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POWER CALCULATION AND STUDY DESIGN IN RNA-SEQ AND

METHYL-SEQ

Chien-Wei Lin, PhD

University of Pittsburgh, 2017

ABSTRACT

Next generation sequencing (NGS) technology has emerged as a powerful tool in characteriz-

ing genomic profiles. Among several applications, RNA sequencing (RNA-Seq) and Methy-

lation sequencing (Methyl-Seq) have gradually become standard tools for transcriptomic and

epigenetic monitoring respectively. Although the costs of NGS experiments have constantly

decreased, high sequencing cost and bioinformatic complexity remain obstacles for many

biomedical projects. Unlike earlier microarray technologies, modeling of NGS data should

consider discrete count data. In addition to sample size, sequencing depth is also directly

related to experimental costs. Consequently, given a total budget and a pre-specified unit

experimental cost, the study design issue in RNA-Seq/Methyl-Seq is a multi-dimensional

constrained optimization problem rather than a one-dimensional sample size calculation in

a traditional hypothesis setting. In the first part of this dissertation, we proposed a statis-

tical framework, namely “RNASeqDesign”, to utilize pilot data for power calculation and

study design of RNA-Seq experiments. The approach was based on a mixture model fitting

of the p-value distribution from pilot data and a parametric bootstrap procedure to infer

genome-wide power for optimal sample size and sequencing depth. We further illustrated

five practical study design tasks for practitioners. We performed simulations and real data

applications to evaluate performance and compare to existing methods.

In the second part, we proposed another statistical framework, namely “MethylSeqDe-

sign”, specifically for Methyl-Seq data. There were mainly two challenges. Firstly, the statis-
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tical modeling for Methyl-Seq data required a powerful statistical test using beta-binomial

model for conducting power calculation. Secondly, there is an extremely high number of

CpG sites (about 30M) in the human genome, which results in many CpG sites with very

shallow coverage. Hence, we focused on a region-/capture-based method which produced

more counts in a region/window such that power calculation became feasible.

Public health significance: As sequencing costs keep dropping, RNA-Seq and Methyl-Seq

experiments will become more prevalent and more projects with large sample size will be

expected. We believe our work will provide practical guidance for future study design to

understand disease mechanism and improve disease diagnosis and treatment.

Keywords: Power calculation, Sample size calculation, Sequencing depth, RNA-Seq data,

Methyl-Seq data, Next Generation Sequencing (NGS), p-value mixture model, Paramet-

ric bootstrap.
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1.0 INTRODUCTION

Microarray technology has gained tremendous popularity in genomic research for its high-

throughput quantitative representation and cost-effectiveness in the last decades (Reimers,

2010). While microarray experiments provide access for biologists to a range of applications,

including the development of new diagnostic tools, discovery of novel disease subtypes, and

identification of underlying mechanisms of disease or drug response, statistical analysis has

played an active and significant role in the whole process. Statisticians correspondingly, have

taken a enthusiastic interest in developing statistical tools that could lead to more profound

biological interpretation to a certain research question (Slonim and Yanai, 2009; Kerr and

Churchill, 2007). Next-generation sequencing, based on randomly amplifying and shotgun

sequencing, is another revolutionary technology first marketed in 2004, making genomic

profiles available in much higher resolution and in extremely high parallel (Fang and Cui,

2011). Although error and biases might be introduced in major steps of the experimental

preparation process, next-generation sequencing has been hailed as the future of genetic

research since it provides higher sensitivity than microarrays and could potentially generate

an unlimited dynamic range. It is generally expected that research will gradually shift from

microarray technologies to next-generation sequencing (Shendure, 2008). From statistical

point of view, many methodologies developed under the microarray context could still be

extended to NGS, while we will also face new challenges in data analysis.

In a biological study, the procedure of exploring a research topic usually starts from

the study design, where a major component is sample size and power calculation. The

purpose of such careful design is obvious: to improve efficiency and reduce cost. Methods

for power and sample size calculation in clinical and microarray data are rich in the field

(Lee and Whitmore, 2002; Gadbury et al., 2004), but it is still limited in methods developed
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specifically for sequencing data. As sequencing technology is still not quite affordable to

the majority of researchers, it is significant to ensure desirable power of biomarker detection

(a.k.a. differential expression (DE) analysis) from the earlier phase of study (herein called

“pilot study”).

In this introduction, we will first go over the significance of gene expression and DNA

methylation quantification with both traditional and advanced technology. Then, we will

introduce the structure of gene expression data and DNA methylation data, and review

methods of differential analysis for each data type. Furthermore, we will distinguish the

difference between traditional power and genome-wide power definitions, and review some

existing methods for microarray and RNA-Seq data power calculation (to the best of our

knowledge, there is no existing statistical method for Methyl-Seq data power calculation).

Finally, the major motivation of developing our methods will be addressed.

1.1 QUANTIFICATION OF GENE EXPRESSION AND DNA

METHYLATION LEVEL

Gene expression, which is the procedure of mRNA synthesis from a set of genes, has been

extensively used in the characterization of human disease, identification of novel disease

subtypes, and potential drug target for treatment. Understanding the dynamic changes of

gene expression of a given subject is important for us to study biological processes ranging

from inflammation to human aging.

DNA methylation is a process in which methyl group attaches to the cytosine followed

by a guanine on the DNA sequence, known as CpG sites. In the genome, there are certain

regions enriched with these spots, e.g., CpG islands. Many of those regions are related to

gene regulatory regions. It is well known that DNA methylation alters the gene expression

level, typically repressing it. This process has been found to be involved in many important

biological systems, including genomic imprinting, X-chromosome inactivation, repression of

repetitive elements, aging and carcinogenesis (Li et al., 1993; Paulsen and Ferguson-Smith,

2001; Robertson, 2005).
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By comparing gene expression/methylation data between different groups of subjects,

we can explain if any of the biological pathways were altered by certain disease mechanisms.

Hence, the quantification of the high-throughput data plays an important role. Here we

review traditional and advanced high-throughput technology.

Advances in molecular and computational biology have led to the development of pow-

erful, high-throughput methods for the analysis of differential gene expression. These tools

have opened up new opportunities in disciplines ranging from cell and developmental biology

to drug development and pharmacogenomics.

1.1.1 Microarray - Hybridization based approaches

With the increased popularity of high throughput technology in mid 90’s, microarrays be-

came the prominent tool for quantifying genomic changes. The ability of these arrays to

simultaneously interrogate thousands of transcripts has led to important advances in a wide

range of biological problems, including the identification of gene expression differences among

diseased and healthy tissues, and new insights into developmental processes, pharmacoge-

nomic responses, and the evolution of gene regulation. The principle of a microarray exper-

iment is that mRNA from a given tissue is used to generate a labelled target, which is then

hybridized in parallel to a large number of DNA sequences, immobilized on a solid surface

in an ordered array (Schulze and Downward, 2001). The data generated from microarray

experiment typically consist of a long list of measurements for spot intensities or intensity

ratios. Nonetheless, it suffers from the following limitations: (1) background noise from hy-

bridization limits the measurement of expression, especially for probes with low abundance;

(2) heterogeneity of probes with respect to their hybridization properties will reduce the ac-

curacy of measurements; (3) the assay is limited to transcripts with known probes (Marioni

et al., 2008).

1.1.2 Next generation sequencing (NGS)

In the field, the traditional sequencing technique, Sanger sequencing, was the most widely

used method for more than 30 years since it was developed in 1977. In 2001, the Human
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Genome Project sequenced the human genome and it greatly motivated researchers to explore

human genetic mechanisms from a sequencing perspective. However, the method is not only

expensive and labor intensive, but also only able to target several specified genes with known

primer sequences. Thus researchers have been eager for high-throughput techniques. Next

generation sequencing utilizes high-throughput DNA sequencing techniques: DNA sequences

are smashed into fragments and sequenced in parallel, generating multiple reads of each

fragment and yielding substantial throughput. Alignment algorithms assemble these short

reads to the reference genome. By reconstructing the whole genome, we are able to know

the exact nucleotide order present in DNA and the coverage of segment at every position.

Therefore a wide variety of genomic features can be measured. Through deep sequencing, it is

possible to detect SNP/indel, structural variation and somatic mutations on a genome-wide

scale. Through coverage, we are able to detect copy number variation and mRNA expression.

By some extra bisulfite treatment technique, sequencing can also measure methylation. In

addition, novel genomic features such as isoforms of mRNA and fusion genes can be detected.

Nowadays, millions of fragments of DNA from a single sample can be sequenced in parallel

and the entire genome can be sequenced within one day. This technique has dramatically

accelerated our understanding of the human genome.

1.2 DATA STRUCTURE OF MICROARRAY, RNA-SEQ AND

METHYL-SEQ EXPERIMENT

A genomic study typically assesses a large number of DNA sequences (or genetic features)

under multiple conditions, e.g., a collection of different tissue samples. For transcriptomic

applications, the output data from the experiment after proper preprocessing (including

normalization, transformation...etc) is a gene expression matrix M = {egij|1 ≤ g ≤ G, 1 ≤

i ≤ k, 1 ≤ j ≤ nk}, where the rows (G = {−→g1 , ...,
−→gG}) form the expression patterns of

genes, the columns (S = {−→s11, ...,
−−→s1n1 , ...,

−−→sknk}) represent the expression profiles of
k∑
i=1

ni = n

samples, and each cell egij is the measured expression level of gene g in sample j of group i. For

illustration, we first assume the genomic study is a balanced design but the assumption can
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An example of genomic data with genes in rows and samples in columns. Balanced two group
design (n1 = n2 = N). Total number of genes is G and total number of samples is n.

Figure 1 An example of genomic data

be relaxed later. Figure 1 illustrates the case where there are two groups of interest (k = 2),

and each of them has N (n1 = n2 = N) samples. In other words, subject {−→s11, ...,
−→s1N} are

in group 1 with class label xj = 0 (j = 1, ..., N), while subject {−→s21, ...,
−→s2N} are in group 2

with class label xj = 1 (j = 1, ..., N).

In a transcriptomic microarray study, egij is typically either log2 of raw intensity or in-

tensity ratio (in a two-colors design) of gene g in subject j of group i, which is a continuous

variable. In a DNA methylation microarray study, for each methylation site g in subject j of

group i, we have methylated Mgij and unmethylated Ugij intensities. Hence, egij is the methy-

lated proportion of methylation site g, one can use either Beta-value (= Mgij/(Mgij + Ugij))

or M-value (=log2 (Mgij/Ugij)) (Du et al., 2010). For RNA-Seq data, egij is the read counts

of gene g in subject j of group i. For Methyl-Seq data, for each CpG site g in subject

j of group i, we have Mgij and Ugij for methylated read counts and unmethylated read

counts respectively. The variable of interest is again the methylated proportion using either

Beta-value or M-value.
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For both technologies, sample size is the most influential factor in determining power

for detecting differentially expressed genes (DE genes) or differentially methylated sites.

For NGS data, read/sequencing depth, which is proportional to total reads (R), is another

important factor that impacts power (Rapaport et al., 2013). Higher sequencing depth

generates more reads mapped to the same chromosome locations, which will give higher

base quality and thus increase statistical power to detect DE genes (Sims et al., 2014).

