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Item response theory (IRT) models are often used in test equating. The effectiveness of IRT 

equating depends upon how well test data meet the IRT model assumptions. When tests are 

composed of testlets (i.e., groups of items sharing a common stimulus), the assumption of local 

item independence is likely to be violated. When examinees are nested within groups (e.g., 

classrooms, schools, etc.), the assumption of local person independence (i.e., independence of 

subjects) is unlikely to hold. Multilevel models allow the flexibility of modeling item and person 

dependence structures simultaneously.  

This research investigated the effectiveness of multilevel models as concurrent 

calibration models on test equating under the anchor test design with the presence of local 

dependence. The performance of multilevel models was compared to that of traditional IRT 

models and testlet response theory (TRT) model through two simulation studies. Local item 

dependence (LID) was considered in the first study, whereas both LID and person dependence 

were considered in the second study.  

The first study compared the performance of four concurrent calibration approaches on 

equating testlet-based tests: (a) modeled LID using a three-level hierarchical generalized linear 
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model (HGLM); (b) ignored LID and used a two-level HGLM; (c) ignored LID and used the 

Rasch model; and (d) used testlet scoring and applied the graded-response model (GRM). The 

results suggested that the two-level HGLM and the Rasch approaches were robust to the 

violation of the local item independence assumption, in terms of expected score recovery. In 

addition, the first three approaches provided better equating results than concurrent calibration 

using the GRM. Further research confirmed previous findings that degree of LID affected the 

precision of person parameter estimates.  

The second study compared the performance of three models (i.e., 3PL IRT model, 3PL 

TRT model, and 3PL multilevel TRT model) as concurrent calibration models on equating 

testlet-based tests when examinees were nested within groups. The results showed that ignoring 

LID affected item parameter recovery. With the presence of both LID and person dependence, 

the 3PL multilevel TRT model provided the most accurate estimation for person parameters, 

especially with a high degree of person dependence.  
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1.0  INTRODUCTION 

Test equating is widely used in standardized testing in education and psychology to allow direct 

comparison of scores across multiple test forms. It refers to the statistical process of adjusting 

test scores on different forms of a test so that scores from different forms can be used 

interchangeably (Kolen & Brennan, 2004). Because standardized tests are administered on 

multiple occasions, most testing programs develop multiple test forms to ensure test security. 

Although different test forms are constructed to be as similar as possible in content and statistical 

properties, they usually differ somewhat in difficulty. Test equating is therefore intended to 

account for differences in difficulty among test forms (Kolen & Brennan, 2004).  

Both classical test theory (CTT) procedures (e.g., linear equating and equipercentile 

equating) and Item Response Theory (IRT)-based procedures were developed to equate test 

forms. Most standardized testing programs now use IRT models to estimate an examinee’s 

ability level. IRT-based procedures thus become a natural choice for test equating. Therefore, the 

present study will focus on IRT equating.  

Test equating involves placing parameter estimates on a common scale. Under the anchor 

test design, the common items from the base and target form are used to place item parameter 

estimates on the same scale. Item parameters can be estimated separately for each form (i.e., 

linking separate calibration) or simultaneously across forms using combined data from the base 

and target group (i.e., concurrent calibration). When item parameters are estimated separately 
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and the two groups differ in ability (nonequivalent groups), the item parameter estimates are not 

on the same scale. The reason is that when item parameters are estimated, generally the prior of 

the ability parameter is set to be a standard normal distribution, no matter how difficult the test 

items are. In this case, transformation of the scale of one form onto the scale of the other is 

necessary so as to establish a common scale across the forms. When the two groups of item 

parameters are estimated simultaneously, item parameter estimates are automatically placed on 

the same scale.     

1.1 STATEMENT OF THE PROBLEM 

When IRT models are used to equate test forms, the effectiveness of IRT equating depends upon 

how well test data meet the IRT model assumptions. Compared with CTT, IRT models make 

several strong assumptions such as a unidimensional trait, local independence of item responses, 

and model-data fit. The local independence assumption has two implications: local item 

independence and local person independence (Reckase, 2009; also see Jiao et al., 2012). The 

former is achieved when the probability of answering an item correctly is unaffected by the 

probability of answering other items correctly, conditional on the person’s ability level. The 

latter assumes that responses to a specific item by different persons are independent to each 

other. If either local item dependence (LID) or local person dependence (LPD) is present, the 

local independence assumption is violated (Jiao et al., 2012). Therefore, it is crucial to check 

both facets of the local independence assumption in order to validate the use of IRT models in 

test equating.  
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Local independence assumption unlikely holds in real testing applications. LID often 

occurs when tests are composed of testlets (i.e., groups of items sharing a common stimulus). 

Potential sources of LID have been discussed in Yen (1993). LDP is likely to occur when data 

are collected in hierarchical settings (e.g., students nested within classrooms, classrooms nested 

within schools, etc.). Other potential sources of LPD have been summarized by Jiao et al. (2012). 

Dual local dependence may exist when testlet data are collected using a cluster sampling method 

(Jiao et al., 2012).    

Previous studies have demonstrated that ignoring LID affects IRT model parameter 

estimation, test reliability, test equating, etc. (e.g., Bradlow, Wainer, & Wang, 1999; Chen & 

Thissen, 1997; Wainer, Bradlow, & Wang, 2007; Wang & Wilson, 2005). It has also been shown 

that ignoring person dependence can lead to increased classification errors (Jiao et al., 2012) and 

underestimation of ability variance (Jiao, Wang, & Kamata, 2005). Consequently, methods that 

address the issue of local dependence have been developed.  

One approach to address LID is to apply a polytomous IRT model and use testlet scores 

as the unit of analysis (e.g., Lee, et al., 2001; Thissen, Steinberg, & Mooney, 1989; Zhang, 

2007). By summing item scores within the same testlet and treating the number-correct score as a 

single polytomous item score, it is believed that the within-testlet item dependency can be 

absorbed and independence between testlet scores is achieved (Zhang, 2007). However, this 

approach leads to some loss of information because the response pattern within each testlet is 

ignored (Wainer, Bradlow, & Du, 2000; Wainer, Bradlow, & Wang, 2007).    

Another approach is to fit the data with a model that explicitly models LID effects and 

also maintains testlet information, such as the testlet response theory (TRT) model. The TRT 

model handles the conditional dependence within testlets by incorporating a random testlet effect 
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parameter into the IRT model. The family of TRT models include the Rasch TRT model (Wang 

& Wilson, 2005), the two-parameter (Bradlow, Wainer, & Wang, 1999) and the three-parameter 

TRT model (Wainer, Bradlow, & Du, 2000) for dichotomous items, the TRT model for 

polytomous data and mixed-format data (Wainer & Wang, 2000; Wang, Bradlow, & Wainer, 

2002), and the TRT model that allows the inclusion of covariate information (Wainer, Bradlow, 

& Wang, 2007). These testlet models have shown to effectively account for item dependence. 

Similarly, models like the bifactor model (Gibbons & Hedeker, 1992), and modified testlet 

models (Li, Bolt, & Fu, 2006), can also be used to model item dependence structure. 

Alternatively, Jiao, Wang, and Kamata (2005) proposed a hierarchical generalized linear 

model (HGLM) that can account for LID from the multilevel modeling perspective. According to 

Kamata (2001), the Rasch model can be conceptualized as a two-level HGLM in which item 

responses are nested within persons. Based on this, a three-level HGLM can be formulated to 

model the clustering of items within item clusters (testlets), where level-one is the item-level 

model, level-two is the item clusters model, and level-three is the person-level model (Jiao, 

Wang, & Kamata, 2005).  This model has been proved to be mathematically equivalent to the 

Rasch testlet model (Jiao, Wang, & Kamata, 2005). 

Similarly, the person clustering effects can also be modelled within the HGLM 

framework. A three-level HGLM has been formulated to model item responses nested within 

persons, which are further nested within groups (Kamata, 2001). Person-level and group-level 

covariates, as well as their interactions, can be added into the level-two and level-three models to 

investigate the effects of individual and group characteristics on test scores. In addition to the 

HGLM approach, researchers have proposed some other forms of multilevel IRT models to 



 5 

account for person dependence (e.g., Adams, Wilson, & Wu, 1997; Fox & Glas, 2001; Mislevy, 

1987; Mislevy & Bock, 1989).  

The HGLM approach has also been extended to account for dual local dependence. Jiao 

et al. (2012) proposed a four-level HGLM as a solution to the violation of both local item 

independence and local person independence assumption. To simultaneously model item and 

person clustering effects, a fourth level can be added to the three-level HGLM for LID to model 

the group effects. Jiao et al. (2013) later extended this model to a five-level HGLM to account 

for LID and multiple levels of person clustering effects.  

When LID is present, the equating methods for the tests which are made up of 

independent items are no longer appropriate. Though developing testlet-based tests has become a 

new trend of test development (Zhang, 2010), equating testlet-based tests is a relatively new area 

of interest. Due to the additional random component in the TRT model, transformation of the 

scales across the forms becomes more complex. However, there are a few studies developing 

linking separate calibration methods for tests composed of testlets (Li, Bolt, & Fu, 2005; Li, 

2009; Zhang, 2010). These methods are developed based on the TRT model and aim to minimize 

the difference in Test Characteristic Curves (TCCs) between the base and the target form. In 

addition, the concurrent calibration method has also been applied in equating testlet-based tests 

(e.g., Zhang, 2010). These studies have shown that equating methods based on the TRT model 

can provide more accurate equating results than those based on the traditional IRT model. 

However, few studies have been done to equate tests when data exhibit person dependence.  
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1.2 PURPOSE OF THE STUDY 

The purpose of this research is to assess the performance of multilevel models as concurrent 

calibration models on test equating in situations where test data exhibit local dependence. To the 

knowledge of the author, only two relevant studies have directly applied the multilevel modelling 

approach on test equating (Chu & Kamata, 2000; Turhan, 2006), whereas the focus is on 

equating/linking tests composed of independent items. Because LID can be modeled under the 

multilevel framework, the current study aims to develop multilevel-based concurrent equating 

approach for testlet-based tests. In addition, the TRT-based equating approach cannot account for 

dependence between persons. The flexibility of multilevel modelling approach, however, allows 

equating procedures to account for item and person dependence structures simultaneously. The 

current study thus also aims to address such paucity in equating with dual local dependence.  

In order to accomplish these goals, two simulation studies are proposed. The first 

simulation study considers data containing responses to testlet items collected from independent 

examinees. We propose to use HGLM to concurrently equate two test forms and compare this 

approach to concurrent calibration based on the Rasch model and the GRM. Compared to the 

TRT-based linking separate calibration approach, equating methods under the multilevel 

framework save the need of computing transformation coefficients and can be easily 

implemented in commercially available software such as SAS and HLM. The second simulation 

study examines equating procedures for testlet data collected from examinees nested within 

groups. We propose to use a multilevel TRT model for concurrent equating with the presence of 

dual local dependence, and compare this approach to concurrent calibration based on the 

traditional IRT model and the TRT model. Factors that are expected to affect equating results 

were also investigated, such as degree of local dependence, sample size, ability distribution, and 
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number of common testlets. It was expected that the results from these studies could provide 

evidence as a reference for researchers interested in applying multilevel models to test equating, 

especially in situations where local dependence is present. 

1.3 RESEARCH QUESTIONS 

The research questions are as follows: 

1. How well does the concurrent equating method based on the multilevel model recover 

model parameters when LID is present? 

a. Does the equating method based on the multilevel model perform better than 

the concurrent calibration method based on the dichotomous IRT model, with 

the presence of LID? 

b. Does the equating method based on the multilevel model perform better than 

the concurrent calibration method based on the polytomous IRT model, with 

the presence of LID?  

2. How well does the concurrent equating method based on the multilevel model recover 

model parameters when dual local dependence is present? 

a. Does the equating method based on the multilevel model perform better than 

that based on the traditional IRT model when dual local dependence is 

present? 

b. Does the equating method based on the multilevel model perform better than 

that based on the TRT model when dual local dependence is present? 

3. What is the impact of LID on equating results for each of the equating methods? 



 8 

4. What is the impact of person dependence on equating results for each of the equating 

methods? 

5. What are the effects of ability distribution and number of common testlets on 

equating results? 
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2.0  LITERATURE REVIEW 

The purpose of this chapter is to review (1) IRT models, (2) local independence assumption of 

IRT models, (3) TRT models, (4) multilevel IRT models, (5) basic concepts of equating, (6) IRT 

equating, and (7) IRT equating with local dependence.  

2.1 IRT MODELS 

IRT models estimate persons’ latent trait levels based on their responses to test items. The 

probability of a correct answer to an item is modeled mathematically as a function of item 

characteristics (e.g., difficulty and discrimination) and a person’s ability level. There is a large 

family of IRT models and the primary difference among them is the number of parameters they 

use to describe the characteristics of test items. For example, the three-parameter logistic (3PL) 

model (Birnbaum, 1968) assumes that test items discriminate between high and low performers 

differently. In addition, it also allows the chance of pseudo-guessing to be estimated. The 

probability of person ‘j’ getting an item ‘i’ correct )1( ijXp , given the jth examinee’s ability 

level ( j ) is given by: 

                        
)](exp[1

)](exp[
)1(,,,|1

iji

iji

iiiiijij
ba

ba
cccbaXp









 , (2.1) 
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where ia , 
ib , and ic  are the discrimination parameter, difficulty parameter, and guessing 

parameter for the i
th

 item, respectively. The item discrimination parameter ( ia ) characterizes the 

slope of the item characteristic curve of the i
th

 item where it reaches the maximum. The item 

difficulty parameter (
ib ) corresponds to the point at which the slope is maximized. The guessing 

parameter ( ic ) is also called the lower asymptote or pseudo-chance level parameter. When 0c , 

the item difficulty parameter corresponds to the trait level at which the probability of a correct 

answer is 0.5. When 0c , the item difficulty value is halfway between c and 1. The ability 

level ( j ) is typically assumed to follow a standard normal distribution. 

2.1.1 The assumption of local independence 

IRT models are widely used in many testing applications, such as test equating and scaling, item 

banking, test development, and adaptive testing (Kolen & Brennan, 2004). The effectiveness of 

IRT model applications depends on how well test data meet the model assumptions. IRT entails 

several assumptions and local independence is one of them. This assumption implies two facets 

of independence: local item independence and local person independence (Reckase, 2009; also 

see Jiao et al., 2012). The assumption of local independence is violated if either LID or LPD is 

present (Jiao et al., 2012).  

2.1.1.1 Local item independence 

Local item independence assumes that a person’s response to an item in a test is independent to 

the person’s response to another item in the test. It can be expressed mathematically as:  
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                                     
I

i

i xXpxXp )|()|(  ,  (2.2) 

where I is the total number of items. This equation describes that the probability of a pattern of 

responses to all items in the test, conditioned on the latent trait ( ), is the product of the 

conditional probability of the response to each item. This equation shows that once the latent trait 

level has been taken into account, item responses are completely independent. It defines a strong 

form of local item independence.  

A weak form of local item independence has been proposed by McDonald (1997). It 

defines that conditional on the latent trait, the pairwise covariances among test items are zero as 

test length approaches infinity (McDonald, 1997). When this assumption holds, the joint 

probability of responses to a pair of items, conditional on the latent abilities, is the product of the 

conditional probabilities of responses to the two items. It is mathematically expressed as 

                  )|()|(}|,{ ''''  iiiiiiii xXpxXpxXxXp  , (2.3) 

where iX  and 'iX are the responses for item i and item i’. This is a weaker form of local item 

independence because higher-order dependencies among items are allowed.  

There are a variety of factors that may cause LID. These include external assistance or 

interference, speededness, fatigue, practice effects, item format, passage dependence, item 

chaining, explanation of previous answers, scoring rubrics, content areas, etc. (Yen, 1993). 

Among all these factors, the passage dependence is the most commonly studied factor in 

educational assessments. It references to the contextual effects on a group of items constructed 

around a common stimulus (passage).  

A group of items constructed around a common stimulus (passage) are termed as an item 

bundle (Rosenbaum, 1988) or testlet (Wainer & Kiely, 1987). According to Wainer and Kiely, a 
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testlet is “a group of items related to a single content area that is developed as a unit and contains 

a fixed number of predetermined paths that an examinee may follow” (1987, p. 190). Thus, if a 

particular testlet is administered to a group of examinees, the items within the testlet should be 

presented in the same order.  

Testlets are commonly used in standardized educational tests. For example, in a reading 

comprehensive test, a reading passage is often used as the stem for a set of items. Similarly, a 

graph or a table in a science test is often used as the focus of a set of items (Wainer, Bradlow, & 

Wang, 2007). Because items within a testlet are connected by the common context, responses to 

these items tend to be conditionally dependent. As a result, the assumption of local item 

independence is violated.    

2.1.1.2 Local person independence 

Local person independence assumes that subjects are independent to each other. Mathematically, 

it can be expressed as 

                   )|()|()|()|()|( 2211

1

ninii

n

j

jijii xpxpxpxpxXp   


, (2.4) 

where n is the total number of persons. This equation describes that the probability of a set of 

responses to the i
th

 item in the test by n persons, conditional on the vector of abilities, is the 

product of the conditional probability of each individual person’s response to that item (Jiao et 

al., 2012).  

Factors that may cause LPD include cluster sampling, external assistance or interference, 

differential opportunity to learn, and different problem-solving strategies, etc. (Jiao et al., 2012). 

In educational research, data are usually collected in hierarchical settings, such as students nested 

within classrooms, and so on. Therefore, these data would have a hierarchical structure in nature 
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(Jiao et al., 2010). Studies have shown that the intra-class correlation coefficient (ICC) of many 

achievement test data usually ranges from 0.12 to 0.49, indicating that some degree of person 

dependence does exist in these test data (Schochet 2005; Wang, 2006; see Jiao et al., 2010).  

