become available to urban researchers

and scientists, especially when there are increasing number of local governments launch-

ing their “Open Data Plan”, e.g., Captical Bikeshare [27] in Washington D.C., Pittsburgh

HealthyRide [122], NYC OpenData [117]. It is reported that 119 cities in United Stated have

released their open data platforms 1. The goal of open data plan is to to foster city data

transparency, while without losing the privacy, to a broad range of urban researchers and

data scientists that they can help with developing a more healthy, more efficient and smarter

city life. Since then, a large number of work have begun to leverage such data to understand

human movement and activities in urban cities [168, 58, 88, 161, 100] and further facilitate

various applications in urban computing [167]. The urban mobility data generated from

transportation infrastructures form a great data source to estimate and predict human and

traffic flow in urban space cells, which is of particular importance for traffic engineering and

resource allocation. However, similar to CDR data, the semantic activities associated with

the transitions or trajectories are often hard to be recorded. This lack of information can

be compensated by the semantic location information from location-based service and geo-

soica media, such as point-of-interests [161] and real-world venues in location-based social

networks [111] as discussed later in Section 1.2.

1.2 OPPORTUNITIES FROM LOCATION-BASED SOCIAL NETWOKRS

In this section, I first highlight the unique characteristics of location-based social networks

and further elaborate the advantage of utilizing the data from LBSNs to understand human

movement and their associated activities in social, economic and urban contexts. After that,

I point out some potential limitations and biases of the mobility data generated in LBSNs.

1.2.1 Unique Features of Location-based Social Networks

With the advancements in mobile computing and the rapid proliferation of powerful mobile

devices with location sensors, a large number of location-based services and online social

1http://us-city.census.okfn.org/
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medias have emerged during the last few years. Location-based social networks form a

prominent representative mobile service, which allows mobile users to connect and interact

with their friends. What differentiate LBSNs from traditional social networks, e.g., Facebook

and Twitter, is that the content sharing in LBSNs focuses on real-world places. The unique

attributes of a location-based social network form a promising platform for human urban

movement study in various contexts. Without loss of generality, I mainly take Foursquare

[53], one of the most popular LBSN in the world, as a representative to discuss the specific

characteristics of a location-based social network. Some other platforms, like Yelp [160] and

Facebook Places [51] resemble Foursquare with similar features.

Venue database: A venue database is at the core of a location-based social network,

where each venue corresponds a real-world place. Venues are either initiated by the service

provider as seeds at the initial stage, or continuously created and updated by the public

crowd. The nature of crowd-sourcing mechanism fosters the explosion of the venue database

while its accuracy can be guaranteed by aggregating editing suggestions from the public.

Recently, Foursquare has claimed to have more than 65 million venues 2 which span in many

countries and cities in the world. To maintain the accuracy of the venue database, Foursquare

use a honeypot-based strategy to select a pool of loyal Superusers who can vigilantly maintain

a watchful eye over the data for venues in their city or neighborhood [153]. The venue

database serves as the location layer for the Internet, helping to connect people with places

around the world. Venues do not only have accurate location information (e.g., latitude,

longitude point, a full street-level address, etc.), but contain semantic information about

their types (e.g., coffee shops, American Restaurant, etc.). When users go and share their

presence at places, we can learn their mobility at a much accurate spatial granularity as well

as, especially the most novel part compared to CDR and data from transportation modes,

what type of activities associated with their movements.

Check-in: Users in LBSNs can voluntarily share their presence at places via check-ins

in real time whenever Internet connection is available. In order to keep users engaged and

willing to share their check-ins, some intriguing “gamification” features are introduced in

LBSNs. For example, users in Foursquare are awarded “virtual goods”, such as badges,

2https://foursquare.com/about

8

https://foursquare.com/about


points and mayorship, when they contribute to the community in the network by voluntarily

sharing information or accomplishing desired tasks. A pair of friends can participate in a

score competition via a “leaderboard” which ranks their point scores in a descending order

[85]. A previous study with an analysis of quantitative interviews indicated that Foursquare’s

gaming elements can impact human mobility decisions [57]. The user can either keep a check-

in private (e.g., for self-record purpose) or make it visible directly to their friends via social

connections. The latter provides a great opportunity to examine the interplay of human

mobility and social interaction at scale.

Commercial Application: The most important application of a LBSN is to help

local businesses attract customers. First of all, users can share their experience associated

with their check-ins at venues through writing tips or reviews, rating the visited local busi-

ness or posting photos. A venue in LBSNs is often regarded as an online “Yellow Page”

for a physical place, with both static status information (e.g., hours and menu for a restau-

rant) and dynamic opinions shared by the crowd. The word-of-mouth [82] effects in LBSNs

(e.g., reviews in Yelp) have already been proved to impact the success of local businesses.

More directly, LBSNs are offering mechanisms that can serve as an affordable advertisement

channel to local businesses for attracting customers. Business owners can claim to manage

their venues. In particular, a business joined in LBSNs can promote special offers to its

customers that connect through the platform. This type of data essentially open the gate for

researchers to understand at scale how the economic incentive stimulate individuals’ visits

to local businesses.

Public Availability: The data in LBSNs can be accessed easily through various

methods. For example, with the Foursquare Venue API 3, one can access the detailed venue

status, such as number of check-ins, unique users and tips, at the moment of querying.

This is also the main methods applied in this dissertation. Meanwhile, the mechanism of

cross-platform information sharing enable check-ins in LBSNs be synchronized to the feeds

of other third-party online social media platforms (e.g., Twitter and Facebook), by which

APIs provided (e.g., Twitter Streaming APIs 4) can be utilized to access the check-in data

3https://developer.foursquare.com/docs/venues/venues
4https://dev.twitter.com/streaming/
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in real time.

As millions of users adopt LBSNs and share their whereabouts in real-world places, hu-

man movements can be learnt at a large scale, in terms of number of participants, geograph-

ical reach and spatio-temporal granularity, and, in particular, in a much richer contexts.

1.2.2 Opportunities for Urban Mobility Study

Despite their relatively short life-time - as compared to traditional online social media - there

has already been an interesting line of work utilizing LBSN datasets. In particular, there

are various studies across multiple areas that exploit similar data. Representative examples

include human mobility [112, 31, 158], social-spatial network analysis [40, 31], urban comput-

ing and neighborhood modeling [116, 39], businesses placement [89, 64], location prediction

and recommendation [113, 114] as well as location privacy and security [126, 77, 162, 165]

to name just a few. Of particular interest in this dissertation is that the data from LBSNs

provide unprecedented opportunities for understanding human movement in social, economic

and urban contexts.

Interplay of Human Mobility and Social Interactions: In online social networks,

people tend to be involved with others that exhibit similar characteristics and behaviors.

This phenomenon is named “homophily” and has been discussed for various types of human

behaviors, such as digital product adoption [14], emotion [55], politician opinions [21], etc.

However, few work has been done with regard to human mobility. As users’ mobile behaviors

captured through check-ins are shared with their friends, it becomes feasible to examine

whether there is significant correlation between check-ins behaviors and social ties and what

are the underlying reasons. On one hand, friends may influence the decision of individuals’

movement. For example, previous work [31] indicated that long-distance travel is more

likely to be influenced by social ties. On the other hand, when people often go and meet

at common places, they are more likely to make a social connection. Mining features from

human movement and activities in the physical world would help with social link prediction

[135, 155]. As present in Chapter 3, with a longitudinal data from LBSNs available we are

able to preform a microscopic study on the interplay of human urban movement and social
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connections.

Incentive of Local Business Advertisement: Furthermore, one of the most impor-

tant commercial applications of LBSNs is helping the local businesses attract more customers.

User-generated content and aggregate check-in counts serve as signals for the quality of the

establishment and can have significant effects on their revenue [102]. In addition, LBSNs

provide an immediate way for venues to advertise to potential customers. One of the adver-

tisement mechanisms allows local businesses to provide economic incentives through “special

offers” to customers that connect with them through these services. For instance, a venue

on Foursquare or Yelp5 can offer special deals (i.e., discounts) to people that check-in to

the locale through the application. There have already been success stories featured in the

media for businesses that have benefited from this mechanism [54]. This can potentially

be an inexpensive way of advertisement for local businesses to people that are nearby and

actually have the potential to visit them. As present in Chapter 4, the time-series of venue

check-ins collected from LBSNs allow us at the first time to examine the effectiveness of local

business advertisement to attract customers, which can provide valuable implications on its

ability to influence the mobility of LBSN users through economic incentives.

Urban Events and Local Government Decisions: Finally, check-in information

can serve as a proxy to the economic activity of a venue or a neighborhood in general.

Hence, it can be used to assess the impact of external events in urban environment and local

government decisions (e.g., road closures, street fairs, transportation facility update, etc.) on

the local economy, thus the underlying human movement. Models that capture the effects of

an “urban intervention” are crucial and not yet studied [167]. For example, understanding

how a construction project that requires road closures affects the local economy is crucial

for calculating liquidated damages. However, since to date there is no methodology to

incorporate these effects in the calculations, they are ignored altogether. By analyzing the

mobility data from LBSNs, the local government can quickly obtain an educated guidance on

how urban environment and policy change impact local economy and the underlying urban

mobility.

5www.yelp.com
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1.2.3 Limitations and Biases

The datasets from LBSNs I utilize in this dissertation might suffer from a variety of limita-

tions and biases that lead to various challenges. First, there can be demographic bias since

these datasets capture the behaviors of a specific part of the population that uses digital

social networks (e.g., “tech savvy” people, who are usually the young people). Furthermore,

the voluntary nature of location sharing can provide us with an “undersampled” dataset of

human urban activities. Given that it is hard to know how people choose to share their lo-

cations (i.e., it is not necessarily uniformly at random) it will be extremely hard to account

for this bias. Moreover, virtual and real-world rewards can lead to people generate fake

check-ins [77] [162], while the creation time of a friendship in the online social network might

be different than that in the real world. The latter distorts the study of interplay of human

mobility and social interactions. Finally, the number of check-ins or unique customers might

not a good proxy for the actual visitation or revenue of local businesses.

Despite the above limitations, I believe our studies using the LBSNs datasets can greatly

help understand human movement in a much richer urban contexts and further facilitate

social, economic and urban planning applications. Note here that, some specific research

questions are not expected to suffer from these biases. For example, in Chapter 4 I am really

interested in the users of location-based social networks, since the promotions are offered

through these systems and only these people can benefit from them. Hence, even though the

number of check-ins might not be representative for the actual revenue, it is a good signal

for the visibility of the business to the LBSN ecosystem.

1.3 RESEARCH HYPOTHESIS

Human movements usually follow general properties from a statistical point of view. Inspired

by Newtons law of gravity, Gravity Model [28, 49, 93] describes that the flow of people

from the origin to the destination is proportional to their population size and inversely

proportional to the distance between them with certain magnitude. As another line of work,
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Stouffers law of intervening opportunities [149] points out that “the number of persons going

a given distance is directly proportional to the number of opportunities at that distance

and inversely proportional to the number of intervening opportunities”. These two types of

models have been empirically verified and extended to fit human mobility data from different

sources. More recently, a variation to gravity model is to model the statistical distribution

of displacement distance, where there is no assumption for the population size in the origin

and destination zones. These statistical models are often aimed to describe the human

movements at an aggregate level in terms of geographical and temporal granularities, thus

the contexts where movements take place are often ignored.

Human mobility and activities in urban space often exhibit periodic patterns both tem-

porally and geographically [115, 31]. Although human movement turns out to highly pre-

dictable [145], often captured by people’s daily commuting [18, 94] or regular travelling

between habitats [12], human movement across urban space can be evolved with many other

dynamic factors instead of just geographical constrains and regular travel needs. Even from

the statistical viewpoint, one can still observe long-distance movements. Such movements

may be stimulated by other external factors, e.g., economic incentives as stated in “Laws of

Migration” by Ravenstein [128]. As present in Section 1.2, the data coming from location-

based social networks provide unprecedented opportunities to capture various urban contexts

where a much richer knowledge of human movement can be learnt.

Instead of modeling of the statistical properties of the urban human mobility patterns,

this dissertation is to tie the latter with the social, economic and urban contexts they emerge

in as captured through LBSNs. The core research hypothesis explored in this dissertation is

“human urban mobility can be affected by social interactions, economic incen-

tives as well as urban events and local government policy making”. In particular,

three types of research hypotheses are studied in Chapter 3, 4 and 5, separately.

In Chapter 3, I examine the interplay between human urban mobility (captured by their

check-ins in LBSNs) and their social connections. The research hypotheses include:

• Hypothesis 3.1: A significant correlation exists between human movement across urban

space and their social connections.

• Hypothesis 3.2: Users’ visitations to real world places are influenced by their friends at
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specific geographical scales and the level depends on the type of places.

• Hypothesis 3.3: Non-trivial similarity of users’ mobility is likely to trigger formations of

social ties.

Inspired by the commercial application of LBSNs, in Chapter 4 I further investigate

the effectiveness of a local business advertising mechanism in LBSNs to attract customers’

variations to local places, in both long term and short term. In particular, the two hypotheses

are:

• Hypothesis 4.1: The presence of a promotion through location-based social media leads

to an increase in the visitation of a local business during the duration of the campaign.

• Hypothesis 4.2: The presence of a promotion through location-based social media leads

to an increase in the visitation of a local business after the campaign has been completed.

In Chapter 5, I finally study the impact of urban events (initiated by local government

and community) on human movement to nearby local places, where I take the street fair

events as the study case. The two research assumptions are listed as follows:

• Hypothesis 5.1: Street fair events lead to an increase in customer visitations for nearby

business venues.

• Hypothesis 5.2: The impact of street fairs on the customer visitations is geographically

contained in a very small area.

1.4 CONTRIBUTIONS AND CHAPTERS

The major contribution in this dissertation is to tie human movement with the social, eco-

nomic and urban contexts they emerge in as captured through location-based social networks.

In particular, it is threefold: (i) I confirm with our findings that homophily, a common phe-

nomenon in social networks, also significantly exist with regard to individuals’ movement

in LBSNS. Our designed statistical randomization models further quantify to what extent

peer influence can explain the geographically local similarity between friends; (ii) inspired by

the commercial application of LBSNs, I analyze data of 14 million venues that we collected

14



from Foursquare to examine the effectiveness of local businesses advertisement to attract

the visitations of customers, which essentially represent how the economic incentive affect

underlying individuals’ mobility. I further design and implement a supervised learning model

by extracting three type of features, aiming to provide strategies for improving campaign

effectiveness in local marketing; This study had been featured in a number of media press

such as Pittsburgh Post-Gazette [1]. (iii) Finally, I apply quasi-experimental techniques to

quantify the impact of local government decisions on local economy, by taking LBSN users’

check-ins to businesses venues as a proxy.

The rest of the dissertation is organized as follows.

In Chapter 2, I elaborate the background and related work to this dissertation. In Section

2.1, I first summarize two major classes of work on statistical laws and modeling of human

movement, which lay the foundations for modern understanding of human movement. Then

in Section 2.2, I discuss more recent work using data from location-based social network and

media to understand and model human movement and urban activities.

In Chapter 3, I present our study on the interplay of human movement and social inter-

actions. In particular, we use a longitudinal dataset obtained from Gowalla 6 (described in

Section 3.1, a location-based social network, to examine the reasons behind the homophilous

patterns observed with regards to the actual spots visited by people. After an brief introduc-

tion of two of the fundamental mechanisms, peer influence and social selection, that lead to

the phenomenon of spatial homophily, I study its significance in Section 3.2. Then in Section

3.3 various randomization models are designed to quantify the levels of peer influence with

regard to different geographical scales and location contexts. Finally, I examine the social

selection mechanism in the network in Section 3.4. The main findings in Chapter 3 can be

summarized in the following:

• There is a significant correlation between social ties and users’ movement represented by

their check-ins.

• While the similarity of users’ geo-trails at a global scale cannot be attributed to peer in-

fluence, the latter can explain on average up to 40% of the geographically local similarity

between friends.

6https://en.wikipedia.org/wiki/Gowalla
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• The levels of local peer influence differ depending on the type of the location we consider.

• The social selection mechanism works upon non-trivial similarity which is captured by

specific types of venues.

In Chapter 4, I further discuss our study on how economic incentives captured by a

groupon-like promotion in LBSNs, affect users’ visitations to promoted local businesses.

In particular, we conduct a systematic study of the effectiveness of the LBSN advertising

paradigm for local businesses to attract customers. This work is the first to address this

problem by collecting and analyzing a large longitudinal dataset (as described in Section 4.1)

of more than 14 million businesses on Foursquare. In Section 4.2, I first design statistical

hypothesis testing experiments to evaluate both the long-term and short-term effects of

LBSN campaigns for participating businesses, while taking into consideration the influence

of possible confounding factors. In particular, our findings are validated by adopting two

alternative methods for statistical testing, which lead to the same conclusions. In addition

in Section 4.3, in order to gain a deeper understanding of our results and increase the

practical value of our methodology, we design and implement a supervised learning model

for predicting the popularity of a venue during and after a campaign by extracting three types

of features, that are venue-related, promotion-related, and geographical features. Finally in

Section 4.4, I discuss the implications of our work for businesses but also for the LBSN

platforms as well. In particular, I describe how our findings can be used to inform strategies

for improving campaign effectiveness. The major findings in this chapter are highlighted as

follows:

• The effects of special offers through the LBSN platform examined are significantly more

limited than what anecdotal success stories seem to suggest.

• Our experiments provide encouraging evidence on the feasibility of this prediction task,

which can serve as a practical tool for supporting the design and cost-benefit analysis of

LBSN campaigns. Specifically, a simple logistic regression model is sufficient to achieve

an 83% accuracy with an 88% AUC.

• The influence of the considered features are fully aligned with our main results, as we

find that promotion-related features have only a marginal contribution to the estimation
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of popularity.

In Chapter 5, I present our study on examining the impact of urban events and local

government decisions on local economy. Given the absence of actual revenue data for the

local businesses, I take the human movement to nearby business venues as a proxy. In

particular, I collect Foursquare check-ins (in Section 5.2) from the city of Pittsburgh over

a three-month period (June-August 2015) and evaluate the effect of summer street fairs on

customers’ check-ins to nearby businesses. Given only the observational data, then in Section

5.1 I design a framework using two quasi-experimental techniques, that are Propensity Score

Matching and Difference-in-Differences, to quantify the impact of street fairs. The main

findings in this chapter can be summarized as follows:

• We provide quantifiable evidence that support the positive impact of street fairs on

human check-ins at nearby local businesses. In particular, the impact decays fast with

the spatial distance to events and the level of impact varies depending on different types

of locations.

• We show how social media data - despite their potential biases - can be useful to public

policy makers and local governments since they are transparent, accessible and are able

to provide good evidence when analyzed properly.

Finally, in Chapter 6, I conclude this dissertation with future directions.
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2.0 BACKGROUND AND RELATED STUDIES

Identifying the pulse of a city through the mobility of its dwellers and visitors has been central

to geographical and social sciences as well as to urban and transportation planning. Human

mobility has been studied for more than a century since the seminal work by Ravenstein [128].

Traditional mobility modellers aimed to capture the statistical properties of movement flows

between the origin and destination given a certain spatial environment where movement can

take place, such as gravity model [157] and intervening opportunity model [149]. Recent

studies suggest a universal power-law distribution of human displacement, at the country

level, by tracking the spread of dollar notes [22] and using CDRs [69]. The availability of

new mobility data such as Phone Call Records and mobile social media check-ins further

facilitate the study of human movement in a finer spatial granularity. The work on modeling

human movement in urban cities [112] [158] and human movement prediction [145] [32] [133]

[31] are just quite a few examples. In this chapter, I elaborate the related work on human

movement studies to the focus of this dissertation. On one hand, I summarize the two major

classes of work on statistical modeling of human mobility and the corresponding variations.

On the other hand, I explore more related studies on understanding human movement in

various urban contexts.

2.1 STATISTICAL MODELING OF HUMAN MOBILITY

In general, the goal of mobility modeling is to capture the statistical property of movement

flows. At an earlier stage, the mobility modellers aim to predict the movement flow between

the origin and the destination. There are two major classes of models following this line.

19



The first one is inspired by Newtons law of gravity and supports that mobility is impeded

by distance. Movements over long distances cost more than moves over short distances. In

particular, the flow of people from the origin to the destination is proportional to their pop-

ulation size and inversely proportional to the distance between them with certain magnitude

[28, 49, 93]. Formally, given the origin i with population mass Oi and the destination j with

population mass Dj as well as their geographical distance dij, the Gravity Model is defined

as

Tij = k
OiDj

f(dij)
(2.1)

where the scaling factor k and the form of function f(·) are often fitted to specific data.

The second class of models is based on Stouffers law of intervening opportunities [149].

As Stouffer posits it “The number of persons going a given distance is directly proportional

to the number of opportunities at that distance and inversely proportional to the number of

intervening opportunities”. Simply put, displacements are driven by the spatial distribution

of places of interest. While existing literature seems to favor Stouffers theory [107, 75], both

models are extensively used. Actually, these two classes of models are eventually proved to

be statistically equivalent [157].