Throughout this dissertation, we refer to (sequencing) depth and coverage inter-changeably

since both meaning how many reads are assigned to a particular genomic location.

1.3 BIOMARKER DETECTION IN MICROARRAY AND NGS DATA

1.3.1 RNA

Cui and Churchill (2003) provided a comprehensive review for the popular methods for sta-

tistical tests and issues that are addressed in microarray gene expression data. Perelman

et al. (2007) compared several alternative methods including t-test, modification of t-test

(significance analysis model, SAM) for differential expression analysis. Smyth (2004) pro-

posed a method called “Limma” applying an empirical Bayes approach that adopts a global

variance estimator computed on the basis of all genes’ variances to stabilize the variance

of each individual gene. These methods are all based on the Gaussian assumption for log2

transformed gene expression.

Due to the different characteristics of sequencing data, the statistical methods for detec-

tion of DE genes are more complicated and diverse according to different assumptions and

applications. A number of proposals have been made for identifying differentially expressed

genes from RNA-Seq data in the case of a two groups comparison. The methods can be

summarized into three major categories:

(1) Method based on Gaussian assumptions: Bloom et al. (2009) applied t-tests to the

total-count normalized data. AC’t Hoen et al. (2008) performed a square-root transformation

for the total-count normalized data to stabilize the variance and applied t-tests afterwards.
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In DEGseq (Wang et al., 2009), the authors assumed that log ratios of the counts between

two different samples follow an approximate normal distribution and the p-value was derived

based on the conditional normal distribution.

(2) Methods based on Poisson assumptions: Marioni et al. (2008) proposed a Poisson

log-linear model and performed a likelihood ratio test (LRT) for differential expression gene

detection. Normalization based on total-counts were performed implicitly. Bullard et al.

(2009) applied an external quantile normalization step rather than doing total-count nor-

malization. “Poissonseq” (Li et al., 2012) is based on a Poisson log-linear model, and can be

applied to not only two-class outcome but also multiple-class and even quantitative outcome.

(3) Methods based on negative binomial assumptions: Generalized linear model (GLM)

based on a negative binomial distribution has been applied in order to handle overdispersed

counts in RNA-Seq data. Robinson et al. (2009) developed edgeR by extending from previous

methods for SAGE data (Robinson and Smyth, 2008). In their method, the dispersion

parameters can be estimated for each gene or can be common across all genes. An empirical

Bayes method is applied to shrink the dispersion toward a common value by borrowing

information across multiple genes (same idea in Limma (Smyth, 2004)). P-values are derived

using exact test. DESeq (Anders and Huber, 2010), is another method that imposes a

negative binomial assumption and uses local regression to estimate the relationship between

the variance and the mean. baySeq (Hardcastle and Kelly, 2010) applies empirical Bayesian

approach theory to estimate the posterior probabilities of each of a set of models that define

patterns of differential expression. NOISeq (Tarazona et al., 2011) is a nonparametric and

data-adaptive method. To remove the dependency on sequencing depth, it models the noise

distribution from the actual data. Therefore, it can better adapt to the size of the dataset

compared to other methods.

Comparative studies (Rapaport et al., 2013) have indicated that no single method ap-

pears to be favorable in all settings but methods based on negative binomial assumption

(e.g., DESeq, edgeR, and baySeq) have superior specificity and sensitivities as well as good

control of false positive errors. Furthermore, Nookaew et al. (2012) found that edgeR could

uniquely identify more differential gene expression (DGE) than Cuffdiff, baySeq, DESeq and

NOISeq.
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1.3.2 DNA methylation

For DE analysis of DNA methylation data, we want to identify differentially methylated

loci (DML) or regions (DMRs) that show different methylation levels across distinct groups,

e.g., cases and controls. Robinson et al. (2014) gives a comprehensive review of existing DE

analysis methods for microarray and sequencing platforms.

For microarray platforms, the data used for the analysis is either Beta-value (methy-

lated proportion) or M-value (log2 ratio of methylated to unmethylated intensity). Du et al.

(2010) suggests using M-values because the transformation of the data allows directly ap-

plying existing methods for gene expression continuous data, like Limma (Smyth, 2004).

Many methods have been developed for both upstreaming (preprocessing) and downstream

(DE) analysis (Price et al., 2013; Aryee et al., 2014). Due to the complexity of the methy-

lation data, these types of tools often use simple t-test to do the DE analysis. Wang et al.

(2012) develops an R package “IMA” which applies Wilcoxon rank sum test on Beta-values.

Robinson et al. (2014) concludes that moderated t/F-statistics on the normalized log-ratios

of intensities perform well in microarray data.

For sequencing platforms (here we refer to Bisulfite sequencing, BS-Seq/Methyl-Seq),

there are different methods according to different distributional assumptions. Hansen et al.

(2012) applied t-test for the DE analysis and many other methods based on generalized linear

model (GLM) have been proposed (Akalin et al., 2012; Dolzhenko and Smith, 2014; Feng

et al., 2014; Park et al., 2014). Akalin et al. (2012) uses binomial GLM (essentially logistic

regression), and Dolzhenko and Smith (2014); Feng et al. (2014); Park et al. (2014) use

beta-binomial GLM to better account for both biological and sampling/technical variation.

These methods suffer large computational burdens because the estimation procedures rely

on iterative steps to maximize the likelihood function. Park and Wu (2016) proposes a

novel method based on a beta-binomial GLM with an arcsine link function. The estimation

procedure is based on generalized least square approach without iterative steps, which helps

reduce the computational demands dramatically.

8



1.4 SAMPLE SIZE, POWER, GENOME-WIDE POWER

One of the most common tasks for statisticians requested by investigators is to perform

sample size and power calculations. In general, sample size is the number of subjects under

certain conditions enrolled in a study, e.g., control and patients. It is also usually referred

to as biological replicates. Power is referred to as the statistical power/sensitivity of the test

rejecting the null hypothesis when the alternative hypothesis is true. In general, increasing

the sample size will certainly help increase the power. However, larger sample size often

comes along with practical issues (increasing cost, limited resources, ...etc). Hence, the

balance between sample size and power that investigators want to achieve has to be taken

into consideration as early as possible.

In order to calculate the sample size needed, it is required to have some prior knowledge

or expected conditions in a study. For example, we need to decide the desired power under

certain effect size (the difference between different groups) and significance level for the

hypothesis test. The greater the variability in the data, the larger the sample size that is

required to assess whether or not an observed effect is a true effect. For example, larger

sample size is usually needed in human studies than animal models. On the other hand, if

the tested treatment/comparison is more effective (larger effect size), then a smaller sample

size is needed to detect this positive or negative effect (Noordzij et al., 2010).

Traditionally, the definition of power often refers to the framework based on one hypoth-

esis test. That is, when one only tests for one biomarker/treatment. For example, assume

we are interested in testing H0 : µA−µB < 2 against H1 : µA−µB ≥ 2, where µA and µB are

different group means for group A and B, both of which have same number of subjects. To

achieve a statistical power of 1−β under significance level α, sample size can be calculated as

n =
(s2
ȲA−ȲB

)(zα+zβ)2

(ȲA−ȲB)2 , where zα is the critical value of the standard normal distribution with

tail area of α. ȲA − ȲB refers to effect size (which equals 2 in this example), indicating the

difference between two groups of interest, and s2
ȲA−ȲB

is the variability of group difference,

which usually gets smaller as the sample size increases.

However, in genomic applications, gene expression matrices from transcriptomic studies

usually constitute of more than 20,000 probes or genes, and for methylation matrices from
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epigenetic studies, the number of CpG sites could increase to more than 450,000 or larger.

Given this multiple hypothesis testing setting, we can quantify the power of detecting multi-

ple genomic changes in a whole-genome scale, by the concept of “genome-wide power”. The

key question directly from it is how we can maintain type I error while we control the power,

since there are multiple comparisons. The family-wise error rate and false discovery rate

(FDR) (Benjamini and Hochberg, 1995) are widely used to address this kind of problem.

Gadbury et al. (2004) proposed the concept of expected discovery rate (EDR) as average

power across multiple comparisons to quantify the “genome-wide power.” We describe these

concepts below.

Based on the multiple testing framework in Benjamini and Hochberg (1995), we have

the two by two contingency table with G hypotheses in total to perform (see Table 1). The

numbers G0 and G1 of false and true null hypotheses are unknown parameters, A and R

are observable random variables and A0, A1, R0, R1 are unobservable random variables. In

the context of genomic studies, we would like to minimize the number R0 of false positives

(Efron, 2007; Ge et al., 2009). Following Gadbury et al. (2004), genome-wide power is defined

as EDR = E(R1

G1
), and FDR is defined as FDR = E(R0

R
). In most genomic applications,

one controls type I error by FDR under a certain pre-specified threshold (e.g., FDR=0.05)

to obtain the DE gene list. In the power calculations throughout this dissertation, we refer

to EDR as genome-wide power and pursue it under a pre-specified FDR control level.

Table 1 Multiple testing framework

True hypothesis Test declaration: Number of genes

non-DE DE

non-DE H0 A0 R0 G0

DE H1 A1 R1 G1

Total A R G

On the row is the unknown underlying true status for each marker/gene. On the column is the
testing results from a certain statistical test.
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1.5 EXISTING SAMPLE SIZE AND POWER CALCULATION METHODS

1.5.1 The use of pilot study in power calculation

In general, power calculation methods can be purely model-based, that is, pre-specified the

parameters such as effect sizes, variances, ...etc, or one can estimate those information from

a pilot study (usually of a relatively small sample size). Model-based methods are straight-

forward and more economical, however, the downside is that assumptions may easily fail in

the real data. Hence, by conducting pilot studies, we can reasonably estimate the variability

and effects from the pilot data and further infer the proper sample size or power. There are

many different types of variability coming from, for example, biological replicates, technical

replicates, experimental and batch effects. Especially for genomic applications, pilot studies

are of greater importance. Therefore, the key question is how to take advantage of pilot data

in the sample size and power calculations under a multiple testing framework.

In this dissertation, we assume that a pilot study with sample size N (in each group)

and total reads R (for each subject) is available to tackle the problem of power prediction.

We will also discuss the potential approach of power calculation when there is no pilot study

in the Discussion. In the following sections, we will briefly review the existing methods for

transcriptomic data for microarray and NGS platforms. To the best of our knowledge, there

are no existing methods for power calculation for Methyl-Seq data.

1.5.2 Existing methods for RNA microarray data sample size calculation

The significance of performing power and sample size calculations for genomic data was first

addressed by Lee and Whitmore (2002). They started from a common setting of ANOVA

model in microarray data analysis:

Yb = γ0 + γ1(b1) + ...+ γL(bL) +
L∑
`=1

L∑
k>`

γ`k(b`, bk) + ...+ εb, (1.1)

where ` = 1, ..., L denotes a set of L experimental factors. Parameter γ`(b`) denotes a

main effect for factor ` when it has level b`, for ` = 1, ..., L, respectively. Similarly, pa-

rameters γ`k(b`, bk) denote pairwise interaction terms for factors ` and k when they have
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their respective levels b` and bk, with `, k = 1, ..., L. The error term is denoted by εb.

