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Working memory is a critical component of executive function that continues to develop 

during adolescence. In addition to developmental improvements in mean performance, 

there are significant decreases in behavioral variability. The neural underpinnings of 

developmental changes in behavioral variability are poorly understood although they 

would provide important insight into the nature of improvements in working memory. 

This dissertation takes a multilevel approach, applying whole-brain fMRI analyses and 

computational modeling to a longitudinal data set acquired from a cohort of 8-30 year 

olds as they performed a memory guided saccade task.  

First, we delineate behavioral changes in trial-to-trial in performance variability 

and explore these changes within a drift diffusion framework. We find that a trial-to-trial 

variations in gain and response thresholds accounts for features of behavioral 

instability. Second, we establish that trial-to-trial behavioral variability is associated with 

fluctuations in the expression of whole brain patterns of task-related BOLD signal, or 

brain state variability, which is a predicted consequence of widespread gain modulation. 

We find that individual trajectories of developmentally stabilizing behavior are predicted 

by changes in brain state variability. Third, in order to explore reports of a relationship 

between the complexity of neural activity and behavioral stability, we characterize 

developmental increases in BOLD complexity in a task context and assess their 
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relationship to developmental changes in behavior. Collectively, our findings provide 

novel evidence that the age-related stabilization of behavioral performance is driven by 

the stabilization of widespread gain signals across development. 
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1.0  INTRODUCTION 

1.1 WORKING MEMORY AND COGNITIVE CONTROL  

A core aspect of cognition and cognitive control is working memory, the ability to 

maintain information online in the service of goal-directed behavior [1]. The basic 

processes that support working memory are available as early as infancy [2] but 

continue to develop throughout adolescence [3], [4]. Working memory exhibits a 

prolonged time course of maturation relative to other cognitive processes [5], [6]. For 

instance, performance is disproportionately impaired during early adolescence, when 

difficulty is increased, such as when multiple items need to be remembered, or 

remembered information must be manipulated [7], [8]. The ability to direct saccades 

during cognitively demanding tasks is online by age 15, when reaction time and 

accuracy reaches mature levels. However, the precision of saccades made to a 

remembered location continues to improve until late in the second decade of life, even 

after reaction times have stabilized [5]. That this effect is still present regardless of the 

delay length suggests 1) that development of processes other than those involved in 

maintenance, e.g., encoding and retrieval, may contribute to developmental 

improvements in working memory; and 2) the fidelity of motor responses based on 
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working memory representations may be an additional site of continued developmental 

improvement. 

1.2 BEHAVIORAL VARIABILITY AND DEVELOPMENT 

Even under ideal conditions, subjects are rarely able to perform a behavioral response 

multiple times in exactly the same way; reaction times shift, accuracy varies, and 

occasionally there is a failure to perform altogether. This kind of instability in responding 

is known as behavioral variability or, occasionally, intra-individual variability.  

Behavioral variability has long been known to be a sensitive measure for a 

variety of cognitive and psychiatric disorders including attention-deficit hyperactivity 

disorder (ADHD) [9]; schizophrenia, depression and borderline personality disorder [10]; 

traumatic brain injury, dementia, and —more generally— with overall cognitive decline 

[11]). Thus, behavioral variability may also provide insight into the normative 

development of processes like working memory that support cognition. Recently this 

idea has been explored in an emerging literature. 

Roughly, theses efforts can be broken up into two groups: those that attempt to 

link developmental changes in behavioral variability to changes in brain structure, and 

those that link it to changes in neural activity. Reduced white matter integrity is 

associated with increased behavioral variability in adults performing the Eriksen flanker 

task [12]. In combination with longitudinal analyses of normative adolescent 

populations, which reveal that reaction time across flanker task trials stabilizes in 
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parallel with developmentally increasing tract integrity [13], a story begins to emerge in 

which behavioral variability decreases as brain structure matures. It is unclear however, 

what mechanisms that would cause greater white matter integrity to result in more 

consistent behavior.  

The story becomes complicated when considered in light of developmental changes in 

neural variability rather than structural integrity. A highly replicable finding is that 

temporal patterns of neural activity become increasingly complicated with age. 

Magnetoencephalographic (MEG) measures of neural signal complexity, such as 

dimensionality and mutli-scale entropy, increase across adolescence in tandem with 

stabilizing behavioral variability [14]-[16]. Certain aspects of developmental fMRI data 

are consistent with these findings. Within network resting state connectivity decreases 

during adolescence as one might predict if neural activity were truly becoming more 

complex across the brain [17].  

It is not clear however what role structural maturation plays in the changes in neural 

activity. One possibility is that as white matter integrity matures, the neural signal-to-

noise ratio improves, thereby providing a mechanism for stabilizing behavior [12]. 

However, squaring this idea with the observations that neural activity is actually 

increasing in complexity (and is therefore, in a sense, becoming more variable) requires 

further exploration. One current hypothesis that attempts synthesis states that as white 

matter integrity increases, greater potential integration between brain regions is allowed, 

which fosters the dynamic construction of a greater number of states of activity and 

facilitates transitions between them [14], [15]. It has also been proposed that the 

additional complexity represent beneficial noise that improves cognitive processes [14]. 
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2.0  DEVELOPMENTAL CHANGES IN SPATIAL WORKING MEMORY 

PERFORMANCE 

2.1 BACKGROUND 

The memory-guided saccade task was initially developed to isolate the sensory and 

motor components of neural activity driving the production of saccadic eye-movements, 

[18].  In the earliest experiments using this task, a monkey, trained to maintain fixation 

on a central point, was briefly presented with a peripheral stimulus. After a short delay 

period, the animal performed a saccade, generated in the absence of any relevant 

visual sensory information, to the remembered location of the target. These early 

electrophysiological experiments, performed in the substantia nigra, found neurons that 

could be roughly classified based on whether they responded (with reduced firing) to the 

stimulus, the saccadic eye-movement itself, or (surprisingly) during the delay interval 

between the target presentation and saccadic response. The researchers described this 

last “memory-contingent” category of neurons as behaving as though they “maintained 

information on the approximate location of the target cue to enable a delayed saccade 

to the location of the target.”  Later, this task was applied by others who found neurons 

exhibiting saccade-related delay period activity in prefrontal cortex (PFC) [19]. In 

combination with behavioral deficits observed in patients with PFC lesions as they 
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performed other delayed response tasks, these findings contributed substantially to the 

perception that PFC was a key site for the temporary storage of working memory 

information [20]. More recently, there is increasing evidence that the capability to 

sustain information on line is available throughout much of the brain, and that delay 

period activity in PFC is more closely related to representing abstract features, rules, 

and demands of particular tasks [21]. 

Consistent with this, single unit studies in non-human primates have revealed the 

presence of memory contingent, or preparatory, responses in such widespread regions 

as the intermediate layers of the superior colliculus [22], parietal cortex [23], and the 

frontal eye field [24]. fMRI studies of adult humans show similar patterns of widely 

distributed circuitry [25]. Moreover, whole-brain multivariate pattern analyses have 

demonstrated that stimulus specific information can decoded from delay-period activity 

within sensory cortex [26], [27], suggesting that working memory activity is sustained by 

processes that are similar to sensory recruitment. 

Developmental researchers, charting trajectories of oculomotor performance 

throughout childhood and adolescence, found that the peak velocity of saccades 

reaches mature levels around the 4th—6th years of age [28], [29]. Additionally, the higher 

order psychophysical relationship between saccadic amplitude and peak velocity —the 

so-called main sequence— is also present and adult-like by the same time [28], [30]. 

However, measures of reaction time (thought to index the speed of sensory and 

cognitive processing) and accuracy exhibit monotonic improvements that continue until 

roughly 15 years of age [5], [28], [31]. The accuracy of secondary corrective memory-

guided saccades continues to improve until very near the 20th year however [5]. 
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Together, these findings suggest while the oculomotor system matures very early, 

cognitive processes that engage the eye-movement machinery still continue to develop 

and refine. The mechanisms that allow eye-movements to be driven by working memory 

representations, in particular, appear to exhibit the most prolonged time course of 

maturation. 

Determining what neural changes underlie developmental improvement in 

memory guided saccade performance has proven to be a challenge. A particularly 

vexing confound arises from the structure of the memory-guided saccade task itself: the 

initial presentation of a target stimulus at the start of each trial occurs as the subject is 

fixating a central stimulus, and trials are considered incorrect if a subject breaks fixation 

to look at the target. Because younger subjects often have great difficulty not looking at 

targets as they are presented [32], a conceptual concern is that younger subjects may 

be exerting much greater effort suppressing an exogenously driven orienting response. 

Therefore, age-related difference in effort could result in differences in neural or BOLD 

responses that do not reflect true changes in the circuitry supporting task performance, 

but instead reflect the differential engagement of processes related to response 

inhibition. For these experiments, we employ a version the memory-guided saccade 

task designed to reduce demands of response inhibition by eliminating the need to 

suppress the initial orienting eye-movement. 

In addition, because spatial working memory is not a single monolithic process, 

developmental changes in behavioral performance may result from independent 

refinements of its constituent processes. Working memory can be conceived as 

consisting of three component processes: encoding, maintenance, and retrieval. 
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Encoding is the process of instantiating a context-appropriated persistent neural state 

for the purpose of guiding future goal-directed behavior. Maintenance refers to the 

processes that sustain the encoded neural information. Retrieval is the processes 

through which a particular working memory representation is selected and mapped onto 

an appropriate motor response. In this construction, both encoding and maintenance 

could theoretically affect the fidelity of information maintained in working memory and 

the facility with which it can be drawn upon in the future. Developmental changes in 

behavioral performance during the memory-guided saccade task a can potentially be 

attributed maturation affecting either or both of these two processes. To explore this 

possibility, we modified the memory-guided saccade task to allow measurements of the 

effects of encoding and maintenance duration across development. 

With the preceding in background in mind, we set out to address the following 

two questions for our first set of analyses. 

I. Chart longitudinal developmental changes in behavioral performance, focusing 
particularly on behavioral variability, using a memory-guided saccade that 
controls for age-related confounds related to response inhibition. 

II. To explore the mechanisms underlying the seemingly prolonged maturation of 
spatial working memory performance and their relationship to different aspects of 
behavioral variability. 

2.2 TASK DESIGN 

In our version of the memory-guided saccade task, performed in an fMRI scanner, 

subjects first fixated a central yellow cross which, after a pseudo-randomly selected 
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inter-trial interval (ITI) drawn from a 3-12 second range, disappeared and was replaced 

by a small circular yellow target positioned unpredictably at one of six locations (±3º, 6º 

or 9º of visual angle) along the horizontal visual meridian (Figure 1a). The stimulus 

remained visible during a presentation interval of either 1.5 or 3 seconds. The subjects 

were instructed to make an eye-movement to and fixate upon the stimulus while it was 

present. At the end of the presentation interval, the target stimulus disappeared and the 

central fixation-cross reappeared, marking the beginning of the delay interval. Subjects 

reoriented their gaze to the fixation cross while maintaining the previously executed 

location for either 1.5 or 9 seconds. The disappearance of the central fixation cross 

signaled the end of the delay interval, and subjects were instructed to quickly and 

accurately perform an eye movement to the remembered location of the target stimulus 

in the absence of any sensory guidance. The two durations of delay and presentation 

intervals results in four primary task conditions. Stimuli were presented using E-Prime 

(Psychology Software Tools, Inc., Pittsburgh, PA), projected onto a flat screen 

positioned behind the magnet. Participants viewed the screen using a mirror mounted 

on the RF head coil. Behavioral performance was measured under four conditions 

corresponding to each combination of short and long presentation and delay intervals. 

Subjects performed 15 trials from each of the four primary task conditions, for 60 total 

trials, which were divided evenly across 3 task blocks. 

The distinguishing feature of our variant of the memory-guided saccade task is 

that subjects were instructed to make a visually guided encoding saccade to the target 

stimulus, rather than maintain fixation during its presentation. Allowing subjects to 

perform the initial visually guided saccade was done to minimize age-related sources of 
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behavioral differences that are related to response inhibition rather than working 

memory performance. This design also allowed us to isolate the concurrent 

visuomotor/encoding and retrieval responses that comprise the BOLD signal evoked by 

a memory-guided saccade, a fact that we exploit during our analysis the fMRI data (see 

Chapter 2). We monitored the subject's gaze in the scanner with an infrared camera and 

eye-tracking system. 

 

Figure 1. Task design and subject distribution 

a) A schematic depiction of the variant of the memory-guided saccade task employ in our 

study. b) The distribution of subjects included in our analyses. Each entry on the y-axis 

represents a unique subject. A single visit is indicated by a dot whose x-coordinate 

corresponds to the age of the subject at that visit. A solid line connects repeated 

sessions 
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2.3 SUBJECTS 

We tested 126 healthy subjects (60 female) between the ages of 8 and 33 years. 

Subjects were initially recruited between the ages of 8.9 and 29.8 years and were 

scanned approximately annually for 1-10 years (Figure 1b). Participants and/or their 

legal guardians provided informed consent before participating in this study. 

Experimental procedures for this study complied with the Code of Ethics of the World 

Medical Association (1964; Declaration of Helsinki) and the Institutional Review Board 

at the University of Pittsburgh. Subjects were paid for their participation in the study. 

2.4 METHODS 

We extracted two measurements from each trial: 1) reaction time, the interval between 

the extinction of the fixation stimulus at the end of the delay interval and the initiation of 

the memory-guided saccade and 2) saccadic error, the signed visual angle separating 

the horizontal location of the target and the end point of the memory-guided saccade. 

For the four task conditions during a session, we computed mean and standard 

deviation of reaction time, as well as summary measures to characterize accuracy and 

precision. We defined saccade accuracy as absolute value of average saccadic error for 

a given target, and saccade precision as the standard deviation of saccadic error for 

each target. Behavioral results are depicted in Figure 2a-d. 
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Most analyses were performed using the linear mixed-effects, or multi-level, 

statistical framework, which has been formalized to deal with differing numbers of 

repeated measurements. This feature makes that approach particularly well suited to 

the analysis of longitudinal developmental data, where unpredictable attrition within the 

returning subject pool makes it very difficult to perform the same number of 

measurements on every subject. 

We modeled developmental changes in behavioral performance using the 

following formula: 

Where:  

Equation 1. Behavioral regression model 

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ~ 𝟏𝟏 + 𝑨𝑨𝑨𝑨𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇−𝟏𝟏 + 𝑨𝑨𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝟏𝟏 + �𝑷𝑷𝑷𝑷 ∗ 𝑨𝑨𝑨𝑨𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇−𝟏𝟏 � + �𝑷𝑷𝑷𝑷 ∗ 𝑨𝑨𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝟏𝟏 �

+ �𝑫𝑫𝑫𝑫 ∗ 𝑨𝑨𝑨𝑨𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇−𝟏𝟏 � + �𝑫𝑫𝑫𝑫 ∗ 𝑨𝑨𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝟏𝟏 � + (𝟏𝟏 + 𝑨𝑨𝑨𝑨𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝟏𝟏 |𝑰𝑰𝑰𝑰) 

 

I. Behavior is the log transformation of a particular behavioral measure, e.g., mean 
or standard deviation of reaction time.  

II. 𝑃𝑃𝑃𝑃 and 𝐷𝐷𝐷𝐷 are dummy coded zero-mean values where -1 and 1 were used to 
represent short and long presentation and delay intervals respectively.  

III. 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1  is the inverse of a subject’s age at their first visit.  

IV. 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1 =  𝐴𝐴𝐴𝐴𝐴𝐴−1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1   

V. 𝐼𝐼𝐼𝐼 is a unique categorical variable assigned to each subject. 

VI. (1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1 |𝐼𝐼𝐼𝐼) indicates that the linear mixed-effects model contained a 
random offset and slope for each subject. 

It is worth emphasizing that the 𝑥𝑥−1 form of the 𝐴𝐴𝐴𝐴𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1  and 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1  terms 

implies that the magnitude of a variable’s change, for a given time interval, decreases 
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with age. This allows us to model the expectation that developmental changes in 

behavioral performance should decrease in magnitude across age. 