2.1.2 Violation of local item independence 

It has been shown that ignoring LID and fitting a standard IRT model tends to result in bias in 

item parameter estimates, and overstatement of test information, test reliability, and precision of 

measures (e.g., Sireci, Thissen, & Wainer, 1991; Yen, 1993; Wainer, 1995; Wainer & Thissen, 

1996; Bradlow, Wainer, & Wang, 1999; Wainer, Bradlow, & Du, 2000; Wainer & Wang, 2000). 

For example, Bradlow, Wainer, and Wang (1999) found that ignoring LID and fitting the 

traditional 2PL IRT model led to underestimation of the discrimination parameters and bias in 

difficulty parameter estimates. Wainer, Bradlow, and Du (2000) found that when LID existed 

and the traditional 3PL IRT model was fit to the data, estimation of the difficulty and person 

parameters were well done, whereas the discrimination and guessing parameters were better 

estimated using the 3PL TRT model. Bradlow, Wainer, and Wang (1999) and Wainer, Bradlow, 

and Du (2000) also found that ignoring LID led to overestimation of precision of both item and 

person parameter estimates. Subsequently, these effects may affect applications of IRT models 

such as test equating (Yen, 1993). 

2.1.3 Violation of local person independence 

LPD cannot be easily accommodated using traditional IRT models since the assumption of 

independence of subjects is violated (Kreft & de Leeuw, 1998). The person dependence within 
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clusters would reduce the effective sample size, and consequently lead to biased parameter 

estimates and decreased measurement precision (Cochrane, 1977; Cyr & Davies, 2005; Kish, 

1965; Jiao et al., 2012). It has been shown that ignoring person dependence and fitting a standard 

IRT model can lead to decreased accuracies of model parameter estimation, increased 

classification errors (Jiao et al., 2012), and underestimation of ability variance (Jiao, Wang, & 

Kamata, 2005). 

2.2 MODELS FOR TESTLET-BASED TESTS 

Different methods have been proposed to address the issue of LID. The first approach is to fit the 

data with a polytomous IRT model and use testlet scores. The second approach involves using a 

model that explicitly accounts for LID effects such as the bifactor model or the TRT model. The 

third approach models item-clustering effects by building multilevel models. These models will 

be discussed next.  

2.2.1 Polytomous IRT model 

One way to handle the within-testlet dependence is to treat the entire testlet as a single 

polytomous item instead of multiple independent dichotomous items. In this approach, number-

correct scores are calculated for each testlet, and then calibrated using a polytomous item 

response model. The family of polytomous IRT models include the GRM (Samejima, 1969), the 

Partial Credit Model (Masters, 1982), the Rating Scale Model (Andrich, 1978), and the Nominal 

Response Model (Bock, 1972). By doing so, the assumption of local item independence is met 
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because testlet-level scores are used for calibration and they are locally independent. This 

approach may be appropriate when the magnitude of LID is moderate and the proportion of 

independent items within a test is large (Wang & Wilson, 2005). However, because number-

correct scores are used, the information in the response patterns within a testlet is missing 

(Wainer, Bradlow, & Wang, 2007).  In situations when item parameter estimation is required, the 

polytomous model approach is inappropriate. In addition, this approach cannot be applied to 

adaptive testing (Wang & Wilson, 2005).  

2.2.2 Bifactor model 

The bifactor model is a constrained multidimensional model with a primary dimension and 

multiple secondary dimensions. Each item has a nozero factor loading on the primary dimension 

and one of the secondary dimensions. All these dimensions are orthogonal to each other 

(Gibbons & Hedeker, 1992). When applied to testlet-based tests, the testlet effects are considered 

as secondary traits. For a test with K testlets, each item response reflects one’s trait level on the 

primary trait dimension and one of the K testlet dimensions. The multidimensional extension of 

the 3PL can be expressed as:  

                                   
)exp(1
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)1()(
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iii

da

da
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
  , (2.5) 

where )(ip  is the probability of answering item i correctly given the vector of trait  , ia  is a 

vector of discrimination parameters, id  is the difficulty parameter, and ic  is the lower 

asymptote. For the bifactor model, each item has a nonzero a-value on the primary   dimension 

and one of the secondary   dimensions, respectively. The correlations between trait dimensions 

are constrained to be zero.    
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DeMars (2006) compared the performance of the bifactor model to the TRT model, the 

polytomous IRT model, and the traditional IRT model using simulated datasets. The results 

indicated that when the dataset was generated under the TRT model, the bifactor model provided 

equal or even smaller bias and RMSEs than the TRT model. This suggests that the bifactor 

model can be a good alternative to the TRT model.  

2.2.3 Testlet Response Theory model 

The TRT model is proposed explicitly as a solution to the violation of the local item 

independence assumption. It is a special case of the bifactor model when the factor loadings on 

the specific testlet dimension are proportional to the loadings to the primary dimension (Rijmen, 

2010). The TRT model handles the within-testlet dependence by incorporating a random testlet 

effect parameter into the IRT model. Bradlow, Wainer, and Wang (1999) first developed the 

two-parameter TRT model for dichotomous items. Wainer, Bradlow, and Du (2000) later 

extended the two-parameter TRT model into a three-parameter TRT model that allows for 

guessing and variation in the local dependence across testlets. The TRT model has also been 

extended to handle tests composed of polytomous data and mixed-format data (Wainer & Wang, 

2000; Wang, Bradlow, & Wainer, 2002) and to allow the inclusion of covariate information 

(Wainer, Bradlow, & Wang, 2007). In this section, only the two-parameter and three-parameter 

TRT model will be introduced.  

Let ijY  be the response of examinee j on item i. The probability of a correct answer of 

examinee j on item i is:  
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where j , ia , and ib  are the person trait, item discrimination, and item difficulty parameters, 

respectively. Compared to the standard two-parameter IRT model, this model adds a random 

effect parameter, )(ijd , which models the person-specific testlet effect, or the interaction of 

person j with testlet d. Within a testlet, the value of )(ijd  is constant for a person but varies 

across persons. It is assumed to be independent from the   distribution and follow a normal 

distribution, ),0(~ 2

)(  Nijd . By definition, the sum of )(ijd  over examinees within the same 

testlet is zero (i.e., 0)(  j ijd ). If 0)( ijd , there is no testlet effect and the item fits the 

standard two-parameter model. The testlet variance,
2

 , is assumed to be constant across testlets. 

It denotes the magnitude of local dependence. If 02  , there is no extra dependence among 

items within the same testlet and the local item independence assumption is met, while the larger 

the variance, the larger the amount of LID within that testlet.   

Wainer, Bradlow, and Wang (2007) pointed out that the two-parameter TRT model had 

the following limitations (pp. 130-131). First, it does not model the chance of guessing, and 

therefore its application to multiple-choice items is limited. Second, the variance of the testlet 

effect is assumed to be constant across testlets. This is unlikely to hold for real test data, as 

different testlets may exhibit different amounts of LID. Third, this model considers only binary 

response data. Last, the model does not allow for modeling covariate effects.  

Wainer, Bradlow, and Du (2000) extended this two-parameter TRT model into a three-

parameter TRT model that allows for guessing and variation in the local dependence across 

testlets.  
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where as before with the two-parameter TRT model, j , ia , and ib  are the person trait, item 

discrimination, and item difficulty parameters, respectively, ic  is the guessing parameter, and 

idj ~ N (0,
2

)(id ). The two-parameter TRT model is a special case of the three-parameter TRT 

model with 0ic . The testlet variance,
2

)(id , is testlet-specific and allowed to vary across 

testlets.  

According to Wainer and Wang (2000), the interpretation of the a, b, and c parameters 

from the three-parameter TRT models are the same as those from the standard three-parameter 

IRT model (p. 206). Ip (2010) pointed out that because of the way that TRT models specify the 

random testlet effect, the meaning of item parameters and item information functions also 

changes. For example, the a-parameter in the traditional 3PL IRT model characterizes the slope 

of the item response function (IRF) at the location where the slope reaches its maximum at b . 

In contrast, in the TRT model, the meaning of the a-parameter is conditional on the value of the 

person-specific testlet effect. If the testlet effect is zero, the a-parameter in the three-parameter 

TRT model characterizes the slope of the IRF at the location where b . However, if the testlet 

effect is nonzero, the slope of the IRF does not reach its maximum at the point where b . 

Accordingly, any direct comparison of the a-parameter in the testlet model with the a-parameter 

in the traditional IRT model is inappropriate.  

2.2.4 Alternative model formulations for testlets 

Li, Bolt, and Fu (2006) proposed three alternative models that account for the testlet effect. 

These models differ in their assumptions regarding how testlets influence item performance. The 

first model, denoted as the general model, follows a multidimensional IRT approach and treats 
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the testlet effects as a secondary ability dimension. The two-parameter normal ogive (2PNO) 

version of this model can be written as: 

                                  )()1( )(21 ijdiijiij abayp    (2.11) 

where 1ia  is the discrimination parameter with respect to the ability dimension for item i, 2ia  is 

the discrimination parameter with respect to the testlet dimension for item i, and ib  is the item 

difficulty parameter. The inclusion of the parameter 2ia  allows for modeling item-specific testlet 

effect and thus makes no assumption that the testlet effect is constant across all items within the 

same testlet. This model is essentially the same as the bifactor model. The 2PNO testlet model is 

a special case of this general model when dii Caa 12  , where dC  is a constant for testlet d.  

The second model imposes a constraint on the discrimination power for the testlet 

dimension such that there is an inverse relationship between the   primary dimension and the 

testlet dimension regarding the item’s discrimination power. The basic idea is that if an item has 

a high discrimination power on the primary dimension, it tends to have a low discrimination 

power on the secondary dimension. The model is given by: 

                       )()1( )(

2

1

2

1 ijdiiiiij aMDISCbayp   , (2.12) 

where MDISC is constant across all items, denoted as the multidimensional discrimination 

parameter.  The third model assumes constant item discrimination power for the testlet 

dimension, which can be expressed as 

                                   )()1( )(1 ijdiiiij bayp   . (2.13) 

Li, Bolt, and Fu (2006) adopted four Bayesian model comparison criteria to compare the 

above three alternative models to the 2PNO testlet model using real data. Results indicated that 
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the general model provided the best fit, followed by the 2PNO testlet model. Hence, the general 

model can be a very attractive candidate to model testlet-based tests.     

2.3 MULTILEVEL IRT MODELS FOR LOCAL DEPENDENCE 

2.3.1 Multilevel IRT models 

A multilevel IRT model combines IRT and a multilevel model, taking into account both within- 

and between-group (such as schools) variance of the data. Accordingly, it allows estimation of 

latent traits at different levels (e.g., students, classrooms, schools.). Also, it offers the opportunity 

to model the effect of individual- and group-level covariates, as well as the cross-level 

interactions on the latent traits. This is very useful for school effectiveness research, which is 

interested in the relationship between explanatory variables and outcome measures (Fox, 2005). 

By simultaneously estimating all model parameters, multilevel IRT modeling can yield better 

estimation of the relationships between IRT latent traits and explanatory variables than the 

traditional two-step procedure, because the measurement errors of the latent traits are 

incorporated into the total variance of the model (Maier, 2001). Moreover, the flexibility of 

multilevel modeling approach allows one to handle latent explanatory variables, model latent 

individual growth, and identify clusters of respondents (Fox, 2005). Recently, the multilevel IRT 

approach has also been used to model LID (Jiao, Wang, & Kamata, 2005) and dual local 

dependence due to person and item clustering (Jiao et. al, 2012; Jiao & Zhang, 2014).  

Multilevel IRT models have been formulated in a number of ways. For example, the 

Rasch model has been formulated as a hierarchical nonlinear model (Adams, Wilson, & Wu, 
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1997; Raudenbush & Sampson, 1999) or a hierarchical generalized linear model (HGLM) 

(Kamata, 1998, 2001). The HGLM approach has been extended to model group-level covariates 

(Kamata, 2001), and to handle polytomous outcomes (Beretvas & Williams, 2004) and 2PL 

dichotomous items (Turhan, 2006). Some other researchers have developed multilevel IRT 

models as a combination of IRT and a two-level hierarchical linear model (HLM) to 

accommodate the nested structure in the latent trait variable (e.g., Fox & Glas, 2001; Fox, 2005; 

Maier, 2001). In these models, the latent trait variable in the IRT model is treated as the outcome 

variable in the level-one model of the HLM. The current study will focus on multilevel IRT as 

HGLM, because it has been shown to easily accommodate dual local dependence due to person 

and item clustering.  

2.3.2 Two-level HGLM as the Rasch model 

An IRT model can be conceptualized as a multilevel model in which item responses are nested 

within persons. Kamata (1998, 2001) first proved the algebraic equivalence of the two-level 

HGLM model and the Rasch model. Under the two-level model formulation of the Rasch model, 

person ability parameters are treated as random and item parameters are considered as fixed 

(Kamata, 2001). This enables the decomposition of person parameters into a linear combination 

of fixed and random effects, which make them analogous to a multilevel linear model with 

mixed effects (Kamata, 2001).  

In the two-level HGLM, the first level is the item-level model and can be specified under 

the GLM framework. The second level is the person-level model and is formulated under the 

HLM framework. At level-one, a logistic regression model is used to model the log odds of 
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giving a correct response. Let ijp be the probability that person j answers item i correctly, the 

item-level model is given by: 
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Where qijX  is the q
th

 dummy variable for person i, and qijX =1 when q=i and 0 when qi, I is the 

number of items in the test, j0  is an intercept term, and qj  is the coefficient associated with 

qijX  when .1,....,1  Iq  To achieve full rank for the design matrix, the dummy variable for the 

I
th

 item is dropped, thereby resulting in 1I  dummy variables. This dropped dummy variable is 

treated as the reference item, and therefore j0  is interpreted as the item effect for the dropped 

item for person j, and qj  is the effect of the q
th

 item compared to the reference item. The 

probability that person j answers item i correctly is: 
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The level-two (person-level) model assumes that the level-one intercept j0  has a 

random effect across persons, while the effects of level-one slopes qj  are constant across 

persons. The level-two model for person j is given by, 
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where  00r  is the effect of the reference item, and  0q  is the effect of the i
th

 item (when i=q). The 

random component ju0  indicates the deviation of the ability of person j from the mean of ju0 , 

and  ,0~0 Nu j .   

Combining the level-one model with level-two model, the probability that person j gets 

item i correct is: 

                                  
)]}([exp{1
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when i = q, and 0000 qjij u   . Kamata (2001) showed that this equation is algebraically 

equivalent to the Rasch model,  
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where jj u0 , and 000   qi .  Both i  and 000   q  are treated as fixed in the two 

formulations. In the Rasch model, the person trait parameters can be considered as either fixed or 

random. While in Kamata’s model, ju0  is treated as random.  

If the interest is on the effects of person characteristics on examinee responses, person-

level predictors can be added to the level-two model. In situations where the item effects are 

considered to be fixed across persons (e.g., no differential item functioning (DIF)), person-level 

predictors are only included in the intercept equation. The level-two model can be written as: 
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where ),,1( psWsj   are the person-level predictors and p0 are the associated coefficients. 

The combined model can be expressed as: 
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The overall ability for person j now becomes jpjpj uWW 00101    . The item 

difficulty is still denoted by 000   q .  

2.3.3 Three-level HGLM for local person dependence 

The two-level HGLM can be easily extended to a three-level model that simultaneously takes 

into account person clustering effects. Let ijgp be the probability that person j answers item i in 

school g correctly, the item-level model is given by: 
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The level-two model for person j in school g is given by, 
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where g00  is the effect of the reference item, and gq0  is the effect of the i
th

 item (when i=q). 

The random component jgu0 indicates the deviation of the ability of person j in school g from the 

mean of jgu0  within school g, and  ,0~0 Nu jg .  

The level-three (school-level) model can be added to estimate group-level abilities and 

the effect of group-level covariates on the latent trait. The model can be expressed as: 
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where gr00 can be interpreted as the average ability of students in school g, and
 

 ,0~00 Nr g . 

When the three-level model is combined, the probability that person j in school g answers item i 

correctly is given by 
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where 00000   q  gives the item difficulties for items qi  (i=1,..., k-1) and 000  is the item 

difficulty for item I. The term jgg ur 000   denotes the overall ability for person j in school m. 

Collateral variables can be added into the level-two and level-three models to explain variation in 

ability across persons and groups.  

The three-level IRT model has been used in applied research. Kamata (2001) fitted a 

three-level HGLM to a sample from the Third International Mathematics and Science Studies 

(TIMSS) to investigate the effect of a school-level predictor (teacher’s experience) and a student-

level predictor (studying science at home), as well as their interaction effect on students’ science 

literacy test scores. Pastor (2003) illustrated how to apply the three-level HGLM to obtain 
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estimates for item parameters as well as person- and site-level latent trait estimates using the 

HLM software.  

2.3.4 Three-level HGLM for local item dependence 

As described earlier, a three-level HGLM can be used to model the clustering of persons within 

groups, with items (level-one) nested within persons (level-two), which are further nested within 

groups (level-three). Similarly, a three-level HGLM can be formulated to model the clustering of 

items within item clusters (testlets), where level-one is the item-level model, level-two is the 

item clusters model, and level-three is the person-level model (Jiao, Wang, & Kamata, 2005).  

Let imjp be the probability that person j answers item i in item cluster m correctly, the level-one 

model can be expressed as: 
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where qimjX is the q
th

 dummy variable for person j, and qimjX =1 when q=i and 0 when qi, mj0

is the intercept, and qmj  is the coefficient associated with qimjX  where .1,....,1  Iq  To 

achieve full rank for the design matrix, one of the dummy variables in the equation is dropped, 

thereby resulting in 1I dummy variables. This dropped dummy variable is treated as the 

reference item, and therefore mj0  is interpreted as the item effect for the dropped item in item 

cluster m for person j. The individual item effect qmj  is the difference of the item with the q
th

 

dummy variable from the effect of the reference item.  

The item cluster-level (level-two) model is given by 
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where j00  is the fixed effect of the level-one intercept, jq0 is the item-specific effect for item 

with the q
th

 dummy variable (when i=q), and mju0  is the random effect of the level-one intercept. 