The index b is a vector of the form (b1, ..., bL) where b` denotes the level of factor `. Let

Ig = (Igc, c = 1, ..., C)t denote the vector of parameters for gene g, e.g., Igc is denoted as

the effect of a covariate/condition c for gene g. Suppose Id is a non-zero vector representing

differential expression levels of gene g that is expected to detect. When testing H0 : Ig = 0

(gene g is not differentially expressed) against H1 : Ig = Id (gene g is differentially ex-

pressed), F-statistics, χ2 or z-statistics could be constructed for single gene under different

study designs. In their paper, ways to control multiple comparisons were discussed when

genes are correlated and not correlated. Microarray studies usually involve simultaneous

tests of thousands of genes. Therefore the probability of producing incorrect conclusions

must be controlled.

Family-wise error rate (FWER) αF = P (R0 > 0) (where R0 is the false positives in

Table 1), is discussed in details for application in multiple comparison issues in Lee and

Whitmore (2002). Both (1) Sidak approach: assuming independent estimation errors; and

(2) Bonferroni procedure: assuming dependent estimation errors are considered. Notice

that this approach does not consider the heterogeneity across different genes. They simply

assumed all genes have the same variance and effect sizes for alternative hypothesis. In

addition to the ANOVA model, the authors also mentioned the possibility solving the power

calculation problem from a Bayesian perspective, where a mixture model is introduced as:

f(v) = p0f0(v) + p1f1(v), (1.2)

where p0 is the proportion of non-DE gene, and p1 = 1−p0. Here v is the summary statistics

for each gene, f0(v) is the density for non-DE component, and f1(v) is the density for DE

component. This approach was not investigated enough until the methodological work of

PowerAtlas (Gadbury et al., 2004).

PowerAtlas is a popular web tool for power and sample size calculation proposed by Page

et al. (2006). They considered the variability of mean expressions and effect sizes across

different genes by directly modeling the p-value distribution of all test statistics. They

introduced the concept of expected discovery rate (EDR) as we reviewed in the previous

section, which can be viewed as the average power across all genes with true effects. Since
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genomic studies inherit multiple comparison issues, they also defined true positive rate (TP)

and true negative rate (TN) as below (the notations are consistent with Table 1).

EDR = E(R1/G1) (1.3)

TP = E(R1/R) (1.4)

TN = E(A0/A) (1.5)

If µiA and µiB are the underlying true expression for gene i in group A and B respectively,

we want to test whether the expression of group A and B are different with H0 : µiA−µiB = 0

against H0 : µiA − µiB 6= 0. Given a set of pilot data, their procedures started from a set of

p-values of t-statistics for testing differential expression for each gene. This pilot dataset is

expected to represent similar experimental characteristics as the future/larger data. It could

either be generated in a pilot study or directly from a public database. The t-statistic of

gene i can be written in the following form:

ti =
ēiA − ēiB

Sei0xi1

√
1
nA

+ 1
nB

(1.6)

where SeiAeiB =
(nA−1)S2

eiA
+(nB−1)S2

eiB

nA+nB−2
, assuming equal variance. When the two groups have

equal sample size nA = nB = N , the t-statistic becomes:

ti =
ēiA − ēiB√

(S2
eiA

+ S2
eiB

)/N
(1.7)

With the assumption that p-value distribution from DE analysis from microarray ex-

periment is a mixture of a beta distribution component (for DE genes) and an uniform

distribution component (for non-DE genes), a Beta-Uniform mixture (BUM) model is fitted

with p-values from ti(i = 1, ..., G). The fitted model is as 1.2. Then a parametric bootstrap

procedure is performed to obtain an updated set of p-values according to a targeted sample

size N ′. The key step of this method is the transformation of t-statistics by:

t∗i = ti
√
N ′/N (1.8)
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The underlying assumption is that the group-wise mean (ēiA, ēiB) and group-wise variance

(S2
eiA

, S2
eiB

) of each gene remain the same under different sample sizes. By directly mod-

eling the p-value distribution, the heterogeneity across genes can be maintained. However,

this method cannot be directly applied to RNA-Seq and Methyl-Seq data because different

characteristics of the data. They also did not control FDR at a fixed level, but instead they

impose an arbitrary p-value cut-off.

1.5.3 Existing methods for RNA-Seq data sample size calculation

One of the biggest distinction between RNA-Seq and microarray gene expression data is the

types of expression values. Microarray data produces continuous intensities, while RNA-Seq

data produces read counts for each gene. Hence, the distributional assumptions differ: Gaus-

sian assumption for microarray (usually after log2 transformation), and Poisson/negative

binomial distribution for RNA-Seq data. Many methods have been proposed for RNA-Seq

data under different distributional assumptions.

1.5.3.1 Methods based on Poisson assumptions Many literature have discussed

various Poisson tests: (1) asymptotic test based on normal approximation: (a) uncon-

strained maximum likelihood estimate (MLE); (b) constrained maximum likelihood estimate

(CMLE); (2) tests based on approximate p-value methods; (3) exact conditional test and

mid-p conditional test; (4) likelihood ratio test. See Gu et al. (2008) for a comprehensive

review for Poisson rate tests. Li et al. (2013a) developed methods (we call it “Poisson model”

for later reference) for sample size and power calculation, based on different types of Poisson

tests. They used false discovery rate (FDR) for multiple comparisons (Storey and Tibshirani,

2001; Storey, 2002).

1.5.3.2 Methods based on negative binomial assumptions Poisson tests are widely

used, while they ignore the nature of over-dispersion in real sequencing data. We have

reviewed methods to detect DE genes based on an over-dispersed Poisson model. Among

them, edgeR (Robinson et al., 2009) and DEseq (Anders and Huber, 2010) have been two

14



most popular methods to perform DE analysis based on exact tests. Extensive comparative

studies have shown the superiority of these two tests in detecting biomarkers over other tests.

However, it is clear that the two exact tests don’t have a closed form for sample size and

power calculation.

Until now, there are two methods proposed for RNA-Seq power calculation based on

negative binomial distributional assumption: (1) RNASeqPower (Hart et al., 2013); (2)

method based on the exact test (Li et al., 2013b). The two methods are similar in that they

both require the estimation or pre-specification of fold changes, mean counts, coefficient of

variations and the dispersion parameter.

RNASeqPower has a basic formula:

n = 2(z1−α
2

+ zβ)
1/µ+ σ2

ln(∆2)
, (1.9)

where α and β are type I error and power respectively; zx is the x quantile of standard

normal; and ∆ is the fold change or effect size. µ and σ are read coverage and coefficient of

variation (CV) between biological replicates (gene specific). The derivation of this formula

is based on a generalized linear model framework. CV is estimated by edgeR (σ = 1√
δ
, where

δ is the dispersion parameter). µ, σ and δ are required to be fixed across all genes for a

given study, and are often determined by external requirements. Apparently, this method

is designed for single gene based hypothesis testing. However, the authors suggest when

considering multiple genes scenario, one can simply take σ0.60 (60% quantiles of CV as the

overall CV) and the quantile of depth distribution across gene for sample size calculation.

An R package “RNASeqPower” is available through the bioconductor website. Although

this method is straightforward, it comes with several disadvantages: (1) it does not consider

multiple comparisons issue since the the power is only computed based on one single hypoth-

esis test; (2) it fails to incorporate the variability across genes and instead uses summary

statistics for effect size, dispersion, coverage of each gene, etc.

Li et al. (2013b) proposed a method for power calculation based on the exact test. Instead

of deriving the distribution of test statistic under the alternative hypothesis, the authors

adopt the method proposed by Krishnamoorthy and Thomson (2004) to calculate the power

for the exact test based on a given p-value. Following the same quantile-adjusted conditional
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maximum likelihood procedure in Robinson and Smyth (2008), pseudo/normalized-counts

are generated to conduct the exact test. For a given p-value p(eA, eB) of a gene, where eA

and eB are the observed sum of pseudo-counts, the power could be calculated by solving

following equation:

ξ(N, ρ, µA, δ, ω, α) =
∞∑

eA=0

∞∑
eB=0

f(NωρµA,
δ

N
)f(NµA,

δ

N
)I(p(eA, eB) < α) = 1− β, (1.10)

where N is the sample size in group A, ω =
d∗1
d∗0

is the ratio of the geometric means of

normalization factors between group A and B, ρ is the fold change, µA is the average read

counts in group A and f(µ, δ) is the probability mass function of negative binomial model

with mean µ and dispersion δ. α is the significance level and I(·) is the indicator function.

The required sample size N to attain the given power 1 − β at level of significance α can

then be derived from numerically solving equation 1.10 by using gradient descent or bisection

algorithm.

Considering the practical case of multiple genes, the authors provided two approaches.

In the first approach, µiA, ρi, δi can be estimated from pilot data for each prognostic gene

i which is known. Then we could use the numerical method to solve the equation to derive

required sample size:

r1 =
∑
i∈M1

ξ(N, ρi, µiA, δi, ω, α
∗), (1.11)

where r1 is the expected number of true rejections, M1 is the set of prognostic genes, and

α∗r1f/(m0 (1− f)) is the type I error when FDR is controlled at f, where m0 is the number

of null genes. In the second approach, when the parameters of prognostic genes are unknown

(which is usually the case), we can specify a desired minimum fold change ρ∗, a minimum

average read count µiA and a minimum dispersion δi. By replacing α∗ = r1f/(m0 (1− f))

and β∗ = 1 − r1/m1 in equation 1.10, one can derive the required sample size in the case

of multiple gene comparisons. Although this method provides a way to account for the

heterogeneity across different genes, the parameter setting is still arbitrary and relying on

information which is hard to retrieve.

Wu et al. (2015) proposed a method called “PROPER” for sample size and power cal-

culation, which is a fully simulation-based method. Users have to decide every parameter
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to run the procedure, including mean counts distribution, effect size distribution, disper-

sion parameter distribution, etc. This method suffers large computation needs and requires

accurate parameter specification.

1.5.4 Methods based on Gaussian assumptions

“Scotty” (Busby et al., 2013) is an online-tool developed for interactive power calculation.

Given a pilot data, it first assesses the mean counts distribution and the effect size distri-

bution. Secondly, it builds up a matrix of combination of parameters to represent different

designs for hypothesis testings. Finally, the design with highest power under a user-specified

parameter will be selected. The input parameters include the number of biological replicates,

read depth and cost. While Scotty provides novel ways in the study design for RNA-Seq

experiment, the framework is established based on the Gaussian assumption and the sta-

tistical power is calculated based on non-central t-tests. The authors argued that by using

t-tests unbiased calls of differential expression will be produced and the closed-form formula

for calculating power based on non-central t-test can be easily derived. However, to justify

this statement or the performance of t-test, the authors compared t-test to DESeq (Anders

and Huber, 2010) using limited simulated data. They concluded that when sample size is

small (N=2), DESeq has higher power in detecting DE genes, while sample size increases

to greater than 5, t-test has slightly greater power in detection. However, the paper did

not evaluate the false positive of tests, the accuracy of power prediction, and selection of

optimal experiment configuration since they did not consider to generate a true power curve

to compare with their simulation results. Furthermore, they did not take into consideration

of FDR but instead using an arbitrary p-value cut-off to declare DE genes.