2.5 RESULTS 

 

Figure 2. Change in behavioral performance across development 

Depicts the changes across age in a) mean reaction time; b) accuracy (average saccadic 

error); c) reaction time variability (standard deviation); and d) precision of memory-

guided saccades (standard deviation of saccadic error). Each black curve depicts the 
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best fitting group-level 1/age trajectory. The gray envelope represents the 95% 

confidence bounds.  

 

2.5.1 Main effects of task on behavioral performance 

Average reaction time 

Changes in the duration of the presentation interval did not affect subject’s reaction 

times (t(1334)=0.62, p=0.52). As expected reaction times were much faster on trials 

with longer delay intervals (t(1334)=-5.27, p=1.55e-7). We observed no significant 

interaction effect between the duration of the presentation and delay intervals (t(1334)=-

1.04, p=0.3). 

Accuracy 

We observed no significant effects of presentation (t(1334)=-0.45, p=0.65), delay 

interval (t(1334)=-0.07, p=0.94), or their interaction (t(1334)=1.48, p=0.14 on accuracy. 

Reaction time variability 

Similarly, the presentation interval did not appear to influence reaction time variability 

(t(1334)=-0.18, p=0.98). Longer delay intervals were associated with significantly 

reduced reaction time variability (t(1334)=-3.77, p=1.6e-4). There was no significant 

interaction (t(1334)=1.5, p=0.14). 

Precision 
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The precision of memory-guided saccades were mostly unaffected by altering the 

presentation interval (t(1334)=-1.57, p=0.12), while longer delay intervals were 

associated with reduced precision (t(1334)=3.11, p=1.8e-3). The interaction between 

presentation and delay intervals was insignificant (t(1334)=-1.01, p=0.31). 

2.5.2 Developmental changes in behavioral performance 

Results are reported when considering the population as a whole (group level), and 

when assessing individual longitudinal trajectories (individual level).  

2.5.2.1 Mean reaction time 

Group level 

Reaction time improved with age at the group level, qualitatively following and inverse 

age trajectory (t(1334)=9.033, p=5.7e-19). Group level interactions between age and 

the presentation interval (t(1334)=0.079, p=0.94) as well as delay interval (t(1334)=-

0.12, p=0.90) were not significant . 

Individual level 

Developmental improvements in reaction time were also observable within individual 

developmental trajectories (t(1334)=7.68, p=2.98e-14. We did not observe a significant 

interaction between presentation interval and the within-subjects component of the 

inverse age term (t(1334)=0.71, p=0.47). However, in contrast to the group level results, 

we did observe a significant interaction between the within-subjects component of the 
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inverse age term and the duration of the delay interval (t(1334)=-5.31, p=1.35e-7), such 

that the effect of increasing the delay interval was greater in younger subjects. 

2.5.2.2 Accuracy 

Group level 

We observed improvements in group-level accuracy across development (t(1334)=3.04, 

p=0.0024), but did not observe and significant interactions between the group-level age 

regressor and the durations of the presentation interval (t(1334)=-0.072, p=0.47) or 

delay interval (t(1334)=0.036, p=0.71). 

Individual level 

We observed improvements in group-level accuracy across development (t(1334)=2.59, 

p=0.01), but did not observe and significant interactions between the group-level age 

regressor and the durations of the presentation interval (t(1334)=-1.28, p=0.20) or delay 

interval (t(1334)=-1.22, p=0.22). 

2.5.2.3 Reaction time variability 

Group level 

At the group level, reaction time variability decreased with age (t(1334)=7.55, p=8.0e-

14). However, neither presentation interval nor delay interval terms showed significant 

interactions with group level age; (t(1334)=0.86, p=0.93) and (t(1334)=0.30, p=0.76) 

respectively. 
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Individual level 

We observed a significant developmental reduction in reaction time variability at the 

level of the individual as well (t(1334)=6.95, p=5.73e-12). The interaction between 

individual level age trajectory and the length of the presentation interval was not 

significant (t(1334)=-0.76, p=0.44). However, as with mean reaction time, the interaction 

between delay interval duration and individual level age was significant (t(1334)=-3.7, 

p=0.0002), such that reaction time variability was reduced on long delay trials and the 

effect was more prominent when subjects were younger. 

2.5.2.4 Precision 

Group level 

Like accuracy, the precision of memory-guided saccades improved with age, when 

observed at the group level (t(1334)=3.91, p=0.0001). Varying the presentation interval 

had no influence on precision and this absence of an effect was consistent across age 

(t(1334)=1.32, p=0.19). However, we observed a very modest but significant interaction 

between the length of the delay interval and group level age (t(1334)=-2.0, p=0.045) 

such that the precision of younger subjects saccades were less affected by changes to 

the delay interval. 

Individual level 

Age related improvements in precision were evident at the individual level 

(t(1334)=4.32, p=1.64e-5), but we observed no significant interactions between 
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individual level age trajectories and the presentation and delay intervals, 

(t(1334)=0.025, p=0.98) and (t(1334)=-0.62, p=0.53) respectively. 

2.5.3 Intercorrelation of behavioral measures 

 All measures of behavioral performance were significantly correlated across 

sessions. Reaction time was positively correlated with reaction time variability (r=0.699; 

p=1.2e-50) and negatively correlated with accuracy (r=0.14; p=0.012) and precision 

(r=0.28; p=2.18e-07). As reaction time variability increased, accuracy (r=0.13; p=0.13) 

and precision (r=0.35; p=2.05e-11) tended to decrease. Lastly, greater accuracy was 

correlated with greater precision (r=0.2; p=0.0002). 

2.5.4 Predicting age from behavioral measures 

Given that mean behavioral performance was highly correlated with their corresponding 

measures of variability, we wanted to determine whether behavioral variability 

contributes additional information about the developmental status of a subject, beyond 

that contained in measures of mean behavioral performance. We compared the 

performance of linear models that predicted a subject’s age from either their mean 

reaction times or accuracy to a matched linear model that contained the corresponding 

measure of behavioral variability. We quantified the significance of the comparison by 

using a simulated maximum likelihood estimation test with 1000 iterations. We found 

that a null model predicting age from only mean reaction time was significantly improved 
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by including reaction time variability as an additional parameter (null model: AIC=-

2216.6, Log-Likelihood=1112.8; full model AIC=-2223.3, Log-Likelihood=1116.7; 

p=0.006). Predictions of subject age from accuracy were also improved by including 

variability, but this difference did not reach significance (null model: AIC= -2102.2, Log-

Likelihood=1055.1; full model: AIC=-2103.3, Log-Likelihood=1056.6, p=0.087). These 

findings indicate that mean behavioral performance and behavioral variability each 

reflect important, and to some extent unique, aspects pertaining to the developmental 

state of a subject. 

2.5.5 Characterizing the speed-accuracy relationship 

An important aspect of behavioral variability is the relationship between the speed and 

accuracy of responses [31] —the speed-accuracy tradeoff. This relationship has been 

studied in the context of a number of different of behaviors and has provided important 

empirical support for computational accounts of perception, decision making, and 

response planning [33]. Like many rapid aimed movements, saccades also exhibit a 

speed-accuracy tradeoff. Research in this field has largely been aimed either at 

characterizing the psychophysical influences of features of saccade targets, e.g., size 

and distance from the current point of gaze [34], [35], or understanding computational 

mechanisms underlying visual search performance [36]. Developmental changes in the 

characteristics of the speed-accuracy relationship may provide insight into the 

mechanisms that support behavioral changes. However, to date, there is limited 
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published data characterizing the relationship between speed and accuracy for eye-

movements made to single remembered targets in the absence of a visual stimulus.  

For our analyses, we were only interested the behavioral variability observed 

within a particular session. Accordingly, we examined reaction time values, z-scored 

separately within the each of the four task conditions, and saccadic error, also z-scored 

and rectified within condition. In doing so, we ignored inter-subject and inter-session 

differences in behavioral performance, and limited ourselves to measuring trial-to-trial 

behavioral variability. We accounted for systematic differences in reaction time and 

accuracy arising from the spatial location of the targets by including each of the six 

possible target locations as a categorical nuisance regressor.  

 The association between reaction time and saccadic error exhibited a U-

shaped relationship, in which there appeared to be two distinct regimes of speed-

accuracy correlation (Figure 3): For roughly the fastest half of trials the expected speed-

accuracy relationship prevailed, with faster trials being associated with greater saccadic 

error. However, for the slowest half of the trials, this relationship was strongly reversed 

with long latency trials exhibiting excessive saccadic error. Our regression analyses 

showed that saccadic error had a significant quadratic relationship with reaction time 

(t(16362)=3.97; p=7.31e-5), but no significant linear effect (t(16362)=1.4;p=0.16). We 

did not detect any main effects of or significant interactions with subject age (all p > 0.1) 

and therefore left age-related terms out of all regression analyses.  

Next, we determined the proportion of trials belonging to each speed-accuracy 

trade-off regime by estimating the best fitting quadratic curve and calculating it’s global 

minima, the point at which the direction of the speed-accuracy relationship reverses. 
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Comparing the location of the global minima against the empirical cumulative 

distribution of reaction times, we determined that approximately 52% of trials exhibited 

traditional speed-accuracy trade-off characteristics.  

 

Figure 3. Speed-accuracy relationship in the memory-guided saccade task 

The U-shaped relationship between reaction time and accuracy in the memory-guided 

saccade task. The x-axis depicts reaction times, z-scored within a session. The left-hand 

y-axis is associated with the gray histogram, which depicts the cumulative distribution of 

trial reaction times. The right-hand y-axis is represents saccadic error, also z-scored 

within session, which is plotted in heavy black. Error bars represent one standard error 

of the mean. Behavioral data was adaptively binned so that each data point contains the 

same number of measurements. The smooth quadratic curve indicates the line of best fit 



21 

 

for the non-binned data. The vertical red line indicates global minima of the quadratic 

curve, the point at which the relationship between reaction time and accuracy changes 

direction. 

 

2.5.6 Independent trial-to-trial variability of threshold value and accumulation 

rate in a random walk diffusion model explains the speed-accuracy trade-off 

characteristics of the memory-guided saccade task 

To understand the mechanisms underlying the peculiar U-shaped speed accuracy 

trade-off relationship, we turned to a class of stochastic accumulator models, which 

have been used to account for speed-accuracy relationships across response 

modalities. Typically, these models have been used to characterize behavioral 

performance in two-alternative perceptual decision tasks in which it is assumed that 

subjects base their choices on the stochastic accumulation over time of noisy sensory 

information [37]. In a common implementation of this model, two primary factors: the 

rate at which stimulus information accumulates and the threshold at which the subject 

deems it appropriate to initiate a response, determines reaction time, accuracy, and the 

relationship between them. For instance, changing response thresholds produces trials 

in which slower reaction times are associated with greater response accuracy —a 

traditional speed-accuracy relationship, qualitatively like that which is present on the left 

hand side of Figure 3. [38]. Trial-to-trial differences in accumulation rate produce a 

contrary relationship in which trials with slower reaction times tend to be least accurate 
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[39], like the right hand side. One goal for these simulations was to determine whether a 

balance might be struck between the two opposing influences of variable accumulation 

rate and response threshold to produce the observed U-shaped speed-accuracy 

relationship 

 

Because of the binary nature of two-alternative forced choice tasks, the term 

“accuracy” in these models usually denotes the percentage of correct perceptual 

decisions rather than a continuous measurement of the magnitude of a response error. 

Here we describe a simple computational model of working memory retrieval processes 

which implements a version of the stochastic accumulation framework that is 

appropriate for characterizing data in which trial-to-trial error is a continuous variable 

(see Appendix B). 

Memory-guided saccades are performed in the absence of visual input and are 

guided solely by a representation of the remembered location of the target, which is 

maintained in working memory. Producing a memory-guided saccade therefore would 

seem to involve some process in which working memory’s spatial information is 

transferred, or “read out”, into second pattern of motor-related neural activity that 

actually drives the production of the appropriate eye-movement. We operationally define 

the process of transferring information in working memory to a neural representation 

appropriate for generating motor commands as retrieval. It is this hypothetical retrieval 

transfer operation that we chose as our starting point for constructing the model.  



23 

 

In this computational model, spatial information is stored in working memory as a 

vector representation of the visual field sustained by the activity of groups of neurons. 

The vector of working memory neural activity is such that each entry represents a 

particular spatial location. In addition, the vector is ordered so that adjacent entries 

correspond to adjacent spatial locations. In this way, we model the representation of 

space in working memory in a manner not altogether different from how it is understood 

to be represented by the visual cortex at large. A remembered stimulus is encoded by 

heightened activity amongst the neurons representing the location in which it was 

presented (Figure 4a). We suppose that neurons representing adjacent spatial locations 

in the motor representation share some common inputs from the working memory 

representation. As a result, the read out, or mapping, of working memory to motor 

representations is somewhat diffuse and will be ‘blurred’ in the process of transferring to 

the motor representation (Figure 4b). 

The actual read out of working memory information to a motor representation 

begins at the response cue. We model the transfer as an accumulation over time of the 

working memory representation into the motor representation, which is identically 

topographically organized. Two sources of random noise are considered to affect the 

transfer of information between representations. The first is trial-to-trial variability in 

neuronal gain affecting the amplitude of the representation in working memory (Figure 

4a-c). Changes in working memory gain affect the rate at which the working memory 

representation accumulates, or is read out, into the motor representation. The second is 

independent random noise, due to background inputs, that accumulates within the 

activity of motor representation neurons (Figure 4d). Critically, we suppose that once 
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any single neuron in the motor representation vector reaches a predetermined threshold 

magnitude, a saccade is generated to the corresponding location. Trial-to-trial 

differences in the magnitude of the response threshold is a third source of variability, 

which does not affect the transfer of stimulus information, but changes the level of 

motor-related activity that must be achieved to evoke a response. 

There are a several parameters that can be adjusted in this model. Among them 

are: 1) the width of the blurring, or the point spread function, that defines how diffuse the 

mappings are between working memory and motor representation; 2) the magnitude of 

the accumulating independent noise; 3) the mean value and variability of the threshold 

determining when a saccade is performed; 4) the mean value and variability of the gain 

modulations affecting the working memory representation. Although each of these 

parameters interact with one another in complex ways which warrant future exploration, 

here we explore the effects of potential developmental changes in the variability of the 

gain and threshold parameters, while holding their means along with all other 

parameters constant. 

 

Figure 4. Accumulation model of working memory retrieval 
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a) The firing rates of a hypothetical population of neurons that encode 1-dimensional 

spatial location in working memory. In this case, the pattern of activity indicates that the 

remembered target appeared at x=3. The red data points depict the pattern of activity that 

is present under conditions of increased neural gain affecting the working memory 

representation. b) The change per unit time in the state of the motor representation 

during the retrieval operation. The motor representation is a diffuse version of the 

working memory representation. On high gain trials (red) the accumulation of spatial 

information into the motor state happens much more quickly per unit time. c) During 

retrieval spatial information accumulates in the motor representation, increasing the 

activity of neurons that code for that location over time. The horizontal gray lines 

represent a variable firing rate threshold to execute a memory-guided saccade. d) Shows 

the effect of accumulating stochastic noise on the motor representation. Note that as the 

threshold gets higher, increasingly only neurons representing locations near the 

stimulus surpass it. 

 

 

For all simulations, we defined reaction time as the number of steps of 

accumulation that were required before one of the neurons in the motor representation 

reached the threshold. For each trial, the accuracy of the resulting simulated saccade 

was determined by calculating the distance between the location to which the saccade 

was generated, and the actual location of the target represented by working memory. 