The random effect mju0  is assumed to follow a normal distribution with mean of zero and 

variance of 2

u . It can be considered as the interaction between latent trait and item cluster, which 

is analogous to the person-specific testlet effect in Bradlow, Wainer, and Wang’s (1999) 

formulation of the Rasch testlet model. In both models, the variance of the interaction effect 2

u  

indicates the magnitude of LID and is assumed to be constant across item clusters.  

The person-level (level-three) model is given by 

                                                  























000

20020

10010

0000000

qmq

m

m

jj r











, (2.27) 

where jr00 is the person ability and ),0(~ 2

00 rj Nr  . In this model, the items are assumed having 

only fixed effects, while the person effect is considered to be random.  

The combined three-level model for LID can be expressed as 
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where jr00 indicates the ability for person j, and the term 00000   q  denotes the difficulty level 

of item q. In the framework of TRT, this model can be rewritten as: 



 28 

                                    
)]}[exp{1

1
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where jj r00 , 00000   qib , and mjijd u0)(  . Thus, the three-level HGLM for LID is 

equivalent to the Rasch testlet model (Wang & Wilson, 2005). 

Based on a simulation study, Jiao et al. (2005) demonstrated that when LID was present, 

the three-level HGLM could capture the magnitude of LID and provide more accurate estimates 

for the item difficulty parameters than the two-level HGLM ignoring LID. In addition, the ability 

variance would be underestimated if LID was ignored. 

2.3.5 Four-level HLM for dual local dependence 

Dual local dependence occurs when test data are composed of testlets and collected using a 

cluster sampling method (Jiao et al., 2010). Several recent studies have addressed such dual local 

dependence. For example, Jiao et al. (2012) proposed a four-level HGLM (or multilevel Rasch 

testlet model) that can simultaneously account for LID and local person dependence. Jiao et al. 

(2013) later extended this model to a five-level HGLM to account for LID and multiple levels of 

person clustering effects. Jiao and Zhang (2014) proposed a polytomous version of the multilevel 

Rasch testlet model for dual local dependence.  

Jiao et al. (2012) proposed a four-level HGLM as a solution to the violation of both local 

item and person independence assumption. As described earlier, a three-level HGLM can be 

used to model the clustering of persons within groups, with items (level-one) nested within 

persons (level-two), which are further nested within groups (level-three). Similarly, a three-level 

HGLM can be formulated to model the clustering of items within item clusters (testlets), where 

level-one is the item-level model, level-two is the item clusters model, and level-three is the 
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person-level model. To simultaneously model both item and person clustering, a fourth level can 

be added to model the group effects, resulting in a four-level HGLM.  

Let imjgp  be the probability that person j in group g answers item i in item cluster m 

correctly, the level-one model can be expressed as: 
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where qimjgX  is the q
th

 dummy variable for person j in group g, and 1qimjgX  when q=i and 0 

when qi, mjg0  is the intercept, and qmjg  is the coefficient associated with qimjgX  where 

.1,....,1  Iq  To achieve full rank for the design matrix, one of the dummy variables in the 

equation is dropped, thereby resulting in 1I  dummy variables. This dropped dummy variable 

is treated as the reference item, and therefore mjg0  is interpreted as the item effect for the 

dropped item in item cluster m for person j. The individual item effect qmjg  is the difference of 

the item with the q
th

 dummy variable from the effect of the reference item.  

The item cluster-level (level-two) model is given by 
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where  jg00  is the fixed effect of the level-one intercept, jgq0  is the item-specific effect for item 

with the q
th

 dummy variable (when i=q), and mjgu0 is the random effect of the level-one intercept. 

The random effect mjgu0  is assumed to follow a normal distribution with mean of zero and 

variance of 2

u .  
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The person-level (level-three) model is given by 
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where jgr00  is the person ability and ),0(~ 2

00 rgjg Nr  . In this model, the items are assumed 

having only fixed effects, while the person effect is considered to be random.  

If person clustering exists, the fourth level can be added to model the group effects. It is 

given by 
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where 0000  is the effect of the reference item, 000q  is the item-specific effect relative to the 

reference item. The group-specific ability gr000  follows a normal distribution with mean of zero 

and variance of 2

g . Again, the item effect is considered to be fixed across groups, while the 

average ability varies across groups.  

The combined four-level model can be expressed as 
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where jgw00 is the person-specific ability for person j in group g and gr000  is the group-specific 

ability for group g. The item difficulty parameter ( ib ) is decomposed into the reference item 

effect ( 0000 ) and the item-specific effect ( 000q ). In the IRT framework, it can be written as 

                               
)]})[(exp{1
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b

p
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where gjggj rw 00000  , 0000000 qib   , and )(ijd = djgu0 . 

Using simulated data sets, Jiao et al. (2012) showed that when both item and person 

clustering were present, ignoring one or both clustering effects could reduce the estimation 

accuracy of the item difficulty and person ability parameters, as well as classification accuracy. 

They suggested applying this model to analyze test data from testlet-based assessment collected 

using a cluster sampling method. 

2.4 EQUATING 

2.4.1 Basic concepts of equating 

For many standardized educational tests, it is a common practice to administer a test on multiple 

occasions so that examinees can have the flexibility in choosing a test date. By administering a 

test on different dates, researchers can also explore changes in student achievement over time 

(Kolen & Brennan, 2004). The use of the same test form on different occasions could cause test 

security problems, because examinees who are administered the test later may have the 
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advantage of knowing some test items prior to testing from their previous examinations or from 

earlier examinees.  

To ensure test security, most testing programs develop multiple forms of the same test so 

that some examinees will not be advantaged on the test by their prior knowledge. Although these 

test forms are constructed to be as similar as possible in content and statistical properties, they 

usually differ slightly in difficulty. As a result, scores from different test forms cannot be 

compared directly because the difference in test scores reflects not only the difference in 

examinees’ trait levels but also the difficulty levels of the test form (Kolen & Brennan, 2004).  

Test equating is a technique that takes into account differences in difficulty among 

different test forms. It refers to the statistical process of adjusting test scores on alternate forms 

of a test so that scores from the forms can be used interchangeably (Kolen & Brennan, 2004). 

Thus, in standardized testing programs when different forms of a test are used, equating is 

important and necessary.  

2.4.2 IRT equating 

Both CTT procedures (e.g., mean, linear, and equipercentile equating) and IRT procedures were 

developed for test equating. One major advantage of IRT procedures over CTT procedures is that 

the former treats the test item as the unit of analysis, whereas the latter usually focus on the 

entire test. IRT procedures are therefore more flexible and can be used in situations where CTT 

procedures typically are not used, such as equating to an item pool (Kolen & Brennan, 2004). 

Compared to CTT procedures, IRT procedures may also provide better equating results at the 

upper ends of score scales, and offer greater flexibility in choosing a plan for equating (Cook & 

Eignor, 1991). In addition, most standardized testing programs now use IRT models to calibrate 
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an examinee’s ability level. IRT procedures thus become a natural choice for test equating. The 

focus of this paper is on IRT equating. A recent review of IRT equating can be found in Kolen 

and Brennan (2004).  

IRT equating procedures adjust item parameter estimates from different forms of a test so 

as to be on the same scale. It involves three steps: selecting an equating design, placing 

parameter estimates on a common scale, and equating test scores (Cook & Eignor, 1991). There 

are three commonly used data collection designs for equating: (a) single group design; (b) 

random groups design; and (c) common-items nonequivalent groups design (Kolen & Brennan, 

2004) or Non-equivalent groups with Anchor Test (NEAT) design (von Davier, Holland, & 

Thayer, 2004). In the single group design, each examinee is administered two test forms. In the 

random groups design, examinees are randomly assigned one of the test forms. In the third 

design, different groups of examinees are administered different test forms, which share a set of 

common test items. Because the set of common items is also termed an “Anchor Test”, this 

design is also called NEAT design. Since the first two designs use samples from a common 

population, the task in equating is simply to adjust differences in difficulty between the two test 

forms. In the third design, however, the two groups of examinees are from different populations 

and usually not considered to be equivalent. Hence, it is necessary to separate group differences 

in ability from form-to-form differences in difficulty (Kolen & Brennan, 2004). The anchor test 

items are used to control for differences in ability between two examinee groups.  

There are two major types of procedures to put the estimates of item parameters from 

different test forms onto a common scale: the linking separate calibration and the concurrent 

calibration.  
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2.4.2.1 Scale linking methods 

When two test forms are administered to two different ability groups, the parameter estimates 

obtained in separate calibration runs are not on the same scale. Because the two scales (I and J) 

are assumed to have a linear relationship ( BA IJ   ), a simple linear transformation can be 

used to place the two sets of parameter estimates on the same scale. The transformation 

parameters (A and B) can be calculated using the common items. For the 3PL model, the 

relations of item discrimination, difficulty, and guessing (a-, b-, and c-) parameters of common 

item i between the two scales can be expressed as: 

                                                           
A

a
a

Ij

Ji  , (2.36) 

                                                      BAbb IiJi  , (2.37) 

                                                            IiJi CC  . (2.38) 

In real testing situations, there are multiple common items and not all of them satisfy the 

above linear relationship. Hence, there is a need to estimate the values of A and B. A variety of 

methods have been proposed to calculate the transformation parameters, including the 

mean/mean method (Loyd & Hoover, 1980), mean/sigma method (Marco, 1977), and the Test 

Characteristic Curves (TCC) methods. The mean/sigma method uses the first two moments of 

the difficulty parameter estimates for the common items to calculate the transformation 

parameters. The mean/mean method is based on the means of the discrimination and difficulty 

parameter estimates for the common items. A major disadvantage of the mean/sigma and 

mean/mean methods is that they do not consider all of the item parameters simultaneously 

(Kolen & Brennan, 2004). To compensate for this problem, the TCC methods have been 

developed to search the transformation coefficients that minimize the difference in TCCs 
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between the base and the target test. The Haebara (1980) method and the Stocking-Lord (1983) 

method are two commonly used TCC methods. The Haebara method minimizes the squared 

differences between the sets of item characteristic curve for the common items between the base 

and target test. Hence, it is also called the item characteristic curve method. For the 3PL IRT 

model, the Haebara function can be expressed as follows, 
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where i:V represents the set of common items, )ˆ,ˆ,ˆ( JiJiJi cba and )ˆ,ˆ,ˆ( IiIiIi cba are the two sets of item 

parameter estimates for the base and target test from separate calibration runs, J and I indicate 

the scale for the base and target groups, respectively. And )ˆ,ˆ,ˆ;( JiJiJiJjij cbap  is the probability 

of answering item i correctly. The criterion function is defined by either integrating over   or 

summing up F (as mentioned below) over all examinees. The transformation coefficients A and 

B can be obtained through minimizing the criterion function.  

The Stocking-Lord method minimizes the squared differences between TCCs for the 

common items. The loss function to be minimized is given by 
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where n=1, 2, …, N, and N is the number of arbitrary points over the latent trait scale;  and 
*

are the estimated true scores on the common items for the base form and rescaled true scores on 

the common items for the target form, respectively.  

Researchers have compared the performance of different linking separate calibration 

methods. It has been shown that the TCC methods provide more accurate estimates of 

transformation parameters compared to the mean/sigma and mean/mean methods (Baker & Al-
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Karni, 1991; Hanson & Beguin, 2002; Way & Tang, 1991). It has also been shown that the 

Haebara method and the Stocking-Lord method produce similar equating results for dichotomous 

IRT model (Way & Tang, 1991) and polytomous IRT model (Li & Yin, 2008).   

2.4.2.2 Concurrent calibration 

As an alternative to scale linking methods, concurrent calibration simultaneously estimates all 

item parameters in both test forms in a single calibration run. Parameter estimation is based on 

the combined data of the base and target groups. Items not taken by any particular group are 

treated as not reached or missing (Lord, 1980). For the single group and random groups design, 

parameter estimates are automatically placed on the same scale, even if they are obtained from 

separate calibrations rather than concurrent calibration. For the NEAT design, if item parameters 

are not estimated using the concurrent calibration method, a linking procedure is necessary to put 

all parameter estimates on the same scale. Software packages such as MULTILOG (Thissen, 

1991) or BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) can be used to perform 

concurrent calibration.   

2.4.2.3 Comparison between linking separate and concurrent calibration  

Researchers have compared the equating performance between linking separate calibration and 

concurrent calibration (Béguin & Hanson, 2001; Béguin, Hanson, & Glas, 2000; Hanson & 

Béguin, 2002; Kim & Cohen, 1998; and Kim & Cohen, 2002). Kim and Cohen (2002) showed 

that concurrent calibration yielded smaller equating errors than linking separate calibration, 

while the difference was very small. Hanson and Béguin (2002) showed that when groups were 

equivalent, concurrent calibration tended to provide more accurate equating results than linking 

separate calibration. Béguin and Hanson (2001) and Béguin, Hanson, and Glas (2000) showed 
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that when test data did not meet the unidimensionality assumption, linking separate calibration 

provided more accurate equating results compared to concurrent calibration in the non-

equivalent group conditions. Kerkee et al. (2003) compared concurrent calibration and the 

Stocking-Lord method for non-equivalent groups in vertical scaling using a real data set with a 

complex form of violations to the IRT model assumptions. Their results showed that the 

Stocking-Lord method in general resulted in better fits for items compared to concurrent 

calibration. Based on previous studies, Kolen and Brennan (2004) conclude that concurrent 

calibration tends to be more accurate than linking separate calibration when the IRT assumptions 

are met, whereas it is also less robust to assumption violations of the IRT models.   

2.4.3 Factors that affect equating results 

Factors that are relevant to the item and person characteristics may affect the accuracy of test 

equating. These include number of common items, test length, item type, item calibration 

models, equating procedures, and distributions of item difficulty and ability parameters, etc. 

(Zhang, 2010; Skaggs & Lissitz, 1986). Angoff (1968) developed guidelines for constructing the 

set of common items in the NEAT equating design. He recommended at least 20% of the items 

in a test or 20 items to form the set of common items, whichever is larger. Zhu (1998) suggested 

that the number of common items should exceed 20 to 25 percent of the number of total items on 

either of the test forms. Some other researchers stated that 5 to 15 common items were enough to 

produce acceptable equating results (Smith & Kramer, 1992; Wright & Master, 1982; Wright & 

Stone, 1979). Hills, Subhiyah, and Hirsch (1988) found that for the three-parameter model, 10 

common items randomly selected from a set of 30 common items were enough to produce 

acceptable equating results.  
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As group difference in ability increases, the equating accuracy might decrease. There are 

at least two possible explanations for why this may happen (Powers, 2011). First, the equating 

relationship may vary for subgroups of examinees. Second, as the group differences increase, the 

statistical assumptions underlying the equating methods are more likely to be violated.   

2.5 IRT EQUATING WITH LOCAL ITEM DEPENDENCE 

When LID is present, the use of a standard IRT equating procedure is inappropriate and may lead 

to biased equating results. It has been shown that when LID exists, estimation of linking 

coefficients can be biased if a standard IRT model is used for linking calibrations (Li, Bolt, & 

Fu, 2005). Lee et al. (2001) also found that for equating testlet-based tests, using testlet scores 

and fitting a polytomous IRT model provided better equating results than ignoring LID and using 

the standard 3PL IRT model.   

Due to the within-testlet dependency, linking testlet-based tests is less straightforward 

than linking tests which are made up of independent items. Although testlet-based tests have 

been widely used, research on equating procedures for testlet-based tests is limited. To the 

knowledge of the author, only three studies have addressed the issue directly for the NEAT 

design (Li, Bolt, & Fu, 2005; Li, 2009; Zhang, 2010). In this section, equating procedures for 

testlet-based tests proposed in these studies are reviewed. Research design, results and 

limitations are discussed.  



 39 

2.5.1 Test Characteristic Curve equating methods for the TRT model 

2.5.1.1 Stocking-Lord characteristic curve method 

Li, Bolt, and Fu (2005) applied the Stocking-Lord method to the 2PNO TRT model. An essential 

step in the Stocking-Lord method is to compute the true scores. Due to the additional random 

effect parameter )(ijd  in the TRT model, computing the true scores is more complicated than for 

traditional IRT models. Li, Bolt, and Fu adopted the alternative model formulation proposed by 

Glas, Wainer, and Bradlow (2000), in which the term )( )(ijdiji ba    in the TRT model is 

reparameterized as )( )(ijdjdia   , and bjjd   . Hence,  |jd  is distributed as ),( 2

dN  . 

The probability of person j answering item i within testlet d for the 2PNO TRT model can be 

written as 

                                    )]([)|1( ijdijdjdi bayp   . (2.41) 

Then, the probability of answering item i within testlet d correctly conditional on  can 

be written as 

                    ddddidi dhypyp
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where h is the distribution of jd  given  .The item parameters and 
d

  are assumed known. 

The integral can be approximated using the Gaussian quadrature method 
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where pX and pW  represent the p
th

 quadrature point and its associated weight. The true score for 

the whole test is the sum of the testlet true scores and can be calculated as follows: 
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where D is the total number of testlets in a test, and I is the number of items within each testlet. 

Then, the transformation coefficients can be obtained by solving the Stocking-Lord loss 

function. Because the function is a nonlinear function of transformation coefficients, it may have 

multiple saddle points. A quasi-Newton method such as the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method (Dennis & Schnabel, 1996) can be used to search the estimates of the 

transformation coefficients.  

 

2.5.1.2 Haebara method 

Researchers also develop methods based on the Haebara approach to compute the transformation 

coefficients for testlet-based tests (Li, 2009; Zhang, 2010). Zhang (2010) applied the Haebara 

approach to the two-parameter (2PL) logistic TRT model. The quadratic loss function can be 

expressed as follows, 
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and 

                      

]})([7.1exp{1

]})([7.1exp{

)(*

BbA
A

a

BbA
A

a

p

diIjJ
iI

diIjJ
iI

jJjdi














 .  (2.47) 



 41 

The estimates of the transformation coefficients can be obtained by solving the above 

nonlinear minimization problem. Specifically, the BFGS method can be employed to find the 

minimum value of the function.  