1.6 OVERVIEW

Inspired by the limitations of existing methods, here we proposed two novel sample size and

power calculation methods: (1) RNASeqDesign for RNA-Seq data; (2) MethylSeqDesign for
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Methyl-Seq data. The following chapters will be arranged as described below. In chapter 2,

we will present the entire RNASeqDesign paper including comparative simulation and real

data analysis. In chapter 3, we will present the second method, MethylSeqDesign, and show

comprehensive simulation analysis and real data analysis.
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2.0 RNASEQDESIGN: A FRAMEWORK FOR RNA-SEQ GENOME-WIDE

POWER CALCULATION AND STUDY DESIGN ISSUES

This work has won 2016 ENAR student paper award and been submitted to JASA (under

review).

2.1 INTRODUCTION

With the advent of next-generation sequencing (NGS) technology, RNA-Seq has been rapidly

developed to characterize transcriptomic profiling, which is now impacting almost every

field of life science (Ozsolak and Milos, 2011; Conesa et al., 2016). Compared to the once

popular microarray technology, RNA-Seq has many advantages, such as higher per-base

resolution, better reading accuracy, wider detection range, and ability to discover novel

transcripts/isoforms. As the sequencing cost has constantly dropped, quantification of ex-

pression profiles by RNA-Seq experiment has become more feasible, which provides more

accurate detection of differentially expressed (DE) genes. When designing RNA-Seq experi-

ments, sample size calculation is critical because of the still high sequencing cost and limited

budget.

Traditional power calculation considers relationships between four elements: effect size,

α (type-I error), statistical power (1 type-II error (β)) and sample size. For example, for

a given effect size (usually estimated from pilot or published data) and α (normally 5%),

one is interested in calculating the sample size to reach a pre-specified statistical power (e.g.

power=80%) or, equivalently, to estimate statistical power given certain sample size (e.g.

N = 50). When analyzing high-throughput genome-wide experimental data, the situation
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becomes more complicated because of the well-known multiple comparison consideration.

Since thousands of hypotheses are tested simultaneously, controlling type-I error rate and

reducing false discovery in a genome-wide sense becomes critical. As a result, conservative

family-wise error rate (FWER) and the scientifically more applicable false discoverate rate

(FDR; Benjamini and Hochberg (1995)) have been proposed in the literature to replace type-

I error α. Lee and Whitmore (2002) first addressed the importance of power and sample size

calculation for microarray data and provided a procedure based on ANOVA for controlling

FWER. Since then, several other methods were proposed to control FWER for microarray

power calculation (Jung et al., 2005; Dobbin and Simon, 2005; Jung and Young, 2012). In

addition, Ferreira and Zwinderman (2006), Liu and Hwang (2007) and Van Iterson et al.

(2009) incorporated the concept of FDR and utilized pilot data to account for genome-wide

scenario for more realistic power calculation. Gadbury et al. (2004) introduced the concept of

expected discovery rate (EDR; see definition in Section 2.1) to replace univariate power 1-β

for addressing genome-wide detection power. They proposed a method combining parametric

mixture modeling and parametric bootstrap to estimate the required sample size. However,

their method only considered an arbitrary p-value cut-off to declare DE genes instead of

controlling FDR. Conceptually, FDR is the genome-wide analogue of type-I error α from

univariate hypothesis testing and EDR is the genome-wide analogue to statistical power

1−β. Since genome-wide screeing considers the whole set of DE genes, specifying one single

effect size for power calculation is not adequate and considering the effect size distribution

of DE genes is biologically more reasonable. A good power calculation method for high-

throughput experimental data should replace α and 1− β with FDR and EDR and consider

the distribution of effect sizes among DE genes.

Compared to microarray power calculation, RNA-Seq data have three unique features

that bring new statistical challenges and require novel study design concepts. Firstly, RNA-

Seq analysis aligns randomly sequenced short reads to the transcribed regions of each gene

and produces count data by nature. Continuous measurements from microarray intensities

are often modeled with a normality assumption after log transformation. This normal-

ity assumption restricted direct extension of many methods from microarray to RNA-Seq

experiments. RNA-Seq data need to be modeled with discrete distributions, and both sam-
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pling and biological variation should be considered. For this reason, the negative binomial

model (Robinson et al., 2009) has gained popularity compared to the Poisson distribution.

Secondly, the genome-wide distribution of expression levels tends to be skewed with the

majority of sequencing reads focused on a small portion of highly expressed genes (often

housekeeping genes), leaving most genes with low counts. Transcripts with short lengths

also tend to have low sequencing counts. A desirable power calculation method should ac-

commodate the detection bias for low-expressed or short-length transcripts. Finally and

most importantly, RNA-Seq experiments usually adopt a multiplex sequencing technique

by adding “barcode” sequences to each sample so they can be distinguished and sorted in

downstream data analysis. For example, the Illumina HiSeq 2500 platform runs eight lanes

in each experiment (known as a flow cell) with a fixed cost. A researcher can choose to

process one sample per lane, which results in roughly 250 million reads or three samples

per lane each with 83 million reads. In other words, a researcher can choose to triple the

sample size (denoted by N hereafter) by reducing the sequencing depth (denoted by R)

to one-third for the same sequencing cost. The power calculation solution space increases

from a classical one-dimensional (sample size, N) decision to a two-dimensional (N and R)

optimization that leads to a new study design problem. Figure 2A illustrates a scenario for

RNA-Seq power calculation and study design. Denote by C = B(N,R) the pre-specified

cost function based on selected sample size N and sequencing depth R, and Pow(N,R) the

estimated genome-wide power EDR. The problem can be formulated as searching the best

combination of N∗ and R∗ to optimize genome-wide power Pow(N,R) under a given budget

constraint C = B(N,R). Figure 2B illustrates the importance of extending the four key

elements of univariate power calculation (type-I error α, power 1-β, univariate effect size,

sample size N) to RNA-Seq genome-wide power calculation using FDR, EDR, effect size

distribution among DE genes, and two dimensional sample size N and sequencing depth R,

respectively.

Several methods have been proposed for RNA-Seq power calculation. Busby et al. (2013)

developed an interactive web tool, called “Scotty”, for RNA-Seq power calculation, where

the method was based on t-test with normal assumption. Hart et al. (2013) developed the

“RNASeqPower” package and proposed a power calculation formula based on negative bi-
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nomial model and a score test under generalized linear model framework. This method,

however, is based on univariate hypothesis testing and does not consider FDR and EDR

control. Li et al. (2013b) proposed a power calculation method based on exact test of neg-

ative binomial model. The method failed to consider multiple comparisons, genome-wide

power and sequencing depth. Wu et al. (2015) proposed a fully simulation-based method

“PROPER”, which considered sequencing depth as a stratified factor rather than a second

dimension for power evaluation. In this paper, we develop a unified statistical framework,

namely “RNASeqDesign”. Table 2 shows comparison of features of existing RNA-Seq power

calculation tools and RNASeqDesign. We will consider multiple comparison FDR control,

genome-wide EDR power, distribution of DE gene effect sizes, count data modeling, simul-

taneous optimization of sample size and sequencing depth, and incorporation of pilot data

information. Additionally, RNASeqDesign allows unequal case/control sample sizes, provides

a variability estimate of the power curve, and performs study design tasks and cost-benefit

analysis. Unlike other methods, RNASeqDesign estimates all required parameters in the

model from pilot data and does not need user-defined arbitrary input parameters such as

fold change cut-off, proportion of null genes or fold change distribution of DE genes.

The chapter is structured as follows. In Section 2, we present the statistical framework

of RNASeqDesign using Wald test from pilot data, model fitting of the resulting p-value

distribution, parametric bootstrapping and two-dimensional smoothing for fast N and R

optimization. In Section 3, we apply the methodology to develop practical cost-benefit anal-

ysis and solve five selected study design tasks. Simulations and three real data applications

are shown in Section 4. Section 5 provides final conclusions and discussion. An R package

“RNASeqDesign” and all data and code are available on authors website1 and github2.

1http://tsenglab.biostat.pitt.edu/software.htm
2https://github.com/MasakiLin/RNASeqDesign
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(A) (B)

(C)

(A) Illustration of two-dimensional optimal design. The X and Y axes represent sample size N
and sequencing depth R respectively, and Z axis is genome-wide power EDR. Genome-wide power
hypersurface Pow(N,R) is a function of N and R. Increasing N and R produces higher power (from
dark color to light color). When given a fixed cost/budget C, we seek the optimal design(N∗(C),
R∗(C)) that maximizes Pow(N,R) under the constraint of B(N,R) ≤ C. (B) Comparison of
the four key elements between univariate power calculation and RNA-Seq genome-wide power
calculation. (C) Multiple testing comparisons framework.

Figure 2 Two-dimensional optimal design

2.2 GENOME-WIDE POWER CALCULATION IN RNA-SEQ

2.2.1 Notations and terminology

Consider D0={Y = (ygj)G×(n0+n1), X = (xj)1×(n0+n1)} (1 ≤ g ≤ G, 1 ≤ j ≤ n0 + n1) a

pilot RNA-Seq dataset, where ygj represents the read count for gene g of subject j, xj is

the case-control indicator (xj=0 for controls and xj=1 for cases), and n0 and n1 are the

number of controls and cases in the pilot data. Denote by θp = n1/n0 the sample size ratio

between the number of cases (n1) and controls (n0). Let Rj =
∑G

g=1 ygj be the total number

of reads observed in subject j (a.k.a. library size). For simplicity, we assume equal library

size R0 for all pilot subjects. As discussed in the previous section, we consider genome-wide

power calculation under genome-wide type-I error control using FDR=E(number of claimed
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Table 2 Comparison between existing methods and RNASeqDesign

Li et al. RNASeqPower Scotty PROPER RNASeqDesign
Consider multiple comparison
(FDR)

Yes No No Yes Yes

Consider genome-wide power
(EDR)

No No Yes Yes Yes

Consider effect size distribution
of DE genes

No No Yes Yes Yes

Consider N and R
simultaneously

No No Yes No Yes

Model count data adequately Yes (NB) Yes (NB) No (t-test) Yes (NB) Yes (NB)
Incorporate pilot data
information

Minimal∗ Minimal∗ Minimal∗ Minimal∗ Yes

Allow unequal case/
control sample sizes

No Yes Yes Yes Yes

Provide variability estimate of
power curve

No No No No Yes

Perform study design and
cost-benefit analysis

No No No No Yes

Require user-defined input
parameter

FC cut
DE prop.

FC cut
p-value cut

FC cut
p-value cut

MC dist.
Disp dist.
FC dist
DE prop.