With the human movement data becoming available at scale in terms of population size,

geographical reach and spatial granularity, both models can be verified empirically and some

variations have been proposed. For example, the work by Simini et al. [140] addressed the

limitation of Gravity Model and they put forward a parameter-free Radiation model. In this

model, the expected flux
〈
Tij
〉

from origin i to destination j is defined as

〈
Tij
〉

= Ti
oidj

(oi + sij) (oi + dj + sij)
(2.2)

where oi and dj are the total population of location i and j. Ti is the total number

of transits starting from i and sij the total population in the circle of radius rij centred

at i, but excluding the source and destination population. However, this model is proved
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to predict the population movements between countries and cities successfully [140], but

does not perform well when applied to intra-city movements [99]. Inspired by the law of

intervening opportunities, the work [112] proposed a Rank model to capture the probability of

a user in LBSNs transits from a starting place to the destination place given the distribution

of places in between, which is provably aligned well with real data in many cities.

Another line of variation to gravity model is to model the statistical distribution of

displacement distance, where there is no assumption for the population size in the origin

and destination zones. In the work [22], the authors proposed a rather novel way to track

human movement with a high spatio-temporal granularity, by tracing 464 thousand marked

back notes carried by human. For each pair of successive locations reported for a dollar bill,

the displacement distance ∆r was calculated. The authors then measured and modeled the

probability density of ∆r and found that the distribution of human displacements follows a

power-law distribution, that is

P (∆r) ∝ ∆−β (2.3)

where β = 1.59± 0.02.

Soon after this study, the first large scale study to model the human displacement us-

ing phone Call Detailed Record was published [69]. The power-law distribution of human

displacement are confirmed with similar exponent at β = 1.75 ± 0.15. The authors further

proposed an update model with an exponential cut-off, formally,

P (∆r) = (∆r + ∆r0)−βexp(−∆r

k
) (2.4)

where ∆r0 and k are parameters depending on the dataset, in that case, ∆r0 = 1.5 km and

k = 400 km.

These models are even empirically studied today using human displacements in geo-social

media, e.g., Twitter [87]. The statistical properties discussed above provide a very static

viewpoint of human movement that the displacements are often deterred by the geographical

distance or intervening opportunities between the origin and destination. To describe the
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dynamics of human flow between the origin and destination, some work in the domain

of transportation and traffic engineering have been done on O-D flow matrix estimation,

modeling and prediction [8, 9, 76, 164]. However, the contexts where movements take place

are often ignored. Although human movement turns out to be highly predictable [145], often

captured by people’s daily commuting [18, 94] or travelling between regular habitats [12],

human movement across urban space can be evolved with many other factors instead of just

geographical constrains and regular travel needs. Even from the statistical viewpoint, we still

can observe long-distance movements. Such movements may be stimulated by other external

factors, e.g., economic incentives as stated in “Laws of Migration” by Ravenstein [128]. The

unique data (as discussed in Section 1.2) coming from location-based social networks offer

an unprecedented opportunity to learn the knowledge of human movement in a much richer

context.

2.2 HUMAN MOBILITY IN URBAN CONTEXTS

In recent years, data from a variety of sources (e.g., location-based social networks, CDRs

from cellular networks, GPS traces, etc.) have been used to quantify and model the dynamic

activities that people engage in the urban space [161, 129, 16, 39, 163]. The common mo-

tivation behind these studies lays on the fact that understanding the spatial and temporal

properties of urban activities can facilitate data-driven urban planning operations such as

urban redevelopment and resource allocation. For instances, the work [161] mined the latent

semantic information from taxi transitions to identify the functionality of urban regions. The

urban land use can be inferred by analyzing the human movement using phone call records

from cellular networks [16]. As another example, the authors in work [39] redefine the ur-

ban neighborhood using check-ins behaviors of users in Foursquare. Human movement and

activities in urban space essentially capture their responds to the dynamic socioeconomic

environment they live, thus understanding the regular patterns and how the patterns change

dynamically with the environment is critical and attract tremendous amount of research

work.
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Human activities in urban cities usually have a temporally periodic pattern [115] and

human movements are periodic both spatially and temporally most of the time [31]. However,

external factors and incentives can distort such regular patterns. For example, the work [72]

found that the periodic rhythm of human behaviors captured by check-ins were disrupted

during the hurricane. The authors in [146] analyzed GPS records of 1.6 million users over

one year and found that human behavior and their mobility following a large-scale disaster

sometimes correlate with their mobility patterns during normal times, but are also highly

impacted by their social relationship, intensity of disaster, government appointed shelters,

news reporting, large population flow and etc. In the same direction, the work [156] took

geo-tagged tweets as a proxy of human displacement and found that the climate change

(e.g., Typhoons) had significant influence on human movement patterns. With the data

available from location-based social networks, our main contribution in this dissertation is

to understand human movement in various urban contexts. In particular, we study how

factors including social connections, economic incentive of location business advertisement

and external urban events interplay with human movement across urban places. In the

following, I summarize the previous work related to each topic and highlight the difference

from the work in this dissertation.

Interplay of Social Interaction and Human Movement: The availability of

electronic traces of human activities has enabled the study of human behaviors in online

social networks. Of particular interest in this dissertation is the phenomenon of Homophily,

that is people tend to have similar attributes/behaviors with their friends. When it comes

to human mobility, previous work using either phone call records [31, 12] and check-ins in

LBSNs [31, 134] find a significant correlation between human movement and social ties.

For example, the authors of the work [31] find that individuals’ long-ranged travel is more

influenced by social network ties while short-distance travel is periodic both spatially and

temporally and not effected. They further show that social relationships can explain about

10% to 30% of all human movement. In summary, the work on interplay of social networks

and human movement can be divided into two classes. One class of work focus on how the

social network structure can help mobility prediction [132, 31] and location recommendation

[159, 114]. Another part of work examine the co-location features to help link prediction
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[155, 38, 40, 135].

In this dissertation, a microscopic study is provided on two fundamental mechanisms,

peer influence and social selection, that can explain mobility similarity between friends. Peer

influence and social selection are two main mechanisms that lead to homophilous patterns

(e.g., friends are more similar in their mobility than random pairs) in online social networks.

Isolating the corresponding effects of these forces is important for several reasons. First, the

two processes produce homophily in different ways with regarding to network structure [78]:

peer influence facilitates spreading of behaviors through links and produce network-wide

uniformity, while social selection drives the network toward smaller clusters of like-minded

individuals. Furthermore, the two mechanisms function based on different types of forces:

interaction and similarity. In particular, some applications such as virus marketing [44, 105]

leverage users social interactions to predict future behaviors (influence), which recommender

systems [130] build predictions based on the similarity of peoples behaviors (selection). Quite

a few general models, such as Holme-Newman Model [78, 37] and a quantitative model [136],

have been proposed to separate and quantify the significance of the two mechanisms.

In this dissertation, we analyze a longitudinal dataset, with users’ geo-trails in a LBSN

and dynamic social interactions, to examine the two mechanisms that lead to mobility sim-

ilarity. In particular, we design different randomization tests to examine the effect of one

mechanism while eliminating the effect from the other one.. In particular, we delve into the

details of peer influence, and we examine both its geographic scope as well as its contextual

properties captured by the types of places. For social selection, we investigate the non-trivial

mobility similarity that tends to be captured by places with specific network characteristics.

Economic Incentive: Online promotions have gained a lot of attention in recent liter-

ature. Such promotions have been a popular strategy for local merchants to increase revenues

and/or raise the awareness of potential customers. A detailed business model analysis on

Groupon was first presented by [4], while in [43] the authors surveyed businesses that provide

Groupon deals to determine their satisfaction. Edelman et al. [46] considered the benefits

and drawbacks from a merchant’s point of view on using Groupon and provided a model that

captures the interplay between advertising and price discrimination effects and the potential

benefits to merchants. Finally, Byers et al. [24] designed a predictive model for the Groupon
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deal size by combining features of the offer with information drawn from social media. They

further examined the effect of Groupon deals on Yelp rating scores [25] [23]. However, there

is no work done yet to examine the effectiveness of the advertisement mechanisms in LBSNs

to attract customers, thus affect the underlying human mobility captured by their check-ins

at local businesses. Our work in Chapter 4 present the first empirical study on evaluating

and modeling the effect of the promotion mechanisms in a location-based social network.

Urban Environment and Local Government Decisions: Human movement in

urban space usually exhibits a strong temporal periodicity [145], the dynamics of urban

environment with urban events, such as urban road constructions, festival activities, sport

events or urban planning, may change the original pattern of human movement to local

places, introducing potential economic impacts on local businesses and economy. Previous

study focus on the aggregated economic impacts of mega-events [104]. Getz et al. [65]

investigate the effects of festival events on attracting tourists to attractions and destination

areas, in order to facilitate the planning, development and marketing of festivals and special

events. Previous work have also indicated a promising economic benefits generated from

large sport events in cities, such as FIFA World Cup [96], Commonwealth Games [70] and

Olympic Games [19]. Our work presented in Chapter 5 instead investigate the economic

impacts of micro-events on users’ movement to small-scale local businesses, and how the

impact vary depending on spatial distance and type of business venues.

2.3 SUMMARY

In this chapter, I provide a systematic reviews on traditional statistical modeling of human

movement, and then summarize recent work on studying human movement and activities

in urban contexts. In summary, with movement data becoming available at a boarder pop-

ulation size, larger geographical reach, finer spatio-temproal granularity and richer urban

contexts, human movement study has been transiting in both geographical scale, e.g., from

country and inter-city levels to intra-city level, and in methodologies, e.g., from traditional

statistical modeling of regular laws to more detailed studies in a semantic urban context.
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In the following chapter, I present the first part of the dissertation on a microscopic study

of the interplay between human movement in LBSNs and their social interactions, that is

the phenomenon of spatial homophily.
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3.0 UNDERSTANDING SPATIAL HOMOPHILY IN LBSNS

Homophily - also referred to as assortative mixing - is a phenomenon that appears very often

in (social) networks. A (positively) mixed network, is one where the number of ties/edges

between vertices that exhibit the same characteristics is significantly higher compared to the

number that would have been expected if connections were made at random. McPherson

et al. [106] refer to this phenomenon as “the birds of a feather flock together”, and present

many instances of homophily in social networks with regards to a large spectrum of people’s

attributes (e.g., age, religion, education, occupation, behavior etc.).

While mixing patterns in a network with respect to a specific characteristic can be for-

mally and precisely quantified (e.g., assortativity coefficient [110]), the reasons behind their

existence are not clearly understood and might differ for different scenarios. Nevertheless,

there are three sources of mechanisms that are usually cited as the roots of homophily: (i)

peer influence; (ii) social selection; and (iii) confounding variables.

Peer Influence: Peer influence appears specifically when we examine mutable char-

acteristics, such as behavior, political views etc. When this mechanism is in play, people

first become friends for reasons that are possibly not related to the characteristic X under

examination, and then one influences the other on decisions related to X. In this chapter,

we are interested in studying mixing patterns with regards to locations visited by people (as

we will see in detail in Section 3.2 these patterns are homophilous). Given that this is a

mutable characteristic, peer influence can be a possible cause of the observed assortativity.

Figure 3.1a illustrates the peer influence mechanism in the context examined in our work. In

this figure, we depict a socio-affiliation network, where affiliations (shown as the rectangular

nodes) are the actual venues that people visit. We have further timestamped representative

edges, with the time of their creation. In particular, Joe and Jack became friends at time
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tk, while Joe has visited “Li’s Restaurant” at time tk−n (that is, prior to becoming friends

with Jack). On the other hand, Jack has not visited “Li’s Restaurant” prior to time tk.

Assuming peer influence between Joe and Jack, an affiliation edge between Jack and “Li’s

Restaurant” will appear some time after they become friends (e.g., tk+m) as presented in the

figure. Simply put, when peer influence operates, people tend to first form a social tie and

then become (more) similar.

Social Selection: Social selection can cause assortative mixing in networks, either

with regards to mutable or immutable (e.g., age, race, sex etc.) characteristics. When social

selection acts, people tend to associate with others that are already similar to them with

regards to the characteristic under examination. In other words, people are already similar

and this is essentially the cause of the friendship creation. Figure 3.1b illustrates the above

concept. As we see, Joe and Alice, became friends at time tl. Prior to that, they exhibit a

large similarity with regards to the places visited, since they both visited “Li’s Restaurant”

and “Mike’s Coffee Shop”. Simply put, when social selection operates people first become

(or are by nature) similar and then they create a social tie.

Confounding Variables: It is also called environmental or external influence. There

are some unknown factors, such as geographical constrains, that may cause pairs of friends

to behave similarly with each other, no matter if social influence or selection plays in a role.

For example, people live in the same urban city are more likely to both build social ties and

exhibit similar mobility behaviors. Therefore the urban mobility (e.g., check-ins) between

pairs of friends tend to exhibit a higher similarity than what is expected if the social tie is

created between two people who are randomly selected from the whole world. There is little

work [109] examining external influence since it is often unobservable.

In this dissertation, we focus on the first two mechanisms, peer influence and social

selection, that lead to the same observable phenomenon, that is, homophily with regards to

the locations visited by friends in our setting. However, it might be hard to trace back to its

actual roots. As it should be obvious from the above, one needs longitudinal data in order to

decompose the reasons behind assortative mixing. This has traditionally been a burden for

large scale studies on this topic. However, during the last years there is a rapid penetration

of online social media in people’s daily activities. This, in turn, has enabled the collection of
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massive datasets that can foster social studies on human interactions. For instance, Bakshy

et al. [13] using data collected from Twitter, examine the way that people adopt and share

content, while Goel et al. [66] study how content diffuses through the underlying social

network.

In this chapter, we use a longitudinal dataset obtained from Gowalla, a location-based

social network, in order to examine the reasons behind the homophilous patterns observed

with regards to the actual spots visited by people. In particular, we study the existence

as well as the levels of peer influence and social selection in the network. Our approach is

microscopic, in the sense that we consider the above mechanisms in a variety of granularities.

In particular, we consider global versus local influence, the relation between the actual type

of location and the underlying peer influence, as well as the impact of the type of location

on the effectiveness of the social selection process. Our main findings can be summarized in

the following:

• While the similarity of users’ geo-trails at a global scale cannot be attributed to peer in-

fluence, the latter can explain on average up to 40% of the geographically local similarity

between friends.

• The levels of local peer influence differ depending on the type of the location we consider.

• The social selection mechanism works upon non-trivial similarity and can be stimulated

by specific types of venues.
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Figure 3.1: Two mechanisms as the roots of homophily.
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Chapter Outline: The rest of the chapter is organized as follows. Section 3.1 describes

the longitudinal dataset we use for our analysis. In Section 3.2 we examine the existence

of homophily with regards to the locations visited by people. Section 3.3 provides a de-

tailed, microscopic analysis of peer influence, while Section 3.4 examines the social selection

mechanism. Section 3.6 discusses the related work to this work. Finally, Section 3.5 briefly

discusses the scope and limitations of our study and concludes our work.

3.1 DATASET AND ANALYSIS SETUP

In this section I first briefly describe the Gowalla data utilized and present the initial setup

and definitions before the following statistical analysis. Then I formally introduce the re-

search hypothesis examined in this chapter.

3.1.1 Dateset and Definitions

The longitudinal dataset that we used for our study was provided to us by the authors of

[135]. It was crawled from Gowalla, a commercial LBSN1, between May 05, 2010 and August

18, 2010. The dataset consists of 10,097,713 public check-ins performed by 183,709 users in

1,470,727 distinct places. Every venue is associated with a category, that essentially describes

the type of location the user checked-in. There are 283 distinct categories in Gowalla. Every

check-in log is a tuple of the form <User ID, Venue ID, Latitude, Longitude, Time,

Category ID>. 27,895 venues are unclassified (i.e., Category ID = NULL) and hence, we

discard them. This results in a dataset with 10,062,916 check-ins, in 1,442,832 distinct

places by 183,500 users (209 users had check-ins only in unclassified spots).

Gowalla users also participate in a friendship network with reciprocal relations, which

consists of 765,871 links. Gowalla was crawled every day for the aforementioned period, and

hence the formation time of every friendship that was created after May 05, 2010 was able

to be obtained. For the purposes of our work, we will use only the pairs of friends for which

1Gowalla has been acquired from Facebook and ceased its operations in March 2012.
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we have the actual friendship creation time. There are 289,888 such links in total. Some

of the edges may also have been deleted (e.g., Jack “de-friends” Alice). For these links we

also have a deletion time. Hence, the friendship edges have the following 4-tuple form <User

ID, Friend ID, Formation Time, Deletion Time>. From the 289,888 links above, only

≈ 2% of them were deleted afterwards, and thus, we can safely discard them. If we further

keep only pairs of friends for which both users have at least one check-in we have a final

number of 202,424 links that we use for our study.

Home Location of a User: Our dataset does not include home location information

for the users. However, we are interested in examining the mechanisms of peer influence and

social selection in relation to the distance between the home locations of the users. In order

to infer the home locations of the users, we apply a density clustering algorithm (DBSCAN

[50]) on the check-in history of each user. The check-in points are then grouped into clusters

each of which is in general of different size. We select the dominant cluster (say C1), i.e.,

the one with the maximum number of the data points (i.e., check-ins), and we re-apply

DBSCAN on C1 to improve the estimation accuracy. Finally, we pick again the dominant

cluster (say C1,1) and we estimate the home location of the user as the centroid of the data

points (lat/lon) in C1,1.

Definitions: Before moving on to our analysis, we wish to introduce some terminology

that we will be used throughout the rest of the paper. Two users u and v are said to have

been check-in co-located, if they have both checked-in to at least one common venue,

regardless of the actual check-in time. Furthermore, u and v are said to have been area

co-located at v’s home location, if u has checked-in to at least one venue, within 25kms

from v’s home location.

In the above definitions, we do not impose a constraint of co-location both in time

and space2. When Alice and Bob influence each other with respect to some behavior, e.g.,

adopting a specific product, it does not necessarily mean that they will buy it at the same

time. This is exactly what Figure 3.1a depicts. Furthermore, similarity is related with the

actual actions and not necessarily when these actions take place (e.g., two people that write

on a specific Web blog can still be considered similar, regardless of whether they both write

2Note that this would require knowledge of a “check-out” time as well.
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on Thursday nights or not.).

3.1.2 Hypothesis Development

The existence of homophily has been confirmed in large online social networks with regards

to people’s interests, opinions and many other behaviors [141]. In this dissertation, we study

the homophilous patterns with regards to human check-ins in physical places, and investigate

the two underlying roots, peer influence and social selection. On one hand, previous study

[31] has indicated that peer influence plays in a role only for distant movement but not

for short displacements. Meanwhile, the level of influence can vary depending on type of

activities associated with their movements. For example, pairs of friends are more likely to

hand out to nightlife places but less frequently visit a subway station together. One the other

hand, similarity of mobility behaviors can lead a pair of users to form a social connections.

However, common check-ins (i.e., co-locations) do not always lead them to be similar in an

important way, and further trigger them to be connected.

Therefore, for the rest of this chapter we provide a microscopic study on the two mech-

anisms behind spatial homophily. In particular, we examine peer influence by considering

different spatial scales and types of venues, and we further investigate specific network char-

acteristics of co-locations that can capture the non-trivial similarity between friends. In

particular, we examine the following three hypotheses:

Hypothesis 3.1 (Spatial Homophily Existence). A significant correlation exists between

human movement across urban space and their social connections.

Hypothesis 3.2 (Spatial Peer Influence). Users’ visitations to real world places are influ-

enced by their friends at specific geographical scales and the level depends on the type of

places.

Hypothesis 3.3 (Spatial Social Selection). Non-trivial similarity of users’ mobility is likely

to trigger formations of social ties.
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3.2 SIGNIFICANCE OF SPATIAL HOMOPHILY

Traditionally, vertices in a network are annotated with scalar or enumerative characteristics

and metrics for quantifying the level of homophily in these scenarios are very well defined

[110]. Nevertheless, in our case, we want to evaluate the mixing patterns in the network

with regards to the spatial behavior of users, that is, the places they visit, which cannot be

described by a single number or label.

A user u of our LBSN is associated with a vector cu capturing the places he has visited.

In particular the ith element of vector cu, is equal to the number of check-ins that u has

in venue i. Since we cannot directly compare vectors and directly apply the assortativity

coefficient [110], we rely on a different methodology. For our purposes, we will need to define

a similarity measure between vectors. In this work, we will utilize the cosine similarity. In

particular, the similarity between two users u and v is defined as:

simu,v =
cu · cv

‖cu‖2‖cv‖2

(3.1)

In order to identify the existence of assortative mixing - or not - in the network we will

follow the same line of thought as in the definition of the assortativity coefficient, tailored

though in our context. The assortativity coefficient essentially estimates the difference be-

tween the actual number of edges in the network that fall between vertices of the same type

(enumerative characteristic) or of similar attribute value (scalar characteristic) and those

that would have been expected if connections were made at random. Adopting this idea in

our context, we ought to calculate the average spatial similarity between friends in the real

network, simreal, and compare it with the expected average similarity if connections were

made at random. In order to calculate the latter we will rely on Monte Carlo simulations.