Li (2009) extended the Haebara method to the 3PL TRT model. The Haebara function for 

the 3PL TRT model can be expressed as follows, 
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where )( Jjd  is the estimated distribution of Jjd . The distribution of the testlet effect Jjd  can 

be approximated with a discrete distribution on a finite number of equally spaced quadratic 

points so that 
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where )( Jdkp   and 
)( JdkW   are the k

th
 quadrature point and associated weight, respectively. Hence, 

the true score for each item given   can be computed. The loss function is obtained by 

integrating over   
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J
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The Newton Raphson method can be used to find the values for A and B that minimize 

the above function.  
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2.5.1.3 The testlet characteristic curve method 

Zhang (2010) developed a new TCC-based approach of finding the transformation coefficients 

for the testlet-based test. Different from the Stocking-Lord approach and the Haebara approach, 

this approach was used to search the transformation coefficients that minimize the squared 

differences between the sets of testlet characteristic curves for the same testlet between the base 

and the target tests. The quadratic loss function can be expressed as follows, 
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








 J D di di

jJjdijJjdi ppF

2

* )()(  , (2.52) 

where 

                                    
)](7.1exp[1

)](7.1exp[
)(

iJjJiJ

iJjJiJ

jJjdi
ba

ba
p









 , (2.53) 

and 

                      

]})([7.1exp{1

]})([7.1exp{

)(*

BbA
A

a

BbA
A

a

p

diIjJ
iI

diIjJ
iI

jJjdi














 . (2.54) 

The BFGS method can be used to find the minimum value of the above loss function.  

2.5.2 Concurrent calibration under the TRT model 

Concurrent calibration estimates item and person ability parameter simultaneously using the 

combined data from the base and target group. For the TRT model, Bayesian estimation can be 

employed to put item parameters on the same scale through a single Markov chain Monte Carlo 

(MCMC) run. The concurrent calibration method has been applied to equate testlet-based tests 

for dichotomous items and mixed-format items (Zhang, 2010).  
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2.5.3 Comparisons of different methods for equating testlet-based tests 

Researchers have conducted studies to compare different equating procedures for equating 

testlet-based tests. Using real data, Lee et al. (2001) compared two polytomous IRT models (the 

nominal response model and the GRM) to the dichotomous 3PL IRT model in the context of 

equating testlet-based tests. Their results showed that with the presence of LID, equating based 

on the two polytomous IRT models produced results that were more consistent with the results of 

traditional equipercentile method.  

Li, Bolt, and Fu (2005) evaluated the performance of the Stocking-Lord method for the 

2PNO testlet model using simulated data. The equating results were compared to those obtained 

when using 2PNO IRT model. The study manipulated two factors: (a) number of common 

testlets (2 and 4); and (b) testlet variance (0, 0.5, and 1). The WinBUGS program (Spiegelhalter, 

Thomas, Best, & Lunn, 2003) was employed to implement the MCMC method for estimation of 

the 2PNO testlet model. The computer program BILOG (Mislevy & Bock, 1983) was used to 

estimate the 2PNO IRT model. The evaluation criterion was absolute differences between the 

estimated transformation parameters and the true transformation parameters. The results showed 

that when LID was present, the TRT-based Stocking-Lord method provided more accurate 

estimates of the transformation coefficients than did the IRT-based method. The results also 

indicated that for the 30-item tests, two common five-item testlets (10 common items) were 

enough to obtain accurate linking coefficients.  

Li (2009) compared the performance of the Haebara method for the 3PL TRT model with 

the scaling linking methods for the 3PL IRT model and the GRM. The simulation study had 

three conditions of testlet variances (0, 1, and 2), representing no, moderate, and strong testlet 

effect, respectively. The three models were estimated using different computer programs. The 
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WinBUGS program was employed to implement the MCMC method for estimation of the 3PL 

testlet model. The computer program BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996) 

was used to estimate the 3PL IRT model. The GRM was estimated in the computer program 

PARSCALE (Muraki & Bock, 1996). The evaluation criteria included: (a) Mean Squared Error 

(MSE) for the transformation coefficients; (b) Root Mean Squared Deviation (RMSD) and Mean 

Absolute Difference (MAD) for item and ability parameters; and (c) Test Information Functions 

(TIFs) inflation ratios for the GRM-estimated TIFs vs. the 3PL IRT model-estimated TIFs; and 

for the testlet model-estimated TIFs vs. the 3PL IRT model-estimated TIFs. The results indicated 

that when LID was present, the TRT-based equating method in general provided more accurate 

estimation of linking coefficients and item parameters than the IRT-based equating method, 

especially when the degree of LID was high. The TRT-based, IRT-based, and GRM equating 

procedures yielded comparable person parameter estimates, with the former two performed 

slightly better than the latter in some conditions. The equating method based on the TRT model 

also yielded better reliability statistics than that based on the 3PL IRT model, as indicated by the 

TIF inflation ratios. The GRM and TRT model produced similar reliability statistics, whereas the 

latter generated more accurate person parameter estimates.  

Zhang (2010) compared the performance of separate and concurrent estimation under the 

2PNO testlet response model using simulated data. Three linking separate calibration methods 

were considered: (i) Stocking-Lord; (ii) Haebara; and (iii) TCC method. The conditions of the 

study were: (a) number of common testlets (2 and 4); (b) testlet variance (0.25, 0.50, 0.75, and 

1.00); and (c) calibration models (traditional IRT model vs. TRT model). The WinBUGS 

program was employed to implement the MCMC method for estimation of the 2PNO testlet 

model. The computer program BILOG-MG was used to estimate the 2PNO IRT model. The 
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evaluation criteria were: (a) RMSD and mean Euclidean distance for item discrimination and 

difficulty parameters, and (b) mean differences for the means of testlet effects. The results 

indicated that the Haebara approach and the TCC approach under the 2PNO testlet model 

performed similar or even better than did the Stocking-Lord method and the concurrent 

calibration method. The concurrent calibration method performed as well as the TCC methods, 

especially when the number of common testlet is not small (n=4). The results also suggested that 

ignoring LID could substantially increase equating errors. The equating errors increased as the 

testlet variance increased. In general, equating errors decreased as the number of common 

testlets increased. However, the difference was small, especially for the large sample size 

conditions (n=1,000).  

Using real data, He et al. (2012) compared the equating performance of the TRT and 

bifactor model under the NEAT design for testlet-based tests. Chen (2014) explored the equating 

performance of these two models under the random groups design using both real and simulated 

data. The results from both studies showed that these two models generated similar equating 

results, and they both performed better than the dichotomous IRT model when LID was present. 

Moreover, the results from Chen’s (2014) study showed that the GRM produced more stable 

equating results than the TRT and bifactor models, even with a large degree of LID.  

Cao, Lu, and Tao (2014) conducted a simulation study to compare the performance of 

three IRT models on number-correct equating under the random groups design using linking 

separate calibration: the 2PL IRT model, the GRM, and the 2PL TRT model.  The results show 

that with the presence of LID, the results from the 2PL IRT model and the 2PL TRT model more 

closely agreed with those from the baseline equipercentile method, compared to those from the 



 46 

GRM. In addition, the 2PL IRT model was quite robust to the violation of the local item 

independence assumption.   

In sum, the results from the above mentioned studies in general suggest that with the 

presence of LID, the TRT model and the bifactor model tend to generate better equating results 

than traditional dichotomous IRT models. These are some inconsistent findings as well, which 

may be caused by different evaluation criteria used in these studies. For example, the accuracy of 

number-correct score estimates was examined in Cao, Lu, and Tao’s (2014) study, while in Lee 

et al. (2001) and He et al. (2012) the traditional (e.g., linear and equipercentile) equating results 

were used as baselines. In addition, the results from above mentioned studies are inconsistent 

with regard to the relative performance of the TRT model and polytomous IRT model. 

Therefore, it is the interest of the current study to also compare the equating performance 

between the TRT model and polytomous IRT model.   

2.6 IRT EQUATING WITH LOCAL PERSON DEPENDENCE 

It has been shown that with the presence of LID, equating methods based on the testlet model 

can provide more accurate linking coefficients and model parameter estimation than those based 

on standard IRT models (e.g., Li, Bolt, & Fu, 2005; Li, 2009; Zhang, 2010). However, equating 

test forms when data exhibit person dependence remains an area in which there has been little 

research. A related study conducted by Wang et al., (2010) investigates the impact of ignoring 

person dependence on accuracy of vertical scaling. The results in general suggest that ignoring 

person dependence would lead to reduced effective sample size of IRT models and increased 
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vertical scaling errors. The current study aims to address such paucity in equating with dual local 

dependence. 
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3.0  METHODOLOGY 

The essential goal of this study was to explore the effectiveness of multilevel models on test 

equating under the anchor test design in situations where test data exhibit local dependence. The 

equating results from using multilevel models were to be compared to those from using 

traditional IRT model and TRT model. In addition, factors that are expected to affect equating 

results were also investigated, such as degree of local dependence, sample size, ability 

distribution, and number of common testlets.  

In order to accomplish these goals, two simulation studies were conducted. Two types of 

test data were considered: data containing responses to testlet items collected from independent 

examinees and those collected from examinees nested within groups. The use of two types of 

multilevel models on test equating was demonstrated in these studies. It was expected that the 

results from these studies could provide evidence as a reference for researchers interested in 

applying multilevel models to test equating, especially in situations where item and person 

dependence are present.  

This chapter is organized in two sections. The first section reports the methodology for 

simulation study 1, which evaluated the effectiveness of HGLM as a concurrent calibration 

model on equating testlet-based tests. The second section presents the methodology for 

simulation study 2, which investigated the performance of a 3PL multilevel testlet model as a 

concurrent calibration model on test equating in situations where dual local dependence was 
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present in test data. Each section describes the design and factors of the simulation study, data 

generation procedures, equating methods, and evaluation criteria to evaluate and compare the 

equating results.   

3.1 SIMULATION STUDY 1 

3.1.1 Research questions 

The purpose of the first simulation study was to explore the effectiveness of a three-level HGLM 

as a concurrent calibration model on equating testlet-based tests under the anchor-test design. 

The equating accuracies under the three-level HGLM were also compared with those under a 

two-level HGLM which ignored the testlet effects. In addition, the HGLM approach was also 

compared to concurrent calibration using MULTILOG based on the Rasch model or GRM.  The 

study attempted to answer the following research questions:  

1. How well does the proposed HGLM concurrent calibration method recover model 

parameters with the presence of LID?  

1.1. How well does the two-level HGLM recover model parameters, compared 

to the Rasch concurrent calibration with the presence of LID? 

1.2. Does the proposed three-level HGLM, which accounts for the testlet effects, 

provide more accurate equating results than the two-level HGLM with the 

presence of LID? 
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1.3. For concurrent calibration, does polytomous scoring using the GRM 

provide more accurate equating results than Rasch concurrent calibration 

with the presence of LID?  

2. For each of the four investigated equating methods, what is the impact of degree of 

LID on equating results? 

3.1.2 HGLM as a concurrent calibration model 

The Rasch model has been widely used in educational measurement. For example, many state 

assessments programs are using the Rasch model to measure students’ performance. As 

described above, the Rasch testlet model can be reformulated as a three-level HGLM. The effects 

of test items, item clusters, and persons are modeled in the level-one, level-two, and level-three 

models, respectively. Because HGLM allows for missing data, it can be directly applied in test 

equating as a concurrent calibration model (Chu & Kamata, 2000). When the anchor-test design 

is used, the item parameters across test forms are estimated on the same scale through the anchor 

test items (Chu & Kamata, 2000). 

The three-level HGLM model for testlet effects described earlier assumes that examinees 

are from one underlying latent distribution. Let imjp be the probability that person j answers item 

i in item cluster m correctly, the level-one model can be expressed as: 
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where qimjX  is the q
th

 dummy variable for person j, and 1qimjX  when q=i and 0 when qi, mj0  

is the intercept, and qmj  is the coefficient associated with qimjX  where .1,....,1  Iq  To 
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achieve full rank for the design matrix, one of the dummy variables in the equation is dropped, 

thereby resulting in 1I  dummy variables. This dropped dummy variable is treated as the 

reference item, and therefore mj0  is interpreted as the item effect for the dropped item in item 

cluster m for person j. The individual item effect qmj  is the difference of the item with the q
th

 

dummy variable from the effect of the reference item.  

The item cluster-level (level-two) model is given by 
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where j00  is the fixed effect of the level-one intercept, jq0  is the item-specific effect for item 

with the q
th

 dummy variable (when i=q), and mju0 is the random effect of the level-one intercept. 

The random effect mju0 is assumed to follow a normal distribution with mean of zero and 

variance of 2

u . It can be considered as the interaction between latent trait and item cluster, which 

is analogous to the person-specific testlet effect in Bradlow, Wainer, and Wang’s (1999) 

formulation of the one-parameter testlet model. In both models, the variance of the interaction 

effect 2

u  indicates the magnitude of LID and is assumed to be constant across item clusters.  

The person-level (level-three) model is given by 

                                                  























000

20020

10010

0000000

qmq

m

m

jj r











, (3.3) 



 52 

where jr00 is the person ability and ),0(~ 2

00 rj Nr  . In this model, the items are assumed having 

only fixed effects, while the person effect is considered to be random.  

The combined three-level model for LID can be expressed as 
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where jr00 indicates the ability for person j, and the term 00000   q  denotes the difficulty 

level of item q. In the framework of TRT, this model can be rewritten as: 
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where jj r00 , 00000   qib , and mjijd u0)(  . Thus, the three-level HGLM for LID is 

equivalent to the Rasch testlet model (Wang & Wilson, 2005). 

For equivalent groups equating, it can be directly applied for item and ability calibration. 

However, for non-equivalent groups equating, the base and target groups have different 

distribution characteristics (e.g., means and standard deviations). To differentiate the base and 

target groups, a group indicator can be added into the person-level model. Hence, it can model 

groups with different means. Equation (3.3) becomes: 
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where group is the person-level variable, indicating whether the examinee is from the base group 

or the target group. The value of the variable group equals one if the examinee is from the base 
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group, and zero otherwise. The term 010  denotes the difference in ability between the base and 

target groups. The combined model for equating testlet-based tests can be expressed as 
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where the term ( 00000   q ) denotes the difficulty level for item i for i=q(i=1, …, k-1), and 

000  is the item difficulty for item k. The overall ability for person j in this formulation is 

jj Groupw )(01000  . For examinees in the base group, the ability can be expressed as j = jw00 . 

For examinees in the target group, it can be calculated as
j = 01000 jw . It should be noted that 

this adjusted model still assumes equal variance of the two latent distributions. Therefore, this 

model is appropriate for equating situations where the distributions of the base and target groups 

are similar in variance.  

The performance of the three-level HGLM on equating testlet-based test was also to be 

compared to that of a two-level HGLM ignoring the item clustering effect. As described above, 

the Rasch model can be reformulated as a two-level HGLM. Let ijp  be the probability that 

person j answers item i correctly, the item-level model is given by: 
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where qijX  is the q
th

 dummy variable for person i, and 1qijX  when q=i and 0 when qi, I is the 

number of items in the test, j0  is an intercept term, and qj  is the coefficient associated with 

qijX  when .1,....,1  Iq  To achieve full rank for the design matrix, the dummy variable for the 
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I
th

 item is dropped, thereby resulting in 1I  dummy variables. This dropped dummy variable is 

treated as the reference item, and therefore j0  is interpreted as the item effect for the dropped 

item for person j, and qj  is the effect of the q
th

 item compared to the reference item. 

The person-level model can be written as: 
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The combined model can be expressed as 
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where the term ( 000   q ) denotes the difficulty level for item i for i=q(i=1, …, I-1), and 00  is 

the item difficulty for item i. The overall ability for person j in this formulation is 

jj uGroup 001 )(  .  

3.1.3 Design and data generation 

This simulation study employed the anchor test equating design and concurrent calibration 

method. The equating results based on the four investigated models – the three-level HGLM, the 

two-level HGLM, the Rasch model, and the GRM model – were compared. Two estimation 

procedures were used to simultaneously put the item parameters for the target form onto the base 

form scale: Laplace approximation estimation in SAS for the HGLM approach and MMLE in 

Multilog for Rasch and GRM concurrent calibration.  
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 An anchor test data collection design was used for data generation. It was assumed that 

two forms of a 30-item multiple-choice test were given to two groups of examinees. There were 

6 testlets in each test form and each testlet contained 5 items. The test length is fixed at 30 

because it is the common quantity among the reviewed literature on equating testlet-based test. A 

testlet size of 5 is commonly used in actual reading comprehension tests (Li, Bolt, & Fu, 2005).  

The two-parameter TRT model (Wainer, Bradlow, & Du, 2000) was used for data 

generation. Let ijY be the response of examinee j on item i. The probability of a correct answer of 

examinee j on item i is:  

                                
)](exp[1

)](exp[
)1(

)(

)(

ijdijj

ijdiji

ij
ba

ba
Yp








 , (3.11) 

Where j , ia , and ib  are the person trait, item discrimination, and item difficulty parameters, 

respectively. Compared to the standard two-parameter IRT model, this model adds a random 

effect parameter, )(ijd , which models the person-specific testlet effect, or the interaction of 

person j with testlet d. Within a testlet, the value of )(ijd  is constant for a person but varies 

across persons. It is assumed to be independent from the   distribution and follow a normal 

distribution, ),0(~ 2

)(  Nijd . By definition, the sum of )(ijd  over examinees within the same 

testlet is zero (i.e., 0)(  j ijd ). If 0)( ijd , there is no testlet effect and the item fits the 

standard two-parameter model. The testlet variance, 2

 , is assumed to be constant across testlets. 

It denotes the magnitude of LID: the larger the variance, the larger the amount of item 

dependence within that testlet. If 02  , there is no extra dependence among items within the 

same testlet and the local item independence assumption is met.  