No

NB: negative binomial distribution was used in the model. FC: fold change. MC: mean counts.
Disp: dispersion. ∗: pilot data were partially used to estimate selected key parameters.

false positives/number of claimed positives) (i.e. FDR = V/R in Figure 2C). Following

Gadbury et al. (2004), we define expected discovery rate, EDR=E(number of claimed true

positives/number of total true positives) (i.e. EDR = S/(m − m0) in Figure 2C), as the

genome-wide average power that we aim to estimate. The basic statistical framework of

RNASeqDesign is to estimate the genome-wide power ÊDR(N0, N1, R|D0) (equivalent to

the notation Pow(N,R) in Section 2.1) based on the pilot data D0 for designing a future

experiment with targeted sample sizes in control and case groups (N0 and N1; denote θ =

N1/N0 as the case-control ratio in targeted samples) and targeted sequencing depth R, under

certain FDR control (e.g. FDR=5%). We assume equal sequencing depth R for all subjects

in the planned experiment.
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2.2.2 Four sequential steps for genome-wide RNA-Seq power calculation

We propose four sequential steps in RNASeqDesign to estimate EDR as the desired genome-

wide power. In Step I, p-values and effect size distribution of all genes from pilot data are

obtained using a negative binomial generalized linear model and Wald test. In Step II, a two

beta mixture model is applied to characterize the genome-wide p-value distribution and to

estimate the proportion of true DE genes. In Step III, a parametric bootstrapping method

based on DE posterior probability is used to simulate and transform the genome-wide p-

value distribution towards the targeted sample size and sequencing depth. In the final step,

two-dimensional smoothing and hypersurface fitting is applied to stabilize the estimation of

ÊDR(N,R|D0) for any N and R. Below, we describe the details of each step.

Step I. Differential expression analysis on pilot data We assume that ygj ∼ NB(µgj, δ),

where µgj is the mean and δ is a common dispersion parameter for gene g and subject j.

The probability mass function of ygj is

P (ygj) =
Γ(δ + ygj)

Γ(δ)ygj!
(

δ−1µgj
1 + δ−1µgj

)ygj(
1

1 + δ−1µgj
)δ,

where Γ(t) =
∫∞

0
xt−1e−xdx. Based on a generalized linear model framework, we adopt a

link function log(µgj) = log(Rj) + βg0 + βg1 · xj, where Rj is the library size for subject j

and xj is the case-control indicator. The log-likelihood becomes:

Lg =
n∑
j=1

[log
Γ(δ + ygj)

Γ(δ)ygj!
+ ygj log(δ−1µgj)− (ygj + δ) log(1 + δ−1µgj)].

βg0 and βg1 can be estimated using maximum likelihood estimator (MLE) and variance-

covariance matrix of the MLE is approximated by inverse of the estimated Fisher information

matrix. To simplify the formula, we assume all samples have the same total reads R0, i.e.

Rj = R0, 1 ≤ j ≤ n.

For a given gene g, our goal is to test H0 : βg1 = 0 versus H1 : βg1 6= 0. The Wald test

procedure is used in our method in order to apply a parametric boostrapping approach in

Step III. The Wald test statistic Zg approximately follows a standard normal distribution,

i.e.

Zg =
β̂g1√

Var(β̂g1)
∼ N(0, 1)
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under the null hypothesis that no differential expression exists in gene g. MLE estimators

β̂g0 and β̂g1 can be obtained by solving the equations
∑1

i=0

∑ni
j=1[ygij − (ygij + δ)× qij

(1+qij)
] = 0∑1

i=0

∑ni
j=1[xijygij − (ygij + δ)× xijqij

(1+qij)
] = 0

,

where qij = δ−1R0e
βg0+βg1xij .

The Fisher information matrix for gene g is

Fg = −E(
∂2Lg

∂(βg0, βg1)
) =

 n0R0e
βg0

1+δ−1R0e
βg0

+ n1R0e
βg0+βg1

1+δ−1R0e
βg0+βg1

n1R0e
βg0+βg1

1+δ−1R0e
βg0+βg1

n1R0e
βg0+βg1

1+δ−1R0e
βg0+βg1

n1R0e
βg0+βg1

1+δ−1R0e
βg0+βg1

 .

The covariance matrix of (β̂g0, β̂g1)T is

Cov

(
β̂g0

β̂g1

)
= F−1

g (β̂g0, β̂g1)

Therefore variance estimator of β̂g1 is

Var(β̂g1) =
1

n0

× (
1 + θpe

β̂g1

θpR0eβ̂g0+β̂g1
+

1 + θp

θpδ̂
), (2.1)

where θp = n1/n0 (Zhu and Lakkis, 2013).

Here, the over-dispersion parameter is estimated by the conditional maximum likelihood

in “edgeR” (Robinson and Smyth, 2008) assuming common dispersion across all genes. The

reason for using common dispersion parameter is that when sample size is small (which is

usually the case in pilot studies), estimation of tag-wise dispersion parameter is not precise

with large variation. Denote by pg the p-value of gene g from the aforementioned Wald

test. As we will see in Step III, the format of variance estimator from Wald test statistic

(Z-statistics) in Equation (2.1) has a convenient form to project the observed Z-statistics

distribution from pilot data to the targeted sample size N0 and N1 and sequencing depth R.

In Section 4, we will compare performance of Wald test with exact test and likelihood ratio

test to justify that Wald test not only provides a convenient mathematical form for power

calculation but also generates comparable hypothesis testing performance.

Step II. Mixture model fitting for p-value distribution Traditionally, a beta-uniform

mixture (BUM) model (Allison et al., 2002) was used to fit the p-value distribution; that
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is, using a beta distribution for DE gene p-values and a uniform distribution for non-DE

gene p-values. However, when sample size is small (which is often the case of pilot data for

power calculation) and data are discrete instead of continuous, the p-value distribution of

non-DE genes often shows a heavy right tail, which suggests an improper fitting of uniform

distribution under null hypothesis (see example in Figure 3). For example, Efron (2004)

mentioned the need to estimate the null distribution and applied a non-parametric approach.

Here, we propose to fit another beta distribution for non-DE genes, which results in a two

beta mixture model to fit the p-value distribution (p1, p2, · · · , pG) from pilot data in Step I.

Specifically, the two beta model contains a non-DE gene f0(p) component and a DE gene

f1(p) component. Among non-DE genes, f0 is a beta distribution with shape parameter r0

and s0 with constraints 1 ≤ r0 and s0 ≤ 1. When r0 = s0 = 1, the non-DE beta distribution

is equivalent to a uniform distribution. For DE genes, f1 is a beta distribution with shape

parameter r1 and s1 with constraints r1 ≤ 0.9 and 1 ≤ s1. The density of p-value distribution

is f(p|r0, s0, r1, s1, λ) = λf0(p|r0, s0)+(1−λ)f1(p|r1, s1), where λ is the proportion of non-DE

genes. Note that the constraints for r0, r1, s0, and s1 are necessary to guarantee the proper

shapes of the p-value distributions of non-DE and DE genes, respectively.

For estimation of the five parameters (r0, s0, r1, s1, and λ), due to the fact that the

estimation of λ is the most critical parameter, we adopted a robust two-step estimation

procedure: we first used maximum likelihood approach and checked if the resulting non-

DE beta distribution deviated from the uniform distribution, by comparing the cumulative

distribution function (CDF) from 0.5 to 1. If the difference was less than 0.1, then we used

a convex decreasing density estimate (CDD) method (Langaas et al., 2005) (implemented

by “convest” function in R package “limma”) to re-estimate λ. Then we fixed λ and used

MLE again to estimate the four remaining shape parameters. If the CDF difference between

non-DE beta distribution and uniform distribution was large enough (> 0.1), we simply

reported the MLEs of the five parameters based on a two beta model.

Step III. Parametric bootstrapping based on DE posterior probability to estimate

EDR Conceptually, the p-value distribution for non-DE genes with zero effect size follows a

uniform distribution (or a beta distribution as estimated in Step II) and does not change when

the sample size and sequencing depth change. On the other hand, the p-value distribution for
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P-value distribution from real data showed heavy right tail, indicating a non-uniform distribution
of non-DE genes.

Figure 3 P-value distribution with heavy right tail

those DE genes become more significant as sample sizes and/or sequencing depth increase.

Equation (2.1) is the key formula to allow transformation of Z-statistics of DE genes to the

targeted sample size N0 and sequencing depth R. Let Ig be the latent variable representing

gene g to be DE (Ig=1) or non-DE (Ig=0). We compute the posterior probability of Ig based

on the estimated two beta mixture model from Step 2. Then p-values are drawn from the

posterior probability of Ig to transform the Z-statistics distribution to a new Z distribution

at targeted N0 and R. Note that only p-values of DE genes should be transformed, while p-

values of non-DE genes stay unchanged. Parametric bootstrapping procedures are described

as below.

1. The posterior probability of the DE indicator Ig is calculated as

P (Ig = 1|λ̂, r̂0, ŝ0, r̂1, ŝ1, pg) =
(1− λ̂)f̂1(pg|r̂1, ŝ1)

λ̂f̂0(pg|r̂0, ŝ0) + (1− λ̂)f̂1(pg|r̂1, ŝ1)
,

where λ̂, r̂0, ŝ0, r̂1 and ŝ1 are estimated from Step 2. In the b-th simulation (1 ≤ b ≤ B),

we randomly simulate I
(b)
g from P (Ig = 1|λ̂, r̂0, ŝ0, r̂1, ŝ1, pg) for 1 ≤ g ≤ G.
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2. Only Z-statistics from DE genes are transformed. Specifically we derive

Z(b)
g = I(b)

g × Zg ×

√√√√√√N0 × ( 1+θpe
β̂g1

θpR0e
β̂g0+β̂g1

+ (1+θp)

θpδ̂
)

n0 × ( 1+θeβ̂g1

θReβ̂g0+β̂g1
+ (1+θ)

θδ̂
)

+ (1− I(b)
g )× Zg.

In Equation (2.1), Var(β̂1) can be considered as a function of n0, θp and R0. If we assume

the effect size of a DE gene remains the same as n0 and R0 change, the above formula

can transform the test statistics of DE genes to targeted N0, θ and R.

3. Compute p-value based on the 2-sided test: p
(b)
g = 2 × (1 − Φ(|Z(b)

g |)) if gene g with

I
(b)
g = 1, where Φ is a CDF of a standard normal distribution. When I

(b)
g = 0, p

(b)
g = pg.

4. Control FDR at level α:

a. In the bth simulation, calculate FDR(b)(u) =
∑G
g=1(1−I(b)

g )·χ(p
(b)
g ≤u)∑G

g=1 χ(p
(b)
g ≤u)

for a given p-value

threshold u, where χ(·) is an indicator function that takes value one when the state-

ment is true and zero otherwise.

b. Let u(b) = argmax
u

(FDR(b)(u)) ≤ α), where u(b) is the p-value threshold that controls

FDR at α level for the bth simulation.

5. The estimated EDR for the bth simulation can be calculated as ÊDR
(b)

=
∑G
g=1 I

(b)
g ·χ(p

(b)
g <u(b))∑G

g=1 I
(b)
g

.

Finally, the robust estimated EDR for all B simulations is: ÊDR(N0, N1, R|D0) =

medianb(ÊDR
(b)

). The first and third quantile of estimated EDR can be also derived and

used to account for the variability of EDR estimation. For simplicity of presentation, we

assume N0 = N1 = N hereafter although the restriction can be relaxed easily and use

EDR(N,R|D0) to represent EDR(N0, N1, R|D0).