To match our computational model to our task, we simulated 60 trials for each simulated 

subject, matching the number of trials that contributed to the z-scored session data. 
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Figure 5a depicts how trial-to-trial differences in the response threshold affects 

the speed-accuracy relationship, while holding all other parameters constant. When the 

only sources of variability are independent accumulation noise and trial-to-trial variability 

in the response threshold, we observe the typical speed-accuracy tradeoff relationship, 

where fast trials tend to be less accurate. To understand why this occurs, consider a 

trial in which the response threshold is low. In this case, very little neural activity within 

the motor representation needs to be accumulated before a saccade is triggered. This 

increases the likelihood that a random neuron, representing some location other than 

the correct target might accumulate to threshold simply by chance. At the same time, 

because the threshold is so low, the magnitude of neural activity required to trigger a 

saccade can be achieved very quickly. The combined effect is that trials with very fast 

reaction times, as a result of a low response threshold, are also those for which 

responses tend to be less accurate. On trials in which the threshold is high, a greater 

amount of time is required for neural activity to reach a magnitude sufficient to trigger a 

response. This increases reaction times. At the same time, the increase in response 

time allows the accumulated representation of the target location within the population 

of motor neurons to increase relative to the accumulated noise, ultimately making the 

saccade more accurate. 
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Figure 5. Speed-accuracy relationships in the stochastic accumulator model 

Each panel depicts the speed/accuracy relationship observed in our simulations. The x-

axes indicate the simulated reaction time for a trial, given in terms of the number of 

accumulation steps that occurred before the response threshold was reached. The y-

axes depict accuracy, measured as the absolute value of the difference in spatial location 

between the target and the actual saccade that was performed. a) Holding working 

memory gain constant across trials but allowing the threshold to vary, gives rise to the 

typical speed\accuracy relationship. b) The response threshold is fixed and working 

memory gain, and thus the accumulation rate, varies across trials. c) Both response 

threshold and gain fluctuate independently across trial within ranges that were 

determined, by a search of the parameter space, to qualitatively match the speed-

accuracy relationship observed in our data 

 

Next, we examined what would happen if we allowed for trial-to-trial variability in 

the gain of the working memory representation, while holding the value of the response 

threshold constant. Here, we found that the relationship between reaction time and 

accuracy was reversed; trials with longer reaction times tended to be less accurate. In 

this case, when the response threshold is fixed, what dictates reaction time is the 

accumulation rate (Figure 5b). On trials where gain is high, the accumulation rate is also 
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high, leading to fast reaction times. Also, higher gain improves the signal to noise ratio 

of the working memory representation, minimizing the impact of noise and leading to 

more accurate saccades. These two effects lead to a tendency for faster saccades that 

result from high gain to be more accurate than slower saccades, a relationship opposite 

to what we observe with no gain modulation and a response threshold that changes 

across trials 

Given that trial-to-trial variability in response threshold and gain modulation are 

predicted to induce opposing relationships between reaction time and accuracy, we set 

out to determine whether the two influences could be simultaneously present, and 

balanced in such a way as to account for the U-shaped speed-accuracy relationship 

that we observed in our behavioral data. To do this we performed a series of 

simulations in which we searched the space of model parameter values, to find whether 

we could qualitatively recapitulate the U-shaped speed accuracy curve observed in our 

data. In our parameter space search simulations, we allowed only the mean values and 

trial-to-trial variance of the threshold and gain parameters to vary, and held all other 

parameters, such as accumulation noise, number of neurons, and width of the point 

spread function, constant.  

Figure 5c demonstrates that allowing independent trial-to-trial variability in 

response threshold values and working memory gain modulation is sufficient to account 

for the U-shaped speed accuracy trade-off observed in our data. In this case, parameter 

values were found such that the fastest trials are dominated by the effect of a response 

threshold, which changed across trials. Beyond a certain reaction time, however, 

increasing the response threshold yields diminishing returns on improving accuracy, 
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and trial-to-trial variability in working memory gain becomes the dominant factor in 

determining the speed accuracy trade off. The reason for this transition is that trials that 

have not reach the response threshold at this point tend to be those occurring when 

gain is low so that the motor representation is dominated by stochastic accumulated 

noise.  

2.5.7 Coordinated changes in working memory gain and response threshold 

variability minimize developmental differences in the shape of the speed-

accuracy tradeoff 

Our simulations have shown that independent variability affecting working memory gain 

and motor response thresholds can account for the U-shaped speed-accuracy 

relationship that we observed in the memory-guided saccade task. However this speed-

accuracy relationship was only apparent in normalized data, z-scored within a session, 

and did not exhibit any detectable age-related changes. Given that our analysis of 

empirical task behavior showed that mean performance and variability improved with 

development, our next goal was to reconcile our computational model with our 

behavioral findings. We therefore sought to determine whether coordinated changes in 

gain and response threshold variability could be made to simultaneously account for the 

known developmental changes in behavioral performance, while maintaining an age-

invariant U-shaped speed-accuracy relationship. 

We began with the set of model parameters found during our initial search of 

parameter space to produce a U-shaped speed-accuracy tradeoff. We then 
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systematically adjusted the parameters related to gain and response threshold 

variability, while holding all other parameters (including their mean values) constant. In 

this way, we searched a local region of parameter space, at each point estimating the 

mean and standard deviation of reaction time and average saccadic error. Additionally 

we estimated the shape of the speed-accuracy relationship by regressing trial-wise 

accuracy on reaction time, including linear and quadratic terms. 

After each change in model parameters, we determined how similar the speed-

accuracy relationship was to our empirical data by comparing the three-element vector 

of regression weights (constant, linear, and quadratic terms) from the simulated and 

empirical data. We summarized their differences by computing a “dissimilarity score”, 

given as the magnitude of the difference between both vectors. Smaller dissimilarity 

score mean that the empirical speed-accuracy relationship is more similar to simulated 

relationship. Figure 6a shows that a distinct path exists through parameter space (see 

Appendix B) in which coordinated changes in the variability of working memory gain and 

motor response thresholds minimize deviation from a U-shaped speed-accuracy 

relationship (Error! Reference source not found.b). 
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Figure 6. Speed-accuracy gain and threshold variability parameter space 

a) Dissimilarity index as function of gain variability and threshold variability. The 

dissimilarity index quantifies the difference between empirical and simulated speed-

accuracy regression coefficients. Specifically, it is the magnitude of the difference 

between the vectors of the empirical and simulated speed-accuracy regression 

coefficients. The red line traces a trajectory through parameter space that minimizes the 

difference between empirical and simulated speed-accuracy relationship. b) Simulated 

speed accuracy relationships from the locations in parameter space indicated by the 

solid dots in (a). The x-axis represents reaction time as the number of drift steps before a 

threshold values was reached. The y-axis represents the average magnitude of the 

saccadic error. Error bars represent one standard error of the mean.  

2.5.8 Developmental reduction in gain and threshold variability can account for 

changes in behavioral performance during adolescence 

We hypothesized that during adolescent development, both working memory gain and 

response threshold variability decrease in a coordinated manner, following a trajectory 

given characterized in Figure 6a. To determine whether such coordinated change in 
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variability could produce developmental changes in behavior that are consistent with 

what we observe empirically, we extracted estimates of mean reaction time and reaction 

time variability as well as saccade error from all point along the path and ordered them 

so that younger subjects were those with the greatest variability (Figure 7a-c). 

 

Figure 7. Simulated developmental changes in behavioral performance 

Model estimated changes in behavioral performance based on the assumption that 

response threshold variability and working memory gain variability decrease in a 

coordinated manner, minimizing age-related changes in the U-shaped speed-accuracy 

tradeoff. a) mean reaction time; b) standard deviation of reaction time; and c) mean 

saccade error —a proxy for saccade precision. The x-axis depicts subject’s ages, which 

were arbitrarily scaled to match the age range of our data sample. 

 

We found that coordinated decreases response threshold variability and working 

memory gain variability could qualitatively account for the changes in behavioral 

performance that we observed during adolescence; all simulated measures of behavior 

improved following a curvilinear trajectory. As in the empirical behavioral data, we 

observed a greater fractional change in reaction time variability, compared to mean 

reaction time across development: simulated mean reaction time improved by roughly 
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10% compared to simulated reaction time variability which improved by roughly 60%. 

We also computed the average correlation between mean reaction time and reaction 

time variability for simulated sessions at 10 evenly spaced points along the putative 

developmental trajectory depicted in Figure 6a and found that, as with the empirical 

behavioral data, they were positively correlated (mean r=0.58; one-sample t-test: 

t(9)=15.5; p=8.46-e-8).  

Lastly, we noticed that for simulated sessions with greater gain and threshold 

variability there tended to be a greater correlation between mean reaction time and the 

standard deviation of reaction time. This suggested to us that younger subjects in our 

data might likewise exhibit greater correlations between the means and standard 

deviations of their reaction times across sessions. To determine whether real behavioral 

data exhibited this characteristic, we divided our data into two groups by median split, 

and compared the correlation between the means and standard deviations of reaction 

time using a bootstrapping procedure. Consistent with our model predictions, we found 

that the correlation in the younger group (r= 0.713) was greater than the correlation in 

older group (r=0.573). We verified the significance of this age-related change by 

comparing the bootstrapped distribution of the difference between correlation 

coefficients between both groups (p=0.0024) 
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2.6 DISCUSSION 

2.6.1 Developmental changes in behavior 

Previous studies of developmental changes in memory-guided saccade performance 

used a version of that task that placed demands on response inhibition processes as 

well as working memory. Here, we demonstrate that developmental improvements in 

behavior during adolescence are still present after eliminating the demands on 

response inhibition. Our results indicate that developmental improvements in task 

performance are not simply the result of improvements in the ability to simultaneously 

balance working memory and response inhibition processes. 

Differences in the amount of time that subjects were allowed to look at the target, 

the presentation interval, did not significantly alter any aspect of behavioral 

performance. We had hypothesized that increasing the amount of time that subjects 

were allowed to look at, or “encode” the location of a target would improve the fidelity of 

its representation in working memory, possibly improving the accuracy and reaction 

time of responses. We infer from the absence of any measurable effect of increasing 

the presentation interval on any aspect of behavioral performance, that the encoding of 

spatial information occurs on time scales faster than 1.5 seconds for all ages under 

study. 

Reaction times were generally faster and less variable during in long delay 

interval trials. This difference may arise either from allowing a subject a greater amount 

of time to prepare their saccadic responses, or perhaps as a result of the reduction in 
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uncertainty in the exact time that a response is required for long delay trials. That is, 

during short delay trials, in the moments right before the response cue, subjects do not 

know whether the trial contains a short or long delay interval. During long delay trials, 

once, the initial 1.5 seconds has elapsed without the appearance of a response cue, 

subjects may infer exactly when the response cue will appear, since the only other 

option for delay is 9 seconds. Greater uncertainty about the required timing of a 

memory-guided saccade may increase reaction time. That the facilitating effects of 

increasing the delay interval were more pronounced in younger subjects, indicates that 

adult behavior is affected less by uncertainty in the response time. 

One way to interpret the high degree of intercorrelation between all of the 

measures of behavioral performance as well their similar developmental trajectories is 

that all aspects of behavioral performance are influenced by the same beneficial 

developmental changes in the underlying cognitive and sensorimotor systems that 

support task performance. However, our finding that reaction time variability significantly 

improved prediction of subject ages over mean reaction time indicates that behavioral 

variability does capture some unique features of developmental change. This could 

happen if developmental changes in average reaction time were influenced by 

developmental factors that do not affect reaction time variability. The continuing 

myelination of long distance projections, which increase the average rate that 

information is transmitted and processed [40] might influence mean reaction time, while 

differences in reaction time variability might be the result of changes in stochastic neural 

variability which also improves in parallel during development and is associated with 

behavioral variability [14], [15].  
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2.6.2 Computational insights into the development of working memory 

performance 

Our simulation studies provide insight into the possible neural mechanisms yoking 

developmental changes in mean behavior and behavioral variability. We found that a 

simple high-dimensional extension to the drift diffusion modeling framework could 

account for the seemingly age-invariant U-shaped speed-accuracy relationship that we 

observed for memory-guided saccades. In this model, the processes involved in 

producing a memory-guided saccade are approximated as the drift diffusion of a 

topographic working memory representation into a similarly topographic oculomotor 

representation, which, upon reaching a threshold value, evokes a saccade. The 

maintenance of a U-shaped speed-accuracy tradeoff was found to require a balance 

between two independent sources of variability that affect the gain of a working memory 

representation and the response threshold at which an oculomotor responses is 

evoked. 

 We found that reducing the magnitudes of independent gain and threshold 

variability in concert produces changes in behavioral performance that share several 

features with the developmental changes in behavior that we observe empirically. 

Specifically, we found that stabilizing working memory gain and response threshold 

variability produces curvilinear changes in average reaction time, reaction time 

variability, and saccadic error, which are qualitatively similar to true developmental data. 

We therefore propose that the stabilization of working memory gain and oculomotor 
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response thresholds may be a key factor in the developmental improvements in mean 

behavior and behavioral variability.  

Although our model is agnostic about the exact anatomy in which it is 

instantiated, other experiments offers suggestions about it may be implemented in the 

brain. As noted earlier, working memory representations appear to be widely distributed 

across cortex, mainly within the regions that represent the corresponding sensory 

modalities that are being remembered [21]. Thus, the working memory representation in 

our model is likely to have many contributing support regions. The superior colliculus, 

containing neurons whose activity represents a retinotopic map of saccadic trajectories, 

is plausible site for the instantiation of the motor representation of our model [41]. 

Reducing in GABAergic input from the substantia nigra to the superior colliculus results 

in changes in saccade metrics that are particularly pronounced for memory-guided 

saccades and consistent with the lowering of a response threshold [42]. The role of 

GABA in setting a response threshold is also strongly suggested by simulations studies 

of cortico-striatal-collicular interaction [43]. A variety of mechanisms may contribute to 

modulation of gain signals affecting working memory. For instance, cortical gain is 

affected by a variety of cognitive and biophysical processes. Norepinephrine [44], 

acetylcholine [45], and dopamine [46] are known gain modulators implicated in arousal 

and the allocation of spatial attention; indeed, simply changing the levels of background 

synaptic input can alter neuronal gain [47]. These critical neurotransmitter systems may 

be undergoing important specialization through adolescence as adult level function is 

being established resulting in greater stability through development. 
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3.0  DEVELOPMENTAL DIFFERENCES IN WHOLE BRAIN GAIN STABILITY 

3.1 BACKGROUND 

3.1.1 Relating brain activity and behavior 

Humans and animals can rarely perform a particular behavior many times in exactly the 

same way. Our analyses of performance during the memory-guided saccade task 

indicate that instability in behavioral performance is more pronounced in younger 

subjects and decreases during adolescence. Experiments have shown that subtle 

differences in behavior covary with the activity of individual neurons, groups of neurons, 

and whole brain regions thought to be involved in task performance [48]-[51]. In regions 

of visual cortex for instance, neurons do not respond identically to repeated 

presentations of the same stimulus. Such trial-to-trial variability in neural responses is 

thought to underlie fluctuations in behavioral performance that occur during visual 

perception tasks that rely on information represented by visual cortex [48].  

Theoretical analyses indicate that in order for there to be measureable trial-wise 

correlations between individual neurons and behavioral performance, one of two things 

must be true:  either very few neurons contribute to the behavior —on the order of a few 

dozen— or the activity of the neurons contributing to the behavior must be correlated 
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[52], [53]. The reason for this, intuitively, is that when many uncorrelated neurons 

contribute to behavior, the contribution of any one neuron is washed out amidst the 

welter of contributions from the other neurons. However, when the activity of many 

neurons driving a behavior is correlated, variability affecting one neuron is partly 

reflected in the activity of all neurons, amplifying the effect on behavior and imposing on 

it a trial-to-trial relationship with the activity of individual neurons. 

Recent fMRI data has suggested that even very simple tasks involve activity that 

is distributed across most of cortex. Gonzalez-Castillo and colleagues had subjects 

perform many hundreds of trials of a simple letter/number discrimination task in an fMRI 

scanner. With a sufficient number of trials present to counter measurement noise, they 

found that the vast majority of cortex exhibited task-locked BOLD responses [54]. 

Assuming that neural variability is mainly independent across brain regions, their result 

would predict that the trial-to-trial relationship between the activity of any particular 

region and behavior would be minimal. However, the combined activity of many neurons 

within a single brain area can be used to predict trial performance with high accuracy. 

Cohen and others provided a striking example of this in an experiment showing that 

performance on a change detection task could be predicted with very high accuracy by 

examining the activity of a few dozen simultaneously recorded neurons in visual area 

V4 [49]. One way to reconcile these two findings is to propose that neural variability 

across brain regions is correlated, and that many brain regions exhibit the same trial-to-

trial fluctuations in neural responses that predict behavioral performance. 