 56 

The true values of the item difficulty parameter were randomly generated from a standard 

normal distribution. The true values of the item discrimination parameter were generated from a 

uniform [0.8, 1.2] distribution to reflect the discrimination values of test items used for Rasch 

calibration in real testing situations. For each examinee, a primary trait and six testlet-specific 

traits were generated. The testlet-specific traits were randomly drawn from a multivariate normal 

distribution with means of 0 and variances as specified below.  For examinees in the base group, 

the primary trait was randomly generated from a standard normal distribution. For examinees in 

the target group, the primary trait was randomly generated from a normal distribution with 

means and variances as specified below. Response data were generated for base and target 

groups separately based on the simulated item and person parameter values. To simulate a large-

scale testing situation, 1,000 examinees’ responses were simulated for both base and target 

groups. For the GRM concurrent calibration, the item scores within each testlet were summed to 

form a single testlet score. Response data were generated using the statistical software SAS 9.4. 

3.1.4 Manipulated factors 

This study examined whether variations in ability distribution for the target group, number of 

common testlets, and degree of LID affect equating results. 

The first factor examined was the ability distribution for the target group. Two conditions 

were considered: N (0, 1), or N (1, 1). The N (0, 1) target group condition simulated an 

equivalent group equating situation, and the N (1, 1) target group condition reflected a 

nonequivalent group equating situation.  

The second factor examined was the number of common testlets. Two different lengths of 

common testlets were used: 2 and 3. In conditions with 2 common testlet, there were 10 unique 
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testlets across the two test forms. Whereas in conditions with 3 common testlets, there were 9 

unique testlets across the two test forms. Larger number of common items generally produces 

better equating results.  

The third factor examined was the degree of LID. The degree of LID was manipulated by 

varying the level of testlet variance. Four levels of LID were simulated: 2

 0, 0.5, 1, and 1.5, 

reflecting zero, low, moderate, and high degree of testlet effect. These values (i.e., 0, 0.5, 1 and 

1.5) were similar to those specified in Li, Bolt, and Fu (2006) ( 2

 0.2, 0.5, 1, and 1.5) and 

Bradlow, Wainer, and Wang (1999) ( 2

 0, 0.5, 1, and 2). Many previous studies used the 

values of testlet variance within the range between 0 and 1 (e.g., Jiao, Wang, & He, 2013; Wang 

& Wilson, 2005; Wang et al., 2002), or 0 and 1.5 (e.g., Chen, 2014; Li, Bolt, & Fu, 2006). 

Therefore, the current study chose the values within the range between 0 and 1.5 to specify the 

degree of LID.  

With the combination of ability distribution for the target group, number of common 

testlets, and levels of item dependence, 16 simulation conditions resulted. Within each simulated 

condition, 200 replications were run, resulting in a total of 3,200 datasets.  

With the combination of ability distribution for the target group, number of common 

testlets, and levels of item dependence, 16 simulation conditions resulted. Within each simulated 

condition, 200 replications were run, resulting in a total of 3,200 datasets.  

3.1.5 Model calibration and estimation methods 

For the concurrent calibration, the combined data sets from the base and target groups for each 

simulation condition were used. After the datasets were simulated, the three-level HGLM for 
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equating testlet-based tests was fitted to estimate model parameters. For comparison purpose, the 

same combined data set was also fitted to the two-level HGLM, which is equivalent to a standard 

Rasch model. Thus, a single combined data set was analyzed twice under the HGLM framework. 

Altogether, 2400 concurrent calibration runs were performed under the HGLM framework. The 

SAS 9.4 PROC GLIMMIX procedure was used for model calibration.  

The most commonly used method for estimating the parameter of HGLMs is the 

penalized quasi-likelihood (PQL; Breslow & Clayton, 1993) procedure. This method is less 

computationally intensive and can provide reasonable estimation in many cases. However, it 

tends to yield considerable downward bias for the variances of the random components in 

HGLM with binary outcomes. On the contrary, the Laplace approximation estimation option is 

computationally intensive but can reduce the estimation bias in the variance of random 

components. In Laplace 6 approximation, parameters were estimated by a sixth order 

approximation to the likelihood for the model based on a Laplace transformation (Raudenbush, 

Yang, & Yosef, 2000). The recent versions of SAS, including SAS 9.3 and SAS 9.4, allow for 

Laplace approximation. Since the recovery of the variance of random components is to the 

interest of this study, Laplace 6 approximation was chosen for the parameter estimation. 

For comparison purposes, concurrent calibration based on the Rasch and a polytomous 

IRT model was considered in this study. The calibration model considered was the GRM. The 

computer program MULTILOG was used to estimate item and person parameters based on the 

Rasch model and GRM. In total, this study conducted equating four times for each simulated 

dataset, two using HGLM, and two using MULTILOG. As a result, 6,400 HGLM concurrent 

calibration runs and 6,400 MULTILOG concurrent calibration runs were performed.   
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3.1.6 Evaluation criteria 

The effectiveness of the concurrent calibration method under HGLM can be evaluated by 

examining how well the model parameters are recovered. Since item parameters of dichotomous 

IRT and TRT models cannot be directly compared to those of polytomous IRT models, the focus 

of the comparison in this study is on the person parameter. Because the estimated theta obtained 

from different software packages may not be on the same scale, expected scores were computed 

and compared across the four equating procedures. The expected score (E(X)) or true score ( ) 

is obtained as: 

    E(X)= 



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i
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)( ,                                                            (3.12) 

where 
iU  is the response of the ith item, and i=1,…I. For dichotomous item,  
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Similarly, for five-category polytomous items, the expected score is calculated as: 
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RMSDs were calculated for the expected true scores to assess the accuracies of equating. 

For each of the simulation conditions, the RMSD was calculated for the expected scores in a 

replication, and then averaged across replications.  

RMSD is defined as the squared root of the average squared differences between 

estimated and true parameter values. The RMSD of the expected scores is obtained as 
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where jX  is the true value of the expected score, jX̂  is the estimated value of the expected 

score, and n is the number of persons.   

3.2 SIMULATION STUDY 2 

3.2.1 Research questions 

The purpose of this simulation study was to explore the effectiveness of concurrent calibration 

using a multilevel 3PL testlet model on equating testlet-based tests in situations where 

respondents were nested in groups under the NEAT design. A 3PL multilevel testlet model was 

used to model item and person dependence structures simultaneously. The equating accuracies 

under the 3PL multilevel testlet model were also compared with those under the 3PL testlet 

model which ignored the testlet effects, and those under the traditional 3PL IRT model which 

ignored both testlet effects and person clustering effects. The study attempted to answer the 

following research questions:  

1. How well does the 3PL multilevel TRT model recover the item and person 

parameters under the NEAT design, compared to the 3PL TRT model and the 

traditional 3PL IRT model, with the presence of LID and person dependence? 

2. For each of the three investigated models, what is the impact of degree of LID on 

equating results? 
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3. For each of the three investigated models, what is the impact of degree of person 

dependence on equating results? 

3.2.2 A 3PL multilevel testlet model for item and person dependence 

The 3PL testlet model (Wainer, Bradlow, & Du, 2000) can be modified to include the 

dependence structure of persons. The probability of person ‘j’ in school ‘g’ getting an item ‘i’ 

correct )1( jgiYP  is given by a logistic function: 
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where g  is the average ability of persons in school ‘g’ and ),(~ 2

11  Ng , )( gj  is the 

difference between the latent ability of person ‘j’ in school ‘g’ and the average ability of the 

school and ),(~ 2

22)(  Ngj . The term ( )(gjg   ) is thus the latent ability of person ‘j’ in 

school ‘g’, and follows a ),( 2

 N  distribution, where  21   and 2

2

2

1

2   .  

The degree of person dependence is measured by ICC, which is the proportion of total 

variance explained by the group variance, )/( 2

2

2

1

2

1   . As with the 3PL testlet model, ia , ib , 

ic , and )(ijm are the item discrimination, difficulty, guessing, and testlet parameters, 

respectively. The random effect parameter, )(ijm , models the person-specific testlet effect, or the 

interaction of person j with testlet m(i) (i.e., the testlet m that contains item i), and 

),0(~ 2

)()( imijm N  . The testlet variance, 
2

)(im , denotes the magnitude of LID.   
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This model is also a natural extension to the four-level IRT model proposed by Jiao et al. 

(2012). Compared to the four-level IRT model, this model allows the chance of pseudo-guessing 

and variation in item discrimination to be estimated.  

3.2.3 Design and data generation 

In this simulation study, the NEAT design was used for data generation. It was assumed that two 

test forms (the base form and the target form) with common items were administered to two 

groups of examinees, the base group and the target group. For each group, there were 20 students 

in each of 50 classrooms, resulting in a sample size of 1,000. Both test forms consisted of 30 

items, with 6 testlets in each test form and each testlet contained 5 items.  

The 3PL multilevel testlet model was used to generate response data. The item parameter 

values were simulated according to Li’s (2009) specifications. The item discrimination values 

were randomly chosen from a lognormal distribution LN(-0.3, 0.35
2
) ; the item difficulty values 

were obtained from the standard normal distribution N(0, 1); and the guessing parameters were 

simulated from a normal distribution N(0.2, 0.05
2
). The testlet parameters were generated from a 

normal distribution with a constant variance, ),0(~ 22

)(  Nim . The true values of the person 

ability parameter for the base group were randomly generated from a standard normal 

distribution.  

3.2.4 Manipulated factors 

The manipulated factors included the following: (a) ability distribution for the target group; (b) 

degree of item dependence; and (c) degree of person dependence. 
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The first factor examined was the ability distribution for the target group. Two different 

ability distributions were generated for the target group: N (.25, 1.1
2
) and N (.5, 1.2

2
) (see Kang 

& Petersen, 2009). The different means and standard deviations between the base and target 

group ability distributions reflect the nonequivalent nature of the two groups. According to Kang 

and Petersen (2009), the N (.25, 1.1
2
) target group condition simulated an equating condition 

where the base and target groups differ somewhat in ability. The N (.5, 1.2
2
) target group 

condition reflected an equating situation where the two groups differ significantly in ability.  

The second factor examined was the degree of LID, which was manipulated by varying 

the level of testlet variance. Two levels of item dependence were simulated: 2

  0.5 and 1, 

reflecting moderate and high degree of testlet effect. The third factor examined was the degree of 

person dependence, which was manipulated by varying the level of ICC. Two levels of ICC were 

used: ¼ and ½, representing moderate and high level of person dependence.  

With the combination of the ability distribution of the target group, number of common 

testlets, levels of item dependence, and levels of person dependence, 8 simulation conditions 

resulted. Within each simulation condition, 10 replications were run, resulting in a total of 80 

datasets. The simulation was programmed in SAS 9.4. 

3.2.5 Equating and calibration method 

Concurrent calibration method could put the item and person parameters for the base and target 

groups onto the same scale by simultaneously calibrating a combined data set. For purposes of 

consistency, the same computer package and the same estimation procedure were used to run all 

concurrent calibrations. The MCMC method in WinBUGS 1.4 (Spiegelhalter, Thomas, Best, & 

Lunn, 2004) was used to conduct the concurrent calibration under the 3PL multilevel testlet 
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model, the 3PL testlet model, and the 3PL IRT model. Thus, a single combined data set for the 

base and target groups was analyzed three times using the MCMC method in WinBUGS 1.4, 

once for each of the three calibration method conditions. Altogether, 480 WinBUGS concurrent 

calibration runs were performed. The MCMC method implemented in WinBUGS 1.4 was used 

because none of the current available IRT or multilevel software can analyze the 3PL multilevel 

testlet model.  

In the Bayesian estimation framework, a first step is to specify a prior distribution for 

each unknown parameter. In this study, the priors for the a, b, and c parameters were set by a log 

normal (0, 0.25) distribution, a normal (0, 4) distribution, and a beta (5, 17) distribution, 

respectively, in all three calibration models. These are the priors commonly adopted for the 3PL 

IRT model estimation. Since the 3PL testlet model and the 3PL multilevel testlet model are the 

extensions of the 3PL IRT model, the same set of the priors for the item parameters were also 

adopted for the two more complex models. Following Bradlow, Wainer, and, Wang (1999), the 

prior for the testlet variance 2

  was set to be an inverse-gamma (0.5, 1) distribution.  The prior 

for the ability distribution of the base group was set to be the normal (0, 1) distribution, while the 

prior for the ability distribution of the target group was freely estimated. Therefore, the final 

estimates of item and person parameters were all expressed on the metric of the base group.  

The Metropolis sampling method was used to simulate the posterior distributions. Two 

chains with indispersed initial values were used. The convergence of the MCMC samples was 

assessed by examining the Gelman-Rubin convergence statistic and history plots. For each of the 

calibration models, 5,000 iterations were run after the burn-in iteration phase, resulting in a total 

of 10,000 MCMC samples. The number of burn-in iterations differed by calibration model. For 
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the 3PL multilevel TRT model, a total of 20,000 iterations for each chain were run and the first 

15,000 iterations were discarded.  

3.2.6 Evaluation criteria 

The effectiveness of the concurrent calibration method under each calibration model can be 

evaluated by examining how well the model parameters are recovered. Correlation and RMSD 

were used to assess the accuracies of item and person parameter recovery. The two indices were 

calculated for each simulation condition and each calibration model to evaluate the accuracy of 

equating.   
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4.0  RESULTS 

This chapter presents the results of the two simulation studies and is divided into three sections. 

The first section presents the results from simulation study 1, which compares the HGLM 

approach and MULTILOG in equating testlet-based tests. The RMSDs of estimated expected 

scores versus true expected scores were compared across the four investigated methods (i.e., 

two-level HGLM, three-level HGLM, Rasch and GRM concurrent calibration using 

MULTILOG). The second section presents the results from simulation study 2, which compares 

the equating results obtained from each of the IRT models (i.e., 3PL IRT model, 3PL TRT 

model, and 3PL multilevel TRT model). The estimated item and person parameter values were 

compared against true values under the three IRT models. The third section provides a summary 

of the results from the two simulation studies.  

4.1 RESULTS FROM SIMULATION STUDY 1 

Simulation study 1 aimed to explore the performance of the HGLM approach in equating testlet-

based tests. This section presents equating results for testlet-based tests across four equating 

methods. The design factors included target group ability distribution (N (0, 1), N (1, 1)), degree 

of LID ( 2

 0, 0.5, 1, 1.5), and number of common testlets (2, 3), resulting in a total of 16 
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simulation conditions. To investigate the performance of the various investigated models on 

concurrent equating of testlet-based tests, average RMSDs of estimated expected score were 

calculated across the 200 replications within each of the 16 simulated conditions and for each of 

the four investigated methods. These average RMSDs are presented in Tables 1 through 4.  

4.1.1 Analysis of variance 

Tables 1 and 2 present the average RMSDs of the base group for the two-common-testlet and 

three-common-testlet equating design, respectively. Tables 3 and 4 present the average RMSDs 

of the target group for the two-common-testlet and three-common-testlet equating design, 

respectively. Lower RMSDs indicate better estimation performance of the equating method.  

Table 1. RMSDs of expected scores over 200 replications for the two-common-testlet equating design 

(Base group) 

Target Group 

Ability 

Testlet 

variance 

2-level 

HGLM 

3-level 

HGLM 

 

Multilog_Rasch 

 

Multilog_GRM 

      

N (0, 1) 0 2.141 2.141 2.141 2.171 

 0.5 2.096 2.096 2.096 2.169 

 1 2.049 2.046 2.049 2.202 

 1.5 2.025 2.020 2.025 2.271 

      

N (1, 1) 0 2.152 2.152 2.152 2.180 

 0.5 2.099 2.098 2.099 2.170 

 1 2.055 2.052 2.055 2.210 

 1.5 2.025 2.019 2.025 2.276 
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Table 2. RMSDs of expected scores over 200 replications for the three-common-testlet equating design  

(Base group) 

Target Group 

Ability 

Testlet 

Variance 

2-level 

HGLM 

3-level 

HGLM 

 

Multilog_Rasch 

 

Multilog_GRM 

      

N (0, 1) 0 2.145 2.145 2.145 2.175 

 0.5 2.096 2.096 2.096 2.164 

 1 2.052 2.049 2.052 2.202 

 1.5 2.017 2.010 2.016 2.269 

      

N (1, 1) 0 2.141 2.141 2.141 2.168 

 0.5 2.093 2.092 2.092 2.163 

 1 2.050 2.047 2.049 2.202 

 1.5 2.019 2.013 2.019 2.275 

 

Table 3. RMSDs of expected scores over 200 replications for the two-common-testlet equating design  

(Target group) 

Target Group 

Ability 

Testlet 

Variance 

2-level 

HGLM 

3-level 

HGLM 

 

Multilog_Rasch 

 

Multilog_GRM 

      

N (0, 1) 0 2.136 2.136 2.136 2.167 

 0.5 2.093 2.092 2.092 2.164 

 1 2.055 2.052 2.055 2.205 

 1.5 2.019 2.012 2.019 2.272 

      

N (1, 1) 0 2.011 2.011 2.011 2.044 

 0.5 1.976 1.975 1.976 2.051 

 1 1.955 1.952 1.954 2.117 

 1.5 1.937 1.931 1.937 2.205 
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Table 4. RMSDs of expected scores over 200 replications for the three-common-testlet equating design  

(Target group) 

Target Group 

Ability 

Testlet 

Variance 

2-level 

HGLM 

3-level 

HGLM 

 

Multilog_Rasch 

 

Multilog_GRM 

      

N (0, 1) 0 2.146 2.146 2.146 2.175 

 0.5 2.097 2.096 2.097 2.167 

 1 2.050 2.047 2.050 2.202 

 1.5 2.022 2.015 2.021 2.275 

      

N (1, 1) 0 2.013 2.013 2.013 2.045 

 0.5 1.980 1.979 1.979 2.054 

 1 1.956 1.953 1.955 2.113 

 1.5 1.929 1.923 1.929 2.190 
 

A mixed ANOVA was performed on average RMSDs as a function of three between-

subject factors and one within-subject factor for the base and target group, separately. As the 

research questions involve the impact of equating method, target group ability distribution, 

number of common testlets, and testlet variance, the main effects of these factors as well as their 

2-way, 3-way, and 4-way interactions were examined. Table 5 shows the between-subject and 

within-subject factors along with the levels of each factor.   