In particular, we will sample the ensemble of G(n,m) Erdős-Rènyi random graphs3 and

calculate the average spatial similarity between friends in the sampled networks, simrnd. If

simrnd � simreal, the network essentially exhibits homophily.

Nevertheless, sampling the pure G(n,m) model might lead to under-estimation of the

3A brief background on Erdős-Rènyi random graphs is provided at Appendix A.
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average similarity value. In particular, it has been found that the majority of one’s friends

live in nearby locations [134] [31]. In other words, the probability distribution of the home

location distance between two friends df has the majority of its mass concentrated into small

distances. We have also verified this is true in the dataset we are using (see Figure 3.2a).

This can have implications on the simrnd value as computed above. In particular, since the

majority of the user pairs live far from each other (the number of pairs of users living in

the same city is much less compared to all possible pairs of users), G(n,m) sampling will

lead to edges between users that live far away. Such pairs though are also expected to have

much lower similarity, since they simply do not have many chances to visit the same places.

Hence, we also perform a second series of Monte Carlo simulations, where we sample from a

modified, location-aware, G(n,m) ensemble. In particular, we pick the first end of an edge

uniformly at random, and we use the distribution of df to randomly select the other end of

the edge. In other words, while we randomly sample the edges, we make sure to preserve

the distribution of the friends’ home distance. Using these randomized networks we can

calculate the average similarity between friends, siml,rnd.

We sample the two randomized networks 100 times and then calculate the 95% confidence

interval (CI) for the average similarity between friends. Our results are presented in Table

3.1. As we can see the value of the friends’ average similarity in the real network lays outside

the 95% confidence intervals for both random network models and is significantly higher as

compared even to the upper bound of these CIs. This leads us to the conclusion that the

network under consideration exhibits strong assortative patterns with respect to the spatial

trails of the users. This strengthens the results reported by Wang et al. [155] where a

correlation between spatial trajectory similarity and network closeness is reported using call

detail records as well as those in [120], where a different, less rigorous, method was used along

with a different similarity metric between users. Finally, Figure 3.2a, presents the cumulative

distribution function of the home distance between two friends for the real network, a pure

G(n,m) representative sample and a modified G(n,m) representative sample. As we can see

the spatially modified G(n,m) model exhibits a similar home distance distribution with the

one of the real network. On the contrary the pure Erdős-Rènyi random graph exhibits longer

home distances overall as expected. Figure 3.2b further depicts the cumulative distribution
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function of the similarity values for the connected vertices in the real network, and the

representative random graph samples used in Figure 3.2a. Results verify the ones we obtained

in Table 3.1.

Table 3.1: There is a clear homophily with regards to the spatial trails of Gowalla users.

simreal siml,rnd simrnd

0.05425 [0.01836, 0.01837] [0.00236, 0.00237]
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Figure 3.2: (a) Our modified random graph ensemble retains the distribution of home loca-

tion distances observed in the real network. (b) Similarity between friends in a real network

is much higher compared to that in the randomized networks.

3.3 PEER INFLUENCE

Having established the existence of spatial homophily in the network we turn our attention

to decomposing the reasons behind this phenomenon. In this section, we examine the peer

influence mechanism with regards to spots visited by people. Our analysis considers both (i)

the geographical scope of peer influence (i.e., whether people are influenced at a global/local
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scale) and (ii) the context of peer influence (i.e., whether people are influenced - or not - at

the same degree with regards to different types of places).

3.3.1 Global Influence

We begin by examining the global influence between people. By the term global, we

essentially refer to possible effects people can have on their friends’ decisions related with

their check-ins at any part of the world. In other words, if Bob, who is from New York City,

and his friend Alice, who is from Boston, visited “Restaurant X” in San Francisco, was it

a result of peer influence between each other? We would like to emphasize here that, while

from a sociological perspective the question of whether peer influence affects the check-ins

of a pair of friends anywhere in the world might seem absurd, we begin with this question

in order to smoothly introduce the various tests we will use in our analysis4.

Knowing the time of friendship formation between Bob and Alice enables us to calculate

a similarity value for Bob and Alice before and after becoming friends. A similarity increase

might be a signal for peer influence. Using the cosine similarity metric, the global similarity

between users u and v prior to becoming friends is:

gsimb
u,v =

cbu · cbv
‖cbu‖2‖cbv‖2

(3.2)

where, cbu and cbv are defined analogously to Section 3.2, as vectors describing the venues

that u and v checked-in to before they became friends. In particular, the ith element of cbu,

is equal to the number of check-ins that u had in venue i, prior to becoming friends with v.

Since gsimb
u,v is computed over the check-ins that took place before u and v got connected,

it can be thought as an inherent global similarity between these two users.

Once u and v got associated, we can compute a new similarity value as follows:

gsima
u,v =

cau · cav
‖cau‖2‖cav‖2

(3.3)

4Furthermore, the methodology presented in this section itself could be applicable in different settings
and hence, beneficial to other researchers.
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where now vectors cau and cav are created as above but using the whole check-in histories of

u and v respectively (i.e., both before and after they became friends).
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Figure 3.3: Global influence can possibly explain only up to 2.32% of the global similarity

between friends.

Using our data, we can compare the global similarity between a pair of users before

and after becoming friends. Figure 3.3 presents our results. The value on the x-axis is the

distance between the home locations of friends pairs, and the y-axis is the corresponding

average global similarity of the pairs. We use logarithmic binning for the home location

distance to reduce - to the extent possible - the noise due to fewer samples at the right end

of the x-axis. As we can observe, the global similarity does not change significantly after

the friendship creation when the home locations of the friends are more than 10km apart.

However, for smaller home distances, there is a non-negligible increase in the gsim between

the friendship pairs formed. Furthermore, it is worth noting that global similarity values

reduce with an increase in home location distance, as one might have expected (the more

distant the homes of two friends the less possible is for them to check-in to common venues).

If we further consider the area under the “blue” line to represent the overall global

similarity between friends, we can see that on average 88.68% of it can be explained from

the inherent similarity between pairs of users (as captured by the area under the “red”

curve), while the rest 11.32% can be attributed to peer influence. However, we would like

to emphasize here that this number serves only as an upper bound for the amount of global

peer influence. With the above statistical test we can only quantify the contribution of the
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Figure 3.4: Levels of global peer influence are very small regardless of the venue context.

inherent similarity between pairs of users on the overall global similarity. Nevertheless, there

can be other reasons that can explain the additional 11.32% in the global similarity.

One possible reason for the increase in the global similarity, especially for friends whose

home locations are nearby, is the fact that as people accumulate more activity and visit

more places, their similarity to other users (friends or not) can increase just by the chance

of visiting the same locations. In other words, (the inherent similarity) gsimu,v might be an

increasing function with time, regardless of whether u and v form a tie or not. To examine

such a possibility, we consider pairs of users (w, z) that have not formed a social tie during

the period that our dataset spans. We will pick a reference time tr at random, and compute

their global similarity prior and after tr. We are especially interested in pairs whose home

location distance is less than 20km. Our results from this null model are overlayed and

zoomed in, within Figure 3.3. As one can observe, even for pairs of non-friends their global

similarity increases with time. If we further calculate the areas under the curves, we can see

that approximately 9% of the change in the global similarity of a pair of users after becoming

friends can be explained by its natural increase with time5.

5We would like to emphasize on the fact that this result is only approximate, since an exact result (i)
depends on the accurate choice of tr and (ii) would require the estimation of a function gsimu,v(t). Both
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Factoring in the above percentile temporal increase of global similarity, we re-calculate

the upper bound on global peer influence, and eventually only at most 2.32% of the global

similarity can be attributed to global peer influence. Hence, it appears that there is no

global influence between friends.

Contextual dependencies: In the above we have considered the check-ins of users at

all possible types of venues. However, influence can clearly be context dependent; while in

aggregate there is no (or very small) global influence among friends, it is possible that global

peer influence exists for certain types of places. For instance, while our friends’ visits at

restaurants might not affect us because we have our own taste in food, the same might not

be true for nightlife spots. More general, people might have an impact on friends’ decisions

about specific types of venues.

Table 3.2: Even after considering specific context (i.e., type of places), there appears to be

no global peer influence.

Venue type Upper bound on global influence

Coffee Shop 2.08%

Food 1.05%

Shopping -4.60%

Pub -3.13%

Airport 0.04%

To quantify any context dependencies on global influence we perform the same statistical

test as above, but instead of considering check-ins to all the venues in vectors cu, we only

consider check-ins to venues of the specific category under examination. Figure 3.4 presents

our results for five representative, distinct categories of spots in Gowalla. In particular, we

consider “Coffee Shops”, “Food” joints, “Pubs”, “Shopping” venues, “Airports”(results for

the rest 278 categories are omitted but they do not differ significantly). The left column of

figures are the results for the pair of friends, while in the right column are the corresponding

are beyond the scope of our work.
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results for the null model as above. Table 3.2 further presents the upper bound on the per-

centage of global similarity between friends that can be assigned to the global peer influence

for the different types of venues. Note that in some cases we obtain negative values for the

upper bound of global peer influence. This is essentially an artifact of the time tr picked for

the null model. Nevertheless, even with the most accurate choice of tr the upper bound on

the global peer influence is not expected to be a much larger positive number6. Hence, even

if we consider types of places in isolation, there appears to be no global peer influence on

average.

3.3.2 Local Influence

Our previous results support - as one might have expected - the absence of global influence

between pairs of friends. However, peer influence mechanism might operate in smaller spatial

scales, and hence we seek to examine in this section the existence of a localized version of

peer influence. In other words, while Jack is not influenced by his friend Jill (who possibly

lives more than 20kms away) at a global scale, he might be influenced when he is around

Jill’s home location. In order to examine whether there exists local influence or not using

the above procedure, we would need pairs of friends who had been area co-located (see

Section 3.1) in each others home location both prior and after they become friends. This

would allow us to estimate both an inherent local similarity as well as a local similarity after

becoming friends. However, there are not many such pairs to yield statistically significant

results. Hence, we devise a different test.

In particular, we consider pairs of friends, (u, v), who have been area co-located at u’s

and/or v’s home location after becoming friends. In addition, we filter out pairs (u, v) that

have been check-in co-located before becoming friends (however, they can have been area

co-located). The reason for the latter is to remove from our test-set users that have non-zero

inherent similarity and essentially to rule out one possible reason for the observed (if any)

local similarity. Note here that, the test we will use in what follows cannot account for that.

The above filters finally give us 43,618 pairs of friends.

6We have examined a variety of other strategies for choosing tr, and they all give values close to zero.
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Figure 3.5: Local similarity as obtained through data and two randomized reference models.

Using these pairs we calculate the local similarity between u and v as follows:

lsimdata
u,v =

cvu · cvv
‖cvu‖2‖cvv‖2

(3.4)

where, cvu and cvv are as in Equations (3.2) or (3.3) but now we are considering only the

check-ins of u and v respectively, in venues near v’s home location (i.e., within a radius of

25km from v’s home location).

To reiterate, given our setup, this value of local similarity (large or small) cannot be

attributed at any part to inherent similarity between the users, since the specific pairs we

examine were not check-in co-located prior to becoming friends (i.e., their similarity - global

or local - was zero)7. However, we need to compare this local similarity with some benchmark

values that capture other possible reasons that lead to the observed behavior. In particular,

we devise two reference models that aim in capturing (i) the expected local similarity if u

was checking-in at random (Random Reference Model - RRM), and (ii) the expected local

7Of course, as we also further explain in Section 3.5, there can be missing “check-in co-locations” of users,
not captured from the dataset, due to the voluntary fashion of location sharing in Gowalla.
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similarity if u was choosing his check-ins based on the popularity of the venues (Popularity-

based Reference Model - PRM). In both models we retain the structure of the real check-ins,

that is, the total number and their categories.

Simply put, let us assume that u has visited v’s home location, and he performed z

number of check-ins ten of which where in coffee shops and the rest in restaurants. For our

RRM, we will uniformly at random sample ten times all the coffee shops in v’s home location,

and z − 10 times the local restaurants. This process will generate a synthetic dataset for

the check-ins of u in v’s home location, and consequently will give a corresponding vector

cvu,RRM. Similarly, for the PRM, we will follow exactly the same process, but instead of picking

venues uniformly at random, we will bias the sampling probabilities based on the popularity

of each venue π as captured from the total number of users that have checked-in at π. This

will further give us another vector cvu,PRM.

Using our reference models’ vectors for user u we can obtain the reference local similarities

between u and v as:

lsimRRM
u,v =

cvu,RRM · cvv
‖cvu,RRM‖2‖cvv‖2

(3.5)

lsimPRM
u,v =

cvu,PRM · cvv
‖cvu,PRM‖2‖cvv‖2

(3.6)

We want to emphasize on the fact that v’s check-in vector in Equations (3.5) and (3.6),

is obtained from the real data. Furthermore, we run RRM and PRM 100 times for each pair of

users and obtain the average reference local similarity.

Figure 3.5 presents our results. As with global similarity, we present the results obtained

both by considering all the check-ins (top left subplot) as well as considering check-ins to

specific types of locations (rest of the subplots). As we can see there is some level of local

similarity that would have been expected even if people where checking-in completely at

random. The percentage of local similarity that can be explained by PRM is even higher, and

many times it appears to be the main reason for the levels of local similarity. For instance, for

“Airports”, the curve obtained from the real data is almost on top of the curve for PRM. Each

city typically only has a few airports, among of which, even less support many connections,
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and therefore, being popular. People will pick these airports not because they are influenced

by their peers, but because they are more convenient.

Table 3.3 summarizes the progressive percentage of local similarity between friends that

can be explained by the two reference models (RRM and PRM), as well as the maximum possible

effect of local influence. As we can see RRM can explain approximately 44% of the observed

local similarity when considering all the check-ins, while an additional 16% can be attributed

to PRM. Consequently, local peer influence mechanisms can explain up to almost 40% of the

local similarity between friends. Hence, friends appear to be influenced more easily

when they are in proximity as compared to a global scale. Moreover, the levels

of local influence are context dependent. For instance, there appears to be no local peer

influence in “Airports” (upper bound of local peer influence is only 10%), but significant

levels are observed in “Pubs” (approximately 64%).

Table 3.3: Progressive percentage of local similarity that can be attributed to RRM, PRM and

local peer influence.

Venue type % Explained by RRM
Additional % Upper bound on

explained by PRM local peer influence

All Venues 43.93% 16.29% 39.78%

Coffee Shop 26.32% 21.47% 52.21%

Food 56.02% 8.63% 35.35%

Shopping 47.14% 1.31% 51.55%

Pub 12.55% 23.63% 63.82%

Airport 6.84% 82.94% 10.22%

Our previous results support the existence of local influence between friends. Neverthe-

less, we have explicitly focused on the activities of pairs of friends around each other’s home

location. Now, we seek to examine the existence of peer influence in a third location. In

particular, Jack and Jill can have been area co-located in a third location, not specifically
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at one of their home locations. We consider a third location, L3rd, as a distant area (25kms

far away) from both of the pairs’ home locations. For example, Jack’s home location is New

York City and his friend’s Jill’s is San Francisco. If they have been area co-located in a

third city (e.g., Boston), one might still influence the other. Note here that these situations

are included in the global influence study. Nevertheless, they might have been lost in the

aggregation of all different locations around the globe that users have visited. Hence, we

examine them separately in what follows.

For every pair of friends (u, v) we use their combined check-ins to locations different

than their home locations. We then exert the DBSCAN clustering method on these check-

ins (features are the latitude/longitude pairs). If a cluster identified by the algorithm includes

check-ins from both u and v, then we say this pair has been area co-located at L3rd. Fur-

thermore, L3rd is considered to be the centroid of all the check-ins in the specific cluster.

Similar to the above local similarity analysis, we use these area co-located pairs in a third

location and we calculate a similarity score (which we refer to as remote similarity - rsim)

as follows:

rsimdata
u,v =

cL3rd
u · cL3rd

v

‖cL3rd
u ‖2‖cL3rd

v ‖2

(3.7)

where, cL3rd
u and cL3rd

v are as in Equation (3.4) but now we are considering only the check-

ins of u and v respectively, in venues near L3rd (i.e., within a radius of 25km from L3rd).

Similarly, we consider two reference models as in Equations (3.5) and (3.6):

rsimRRM
u,v =

cL3rd
u,RRM · cL3rd

v

‖cL3rd
u,RRM‖2‖cL3rd

v ‖2

(3.8)

rsimPRM
u,v =

cL3rd
u,PRM · cL3rd

v

‖cL3rd
u,PRM‖2‖cL3rd

v ‖2

(3.9)

where, cL3rd
u,RRM and cL3rd

u,PRM are randomly generated by considering venues around the center of

the L3rd. In the case of remote similarity, user v is the user that checked-in first in a venue

around location L3rd.
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Figure 3.6 and Table 3.4 present our results, where we can see peer influence also exists

in these so-called third locations. Compared to the local influence, the upper bound of

similarity explained by peer influence is smaller. Nevertheless, this can be flipped when

considering specific context (i.e., categories of venues). To sum up, even though global peer

influence does not appear to be significant, if we focus our attention to remote geographic

areas that both friends have visited - not necessarily their home locations - peer influence

can possibly explain a large part of their similarity.
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Figure 3.6: Similarity in a third location as obtained through data and two randomized

reference models.

3.4 SOCIAL SELECTION

Social selection works between people that have high levels of similarity and can cause the

creation of friendships. We further saw in the previous section that users exhibit some
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Table 3.4: Progressive percentage of similarity in a third location that can be attributed to

RRM, PRM and local peer influence.

Venue type % Explained by RRM
Additional % Upper bound on

explained by PRM local peer influence

All Venues 9.73% 64.9% 25.37%

Coffee Shop 12.94% 0.51% 86.55%

Food 17.62% 9.04% 73.33%

Shopping 38.78% 19.63% 41.58%

Pub 46.49% 20.72% 32.8%

Airport 5.76% 85.77% 8.47%

inherent similarity, which also increases with time. Also by observing the absolute global

similarity values of the null model in Section 3.3.1, we find that pairs of non-friends exhibit

significant levels of global similarity as well. Why then social selection works with specific

pairs and not with others?

When examining similar questions, we need to be cautious and in particular to avoid

confusing actual similarity with what we refer to as “trivial” - or expected - similarity in

this study. For instance, there are places that most of the people living in a city will visit,

e.g., subway station(s), city hall etc. Such places introduce trivial similarity and it does not

necessarily mean that the social selection mechanism will be triggered and these people will

form social ties. In order to avoid confusions, we would like to emphasize here that trivial

similarity is also part of the inherent similarity between two people8. However, it does not

add valuable information.

In this section we seek to answer the question posed above and investigate the dynamics

of the social selection mechanism. In particular, we examine the (network) characteristics

of the venues - see Figure 3.1b - that appear to trigger the selection mechanism. More

8Actually, it might be the case that the “trivial” part of the inherent similarity is the major component
that varies with time. Nevertheless, further examining this is beyond the scope of our work.
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specifically, we consider pairs of friends that were check-in co-located prior to becoming

friends, and hence they exhibited a non-zero level of similarity. In total, we have 84,460

such pairs. For these pairs of friends, we analyze the categories of the places that they

were co-located prior to becoming friends, the degree - i.e., number of check-ins - of these

places, their clustering coefficient as well as their entropy (to be defined later). As we will

see in what follows, all of the above metrics exhibit the same properties for the friends pairs

considered.

However, the above results alone are not conclusive. In particular, the common locations

of other pairs of users that have been check-in co-located but never formed social ties, can

also exhibit the same features. Hence, in order to avoid this sampling bias and to be able to

draw safe conclusions, we need a reference group for comparison. We randomly pick 84,460

pairs of users that have been check-in co-located (hence, having some non-zero levels of

similarity), but never became friends, and we calculate the same statistics for their common

locations. Note here that, our random sampling retains in the reference group the same

distribution of the home location distances as that for the check-in co-located pairs that

eventually became friends. In particular, if there are µ pairs of friends with home distances

in the range [χ1, χ2], we sample uniformly at random µ reference pairs with home distances

in the same range.

To preview our results, the features of the common venues of the reference group exhibit

significant differences as compared with those of the friends pairs. Furthermore, the common

venues of the reference group pairs manifest characteristics of locations that introduce trivial

- or expected - similarity (e.g., high degree, low clustering coefficient, large entropy)! These

results clearly indicate that the (online) social selection mechanism works upon non-

trivial similarity and can be stimulated by venues with specific features. In other

words, people tend to generate social ties with their peers with whom they exhibit non-

trivial/unexpected similarity.

In what follows we introduce the venue metrics we examine and present the details of

our results (Appendix B includes statistical significance results for the conclusions).

Venue Category: As mentioned in Section 3.1 every spot in Gowalla is labeled with a

category depending on the type of place, and there are 283 possible categories. Hence, we
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compute the category probability mass function of the common locations for the pairs in the

two groups (friends and reference). Figure 3.7 depicts our results. As we can see, for pairs

of users in the reference group, the mass function exhibits a clear 4-modal distribution. On

the contrary, the corresponding mass function for the pairs of friends is closer to a uniform

distribution. The four categories-modes of the reference mass function are: “Convention

center”, “Interactive”, “Airport” and “Travel/Lodging”. As we can see these are types of

places that people can co-locate at, not necessarily because of their similarity or common

interests. For instance, there are many reasons that people go to a convention center. Air-

ports are also potentially visited by all people (at the minimum all people that travel). On

the contrary, friends tend to co-locate to a variety of places with fairly equal probabilities.