The correlated neural variability associated with trial-to-trial fluctuations in task 

performance is likely to arise from multiple sources including stochastic variability 
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occurring within shared bottom-up inputs into sensory cortex [52] and the widespread 

coherent fluctuations of brain activity, of the type examined in resting state studies [55], 

[56]. Somewhat more recently though, experiments have demonstrated that trial-to-trial 

variability in top-down signals, likely related to attention, are a major contributor to 

correlations between neural activity in sensory cortex and behavior [49], [57], [58] . 

 Attention is known to primarily affect the gain of neural responses [59], [60]. The 

hallmark of gain modulation is a multiplicative scaling of neural activity that does not 

alter the shape of neural tuning curves, or the spatial distribution of activity. A key 

feature of neuronal correlations induced by instabilities in attention is that their structure 

is consistent with fluctuations of shared gain modulation [61]. That trial-to-trial 

fluctuations in gain signals are associated with behavioral instability is consistent with 

our computational modeling analysis of memory-guided saccade task performance; Our 

results suggest that the improvements in behavioral variability as well as mean 

behavioral performance may be driven, in part, by the stabilization of gain signals 

affecting working memory representations.  

Combined, this evidence suggests that gain modulation may play two important 

roles: 1) producing trial-to-trial differences in behavioral performance by altering the 

magnitude of neural responses across trials; and 2) providing a source of correlated, 

and potentially widespread, neural variability that allows for trial-to-trial correlations 

between neural activity and behavior to be observed at all. 

For these experiments, we sought a BOLD signal-based metric of trial-wise gain 

modulation. We hypothesized that variability in gain would result in fluctuations in the 

amplitude of expression of whole-brain patterns of task-related BOLD signal, or what we 
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refer to as brain state variability. Furthermore, we hypothesized trial-to-trial differences 

in behavioral performance would be correlated with brain state variability, and that that 

the developmental stabilization of behavior that we observed would be associated with 

a reduction in brain state variability as gain signals similarly stabilize during 

adolescence.  

3.2 METHODS 

We supposed that brain state variability, or trial-to-trial differences in the amplitude of 

patterns of task-related BOLD signal, would be related to trial-to-trial changes in 

behavior. Here we present an outline of the procedure used to define task-related brain 

state patterns (for complete details see Appendix). To determine what patterns of 

activity were associated with visuomotor/encoding (VME), working memory 

maintenance, and retrieval processes that support performance of the memory-guided 

saccade task, we extracted representative spatial patterns of BOLD signals from 

different periods of the average time courses of the long delay trials. To represent VME 

and retrieval processes we extracted the pattern of BOLD signals occurring 6 seconds 

after the visually-guided and memory-guided saccades, which allowed the signals 

associated with these processes to reach their peak [62]. The pattern of activity 

associated with working memory maintenance was extracted from the TR immediately 

prior to the execution of the memory-guided saccade. Implicit in this procedure is the 

assumption that VME, maintenance, and retrieval processes are associated with distinct 
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and consistent patterns of whole-brain BOLD activation that are expressed with the time 

course of a hemodynamic response. We orthogonalized each of the brain state patterns 

to ensure that they captured unique aspects of task activity by regressing the VME-

related pattern from maintenance-related pattern, and regressing both VME- and 

maintenance-related patterns from the retrieval related pattern. This process removed 

remaining components of VME-related activity from the maintenance activity and 

importantly, allowed us to remove the pattern of activity associated with visuomotor 

responses from the retrieval-related pattern. Evidence suggests that some known 

neuronal gain modulators, particularly those acting through cholinergic pathways, 

specifically alter gain with hemispheric specificity, similar to the effects of directed 

spatial attention [45], [63], [64]. Accordingly, we decomposed each of the three resulting 

whole-brain patterns into hemifield-specific, or “spatial”, and hemifield-non-specific, or 

“mean”, brain state components. These brain states reflect the engagement of 

canonical regions underlying the VME epoch (e.g., frontal eye fields), maintenance 

(e.g., prefrontal and frontal eye fields), and the non-visuomotor aspects of retrieval (e.g., 

preSMA) (Figure 8). 
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Figure 8. Components of task-related brain states 

Mean, or spatially non-specific (top row) and spatial (bottom row) brain state 

components. All brain state component patterns have zero mean across voxels and have 

been normalized to a common vector magnitude. Red indicates regions with the greatest 

activity within a state, blue indicates regions with the least, and green the regions with 

the smallest contributions to the state. 
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3.3 RESULTS 

3.3.1 Task-related brain states are expressed similarly across age 

After constructing the set of task-related canonical brain state patterns, we verified that 

whole brain trial-locked BOLD activity could be sensibly characterized as separate time 

courses of their superimposed expression. For instance, to be considered sensibly 

expressed, the VME state components, intended to represent the whole brain pattern of 

activity evoked by a saccadic eye movement, should exhibit two peaks of expression 

during the average (long delay) trial: once following the initial encoding saccade and 

again following the memory-guided saccade. The mean maintenance state, to the 

extent that it represents activity associated with sustained spatial working memory and 

saccadic preparation, should exhibit a prolonged time course, rising after the first 

visually-guided saccade and peaking near the time of the memory-guided saccade. The 

retrieval state, intended to represent the pattern of activity associated with the 

production of an endogenously guided saccade, after removing the component of 

activity associated with the eye-movement itself, should be expressed only following the 

production of the memory guided saccade.  

Our expectation for the time courses of the spatial brain state components are 

somewhat more nuanced due to the fact that visual and oculomotor processes (and, of 

course, sensorimotor processes in general) are distributed in a hemisphere-specific way 

across the cortex. We expected therefore that aspects of the VME, maintenance, and 

retrieval states should differ systematically depending on the visual hemifield in which a 
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target appears. The spatial components of each brain state, defined as the difference 

between brain state patterns for right- and left-side visual targets, are meant to capture 

these differences. We expect not only that they be expressed at the appropriate times 

associated with the appropriate task epochs, like the mean brain state patterns, but that 

the sign of their expression should differ depending on the location of the visual target. 

Specifically, because the spatial states were constructed by subtracting left side 

patterns from right side patterns, we required the spatial state to be expressed positively 

for trials in which the target was in the right visual hemifield and negatively for targets on 

the left. 
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Figure 9. Time courses of brain state expression for two types of trials 

The average time courses of expression for each brain state component during long 

presentation long delay trials (top subset) and short presentation short delay trials 

(bottom subset). Each panel depicts the average time courses for the oldest (grey lines) 

and youngest (black lines) halves of the subject pool. The time courses for trials during 

which targets were presented in the left (dashed) and right (solid) visual hemifields are 

rendered separately. The grey and black vertical lines indicate the time of visually-guided 
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and memory-guided saccade signals respectively. Error bars depict one standard error 

of the mean. 

 

To test these suppositions, we converted the average whole brain time course for 

each type of trial into a time course of brain state expression by projecting each TR onto 

the complete set of brain state patterns using linear regression. For each brain state 

component, we constructed time courses of expression using the regression coefficients 

estimated at each TR. We submitted each brain state component’s time courses for left 

and right side targets, separately for each trial type, to a linear-mixed effect analysis in 

which we modeled its expression over time in the following way: 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝑻𝑻𝑻𝑻) ~ 𝑻𝑻𝑻𝑻 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ∗ 𝑨𝑨𝑨𝑨𝑨𝑨 + 𝑻𝑻𝑻𝑻 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 ∗ 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + (𝟏𝟏|𝑰𝑰𝑰𝑰) 

Equation 2. Brain state expression by time model 

Where: 

I. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇𝑇𝑇) refers to the projection of the whole brain time series for a given 

type of trial onto a brain state pattern at a particular 𝑇𝑇𝑇𝑇. 

II. 𝑇𝑇𝑇𝑇 is a categorical variable representing each time point in trial time course. 

III. 𝐴𝐴𝐴𝐴𝐴𝐴 refers to the age of a subject during a particular session 

IV. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is a dummy-coded regressor (-1 or 1) indicating whether the projection 

value was observed during right or left side trials 

V. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is a measure of the average per frame Euclidean displacement 

undergone by a subject during the session. 

This model allowed us to estimate the average time course of expression for 

each brain state component while also measuring any systematic temporal variations 

arising from age-related differences, target hemifield effects, and in-scanner motion. 
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We confirmed that the expression of every brain state component significantly 

changed during each trial type (all p < 0.001), using separate omnibus F-tests, which 

tested the null-hypothesis that all of the coefficients for TR and TR•Target terms are 

equal to zero. As expected, we found that the mean and spatial components of each 

brain state pattern were expressed at the appropriate time during the trial, 

demonstrating that these canonical brain state patterns served as an effective 

condensed basis for characterizing the whole-brain patterns of BOLD activity across 

subjects. Additionally, the brain state patterns, which were derived from the long delay 

trials, generalized to an effective basis for describing BOLD activity evoked by short 

delay trials, which had markedly different task epoch timing (Figure 9 lower panel) 

Next, we looked for age-related differences in the time courses of expression of 

the brain states across time for each trial type. Again, we applied an omnibus F-test to 

assess the null-hypothesis that all of the coefficients for Age•TR and Age•TR•Target 

were equal to zero. We observed significant age-related differences in the time courses 

of expression for the spatial, but not mean, component of the VME states across all trial 

types (all p < 0.001). We did not detect any significant age-related differences in the 

expression of either mean or spatial components of the maintenance state (all p > 0.12). 

Result for age-related differences in the time courses of expression for the retrieval 

states were mixed: We observed no omnibus age-related differences within either of the 

long delay conditions, but within the long presentation interval/short delay interval trials 

we observed a small age-related difference in the expression of the spatial retrieval 

state (F(42,14652)=1.5; p=0.017). Post-hoc examination of the individual Age•TR and 

Age•TR•Target coefficients at each time point in the trial revealed that this effect was 
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driven by slightly greater expression of the state by adults, across right and left side 

targets, during the 5th, 6th, and 8th TRs. However, in our post-hoc analysis no single time 

point reached significance (minimum(p) = 0.055). We also observed that the mean 

retrieval state was differentially expressed across age within the short presentation/long 

delay interval trials (F(40,13986)=2.0; p<0.001). Post-hoc analyses revealed that this 

effect was driven by a slightly greater expression of the mean retrieval state by adults 

during this condition during the 9th-12th TRs, well after the occurrence of peak 

expression for this state. 

From visual inspection it is clear that adults exhibit a prolonged expression of the 

spatial component of the VME brain state during the different trials. We also wanted to 

know whether the peak amplitude of spatial VME expression differed with age. From 

each session we examined the amplitude of peak expression of the spatial VME state 

for each trial type. Because the sign of expression of the VME state varies depending 

on target hemifield, we extracted the maximum value of positive expression for right 

side trials, and we extracted the minimal value of expression for left side trials, and 

applied the following model for analysis: 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 ~ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 + 𝑨𝑨𝑨𝑨𝑨𝑨 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒆𝒆𝒆𝒆 + 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

+ 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 + 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 + (𝟏𝟏|𝑰𝑰𝑰𝑰) 

Equation 3. Peak brain state expression model 

Where: 

I. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 refers to the magnitude of maximal (positive or negative, 
depending on target hemifield) expression of the spatial VME brain state 
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II. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is a dummy coded (-1 or 1) variable indicating the visual hemifield of the 
target 

III. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a categorical variable referring to one of the four task conditions 

IV. 𝐴𝐴𝐴𝐴𝐴𝐴 refers to the subjects age at the time of measurement 

V. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the average Euclidean displacement per TR within the scanner. 

VI. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 indicate the percentage of trials during a session for 
which eye-tracking quality was sufficient to determine that the visually- and 
memory-guided saccades were performed correctly. 

 

If adults expressed the spatial VME state to a greater extent than children and 

adolescents, this would result in greater positive expression for right side trials and 

reduced (more negative) peak expression during left side trials. We therefore examined 

the Age*Target interaction term, which we found did not reach significance 

(t(2672)=1.79; p=0.074). However, we did note that excessive motion was strongly 

associated with reduced peak expression of the spatial VME component (t(2672)=-7.68; 

p=3.14e-22). 

Combined, these results demonstrate that the set of brain state patterns provide 

a simplified low dimensional basis for describing BOLD signal changes evoked by the 

memory-guided saccade task. Importantly, age-related differences in the expression of 

the brain state patterns during task performance were minimal, and only the spatial 

component of the VME state exhibited consistent age-related differences in expression 

across trial types. Even here, however, the age-related differences were not ones of 

magnitude, but of duration. 
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3.3.2 Trial-to-trial variability in brain state expression predicts behavioral 

performance 

We hypothesized that trial-to-trial differences in behavioral performance may be caused 

by transient fluctuations in global gain signals occurring around the time of a behavioral 

response. Since variability in global gain signals are expected to amplify or attenuate 

ongoing patterns of task-evoked activity without changing their spatial structure, we 

predicted that reaction time and saccadic error would co-vary with the amplitude of 

expression of whole-brain patterns of task-related BOLD activity.  

To measure the fluctuations in brain state expression, we examined the whole 

brain residual BOLD signal time series, which, after removing the mean trial responses 

from each voxel, represent inconsistent neural signals that are not synchronized with 

the task, as well as other biological and non-biological nuisance artifacts. We projected 

the spatial pattern of BOLD signal residuals from each TR onto the set of canonical 

brain state patterns (for complete details of this procedure, refer to the Appendix). The 

resulting regression weights associated with each brain state component, organized into 

a time series, are time courses of brain state variability, revealing whether a particular 

brain state pattern was present more or less than average at each TR; A positive 

regression weight at a particular TR indicates greater than average expression, 

predicted to be associated with high global gain, and a negative value indicates less 

than average expression, associated with low gain. 

Within the time series of brain state variability, we determined whether there was 

a specific time interval around each memory-guided saccade in which trial-to-trial 
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fluctuations of the expression of the states were associated with differences in 

behavioral performance. To do this, we extracted snippets from the time series of each 

brain state component, centered on the TRs containing each correct memory-guided 

saccade and extending ±15 TRs before and after, and aligned them. We then 

performed a series of regression analyses, using brain state variability estimates from 

each relative TR, to determine the relationship between the expression of the states and 

reaction time and accuracy (saccadic error) of the memory-guided saccades. At each 

relative TR, we compared the results of a regression model that included only non-

neural predictors of behavioral performance (a null model) to a second regression 

model that contained additional terms reflecting the brain state expressions at the TR 

being analyzed. 

𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)~𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

+ (1|𝐼𝐼𝐼𝐼) 

Equation 4. Null model for trial-wise brain state and behavior analysis 

Where: 

I. 𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is either reaction time or accuracy of a saccade for a particular 
trial 

II. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is a dummy coded regressor (-1 or 1) indicating whether a target 
appeared on the left or right 

III. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is an integer, 1-3, with larger numbers indicating more eccentric 
target locations 

IV. 𝑅𝑅𝑅𝑅𝑅𝑅 is an integer, 1-3, representing the which of the three runs contained the trial 

V. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is an integer, 1-20, indicating which trial within a run the behavioral 
measure came from 
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VI. 𝐵𝐵𝐵𝐵ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the value of the other behavioral measure not being 
directly analyzed. For instance, when modeling reaction time, accuracy is 
included as a covariate and vice versa. 