Table 5. Mixed ANOVA factors and levels 

Simulated Factors Levels 

   

Between-Subject 

Factors 

Target group ability distribution N(0, 0), N(0, 1) 

Number of common testlets 2, 3 

Testlet variance 0, 0.5, 1, and 1.5 

  

Within-Subject 

Factor 

Equating method 2-level HGLM, 3-level HGLM, 

Multilog_Rasch, Multilog_GRM 

 

Table 6 presents the partial eta squared ( 2

p ) for the ANOVA performed for the base and 

target group, respectively. As can be seen from Table 6, none of the three-way and four-way 

interaction terms are practically significant. For the base group, testlet variance and equating 
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method, as well as their interaction term, had statistically and practically significant impact on 

the average RMSDs. The effect of testlet variance was moderate ( 186.2 p , p <.001), while the 

effects of equating method and the interaction term were large ( 954.2 p , p <.001 and 904.2 p

, p <.001, respectively). For the target group, in addition to the above factors, target group ability 

distribution and the interaction between target group ability distribution and testlet variance, also 

had statistically and practically significant impact on the average RMSDs. Equating method, 

target group ability distribution, and the interaction between equating method and testlet variance 

had a large effect ( 955.2 p , p <.001; 433.2 p , p <.001; and 907.2 p , p <.001, 

respectively), while testlet variance and the interaction between testlet variance and target group 

ability distribution had a small effect ( 079.2 p , p <.001; and 020.2 p , p <.001).  For both 

base and target group, the number of common testlets was found to have no significant impact on 

the average RMSDs. Because the factors that significantly impacted the average RMSDs were 

slightly different for the base and target group, the discussion will be based on the base and 

target group, separately.  
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Table 6. 
2

p  for mixed ANOVAs 

Factor Base group Target group 

Main Effects Target group ability 

distribution (A) 

­ .433 

 

 Number of common 

testlets (N) 

.001 - 

 Testlet variance (V) .186 .079 

 Equating method (M) .954 .955 

    

Two-way 

interactions 

A*N - - 

 A*V - .020 

 N*V - - 

 A*M - .013 

 N*M - .001 

 V*M .904 .907 

    

Three-way 

interactions 

   

 A*N*V - - 

 A*N*M - - 

 A*V*M .002 .003 

 N*V*M .004 - 

    

Four-way 

interactions 

A*N*V*M - .001 

Note: Partial Eta-Square ( 2

p ) is reported in the table. 

-: indicates that the 001.2 p  

4.1.2 RMSDs for the base group 

Figure 1 shows the two-way interaction between testlet variance and equating method for the 

base group. As can be seen from Figure 1, the patterns of differences on the average RMSDs 

across the four equating methods were different across the LID conditions. When there was no 

testlet effect ( 02  ), the two-level HGLM, three-level HGLM, and the Rasch calibration using 

MULTILOG yielded equivalent results. This finding suggests that the two HGLMs performed as 
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well as the Rasch calibration using MULTILOG when tests were composed of independent 

items. In the low LID (i.e., 5.02  ) test conditions, the average RMSDs obtained using the 

three-level HGLM were almost identical to those obtained using the two-level HGLM and the 

Rasch calibration using MULTILOG. This finding indicates that when LID was present, the 

Rasch model tended to perform as well as the Rasch testlet model when the testlet variance was 

less or equal to 0.5.  

As the degree of LID increased from low to high (i.e., 5.02   through 1.5), the 

differences in RMSDs between the three-level HGLM and the other methods gradually 

increased, with the three-level HGLM consistently yielding smaller RMSDs. However, the 

differences in RMSDs among the two-level, three-level HGLM, and Rasch calibration using 

MULTILOG were very small (less than 3% of the RMSDs). For example, as shown in Table 1, 

when 5.12   and the target group ability followed a standard normal distribution, the RMSDs 

for the two-level HGLM, Rasch calibration using MULTILOG, and the three-level HGLM were 

2.025, 2.025, and 2.020, respectively.  Overall, the above results indicate that when the Rasch 

model was applied for concurrent calibration, the HGLM approach and the MULTILOG 

estimation performed similarly, regardless of LID levels. Moreover, the Rasch model was quite 

robust to the violation of the local item independence assumption.  

Across all LID conditions, the GRM calibration using MULTILOG consistently 

displayed the largest RMSDs among the four investigated methods. When LID was not present 

(i.e., 02  ), the average RMSDs produced by the GRM calibration using MULTILOG were 

slightly larger than those produced by the other three methods. The differences increased 

gradually as the degree of LID increased from low to high (i.e., 5.02   through 1.5), 
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regardless of the target group ability distribution. The highest average RMSDs were found in the 

test with large testlet effects (i.e., 5.12  ) and when the GRM was used for calibration. These 

findings indicate that the equating errors were larger when the GRM versus Rasch model was 

used for calibration, with respect to ability recovery.  

On comparing the average RMSDs across LID levels, the values of average RMSD 

slightly decreased for the HGLM approach and Rasch calibration using MULTILOG as 2

  

increased from 0 to 1.5. However, a different trend was observed for the other method. For the 

GRM calibration using MULTILOG, the average RMSDs dropped a little as  2

  increased from 

0 to 0.5 and then increased gradually as the degree of LID increased from low to high (i.e., 

5.02   through 1.5).  

 

 

Figure 1. Two-way interaction between testlet variance and equating method (base group) 

 

0 0.5 1 1.5

2-Level HGLM 2.145 2.096 2.052 2.022

3-Level HGLM 2.145 2.096 2.049 2.016

Rasch_MULTILOG 2.145 2.096 2.051 2.021

GRM_MULTILOG 2.174 2.167 2.204 2.273

0.000
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1.000
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2.000
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R
M
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4.1.3 RMSDs for the target group 

Figure 2 shows the two-way interaction between testlet variance and equating method for the 

target group. The patterns were similar to those shown in Figure 1: (1) across all LID conditions, 

the GRM calibration using MULTILOG consistently displayed the largest RMSDs among the 

four investigated methods, and the differences increased as the LID levels increased from 0 to 

1.5; (2) for tests with zero or low degree of LID (i.e., 02   or 0.5), the two-level HGLM, 

three-level HGLM, and the Rasch concurrent calibration using MULTILOG yielded almost 

equivalent results; (3) for tests with medium or high degree of LID (i.e., 12   or 1.5), the 

three-level HGLM produced slightly smaller RMSDs than the two-level HGLM and Rasch 

concurrent calibration, but the differences were trivial; (4) the values of average RMSD 

decreased as 2

  increased from 0 to 1.5 for the HGLM approaches and Rasch calibration using 

MULTILOG.  

 

 

Figure 2. Two-way interaction between testlet variance and equating method (target group) 

0 0.5 1 1.5

2-Level HGLM 2.077 2.037 2.004 1.977

3-Level HGLM 2.077 2.036 2.001 1.970

Rasch_MULTILOG 2.077 2.036 2.004 1.977

GRM_MULTILOG 2.108 2.109 2.159 2.236

0.000
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R
M
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Figure 3 shows the two-way interaction between testlet variance and target group ability 

distribution for the target group. As can be seen in Figure 3, the N (0, 1) target group ability 

distribution condition generated smaller average RMSDs than the N (1, 1) condition across all 

LID conditions. In addition, the difference in RMSDs slightly decreased as degree of LID 

increased from zero to high (i.e., 02   to 1.5). These findings in general indicate that the 

investigated equating methods tended to produce relatively better equating results for the target 

group if the base and target group differed somewhat in average ability, compared to the 

conditions where there was no group difference. 

 

 

 Figure 3. Two-way interaction between testlet variance and target group ability distribution (target group) 

 

As can be seen from Tables 1-4, similar values of average RMSD were observed in test 

conditions with two common testlets and those with three common testets for both base and 

target groups. This finding indicates that increasing the number of common items from 10 to 15 

did not lead to more accurate estimation for ability parameters.  

0 0.5 1 1.5

N(0,1) 2.149 2.112 2.090 2.082

N(1,1) 2.020 1.996 1.994 1.998
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On comparing the average RMSDs across LID levels, different patterns were observed 

for the GRM approach under different ability distribution conditions. In condition with N (0, 1) 

target group ability distribution, similar patterns were found as those observed in the base group. 

The average RMSDs dropped a little as the testlet variance increased from 0 to 0.5 and then 

increased gradually as the degree of LID increased from low to high (i.e., 5.02   through 1.5). 

However, in conditions with N (1, 1) ability distribution, the average RMSDs gradually increased 

as the degree of LID increased from zero to high (i.e., 02   through 1.5). 

4.2 RESULTS FROM SIMULATION STUDY 2 

Simulation study 2 aimed to evaluate the performance of three IRT models (i.e., 3PL IRT model, 

3PL TRT model, and 3PL multilevel TRT model) in equating testlet-based tests when examinees 

are nested within groups. This section compares the equating results from each of the three IRT 

models. The design factors included target group ability distribution (N (0.25, 1.1
2
), N (0.5, 

1.2
2
)), degree of LID ( 5.02  , 1), and degree of LPD (ICC=0.25, 0.5), resulting in a total of 8 

simulation conditions. To investigate the performance of the various IRT models on concurrent 

equating of testlet-based tests with person dependence, average correlations between estimated 

and true item and person parameter values and RMSDs were calculated across the 10 replications 

within each of the 8 simulation conditions and for each of the three investigated models. The 

average correlations and RMSD are presented in Tables 7 and 8 respectively for the item 

parameters and in Tables 9 and 10 for the person parameters.  
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4.2.1 Correlations of item parameters 

The performance of each investigated model on test equating with the presence of item and 

person dependence can be evaluated by examining how well it recovers the true item parameter 

values. The comparison was done on the discrimination parameter estimates, difficulty parameter 

estimates, and the guessing parameter estimates. Specifically, correlations between estimated and 

true item parameter values and RMSDs of the item parameter estimates were calculated and 

averaged across the 10 replications within each of the 8 simulation conditions and for each of the 

three investigated models.   

Table 7 presents the average correlations between the estimated and true item parameter 

values across 10 replications. Higher correlations indicate better estimation performance of the 

investigated model. In general, the estimates of item discrimination parameters from the 3PL 

multilevel TRT model and the 3PL TRT model were more highly correlated with the true 

discrimination parameters than the 3PL IRT model. The only exception was that in the low ICC 

and LID condition (i.e., ICC=0.25 and 5.02  ), the 3PL multilevel TRT model and the 3PL 

IRT model produced similar average correlations. This is consistent with the findings from Li 

(2009), which showed that the 3PL TRT model yielded discrimination parameter estimates that 

were more closely correlated to the true discrimination parameters if LID was ignored. As 2

  

increased from 0.5 to 1, the discrepancies between the 3PL IRT model the other two models also 

increased. This indicates that the degree of LID impacted the estimation of item discrimination 

parameters. Across all simulation conditions, the average correlations between the true and 

estimated item discrimination parameters from the 3PL multilevel TRT model and the 3PL TRT 

model were very similar. This indicates that ignoring person dependence did not impact the rank-
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order of item discrimination parameters. There was no noticeable difference on average 

correlations between the N (0.25, 1.1
2
) and N (0.5, 1.2

2
) ability condition.  

Table 7. Average correlations between the estimated and true item parameter values across 10 replications 

    Multilevel Testlet 3PL 

 Target Group 

Ability 

ICC 2

     

       

a N(.25, 1.1
2
) .25 .50 .849 .867 .847 

   1 .862 .870 .818 

  .50 .50 .867 .868 .854 

   1 .855 .862 .803 

       

 N(.50, 1.2
2
) .25 .50 .866 .880 .861 

   1 .847 .851 .806 

  .50 .50 .881 .871 .852 

   1 .860 .862 .826 

       

       

b n(.25, 1.1
2
) .25 .50 .970 .970 .969 

   1 .968 .969 .961 

  .50 .50 .969 .969 .967 

   1 .968 .970 .967 

       

 n(.50, 1.2
2
) .25 .50 .968 .967 .966 

   1 .966 .965 .960 

  .50 .50 .967 .965 .963 

   1 .963 .965 .962 

       

c n(.25, 1.1
2
) .25 .50 .338 .332 .285 

   1 .340 .337 .268 

  .50 .50 .377 .360 .359 

   1 .354 .371 .355 

       

 n(.50, 1.2
2
) .25 .50 .332 .301 .263 

   1 .289 .274 .286 

  .50 .50 .320 .303 .311 

   1 .254 .247 .227 
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The estimates of the difficulty parameters from the three models were all highly 

correlated with the true difficulty parameters ( 96.r ). In addition, these correlation values were 

very similar across simulation conditions and estimation models. These results indicate that the 

estimation of the item difficulty parameters was unaffected by the degree of LID, person 

dependence, as well as the target group ability distribution.  

None of the investigated models was good at recovering the rank-order of the guessing 

parameters. The average correlations from the three models were low across all simulation 

conditions, ranging from 0.227 to 0.377. This is not surprising, given the small range of the 

guessing parameter values. The 3PL multilevel TRT model tended to produce guessing 

parameter estimates that were better correlated with the true parameter values than those of the 

3PL IRT model. The N (0.25, 1.1
2
) ability condition tended to result in slightly higher average 

correlations than the N (0.5, 1.2
2
) ability condition. There was no consistent pattern of difference 

on average correlations across ICC and LID levels for all three models.  

4.2.2 RMSDs of item parameters 

Table 8 presents the average RMSDs of item parameters across 10 replications. For item 

discrimination parameters, the 3PL TRT model consistently produced the largest RMSDs among 

the three investigated models, while the 3PL multilevel TRT models tended to yield the smallest 

RMSDs among the three models. This finding indicates that the 3PL multilevel TRT model 

performed better than the 3PL TRT model and 3PL IRT model in estimating the discrimination 

parameters. Compared to the 3PL IRT model, the 3PL TRT model preserved better rank-order of 

the item discrimination parameters as shown in Table 7, while it also tended to result in more 

estimation errors.  
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Table 8. Average RMSDs of the item parameters across 10 replications 

    Multilevel Testlet 3PL 

 Target Group 

Ability 

ICC 2

     

       

a N(.25, 1.1
2
) .25 .50 .191 .225 .188 

   1 .179 .209 .186 

  .50 .50 .165 .214 .179 

   1 .176 .209 .195 

       

 N(.50, 1.2
2
) .25 .50 .170 .229 .190 

   1 .186 .250 .197 

  .50 .50 .165 .245 .196 

   1 .185 .246 .191 

       

       

b N(.25, 1.1
2
) .25 .50 .275 .280 .295 

   1 .313 .315 .361 

  .50 .50 .285 .298 .312 

   1 .291 .290 .311 

       

 N(.50, 1.2
2
) .25 .50 .314 .333 .346 

   1 .300 .309 .343 

  .50 .50 .296 .320 .333 

   1 .298 .307 .334 

       

c N(.25, 1.1
2
) .25 .50 .058 .056 .058 

   1 .055 .054 .058 

  .50 .50 .057 .056 .057 

   1 .057 .054 .057 

       

 N(.50, 1.2
2
) .25 .50 .057 .057 .058 

   1 .059 .057 .058 

  .50 .50 .058 .056 .056 

   1 .059 .058 .059 

 

The average RMSDs for the item difficulty parameters from the 3PL IRT model were 

slightly larger than those from the other two models. The average RMSDs from the 3PL 

multilevel TRT model were very similar to, if not smaller than, the 3PL TRT model. The N 

(0.25, 1.1
2
) ability condition tended to result in slightly higher average RMSDs than the N (0.5, 

1.2
2
) ability condition for all three models. This finding indicates that smaller ability differences 



 81 

between the base and target group leads to better estimation of the item difficulty parameters. 

There were no consistent patterns of difference on average RMSDs across ICC and LID levels 

for all three models. 

For guessing parameters, similar RMSDs were observed across all simulation conditions 

and estimation models, ranging from 0.054 to 0.059. This finding indicates that the estimation 

errors of the guessing parameters was unaffected by the degree of LID, person dependence, as 

well as the target group ability distribution. 

4.2.3 Correlations of person parameters 

The recovery of the ability parameters was evaluated in terms of correlations between the 

estimated and true ability parameter values and RMSDs. Table 9 presents the average 

correlations between the estimated and true ability parameters across 10 replications for the base 

and target groups. Figures 4-7 present the average correlations in graphical formats. Figures 4 

and 5 show the average correlations for the base group under the N (0.25, 1.1
2
) and the N (0.5, 

1.2
2
) ability condition, respectively. Figures 6 and 7 demonstrate the average correlations for the 

target group under each of the two ability conditions, respectively. From these figures we can see 

that the patterns of difference on average correlations across the ICC and LID levels were the 

same for the base and target group at each of the two ability conditions.  

The average correlations for the ability parameters were generally high, ranging from 

.779 to .900. For both base and target group, the estimates of ability parameters from the 3PL 

multilevel TRT model were more closely correlated to the true ability parameters than the other 

two models, ranging from .807 to .900. The average correlations between the estimated and true 
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ability parameters for the 3PL TRT model and 3PL IRT model were very similar, ranging from 

.779 to .875.  

Table 9. Average correlations between the estimated and true person parameter values across 10 replications 

    Multilevel Testlet 3PL 

 Target Group 

Ability 

ICC 2

     

       

Base group N(.25, 1.1
2
) .25 .50 .840 .825 .824 

   1 .812 .792 .789 

  .50 .50 .843 .805 .803 

   1 .838 .786 .783 

       

 N(.50, 1.2
2
) .25 .50 .832 .817 .815 

   1 .807 .788 .784 

  .50 .50 .847 .809 .808 

   1 .835 .788 .779 

       

       

Target group N(.25, 1.1
2
) .25 .50 .860 .851 .850 

   1 .839 .827 .826 

  .50 .50 .886 .855 .855 

   1 .867 .828 .826 

       

 N(.50, 1.2
2
) .25 .50 .876 .868 .868 

   1 .853 .843 .841 

  .50 .50 .900 .875 .875 

   1 .884 .857 .852 

 

In conditions with low degree of person dependence (i.e., ICC=0.25), the differences on 

average correlations among the three models were relatively small. For example, in condition 

with low item and person dependence (i.e., ICC=0.25, 5.02  ), and large ability group 

difference (i.e., N (0.5, 1.2
2
) ability condition), the average correlations of the target group from 

the 3PL multilevel TRT model, 3PL TRT model, and the 3PL IRT model were .860, .851, and 

.850, respectively. As the degree of person dependence increased from moderate to high (i.e., 

ICC=0.25 to 0.5), the average correlations decreased for the 3PL TRT model and the 3PL IRT 
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model. As a result, the differences on average correlations between the 3PL multilevel TRT 

model and the other two models also increased. These results indicate that ignoring person 

dependence led to ability estimates that were less closely correlated to the true ability 

parameters. In addition, the degree of person dependence impacted the rank-order of persons if 

person dependence was not taken into account.  