Step IV. Two-dimensional smoothing and hypersurface fitting The inverse power

law model has been widely applied in the machine learning field to model learning accuracy

curves with increasing sample size (Mukherjee et al., 2003; Ding et al., 2014). Here we

propose a two-way inverse power law hypersurface model to fit the EDR hypersurface:

EDR(N,R|D0) = 1− b×N−c − d×R−e. (2.2)

We first calculate ˆEDR(N,R|D0) from Step I-III for grid selections of N and R. The inverse

power law hypersurface is then fitted by minimizing sum of squared errors using BFGS
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quasi-Newton method (Lewis and Overton, 2009) in R with “optim” function to estimate

parameters b, c, d and e. With smoothing and hypersurface fitting, the EDR estimation is

more stable and can be calculated for any N and R that are used for cost-benefit analysis

in the next section. In Step III, we use a small B = 10 for faster computing and rely on

hypersurface smoothing to reduce variability.

2.3 COST-BENEFIT ANALYSIS AND STUDY DESIGN

2.3.1 Cost function and cost-benefit analysis

In most power calculations, the experimental cost grows linearly with sample size and no

complicated cost-benefit analysis is needed. In RNA-Seq analysis, however, the trade-off

between sample size N and sequencing depth R brings new challenges. A common goal of

study design is to pursue the best N and R balance to achieve the maximum EDR under

a fixed budget constraint, as described in Figure 2. The decision is given by (N∗, R∗) =

arg max(N,R) ÊDR(N,R|D0) under the constraint that B(N,R) ≤ C, where C is a pre-

specified maximum budget.

To illustrate the cost function B(N,R), we checked the cost of an RNA-Seq experiment at

the Sequencing and Microarray Facility core at MD Anderson. As of Dec 30, 2016, the sample

preparation cost is $500 dollars per sample. Sequencing cost for HiSeq 2000 100bp single-end

reads is $1,500 per lane for their internal users. Each lane normally generates ∼250 million

single-end reads. For illustration purposes, we take the most popular sequencing platforms

Illumina HiSeq 2000/2500 as an example and define R as the number of lanes used for a

sample. For example, if we pool three samples per lane, R = 1/3 lane. The resulting cost

function becomes: B(N,R) = A + (2 × N) × S1 + (2 × N) × S2 × R, where A is the fixed

cost (e.g. personnel expense), S1 is the sample collection cost per sample that includes cost

of tissue collection, sample preparation and bioinformatics cost and so on, and S2 is the

sequencing cost per lane.
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In Figure 4, we develop paired plots to display dynamic changes of four variables N ,

R, B(N,R) and EDR(N,R), and to illustrate the cost-benefit analysis. The lower panel

of N-R plots show all feasible designs of (N,R) and the upper panel of B-EDR plots show

the corresponding budget B(N,R) versus genome-wide power EDR(N,R) for each (N,R)

design. In practice, R is allowed with limited discrete selections (e.g. R=1/6, 1/5, 1/4,

1/3, 1/2, 1, 1.5 and 2). For a given (N,R) design, if there exists another allowed (N,R)

design with lower cost and larger EDR, we consider this (N,R) design inadmissible. (N,R)

design is admissible if and only if there exists no other feasible (N,R) on Quadrant II when

(N,R) is treated as the origin in the B-EDR plot (see Figure 5 for illustration). In Figure

4, admissible (N,R) designs are plotted in black and inadmissible designs are shown in light

grey.

2.3.2 Study design issues

As shown in Table 2, existing methods for RNA-Seq data fail to consider many key features

relevant to experimental data distribution, genome-wide inference and biological objectives.

Particularly, no other tool has developed guidance on decision making under different prac-

tical scenarios. This is understandable because no other method has simultaneously studied

N , R, B(N,R) and EDR(N,R) under pre-specified FDR control. Here we propose the

following five tasks under practical scenarios and utilize our power calculation framework to

provide study design guidance. Figure 4 shows corresponding output of N-R and B-EDR

paired plots for each task, which is implemented in the “RNASeqDesign” R package. Results

in the figure are generated from simulated pilot data and will be discussed further in Section

2.4.

• Task 1 (T1): Given a fixed maximum budget C, what is the optimal design (N*, R*)?

This is the most common design that has been illustrated in the Introduction Section.

The red cross in Column T1 of Figure 4 shows the optimal design.

• Task 2 (T2): For a desired power U , how much money should I request in the grant and

what is the corresponding design? The decision is given by (N∗, R∗) = arg min(N,R) B(N,R)

such that EDR(N,R) ≥ U . In Column T2 of Figure 4, the red cross shows the solution.
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B	(K) B	(K) B	(K) B	(K) B	(K)

B=C

EDR=U

N=V N=V1 N=V2

100 200 400 100 200 400 100 300 500 200 600 1000 100 300 500

First row demonstrates B-EDR plots which show the relationship between cost and EDR, and
second row is N-R plot which shows the corresponding designs (N , R). Each symbol represents
a specific combination of N and R. There is an one-to-one correspondence between each symbol
in B-EDR plot and N-R plot. Gray symbols refer to inadmissible designs and black ones refer
to admissible designs. Blue lines illustrate fixed conditions in each task, e.g., fixed budget in T1.
Symbols in red refer to the final decision in T1 and T2, and examples to illustrate ideas in T3, T4
and T5. In T3, symbols A and B are two designs given same maximum sample size where design
A achieves maximum EDR with deepest sequencing. Although design A has higher EDR than B,
it costs a lot more as well. In T4, circle symbols represent maximum sample size as 80 whereas
cross symbols represent the case of more samples are available (up to N = 130). Consequently,
recruiting more samples can achieve higher EDR and reduce cost. T5 evaluates the gain of power
as sequencing depth gets deeper.

Figure 4 Illustration of two-dimensional optimal design in five tasks (T1-T5)

• Task 3 (T3): For a fixed maximum sample size V (e.g. due to limitation of tissue

availability), what is the maximum achievable EDR and the corresponding cost and R?

The decision is given by (N∗, R∗) = arg max(N,R) EDR(N,R) such that N ≤ V . The red

circle A in Column T3 of Figure 4 shows the highest achievable EDR.

• Task 4 (T4): For a given available sample size (maximum number of currently available

tissues) V1, is it worthwhile to recruit more samples (i.e. increase number of avail-

able tissues to V2)? Will it significantly increase power and reduce cost? In this case,
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Inadmissible design
Admissible design

B

Illustration	for	admissible	and	inadmissible	designs

For a given (N,R) design, if there exists another (N,R) design with lower cost and larger EDR,
we consider this (N,R) design inadmissible. (N,R) design is admissible if and only if there exists
no other feasible (N,R) on Quadrant II (area shaded in red) when (N,R) is treated as the origin
in the B-EDR plot. For example, for design A, no other design exists in Quadrant II; hence design
A is admissible. Design B is inadmissible because design A achieves higher EDR with lower cost.
All admissible designs are highlighted in red and all inadmissible designs are highlighted in gray.

Figure 5 Illustration of admissible and inadmissible designs
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we will calculate (N (1), R1) = arg max(N,R) EDR(N,R) such that N ≤ V1 and simi-

larly (N (2), R2) = arg max(N,R) EDR(N,R) such that N ≤ V2. The additional power

we will gain is ∆EDR = EDR(N (2), R2) − EDR(N (1), R1) and the cost difference is

∆B = B(N (2), R2) − B(N (1), R1) (or plus the recruitment cost of additional samples if

necessary). In Column T4 of Figure 4, increasing allowable N from V1 to V2 helps achieve

higher EDR with lower budget (red cross versus red circle).

• Task 5 (T5): For an existing RNA-Seq experimental data with sample size N and se-

quencing depth R, is it worthwhile to sequence deeper (increase from R to R) to gain more

power, if remaining tissues of these N samples are available for additional sequencing? In

this scenario, consider multiple possible R > R. Calculate the gain of power ∆EDR =

EDR(N,R) − EDR(N,R) and evaluate the additional cost ∆B = B(N,R) − B(N,R)

(see Column T5 of Figure 4).

Note that in all the five tasks above, maximizing power under constraint is often the

goal but it may not always be the case. In many real applications, spending a lot more

(∆B) for a small increase in detection power (i.e. ∆EDR) is not desirable. To compare two

potential design choices (N,R) and (N,R), the marginal utility index ∆U((N,R), (N,R)) =

∆EDR/∆B = (EDR(N,R)− EDR(N,R))/(B(N,R)− B(N,R)) indicates the additional

detection power that can be gained while spending an additional unit of budget and can

provide a good measure for decision. If ∆U((N,R), (N,R)) < 0, (N,R) is inadmissible and

should never be chosen.

2.4 SIMULATION AND REAL DATA ANALYSIS

2.4.1 Simulation

Simulation setting To simulate data mimicking real situations, parameter settings for our

simulations are based on estimates from a real dataset downloaded from GEO (GEO acces-

sion number: GSE47474). The RNA-Seq study was designed to detect differential expression

in brain regions of F344 control rats and HIV-1 transgenic rats (Li et al., 2013c). RNA tran-
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scripts were sequenced in three brain regions: prefrontal cortex (PFC), hippocampus (HIP),

and striatum (STR) for both HIV-1Tg and F344 rats. It includes 72 RNA samples in total

(12 animals per group × 2 strains × 3 brain regions).

Similar to the data processing procedure used in the original paper, Bowtie /Tophat

/Cufflinks (version 2.0.10) suites were applied to align the reads onto gene regions with the

Rn4 rat reference genome. Htseq-count was used to summarize number of reads aligned to

each gene. We further applied normalization method in “EDASeq” to perform within-lane

normalization procedures to adjust for GC-content effect (or other gene-level effects) on read

counts (Risso et al., 2011).

We started with HIP data (sample sizeN=12, total number of reads R=µ×G≈ 8.85×106,

total number of genes G=14,750, average counts for each gene µ ≈ 600). Mean count per

gene(µg) was calculated to generate its empirical distribution. For log fold change distri-

bution (denoted as lfc, in log2 scale), we sampled from the tails of a truncated normal

distribution with mean 0, standard deviation 0.2 and truncated at 0.49/-0.49 (corresponding

to at least 40% fold change) for DE genes with positive effect and negative effect in simula-

tion study respectively. The total number of genes (G) was set to 25,000. The proportion

of DE genes was set to 15%. Among DE genes, 50% had positive effect sizes and the other

50% had negative effect sizes. The average number of mean counts was set to 800 (we scaled

the empirical distribution of mean counts proportionally to match this number). The total

number of reads per sample was simulated with 20 million (about 4 samples per lane). The

common dispersion parameter from rat dataset was estimated as 50 which reflected less bio-

logical variation in the data. To evaluate the performance in a human dataset, which tends

to have larger biological variation, we simulated the data with common dispersion parameter

as 5.

The detailed steps to simulate pilot data with (n0, R0) and targeted data with (N , R)

are shown below.

1. Mean counts: Randomly sample mean counts µg for each gene from empirical distribution

estimated by HIP data.