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩(𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)~𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 + 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝟐𝟐 + 𝑹𝑹𝑹𝑹𝑹𝑹 ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒃𝒃𝒆𝒆𝒆𝒆

+ 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 + 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽(𝑻𝑻𝑻𝑻)

+ 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽(𝑻𝑻𝑻𝑻) ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 + 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(𝑻𝑻𝑻𝑻)

+ 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(𝑻𝑻𝑻𝑻) ∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

+ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(𝑻𝑻𝑻𝑻) + 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝑻𝑻𝑻𝑻)

∗ 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 + (𝟏𝟏|𝑰𝑰𝑰𝑰) 

Equation 5. Full model for brain state and behavior analysis 

Where (considering just the terms that distinguish the full and null models): 

I. ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇) is the regression coefficient for a particular brain state 
component  (mean and spatial VME, maintenance, and retrieval) taken from a 
given TR relative to the memory-guided saccade in question 

 

Figure 10 depicts the results of these analyses performed at each relative TR 

and demonstrates that trial-to-trial variability in both reaction time and accuracy are 

related to fluctuations in the expression of task-related brain states occurring around the 

time that the memory-guided saccade was executed. For trial-wise reaction time, brain 

state/behavior associations were significant beginning with the TR when the memory-

guided saccade was executed, peaking 1 TR after the saccade and lasting for a total of 

6 TRs. Within this range, trials with faster reaction times were associated with greater 

early expression of the mean VME and maintenance brain states (TRs 0–2), and 

reduced later expression of all mean states (TRs 3–5). Trials with faster reaction times 
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were also associated with greater expression of the hemifield-appropriate spatial VME 

(TRs 1–3), maintenance (TR 2), and retrieval (TRs 1–2) states. The greater early 

expression and reduced later expression of the mean brain states for fast reaction time 

trials (represented by the transition from blue to red in some rows of the lower panel of 

Figure 10) is consistent with a simple correlation between the timing of a saccade and 

the latency of the expression of the brain state. We therefore performed a set of 

simulations to compare the temporal patterns of BOLD signal residuals for fast and slow 

reaction time trials that would result from latency-, amplitude-, and latency and 

amplitude-based relationships. We found that the trial-wise relationship between 

reaction time and the expression of the mean VME brain state was inconsistent with 

both a purely amplitude-based mechanism, and purely latency-based mechanism and 

instead reflects a mixture of the two effects (see Appendix D). 

 

Figure 10. The trial-wise relationship between brain state expression and behavior 
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Trial-to-trial fluctuations the expression of task-related brain states is associated with 

reaction time (a) and saccade error (b). The top panels depict the additional fraction of 

behavioral variability (compared to a null model) accounted for by including brain state 

measurements from each TR relative to each correct memory guided saccade. The null 

model, against which the full brain state model was compared, included the non-neural 

trial-to-trial covariates such as target location and its square and task condition. The null 

model for trial-wise reaction time included saccade error and its square as regressors. 

Similarly, the null model for trial-wise accuracy included reaction time and its square. 

Highlighted grey intervals represent TRs where the full models provided better a better fit 

than the null model (simulated likelihood ratio test with 5000 iterations; p<0.001). Each 

cell in the lower panels of (a) and (b) represent the p-value (darker colors are more 

significant) and the sign of the regression coefficient (blue, negative; red, positive) for 

each brain state component. The top three rows of cells represent the mean brain state 

components (V: VME; M: maintenance; R: retrieval). The bottom three rows represent the 

significance of interactions between the spatial brain state component and the target 

hemifield. 

 

The relationship between trial-wise accuracy and brain state expression was 

similar, but less prominent, and significantly present during only the 3rd TR following the 

MGS. At this time, when the mean and spatial components of the VME brain state were 

highly expressed, the accuracy of the saccade was worse (increased saccadic error). At 

the same time, greater expression of the target-hemifield-appropriate spatial 

maintenance brain state was associated with more accurate memory-guided saccades. 
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  We noted that greater expression of VME brain states was associated with 

faster reaction times and reduced accuracy. This relationship, particular to VME, 

prompted us to examine the behavioral data for signs of a speed-accuracy trade-off. We 

found a significant quadratic relationship between z-scored reaction time and saccadic 

error at the trial level indicating that, within each session, excessively fast and slow 

responses were associated greater saccade error (p=0.0008). 

3.3.3 Brain state variability decreases with age 

After finding that trial-to-trial variability in the expression of task-related brain 

states was associated with behavioral variability, we explored the possibility that the 

developmental reduction in behavioral variability that we observed in the trajectories of 

task performance was the result of stabilizing global gain signals. To test this 

hypothesis, we first needed to establish whether a relationship between brain state 

brain state variability and age existed, and determine whether the magnitude of brain 

state variability decreased during development. 

 For each session, we computed the proportion of whole-brain BOLD 

signal variability associated with trial-to-trial fluctuations in the combined expression of 

the task-related brain states (see Appendix). We considered only BOLD signal 

variability occurring within the time interval around each memory-guided saccade found 

to be significantly related to behavioral variability (0–5 TRs), submitting this data to a 

linear mixed-effects analysis by applying the model: 
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𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩~𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 + 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 + 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫

+ 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 + 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 + (𝟏𝟏

+ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹|𝑰𝑰𝑰𝑰) 

Equation 6. Total brain state variability age model 

Where: 

I. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the proportion of BOLD signal variability, occurring in 
the 0-5 TR window around each memory guided saccade, that corresponds to 
brain state variability 

II. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the age of a subject at their first session. This term is used to 
model the group-level age trajectory. 

III. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the time between a subjects’ first session and each subsequent 
session, a term that models the slope of individual trajectories. 

IV. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is an estimate of average Euclidean displacement in the scanner 

V. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is a secondary measure of the magnitude of residual motion-
related BOLD signal artifacts (see Appendix for details) 

VI. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the percentage of trials during which eye-tracker 
performance allowed us to determine the latency and accuracy of both visually- 
and memory-guided saccades. 

VII. (1|𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|𝐼𝐼𝐼𝐼) are mixed-effects terms that account for the longitudinal 
nature of the data by modeling a random slope and offset for each individual 
subject 

We found that brain state variability significantly decreased with age at the group 

level (t(330)=-3.35; p=9.0e-4). However, the term for individual-level change did not 

reach significance (t(330)=-1.6; p=0.11). Neither in-scanner displacement nor degrees 

of residual motion artifacts were significant predictors of brain state variability in this 

model ((t(330)=-0.15;p=0.88) and (t(330)=0.53; p=0.59) respectively). We also observed 
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that brain state variability was higher in subjects who had performed fewer correct trials 

(t(330)=-3.14; p=0.002). 

3.3.4 Developmental reductions in brain state variability are driven by 

stabilization of cognitive but not visuomotor processes  

After observing that brain state variability overall decreased during development, we 

considered possibility that variability associated with the different brain state 

components might exhibit different developmental trajectories. For each session, we 

separately computed the proportion of BOLD signal variability associated with VME, 

maintenance, and retrieval brain state fluctuations by summing the contributions of their 

mean and spatial components. We then applied the same linear mixed-effects model 

outlined above to analyze the developmental trajectories of each component (Figure 

11).  
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Figure 11. Developmental changes in brain state variability 

Depicts the developmental trajectories for VME (yellow), maintenance (red) and retrieval 

(blue) components of brain state variability. Single asterisks indicate significant 

individual slopes of brain state component variability; vertical lines connecting 

endpoints represent pairwise comparisons of slopes. Dashed and solid lines indicate a 

significant, and non-significant differences respectively. 

We found that whole-brain BOLD signal variability associated with trial-to-trial 

fluctuations in the VME brain state components did not significantly change across age 

at the group (t(330)=-1.46; p=0.15) or individual level (t(330)=0.72; p=0.47). 

Furthermore, we did not observe any relationship between VME brain state variability 
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and either of our measures of in-scanner movement (t(330)=0.74; p=0.46) or residual 

motion artifacts (t(330)=0.47; p=0.64). However, increased total VME brain state 

variability was associated with fewer correctly performed and valid trials (t(330)=-3.66; 

p=0.0003).  

Total maintenance-related brain state variability decreased with age, an effect 

that was significant at both the group (t(330)=-3.8; p=0.0002) and individual level 

(t(330)=-5.24; p=2.9e-7)). Maintenance brain state variability exhibited no relationship 

with estimated in-scanner displacement (t(330)=-1.3; p=0.19)), but showed a trend 

toward a positive relationship with residual linear motion artifact that did not quite reach 

significance (t(330)=1.86; p=0.063)). The maintenance component of brain state 

variability was unrelated to differences in the number of correct and valid trials (t(330)=-

0.58; p=0.56)). 

Retrieval-related brain state variability, like the variability associated with the 

maintenance brain state components, also decreased with age, a change that was 

observable at both the group (t(330)=-5.55; p=5.9e-8)) and individual level (t(330)=-

2.84; p=0.005)). None of the measures of in-scanner displacement, linear motion 

artifacts, or the number of correct and valid trials showed any significant relationship 

with retrieval-related brain state variability (all p > 0.4). 

 Next, we wanted to determine whether the developmental trajectories of 

brain state variability differed for VME, maintenance, and retrieval states. To do this, we 

performed pairwise comparisons of the slopes of the age-trajectories for each 

component using a mixed-effects model that was nearly identical to that used in the 
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preceding analyses, but which contained additional term to capture the interaction 

between group level age and brain state component  

We found that the developmental trajectory of maintenance-related brain state 

variability was significantly shallower than both VME (t(664)=2.64; p=0.008) and 

retrieval-related (t(664)=-4.12; p=4.26e-5)) brain state variability. In contrast, our 

comparison of the trajectories of VME and retrieval-related variability did not reveal any 

significant difference between the slopes of their trajectories (t(664)= 0.62; p=0.54)). 

3.3.5 Individual developmental trajectories of reaction time variability are 

predicted by changes in brain state variability 

Our trial-to-trial analyses demonstrated the relationship between fluctuations in the 

amplitude of brain state expression and performance variability. Next, we sought to 

determine whether individual age-related changes in brain state variability could directly 

account for individual trajectories of behavioral variability. To address this, we leveraged 

the longitudinal design of our dataset to examine how individual differences in the 

developmental trajectories of reaction time variability and saccade precision were 

related to individual developmental trajectories of brain state variability. 

We selected a subset of 29 subjects for whom we had at least four complete 

sessions of data. This amounted to 116 sessions of data acquired from a set of subject 

whose ages ranged from 12-30 years (mean=21 years; std=3.75). We computed total 

brain state variability per session as the proportion of BOLD signal variability uniquely 

attributable to brain state variability during the 0–5 TR range around each memory-
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guided saccade that was determined in the previous analyses. We estimated regression 

weights for an inverse age factor that modeled the individual developmental trajectories 

of reaction time variability and precision, controlling for task condition and mean 

reaction time. We compared these individual trajectories of behavioral variability to 

trajectories of brain state variability and found that subjects who exhibited the greatest 

reduction in total brain state variability across sessions were also those who showed the 

greatest decreases in reaction time variability (r=-0.48; p=0.0084) (Figure 12a). The 

within-subject relationship between brain state variability and saccade precision 

however was not significant (r=0.28; p=0.13) (Figure 12b). 

 

Figure 12. Individual changes in behavioral and brain state variability 

The relationship between changes in brain state variability and changes in a) reaction 

time variability and b) memory-guided saccade precision for a group subjects (n=29) for 

whom we had four of more complete sessions of data. The x-axes depict the slope of 

age-related change in brain state variability, computed separately for each subject. They 

y-axes depict the regression weight for the Age-1 term used to fit each subjects’ 
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behavioral data. Thus, a negative relationship indicates that greater reduction in brain 

state variability is associated with a greater reduction in behavioral variability. 

 

Due to the modest relationship between brain state variability and saccadic error 

at the single trial level, we considered the possibility that we might be underpowered to 

detect the within-subject longitudinal relationship between total brain state variability 

and saccadic precision in our smaller sample size. We expanded our analyses to 

investigate whether differences in brain state variability across sessions would predict 

deviations from the group-level average developmental trajectory of saccade precision. 

We therefore added brain state variability as a factor in a regression model using 

subject identity as random effect and including group and individual level age terms; 

task condition terms; and in-scanner motion estimates. We found that subjects who 

exhibited greater overall brain state variability tended to produce memory-guided 

saccades with reduced precision (t(1332)=3.35; p=0.0008).  

3.4 DISCUSSION 

Reduced behavioral variability is a key component of improvements that occur 

throughout adolescence on a wide variety of tasks. We demonstrated an example of 

this stabilization using a working memory task in which subject’s performance of a 

memory guided saccade both improved on average and became more consistent with 

age. To understand the neural basis of developmentally stabilized behavior, we 
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investigated the relationship between variation in reaction time and accuracy of eye-

movements and fluctuations of global neural gain signals that affect the amplitude of 

expression of whole-brain states of activity underlying distinct task-related processes. 

We found that while the average expression of these states was similar across subjects 

of all ages, variability in the expression of task-related brain states was associated with 

trial-to-trial variability in the reaction time and accuracy of memory-guided saccades. 

Importantly, this brain state variability represented fluctuations in the amplitude of brain 

state expression across trials, not simply variability in the timing of their expression or 

global fluctuations in mean activity (see Appendix C).  

 Additionally, variability in the expression of the mean and spatial 

components of the VME state, as well as the spatial component of the maintenance 

brain state, mirrored the higher-order phenomenon of the speed-accuracy trade-off. 

This finding is consistent with recent theoretical models [65] and empirical data from 

non-human primates [66] suggesting gain modulation plays a role in optimization 

processes that result in the speed/accuracy trade-off. We observed that trials with 

greater expression of working memory brain states were trials in which subjects tended 

to be faster and more accurate. We also observed that greater expression of the VME 

states occurred during trials that were both fast and less accurate. These findings can 

be related to our computational model of memory-guided saccade performance 

(detailed in the first chapter) by positing that increased VME gain reduces response 

thresholds, possibly via cortico-collicular inputs from pre-frontal and parietal regions 

[67], and that variability in working memory gain is accurately reflected by changes in 

maintenance state expression. On trials with low response thresholds (greater VME 
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expression), subjects tend to be faster, but more error prone. This is because less input 

to the oculomotor system is required to evoke an eye-movement —meaning that they 

can be fast— but they tend to be evoked more often by noise —meaning they are less 

accurate. Trials with high working memory gain (greater maintenance state expression) 

tend to be faster and less error prone because increased gain both speeds responses 

and increases the signal to noise ratio of the input to the oculomotor system, improving 

accuracy. 

We hypothesized that developmental decreases in the variability of global gain 

signaling would result in stabilized expression of task-related brain states. Accordingly, 

we determined whether the expression of brain states associated with the working 

memory processes, visuomotor/encoding (VME), maintenance, and retrieval exhibited 

similar or different trajectories of variable expression across development. We found 

that the variability of the VME states did not decrease with age although they were 

significant predictors of single trial performance. Our task design did not allow us to 

dissociate the activity involved strictly in working memory encoding from that involved 

strictly in the visuomotor response, however, the re-expression of the mean VME state 

during the memory-guided saccade suggests that the state is largely dominated by 

visuomotor activity. In contrast, working memory maintenance and retrieval processes, 

whose fluctuations were also related to trial-wise performance, showed significant 

decreases in the variability of their expression. Perhaps most significantly, we found a 

strong relationship between individual longitudinal changes in total brain state variability 

and changes in reaction time variability as well as a relationship between average total 

brain state variability and average memory-guided saccade precision. Combined, our 
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findings provide compelling evidence that adolescent developmental changes in 

behavioral variability are driven by the stabilization of gain signals specifically affecting 

cognitive processes while gain signals affecting sensorimotor processes have largely 

stabilized prior to adolescence. 

A complex interplay between top-down control [68], [69], and a mixture of 

contributions from several interconnected neuro-modulatory systems, each exerting its 

particular influence on ongoing sensorimotor, and cognitive processes [63], [70]-[72] 

may underlie these developmental changes in brain state variability. Recent fMRI 

studies have shown that fluctuations in the activity in midbrain and brain stem nuclei 

affect resting state connectivity in what appears to be a functionally organized way [73]. 

Similarly, cholinergic modulation has been shown to amplify the spatially selective 

effects of perceptual processing and attention in a manner analogous to fluctuations in 

our spatial brain state components [45], [63], [72]. Finally, myelination and synaptic 

pruning, which continue to progress in critical brain systems [13], [74], [75], occurring at 

different rates for different brain regions, may also affect neural signal to noise ratios 

and play a role in the stability of gain signals that contribute to behavioral variability. 

Differing rates of development in any of these systems could produce distinct 

developmental trajectories for the components of brain state variability. 