As 2

  increased from 0.5 to 1, the average correlations decreased for all three models. 

This finding indicates that the degree of LID impacted the estimation of ability parameters for all 

three models, regardless of whether or not the model takes into account LID. The average 

correlations from the 3PL TRT model and 3PL IRT model were very similar across LID levels, 

indicating that the 3PL IRT model was quite robust to the violation of local item independence 

assumption.   

On comparing the average correlations between the base and target group, the three 

models tended to generate slightly higher correlations for the target group across all simulation 

conditions. For example, in condition with low item and person dependence (i.e., ICC=0.25, 

5.02  ) and small ability group difference (i.e., the N (0.25, 1.1
2
) ability condition), the 

average correlations ranged from .824 to .840 for the base group, and from .850 to .860 for the 

target group.  

On comparing the average correlations between the two ability conditions, there was not 

much difference for the base group. However, for the target group, the N (0.5, 1.2
2
) ability 

condition tended to result in higher average correlations than the N (0.25, 1.1
2
) ability condition. 

This finding indicates that as the base and target group differed more on ability distribution, the 

investigated models tended to perform better in terms of ability parameter recovery for the target 

group.  
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Figure 4. Average correlations between the estimated and true person parameters across 10 replications 

(Base group, N (0.25, 1.1
2
) condition) 

 

 

 

 

Figure 5. Average correlations between the estimated and true person parameters across 10 replications 

(Target group, N (0.25, 1.1
2
) condition) 
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Figure 6. Average correlations between the estimated and true person parameters across 10 replications 

(Base group, N (0.5, 1.2
2
) condition) 

 

 

 

Figure 7. Average correlations between the estimated and true person parameters across 10 replications 

(Target group, N (0.5, 1.2
2
) condition) 
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4.2.4 RMSDs of person parameters 

Table 10 presents the average RMSDs of the ability parameters across 10 replications for the 

base and target group. Figures 8-11 present the average RMSDs in graphical format for the base 

and target group in each of the two ability conditions, respectively. From these figures we can 

see that the patterns of difference on average RMSDs across the ICC and LID levels were the 

same for the base and target group at each of the two ability conditions.  

Table 10. Average RMSDs of the person parameters across 10 replications 

    Multilevel Testlet 3PL 

 Target Group 

Ability 

ICC 2

     

       

Base Group N(.25, 1.1
2
) .25 .50 .550 .575 .576 

   1 .594 .623 .628 

  .50 .50 .521 .573 .576 

   1 .550 .620 .626 

       

 N(.50, 1.2
2
) .25 .50 .559 .584 .586 

   1 .585 .610 .618 

  .50 .50 .513 .567 .570 

   1 .554 .617 .631 

       

       

Target Group N(.25, 1.1
2
) .25 .50 .568 .587 .586 

   1 .599 .621 .618 

  .50 .50 .542 .605 .602 

   1 .570 .644 .641 

       

 N(.50, 1.2
2
) .25 .50 .585 .613 .610 

   1 .623 .656 .655 

  .50 .50 .556 .634 .630 

   1 .578 .658 .666 

 

For both base and target groups, the average RMSDs from the 3PL multilevel TRT model 

were smaller than those from the other two models, ranging from .513 to .623. The average 

RMSDs from the 3PL TRT model and 3PL IRT model were very similar, ranging from .567 to 
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.656. This finding indicates that with the presence of item and person dependence, the 3PL 

multilevel TRT model resulted in more accurate estimation of the ability parameters than the 

other two models.  

In conditions with low degree of person dependence (i.e., ICC=0.25), the differences on 

average RMSDs among the three models were relatively small. As the degree of person 

dependence increased from moderate to high (i.e., ICC=0.25 to 0.5), the average RMSDs also 

increased for the 3PL TRT model and the 3PL IRT model. As a result, the differences on average 

RMSDs between the 3PL multilevel TRT model and the other two models also increased. For 

example, in condition with low degree of item and person dependence (i.e., ICC=0.25, 5.02  ) 

and large ability group difference (i.e., N (0.5, 1.2
2
) ability condition), the average RMSDs for 

the target group from the 3PL multilevel TRT model, 3PL TRT model, and the 3PL IRT model 

were .568, .587, and .586, respectively. As ICC increased from 0.25 to 0.5, the average RMSDs 

for the target group from these three models were 0.542, 0.605, and 0.602, respectively. These 

results indicated that ignoring person dependence led to higher estimation errors for the ability 

parameters. In addition, the degree of person dependence impacted the person parameter 

estimation if the person clustering effects were not taken into account.  

As the testlet variance increased from 0.5 to 1, the average RMSDs increased for all three 

models. This finding indicates that the degree of LID impacted ability estimation for all three 

models, regardless of whether or not LID was taken into consideration. The average RMSDs 

from the 3PL TRT model and 3PL IRT model were similar across LID levels, indicating that the 

3PL IRT model was quite robust to the violation of local item independence assumption, in terms 

of ability parameter recovery.   
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On comparing the average RMSDs between the base and target group, the three models 

tended to generate slightly higher average RMSDs for the target group across all simulation 

conditions. For example, in condition with low item and person dependence (i.e., ICC=0.25, 

5.02  ) and small ability group difference (i.e., the N (0.25, 1.1
2
) ability condition), the 

average RMSDs ranged from .550 to .576 for the base group, and from .568 to .587 for the target 

group.  

Similar to the patterns observed in Table 9, there was not much difference on average 

RMSDs across the two ability conditions for the base group. However, for the target group, the N 

(0.5, 1.2
2
) ability condition tended to result in higher average RMSDs than the N (0.25, 1.1

2
) 

ability condition. This finding indicates that as the group difference on ability distribution 

increased, the three models yielded more estimation errors, especially for the target group.  
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Figure 8. Average RMSDs of the person parameters across 10 replications  

(Base group, N (0.25, 1.1
2
) condition) 

 

 

 

Figure 9. Average RMSDs of the person parameters across 10 replications  

(Target group, N (0.25, 1.1
2
) condition) 
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Figure 10. Average RMSDs of the person parameters across 10 replications  

(Base group, N (0.5, 1.2
2
) condition) 

 

 

 

Figure 11. Average RMSDs of the person parameters across 10 replications  

(Target group, N (0.5, 1.2
2
) condition) 
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5.0  DISCUSSION 

The current work evaluates the performance of multilevel models on test equating under the 

anchor test design with the presence of varying degree of item and person dependence. The 

equating performance of the multilevel model was also compared to the dichotomous IRT model, 

polytomous IRT model, and TRT model through two simulation studies. The first section of this 

chapter revisits the research questions and summarizes the major findings of this work. The 

second section discusses some of the issues in the findings of this work. The last section 

addresses the limitation of the current work and provides future research directions.  

5.1 SUMMARY OF MAJOR FINDINGS 

5.1.1 Simulation Study 1 

The first simulation study considers testing situations where responses to testlet items were 

collected from independent examinees. A three-level HGLM was proposed as a concurrent 

equating model to accommodate potential LID existing in testlet response data. HGLM was 

found to be useful in modeling hierarchical data structure due to item dependency. Simulation 

study 1 extended previous research to the use of test equating for testlet-based tests with the 

presence of varying degree of LID. The equating accuracy of the three-level HGLM was also 
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compared with a two-level HGLM that ignores LID, the Rasch concurrent calibration using 

MULTILOG, and the GRM concurrent calibration using MULTILOG. Three factors are 

examined in this simulation study: (a) target group ability distribution (N (0, 1) and N (1, 1)); (b) 

degree of LID ( 2

 0, 0.5, 1, and 1.5); and (3) number of common testlets (2 and 3), resulting in 

a total of 16 simulation conditions. Concurrent equating was conducted for each of these 16 

simulation conditions when each of the four investigated methods was applied. The average 

RMSDs of expected scores across replications were computed. A summary of the findings are 

presented below.   

5.1.1.1 Research Question 1  

How well does the proposed HGLM concurrent equating method recover model 

parameters with the presence of LID? 

In the first research question, the performance of the proposed HGLM concurrent 

equating method is compared with the concurrent calibration using MULTILOG, in terms of 

person parameter recovery. Two HGLM concurrent equating models are examined: (1) the three-

level HGLM that models LID, and (2) the two-level HGLM that ignores LID. Two MULTILOG 

concurrent calibration models are included: (1) the Rasch model; and (2) the GRM. Conclusions 

on the comparison of these four equating methods are discussed in the following three sections. 

 

Research Question 1.1: How well does the proposed two-level HGLM concurrent equating 

method recover model parameters, compared to the Rasch concurrent calibration with the 

presence of LID? 
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Because the two-level HGLM is based on the Rasch model, this research question 

focuses on the comparison between the use of multilevel modeling approach and the traditional 

IRT modeling on test equating. The results from Study 1 show that these two approaches provide 

equivalent equating results across all simulation conditions. This indicates that the two-level 

HGLM concurrent equating method is an effective alternative to the Rasch concurrent calibration 

using MULTILOG.  

 

Research Question 1.2: Does the proposed three-level HGLM concurrent equating method, 

which accounts for the testlet effects, provide more accurate results than the two-level HGLM 

concurrent equating method with the presence of LID? 

This research question focuses on the comparison between the two HGLMs as concurrent 

equating models. The results from the first simulation study suggest that the two HGLMs 

perform very similarly across all simulation conditions. When the degree of LID is zero or low 

(i.e., 2

 0 or 0.5), the two HGLMs provide equivalent equating results. When the testlet 

variance is as high as 1 or above, the three-level HGLM tends to produce slightly smaller 

RMSDs than does the two-level HGLM. However, the difference is negligible (only in the third 

decimal place). Therefore, compared with the two-level HGLM, the three-level HGLM that 

accommodates item dependency within a testlet does not seem to produce better equating results 

with the presence of LID.    

 

Research Question 1.3: For concurrent calibration using MULTILOG, does the use of 

polytomous scoring based on the GRM provide more accurate equating results than Rasch 

concurrent calibration with the presence of LID? 
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This research question focuses on the comparison between the uses of dichotomous 

versus polytomous scoring with the presence of LID. Although suggested in some previous 

studies (e.g., Chen, 2014; Lee et al, 2001), the superiority of polytomous scoring over 

dichotomous scoring with the presence of LID is not observed in the current study for expected 

score recovery. Instead, the dichotomous scoring approach is found to provide more accurate 

equating results. Across all LID conditions, the GRM concurrent calibration using MULTILOG 

consistently yield larger average RMSDs of expected scores than the Rasch concurrent 

calibration using MULTILOG. When tests are composed of independent items (i.e., 2

 0), the 

difference on average RMSDs between the two approaches is found to be small. As the testlet 

variance increases, the average RMSDs for the GRM concurrent calibration is found to be 

increasingly higher than the corresponding values for the Rasch concurrent calibration.        

In summary, the HGLM concurrent equating approach performs as well as, if not better 

than, the Rasch concurrent calibration using MULTILOG. This suggests that the HGLM is an 

effective way of conducting concurrent calibration. The following are the answers to research 

question 1: (1) The two-level HGLM concurrent equating method and the Rasch concurrent 

calibration using MULTILOG perform equally well at different LID conditions; (2) the two-level 

HGLM and the three-level HGLM perform similarly at different LID conditions; (3) the GRM 

concurrent calibration using MULTILOG provides the less accurate estimates of expected scores 

than the Rasch concurrent calibration using MULTILOG across different LID conditions.  
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5.1.1.2 Research Question 2 

For each of the four investigated equating methods, what is the impact of degree of LID 

on equating results? 

The second research question investigates the robustness of the four equating methods to 

the violation of local item independence assumption. The results from simulation study 1 show 

that the average RMSDs from the two HGLM methods and the Rasch concurrent calibration 

using MULTILOG slightly decrease as the degree of LID increases, whereas the differences are 

negligible across LID levels. When LID is not present or low (i.e., 2

 0 or 0.5), the average 

RMSDs from these three methods are found to be almost identical. With the presence of medium 

or high degree of LID (i.e., 2

 1 or 1.5), the average RMSDs from the three-level HGLM 

concurrent equating are found to be slightly smaller than the other two methods. However, the 

differences on the average RMSDs are trivial. These findings imply that the three equating 

methods based on dichotomous IRT models all perform well with the presence of LID, in terms 

of expected score recovery.  

The results from the GRM concurrent calibration using MULTILOG are mixed. When 

the degree of LID is low (i.e., 2

  0.5), concurrent calibration based on the GRM is robust to 

the violation of local item independence assumption. This finding is illustrated by that in most 

test conditions, the average RMSDs decrease as the testlet variance increases from 0 to 0.5. 

However, when the degree of LID is moderate or high (i.e., 2

 1), the average RMSDs tend to 

increase as the degree of LID increases.  

Thus, the answers to the second research question are: (1) the two HGLM methods and 

the Rasch concurrent calibration using MULTILOG are robust to the violation of the local 

independence assumption, in terms of recovery of the expected scores; (2) for the GRM 
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concurrent calibration using MULTILOG, the increase in testlet variance tends to reduce or have 

little impact on equating errors when the degree of LID is low (i.e., 2

 0.5), but tends to 

increase equating errors when the LID level is moderate or high (i.e., 2

 1).   

5.1.2 Simulation Study 2 

The second simulation study considers testing situations where responses to testlet items were 

collected from examinees nested within groups. A 3PL multilevel TRT model was proposed to 

simultaneously account for item and person dependence. The equating accuracy of the 3PL 

multilevel TRT model was also compared with the 3PL TRT model that ignores person 

dependence, and the traditional 3PL IRT model that ignores both item and person dependence. 

Three factors were examined in this simulation study: (a) target group ability distribution (N 

(0.25, 1.1
2
) and N (0.5, 1.2

2
)); (b) degree of LID ( 2

 0.5 and 1); (3) degree of person 

dependence (ICC=0.25 and 0.5), resulting in a total of 8 simulation conditions. Concurrent 

calibration using Bayesian estimation was conducted for each of these 8 simulation conditions 

when each of the three investigated models was applied. The average correlations and RMSDs of 

the item and person parameters across replications were computed within each of these 8 

simulation conditions and for each of the three investigated models. A summary of the findings 

are presented below. 
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5.1.2.1 Research Question 1 

How well does the 3PL multilevel TRT model recover the item and person parameters 

under the NEAT design, compared to the 3PL TRT model and the traditional 3PL IRT model, 

with the presence of LID and person dependence? 

To answer the first research question, the average correlations and RMSDs of the item 

and person parameters from the 3PL multilevel TRT model are compared with those from the 

3PL TRT model and the 3PL IRT model. Discussion on the comparison of the performance of 

these three models is based on the items and person parameters, respectively.  

 

Item Parameters 

The results from the second simulation study suggest that the 3PL multilevel TRT model 

provides more accurate estimation for the discrimination parameters, compared to the other two 

models. This finding is illustrated by the following: (1) the estimates of the discrimination 

parameters from the 3PL multilevel TRT models are more closely correlated to the true 

discrimination parameters than the 3PL IRT model; (2) the average RMSDs from the 3PL 

multilevel TRT model are smaller than those from the other two models; (3) even though the 

average correlations from the 3PL TRT model and the 3PL multilevel TRT model are similar, 

the former generates the largest RMSDs among the three models across all simulation 

conditions.   

As to the item difficulty parameters, both the 3PL multilevel TRT model and the 3PL 

TRT model provide more accurate estimation than the 3PL IRT model. Although the average 

correlations from the three models are similar, the average RMSDs from the 3PL multilevel TRT 

model and the 3PL TRT model are slightly smaller than those from the 3PL IRT model.  
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The three models provide similar performance in terms of guessing parameter recovery. 

This finding is illustrated by the following: (1) none of the models provides guessing parameter 

estimates that are close to the true guessing parameters, which is likely due to the small range of 

the guessing parameter values; (2) in each of the 8 simulation conditions, the three models 

generate similar average RMSDs.  

 

Person Parameters 

Among the three models, the 3PL multilevel TRT model provides the most accurate 

estimation for the person parameters. This finding is illustrated by the following: (1) the average 

correlations between the estimated and true person parameters from the 3PL multilevel TRT 

model are higher than those from the other two models; (2) the average RMSDs of the person 

parameters from the 3PL multilevel TRT model are smaller than those of the other two models. 

The 3PL TRT model and 3PL IRT model perform similarly in terms of average correlations and 

RMSDs.  

  In summary, the results from the second simulation study suggest that with the presence 

of both item and person dependence: (1) the 3PL multilevel TRT model provides more accurate 

estimation for the item discrimination parameter and person parameter than the other two 

models; (2) the 3PL IRT model provides less accurate estimation for the item difficulty 

parameter than the other two models; (3) the three models perform similarly in terms of guessing 

parameter recovery.  
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5.1.2.2 Research Question 2 

For each of the three investigated models, what is the impact of degree of LID on 

equating results? 

The second research question investigates the robustness of the three investigated models 

to the violation of local item independence assumption. The results from the second simulation 

demonstrate that for all three models, the estimation of person parameters are affected by the 

degree of LID. As 2

  increases from 0.5 to 1, the average correlations decrease and the average 

RMSDs increase for each of the three models. Moreover, the degree of LID also impacts the 

accuracy of discrimination parameter estimates for the 3PL IRT model, with a higher degree of 

LID (i.e., 2

 1) associated with lower average correlations.  