2. DE index: Generate random number rg from Uniform(0,1) for each gene, if rg ≤0.15

then gth gene is DE gene, otherwise, it is non-DE gene.
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3. Log fold change(lfc): Generate lfc from truncated normal distribution for each DE gene.

In other words, the lfc for non-DE genes is set to 0.

4. Generate count data for pilot data for each sample: If the g-th gene is DE and the j-th

subject belongs to case group, then the count yg1j ∼ NB(µg × 2lfcg/2, δ). If the subject

belongs to control group, then yg0j ∼ NB(µg × 2−lfcg/2, δ). If the g-th gene is non-DE

gene, then yg.j ∼ NB(µg, δ).

5. Generate count data for true data for each sample: If the g-th gene is DE and the j-th

subject belongs to case group, then the count yg1j ∼ NB(µg × 2lfcg/2 × R
R0
, δ). If the

subject belongs to control group, then yg0j ∼ NB(µg × 2−lfcg/2× R
R0
, δ). If the g-th gene

is a non-DE gene, then ygi. ∼ NB(µg × R
R0
, δ)

Comparison of Wald test with exact test and likelihood ratio test The Wald test is applied

using approximations (plugged-in standard deviation and chi-squared approximation) that

sometimes raise concerns of accuracy as compared to the exact test. To demonstrate validity

of Wald test, we first compared it with exact test under negative binomial distribution using

“exactTest” function in “edgeR” package. Since the true labels of DE genes under simulation

settings are known, we can compare the receiver operating characteristic (ROC) curve and

the area under curve (AUC) of the Wald test and the exact test. We compared the two

tests under 12 different simulation settings: common dispersion parameter was chosen to be

40, 50, or 60; fold change was chosen to be ≥ 1.15, 1.20, 1.25, or 1.30. Pilot data sample

size n0 was fixed as 4 for illustration of small sample size. In each setting, 50 datasets were

generated to assess the performance variation. Given each simulated data, two tests were

performed separately and ROC curves were generated by comparing the declared genes with

the true DE labels. Figure 6 showed the ROC curves (with boxplot of 50 datasets). The

ROC curves of exact and Wald test almost overlapped with each other, indicating good

concordance between these two tests even when n0 is as small as 4. The mean and standard

deviation of AUC were presented in Table 3 for both tests.

In addition to comparisons using simulation data, we also used rat sequencing data

mentioned above to compare the p-value distribution of Wald test and exact/likelihood

ratio test (implemented by R function “exactTest” and “glmLRT” in “edgeR”, respectively).

The results (shown in Figure 2.4.1) indicated an almost perfect concordance of p-value
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Figure 6 ROC curves comparing the exact (blue color) and Wald (red color) tests under 12 simulation
settings.
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Table 3 Summary table for AUC in 12 simulation settings

fold-change(fc) δ=40 δ=50 δ=60

Exact Wald Exact Wald Exact Wald

≥ 1.15 0.77(0.01) 0.77(0.01) 0.79(0.01) 0.80(0.01) 0.82(0.01) 0.82(0.01)

≥ 1.20 0.81(0.01) 0.82(0.01) 0.84(0.01) 0.84(0.01) 0.86(0.01) 0.86(0.01)

≥ 1.25 0.86(0.01) 0.86(0.01) 0.89(0.01) 0.89(0.01) 0.90(0.01) 0.90(0.01)

≥ 1.30 0.90(0.01) 0.90(0.01) 0.92(0.01) 0.92(0.01) 0.93(0.01) 0.93(0.01)

distribution between (1) Exact test vs. likelihood ratio test and (2) Wald test vs. exact test

in all three brain regions.

Implementation of existing methods In Section 2.2, we introduced several existing methods

for power calculation of RNA-Seq data. Here, we compare our proposed method with five

other methods: (1) Poisson exact test (Li et al., 2013a), (2) RNASeqPower, (3) Negative

binomial (NB) test (Li et al., 2013b), (4) Scotty’s method, and (5) PROPER under simulation

setting mentioned in Section 2.4.1. Different methods have their own model specifications

and parameters. For a fair comparison, we either estimated input parameters from simulated

pilot data or provided the underlying truth directly to the existing methods if needed.

Genes with average count less than 5 were filtered out to reduce inflated p-value density

around 1. The implementation of Poisson exact test method was based on the R code

provided by original authors. True proportion of DE genes was provided to this method,

which was 15% of total genes and the minimum number of mean counts in control group was

estimated from the pilot data (at least 5). The FDR was set to 0.05 and the true minimum

DE gene fold change of 1.4 was used as the input parameter. RNASeqPower is performed

using function “rnapower” in R package “RNASeqPower”. Sequencing depth is estimated

by averaging the read count aligned to each gene across all samples. Biological coefficient of

variation(BCV) is estimated as
√

1/δ0.50, where δ0.50 is the median of tag-wise dispersion (δg)

obtained from function “estimateTagwiseDisp” in R package “edgeR”. Effect size was set to

1.40 with alpha as 0.0001 (for a rough control of multiple comparison). For NB method, we
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(a) PFC data; (b) HIP data; (c) STR data. Left panel is Quantile-Quantile plot of p-value from
exact (x axis) and likelihood ratio test (y axis). Right panel is Quantile-Quantile plot of p-value
from exact (x axis) and Wald test (y axis). Red dashed lines are 45 degree reference lines.

Figure 7 QQ-plot for comparisons between Exact test and likelihood ration test and Wald test
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used the R function “est power” in package “RnaSeqSampleSize”. The parameter setting is

similar to those in Poisson exact test except it requires additionally specifying the estimate

of maximum tag-wise dispersion parameter as obtained from“edgeR”. Scotty’s method was

implemented in MATLAB with code downloaded from https://github.com/mbusby/Scotty.

Similar to RNASeqPower, effect size was set to 1.40 and p-value cutoff was set to 0.0001.

Maximum number of reads to test the experiment was set to 30M. Lastly, the PROPER

method was implemented by R package “PROPER”. Each pilot data was used to generate

empirical distribution of log mean counts and log over-dispersion. “edgeR” was used for DE

analysis. FDR was set to 0.05 and fold change larger than 40% were used to declare DE

genes. The rest of input parameters applied the default settings (including log fold change

distribution).

Performance Evaluation We simulated B=20 pilot datasets (b = 1, 2, ...B) with pilot sample

size n0= 2, 4 and 8 with R0=20M reads. For each pilot dataset with (n0, R0), the projected

power for target sample size Nj=5, 10, 20, 30, 40, 50, 100 (j=1, 2, ..., 7) and R from a power

calculation method is denoted as ÊDR(Nj, R;n0, R0). Since the underlying truth is known,

the true EDR for each (Nj, R) can be estimated as ÊDR (Nj, R) =

B∑
b=1

ÊDR
(b)

(Nj ,R)

B
where

ÊDR
(b)

(Nj, R) is the actual EDR in the b-th simulation when sample size Nj and R are

simulated. We propose the following benchmarks based on root mean squared error (RMSE)

to evaluate performance of different power calculation methods:

1. Benchmark 1: Consider R = R0 for one-dimensional power calculation from n0 to Nj

(j = 1, 2, ..., 7). The RMSE of estimated EDR from power calculation is

√√√√√ B∑
b=1

7∑
j=1

[
ÊDRj

(b)
(Nj, R;n0, R0)− ÊDR (Nj, R)

]2

B · 7
.

2. Benchmark 2: Similar to Benchmark 1 but consider RMSE of N̂ (b) (EDR = 80%, R;n0, R0),

the sample size needed to achieve 80% EDR in the b-th simulation.

3. Benchmark 3: Similar to Benchmark 1 but consider different targeted sequencing depth

from R0=20M (quarter lane) to Ri=40M (half lane), 80M (one lane), 120M (one and
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half lanes), 160M (two lanes) (i = 1, 2, 3, 4) lane. The RMSE of EDR becomes√√√√√ B∑
b=1

7∑
j=1

4∑
i=1

[
ÊDRij

(b)
(Nj, Ri;n0, R0)− ÊDR (Nj, Ri)

]2

B · 7 · 4
.

Figure 8 shows estimated EDR curves and true EDR curves when comparing RNASeqDesign

with five other existing methods. Table 4 shows the RMSEs of Benchmark 1 and Benchmark

2 and computing time. The predictive EDR curves from RNASeqDesign was closest to the

true EDR curve and the performance improved when sample size of pilot data (n0) increased,

as expected. The result also showed affordable computing time (6-7 minutes using a regular

laptop) for this realistic simulation setting. We altered dispersion parameter from 5 to 2,

10 and 20 and the result showed similar conclusions in Figure 9. Smaller dispersion values

corresponded to larger biological coefficients of variation. In our experience, we have observed

larger dispersion in TCGA human experiments and smaller variation in the HIV rat data.

In Benchmark 3, we address the goodness of fit of predicted EDR to true EDR in two-

dimensional (N and R) scheme. Most existing methods do not take into account the varying

sequencing depths except for Scotty. Since Scotty already performed poorly in varying N

in Figure 8 and Table 4, we did not expect them to perform well in Benchmark 3. Thus,

we only presented Benchmark 3 for RNASeqDesign. Here we varied fold change to 1.15,

1.20 and 1.25, and repeated 10 times. As shown in Figure 10, RNASeqDesign generated

small RMSE of estimated EDR when simultaneously varying N and R and the performance

improved when pilot sample size (n0) increased.

Experimental design and N-R/B-EDR paired plots In Section 2.3 we introduced the N-R and

B-EDR paired plot as a decision tool to help researchers in different design tasks. Here we

illustrate with simulation results how RNASeqDesign can guide in decision making for each

task in Figure 4.

For task T1 in Figure 4, say when the budget was limited to $200,000, how can we find

the optimized EDR and corresponding design (N∗, R∗)? From B-EDR plot, the optimized

EDR was 0.87 and from N-R plot, the corresponding design was (N∗ = 110, R∗ = 1/4 lane).

For task T2, which was in the situation when a desired power was set to 0.85, we were

interested in how much minimum money was needed. From B-EDR plot, the minimum cost
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performance. Confidence interval of the predicted EDR at each targeted sample size (one of N=5,
10, 20, 30, 40, 50, 100) was derived by mean predicted EDR plus/minus 1.96 × standard error of
mean predicted EDR.

Figure 8 Methods comparison in simulation study

was $175,000 and from corresponding N-R plot, the design was (N∗ = 100, R∗ = 1/4 lane).