The presence of brain state variability also bears upon the interpretation of 

brain/behavior correlations in general. In studies of single unit and population activity in 

non-human primates, correlations between the trial-to-trial fluctuations of neuronal 

activity and behavioral responses, often termed choice-probability (CP) or detect-

probability (DP), have been interpreted as signifying a neuron's causal role in the 
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behavior [52]. It has been proposed, however, that brain-behavior relationships like CP 

and DP, might reflect a neuron’s covariation with a neuronal gain signals, such as 

attention, rather than direct causal involvement [53], [76]. Brain state variability is 

consistent with this hypothesis and expands upon it in two ways 1) That brain state 

variability is the correlated fluctuation of many task-related (but not necessarily 

behaviorally relevant) brain regions suggests that brain behavior correlations like CP 

and DP should be wide-spread throughout task-related brain areas; and 2) Our finding 

of distinct developmental trajectories of brain state variability affecting different task-

related processes suggests that fluctuations in multiple functionally specific global gain 

signals contribute to observed brain behavior correlations. 

In light of the forgoing results and discussion, we propose that behavioral 

variability during working memory tasks is the result of variability affecting multiple 

global gain modulating signals, and the reduction in behavioral variability observed with 

development into adulthood is the result of the stabilization of gain modulating signals 

that affect primarily cognitive and not sensorimotor processes.  
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4.0  DEVELOPMENTAL DIFFERENCES IN BOLD SIGNAL DIMENSIONALITY 

4.1 BACKGROUND 

Neural complexity, an important aspect of neural variability, changes across the 

lifespan. Measures of variability and complexity are closely related: While variability 

quantifies the magnitude of a neural signal’s instability around its mean, complexity 

metrics quantify the number of distinct ways in which that neural variability is expressed. 

EEG studies have shown that neural signal complexity during task performance 

increases during early childhood development [77] and from childhood through young 

adulthood [14], [15]. Studies of neural variability in later life have shown that BOLD 

signal variability begins to decrease [16], [78] and become less complex with age [79], 

[80], tracking decline in cognitive function. Thus evidence suggests that the complexity 

of neural activity follows an inverted U-shaped trajectory from childhood to late 

adulthood.  

While it might be supposed that behavioral variability would increase as neural 

activity becomes more variable or complex, most studies that have examined the 

relationships directly have found the opposite to be true [14], [15], [78], [81]. The 

prevailing theory explaining these observations is that patterns of neural variability, even 

at rest, reflect the exploration of available neural states [82]. The mature brain, with its 
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regional balance of differentiation and specialization [83], allows for a greater degree of 

neural variability [84] by supporting a greater number of metastable states of activity 

and facilitating transitions between them [14]. Put simply: as you mature, it is supposed 

more patterns of neural activity are accessible and it’s easier to get from one pattern to 

another.  

In our experiments we have observed that behavioral performance and neuronal 

dynamics continue to change across development: that reaction times and accuracies 

both improve and stabilize, seemingly in tandem with an age-related decrease in BOLD 

signal variability associated with brain-wide gain signals. On its face, it would appear 

that our results stand in contrast to the aforementioned experiments showing 

developmental decreases in behavioral variability being associated with increases in 

neural variability and complexity. To reconcile this seeming discrepancy, we set out to 

determine 1) whether the developmental trajectories of brain state variability are distinct 

from the trajectory of neural complexity and 2) whether after accounting for age-related 

differences in brain state variability age-related changes in neural complexity still predict 

developmental changes in behavioral variability. 

4.2 METHODS 

We used the longitudinal behavioral and fMRI data set detailed in the first two chapters 

of this dissertation. For our analyses of behavioral variability, we examined reaction time 

variability and the precision of memory-guided saccades. Reaction time variability was 
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defined as the standard deviation of reaction time for each type of trial within a session. 

Precision was defined as the standard deviation of the distribution of memory-guide 

saccade endpoints around their mean for each target during each task condition. 

Because we were interested in estimating the complexity of the neural activity 

that was not consistently associated with task events or global gain modulation, we 

analyzed volumes of fMRI data that had both the average task responses as well as 

brain state fluctuations removed from them (see Appendix). Briefly, we removed the 

average task responses along with motion and other nuisance covariates from the fMRI 

time series, using finite impulse response regression that does not assume a shape for 

the hemodynamic response function. Subsequently, we removed residual variability due 

to trial-to-trial fluctuations in task-related brain state expression by regressing the set of 

canonical brain state patterns from each volume of task data. This process produced a 

set of doubly residualized whole-brain time series from which variability related to 

average task responses, brain state fluctuations, and other nuisance artifacts have been 

removed. 

As a measure of neural complexity, we estimated the intrinsic dimensionality of 

the doubly residualized BOLD time series in two ways: 1) by performing dimensionality 

reduction using principle components analysis (PCA) [85] and selecting the number of 

components that explained 50% of the remaining BOLD signal variability for each 

session; and 2) by estimating dimensionality using a maximum-likelihood estimation 

(MLE) based procedure [86].  

We used linear mixed-effects models with a unique subject identifier as a random 

effect parameter to account for the longitudinal nature of the data set and differing 
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numbers of session across subjects. In all of our analyses, unless otherwise noted, we 

controlled for differences in motion between sessions by including measures of average 

frame-wise displacement, a measure of residual motion artifacts (see Appendix), the 

percentage of BOLD signal variability associated with brain state variability, and the 

percentage of identifiably correct trials as nuisance regressors. 

4.3 RESULTS 

4.3.1 The dimensionality of BOLD signal residuals increases with age 

We computed two metrics of BOLD signal complexity, principle component (PC) 

dimensionality, and maximum-likelihood estimated (MLE) dimensionality, and found that 

both methods produced qualitatively similar estimates (Figure 13). To quantify their 

similarity, we regressed the estimates of PC dimensionality on MLE dimensionality and 

found their relationship to be highly significant (t(326)=19.833; p=5.59e-58). 

 

Figure 13. Comparing methods for estimating BOLD signal dimensionality 
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a) Cumulative percentage of whole-brain BOLD signal variance explained across 

principle components. Each colored curve represents one session. One measure of 

neural complexity is based on the number of principle components required to explain 

50% of BOLD signal variability (black horizontal line). b) Histogram depicting the 

distribution of dimensionality estimated derived using a maximum-likelihood procedure. 

c) Scatter plot depicting the high degree of agreement between the two estimates of 

dimensionality. 

 

Next we explored the relationships between residual BOLD signal complexity and 

age while controlling for potential confounding factors. Our earlier work has shown that 

younger subjects exhibited greater brain state variability and more residual motion-

related artifacts.  After removing these sources of BOLD signal variability, the residual 

data for younger subjects may have artificially exhibited lower dimensionality. In 

addition, session-to-session differences in the percentage of correctly performed trials 

could influence the estimates of the hemodynamic response function and thereby affect 

the dimensionality of the residuals.  

We found that greater average frame-wise displacement and residual motion 

artifact estimates were significantly associated with reduced BOLD signal complexity 

estimated using the PC method (displacement: t(330)=-8.9; p=4.12e-17; motion resid. 

est.: t(330)=-16.25; p=4.6e-44). However, the MLE-based metric only exhibited a 

significant negative relationship with the residual motion artifact measure (t(330)=-9.97; 

p=1.24e-20) and not per-frame displacement (t(330)=-1.18; p=0.24). Similarly, greater 

brain state variability during a session was also associated with reduced PC 
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dimensionality (t(330))=-5.86; p=1.01e-8) and MLE dimensionality (t(330))= 

3.35;p=0.001). Neither, PC nor MLE dimensionality exhibited a significant relationship 

with the percentage of correctly performed trials (p=0.47; and p=0.46 respectively).  

 

Figure 14. BOLD signal complexity increases with age 

a) Estimate of BOLD signal complexity using the number of principle components 

required to account for 50% of the whole-brain BOLD signal variance. b) BOLD signal 

complexity as estimated using a separate maximum-likelihood based procedure. X-axes 

depict the age of the subject and y-axes indicate the respective dimensionality estimates. 

The data was adaptively binned so that each point contains equal number of data 

samples. Error bars represent one standard error of the mean. 

 

Nevertheless, as Figure 14a-b shows, after controlling for potential confounding 

factors, both estimates of BOLD signal complexity increase with age (PCA: t(330)=5.93, 

p=7.66e-9; MLE: t(330)=3.20; p=0.0015), consistent with prior literature. In addition, age 

remained a significant predictor of PC and MLE dimensionality after the addition of 

quadratic terms for brain state variability and in-scanner motion as well (data not 

shown).  
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4.3.2 Dissociable relationships between behavioral variability, brain state 

variability and BOLD signal complexity 

Next, we separately examined the relationship between behavioral variability and both 

measures of BOLD signal complexity while controlling for brain state variability and 

motion-related factors. For this analysis we omitted age-related covariates to assess 

these relationships while retaining variance associated with development. We found that 

reaction time variability decreased as PC dimensionality increased (t(1337)=-2.8137; 

p=0.005), but did not observe a significant relationship with MLE dimensionality 

(t(1337)=-1.26; p=0.21). Improved saccade precision was also associated with greater 

BOLD signal complexity assessed using PC estimation (t(1337)=-3.12; p=0.07) and 

MLE (t(1337)=-2.07; p=0.04)). Importantly, for each model, increased brain state 

variability remained a significant predictor of greater reaction time variability and 

reduced saccade precision.  

It is possible that the relationship between increasing neural complexity and 

stabilizing behavioral performance is correlative, that neural activity does become more 

complex with age, but that this occurs in parallel with the development of other 

processes responsible for stabilizing behavior. Stronger evidence for a potential causal 

link would be the presence of a significant relationship between behavioral variability 

and BOLD signal complexity after known age-related changes are accounted for. We 

therefore re-examined these relationships, this time including 𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1 and 𝐴𝐴𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1  

(see Chapter 1 methods) terms as well as their interactions with task condition. 
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Because of the inconsistent relationship between behavior and MLE dimensionality, we 

limited this analysis to the PC estimates of BOLD signal complexity.  

We found that after accounting for age in our regression models, the relationship 

between BOLD signal complexity and reaction time variability was no longer significant 

(t(1331)=-1.07; p=0.29) while a significant positive association with brain state variability 

remained (t(1331)=1.96; p=0.05). In contrast, saccade precision maintained the 

direction and significance of its associations with BOLD signal complexity (t(1331)=-

2.45; p=0.014) and brain state variability (t(1331)=2.51; p=0.012). This finding indicates 

that differences between subjects and sessions in the variability of memory-guided 

saccade end points  —differences that are not simply the result of average age-related 

improvements in precision across adolescent development— are independently and 

differentially related to differences in in the complexity of neural activity during the task 

as well as well as brain state variability. 

4.4 DISCUSSION 

Neural variability has been proposed as an index of age and cognitive function 

[87]. Support for this idea has come from experiments examining a wide range of ages 

consistently finding that increases neural variability and complexity, at rest and during 

task, are associated with more stable behavioral performance [14], [15], [79], [80]. The 

mechanisms underlying this association are unknown, but it is hypothesized that 

increases in the complexity of resting state activity may be due to the exploration of a 
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greater range of possible activity states that become available during peak cognitive 

development [82]. In a similar vein, it has been proposed that the ability to quickly 

transitions between states of neural activity develops in concert with the ability support 

more states of activity during task performance, resulting in trial-to-trial inconsistencies 

in the patterns of neural activity and increased estimates of neural complexity [14]. 

Here, we considered a possible alternative to this last view: that the increase in 

signal complexity that attends stable behavior performance reflects the ability of the 

maturing brain to successfully support task states alongside (or in superposition with) an 

increasing number of task-irrelevant states. According to this hypothesis, the increase in 

signal complexity during task performance does not reflect the presence of additional 

behaviorally equivalent metastable task states, but the concurrent exploration of task-

irrelevant states that minimally affect task-related activity. The absence of age-related 

differences in the mean amplitude of expression of task-related brain states (see 

Chapter 2) suggests that the additional states of neural activity observed in older 

subjects during task performance do not interfere with the expression of task-related 

activity, consistent with this hypothesis.  

The observed correlation between developmental changes in behavioral 

variability and neural complexity is also consistent with this hypothesis. However, rather 

than indicating a causal role in stabilizing behavior, the correlation would simply reflect 

that the development of the ability to support non-task states occurs in parallel with the 

development of other processes —such as stabilizing gain signals— that actually 

stabilize performance. 
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In this study, we tested this hypothesis by measuring developmental changes in 

relative BOLD signal complexity after removing mean task responses and whole-brain 

variability associated with fluctuations in global gain signals. We used two different 

methods, to estimate BOLD signal dimensionality, a proxy for signal complexity, one 

based on principle component decompositions, and the other based on maximum-

likelihood estimation. Both measures produced quantitatively similar estimates of BOLD 

signal complexity, demonstrating that a developmental change in BOLD signal 

complexity is unlikely to be an artifact of dimensionality estimating procedures.   

Consistent with prior literature, we observed a significant age-related reduction in 

both estimates BOLD signal complexity. Importantly, we observed that both reaction 

time variability and memory-guided saccade precision exhibited distinct opposing 

relationships with brain state variability, a putative measure of whole-brain gain stability 

and neural complexity when both terms are included in the regression model. This 

finding suggests that brain state variability and neural complexity represent distinct 

factors associated with stabilizing behavioral performance.  

Stronger evidence (but still by no means definitive) for neural complexity playing 

a causal in stabilizing behavioral would be if it was correlated with the individual 

differences in behavioral variability after accounting for the average effects of age-

related behavioral stabilization. Our results on this front were mixed: we found that after 

accounting for age and session-to-session differences in brain state variability neural 

complexity was not significantly associated with reaction time variability. However, 

saccade precision was improved in subjects with greater BOLD signal complexity. 
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In sum, our results suggest that developmental improvements in reaction time 

variability during the memory-guided saccade task are primarily driven by the 

stabilization of gain signals. However, developmental improvements in saccade 

precision are only partly accounted for by stabilizing gain signals. The remaining 

relationship between increasing neural complexity and improving saccade precision 

may reflect that the fidelity of working memory representations are improved by having 

access to a greater set of states of neural activity —akin to the proposal by McIntosh 

and colleagues [14]. Alternatively, working memory fidelity may be improved by other 

processes, such as improving signal to noise ratio through continued myelination and 

synaptic pruning [74], [88], [89], which are distinct from gain stability and neural 

complexity, but develop in tandem with them. 
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5.0  SUMMARY AND DISCUSSION 

Compared to other cognitive processes, working memory exhibits a prolonged time 

course of maturation [5], [6], [8]. The experiments and analyses outlined in this 

dissertation were designed to explore how developmental changes that occur during 

adolescence affect the neural mechanisms supporting working memory.  

In contrast with the majority of developmental studies, we focused mainly on 

changes in behavioral variability, the trial-to-trial fluctuations in reaction time and 

accuracy, as an index of developmental improvement in working memory performance. 

Our motivation, in part, stemmed from evidence suggesting that behavioral variability is 

an important index of cognitive functioning in non-developmental contexts; Instabilities 

in behavior are associated with cognitive decline in normative aging as well as 

impairments due to psychiatric disorders, like ADHD, schizophrenia, depression and 

borderline personality disorder [10], [30]. Bolstered by recent evidence that behavior 

also stabilizes during adolescence [13], [14], we reasoned that the sensitivity of 

behavioral variability as a measure of cognitive function would make also make it a 

sensitive measure of adolescent working memory development.  

We found that the variability of reaction times and the precision of memory-

guided saccades improved during adolescence and exhibited similar developmental 
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trajectories to their mean counterparts. This tendency for behavioral performance to 

stabilize as well as improve on average more or less in parallel suggests that 

developmental changes affecting a common set of neural mechanisms are responsible 

for both facets of developmental improvement.  

The idea that improvements in mean behavior and behavioral variability might be 

supported by a common mechanism received support from our computational analysis 

of memory-guided saccade performance. We initially began our simulation studies in an 

effort to account for an unexpected, and seemingly age-invariant, U-shaped relationship 

between reaction time and the magnitude of saccadic error. We expanded on the drift 

diffusion modeling framework to simulate hypothesized working memory retrieval 

processes involved in the memory-guided saccade task. Our results indicated that the 

speed-accuracy relationship that we observed could be accounted for by a balance of 

independent variability affecting the gain of working memory representations and the 

response thresholds of oculomotor related neurons.  