In summary, as the testlet variance increases from 0.5 to 1, the accuracy of person 

parameter estimates decreases for all three models. In addition, increasing the degree of LID 

decreases the correlations between the true and estimated discrimination parameters for the 3PL 

model.  

5.1.2.3 Research Question 3 

For each of the three investigated models, what is the impact of degree of person 

dependence on equating results? 

The third research question investigates the robustness of the three investigated models to 

the violation of local person independence assumption. The results from simulation study 2 are 

mixed. On the one hand, as the ICC increases from 0.25 to 0.5, the discrepancies on average 

correlations and RMSDs between the 3PL multilevel TRT model and the other two models 

increase, suggesting that the two models that do not account for person dependence (i.e., the 3PL 
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TRT model and the 3PL IRT model) are not robust to the violation of local person independence 

assumption. On the other hand, slightly higher average correlations and lower average RMSDs 

are observed in conditions with high person dependence (i.e., ICC=0.5) for the 3PL multilevel 

TRT model. And no consistent patterns are observed for the other two models. The estimation of 

item parameters, however, is not affected by the level of person dependence.  

5.2 DISCUSSION OF FINDINGS 

5.2.1 Impact of LID on equating accuracy 

The results from the second simulation study demonstrate that the difficulty and discrimination 

parameters were better estimated if LID was taken into consideration. Compared to the 3PL IRT 

model, the 3PL multilevel TRT model and the 3PL TRT model yield smaller RMSDs of the 

difficulty parameters and higher average correlations between the estimated and true 

discrimination parameters. Moreover, a higher degree of LID leads to lower average correlations 

between the estimated and true item discrimination parameters for the 3PL IRT model.  

In regards to person parameter recovery, the results from the two simulation studies are 

consistent. The findings from the first simulation study show that ignoring LID does not impact 

the estimation of expected scores for the dichotomous models. The equating method that 

accounts for LID (i.e., the three-level HGLM concurrent equating) provides very similar average 

RMSDs of expected scores, compared to the methods that ignore LID (i.e., the two-level HGLM 

concurrent equating and the Rasch concurrent calibration). Consistent with Li (2009), the 

findings from the second simulation study also suggest that person parameters could be well 
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estimated if LID is ignored. The 3PL IRT model and the 3PL TRT model perform similarly at 

different LID conditions, in terms of average correlations and RMSDs of person parameter 

estimates.    

The two simulation studies provide different findings regarding the impact of LID levels 

on equating results. In the first simulation study, degree of LID has little impact on RMSDs of 

expected scores for the HGLMs and Rasch concurrent calibration using MULTILOG. In 

contrast, a higher degree of LID leads to slightly lower average correlations and higher RMSDs 

of the person parameters for all three models in the second simulation study.  

This inconsistency could be due to the different evaluation criteria used in the two 

simulation studies: equating accuracy is evaluated based on the RMSDs of expected scores in the 

first simulation study, whereas correlations and RMSDs of person parameters are examined in 

the second simulation study. As explained in Chapter 3, expected scores were computed and 

compared across the four equating procedures in the first simulation study because the person 

parameter estimates obtained from two different software packages (i.e., SAS and MULTILOG) 

may not be on the same scale. In the second simulation study, all the three models were 

calibrated in WinBUGS, and therefore the person parameter estimates were compared directly 

between models. As presented in Chapter 3, the calculation of expected scores is based on both 

item and person parameter estimates. Therefore, the equating process in simulation study 1 

actually involves two stages: (1) concurrent calibration of the item and person parameters; and 

(2) calculation of the expected scores based on the item and person parameter estimates obtained 

from the first stage. For the Rasch model, the estimation of expected scores depends on the 

accuracy of )( b . Therefore, what really matters is not the accuracy of individual difficulty or 

person parameter estimates, but the magnitude and direction of the bias in the difficulty and 
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person parameter estimates. Future studies may compare these equating methods on recovering 

the true difficulty parameters and person parameters separately by referring to the true values 

used for data generation.   

This inconsistency might also be caused by the model difference: the Rasch model was 

used in the first simulation study whereas the 3PL model was used in the second simulation 

study. It has been shown in previous studies (e.g., Bradlow, Wainer, & Wang, 1999; Wainer, 

Bradlow, & Du, 2000) and the second simulation of the current work that the degree of LID 

impacts the discrimination parameter estimation. HGLM models only difficulty parameters, and 

thus may be less sensitive to the ignoring of modelling testlet effects. 

5.2.2 The performance of GRM 

It is often considered that fitting the testlet-based tests with a polytomous IRT model bypasses 

the assumption of local item independence (Lee et al., 2001), and therefore may lead to better 

measurement outcomes. However, by using the testlet score as the unit of analysis, item-level 

information is lost (Zenisky, Hambleton, & Sireci, 2002; Sireci, Thissen, & Wainer, 1991). 

Moreover, when the degree of LID is high, the testlet scoring approach may not be appropriate 

(Wainer, 1995). The results from the first simulation study of this work suggest that the GRM 

concurrent calibration does not perform as well as the other three methods based on the 

dichotomous IRT models, especially with high degree of LID. This coincides with what was 

found in Cao, Lu, and Tao (2014). Using the random groups design, Cao, Lu, and, Tao (2014) 

conducted number-correct score equating by linking separate calibration to compare the 

performance of three measurement models: the 2PL IRT model, the 2PL TRT model, and the 

GRM. The results show that the 2PL IRT model and the 2PL TRT model performed similarly 
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across various LID conditions, in terms of raw-to-raw score conversions, suggesting that 2PL 

IRT model is quite robust to the violation of local item independence. In addition, the 2PL IRT 

model and the 2PL TRT model produce equating results that are more consistent with those of 

the equipercentile method than does the GRM. 

On the contrary, some other studies (e.g., Lee’s et al., 2001) demonstrated that fitting the 

testlet-based tests with a polytomous IRT model in general outperformed the dichotomous IRT 

model in IRT true and observed score equating. This inconsistency might be due to different 

testlet lengths, degree of LID, as well as evaluation criteria used in the two studies. In Lee’s et al. 

(2001) study, the polytomous equating approach and the dichotomous equating approach were 

compared in terms of their agreement to the results from three baseline equating methods (i.e., 

mean, linear, and equipercentile methods) on equated score distribution moments. In the current 

work, the GRM concurrent calibration is compared to the other three methods, in terms of the 

recovery of expected scores. This inconsistency might also be caused by different models used in 

these two studies: the Rasch model was used in the first simulation study of the current work 

whereas the 3PL IRT model was used in Lee et al.’s (2001) study.  

5.2.3 Precision of measures 

The effects of LID levels on equating results were further investigated by examining the 

accuracy of proficiency estimates. The average standard errors of person parameter estimates 

from the first simulation study were compared across the four equating procedures. Consistent 

with previous studies (e.g., Bradlow, Wainer, & Wang, 1999; Wainer, Bradlow, & Du, 2000), 

the results from this follow-up study also demonstrate that treating testlet items as independent 

items overestimates the precision of ability estimates. Moreover, the magnitude of the 
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overstatement increases as the degree of LID increases. Tables 11 and 12 present the average 

standard errors of person parameter estimates from one replication within each of the 16 

simulation conditions for the base and target groups, respectively. As illustrated in these two 

tables, when there is no testlet effect, each of the four equating approaches provide reasonable 

and comparable estimates of precision of person parameter estimates. As the degree of LID 

increases, the average standard errors for the two approaches that accounts for LID (i.e., three-

level HGLM and GRM concurrent calibration) also increase monotonically, whereas they remain 

relatively stable for the two approaches that ignore LID (i.e., two-level HGLM and Rasch 

concurrent calibration using MULTILOG).  

Table 11. Average standard errors of the person parameter estimates from one replication (Base group) 

Target Group 

Ability 

# of Common 

Testlet 

Testlet 

Variance 

2-Level 

HLM 

3-Level 

HLM 

Multilog_

Rasch 

Multilog

_GRM 

N (0, 1) 2 0 0.391 0.391 0.410 0.411 

  0.5 0.392 0.455 0.401 0.459 

  1 0.387 0.500 0.416 0.506 

  1.5 0.373 0.535 0.415 0.577 

       

 3 0 0.401 0.401 0.389 0.390 

  0.5 0.390 0.459 0.403 0.457 

  1 0.379 0.485 0.427 0.529 

  1.5 0.380 0.528 0.432 0.556 

       

N (1, 1) 2 0 0.391 0.391 0.400 0.402 

  0.5 0.396 0.449 0.402 0.450 

  1 0.376 0.483 0.433 0.533 

  1.5 0.382 0.551 0.415 0.550 

       

 3 0 0.390 0.390 0.404 0.393 

  0.5 0.394 0.458 0.406 0.458 

  1 0.381 0.498 0.407 0.518 

  1.5 0.382 0.551 0.412 0.550 
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5.2.4 The performance of multilevel models 

This research demonstrates the performance of multilevel models on test equating under the 

anchor test design when local dependence is present. As mentioned earlier, data in educational 

research frequently have a hierarchical structure, while traditional IRT models do not take the 

clustering effects into consideration. The multilevel modeling approach takes into account both 

item and person dependence, and therefore can appropriately analyze such data without violating 

the local independence assumption.  

Table 12. Average standard errors of the person parameter estimates from one replication (Target group)  

Target Group 

Ability 

# of Common 

Testlet 

Testlet 

Variance 

2-Level 

HLM 

3-Level 

HLM 

Multilog_

Rasch 

Multilog_

GRM 

N (0, 1) 2 0 0.390 0.390 0.409 0.391 

  0.5 0.395 0.458 0.404 0.458 

  1 0.381 0.495 0.409 0.518 

  1.5 0.377 0.538 0.420 0.540 

       

 3 0 0.397 0.397 0.385 0.375 

  0.5 0.391 0.460 0.404 0.471 

  1 0.377 0.484 0.426 0.527 

  1.5 0.377 0.526 0.429 0.571 

       

N (1, 1) 2 0 0.419 0.419 0.429 0.410 

  0.5 0.414 0.465 0.421 0.458 

  1 0.387 0.491 0.447 0.553 

  1.5 0.406 0.566 0.441 0.576 

       

 3 0 0.400 0.400 0.414 0.410 

  0.5 0.427 0.486 0.440 0.492 

  1 0.401 0.513 0.429 0.517 

  1.5 0.395 0.560 0.426 0.559 

 

The results from the two simulation studies show that the multilevel modelling approach 

is an effective and flexible tool for test equating, allowing both item and person dependence 

structure to be accommodated. Specifically, the findings from the first simulation study 
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demonstrate that the HGLM approach performs as well as the IRT concurrent equating approach. 

Because the HGLM approach can be conducted in statistical software packages such as SAS and 

HLM, it is an alternative method of Rasch equating for researchers and practitioners who are not 

familiar with IRT. The findings from the second simulation study suggest that multilevel models 

can be a better choice than the traditional IRT model or TRT model in test equating situations 

where a relatively high level of person dependence (i.e., ICC=0.5) is present.  

5.3 LIMITATION AND FUTURE RESEARCH DIRECTIONS 

This research used two simulation studies to address the proposed research questions. Hence, the 

results may not be generalizable to other situations not considered in the current study as the 

findings are limited to the specific conditions in these simulation studies. For example, in both 

simulation studies, testlet length is a fixed factor and not manipulated. Previous research (e.g., 

Chen, 2014) suggests that the effect of LID on equating results varies by the number of items 

within a testlet. Future studies may include testlet length as a design factor.  

In the second simulation study, only two levels of LID (i.e., 2

 0.5 and 1) and two 

levels of person dependence (i.e., ICC=0.25 and 0.5) were simulated. It would be very interesting 

and meaningful in future studies to include more LID and ICC conditions, especially those with 

zero and low levels of LID and person dependence.    

In both simulation studies, testlet variance was generated to be constant across testlets. 

However, for real test data, different testlets may exhibit different amounts of within-testlet 

dependence. Future simulation studies may consider varying the degree of LID across testlets to 

reflect the dependence structure of testlet items in real testing situations.  
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Due to the limitations on computer capacity and time-consuming analyses using the 

Bayesian estimation procedure, only ten replications were run for the second simulation study. 

Previous studies (e.g., Jiao et al., 2012; Jiao, Wang, & He, 2013; Jiao & Zhang, 2014), however, 

suggest more replications might be desirable for estimating multilevel IRT models. In Jiao, 

Wang, & He (2013), twenty-five replications were found to be adequate to estimate the Rasch 

testlet model. The twenty-five replications were also implemented in Jiao et al. (2012) to 

estimate one-parameter TRT models that accounts for person clustering effects, and in Jiao and 

Zhang (2014) to estimate polytomous multilevel testlet models that accounts for person 

clustering effects. For future simulation studies, it is desired to run more replications to more 

accurately evaluate the equating performance of the multilevel TRT models. Additional analyses 

suggest that ten replications may be adequate for the current study. Tables 13 and 14 present the 

variances of posterior estimates for the item and person parameters, respectively, across ten 

replications from one simulation condition as an example. It can be seen from the tables that the 

variance of posterior estimates stays quite stable across the ten replications.       

In the current work, the concurrent calibration method was used for placing the item and 

person parameters on the same scale for all investigated equating models. In practice, linking 

separate calibration has been widely used. The linking separate calibration procedures have been 

extended to the TRT models (e.g., Li, Bolt, & Fu, 2005; Li, 2009; Zhang, 2010), but not to any 

multilevel models yet. Using the concurrent calibration method might simplify the equating 

process by avoiding the need of scale transformation. However, it has been shown to be less 

robust to the violation of IRT model assumptions. Therefore, the results from the current work 

may not be generalizable to situations using linking separate calibration. Future research may 
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compare the effectiveness of concurrent calibration methods investigated in the current work to 

linking separate calibration when different IRT models are applied.  

Table 13. The standard errors of posterior item parameter estimates from one simulation condition  

(ICC=0.5, 2

 1, N (0.25, 1.1
2
) target group ability distribution) 

  Model 

 Replication Multilevel Testlet 3PL 

a 1 .235 .264 .194 

 2 .218 .235 .177 

 3 .219 .228 .178 

 4 .216 .231 .181 

 5 .223 .234 .179 

 6 .203 .226 .178 

 7 .233 .240 .190 

 8 .220 .242 .194 

 9 .217 .228 .184 

 10 .225 .251 .198 

     

b 1 .360 .316 .303 

 2 .343 .305 .300 

 3 .367 .337 .338 

 4 .374 .321 .320 

 5 .383 .358 .356 

 6 .360 .317 .312 

 7 .341 .316 .312 

 8 .349 .300 .294 

 9 .344 .312 .309 

 10 .377 .329 .319 

     

c 1 .069 .070 .073 

 2 .068 .069 .071 

 3 .069 .070 .073 

 4 .070 .069 .073 

 5 .071 .071 .075 

 6 .070 .070 .073 

 7 .068 .070 .074 

 8 .069 .069 .072 

 9 .068 .069 .072 

 10 .071 .071 .073 
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Table 14. The standard errors of posterior person parameter estimates from one simulation condition  

(ICC=0.5, 2

 1, N (0.25, 1.1
2
) target group ability distribution) 

  Model 

 Replication Multilevel Testlet 3PL 

Base Group 1 .543 .581 .510 

 2 .552 .593 .524 

 3 .559 .610 .543 

 4 .577 .602 .529 

 5 .577 .628 .552 

 6 .574 .616 .549 

 7 .526 .591 .519 

 8 .535 .589 .526 

 9 .570 .604 .535 

 10 .576 .613 .555 

     

Target Group 1 .578 .563 .492 

 2 .590 .576 .494 

 3 .581 .586 .511 

 4 .583 .582 .492 

 5 .613 .617 .515 

 6 .596 .581 .493 

 7 .595 .589 .501 

 8 .607 .564 .478 

 9 .576 .574 .492 

 10 .587 .573 .493 
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APPENDIX 

WINBUGS CODE USED FOR CONCURRENT CALIBRATION BASED ON A 3PL 

MULTILEVEL TRT MODEL 

Model 

{ 

# Specify the 3PL multilevel TRT model 

 for (m in 1:50) { 

          r[m] ~ dnorm(0, tau1.btw); 

    for (i in 1:20) { 

        u[m,i] ~ dnorm(0, tau1.with); 

                        } 

    } 

 

for (m in 51:100) { 

     r[m] ~ dnorm(mu.btw, tau2.btw); 

       for (i in 1:20) { 

           u[m,i] ~ dnorm(mu.with, tau2.with); 

        } 

    } 

 

for (m in 1:100) { 

     for (i in 1:20) { 

        for (j in 1:50){ 

           resp[20*(m-1)+i,j] ~ dbern(prob[m, i, j]) 

           logit(prob.star[m, i, j]) <- alpha[j] * (u[m, i] + r[m] -delta[j] +gamma[m, i, d[j]]) 

           prob[m, i, j] <- eta[j] + (1 - eta[j])*prob.star[m, i, j] 

    } 

 

     theta[m,i] <- r[m]+u[m,i] 

 

    for (k in 1:10){ 
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      gamma[m, i, k] ~ dnorm(0.0, pr.gamma) 

    } 

    gamma[m, i, 11] <- 0.0 

   } 

 } 

 

# Specify priors 

   for (j in 1:50){ 

     alpha[j] ~ dlnorm(0, 4)   

     delta[j] ~ dnorm(0, .25) 

     eta[j] ~ dbeta(5, 17) 

   } 

   

 

pr.gamma ~ dgamma(0.5, 1) 

sigsq.gamma <- 1.0/pr.gamma  

 

tau2.btw ~ dgamma(0.5, 1) 

sigsq.tau2.btw <- 1.0/tau2.btw 

tau2.with ~ dgamma(0.5, 1) 

sigsq.tau2.with <- 1.0/tau2.with 

 

mu.btw ~ dnorm(0, 1) 

mu.with ~ dnorm(0,1) 

 

rho ~ dunif(0,1) 

tau1.btw<-1/rho 

tau1.with<-1/(1-rho) 

} 
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