Nevertheless, the top-4 places for friends are: “Corporate office”, “Pub”, “Food” and “Coffee

shop”. Corporate office is mainly visited by people that work there every day and hence

they create tight bonds. Of course “Pub”, “Food” and “Coffee shop” locations can also

attract a diverse crowd, especially if these places are popular. Hence, while there is a clear

difference at the category distributions between friends and reference pairs, we cannot claim

that these results are absolutely conclusive. We will now focus on network characteristics

of the venues, which are not tied to the category of the place. Such metrics can possibly

make further distinctions even between places of the same category (e.g., two restaurants)

and therefore, lead to stronger conclusions.
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Figure 3.7: Friend and non-friend pairs have only 4 categories in common in their top 10

categories.
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Venue Degree: Next, we examine the degree of the common venues. In particular, we

define as the degree deg(π) of a place/venue π, the number of total check-ins in this place.

Figure 3.8 presents our results. As we can see the pair of users that eventually become

friends have co-located prior to that to venues with lower average degree as compared to

that of the common venues for the pairs in the reference group.
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Figure 3.8: Users that form social ties co-locate to venues with low degree.

Venue Clustering Coefficient: If there are nπ unique people that have checked-in at

place π, we define the clustering coefficient of π as follows:

CCπ =
k

nπ(nπ − 1)/2
(3.10)

where k is the number of friendship pairs between the nπ users that have checked-in at

π. Equation 3.10 is essentially the direct extension of the definition of the local clustering

coefficient of a graph in our context. A high clustering coefficient for a venue translates to a

location where people who visit it form a tightly connected social group. Figure 3.9 depicts

our results, and as we can see pairs who become friends tend to co-locate to venues with

higher CC as compared to the common places of the non-friends pairs of our reference group.

Entropy: Cranshaw et al. [40] use the notion of entropy of a location as a measure of

its diversity. In particular, if Pπ(u) is the fraction of check-ins at place π contributed by user

u, then the entropy of π is given by:

e(π) = −
∑
u:u∈S

Pπ(u)log(Pπ(u)) (3.11)
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Figure 3.9: Venues with higher CC are more likely to form friendships.

where S is the set of users that have checked-in venue π.

From the definition of e(π) we can see that when a place is visited by many people in

fairly equal (and hence, small) proportions, its entropy will be high. Simply put, high entropy

corresponds to places such as transportation hubs and malls that exhibit large diversity with

regards to people they “attract”. On the other hand, when the mass of Pπ(u) is concentrated

only to a few people, the diversity in this location is small and so is the entropy.

In Figure 3.10 we present the average entropy of the common locations of the pairs in

our reference, non-friends group, and that of the friends pairs prior to forming their tie.

As we can see pairs who become friends after being co-located, have co-located to venues

with lower average entropy compared to the average (common venues) entropy of our control

group pairs.
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Figure 3.10: Users that form social ties co-locate to venues with lower average entropy

compared to the reference pairs.

Note here that places with high degree, low clustering coefficient and high entropy are
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essentially places that are responsible for trivial similarity. These are locations with large

(high deg(π)), diverse (high e(π)) crowds that are disconnected in the social plane (low CCπ).

These are places that people visit not essentially because they are in their preference but

because they have to (e.g., airports, train stations, big university campus, medical centers

etc.). On the other hand places with low degree, high clustering coefficient and low entropy,

profile venues where people that visit them know each other and are actually similar, since

they do not attract a large diverse public. Hence, based on our results we can clearly see

that in order for the social selection mechanism to be triggered, actual similarity between

users is required. Trivial similarity caused by co-locations in places with high degree, low

clustering coefficient and high entropy, is not enough.

3.5 DISCUSSION AND IMPLICATIONS

We acknowledge that our study is limited by the information available in the dataset used.

For instance, while we know the friendship creation time on the system between a pair of

friends, we use the implicit assumption that this is also the actual time of the real-world

friendship formation. Of course, this might not be always true. Furthermore, our dataset

can exhibit biases with regards to the demographics of people that are using systems like

Gowalla. Our results inevitably do not extensively take into consideration the behavior of

parts of the population that are possibly underrepresented in the dataset (e.g., older people

that might not be as technology savvy). Finally, the voluntary nature of location sharing

can possibly introduce another type of bias for our analysis. More specifically, the activities

shared in Gowalla (or any other similar social media platform - e.g., Foursquare etc.) are

only partially reflecting people’s trajectory. Nevertheless, these are essentially limitations

shared - partially or entirely - by any study that is based on digital trails of human activities.

Despite the above limitations, we believe that our findings can stimulate further research

on the topic and will contribute to eventually obtaining a more clear understanding on how

people create social ties and move in real space. This understanding can facilitate a variety of

applications. For example, it can drive enhancements in socially-aware recommender systems
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or assist venue managers identify potential users for targeted advertisement. In the future,

we seek to identify methods for controlling to the extent possible for the above biases and

exactly quantify the time varying global similarity between people and decompose it to its

various parts (e.g., trivial inherent, actual inherent etc.). We also opt to examine groups of

friends (rather than only pairs as in our current work) and the ways peer influence operates

in such settings.

3.6 RELATED WORK

The availability of electronic traces of human activities has enabled the study of topics

related to homophily, information diffusion, social selection and peer influence. For instance,

Kossinets and Watts [92] utilize a dataset comprising of e-mail communications between

members of a large U.S. university to study the origins of the homophily in the underlying

communication network. The same authors [91] study the effects of social selection on

friendship formation using again an e-mail communication network of a U.S. university.

They show that the friendship probability between two students increases up to a certain

number of common interests - as captured from the number of common classes between

students - and then remains constant. In the same direction, Lewis et al. [98] examine the

mechanisms of social selection and peer influence in a group of students of a U.S. institution

by studying the co-evolution of the friendships and tastes in music, movies and books, over

a period of four years.

Other studies provide some basic intuition on how innovations propagate through the

network and they further show that social ties can facilitate information contagion and

consequently influence users’ actions. For instance, Bakshy et al. [14] use data from Second

Life to examine the social influence on the adoption of content by the users. Among other

findings, they show that adoption rate increases with an increased number of friends that

have already adopted a content. However, as one might expect not all adoptions can be

attributed to peer influence and in-network effects. Myers et al. [109] studied the effect of

external influences on information diffusion using data collected from Twitter. They further
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developed a model through which they can quantify external influence over time. Very

recently, Tang et al. [152] studied conformity, which can be thought of as a special type

of social influence. In particular, conformity is the action of matching one’s actions to the

norms of the groups he belongs to. The authors’ results indicate that conformity exists in

all four digital social network datasets they examined.

A different line of work, studies statistical methodologies for unveiling the roots of ho-

mophily. For instance, Anagnostopoulos et al. [3] design a statistical test, the shuffle test,

for deciding whether peer influence is a likely source of the observed homophily. In brief,

the key idea behind the shuffle test, is that if influence is not a possible source of the assor-

tative mixing, timing of actions should not matter. Hence, reshuffling of the timestamps of

the events, should not significantly change the assortativity level in the network. Another

statistical framework for distinguishing between influence and selection effects in dynamic

networks was presented in [5]. In particular, the authors develop a dynamic matched sam-

ple estimation framework and apply it on a large-scale network dataset that captures the

adoption of a specific product. In parts of our work, we use an approach similar to that

followed by Crandall et al. [37]. The authors study the social selection and influence in

online communities such as WikiPedia and LiveJournal. In order to distinguish between

social selection and influence, they examine the temporal evolution of the friends similarity

prior and after they became associated.

In this chapter, we focus on a novel type of online social media, namely LBSNs, that

only recently has attracted attention from the research community. The key difference

between traditional online social media and LBSNs, is that the latter directly relates online

interactions with physical space, and hence, studies of LBSNs can have stronger implications

of actual real-world behaviors of people. The work from Cho et al. [31] is the closest one

to our study. In particular, the authors examine the relationship between friendship and

users’ mobility. They show that the actual geographic location (latitude/longitude) that

users travel to is influenced by the presence of a friend or not. They further show that this

influence increases with an increase in the distance between the home locations of friends. In

our work we further delve into the details of peer influence, and in particular we examine both

its geographic scope, as well as its contextual properties (existing literature seems to support
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the general connection between influence and topics [151]). In particular, we do not simply

consider geographic locations, but actual venues, and examine the strength of influence for

different types of places. Furthermore, we examine the social selection mechanism and how

this is realized through the different types of venues (e.g., are there specific characteristics

of the venues that promote friendship creation by stimulating social selection?).

3.7 SUMMARY

In this chapter, we examine the peer influence and social selection mechanisms in the con-

text of locations visited by friends using a longitudinal dataset from a location-based social

network. We find that strong evidence for peer influence existence with regards to human

movement in urban space as long as friends are in proximity, and it is context dependent.

In particular, for specific types of places (e.g., nightlife spots) users can influence their peers

more as compared to other types of locations (e.g., airports). We also reveal, that social

selection works upon non-trivial similarity and there are particular venues - with specific

network characteristics - that can trigger the social selection mechanism.

In the following chapter, I further present our study on evaluating and modeling the

impact of economic incentives, captured by the local business advertising strategy in LBSNs,

on people’s movement to business places.
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4.0 EFFECTIVENESS OF LOCAL BUSINESS ADVERTISEMENT

Location has been identified as a critical factor that can decisively affect the success of a

business [83, 84, 124]. Specifically, previous relevant work has verified the intuitive causal

connection between the location of a business and the volume of potential customers that

it has access to. For instance, a business in a crowded urban neighborhood is exposed

to more potential customers than a business in a sparsely populated location [86, 125].

Similarly, the reach of a business can benefit from its proximity to a popular landmark or

busy hub [123]. The potential of such benefits makes some locations more desirable than

others. Predictably, the increased demand raises the setup cost (e.g rent, taxes) and makes

prime locations unattainable for most businesses [144, 56]. Further, even if a businesses

manages to secure a favorable location, it is likely to face fierce competition by businesses

that also had the means to pay the necessary costs. Previous work has repeatedly verified

that, in such competitive settings, it is highly likely to observe “rich-get-richer” phenomena,

in which a small subset of the competing businesses claim the lion’s share of the customer

base [148]. These could be older businesses that had more time to build their reputation and

connect with customers, wealthy businesses with superior marketing capabilities, or simply

elite competitors that deservedly attract customers with their service quality. On the other

hand, businesses outside this “winner’s circle” face an uphill battle in their effort to expand

their reach and increase their market share, even if they are in a privileged location with

access to a large customer base.

Motivated by such challenges, a new location-based advertising outlet has emerged, sup-

ported by the advancement and establishment of mobile technology. This outlet is im-

plemented via Location-Based Social Networks (LBSNs) with millions of users, such as

Foursquare, Yelp, and UrbanSpoon. After partnering with an LBSN, a business gains access
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to a vast user base. This channel is then utilized in two ways. First, after users reveal their

location to the LBSN, they can use the platform to locate nearby businesses of different

types. Thus, a business with a profile on the LBSN can be discovered by potential cus-

tomers who might otherwise be unaware of its presence. For instance, in the example shown

in Figure 4.1, Alice finds herself in a central business district (CBD, marked with purple),

which includes a mall, a park, and other amenities. During her visit, Alice is likely to walk

by the restaurants within CBD, given their privileged, central location. However, by using

an LBSN, Alice can specify an acceptable range (marked as a blue circle) and discover less

obvious options, such as restaurants r1, r2 and r3. This is a mutually beneficial discovery,

which increases both the reach of these restaurants and the number of Alice’s options. How-

ever, Alice could arguably be less willing to seriously consider these less prominent options,

as she may be uncertain of their quality. Thankfully, a business can decrease this uncer-

tainly by maintaining an attractive professional profile on the LBSN, including up-to-date

information, pictures, and informative reviews [30].

Park

r1r1

r2r2
r3r3

Ma
ll

Figure 4.1: Mobile and spatial computing allows customers to discover establishments in

non-prime locations (e.g., within the blue range). Moreover, it allows venues (e.g., r2) to

offer monetary incentives through special offers to gravitate customers towards them.

In addition to increasing foot traffic, LBSNs offer business owners additional mecha-
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nisms for affordable advertisement. Specifically, a business can use the LBSN’s network to

promote special offers. Mainstream media is rich with stories on successful LBSN promo-

tions [54, 45, 61]. In 2013, a burger joint in Philadelphia reportedly experienced an increase

in customers via a campaign on Foursquare, which offered a free beer to users that used

the popular LBSN to publicly state their presence in the restaurant, an action referred to

as a “check-in”. Earlier, in 2010, a Milwaukee restaurateur used a promotional campaign

to attract 161 Foursquare members into his burger restaurant at the same time. Customers

were lured by the promise of the coveted “Swarm badge”, which Foursquare awards if more

than 50 users check-in at a venue at the same time. In the same year, popular fast-food

chain McDonalds launched a Foursquare campaign that offered gift certificates to users who

checked-in at certain randomly selected McDonalds locations. Given that the selected lo-

cations were not released, users were motivated to visit multiple McDonalds restaurants,

leading to a 33% increase in the number of check-ins. Despite the plethora of promising

anecdotal evidence, a systematic study of the effectiveness of the LBSN advertising paradigm

has not been conducted mainly due the lack of appropriate data. Our work is the first to

address this challenge by studying a large longitudinal dataset of about 14 million businesses

on Foursquare. Our study formally evaluates both the long-term and short-term effects of

LBSN campaigns for participating businesses, while taking into consideration the influence

of possible confounding factors.

Our main result indicates that the positive effects of special offers through

the LBSN platform examined are significantly more limited than what anecdotal

success stories seem to suggest. In particular, we find no evidence of a statistically sig-

nificant advantage, in terms of either the number of daily check-ins or that of new customers,

for venues that participate in LBSN campaigns in the platform examined. We validate our

findings by adopting two alternative methods for statistical testing, which lead to the same

conclusions. In addition, in order to gain a deeper understanding of our results

and increase the practical value of our methodology, we design and implement

a model for predicting the popularity of a venue during and after a campaign.

Our models consider venue-related, promotion-related, and geographical features. Our ex-

periments provide encouraging evidence on the feasibility of this prediction task, which can

57



serve as a practical tool for supporting the design and cost-benefit analysis of LBSN cam-

paigns. Specifically, we find that a simple logistic regression model is sufficient to achieve

an 83% accuracy with a 0.88 AUC. Further, our findings on the influence of the considered

features are fully aligned with our main results, as we find that promotion-related features

have only a marginal contribution to the estimation of popularity. In Section 4.4, we dis-

cuss the implications of our work for businesses but also for the LBSN platforms as well.

In particular, we describe how our findings can be used to inform strategies for improving

campaign effectiveness.

Chapter Outline: The rest of the chapter is organized as follows. Section 4.1 describes

the time-series dataset we collected, some basic analysis on the data and our hypothesis

setting. In Section 4.2 we present the details of our statistical test framework and the

results for local promotion effectiveness, which in Section 4.3 we further present a supervised

learning model to predict the short and long effect. We then discuss with implications in

Section 4.4. We elaborate the related work in Section 4.5 and finally summarize this chapter

in Section 4.6.

4.1 DATASET AND ANALYSIS SETUP

In this section I first briefly describe the Foursquare data collected and present a basic

analysis of the acquired dataset. Then I formally introduce the research hypothesis we will

examine.

4.1.1 Data Collection and Analysis

Using Foursquare’s public venue API during the 7-month period between 22th October, 2012

and 22th May, 2013 we queried and obtained information for 14,011,045 venues once every

day. This essentially gives us a multi-dimensional time-series for every venue, with daily

readings, where each reading has the following tuple format: <ID, time, # check-ins, #

unique users, # specials, # tips, # likes, tip information, special information>.
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During the data collection period, there are 206,163 venues in total that have published at

least one special. Approximately 45% of these venues publish only one special. Furthermore,

there are in total 735,034 unique special deals, with 88.68% of them being provided by venues

in the US.

At the time, Foursquare had 7 types of specials, namely, “Newbie”, “Flash”, “Frequency”,

“Friends”, “Mayor”, “Loyalty” and “Swarm”, each requiring different conditions to be earned

[60]. Table 4.1 presents the description of the different types and their popularity in our

dataset. As we can observe, “Frequency” is the most popular type of special in our dataset,

possibly because compared to other types appears to be the easiest one to be unlocked,

covering approximately 86.5% of all the offers we collected. Compared to other types, “Fre-

quency” appears to be the easiest one to be unlocked from many perspectives. For example,

a user does not need the help of other users as is the case for “Friends” or “Swarm” special

deals. Furthermore, the user does not need to compete with other frequent users checking-in

to this venue as is the case for the “Mayor” special offers. Similarly, he/she is not constrained

by time (as in the “Flash” special).

Another parameter of interest for the special offers is their time duration. Figure 4.2

presents the empirical CDF of the offer duration. As we can see, “Frequency” and “Flash”

special offers usually are active for a short duration, while “Friends” and “Swarm” usually

last for a longer time possibly due to their stricter requirements. The “Mayor” special often

lasts even longer, since a customer needs to become the Foursquare mayor of the venue to

unlock the deal. The mayorship is only awarded to the user who has the most check-ins in

the venue during the last two months.

As alluded to above, a venue might offer multiple specials during the 7-month data

collection period. These multiple specials can be fully overlapped (i.e., they start and end at

the same time), partially overlapped, or sequential. We further define a promotion period

of a venue to be a continuous time period that the venue provides at least one offer and

does not include more than two consecutive days without a special offer. In our dataset,

approximately half of the promotions last for more than a week. While a promotion as

defined above can include multiple individual offers, for simplicity we will use the terms

promotion, offer, campaign and deal interchangeably in the rest of the paper.
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Table 4.1: Type of specials in Foursquare. “Frequency” is the most common type provided

by Foursquare venues in our 7-month dataset.

Type Count Description

Count/Newbie 57,710
This type of special is unlocked on a user’s first time ever visiting the venue.
The objective is to drive new traffic to the venue.

Flash 5,989
Venue sets the number of specials that can be unlocked per day, in a first-come,
first-serve fashion, or defines an active time-window for the special live.
When the unlock limit is reached, there are no more specials for the day.

Frequency 636,119
Unlocked after every or several check-ins.
The objective is to reward users on their routine check-ins.

Friends 5,469
Venue sets the minimum threshold for a group of Foursquare friends.
The objective is to reward friends for visiting the establishment together.

Mayor 22,021 This special is awarded to the Foursquare mayor of the venue.

Regular/Loyalty 6,488
Venue rewards a user every X times they visit, or for coming in X times in total,
or for being loyal within a certain period.
The objective is to encourage the user to keep coming back to the venue.

Swarm 1,238
A swarm special is aiming at many people checking-in at the same time.
The venue can set a minimum number of Foursquare users (not necessarily friends)
that need to check-in within a time-window in order to unlock this special.
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Figure 4.2: “Frequency” and “Flash” specials are usually shorter than other types of specials.

The “Mayor” special often lasts for a longer period time.

Finally, Foursquare associates each venue v with a category/type T (v) (e.g., cafe, school

etc.). This classification is hierarchical, in the sense that an Italian restaurant belongs to the

category “Italian restaurant”, which can belong to the higher level category “Restaurants”,

which can itself belong to the category “Food” and so on. At the top level of the hierar-

chy there were 9 categories during the time of data collection; Nightlife Spots, Food, Shops
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& Services, Arts & Entertainment, College & University, Outdoors & Recreation, Travel &

Transport, Residences and Professional & Other Places. From these types, we examine the

fraction of venues in each top-level category that offer at least one special deal during the

data collection period (Table 4.2). As we can see “Food”, “Nightlife Spots” and “Shops &

Services” have the highest chances of offering a special deal (0.025, 0.04 and 0.016 respec-

tively). This can be attributed to the fact that the majority of the venues in these categories

are commercial and hence, advertisement is most probably among their priorities. While

non-commercial venues can also publish specials with the ultimate goal of increasing their

visibility, it is certainly less expected and our data verify this.

Table 4.2: Food, Nightlife and Shops & Services venues exhibit the highest probabilities to

publish a special offer in our dataset.

Category # venues
# (%) venues

with specials

Nightlife Spots 558,156 6,493 (1.16%)

Food 2,604,408 66,136 (2.54%)

Shops & Services 2,693,300 107,517 (3.99%)

Arts & Entertainment 491,426 5,050 (1.03%)

College & University 493,600 1,923 (0.39%)

Outdoors & Recreation 936,943 1,370 (0.15%)

Travel & Transport 897,404 8,178 (0.91%)

Residences 2,902,492 489 (0.02%)

Professional & Other Places 2,354,975 8,311 (0.35%)

4.1.2 Hypothesis Development

The objective for every business behind offering coupons, discounts and any other type of

offers is ultimately to drive revenues up. This could be either through returning customers or

through attracting new customers. The same is true for participating businesses in electronic
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promotions through a variety of platforms (e.g., Groupon, Living Social, etc.) including

location-based social media as well.