More interesting, however, was our finding that coordinated developmental 

reductions in the variability of working memory gain and response thresholds could 

account for improvements in behavioral variability and mean behavior, while minimizing 

(but not completely eliminating) age-related changes in the speed-accuracy tradeoff. 

That is, by stabilizing gain and response thresholds, and leaving their mean values 

unchanged, the reaction times of simulated saccades became faster and less variable 

while at the same time becoming more accurate. Developmental stabilization of gain 

and response thresholds may therefore be a mechanism by which behavior improves 

and stabilizes in parallel during development.  
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Importantly, the correlation between behavioral performance and behavioral 

variability was not total; That a prediction of subject age from behavioral performance 

was significantly improved by including reaction time variability as an additional factor, 

indicates that developmental changes that promote trial-to-trial stability in reaction time 

are somewhat distinct from those that support speeding reaction time on average. This 

finding suggests that developmental changes in behavioral performance are not likely to 

be completely accounted for by mechanisms, like that described by our diffusion model, 

that tightly yoke mean behavior and behavioral variability.  

Understanding the mechanisms underlying developmental changes in behavioral 

variability has only somewhat recently become an active area of research. Analyses of 

structural and electrophysiological data have revealed that changes in behavioral 

variability are correlated with the development of white-matter tracts and the complexity 

of neural activity [13], [14]. While a full mechanistic understanding of how either of these 

phenomena relate to behavioral variability is lacking, one proposed hypothesis is that 

the development of structural connectivity allows for a greater repertoire of possible 

states of neural activity. The ability to support multiple states allows neural activity to 

become more complex partly by enabling additional metastable states of activity. 

Proponents of this view, operating from an analogy with the phenomenon of stochastic 

resonance [90], have also proposed that a certain amount of noise or variability might 

play a causal role in stabilizing behavior by facilitating neural computations [14], [91]. 

Behavioral variability in a non-developmental context has been addressed more 

fully by electrophysiologists working with non-human primates. Two important 

contributions from theoretical and empirical experiments have been the recognition that 
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in order for correlations between neural activity and behavior to be observable, 

interneuronal correlations must be present [52], [53], and that fluctuations in neuronal 

gain signals, possibly due to top-down attention, contribute significantly to the presence 

of these interneuronal correlations [61], [92].  

In Chapters two and three of this dissertation, we explored the contributions of 

gain modulation and neural complexity to developmental changes in behavioral 

variability. We found that putative trial-to-trial fluctuations in gain modulation, which 

manifest as changes in the amplitude of expression of whole-brain task-related states of 

activity, were associated with reaction time and accuracy. Most significantly the 

decreases that we observed in the magnitude of whole-brain gain modulation (or brain 

state variability) predicted individual changes in reaction time variability. These results 

support the hypothesis that the stabilization of behavior during adolescence is related to 

the stabilization of global gain signals. Moreover, our computational analyses of 

memory-guided saccade performance indicate that, at least in principle, a 

developmental reduction in gain variability can account for developmental changes in 

mean behavioral performance as well.  

We also found that when developmental trajectories of brain state variability were 

decomposed into visuomotor, maintenance, and retrieval related components, distinct 

trajectories emerged. To make sense of this result, we proposed that multiple 

functionally specific mechanisms supporting global gain modulation might exist and 

mature at different rates. As a potential avenue of future research this is particularly 

appealing. 
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Evidence for a role for neural complexity in behavioral variability remains mixed. 

We were able to replicate other researchers observations of increasing neural 

complexity with age, as well as the negative relationship with behavior variability. 

However, after controlling differences in age and brain state variability, neural 

complexity only remained significantly associated with saccade precision. 

As described above, there are two hypotheses regarding neural complexity: 1) 

that it reflects the presence of addition states of activity that emerge with age; in which 

case its relationship with behavioral variability is largely an epiphenomenon; or 2) that 

the neural complexity, as measured by EEG and fMRI, reflects the presence of a kind of 

noise which facilitates neural processing. The mediating effect of age and brain state 

variability on the relationship between reaction time variability and fMRI dimensionality 

supports the former view. The remaining significant relationship between BOLD signal 

complexity and saccade precision, however, means that we cannot completely discount 

the hypothesis that increased neural complexity is causally involved in improving the 

precision of memory-guided saccades.  

Taken together, our experiments add support for a model of continued 

development of working memory processes during adolescence. Results from our 

empirical and computational analyses expand on the current body of developmental 

research by providing evidence that a significant mechanism underlying developmental 

improvements in mean behavioral performance and behavioral variability is the 

stabilization of global gain signals. 
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APPENDIX A 

EYE-MOVEMENTS 

Eye-movements were recorded in the scanner with an infrared camera system 

equipped with long-range optics and sampling at 60Hz (Model R-LRO6, Applied 

Science Laboratories, Bedford MA). Subject’s compliance with instructions was 

assessed and eye-movements were monitored via remote video during task 

performance. We used a nine-point calibration procedure to estimate the transformation 

from the eye-tracker's native encoding space to on-screen pixel location. Saccadic 

events were detected using an in-house suite of automation routines. Individual 

saccade candidate events were detected from local maxima in the eye-movement 

velocity trace. Saccade start and end times were determined by searching backward 

and forward in time in the velocity trace to find the sample where velocity dropped below 

1/10th of the peak velocity. 

. 
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APPENDIX B 

DRIFT DIFFUSION MODEL OF MEMORY-GUIDED SACCADE PERFORMANCE 

We employed a simple multi-dimensional extension of the drift diffusion modeling 

framework to simulate the reaction time and accuracy of memory-guided saccades. In 

this model, the activity of a group of motor-response related neurons, during trial 𝒎𝒎 is 

represented by a vector 𝑺𝑺(𝒎𝒎,𝒙𝒙, 𝒕𝒕), which begins at zero and evolves over time, 𝒕𝒕, until 

one of the vector entries, 𝒙𝒙, exceeds a threshold value 𝑽𝑽(𝒎𝒎). Each entry in 𝑺𝑺 indexed 

by 𝒙𝒙 represents a neuron whose activity, once it exceeds 𝑽𝑽(𝒎𝒎), will result in a saccade 

being performed to location 𝒙𝒙. 

For each trial 𝑺𝑺 evolves over time, 𝒕𝒕, in the following way: 

𝐒𝐒(𝐦𝐦, 𝐱𝐱, 𝐭𝐭)  =  𝐒𝐒(𝐦𝐦, 𝐱𝐱, 𝐭𝐭 − 𝟏𝟏)  +  𝐌𝐌(𝐦𝐦, 𝐱𝐱, 𝐭𝐭)  +  𝐀𝐀(𝐦𝐦) ∗ 𝛍𝛍(𝐱𝐱) +  𝛆𝛆(𝛔𝛔,𝐦𝐦, 𝐱𝐱, 𝐭𝐭) , subject to 

𝑽𝑽(𝒎𝒎) 

Equation 7. High dimensional drift diffusion model 

Where: 

I. 𝝁𝝁(𝒙𝒙)  =  𝒆𝒆𝒆𝒆𝒆𝒆(−(𝒙𝒙 − 𝒙𝒙𝟎𝟎)𝟐𝟐 / 𝝉𝝉) and 𝒙𝒙𝟎𝟎 represents the location of the remembered 
target and 𝝉𝝉 the width of the point spread function linking the working memory 
representation to the motor representation. 
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II. 𝑨𝑨(𝒎𝒎) represents the trial-to-trial modulation in working memory gain. When this 
value is high, 𝑆𝑆 accumulates the working memory representation more quickly. 

III. 𝜺𝜺(𝝈𝝈,𝒎𝒎,𝒙𝒙, 𝒕𝒕) represents spatially and temporally independent Gaussian noise, 
with a standard deviation given by 𝝈𝝈, which accumulates over time into 𝑺𝑺. 

IV. 𝑨𝑨(𝒎𝒎) and 𝑽𝑽(𝒎𝒎) were drawn from uniform distributions centered on a mean 
value. The ranges of these distributions were selected so that gain and threshold 
were never negative. 

For simulations exploring changes in gain variability and response threshold 

variability, e 𝝈𝝈 was held fixed at 4.5;  0 ≤  𝒙𝒙 ≤  5; 𝝉𝝉 =  0.7; 𝑺𝑺(𝒎𝒎) was as 50x1 vector. 
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APPENDIX C 

FMRI PROCESSING 

C.1 ANATOMICAL PREPROCESSING 

T1-weighted anatomical images were reconstructed from raw DICOM files and 

converted to NIFTI format. We estimated the bias field corrections using smoothed and 

highness filtered anatomical data analyzed with FSLs fast algorithm. After bias field 

correction we constructed a skull stripped anatomical data set for the subject, which we 

used to estimate the 12 degree-of-freedom affine transformations that would align the 

subjects data with the MNI152 anatomical template. Lastly we computed the non-linear 

transformation that would bring the subject’s affine-aligned anatomical data set into 

registration with the MNI152 template. We saved final combined linear/-non-linear 

transformation for later use in registering the subjects’ functional data to the standard 

space. 
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C.2 FUNCTIONAL PREPROCESSING 

fMRI data were preprocessed using a combination of AFNI and FSL software. In our 

pre-processing pipeline, raw data was converted from DICOM format to NIFTI volumes 

and slice-timing correction was applied using AFNI tools. We performed motion 

estimation and correction in two phases. First we pre-aligned each frame of a subject’s 

functional data to a volume created by taking the temporal mean of the 4-D functional 

time series. Then, a second, “true”, average functional volume was computed from the 

pre-aligned functional data, producing a reference functional volume that was less 

affected by motion artifacts.  We then aligned each frame of the original function time 

series to this second reference volume using sinc-function interpolation and estimating 

the time course of translational and rotational motion throughout the run. We used these 

estimated time series throughout our later analyses of the functional data. 

Next, using FSL’s brain extraction tool, we stripped the skull and superfluous 

tissues from the subject’s motion corrected mean functional EPI images, afterward 

aligning the resulting mean EPI volumes to their anatomical MPRAGE volume using a 

six degree-of-freedom rigid-body transformation estimated using spline interpolation. To 

align each frame of the motion corrected EPI sequence to the subjects structural image, 

we applied the translation estimated in the previous step to each frame of the motion 

corrected functional time series and then removed the skull and extraneous tissues from 

each frame of the functional time series. Tissue remaining within the mean functional 

volume after the skull stripping procedure was removed by applying a dilated binary 

mask to the mean aligned functional volume that removed extreme voxels whose values 
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did not reside in middle 98th percentile. We then removed voxel-wise temporal extrema 

using AFNI’s 3dDespike software. 

To align a subjects functional data to a standard MNI152 (Montreal Neurological 

Institute; MNI) template in a single transformation step, we used FSL convertwarp, and 

applywarp functions to combine the estimated motion correction, functional-to-structural, 

and linear and non-linear subject-to-MNI152 transformations into a single operator, 

which we applied separately to each frame of the original slice time-corrected functional 

data. 

We performed minimal spatial smoothing on the aligned functional data, using a 

SUSAN algorithm with a 5mm FWHM kernel, followed by a conservative high-pass 

filtering of the voxel-wise time series, which removed or attenuated BOLD signal 

frequencies below 0.0083Hz (corresponding to fewer than 3 cycles per task run). 

Finally, we rescaled all voxel values by a value defined to be 10,000 divided by the 

global median. 
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APPENDIX D 

FMRI ANALYSIS 

D.1 DECONVOLUTION 

From each session's data we extracted eight voxel-wise average time courses of BOLD 

activity associated with each of the four task conditions for stimulus presentations in 

each visual hemifield. We estimated these time courses with a finite impulse response 

(FIR) regression model. FIR design matrices were constructed manually and applied to 

the voxel-wise time series using 3dDeconvolve (AFNI). All trials, including incorrect 

responses and blinks, for each stimulus type were modeled over an interval consisting 

of the duration (from initial stimulus presentation to the execution of the memory-guided 

saccade) plus an additional 22.5 seconds (15 TRs). The design matrix included 

nuisance regressors to account for the effects of signal drift, subject motion, and global 

signal changes as captured by white matter and cerebrospinal fluid (CSF) signals and 

their derivatives. Signal drift was modeled as a 3rd order Legendre polynomial time 

series. 
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Head motion was computed along six affine components corresponding to 

translation in the three cardinal directions and rotations about three orthogonal axes. In 

addition we computed a time course of total displacement for each session based on 

the Euclidean norm of the time derivative of the movement time series at each time 

point. To account for the prolonged effect of autocorrelated movement on the BOLD 

signal, we included temporally leading (-1TR) and lagging (+1-2TRs) copies of each of 

the seven motion regressors. Each of the seven motion time courses therefore 

contributed four motion regressors to the deconvolution design matrix. After 

deconvolution, we scaled the resulting whole-brain average trial time courses at each 

voxel, normalizing them to the standard deviation of the regression residuals at the 

same voxel location. 

D.2 IDEALIZED TIME COURSE 

Idealized voxel-wise trial time courses for the long DI (9 second delay) conditions were 

estimated from the scaled average trial time course estimates. We modeled these 

separately for each condition and target hemifield using 3dLME (AFNI), a linear mixed-

effects framework. Each time point was modeled as a separate categorical fixed effect 

and we did not include an intercept term in the model. To account for any bias due to 

the over representation of subjects who participated in more scans, we included subject 

identity as a random effect component in the regression model. For each trial type we 

computed the total Euclidean displacement undergone by each subject's brain during 
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the BOLD signal measurement intervals (trial durations plus 15 TRs) and included it as 

a fixed-effect component in the regression analysis. We calculated subjects' average 

age for all of their sessions and, after centering by the global mean, included it as a 

subject level fixed-effects regressor. We included a mean age by time interaction term 

to capture age-related differences in the voxel-wise time courses. We included the 

subjects' age at each session, after subject level mean-centering, as a second age-

related random-effects regressor. Within a given voxel, a single whole trial time course 

may include independent contributions from visually- and memory-guided saccade 

events. To account for potential differences due to variability in the number of correct 

saccades, we included the proportion of unclassifiable and incorrect visually- and 

memory-guided saccades and their interactions with time as fixed-effect components of 

the model. We produced idealized trial time courses by generating the voxel-wise model 

estimates for a subject of mean age, mean in-scanner displacement, and perfect trial 

performance. This process generated four idealized whole-brain time series 

corresponding to both long-delay conditions in which targets were located in either the 

left or right visual hemifield. We used these idealized BOLD time series in our 

construction of the canonical brain states 
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D.3 AVERAGE TIME COURSES OF BRAIN STATE EXPRESSION AND BRAIN 

STATE VARIABILITY 

We converted the average whole-brain trial time series and whole-brain residual time 

series into average time courses of brain state expression and variability respectively. 

For each TR, we extracted the whole-brain pattern of activity that we then vectorized 

and modeled using a linear regression. Our design matrix consisted of vectorized 

versions of the six brain states (the mean and spatial components of the VME, 

maintenance and retrieval states) as well as the 19 nuisance regressors templates 

described above. For each TR we extracted the regression weights for the six brain 

states, motion, and nuisance components and ordered them into a time series. When 

performed on the whole-brain average trial time series, the result is a time course of 

expression of each of the brain states during a trial. When performed on the whole-brain 

residual time series, the result is a time course of brain state fluctuations, where 

positive values indicate that a particular brain state was present to a greater extent than 

average and negative values indicate that a state was expressed less than average. For 

each session, we converted the time course of brain state variability derived from the 

whole-brain residual time series into z-scores. 
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D.4 TRIAL-TO-TRIAL BRAIN STATE AND BEHAVIOR RELATIONSHIP 

For each session we separately transformed reaction time and saccadic error from each 

of the four main task conditions into z-scores. SE was rectified such that high SE values 

reflect greater error in memory-guided saccadic endpoints on a trial. We excluded all 

trials for which measurements of reaction time and endpoints for both visually- and 

memory-guided saccades were unavailable due to blink artifacts, noisy data, or 

transient loss of pupil- or corneal reflection-lock. 