One of the benefits of running electronic promotions is that they can be objectively eval-

uated since - in the majority of the times - this is the only channel through which customers

could have learned about the promotion. On the contrary, when offline advertisements and

promotions are run, it is not clear what influenced the decision of the customers. For promo-

tions through LBSNs specifically the customers need to check-in through the corresponding

platform in order to obtain the discount and hence, the effectiveness of the campaign can be

better tracked.

In the rest of this chapter we will therefore examine the following two hypotheses:

Hypothesis 4.1 (Short Term Effectiveness). The presence of a promotion through location-

based social media leads to an increase in the visitation of a local business during the duration

of the campaign.

Hypothesis 4.2 (Long Term Effectiveness). The presence of a promotion through location-

based social media leads to an increase in the visitation of a local business after the campaign

has been completed.

In the next section we will analyze the data we collected in order to verify or reject the

above hypothesis. In order to capture the success of a promotion we will rely on the number of

check-ins in the corresponding business as well as the number of new customers. We would

like to emphasize here that while these hypotheses target a generic LBSN platform, our

conclusions are inevitable more relevant to the platform used in the study (i.e., Foursquare).

Nevertheless, as we discuss in Section 4.4 our study provides lessons and knowledge that can

be applicable to any similar platform.

4.2 STATISTICAL ANALYSIS

Evaluation metric: As alluded to above in order to assess the effectiveness of LBSNs

promotions we will rely on the number of check-ins and unique visitors in the venues. Our
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data are in a time-series format and we also know the start (ts) and the end (te) times of

the promotion period. Using these points we split each time-series to three parts that span

the following periods: (i) before the special campaign, [t0, ts−1], (ii) during the special

campaign, [ts, te], and (iii) after the special campaign,[te+1, tn]. The key idea is to examine

and analyze the changes that occur at the daily check-ins and unique visitors across these

three time periods.

Data processing: Let us denote the original time-series collected for the check-ins in

venue v with cav[t] and that for the unique visitors in v with pav[t]. Simply put, cav[t] (pav[t])

is the accumulated number of check-ins (unique visitors) in v at time t. As aforementioned

we obtain one reading every day for every venue. However, consecutive readings might

not be exactly equally-spaced in time due to a variety of reasons (e.g., network delays,

API temporal inaccessibility etc.). Hence, we transform each time series to the intended

reference time-points using interpolation. For the rest of the paper cav[τ ] (pav[τ ]), will

represent the interpolated time-series for the total number of check-ins (unique visitors) in

v with τi+1 − τi = 24 hours.

In our analysis we focus on campaign periods of venues in the US, since almost 90% of

the special deals are offered by US venues, that last for at least 7 days and for which we have

enough points in the time-series before the special offer (i.e., at least 4 weeks). This allows

us to build a representative baseline for the venue popularity prior to the promotion. The

above filters provide us with a final dataset of 40,071 promotion periods offered by 36,567

venues. We refer to this dataset as the promotion dataset. Note here, that only a subset

of those can be used for studying the long-term effect of the promotion. In particular, for

26,355 of them we have enough points in the time-series after the special offer, and we use

them for the long-term effect study.

Since our metric of interest is the daily check-ins, we will utilize the first-order difference

of the aggregate time series:

cv[τ ] = cav[τ ]− cav[τ − 1] (4.1)

Similarly, for the daily new customers we have:

pv[τ ] = pav[τ ]− pav[τ − 1] (4.2)
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The raw data we have collected might exhibit biases that affect our analysis. For instance,

a change in a venue’s daily check-ins might simply be a result of a change in the popularity

of the social media application. Moreover, seasonality effects can distort the contribution

of the campaign on cv[τ ] and/or pv[τ ]. To factor in our analysis similar potential sources of

bias we use a matched reference group of venues that can account for the effects of similar

externalities.

4.2.1 Promotion Dataset Analysis

We begin by examining the fraction of promotions that enjoy an increase in the mean number

of check-ins per day. Let us denote the mean check-ins per day1, in venue v before the

promotion (i.e., during the period [ts−k, ts−1]) with mb
cv . We similarly define the average

check-ins per day in v during (i.e., in the time period [ts, te]) and after (i.e., in the time

period [ts+1, ts+w]) the promotion campaign as md
cv and ma

cv respectively. To reiterate, in

order to build a concrete baseline for the period prior to the promotion we set k = 28 days.

In order to study the long term effect of the promotion we would like to have a stabilized

time interval after the campaign is over. Hence, we include in our analysis only the venues

for which we have data for at least 7 days after the end of the promotion. Consequently, we

set w = k, if we have 28 days of data after the promotion. Otherwise we set w equal to the

number of time-points available (i.e., 7 ≤ w ≤ 28).

Given this setting we first compute the difference md
cv − mb

cv (ma
cv − mb

cv). A positive

sign essentially translates to an increase in the average daily check-ins during (after) the

promotion period. Figure 4.3 depicts our results. As we can see, the fraction of venues

in the promotion group that enjoy an increase in their check-ins during the special offer is

approximately 48%, while a smaller fraction (about 35%) exhibits an increase after the pro-

motion is ceased. There is also some variation observed based on the venue type, with some

categories exhibiting larger fraction of venues with an increase (e.g., nightlife). However,

part of this variability might be attributed to the fact that for some categories we have a

very small sample in the promotion set (e.g., we only have 128 promotions in Outdoors and

1Exactly the same analysis set-up is followed for the mean number of new users per day.
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Figure 4.3: Fraction of venues exhibiting an increase in the mean daily check-ins.

Similar results are obtained when examining the average daily new users that visit a

venue. In particular we examine the difference (md
pv − mb

pv) and (ma
pv − mb

pv). Figure 4.4

depicts our results, where again we observe that there is a large fraction of venues in the

promotion group that enjoys an increase in the new users checking-in per day.

promotion
reference

F
ra

ct
io

n

All Nightlife Food Shops Arts College Outdoors Travel Residence Professional
0.0

0.1

0.2

0.3

0.4

0.5

(a) Short-term

promotion
reference

F
ra

ct
io

n

All Nightlife Food Shops Arts College Outdoors Travel Residence Professional
0.0

0.1

0.2

0.3

0.4

0.5

(b) Long-term

Figure 4.4: Fraction of venues exhibiting an increase in the mean daily unique customers.

In summary, a large fraction of venues exhibits increase in their check-ins as well as their

new customers during and after the special offer. However, an equally large proportion of

venues does not enjoy an increase in the average daily check-ins. Next we delve further into

the details of the effectiveness of LBSN promotions.

4.2.2 Reference Venues

Our results above clearly cannot establish any causal relationship between the promotion

campaign and the observed changes in the daily check-ins and/or new customers. This would
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require careful design of field experiments. In such randomized experiments the covariates

distribution between the treatment and control groups are matched in expectation. However,

this is not possible in our work since we only have access to observational data. The direct

comparison between venues that offer promotions and those that do not, can be affected by

a confounding bias introduced by the systematic assignment of the treatment. This would

lead to comparing two groups with unbalanced covariates distributions.

In order to account for these confounding factors and other externalities, we opt to get

a baseline for comparison by utilizing techniques for quasi-experimental studies. A typical

approach used in these cases where observational data are only available is to match the

covariates distributions in the two groups [73]. In particular, we sample a reference group

from the set of venues with no promotion, such that the distribution of specific observed

features of this sample matches that of the promotion group. The matched venues can thus

be interpreted as the counterfactuals. We perform the matching on a venue-basis and we

use four features/covariates. Specifically we use (i) the location of the venue, (ii) the type

of the venue, (iii) the popularity of the venue prior to the promotion (i.e., the number of

total check-ins) and (iv) the rate of change in the daily check-ins of the venue the period

prior to the promotion. The reference group also ensures that on average the venues at

both groups will experience similar externalities (e.g., seasonal effects, effects related to the

popularity of Foursquare etc.). Once the reference group is obtained, we sample the empirical

promotion period distribution of the promotion venues and assign pseudo-promotion periods

to the reference group venues. Consequently we perform the same analysis described in the

previous section on the reference group.

Our results from 20 non-overlapping reference groups for the daily check-ins are also

depicted in Figure 4.3, where the 95% confidence intervals are also presented. As we can

see the fraction of venues enjoying an increase in the promotion group is higher compared

to that in the reference group. If we denote with Ic,d (Ic,a) the event of an increase for

md
cv (ma

cv), with S the event of a venue offering a special deal and with E the various

environmental externalities that are present, the reference group opts to obtain an estimate

for the probability P (Ic,d|E). On the other hand, the promotion group includes an additional

externality, the presence of a promotion. Hence, with the promotion group we are able to
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estimate P (Ic,d|S,E). Our results indicate that P (Ic,d|S,E) > P (Ic,d|E) and P (Ic,a|S,E) >

P (Ic,a|E) when considering all types of venues. However, the difference between these two

probabilities is less than 0.1 for both the short and long term. Similarly, Figure 4.4 depicts

the results from the reference groups with respect to the new customers. If we denote with Ip,d

(Ip,a) the event of an increase for md
pv (ma

pv), we observe that again P (Ip,d|S,E) > P (Ip,d|E)

and P (Ip,a|S,E) > P (Ip,a|E) when considering all types of venues. Again the difference is

smaller than 0.1 for both the short and long term.

Another aspect related with the potential effectiveness of the promotion campaign is the

actual effect size of the observed change. The degree of this change can be captured through

the standardized effect size of Cohen’s d. For example, when considering the effect during

the promotion on the daily check-ins:

dc,d =
md
cv −mb

cv

σpooled
(4.3)

where σpooled is the pooled standard deviation of the two samples (before and during the

promotion). Similar definitions of course are used for the daily new customers as well as the

effects after the promotion. Figures 4.5 and 4.6 present the empirical CDF for the observed

standardized effect sizes on the daily number of check-ins in both the promotion and the

reference groups for the short and long term respectively. For the reference groups we also

present the 95% confidence intervals of the distributions. As we can observe there is a

shift in the distribution for the promotion group, which is different for different categories.

However, this shift is very small. Furthermore, an interesting point to observe is the jump at

the reference groups’ ECDF at d = 0. This means that there is a non-negligible fraction of

venues in the reference group that have exactly the same mean for the two periods compared.

We will come back to this observation in the following section.

Figures 4.7 and 4.8 present the ECDF for the standardized effect sizes dp,d and dp,a. As

we can see the results are very similar to the ones for the standardized effect size on the

mean daily check-ins. Also note here that, the jump at the reference groups’ ECDF at d = 0

is observed as well.
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Figure 4.5: Both the promotion and reference groups enjoy similar effect sizes dc,d on the

daily check-ins.

4.2.3 Bootstrap Tests

Our results above indicate that a large number of venues exhibit small effect sizes, which

might not represent robust observations. Therefore, in this section we opt to identify and

analyze the promotions in our dataset that are associated with a statistically significant

change in their check-ins and/or their new customers.

Given our setting, the following two-sided hypothesis test examines whether their is a

statistically significant change observed in the short-term with respect to the daily check-ins:

H0 : mb
cv = md

cv (4.4)

H1 : mb
cv 6= md

cv (4.5)

The sign of the observed difference will further inform us if the change is positive. In

our analysis we pick the typical value of significance level α = 0.05. If we want to examine

the long-term effectiveness of special deals on the daily check-ins we devise the same test

as in Equations (4.4) and (4.5), where we substitute md
cv with ma

cv , while similar tests are

performed for the daily new customers. We choose to rely on bootstrap for the hypothesis
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Figure 4.6: ECDF of the standardized effect size dc,a on the daily check-ins after the promo-

tion.

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(a) All categories

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(b) Nightlife

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(c) Food

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(d) Shops

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(e) Arts

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(f) College

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(g) Outdoors

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(h) Travel

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(i) Residence

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Standardized effect size

E
C

D
F

promotion
reference

(j) Professional

Figure 4.7: Both the promotion and reference groups enjoy similar effect sizes dp,d.

testing rather than on the t-test to avoid any assumption for the distribution of the check-

ins (or the new users). Bootstrap also allows us to estimate the statistical power π of the

performed test. This is important since an underpowered test might be unable to detect

statistically significant changes especially if the effect size and/or the sample size are small.

Consequently, this can lead to underestimation of the cases where the alternative hypothesis
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Figure 4.8: The difference between the effect size dp,a for the promotion and reference groups

is the largest observed. Nevertheless, it is still fairly small.

is true.

Statistical bootstrap [47] is a robust method for estimating the unknown distribution of

a population’s statistic when a sample of the population is known. The basic idea of the

bootstrapping method is that in the absence of any other information about the population,

the observed sample contains all the available information for the underlying distribution.

Thus, resampling with replacement is the best guide to what can be expected from the

population distribution had the latter been available. Generating a large number of such

resamples allows us to get a very accurate estimate of the required distribution. Furthermore,

for time-series data, block resampling retains any dependencies between consecutive data

points [95].

In our study we will use block bootstrapping with a block size of 2 to perform the

hypothesis tests. When performing a statistical test we are interested in examining whether

under the null hypothesis, the observed value for the statistic of interest was highly unlikely

to have been observed by chance. In our setting, under H0 the two populations have the

same mean, i.e., md
cv −mb

cv = 0. Hence, we first center both samples, before and during the

special, to a common mean (e.g., zero by subtracting each mean respectively) in order to

force the null hypothesis to be true. Then we bootstrap each of these samples and calculate
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the difference between the new bootstrapped samples. By performing B = 4999 bootstraps,

we are able to build the distribution of the difference md
cv −mb

cv under H0. If the (1 − α)

confidence interval of md
cv − mb

cv under the null hypothesis does not include the observed

value from the data, then we can reject H0. An empirical p-value can also be calculated by

computing the fraction of bootstrap samples that led to an absolute difference greater than

the one observed in the data.

With statistical bootstrapping we can further estimate the power π of the statistical

test performed. π is the conditional probability of rejecting the null hypothesis given that

the alternative hypothesis is true. For calculating π we start by following exactly the same

process as above, but without centering the samples to a common mean. This will allow us

to build the distribution of md
cv −mb

cv under H1. Then the power of the test is the overlap

between the critical region and the area below the distribution curve under H1.

We have applied the bootstrap hypothesis test on our promotion and reference groups.

Figure 4.9 presents our results for all types of venues, while similar behavior is observed for

specific venue categories. In particular, we calculate the fraction of promotions associated

with a statistically significant increase in the average daily check-ins. Note that we consider

only the promotions whose p-value is less than α = 0.05 or π ≥ 0.8 (the latter is a typical

value used and increases our confidence that failure to reject H0 was not due to an under-

powered test). As we can see, in this case the fraction of venues that exhibit an increase in

the average daily check-ins is almost the same for both groups and for both short and long

term, i.e., P (Ic,∗|S,E) ≈ P (Ic,∗|E). This suggests that the presence of a local promotion and

the increase in the average check-ins are conditionally independent given the externalities E!

To be more precise, during the promotion period the probability of increase in the check-ins

for the treated venues appears to be larger than that of the control venues. However as one

can see in Figure 4.9, where the confidence intervals for P (Ic,d|E) are also presented, this

increase is very small from a practical perspective.

More importantly though, in the previous section we emphasized on the fact that the

reference group includes a large proportion of venues with effect size of 0. This clearly

reduces the fraction of venues in the reference groups that have d > 0 leading to smaller

bars for the reference group in Figure 4.3. A further examination of these cases shows that
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Figure 4.9: When considering venues with robust changes in their check-ins the effect of

local promotions disappear.
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Figure 4.10: Small effect sizes do not provide robust observations based on our bootstrap

tests (daily check-ins).

the vast majority of these venues exhibit 0 check-ins (and hence, 0 new customers as well)

over the whole period. These data points do not represent real venues, but are venues that

correspond to events such as extreme weather phenomena, traffic congestion, potentially

spam venues etc. Hence, we can remove these venues from our reference groups. After doing

so we are able to recover the results presented in Figure 4.9 further supporting the conditional

independence between an increase in the mean number of check-ins per day and promotions.

Note that our bootstrap tests for these venues are extremely underpowered (practically there

is not any distribution since every observation is 0) and hence, are not included in the results

presented in Figure 4.9. As we can further see from the plateau around dc,∗ = 0 in Figure

4.10 that depicts the empirical CDF of Cohen’s d for the venues used in Figure 4.9, small

effect sizes do not constitute robust observations. Of course this can either be due to the
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low power of the test to detect a small effect size, or due to the actual non-existence of any

effect.

We perform exactly the same analysis for the daily new customers to venues. Even

though P (Ip,d|S,E) > P (Ip,d|E) this increase is not statistically significant as well, as we

can see from Figure 4.11. The same is true for the long term impact of the campaign on

the number of new daily customers. Finally, Figure 4.12 depicts the distribution of the

corresponding effect sizes.
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Figure 4.11: When considering venues with robust changes in their daily unique customers

the effect of local promotions disappear.
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Figure 4.12: Small effect sizes do not provide robust observations based on our bootstrap

tests (daily unique customers).

4.2.4 Anecdote Evaluation

As mentioned in the introduction there are different anecdote stories supporting the effec-

tiveness of promotions through LBSNs. One of them is a burger joint in Philadelphia, which
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we denote as vP . At this part of our study we want to examine what our data imply for this

specific venue and to verify whether our data and analysis are able to recover known ground

truth. vP publishes a special deal on the 37th day of the data collection, which lasts until the

end of the collection period. Therefore, we can only examine the short-term effectiveness.

The standardized effect size for the daily check-ins is approximately 0.52 (0.41 for unique

users), while our bootstrap test indicates that this increase is statistically significant. This

is in complete agreement with reports about the specific venue [54]. Figures 4.13 and 4.14

further present the bootstrap distribution of md
cv −mb

cv and md
pv −mb

pv respectiveily under

H0 and H1.

−4 −2 0 2 4 6
0

100

200

300

400

500

600

700

800

900

Difference between bootstrap mcv
(md

cv
− mb

cv
)

F
re

q
u

en
cy

 

 
Confidence interval
       at α = 0.05

Observed
md

cv
−mb

cv

H1

H0

Figure 4.13: Our data support anecdote success stories for vP .
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Figure 4.14: Our data support anecdote success stories for vP (for unique users).
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4.2.5 Difference-in-Differences

In this section, we analyze the promotion data using a method borrowed from the econo-

metrics literature, namely difference-in-differences (DD) [7]. This is a quasi-experimental

technique that aims in identifying the effect of an intervention using observational data.

The reason for this analysis is to further support (or not) and hence, strengthen our con-

clusions from our statistical analysis using the bootstrap tests. An agreement between the

two methods will also highlight another benefit of performing bootstrap tests. As we will

elaborate on in the following, DD has a set of assumptions, with the strongest one being

that of the parallel trend between treated and control subjects. This assumption does not

always hold and hence, DD will not be applicable. Nevertheless, our approach presented in

Section 4.2.3 does not rely on this assumption and hence, is applicable even in cases where

DD is not.

DD requires observations obtained in different points in time, e.g., t1 and t2 (t1 < t2),

for both the control (e.g., yc,1 and yc,2) and the treated (e.g., yτ,1 and yτ,2) subjects. The

treated subject is exposed to the intervention only during t2. The difference between yτ,2 and

yc,2 does not only includes the effect of the intervention but it also includes other “intrinsic”

differences between the treatment and the control. The latter can be captured by their

difference during time t1, i.e., yτ,1 − yc,1, where the treated subject has not been exposed to

the intervention. The DD estimate is then:

δτ,c = (yτ,2 − yc,2)− (yτ,1 − yc,1) (4.6)

This removes any biases in the comparison during t2 between the treatment and control

that could be the result from (i) permanent differences between those points, as well as

(ii) biases from comparisons over time in the treatment that could be the result of trends.

Figure 4.15 further visualizes the process, where we see that the method takes advantage of

the expected parallel trend between the treatment and the control if the intervention was

not applied. In other words, this “parallel trend” assumption posits that the average change

in the control group represents the counterfactual change in the treatment group if there

were no treatment. This assumption is very important for the DD method to work and it
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Figure 4.15: The difference-in-differences method.

is not always true and thus, not always applicable. The DD estimate can also be formally

obtained through a linear regression that models the dependent variable y. More details are

provided in Appendix C.

To reiterate, in our setting the intervention is the presence of a special offer. The obser-

vation/dependent variable y, is the average number of check-ins and the average number of

new customers. In the case of analyzing the short-term effectiveness of a campaign, the time

t1 corresponds to the period prior to the special offer, while t2 corresponds to the period

during the promotion. Similarly, for the long-term study t1 corresponds again to the period

prior to the special offer, while t2 corresponds to that after the promotion is seized. Every

venue that has offered a promotion is considered a treatment, while the control venues for

each of them are the same as in our analysis using the bootstrap tests. Then for every

treated venue vτ we compute the average difference-in-differences δvτ ,vc with its matched

venues vc. With the dataset from all the treated venues, we can then compute the average

difference-in-differences δτ,c. If δτ,c is positive (at a predefined significance level α) then the

promotions can be deemed successful. Figure 4.16 depicts the distribution of δτ,c for different

dependent variable (i.e., check-ins and unique users) and for both the short and long term

analysis. As we can see the observed values are concentrated around δ = 0 for all the cases.

In fact, the corresponding p-values for the statistical test H0 : δτ,c = 0, H1 : δτ,c > 0 is

greater than 0.05 for all the 4 cases and hence, we cannot reject the null hypothesis, that is,

the difference-in-differences is 0. This further means that on average there is not any impact
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from the promotion campaigns. This result from difference-in-differences strengthens our

conclusions from our bootstrap tests, that the impact of promotions through location-based

social media is not as strong as anecdotal stories suggest.
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Figure 4.16: The average difference-in-differences in all scenarios is statistically not different

than 0!

However, as alluded to above, in order for the results of the difference-in-differences

method to provide robust results the parallel trend assumption needs to be satisfied. In order

to test whether this assumption is satisfied in our dataset, we can compute the difference-in-

differences between the treated and the control venues for earlier time periods that do not

include the presence of a promotion. If the computed difference-in-differences is insignificant,

i.e., δ = 0 for all statistical purposes, then the parallel trend assumption holds [10]. In our

case we use the one-month period prior to the special promotion. We consider a “pseudo-

intervention” at the middle of this period, i.e., two weeks, and we compute the difference-

in-differences coefficient between the two null time-periods. The results are presented in

Figure 4.17. As we can see the estimated null DD coefficient is distributed around 0. In

fact, the corresponding t-tests for the daily check-ins and unique users fail to reject the null

hypothesis (p-value > 0.15), i.e., that they are equal to 0. Thus, we can conclude that the

parallel trend assumption holds.

Anecdote evaluation: We further present the results for the difference-in-differences

analysis for venue vP . In particular, we compute the distribution of the difference-in-

differences f(δvP ,c) and the venues matched with vP , for both the number of check-ins as
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Figure 4.17: The parallel trend assumption is satisfied in our dataset for both the daily

check-ins and the daily new users.

well as the number of unique users visiting vP . The results are presented in Figure 4.18

(recall that we can only compute the effectiveness for the short-term). As we can see both

of the distributions are in the positive side of the horizontal axis and hence, further verify

the anecdote stories that the specific venue has benefited from the social media campaign.

0

1

2

3

4

0.0 2.5 5.0 7.5 10.0
DD (check-ins)

D
en
si
ty

(a) Check-ins

0

2

4

6

8

0 1 2 3 4 5
DD (unique users)

D
en
si
ty

(b) Unique Users

Figure 4.18: The average difference-in-differences for venue vP is 3.68 (p-value < 0.01) for

the check-ins and 1.36 (p-value < 0.01) for the unique users.
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4.2.6 Summary of Analysis

To summarize, we have analyzed the impact of promotions through LBSNs on the mean daily

number of check-ins to a venue as well as on the mean daily number of its new customers. Our

results indicate that the presence of a promotion does not alter the probability of observing an

increase in either of these daily means. Consequently there are not any significant evidence

in support of Hypotheses 4.1 and 4.2. For our analysis, we relied on quasi-experimental

techniques using bootstrap hypothesis testing. We further verified our results using the

difference-in-differences method increasing the confidence in our results.

Before describing our prediction models we want to explore the connection between

these two metrics. In particular, we compute the conditional probability of observing a

statistically significant increase in the mean daily number of check-ins given a statistically

significant increase in the new customers and vice versa. Our results are presented in Table

4.3. As we can see these conditional probabilities are very high revealing the high correlation

between the two metrics. For this reason, in the following section we will focus on building

models based on the mean daily number of check-ins.

Table 4.3: The two metrics we used to evaluate the effect of LBSN promotions are correlated.

Probability
short-term long-term

treatment control treatment control

Pr(Ip|Ic) 0.887 [0.804 0.827] 0.764 [0.684 0.722]

Pr(Ic|Ip) 0.931 [0.893 0.933] 0.898 [0.907 0.948]

4.3 MODELS FOR LOCAL PROMOTIONS

In this section our goal is to examine whether there are specific attributes that contribute to

the success of a promotion. For this we build models that can provide an educated decision
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on whether a special deal will “succeed” or not considering the short and the long term

cases separately. We will treat these as two separate binary classification problems (one for

the short term effectiveness and one for the long term). Based on the bootstrap tests the

positive class includes the offers that exhibit statistically significant increase in md
cv (ma

cv),

while the negative class includes the special deals with a statistically significant decrease or

a failure to reject the null hypothesis with a powerful test (π ≥ 0.8). We begin by extracting

three different types of features. Note that some of these features are specific to promotions,

while others aim at capturing more general factors that can affect the popularity of a venue.

For instance, the urban form of the neighborhood of a venue, that is, the composition of

the environment nearby with respect to venue types can be crucial as we explain later. We

then evaluate the predictive power of each individual feature using a simple unsupervised

learning classifier. We further build a supervised learning classifier to predict the effect of a

special deal using the extracted features.

The above classification problem provides a binary response, i.e., whether the promotion

will succeed or not. However, it does not inform about the extent of this success. For this

reason we also built a classic linear regression model using the same set of features, where

the dependent variable is the change in the check-ins/unique users both in short and long

term.

4.3.1 Feature Extraction

4.3.1.1 Venue-based features (Fv) The set Fv includes features related with the

properties of the venue publishing the special deal. The intuition behind extracting such

features lays on the fact that the effectiveness of the special offer can be connected to the

characteristics of the venue itself. For instance, a special deal might not help at all a really

unpopular venue but it might be a great boost for a venue with medium levels of popularity.

In particular, the features in Fv include:

Venue type: This is the top-level type T (v) of venue v. Table 4.4 depicts the fraction

of special deals offered from different types of venues that are associated with a statisti-

cally significant increase in the daily number of check-ins, i.e., the conditional probability
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P (I|T (v)).

Table 4.4: Probability for the positive class conditioned on the type of the venue.

Category Nightlife Food Shops Arts College Outdoors Travel Residence Professional
% Positive short-term 62.07% 57.74% 42.90% 52.87% 56.25% 58.33% 66.84% 54.54% 61.86%

class long-term 50.00% 41.51% 28.22% 43.75% 37.04% 25.00% 53.80% 14.29% 39.68%

Popularity: For the venue popularity we use two separate features; (i) the mean

number of check-ins per day at the venue for the period before the special offer starts, mb
cv

and (ii) the cumulative number of check-ins in v just before the beginning of the special

offer, cav[ts−1].

Loyalty: We define the loyalty λ of users in venue v as:

λv[ts−1] =
cav[ts−1]

pav[ts−1]
(4.7)

where pav[ts−1] is the accumulated number of unique users that have checked-in to venue v

at time ts−1. At a high-level λ indicates the average return (check-in) rate of users in v.

Rating score: Each venue in Foursquare has a rating score ranging from 0 to 10.

Foursquare calculates this rating based on a number of signals [59] such as the number of

positive/negative reviews that the venue has received from Foursquare users. We use the

rating γv[ts−1] of venue v at time ts−1 as another feature.

Likes: Foursquare allows users to like or dislike a venue. We will use the accumulated

number of likes ιv[ts−1] a venue has received (at time ts−1) as a feature for our classifiers.

Tips: Foursquare allows users to leave short reviews for the venues. We use the total

number of such reviews (tips in Foursquare’s terminology) Ntv[ts−1] for venue v up to time

ts−1 as a feature for our classifiers.

4.3.1.2 Promotion-based features (Fp) The set Fp includes features related to the

details of the special offer(s) that exist during the promotion period. The details of the

deal(s) might be important on whether the promotion will succeed or not. For instance, a

81



short-lived offer might have no impact because people did not have a chance to learn about

it. The features in Fp include:

Duration: The duration D is the promotion period length. Intuitively, a longer duration

allows users to learn and “spread the word” about the promotion, which consequently will

attract more customers to check-in to the venue.

Type: There are 7 types of special deals that can be offered from a Foursquare venue

during the promotion period. Each type provides different kind of benefits but has also

different unlocking constrains. Table 4.5 shows the probability distribution of the positive

class conditioned on the different types of special offers that are part of the promotion.

Table 4.5: Probability distribution of the positive class conditioned on the different types of

special offers.

Type Newbie Flash Frequency Friends Mayor Loyalty Swarm Multi-type

% Positive short-term 62.24% 60.00% 45.56% 84.62% 67.74% 50.50% 57.14% 60.60%
class long-term 59.32% 62.50% 30.07% 43.75% 54.84% 50.00% 0.00% 44.23%

If a venue publishes two (or more) different types of deals we refer to this as “Multi-type”

offer. In order to be able to easily distinguish between different combinations of offers in

this “Multi-type” deals, we encode this categorical feature in a binary vector ξs ∈ {0, 1}7,

where each element represents a special type. “Multi-type” promotions will have multiple

non-zero elements.

Count: Count Ns is the average number of special deals per day associated with a

promotion period. Ns captures how frequently a venue published specials during a specific

promotion period. Note that ξs is a binary vector and hence, if a venue is offering two deals

of the same type this can only be captured through Ns.

4.3.1.3 Geographical features (Fg) The effectiveness of a promotion can be also

related to the urban business environment in the proximity of the venue. The latter can

be captured through the spatial distribution of venues. For example, an isolated restaurant

might not benefit from a special deal promotion, simply because people do not explore the
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specific area for other attractions. For our analysis, we consider the neighborhood N (v, r)

of a venue v to be the set of venues within distance r miles from v (we use r = 0.5)2. The

features in Fg include:

Density: We denote the number of neighboring venues around v as the density ρv of

N (v, r). Hence,

ρv = |N (v, r)| (4.8)

Area popularity: The density ρv captures a static aspect of v’s neighborhood. To

capture the dynamic aspect of the overall popularity of the area, we extract the total number

of check-ins observed in the neighborhood at time ts−1:

φv =
∑

v′∈N (v,r)

cav′ [ts−1] (4.9)

Intuitively, a more popular area could imply higher likelihood for Foursquare users and

potential customers to be in the area, learn about the promotion and be influenced to visit

the venue.

Competitiveness: A venue v of type T (v), will compete for customers only with

neighboring venues of the same type. Hence, we calculate the proportion of neighboring

venues that belong to the same type T (v):

κv =
|v′ ∈ N (v, r) ∧ T (v′) = T (v)|

ρv
(4.10)

Neighborhood entropy: Apart from the business density of the area around v, the

diversity of the local venues might be important as well. To capture diversity we typically

rely on the concept of information entropy. In our setting we calculate the entropy of the

distribution of the venue types in N (v, r). With fT being the fraction of venues in N (v, r)

2We have also used r = 0.3 and r = 0.8 and we obtained similar results.
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of type T the entropy of the neighborhood around v is:

εv = −
∑
T∈T

fT · log(fT ) (4.11)

where, T is the set of all (top-level) venue types.

4.3.2 Predictive Power of Individual Features

We now examine the predictive ability of each of the numerical features described above

in isolation. We will compare descriptive statistics of the distribution of each feature (in

particular the median) for the two classes. We will then compute the ROC curve for each

feature considering a simple, threshold-based, unsupervised classification system.

Mann-Whitney U test for each feature’s median: A specific numerical feature

X can be thought of as being strongly discriminative for a classification problem, if the

distributions of X for the positive and negative instances are “significantly” different. To

that end we examine the sample median of these distributions by performing the two-sided

Mann-Whitney U test for the median values in the positive and negative classes for each of

the features. The p-values of these tests are presented in Table 4.6.

ROC curves for individual features: We now compute the ROC curve for each

feature based on a simple unsupervised classifier. The latter considers each feature X in

isolation and sets a threshold value for X that is used to decide the class of every instance in

our dataset. For each value of this threshold we obtain a true-positive and false-positive rate.

Using all the true-positive, false-positive rate points we finally obtain the ROC curve for X.

Our results for the short-term are presented in Figure 4.19 for both short and long-term

predictions. As we can see these curves are fairly close to the line y = x, which corresponds

to the performance of a random classifier! We further calculate the area under the ROC

curve (AUC). Interestingly, there is a connection between the Mann-Whitney U test and the

AUC given by [35]:

AUC =
U

np · nn
(4.12)
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Table 4.6: While the median of the features for the two classes are significantly different,

the actual distribution appear to not be discriminative (low AUC)

Features
short-term long-term

AUC p-value AUC p-value

Fv

cav[ts−1] 0.537 10−6 0.519 0.047

mb
cv 0.799 0 0.702 0

λv[ts−1] 0.526 10−4 0.535 10−4

γv[ts−1] 0.614 0 0.580 0

ιv[ts−1] 0.537 10−9 0.557 0

Ntv[ts−1] 0.510 0.178 0.546 10−7

Fp D 0.539 10−7 0.580 0
Ns 0.617 0 0.609 0

Fg

ρv 0.551 0 0.551 10−8

φv 0.558 0 0.558 10−9

κv 0.565 0 0.557 10−9

εv 0.559 0 0.574 0

where U is the value of the Mann-Whitney U test statistic, np is the number of positive

instances and nn is the number of negative instances. Table 4.6 presents the values for AUC.

As we observe while there are some features that deliver a good performance (e.g., mb
cv and

Ns) most of the features give a performance close to the random baseline of 0.5. Hence, each

feature individually does not appear to be a good predictor for the effect of special offers

through LBSNs. However, in the following section we will examine a supervised learning

approach utilizing combinations of the different types of features extracted.

4.3.3 Supervised Learning Classifiers

In this section we turn our attention to supervised learning models and we combine the

extracted features to improve the performance achieved by each one of them individually.

We evaluate various combinations of the three types of features for the binary classification

problem. Our performance metrics include accuracy, precision, recall, F-measure and AUC

for each classification model, and we also report the magnitude and significance of coefficients

for the logistic regression model. For the classification we examine two different models, a
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Figure 4.19: ROC curve of individual feature evaluation for the short-term (top row) and

long-term (bottom row) prediction.

linear one (i.e., logistic regression) and a more complex based on ensemble learning (i.e.,

random forest).

We begin by evaluating our models through 10-fold cross validation on our labeled pro-

motion dataset. The results for the different combinations of features and for the different

classifiers are shown in Figure 4.20. As the results indicate, even when we use simple linear

models the performance is significantly improved compared to unsupervised models. It is

also interesting to note that the most important type of features appears to be the venue-

based features Fv. The promotion-based as well as the geographic features while improving

the classification performance when added, do not provide very large improvements.

The above models were built and evaluated on the data points identified through the

bootstrap statistical tests in an effort to keep the false positives/negatives of the labels low.
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(d) Long-term Prediction with Random Forest

Figure 4.20: Using supervised learning models improves the performance over unsupervised

learning methods.

However, while this is important for building a robust model, in a real-world application

the model will need to output predictions for cases that might not provide statistically

significant results a posteriori. After all, a venue owner is interested in what he observes,

and not whether this was a false positive/negative (i.e., an increase/decrease that happened

by chance). Hence, we test the performance of our models on the data points in the promotion

group for which we were not able to identify a statistically significant change (α = 0.05) in

the average number of check-ins per day. A positive observed value of d corresponds to the

positive class. Note that we do not use these points for training. This resembles an out-of-

sample evaluation of our models, testing their generalizability to less robust observations.

Our results are presented in Figure 4.21. While as one might have expected the performance

is degraded compared to the cross-validation setting, it is still good.

Finally we focus on the results from logistic regression, which has a genuine probabilistic

interpretation. In particular, the accuracy performance when using the set of features Fv∪Fg
and Fp∪Fv∪Fg is very similar. We compute the actual outcome of the model, i.e., before
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(d) Long-term Prediction with Random Forest

Figure 4.21: Our supervised models deliver good performance on out-of-sample evaluation

on the less robust observations.

applying the classification threshold, which is the probability of observing an increase in the

mean daily check-ins of the corresponding venue. Hence, the outcome of the two models

provide the probabilities P (I|Fv,Fg) and P (I|Fv,Fg,Fp) respectively. Table 4.7 presents

the root mean square differences between these probabilities for the various cases examined,

which is small for all the scenarios. Since features Fv and Fg capture various (environmental)

externalities, while the set Fp captures attributes related with the promotion itself, these

results further support our findings from our statistical analysis in Section 4.2. Of course

these features do not capture all the externalities, and thus the actual probabilities might

differ, even though the classification outcome is very accurate.

Finally, we examine the logistic regression coefficients of the various features used. The

results are presented in Table 4.8. As we can see the majority of the features provide statis-

tically significant information for the success of a promotion. However, the most important

feature appears to be the popularity of a venue as captured by the number of check-ins prior

to the promotion. The direction of the effect of this feature is negative, i.e., a venue with
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Table 4.7: The root mean square distance of the logistic regression output for the features

Fv∪Fg and Fp∪Fv∪Fg further supports our statistical analysis.

Cross-validation Out-of-sample

short-term long-term short-term long-term

0.081 0.067 0.072 0.074

smaller popularity appears to be more probable to benefit from a promotion as compared to

a more popular venue (keeping all the other independent variables constant). At a hindsight

this might be expected since an already popular venue might have already saturated the

nearby clientele and hence, it will be extremely hard to benefit from such promotions. On

the contrary, venues with lower popularity (e.g., newer venues) might be able to attract more

of the nearby customer base.

4.4 DISCUSSION AND IMPLICATIONS

Our results suggest that the benefits from local promotions through LBSNs (and to be more

specific through the platform examined in our study, which is currently the largest LBSN)

are much more limited than what anecdotal stories suggest. However, we acknowledge that

the time-series of daily check-ins and unique users serve only as a proxy for the actual

revenue generated. Nevertheless, we believe that these proxies can indirectly drive revenue,

by increasing the visibility of a venue. In addition, customers attracted by LBSN campaigns

are arguably more motivated to check-in than others. In fact, as we discussed in Section 4.1

LBSN campaigns require users to check-in in order to claim their badges, discounts or other

types of rewards. Therefore, a revenue increase due to the influx of such customers should

be reflected in these proxies.

Even though our study suggests the limited potential of such campaigns, we choose to use
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Table 4.8: Coefficients for logistic regression

(a) Short-term

Est. Signif.

(Intercept) 0.62

Fv

cav[ts−1] 0.003 ***
mb
cv -3.104 ***

λv[ts−1] -0.014 .
γv[ts−1] -0.139 ***
ιv[ts−1] -0.003

Ntv[ts−1] 0.018 .

Fp
D 0.007 ***
Ns 0.410 **

Fg

ρv -0.001 *
φv 0.000 **
κv -0.574
εv 0.354 **

not verified Reference level
verified -0.026

C
at

eg
or

y

Arts Reference level
College -0.777

Food 0.069
Nightlife 0.227

Outdoors 0.700
Residence -1.845 *

Shops -0.529
Travel 0.735 .
Work -0.511

T
y
p

e

Newbie Reference level
Flash 0.726

Frequency -0.501 **
Friends 1.261 *
Mayor 0.979 **

Regular 0.221
Swarm 0.269

Multitype -0.640 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

(b) Long-term

Est. Signif.

(Intercept) 0.771

Fv

cav[ts−1] 0.004 ***
mb
cv -3.782 ***

λv[ts−1] -0.028
γv[ts−1] -0.074 ***
ιv[ts−1] 0.163 ***

Ntv[ts−1] -0.018

Fp
D -0.010 ***
Ns 0.202

Fg

ρv -0.001 **
φv 0.000 ***
κv -0.387
εv 0.271 .

not verified Reference level
verified -0.589

C
at

eg
or

y

Arts Reference level
College -1.161

Food 0.922 *
Nightlife 1.369 .

Outdoors 1.122
Residence -2.138

Shops 0.633
Travel 1.769 ***
Work 0.801

T
y
p

e

Newbie Reference level
Flash 1.909 *

Frequency -0.976 **
Friends -1.117
Mayor 0.260

Regular -0.466
Swarm -13.153

Multitype -0.982 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

these findings as motivation for improving the design of similar advertising efforts. In this

direction, the promising results of the predictive models that we introduced in Section 4.3

suggest the usefulness of such methods for the purpose of estimating the effectiveness of
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alternative campaign designs and choosing the best possible option for each setting.

Further, recent relevant work has exposed reasons why people check-in to venues [101].

Furthermore, design flaws that can explain some of the shortcomings of current LBSN cam-

paigns have also been identified. For example, Cramer et al. [36] revealed possible reasons

that lead people to check-in to a location long after they arrive. It is likely that these users

might have not have used the LBSN to discover nearby venues during their visit and would,

thus, be oblivious to any location-based campaigns. This suggests the need for more active

communication channels, such as geo-fenced push notifications. In fact, Fang et al. [52]

showed through randomized experiments that active notifications for location-aware mo-

bile promotions can generate 12 times more sales as compared to conventional notifications.

Moreover, the way that a promotion is redeemed might also play a role. For example, a large

fraction of the promotions on Foursquare limit their scope to users that have a particular

credit card (e.g., American Express). While such constraints are typically motivated by

agreements with credit card companies or with other 3rd-party vendors, further research is

required to verify whether the benefits outweigh the cost of eliminating a significant part of

the customer base.