We related trial-to-trial variability in reaction time and accuracy to variability in the 

expression of each brain state across a range of times (±15 TRs) relative to the TR 

containing the subject's execution of a memory-guided saccade for each trial. Using all 

correct trials across all sessions, we extracted our z-scored measurements of brain 

state fluctuation derived from the whole-brain residual time series. We then constructed 

a regression model that included terms for the measured values of each brain state at 

the relative TR. We also included terms for the spatial brain state interaction with target 

hemifield. Each model contained terms that varied across trials but did not vary across 

relative TRs. These included terms for run number, target hemifield, target location 

(eccentricity), and the square of target location term. For the trial-to-trial reaction time 

model, we included a term for trial-to-trial SE and its square, and vice versa. This last 

set of regressor terms served as a null model against which the full brain state model 

was compared. The trial-wise reaction time and accuracy models were fit using a linear 

mixed-effects framework (MATLAB) to account for the different numbers repeated 

measurements for many of the subjects. Subject identity was modeled as a random 
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effect. We used the difference between the ordinary R2 values for full and null models at 

each relative TR to assess the amount of unique behavioral variability accounted for by 

trial-to-trial fluctuations in the expression of different brain states. At each relative TR we 

compared the null and full modes using simulated maximum-likelihood estimation 

procedure with 5000 iterations (MATLAB). 

D.5 ESTIMATING BRAIN STATE VARIABILITY 

For each session, we extracted a set of volumes from the normalized post-

deconvolution residual time series that occurred within a window from 0–5 TRs relative 

to the memory-guided saccade. We applied the brain state, motion and nuisance linear 

regression model described above to each of the selected volumes. At each volume, we 

multiplied the regressors by their best-fit coefficients across voxels within the gray 

matter mask. We then computed the sum of squares for each set of brain state voxels 

within each regressor separately, as well as the sum of squares of the regression 

residuals within the brain state mask. This yielded an estimate of the total BOLD signal 

sum of squares error present across all grey matter that was attributable to brain state 

variability, motion and other nuisances, as well as unclassified variability. We computed 

these values for each of the selected volumes of residual data and added the resulting 

sums of squared error values separately for each regressor. Measures of total brain 

state variability and component brain state variability were calculated in a manner 

analogous to partial-η 2: total brain state variability was defined as the combined sum of 
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all brain state components (mean and spatial for each state) sum of squares, divided by 

the combined sum of all brain state component sums of squares as well as the 

unclassified sum of squares. Component variability was calculated similarly, except the 

numerator represented the sum of squared for a particular brain state component, e.g. 

mean and spatial VME or mean and spatial maintenance, rather than the total of all 

component sums of squares. 

D.6 WHOLE BRAIN MOTION REGRESSORS  

We developed a method for estimating and removing temporally prolonged motion 

artifacts from fMRI data based on motion template volumes that model the spatial 

pattern of artifacts associated with the linear effects of motion. The initial deconvolution 

step for individual session data produced a regression coefficient for each temporally 

lagged motion regressor for each voxel. We normalized the voxel values within these 

volumes by the standard deviation of their post-deconvolution residuals and computed 

the mean patterns across all subjects. We used these whole-brain patterns of 

normalized regression coefficients to construct motion artifact templates. For each of 

the 28 templates (7 motion components with 4 temporal lags), we subtracted the spatial 

mean of all voxel values and scaled the resulting volumes to a common vector 

magnitude. Using principle component decomposition on the vectorized motion 

templates, we found a set of 11 motion templates that captured >90% of the variability 

in the set, which were then converted back into 3D volumes Error! Reference source not 
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found. In addition, we constructed a set of spatial gradient templates. We first created 3 

spatial gradient volumes whose voxel values were equal to their x, y, and z coordinates 

relative to the volume's center of mass. We set each voxel that fell outside of a whole-

brain MNI mask to zero. We then computed a set of 3 "interaction" templates that 

corresponded to each pair-wise product of the spatial gradient templates. Lastly, we 

constructed 2 constant offset templates. The first consisted of a whole-brain binary MNI 

mask. The second was the brain state mask. As a whole, this set of 19 templates 

constituted the set of spatial nuisance regressors that we used to capture and remove 

remaining unwanted spatial modes of whole-brain BOLD signal variability. 

 

Figure 15. Whole-brain motion regressors 

Illustrative examples of three (a-c) whole-brain motion templates out of a total set of 19. 

We used this set of templates to account for motion related variability that remained in 

each TR of the whole-brain residual time series. 
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D.7  REACTION TIME SIMULATIONS 

We observed that the direction of the trial-to-trial relationship between brain state 

expression and reaction time reversed (the transition from blue to red in some rows of 

the lower panel of Figure 10a). This inversion could result from a trivial trial-to-trial 

relationship between reaction time and the timing, not amplitude of brain state 

expression. We therefore performed three simulations of possible mechanisms that 

could give rise to a trial-to-trial relationship between the mean VME brain state and 

reaction time (Figure 10)  

 

Figure 16. A comparison of timing and amplitude effects on brain state expression 

The x-axis of each panel represents time (in 1.5s TRs) relative to the execution of the 

memory-guided saccade. An amplitude relationship (1st column), a latency relationship 

(2nd column), and a combined amplitude and latency relationship (3rd column), are 

compared to actual data (4th column). The first row depicts the patterns of trial-to-trial 

BOLD signal variability for each mechanism. Trials are divided into fast (black) and slow 

reaction time (red) sets defined by a median split. The average BOLD signal across all 

trials depicted in blue. The average residuals time series (2nd row) for fast and slow trials 

exhibit distinct patterns for each possible mechanism. The time integral of the average 
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residuals makes this difference explicit: If a trial-to-trial relationship between the VME 

brain state and reaction time simply reflected trial-to-trial variability in the latency of the 

eye-movement and eye-movement evoked visual activity, then the integrals of the 

residual time series for fast and slow reaction time trials should both converge to zero 

(2nd column). However, the absence of this convergence in the mean VME brain state 

data (4th column) is consistent with either an amplitude-based relationship or a mix of 

amplitude and latency. 

 

A purely latency based explanation of the mean VME brain state/reaction time 

relationship predicts that the integral of the mean VME brain state residual time series, 

for both fast and slow reaction time trials should converge to zero (Figure 16, column 1). 

A relationship between reaction time and brain state expression mediated by 

fluctuations in the amplitude of expression of the brain state patterns predicts that the 

same time integrals converge to non-zero values of opposite sign (Figure 16, column 2). 

A combination of latency- and amplitude-based relationships predicts an initial 

bifurcation of the time integrals of the fast and slow reaction time residuals that then 

partially re-convergence (Figure 16, column 3). We found that our data was most 

consistent with a mixture of latency- and gain-based effects. 

To perform these simulations, we compiled a distribution of reaction times for all 

correct memory-guided saccades across our subject database. For each simulation we 

drew 400 random samples from this distribution. To simulate the simple latency-based 

effect of BOLD signal variability we generated an impulse function, a vector where all 

but one element is equal to zero, where each element refers to 60ms time bin after the 
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memory-guided saccade response signal. For each draw from the reaction time 

distribution we generated an impulse function by inserting a 1 into the vector at the 

index, which corresponded to the drawn reaction time. We convolved each of the 400 

impulse functions with a canonical HRF modeled at the same 60ms resolution. This 

produced a set of HRF time series whose time of peak amplitude varied with reaction 

time. We computed the mean HRF time series across all trials as well as the mean HRF 

time series for fast and slow reaction time trials defined by median split. We simulated 

residual time series for each trial by subtracting the mean HRF time series from the 

individual time series and computing the mean of the residual time series for fast and 

slow reaction time trials. Lastly, we computed the time integral of the mean residual time 

series for fast and slow trials. 

The amplitude-based simulation was performed similarly but with two key 

differences: 1) for each trial we inserted 1 into all impulse function vectors at the same 

time index, corresponding to mean reaction time, for all trials. Then we added or 

subtracted from the 1 a linearly interpolated value between ±0.25 where +0.25 

corresponded to the fastest reaction time and -0.25 corresponded to the slowest 

reaction time. Mixed amplitude and latency based simulations were a hybrid of the two 

described above. The index of the 1 for each trial's impulse function was selected to 

coincide with the reaction time on that trial. An additional amplitude modulation factor, 

as above, was added to the impulse index. To compare the simulated pattern of high 

temporal resolution residuals to the actual data, we interpolated the brain state residuals 

time series to a matched temporal resolution using shape preserving piece-wise cubic 

interpolation (MATLAB). 
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Mixed amplitude and latency based simulations were a hybrid of the two 

described above. The index of the 1 for each trial's impulse function was selected to 

coincide with the reaction time on that trial. An additional amplitude modulation factor, 

as above, was added to the impulse index. To compare the simulated pattern of high 

temporal resolution residuals to the actual data, we interpolated the brain state residuals 

time series to a matched temporal resolution using shape preserving piece-wise cubic 

interpolation (MATLAB). 

D.8 MEASUREMENTS OF BRAIN STATE VARIABILITY ARE UNAFFECTED BY 

MOTION 

We had observed that total brain state variability decreased with age, and one concern 

that we had was that this result might not reflect a true developmental change in neural 

variability, but might instead be a reflection of the more mundane tendency either for 

children to move more in the scanner than adults, or due to small differences in 

behavioral performance. If BOLD signal variability resulting from motion-related artifacts 

or performance were systematically related to brain state variability then our 

interpretation of the reduction in brain state variability with age might be undermined. 

We therefore performed a series of control analyses designed to measure and control 

for these potential relationships. 

First, we measured the relationship between total brain state variability and 

estimated in-scanner motion and found that the two were largely unrelated (t(334)=1.43; 
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p=0.15). Next, we computed the proportion of BOLD signal variability, present within the 

post-deconvolution residuals, that corresponds to the whole-brain motion templates 

(see Appendix D.5). This measure, referred to here as motion template variance, which 

quantifies BOLD signal variability associated with lingering linear effects of motion that 

were not removed by the deconvolution process, is significantly related to our estimate 

of in-scanner motion (t(334)=8.58; p=3.71e-16). This indicates that even after rigorous 

motion controls during the deconvolution step of our fMRI analysis, there are likely still 

some linear motion artifacts present. We found a small but significant positive 

relationship between the magnitude of motion template variance and the magnitude of 

total brain state variability within a session (t(334)=2.1; p=0.037).  

 

Figure 17. Brain state variability and motion 

(a) The proportion of motion and nuisance related variability present in the grey matter 

residual time series increased with the estimate of average subject per frame 

displacement. This is variability that was unaccounted for in the session level 

deconvolution analysis, which included a set of 28 temporally leading and lagging 

motion regressors. (b) Total brain state variability is uncorrelated with estimates of in-

scanner movement. (c) Measurements of brain state variability share a slight positive 

relationship with measures of residual motion artifacts. 
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Although the relationship between brain state variability and movement was 

small and inconsistent across estimates of in-scanner motion, we sought a more 

rigorous control. We reasoned that if brain state variability was unrelated to movement-

related artifacts, then our finding that brain state variability was reduced in older 

subjects should still hold if we selectively sub-sampled our data so that we compared a 

group of adults who moved excessively to a group of children who moved relatively 

little. To put this idea to the test, we divided our data into two sets, split at the median 

age of our sample. We based our approach on a mean matching algorithm (see 

Appendix E) that would selectively draw samples from the two data sets such that, on 

average, estimated mean in-scanner displacement or motion template variance was 

identical. Then, we introduced a small bias into the data set that exaggerated the 

relationship between age and the two motion variables. This caused our mean matching 

algorithm to over-compensate, resulting in a reversal of the age-motion relationship. We 

found that, for both in-scanner displacement and motion template variance (data not 

shown), reversing the relationship between motion and age did not significantly alter our 

finding that older subjects exhibited less brain state variability than younger subjects 

(Figure 18). 
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Figure 18. Brain state variability in high motion adults compared to low motion children 

a) Biased bootstrap sample distribution of in-scanner motion in which the older subjects 

(red histogram) moved more than younger subjects (black histogram). b) The 

corresponding distributions of brain state variability demonstrating that brain state 

variability is still greater in younger subjects who moved more than adults. Vertical lines 

in the top two panels represent the means of the distributions. c-d) The bootstrap 

differences for the corresponding distributions above. Vertical black lines indicate 95% 

confidence intervals. 

D.9 DIMENSIONALITY OF BOLD SIGNAL RESIDUALS 

For each TR of the BOLD times series residuals, we regressed out the six brain state 

patterns and the set of motion templates and extracted a vector of voxel values that 

resided within the brain state mask, producing a high-dimensional time series of doubly 
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residualized BOLD signal. We estimated the intrinsic dimensionality of these time series 

using a maximum likelihood estimation procedure [86]. We relied on the implementation 

of this method provided by Matlab Toolbox for Dimensionality Reduction [93]. We 

selected this procedure based on two criteria: 1) minimal demands for prespecified 

parameters, requiring only specification of the “nearest neighbors” parameter, lambda; 

and 2) the method's rank-order robustness to misspecification of. That is, while 

misspecifying lambda can alter an estimate of dimensionality, a low dimensional 

embedding will still tend to be assigned lower estimate of dimensionality than a higher 

dimensional embedding [86] We computed our dimensionality estimates using lambda = 

6..12, for each session and then averaged the resulting dimensionality estimates.   
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APPENDIX E 

MEAN MATCHING ALGORITHM 

In some of our analyses, we employ a mean matching algorithm to observe how a 

variable differs between two groups while simultaneously either holding a second 

confounding variable at a constant value across both groups or reversing its natural 

relationship across the groups. Our approach to equating the mean value of a 

confounding variable across groups, which we most often used to match estimates of 

in-scanner motion between two age groups, is based on an intersection of histograms 

method. Figure 19 illustrates this. After dividing a dataset into two groups, based on our 

variable of interest (age, for instance), we construct histograms of the confounding 

variable (e.g. motion). Comparing the counts within each histogram bin across both data 

sets and selecting the smaller of the two values determines the intersection of the two 

histograms. We used a bootstrapping procedure to randomly sample both halves of the 

data set with replacement, subject to the constraint that, for each sampling iteration, the 

distributions of the confounding variable from both groups must be equal to the 

distribution defined by the intersection of their histograms. This constraint guarantees 

that the mean of the confound variable for both groups for each sampling interaction is 
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nearly equal (although in practice the, some differences are expected based on the 

width of the histogram bins). For each matched sample drawn from both groups we also 

record the mean values of the variable of interest and construct their distributions 

across all sampling iterations. The difference between distributions of the variable of 

interest for both groups, after sampling from the matched potions of their histograms, 

reflects their difference after controlling for the confound variable.  

 

Figure 19. Mean matching with the intersection of histograms 

Simulated data illustrating a technique for mean matching based on the intersections of 

histograms. Red and black histograms represent distributions of variables to be matched 

on, e.g., in-scanner motion for two groups of subjects from different age groups. By 

drawing bootstrap samples constrained to for a distribution defined by the intersection 

(blue) surrogated data sets for the two groups of subjects can be generated in which that 

matched variable does not differ between them. 

This method of controlling for confound variables can be made even more 

stringent by biasing the data so that, rather than matching the means of a confound 
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variable across two groups, it’s natural relationship with the groups is reversed. In our 

analyses, for instance, we wanted to ensure that the decrease in brain state variability 

across development was not a result of subjects moving less in the scanner as they got 

older. To do this, we wanted to examine how brain state variability differed between a 

set of younger subject, who moved relatively little, and older subjects who moved more. 

If the same brain state variability in the movement-prone adult sample was still less than 

that observed in the group of younger subjects, then we could be relatively sure that 

age-related differences in motion artifacts are spuriously driving developmental changes 

in brain state variability. To appropriately bias the data, we then constructed a 

secondary dataset in which the relationship between age and the motion variables were 

amplified. We did this by adding a small linear effect of age to the confounding motion 

variables. Then we applied the mean matching algorithm described above to this new 

data set. This procedure effectively amplifies whatever relationship with age is present 

in the confound variables, causing the mean matching algorithm to over-compensate by 

selecting sampling data from the set of older subjects that in reality actually moved 

more than the group of younger subjects. 
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