4.5 RELATED WORK

In this section we discuss relevant to our work literature and differentiate our study. In brief,

there is a large volume of research in the area of online and social-media advertising. Nev-

ertheless, to the best of our knowledge, our study is the first to analyze at scale promotions

through location-based social networks. These platforms bring together both the location

component as well as the social media.

Effects of Promotions: Studies in the management science have examined the impact

of promotions on marketing. For example, [20] found that temporary discounting substan-

tially increases short term brand sales. However, its long term effects tend to be much

weaker. This pattern was further quantified by Pauwels et al. [119] who found that the sig-

nificant short time promotion effects on customer purchases die out in subsequent weeks or
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months. Furthermore, Srinivasan et al. [147] quantified the price promotion impact on two

targeted variables, namely, revenues and total profits, by using vector autoregressive mod-

eling. The authors found that the price promotion has a positive impact on manufacture

revenues, but for retailers it depends on multiple factors such as brand and promotion fre-

quency. Finally, in [90] Kopalle et al. proposed a descriptive dynamic model which suggests

that the higher-share brands tend to over-promote (i.e., offer promotions very frequently),

while the lower-share brands do not promote frequently enough.

Online Deals and Advertising: Online promotions have gained a lot of attention

in recent literature. Such promotions have been a popular strategy for local merchants to

increase revenues and/or raise the awareness of potential customers. A detailed business

model analysis on Groupon was first presented in [4], while in [43] the authors surveyed

businesses that provide Groupon deals to determine their satisfaction. Edelman et al. [46]

considered the benefits and drawbacks from a merchant’s point of view on using Groupon and

provided a model that captures the interplay between advertising and price discrimination

effects and the potential benefits to merchants. Byers et al. [24] designed a predictive model

for the Groupon deal size by combining features of the offer with information drawn from

social media. They further examined the effect of Groupon deals on Yelp rating scores and

similar to our study they identified that Groupon deals do not offer a sustainable means of

advertisement; venues offering Groupon deals see a reduction in their Yelp ratings after the

promotion. Finally, Adamopoulos and Todri [2] examined the long-term effect of promotions

through social media platforms (in particular Twitter) and report abnormal returns for the

participating brands in terms of expanding the firm’s social media fan base.

Tangential to our work is also literature on web advertising and its efficiency. In this

space, Fulgoni et al. [62] present data for the positive impact of online display advertising

on search lift and sale lift, while Goldfarb et al. [68] further examined the effect of different

properties of display advertising on its success through traditional user surveys. Papadim-

itriou et al. [118] study the impact of online display advertising on user search behavior

using a controlled experiment, while CARESOME [17] was designed in order to assess the

ability of social media to acquire and retain customers.

Mobile Marketing and Social Media: Mobile marketing serves as a promising
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strategy for retail businesses to attract, maintain and enhance the connection with their

customers. Sliwinski [143] built a prototype application that utilizes customer spatial point

pattern analysis to target potential new customers, while Luhur and Widjaja [103] describe a

mobile application that can facilitate location-based search for restaurants and promotions.

Furthermore, Banerjee et al. [15] studied the effectiveness of mobile advertising. Their

findings indicate that the actual location of the participant as well as the context of that

location, significantly influence the potential effectiveness of these advertising strategies.

Recently, there have also been efforts to quantify through models [11] the financial value of

location data, which are in the center of mobile marketing operations.

In another direction, location-based social media have gained a lot of attention. Data

collected from such platforms can drive novel business analysis. Qu and Zhang [127] proposed

a framework that extends traditional trade area analysis and incorporates location data of

mobile users. As another example, Karamshuk et al. [89] proposed a machine learning

framework to predict the optimal placement for retail stores, where they extracted two types

of features from a Foursquare check-in dataset. Furthermore, these platforms can serve

as mobile “yellow pages” with business reviews that can influence customer choices. For

instance, Luca [102] has identified a causal impact of Yelp ratings on restaurant demand

using the regression discontinuity framework.

Overall, our study examines the performance of promotions through location-based social

media. It significantly contributes to the empirical literature in the area, since it is the first

study at scale on the specific problem. While the analysis and conclusions are tight to the

platform where data were collected from, our work points to clear actionable directions for

both the social media provider and the participating businesses as we discuss in detail in

Section 4.4.

4.6 SUMMARY

In this chapter, I formally evaluates both the long-term and short-term effects of LBSN

campaigns for participating businesses to attract the visits of customers. Our main result
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indicates that the positive effects of special offers through the LBSN platform examined are

significantly more limited than what anecdotal success stories seem to suggest. I validate our

findings by adopting two alternative methods for statistical testing, which lead to the same

conclusions. In addition, in order to gain a deeper understanding of our results and increase

the practical value of our methodology, I design and implement a model by extracting three

types of features for predicting the popularity of a venue during and after a campaign. Our

findings can be used to inform strategies for improving campaign effectiveness.

In the next chapter, I further present our study on the impact of urban environmental

factors, e.g., street fairs, on local economy and the underlying human movement.
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5.0 IMPACT OF URBAN EVENTS ON LOCAL ECONOMY

A healthy local business sector is important for the prosperity of the surrounding community.

City governments design policies and community organizations take actions that aim in

boosting the growth of such businesses. This growth can have rippling positive externalities,

such as, reducing local unemployment rates, keeping the local economy alive1 and facilitating

regional resilience to name just a few. These are even more important during periods of

economic crises and recession, similar to the recent one in 2008 that US is just getting itself

out of.

However, these efforts might not have the results expected. For example, many local

governments during the “Small Business Saturday” (last Saturday of November) offer free

curb parking. The rationale behind this policy is to give incentives to city dwellers (i.e.,

reduced trip cost to the business) to shop locally. However, the outcome is in many cases

radically different. The underpricing of curb parking creates latent incentives for drivers to

keep their cars parked for longer than normal periods of times. This leads to low turnover

per parking spot and hence, ultimately to fewer number of customers in the local stores

[138]. Therefore it is crucial to evaluate the efficiency of similar interventions. Knowing

what boosts the local economy and what does not, can allow the involved parties to make

educated decisions for their future actions and ultimately lead to urban intelligence through

data-driven decisions and policy making. In this study we are interested in a specific question

and in particular, we are studying a research hypothesis related with the impact of street

fairs on neighboring local businesses.

The golden standard for evaluating public policies is randomized experiments. However,

1As per the New Economics Foundation “local purchases are twice as efficient in terms of keeping the
local economy alive”.
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in many cases designing and running the experiment is impossible from a practical point of

view. Hence, quasi-experimental techniques [137] have been developed to analyze observa-

tional data in such a way that resembles a field experiment. To complicate things more with

respect to our specific research hypothesis, evaluating the economic impact of street fairs

requires access to the appropriate revenue data. While a city government office can obtain

access to information such as sales tax revenue, local business advocates and citizens organi-

zations will certainly face obstacles in obtaining such kind of data. This type of information

is not part of the Open Data released by local governments and are accessible (if at all)

in a very limited form through pay-per-request APIs (e.g., http://zip-tax.com/pricing).

This lack of transparency can be compensated to a certain extend by utilizing information

from social networks and social media. While similar types of data can potentially suffer

from well-documented biases (e.g., demographic biases), they form an open platform that

can be easily accessed and analyzed by citizens themselves to facilitate further investigation

of issues, leading to a grassroots approach to urban governance.

In our case, given that we do not have actual revenue data for the businesses in the area

of Pittsburgh as aforementioned, we collect Foursquare check-ins from the city of Pittsburgh

over a three-month period (June-August 2015) and evaluate the effect of summer street fairs

on local economy. The check-in information can serve as a proxy - even though not perfect -

for the revenue ρ generated [166]. We would like to emphasize here that, our study aims in

evaluating the impact of street fairs on the brick-and-mortar stores that are adjacent to the

event location and not that on the participating entities – which is expected to be positive

in order for them to participate.

In order to analyze our data we rely on two quasi-experimental techniques. First, an

increase in the check-ins for the venues near the street fair does not necessarily mean that this

was due to the event. One or more control areas need to be used for comparison. However, our

data are not generated through a randomized experiment but they are purely observational.

For our analysis, this essentially means that we cannot assume that the area hosting a street

fair event is chosen at random. Consequently, we cannot assume that the areas that do

not host street fairs exhibit the same characteristics with respect to unobserved confounding

features and hence, we cannot compare the revenue in the treated area with any untreated
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area. For overcoming this problem, we rely on quasi-experimental design techniques that

identify appropriate control areas. In particular, we rely on propensity score matching [131],

adopted in our setting by utilizing expert domain knowledge, in order to pick a set of matched

areas Am with the treated area α that will serve as our control subjects. Second, once the

matched areas for comparison are chosen, we adopt the difference-in-differences method [7]

in our setting in order to quantify the impact of the street fairs on local businesses. In a

nutshell, the difference-in-differences is a regression model that examines the average change

of the treatment group once the treatment has been applied and compares it with the control

group. The implicit assumption is that this difference would be zero if the treatment had

not been applied. We elaborate further on these two methods in the following section.

The main contributions of this chapter can be summarized as follows:

• We provide quantifiable evidence that support the positive impact of street fairs on local

businesses.

• We show how social media data - despite their potential biases - can be useful to public

policy makers and local governments since they are transparent, accessible and are able

to provide good evidence when analyzed properly.

Scope of this chapter: While in the current study we are focusing on the effect

of street fairs on local businesses the method can be applied in a variety of scenarios that

include an external event/stimulant. For example, one can use our framework to quantify

the effect of short-term road closures and/or constructions on the local economy. This is

especially important during the bidding phase of a construction project since these effects

should be included in the calculation of liquidated damages [67]. However, they are not

currently included since there is not a framework to estimate this effect.

5.1 QUASI-EXPERIMENTAL ANALYSIS METHODS

Let us denote the total volume of revenue within area α at day t with ρt,α. Furthermore,

Tα is the set of days that a street fair took place within area α. The trending of ρt,α by
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itself cannot reveal anything with respect to the contribution of the street fair at the revenue

generated in area α. Hence, in order to account for various confounding factors and other

externalities we will need to get a “baseline” for comparison. When experimental design and

implementation is possible this happens with random assignment of the treatment (in our

case the street fair) to the experimental subjects. However, in our case this is not possible

and hence, we rely on matching techniques and more specifically we use propensity score

matching. Matching techniques provide us with the ability to analyze observational data in

a way that mimics some of the particular characteristics of a randomized trial. In particular,

we choose a matched, with area α, neighborhood, say, αm, to analyze and compare the

corresponding revenues generated.

Our analysis is inspired by the difference-in-differences method [7]. In brief, we compare

the daily revenue differences between the area with the street fair and the corresponding

matched area(s) both during the period of the street fairs as well as during the period

without any street fair. The comparison with the matched area(s) - that are exposed to the

same externalities - accounts for various confounding factors that can affect revenues, and

hence, any observed difference can be attributed to the treatment, i.e., the street fairs in our

case. In what follows, I describe in detail the building blocks of our analysis, i.e., propensity

score matching and difference-in-differences.

5.1.1 Propensity Score Matching

Propensity score matching can be used to reduce (or even eliminate) the effect of confounding

variables on the analysis of observational data. To reiterate propensity score matching allows

an analysis in a way that mimics a randomized trial. In our own context, the treatment of

interest is whether or not there is a street fair in neighborhood i. The propensity score of each

(untreated) instance (i.e., every untreated neighborhood) represents the probability of this

instance to be treated, conditional on a set of confounding variables. In a real randomized

experiment, the instances are randomly assigned to the treatment and control groups. This

ensures (given sufficiently large number of instances) that on average the two groups will

only differ with respect to the reception of the treatment. In the case of observational data,
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the treatment is not randomly assigned but usually the “treated” instances are chosen due

to some specific characteristics (i.e., the confounding factors). Therefore, in order to identify

an appropriate control group we need to calculate the probability of the untreated instances

obtaining the treatment.

In order to calculate the propensity scores, i.e., the conditional probabilities of the in-

stances receiving the treatment, we employ a logistic regression model similar to [5]. In

particular, given a feature vector Z that is formed by a set of neighborhood characteristics

(i.e., the confounding factors) we estimate the following conditional probability:

Pr(bi = 1|Zi) =
exp(wTi ·Zi)

1 + exp(wTi ·Zi)
(5.1)

where bi is a binary indicator variable, which takes the value 1 if area i is treated and 0

otherwise. In our case, Zi includes three types of features for every type of establishment

T that exists in neighborhood i that captures (a) the fraction of type T venues in i, as well

as, (b) the fraction of the revenue (check-ins in our case) within α that was generated by

venues of type T . Finally, for every business venue type, we use (c) the “stickiness” of the

users in this type as an additional feature. The “stickiness” is defined as the ratio between

the total number of check-ins in the corresponding category over the number of unique users

that generated these check-ins.

After training the aforementioned logistic regression model, we estimate the probability

from Equation (5.1) for all neighborhood instances i ∈ N (both treated and untreated),

where N is the set of areas/neighborhoods. Then we match the treated neighborhood α,

with:

αm = min
i∈N\{α}

|Pr(bi = 1|Zi)− Pr(bα = 1|Zα)| (5.2)

Essentially, this means that area αm is the one that has the closest probability of hosting

a street fair to that of area α, under the assumption that the only features that affect the

decision are the ones captured by the observable confounding variable vector Z.

In many scenarios (such as in our case study) we might only have one treated area α,
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i.e., only one area has hosted a street fair. In this case, evaluating Equation (5.2) is trivial,

since, the minimum is observed for the area i for which the vector distance d(Zi,Zα) is

minimized. Simply put, the matched area αm is the one whose feature vector Zαm is closer

to that of the treated area Zα. We would like to emphasize here that, there might be other,

unobserved, factors that lead to the choice of an area for a street fair. This is a limitation of

the quasi-experimental techniques in general and propensity score matching can only account

for observable confounders Z.

One way we propose to use in order to alleviate some of the potential problems associated

with the aforementioned limitation is to initialize the matching process with expert knowl-

edge. In particular, the matched area αm can be chosen using expert knowledge (e.g., urban

planners in our case). The benefit of this approach is that the domain expert is - implicitly

or explicitly - considering various (potentially unobserved) confounders simultaneously. We

can then use the expert matching as a “seed” for matching more than one neighborhoods to

α using the propensity scores.

In particular, with πm,e being the propensity score of the (domain expert) matched area

αm,e, we can pick the following set of matched areas:

Am = {αmj : |πmj − πα| < |πm,e − πα|+ ε} (5.3)

Essentially, as per Equation (5.3), the set Am includes neighborhoods that have propen-

sity scores that are closer to the score of the treated area (within a tolerance factor ε) as

compared to the expert matched area. Once set Am is obtained we can analyze the cor-

responding revenues generated using the difference-in-differences method described in what

follows.

5.1.2 Difference-in-Differences

We apply again the difference-in-differences (introduced in Section 4.2.5) to quantify the

impact of the street fairs on surrounding businesses. The control and treatment subjects in

our setting are urban neighborhoods, and the treated subjects includes neighborhoods that

host street fairs.
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Figure 5.1: The treated neighborhood with street fairs and a matched area selected with

domain knowledge.

5.2 DATASET AND ANALYSIS SETUP

In this section we will present the dataset we collected, as well as, the hypothesis and the

experiment setup for our analysis.

5.2.1 Dataset

For the purposes of our study we collected time-series data using Foursquare’s venue public

API. We queried daily all Foursquare venues in Pittsburgh for the three-month period be-

tween 06/01/2015 - 08/30/2015. This period includes six street fairs/events2 that took

place at a specific neighborhood in the city of Pittsburgh (see the street marked with red in

Figure 5.1).

Our time-series data include information with respect to the number of check-ins cv[t]

that have been generated in venue v during day t. To reiterate, given the fact that we do not

have actual revenue data for the businesses in Pittsburgh we rely on the check-in information

2http://thinkshadyside.com/events/
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as a proxy for the corresponding revenue of venue v, ρv[t]. This information will allow us

to build the aggregate volume daily check-ins cα within area α, i.e., cα[t] =
∑
v∈α

cv[t]. Every

area is defined as a circle of radius r centered at the centroid of the neighborhood under

consideration. In our experiments, we examine various values for r in order to explore the

spatial distribution of the impact.

We have also collected meta-data information. In particular, Foursquare associates each

venue v with a type/category T (e.g., restaurant, school etc.). This classification is hierarchi-

cal and at the top level of the hierarchy there were 9 categories at the time of data collection.

In order to obtain the feature vector Z, we use the top-level categories and hence Z includes

21 features (2 for each category and 3 for the stickiness of each type of business venue).

Our final dataset includes 27,263 venues in the city of Pittsburgh, where 21.53% (5,869) are

business venues (i.e., Nightlife Spots, Food and Shops & Services). There are in total 32,501

check-ins in our dataset, among which 44.46% were generated in business venues.

5.2.2 Hypothesis Development

In this chapter, we will examine the following two hypotheses.

Hypothesis 5.1 (Street fairs impact on people’s movement to local businesses). Street fair

events lead to an increase in customer visitations for nearby business venues.

Hypothesis 5.2 (Spatial impact of street fairs). The impact of street fairs on the customer

visitations is geographically contained in a very small area.

In order to support or reject Hypotheses 5.1 and 5.2 we will rely on data we collected

from Foursquare described in the next section, utilizing the difference-in-differences method

described in Section 4.2.5. We will further examine contextual dependencies, i.e., whether

specific types of business venues benefit more than others.

5.2.3 Experimental Setup

In our study we consider a single area α that has hosted street fairs during our data collection

period. This area is a small business center, with a number of restaurants, cafes, retail stores
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Figure 5.2: The null difference-in-differences coefficient is practically equal to 0, hence,

allowing us to apply the model with high confidence.

(e.g., clothing stores, galleries etc.) and services (e.g., bank branches). The treated area is

also accessible through public transportation, Pittsburgh’s shared bike system as well as

through private vehicle with parking facilities nearby. We (initially) perform the matching

process based on the expertise3 of local urban planners. Based on their recommendations

we choose another small business area, with a similar urban form and accessibility patterns

not very far from the treated area (approximately 2 miles away - green area in Figure 5.1).

We have further used Equation (5.3) to build a set of matched areas. More specifically,

we first pick 2,000 random points in the city of Pittsburgh and create a neighborhood of

radius 0.3 miles around this point. We further eliminate areas with less than 60 venues.

We consequently obtain the matched area set Am using Equation (5.3) with ε = 0 and we

filter out overlapping matched neighborhoods, in order to remove possible dependencies in

our datasets originating from the overlapping regions. In particular, when k matched areas

overlap we only keep the final matched set the area with a propensity score matching closest

to the treated area. We would like to emphasize here that we have examined different values

for the radius of the control neighborhood area selection and the tolerance factor ε and the

results obtained were very similar.

3We have consulted with urban planners familiar with the city of Pittsburgh.
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5.3 ECONOMIC IMPACT OF STREET FAIRS

The metric of interest for our analysis is the mean number of daily check-ins in area α,

denoted with yα. For every area α we compute the average number of daily check-ins during

the treatment period, yα,Tα , as well as, during the days with no street fair, yα,T cα , where T cα ,

represents the complement of Tα, i.e., the set of days in our dataset where no street fair

took place in α. With this setting the difference-in-differences coefficient is equal to 4.95

(p-value < 0.001). Simply put, there are 5 more check-ins every day with a fair in area α

on average. This corresponds to an almost 100% increase in the check-ins in the area, since

the average daily check-ins for the days with no event is 5.3.

As mentioned in Section 4.2.5 one of the crucial assumptions for the difference-in-

differences to provide robust results is the parallel trend assumption. Typically the way that

has been followed in the literature for verifying this assumption is to calculate the difference-

in-differences coefficient for periods that the treatment has not been applied [108, 121].

Hence, for the days that in reality no street fair occurred we randomly assign pseudo-

treatments in order to calculate a null coefficient δ. Figure 5.2 depicts the distribution

of the corresponding coefficients obtained from 100 randomizations. As we can see the

mass of the distribution is concentrated around δ = 0, while the 95% confidence interval

is [−0.42, 0.37]. Hence, we cannot reject the hypothesis that the null coefficient δ is actu-

ally 0, hence, verifying the parallel trend assumption needed for the difference-in-differences

method.

We also want to examine the spatial extent of this impact, i.e., how the impact decays

with space. For this, we compute the difference-in-differences coefficient for zones of different

radius around the treated area making sure that there is not any overlap with control areas.

In particular, we examine zones of [0, 0.1], [0.1, 0.3], [0.3, 0.6] miles. Our results are depicted

in Figure 5.3 where as we can see there is a clear decreasing trend of the impact. In fact,

the coefficient for the range [0.1, 0.3] miles is much smaller, and equal to 0.89 (p-value ¡

0.1), while going further away from the area of the event (i.e., [0.3, 0.6] miles) the effect is

practically eliminated (δ[0.3,0.6] = 0.33, p-value = 0.61). These results indicate - as one might

have expected - that the impact of a street fair event is highly localized within a very small
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Figure 5.3: The impact of street fairs on local businesses rapidly decays with the spatial

distance from the event.

area around the epicenter of the event.

We further examine the impact of each event individually, i.e., we consider a single day

treatment. Table 5.1 presents our results. As we can see every event contributes to the overall

local business sector a positive increase to the check-ins, which can further be translated to

increase foot traffic and revenue. The only exception is the Vintage GP Car show. Compared

to the other events, this attracts a very specific part of the population - i.e., car-lovers - and

this might have affected its overall impact.

Table 5.1: All events - except the Vintage GP Car Show - exhibit a statistically significant

and positive coefficient δ.

Event Difference-in-differences coefficient δ

Jam On Walnut 1 9.7∗∗∗

Vintage GP Car Show -2.01∗∗∗

Jam on Walnut 2 5.45∗∗∗

Jam on Walnut 3 6.64∗∗∗

Arts Festival on Walnut 1 4.45∗∗∗

Arts Festival on Walnut 2 5.53∗∗∗

Significance codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Our analysis until now has considered all of the business venues together regardless of

their type. This essentially captures the aggregate impact of the street fair in the neighbor-
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hood. However, we would like to decompose this effect in order to understand better what

type of establishments benefit from the fairs. In particular, we compute the difference-in-

differences regression coefficient for the three different types of business venues our dataset

contains. Figure 5.4 depicts our results, where the 95% confidence interval of the estimated

coefficients is also presented. As we can see shopping venues are the ones that benefit the

most from the street fairs, while nightlife and food establishment exhibit a much (but signif-

icant and positive) lower coefficient δ. However, one crucial point here is that the coefficient

provides the cumulative - additional to the counterfactual - check-ins recorded in all venues

of the specific type. Hence, if a specific venue type is overrepresented in the area the esti-

mated DD coefficient might be inflated 4. In order to avoid similar issues, we can normalize

the obtained coefficients from the regression model by the number of venues for every estab-

lishment type. In particular, the number of shop, nightlife and food venues in the treated

area are 60, 13 and 25 respectively. Therefore, the normalized coefficients for the shop and

nightlife are practically equal (0.066 and 0.061 respectively). However, the food venues still

have a much smaller normalized coefficient, that is, 0.014.

Overall, we can say that our results support the two research hypotheses put forth in

Section 5.2.2. In particular, street fairs have a positive impact on nearby businesses as cap-

tured by the check-ins on Foursquare and the difference-in-differences method. Furthermore,

this impact is highly concentrated in the areas around the street fair (i.e., 0.1, 0.2 miles) and

drops extremely fast as we move further away.

5.4 DISCUSSION AND IMPLICATIONS

As discussed in Section 1.2.3, one of the main critics that studies relying on social media get

is that of the potential demographic biases that the data include. This is certainly true and

is one of our study’s limitation as well. Nevertheless, location-based social media is a very

4Note here that, this is not an issue when we applied the difference-in-differences at the level of a neigh-
borhood. In that case, we were interested in the total additional check-ins in the neighborhood as compared
to the counterfactual. Hence, if a control area had a different number of venues this would not impact the
results.
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Figure 5.4: The shopping businesses appear to have the largest benefit from the street fairs

among the local establishments around the area.

good, and accessible, proxy for the economic activities in urban areas. Certainly there will be

noise in the obtained signal, but this information is valuable for providing supporting (or not)

evidence in a variety of research hypotheses similar to ours. For example, similar datasets

have been used to study urban gentrification, deprivation, emotions in a city [79, 154, 63]

etc.

In our difference-in-differences regression model we included fixed time and location

effects. One might argue that we should also control for the day of the week. However, this

is not necessary since the null regression model essentially shows us that the different days

of the week will exhibit the same “trending” on average (of course the absolute values of

the check-ins will be different). To verify this we run the regression model by adding an

independent variable that captures the day of the week. Our results for the various zones

around the treated neighborhood are presented in Table 5.2.

As we can see even when controlling for the day of the week the impact is strong and

significant. In fact, when controlling for the day of the week the impact appears to be

significant even for distances beyond the 0.1 miles. Nevertheless, the impact itself is weak

(i.e., the coefficient is small). Furthermore, even though it appears that the further zone has

a stronger effect, the 95% confidence intervals for the two coefficients (i.e., for the ranges

[0.1, 0.3] and [0.3, 0.6]) overlap, and hence, we cannot confidently support the presence of a

trend.
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Table 5.2: Even when controlling for the day of the week, the impact of the street fair

remains.

Radius r Difference-in-differences coefficient δ

[0, 0.1] [3.71, 4.1]

[0.1, 0.3] [0.17, 0.85]

[0.3, 0.6] [0.51, 1.61]

5.5 RELATED WORK

In this section we briefly discuss related methodological literature as well as literature relevant

to the specific application domain.

Quasi-experimental methodologies: The gold standard for evaluating the impact

of a policy is a field experiment. However, when it comes to public policy many times this

is not possible for a variety of reasons. In this case we need to rely on quasi-experimental

techniques [137] in order to quantify the potential impact. Quasi-experimental designs allows

to control the assignment to the treatment condition, but using some criterion different than

random assignment as in field experiments.

There are various techniques that can be used depending on the type of observational

data one has. For example, the difference-in-differences method [7] compares the average

change over time in the outcome variable for the treatment group to the average change

over time for the control group. One of the major problems when applying this method is

the parallel trend assumption, that is, that the two groups exhibit the same temporal trend

on their averages without the treatment. Regression discontinuity [81] is another technique

that can be used to quantify the effects of treatments that are assigned by a threshold. The

key idea is that observations lying very closely on either side of the threshold while differing

in the reception of the treatment, they are equal for all practical purposes. Hence, their
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treatment assignment mimics that of a randomized control trial. It should be clear that

not all quasi-experimental designs are applicable in all scenarios (for example regression

discontinuity cannot be applied in our setting), while there can be settings were no method

is applicable. A nice survey of various quasi-experimental techniques can be found in [74].

Local businesses and urban economy: Small shops and businesses are the back-

bone of local economy and quantifying the effect of external events and policies on their

prosperity is of utmost importance. Given the absence of large scale data, most of the ex-

isting studies have been based on survey data. For instance, a survey research conducted by

Lee et al. [96] during the 2002 World Cup identified that the event-related tourists yielded

much higher expenditure as compared to regular tourists, indicating that such mega-events

could have a positive economic impact for local businesses. As another example, a report

from a Toronto-based think tank has identified the positive impact that bike lanes have on

the revenue of local businesses despite the fact that business owners systematically underes-

timate it [6]. In a similar direction, based on merchant and pedestrian surveys in Toronto’s

Annex Neighborhood, the “Clean Air Partnership” [33] recommended reallocating a curb

parking lane to bike lanes, since this is likely to increase commercial activity. A recent study

further showed that the installation of shared bike system can lead to an increase of the

housing property values [121]. Moreover, in a briefing paper DeShazo et al. [42] using a sur-

vey conducted over a small sample of businesses quantified the effect of CicLAvia on local

businesses. CicLAvia5 is a car-free event that happens once every year in various areas in

Los Angeles. Furthermore, anecdotal hard evidence from Seattle [41] show that increasing

the price of curb parking can be beneficial to restaurants and local businesses mainly due to

the increased turnover of each parking spot [138].

During the last years, and driven by the proliferation and availability of geo-tagged

social media data, there has been a surge of studies on business analytics. For instance,

Qu and Zhang [127] proposed a framework that extends traditional trade area analysis and

incorporates location data of mobile users. Their framework can answer crucial questions

in retail management such as “where are the customers of a business coming from?”. As

another example, Karamshuk et al. [89] proposed a machine learning framework to predict

5http://www.ciclavia.org
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the optimal placement for retail stores, where they extracted two types of features from

a Foursquare check-in dataset. Furthermore, these platforms can serve as mobile “yellow

pages” with business reviews that can influence customer choices and business revenue. For

example, Luca [102] has identified a causal impact of Yelp ratings on restaurant demand

using the regression discontinuity framework. Closer to our study, Georgiev et al. [64]

using data collected from Foursquare study the impact of the 2012 Olympic Games on the

businesses in London, while Zhang et al. [166] quantify the effectiveness of special deals

offered through location-based services as an affordable advertisement for local businesses.

To the best of our knowledge no one has examined the impact of street fairs on the adja-

cent businesses, even though local authorities expect this policy to have a positive outcome

for businesses6. Studies that examine the economic effects of special events/festivals exist

(e.g., [29]) but their focus is slightly different, focusing on the participating entities/kiosks

themselves. On the contrary, our study is focused on the “network” effects a street fair can

have for the nearby businesses.

5.6 SUMMARY

In this chapter, I apply two quasi-experimental techniques, i.e., propensity score matching

and difference-in-differences, to quantify the impact of street fairs on nearby businesses. I

take the number of check-ins at business venues as a proxy of revenues in local businesses.

Our findings indicate that such urban event as street fairs can significantly increase the

frequency of human movement to surrounding business venues, but the effect decays fast

with the spatial distance from the event center. Also the impact is contextually dependent

on the type of businesses. Our analysis framework is general and can be applied to evaluate

the effect of many other policy making and urban external events.

6E.g., http://tinyurl.com/zdved39
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6.0 CONCLUSION AND FUTURE DIRECTIONS

6.1 CONCLUSION

In this dissertation, human urban movement is studied within the social, economic and ur-

ban contexts they emerge in as captured through location-based social networks. I design

statistical analysis and modeling frameworks using randomization and quasi-experimental

techniques to investigate and quantify the effects of various contextual factors on human

movement in urban space. The scenarios I examine include social interactions, local busi-

ness advertising strategy and urban events initiated by local government and neighborhood

communities. Based on statistical analysis on the three scenarios, we can see the data gener-

ated in location-based social networks, though have potential biases as discussed in Section

1.2.3, can capture a much richer contexts where urban movement emerge and thus provide

an unprecedented opportunity for a better and deeper understanding on how people move

and act in urban space.

Our randomization experiments in Chapter 3 indicate that human movement to local

places exhibit significant levels of homophily via social ties. While the similarity of people’s

geo-trails at the geographically global scale cannot be attributed to peer influence, the latter

can explain a significant proportion of localized similarity between friends. The level of

influence contextually depends on the type of places. Due to the “network value” of peers

[44], understanding peer influence with regard to their movements in real-world places can

potentially help improve targeting customers in local marketing. Also social connections

tend to be stimulated by non-trivial similarity captured by places with special network

characteristics, thus mining features from individuals’ mobility data can facilitate social

recommendation [135], which can further help build a virtuous circle of the local ecosystem.
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In Chapter 4, I investigate the effectiveness of a direct local advertising mechanism,

i.e., “special offer”, for attracting the visits of customers to local businesses in both short-

term and long-term period. I utilize quasi-experimental techniques with various confounding

factors considered and design two statistical hypothesis testing frameworks. Both the two

frameworks reveal that online promotions in LBSNs are not as effective as anecdotal stories

might suggest in attracting customers. I build a supervised learning model and evaluate

the effects of three types of features, venue-based, promotion-based and geographical, on

the popularity of the promoted businesses during and after the promotion. The promotion-

based features actually help only little with the prediction task, which further confirm our

conclusion in previous statistical analysis. Our studies are envisioned to provided educated

support for the design and cost-benefit analysis of campaigns in LBSNs. This findings of

this work have been featured in multiple media press, e.g., Pittsburgh Post-Gazette [1].

As present in Chapter 5, check-ins in LBSNs can serve a good, though not perfect,

proxy for human economic activities in urban neighborhood. With such observational data

available and the applied quasi-experimental techniques, we provide an educated guidance on

how urban events and local government decisions impact human visits to nearby businesses,

thus overall the local economy. In this dissertation, I take street fairs as a study case, but the

analysis framework is rather general and can be applied to evaluate various policy making.

6.2 FUTURE DIRECTIONS

Overall, in this dissertation I design statistical analysis frameworks and provide a general

viewpoints on how the social, economic and urban environmental factors interplay with hu-

man movement across urban space. The outcome of this dissertation would provide guidance

for a better understanding of human urban movement and further foster applications in soci-

ology, local economy and urban planning. To be further noted, human movement behaviors

are rather complex and can be attributed to many other factors, which might not be fully

captured by our current statistical analysis methods. Below I provide a brief list showing

some possible future directions of our work.
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• In Section 3.3.2, we design a popularity-based reference model by assuming people are

more likely to go to globally popular places. This assumption might not hold for every

user since people usually have different location preferences inherently. The next step

would be to further control such factors for a more appropriate randomized model. This

can help reduce the bias of estimation of peer influence.

• Furthermore, in Section 4.2.2 and 5.1.1, given only the observational data, I apply match-

ing techniques to select reference venues or neighborhoods to get a baseline for estimating

treatment effects. An accurate matching in geographical space is rather difficult since

every place or neighborhood could be quite different even with a limited number of con-

founding factors considered. Novel techniques, such as causality analysis of confounding

factors, for location matching would be helpful to give a more robust estimation of in-

tervention.

• Overall in this dissertation, we design and conduct statistical experiments separately to

examine the effects of different factors on urban movement. One potential direction is

the design of a unified model that can quantify the level of influence of different factors

on human mobility explained. There are previous similar ideas [151, 150] using graphical

model to quantify the level of social influence in time-varying geo-social networks, but

currently no external factors were combined into modeling.

6.3 OUTLOOK

With the rapid urbanization, cities are becoming a more and more complex system. Human

mobility in urban space has been important part that indicate how people interact with the

urban environment they live, such as emergence events, transportation infrastructure and

local government policies. The advent of online and mobile social webs and applications

enable recording the digital footprints of human at an unprecedented large geographical

scale, spatial and temporal granularities, population size, and more importantly, in a much

richer contents. Every piece of information regarding users’ online behaviors can now be geo-

tagged. The big data of human footprints in urban space allow researchers and scientists to
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answer important research questions, and enable urban planners and local governments to

understand the way people act and behave through their movements in our cities, in order

to design cities that can deliver a livable, resilient and sustainable urban environment that

is relevant to the city dwellers needs and finally toward the goal of smart cities.

In this dissertation, I have attempted to take a step forward a better understand human

urban mobility in the contexts of social interaction, economic incentives and urban events,

by developing systematic statistical analysis frameworks to explain the underlying processes.

I envision our methodologies to be extended to other scenarios in terms of data sources and

applications. Also I hope our findings can inspire researchers in various disciplines from

academia, industry and local government to participate in this area, design novel models

and build new applications.
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APPENDIX A

ERDŐS-RÈNYI RANDOM GRAPHS

In a random graph model some properties of the network are fixed, while others are generated

randomly. In the Erdős-Rènyi random graph model, denoted as G(n,m), we fix the number

of nodes to n and the number of edges to m. G(n,m) is then a probability distribution P (G)

over all the possible networks G such that if G has n vertices and m edges and Ψ is the

number of such (simple) graphs, then P (G) = 1/Ψ; otherwise P (G) = 0. A slightly different

and more tractable model, is the G(n, p). In this case the number of nodes is still fixed (n)

but now instead of fixing the actual number of edges in the network, we fix the probability

of an edge between any two nodes to be equal to p. More details on random graph models

can be found in [48].
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APPENDIX B

STATISTICAL SIGNIFICANCE RESULTS

While we observe in Figures (3.8)-(3.10) that the average degree, clustering coefficient and

entropy of the common venues for the friend’s dataset are different from that of the reference

group of user pairs, we further delve into the statistical significance of these results. In

particular, every point in Figure 3.8 corresponds to the mean value for the degree of the

common venues of friends residing in distance d, µfdeg(d) (bottom line) or of the reference

pairs of users µrdeg(d) (top line). In order to examine whether the difference observed in the

Figure is statistically significant we perform a one-tailed t-test on the mean values for each

distance-bin d. In particular, the hypothesis test is:

H0 : µfdeg(d) = µrdeg(d) (B.1)

H1 : µfdeg(d) < µrdeg(d) (B.2)

The p-values indicate that for all distances d the null hypothesis can be rejected at the

95% significance level, while for the majority of the cases (and in particular for small d)

it can also be rejected at the 99% significance level. Similar results are also obtained for

the differences observed at the clustering coefficient and the entropy of the venues. Given

that the t-test makes the assumption of normality in the data, we also performed the Mann-

Whitney U test for the median. The latter does not have the normality assumption and lead

us to similar conclusions with respect to the statistical significance of the differences in the

network characteristics for the two sets.
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APPENDIX C

REGRESSION FOR DIFFERENCE-IN-DIFFERENCES

The exact same estimate from Equation (4.6) for the DD can be formally derived through a

linear regression that models the dependent variable y. In particular, we have the following

model:

yilt = γ0 + γ1 · αl + γ2 · βt + δ ·Dlt + εilt (C.1)

where yilt is the dependent variable for instance i (at time t and location l), αl and βt

are binary variables that capture the fixed effects of location and time respectively, Dlt

is a dummy variable that represents the treatment status (i.e., Dlt = αl · βt) and εilt is

the associated error term. The coefficient δ captures the effect of the intervention on the

dependent variable y. It is then straightforward to show that the DD estimate δ̂ is exactly

Equation (4.6). In particular, if ylt is the sample mean of yilt and εlt is the sample mean of

εilt, and using Equation (C.1) we have:

(y11 − y01)− (y10 − y00) = δ(D11 −D01)− δ(D10 −D00) +ε11 − ε01 + ε00 − ε10

Taking expectations and considering the i.i.d. assumptions for the errors for the ordinary

least squares we further get:

E[(y11 − y01)− (y10 − y00)] = δ(D11 −D01)− δ(D10 −D00) (C.2)
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Given that the dummy variable D is equal to 1 only when l = 1 and t = 1 (i.e., for the

treatment group after the intervention), we finally get for the DD estimator:

δ̂ = (y11 − y01)− (y10 − y00) (C.3)

which is essentially the same as Equation (4.6). Therefore, one can estimate the DD using

either of the Equations (4.6) or (C.1).
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and Albert-László Barabási. Uncovering individual and collective human dynamics
from mobile phone records. Journal of Physics A: Mathematical and Theoretical,
41(22):224015, 2008.

[27] Captical bikeshare. https://www.capitalbikeshare.com/system-data/.

[28] Gerald AP Carrothers. An historical bedew of the gravity and potential concepts of
human interaction. Journal of the American Institute of Planners, 22(2):94–102, 1956.

[29] Rachael D. Carter and Jeannie W. Zieren. Festivals that say cha-ching!measuring the
economic impact of festivalst. In Main Street Now, 2012.

[30] Christy MK Cheung, Matthew KO Lee, and Neil Rabjohn. The impact of electronic
word-of-mouth: The adoption of online opinions in online customer communities. In-
ternet Research, 18(3):229–247, 2008.

[31] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user move-
ment in location-based social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1082–1090.
ACM, 2011.

[32] Yohan Chon, Hyojeong Shin, Elmurod Talipov, and Hojung Cha. Evaluating mobil-
ity models for temporal prediction with high-granularity mobility data. In Pervasive
computing and communications (percom), 2012 ieee international conference on, pages
206–212. IEEE, 2012.

[33] CleanAir-Partnership. Bike lanes, on-street parking and business. Report, 2009.

[34] Freek Colombijn. Patches of Padang: The history of an Indonesian town in the twen-
tieth century and the use of urban space. Number 19. Research School CNWS, 1994.

[35] C. Cortes and M. Mohri. Auc optimization vs. error rate minimization. NIPS, 2003.

[36] H. Cramer, M. Rost, and L.E. Holmquist. Performing a check-in: Emerging practices,
norms and ’conflicts’ in location-sharing using foursquare. ACM MobileHCI, 2011.

[37] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. Feedback effects
between similarity and social influence in online communities. In ACK KDD, 2008.

[38] David J Crandall, Lars Backstrom, Dan Cosley, Siddharth Suri, Daniel Huttenlocher,
and Jon Kleinberg. Inferring social ties from geographic coincidences. Proceedings of
the National Academy of Sciences, 107(52):22436–22441, 2010.

121



[39] Justin Cranshaw, Raz Schwartz, Jason I Hong, and Norman M Sadeh. The livehoods
project: Utilizing social media to understand the dynamics of a city. In ICWSM, 2012.

[40] Justin Cranshaw, Eran Toch, Jason Hong, Aniket Kittur, and Norman Sadeh. Bridging
the gap between physical location and online social networks. In Proceedings of the
12th ACM international conference on Ubiquitous computing, pages 119–128. ACM,
2010.

[41] E. de Place. Are parking meters boosting business?

[42] J.R DeShazo, C. Callahan, M. Brozen, and B. Heimsath. Economic impacts of ciclavia:
Study finds gains to local businesses. In Briefing Paper - UCLA Luscin School of Public
Fairs, 2013.

[43] Utpal M Dholakia. How effective are groupon promotions for businesses. Social Science
Research Network, 2010.

[44] Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 57–66. ACM, 2001.

[45] L. Drell. 6 successful foursquare marketing campaigns to learn from.
http://mashable.com/2011/07/13/foursquare-marketing-campaigns/#VwgnuIw6.qqn
(Last accessed: February 23, 2016).

[46] Benjamin Edelman, Sonia Jaffe, and Scott Kominers. To groupon or not to groupon:
The profitability of deep discounts. Harvard Business School NOM Unit Working
Paper, (11-063), 2011.

[47] B. Efron and R.J. Tibishirani. An Introduction to the Bootstrap. Chapman and
Hall/CRC, 1993.
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