For task T3, when only limited sample size was available, say 80, the maximum EDR and

corresponding cost and R were of interest. If two design decisions (A and B) were compared,

where A referred to R = 2 lanes and B was R = 1/2 lane. From B-EDR plot, decisions A

and B reached similar level of EDR (EDR = 0.88 for A and EDR = 0.86 for B). However,

the cost of decision A was 2.5 times of the cost from decision B. Therefore, best design

when R = 1/2 lane should be a better choice of final design. For task T4, suppose we

have an initial cohort started with N = 80 (represented as circles) and we were considering

whether recruiting 50 more samples (represented as crosses) would help to increase power

and/or reduce cost. From the plots, we can see that recruiting more samples with shallower

depth actually reached higher power with lower cost than smaller sample size with deeper
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Figure 9 Performance of RNASeqDesign under different dispersion parameter settings (δ = 2, 5, 10, 20)

sequencing ((N,R) = (130, 1) to reach B = $520,000 and EDR = 0.93 versus (N,R) = (80,

2) to reach B = $560,000 and EDR = 0.88). For task T5, it mimicked the situation when

there was only a fixed number of samples, say 60, and ask if sequencing deeper would gain

more power. Different symbols corresponded to different sequencing depths (circle: R=1/4

lane; triangle: R=1/2 lane; plus: R=1 lane; cross: R=3/2 lane; diamond: R=2 lane). From

the plots, the EDR increased as the sequencing depth became deeper. However, after R

reached 1 lane, the increment of EDR started to diminish and sequencing deeper became a

waste of budget.

2.4.2 Three real applications

In this section, we demonstrate the performance of RNASeqDesign compared to other meth-

ods in three real applications: HIV-transgenic rat data, TCGA ER+ versus ER- data, and
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Table 4 Performance evaluation for different methods in simulation study

Benchmark 1 Benchmark 2 Computing time (min.)

Method n0=2 n0=4 n0=8 n0=2 n0=4 n0=8 n0=2 n0=4 n0=8

Poisson 0.49 0.49 0.49 55.0 55.0 55.0 < 1 < 1 < 1

RNASeqPower 0.32 0.33 0.33 37.9 38.9 40.0 < 1 < 1 < 1

NB 0.57 0.56 0.55 8910.4 9962.0 9962.0 < 1 < 1 < 1

Scotty 0.27 0.33 0.37 29.8 39.7 47.2 60 60 60

PROPER 0.49 0.49 0.49 31.0 31.0 31.0 42 42 42

RNASeqDesign 0.27 0.19 0.11 14.7 10.8 7.5 6 7 7

Performance evaluation based on RMSE of ÊDR(D;D0) (Benchmark 1), RMSE of N̂D0,EDR∗=0.8

(Benchmark 2) with fixed R and computing time (unit in minutes in one simulated data) respec-
tively in simulation analysis. Results based on different pilot sample size (n0 = 2, 4, 8) are shown
in different columns.

TCGA early versus late stage data. The settings of the other existing methods were similar

to what were used in simulations unless otherwise specified.

HIV-transgenic rat data We first used aforementioned rat data from HIP brain region. Since

it is a relatively weak signal dataset, we set the input parameter of proportion of DE genes

to 10% for other methods. In real applications, the true underlying EDR is unknown. We

instead showed how different methods performed by comparing the predicted EDR from

smaller sample size (pretended as pilot data) to full sample size (N=12). We randomly

subsampled n0=2, 4 and 10 from full data to treat as pilot data and repeated independent

subsampling for 10 times for each n0. For full data, we also derived predicted EDR and

treated it as a reference to compare with predicted EDR from pilot data (shown in the

Figure 11(A)).

This comparison was repeated for each method separately. When N0 = 10, we observed

that RNASeqPower and PROPER reached almost 100% predicted EDR at small targeted

sample size (e.g. N = 2), which was not reasonable in practical setting. For exact test
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Figure 10 Two-dimensional goodness-of-fit

based methods (Poisson and NB), the predicted EDR was only about 15% to 25% even with

targeted sample size N ′=100. For most existing methods, when pilot sample size increased,

the predicted EDR curves from pilot data did not change accordingly. We suspected that

it was because those methods only utilized minimal level of effective information from pilot

data and hence the benefits from incorporating larger pilot data were limited. Although

no underlying truth was available for this application, predicted EDR from RNASeqDesign

seemed to give more reasonable results.
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Figure 11 Three real data applications
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TCGA breast cancer ER+ versus ER- We next evaluated different methods on the publicly

available TCGA breast cancer dataset with 775 tumor samples. In breast cancer, ER status

is probably the most indicative biomarker in disease progression, survival prediction and

treatment selection. Based on clinical information, 567 ER+ and 171 ER- tumor samples

(about 3:1 ratio) were available. Although the underlying true EDR curve is still unknown,

with the large sample size in this example we applied a subsampling technique to estimate

the converging number of true DE genes and a “surrogate EDR curve”, which we reasonably

believe is close to the underlying true EDR curve. We first subsampled N=2 to 100 ER-

samples with proportional ER+/ER- ratio at 3 folds (i.e. N=6 to 300 ER+ samples) and

detected DE genes using Wald test at FDR=5% with more than 40% fold change to remove

spurious genes with small biological effect. We performed 30 independent subsampling for

each varying sample size, the number of detected DE genes were then multiplied by 0.95 to

remove false positives (since FDR was controlled at 5%), and the scatter plot was shown in

Figure 12. By calculating the median number of detected DE genes at each sample size, we

estimated the converging number of DE genes to be around 6500 and obtained the “surrogate

EDR curve” by scaling the curve to [0,1] (i.e. y-axis divided by 6500).

To perform power calculation, we subsample n0=4, 10 and 20 from ER- patients and

proportionally 3 folds (i.e. 12, 30 and 60) of ER+ patients as pilot data. We kept the

sample size ratio between ER+ and ER- groups for a realistic power calculation and to

demonstrate the capability of RNASeqDesign on handling unbalanced sample size design.

ER status comparison is well-known to be a strong contrast with many DE genes and thus we

set input parameters of 30% of DE genes when implementing power calculation with the five

existing methods. From Figure 11(B)), we compared the predicted EDR from each methods

to the surrogate EDR curve. The result clearly show best performance of RNASeqDesign,

followed by PROPER. In RNASeqDesign, the performance improved as n0 increased from 4

to 20, as expected. For PROPER, the predicted EDR curves remained the same for different

n0 and deviated greatly from the surrogate EDR curve at a critical sample size region around

N = 20 ∼ 40.

TCGA breast cancer early versus late stage For early versus late stage comparison, we clas-

sified stage I, IA and IB as early stage tumors (N=126), removed patients with stage II
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At each N , we subsampled 30 times and connected the median to see the trend (red line). The
observed saturated number of DE genes is 7000 (green line).

Figure 12 Number of DE genes for TCGA ER positive vs. negative dataset

and assigned stage III, IIIA, IIIB, IIIC and IV as late stage tumors (N=181). The input

parameter of proportion of DE genes is set as 10% for the five existing power calculation

methods. We similarly subsampled n0=4, 10 and 20 pilot data for each group and repeated

for 10 times. To obtain a surrogate EDR curve, we followed the similar subsampling proce-

dure in ER comparison and presented the result in Figure 13. The converging number of DE

genes was estimated at 1,500. Figure 11(C) shows the surrogate EDR curve and predicted

EDR curves from each power calculation method. Similar to the ER comparison example,

RNASeqDesign clearly performed the best and the performance improved when pilot sample

size n0 increased.
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At each N , we subsampled 30 times and connected the median to see the trend (red line). The
observed saturated number of DE genes is 1600 (green line).

Figure 13 Number of DE genes for TCGA early stage vs. late stage dataset

2.5 DISCUSSION AND CONCLUSION

Careful power calculations and study design are critical in high-throughput experiments to

save cost and maximize the yield of experimental effort. Due to simultaneous testing of thou-

sands of genes, power calculation of high-throughput experiments needs to consider multiple

comparison control, genome-wide statistical power and distribution of effect sizes in DE

genes. For RNA-Seq, we need to further consider the nature of count data and the balance

between sample size and sequencing depth, which leads to a constrained optimization prob-

lem in the study design. Although several methods have been proposed for RNA-Seq power

calculation, these methods miss many of the necessary elements described above. In this

paper, we propose a RNASeqDesign statistical framework to accommodate all the features

using information from a pilot dataset. RNASeqDesign have several unique advantages over

existing methods: (1) better model fitting: Our method is based on widely accepted negative
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binomial model for count data, instead of Poisson or Gaussian assumption; (2) genome-wide

type I error control and power: We use genome-wide type I error control (FDR) and genome-

wide power (EDR), which consider DE gene detection in the realm of whole genome, instead

of at the single gene level; (3) better accuracy: Simulation and real data analysis demon-

strate high accuracy of RNASeqDesign; (4) optimal study design guidance: We consider

cost-benefit analysis and the influence of both sample size and read depth on genome-wide

power, which provides guidance for scientists decision making in five commonly encountered

study design tasks (i.e. T1 to T5); (5) better utilization of pilot data: Our method performs

self-learning and better utilizes the pilot data, compared to existing methods and there is no

need to specify arbitrary fold change for DE gene detection or proportion of true DE genes.

To our knowledge, RNASeqDesign is the first statistical tool that comprehensively addresses

the power calculation and study design issues for RNA-Seq data with the key elements men-

tioned in Table 1. As the sequencing cost keeps dropping, RNA-Seq experiments will become

more and more prevalent and projects of large sample sizes will be expected. Thoughtful

study planning, including the five tasks included in this chapter, will be essential. We believe

RNASeqDesign will provide guidance for an economical and effective study design under a

realistic setting.

The current RNASeqDesign framework needs a pilot dataset as an input for inference.

If no pilot data exists from the same lab, one can seek existing public datasets with similar

biological setting (e.g. similar tissue, disease or treatment). If possible, a recommended

strategy is to perform a two-stage design by first generating suitable pilot data (e.g. n0=n1=6

with adequately deep sequencing). RNASeqDesign can then help determine the optimal

sample size and sequencing depth needed to achieve the optimal power under a certain

budget. The budget description and modelling in this paper implicitly used the popular

Illumina HiSeq platforms but the framework is generalizable and applicable to any single-

end or paired-end NGS platform.

There are a few technical considerations and limitations in our model and performance

evaluation. In RNASeqDesign, we consider problem of thousands of simultaneous hypoth-

esis tests and we use EDR (defined as the proportion of true detected positives among all

true DE genes) as the genome-wide power. In contrast, in RNASeqPower and other meth-
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ods, they usually pursue statistical power or type I error control for a single test setting.

Consequently, the power from different methods are not directly comparable although we

have made best effort to match them. Secondly, the Wald test in RNASeqDesign is based

on Gaussian approximation of the Z-statistics. Our simulation result has shown compa-

rable performance of Wald test with the exact test used in edgeR. One possible reason of

the good approximation and performance in Wald test could be the nature of sequencing,

i.e., most genes have large enough number of counts. Hence although the pilot sample

size could be small, rich counts sufficed for the normality approximation of the Wald test

to hold. Finally, RNASeqDesign adopts the mixture model fitting on p-value distribution.

It is possible that some applications may generate p-value distributions that deviate from

the parametric mixture model. More sophisticated semi-parametric model fitting will be

necessary for realistic power calculation. An R package “RNASeqDesign” and all source

code are available on the author’s website (http://tsenglab.biostat.pitt.edu/software.htm)

and github (https://github.com/MasakiLin/RNASeqDesign) for reproducing results in this

paper or applying to future applications.
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3.0 METHYLSEQDESIGN: A FRAMEWORK FOR METHYLATION-SEQ

GENOME-WIDE POWER CALCULATION AND STUDY DESIGN ISSUES

3.1 INTRODUCTION

DNA methylation is a process in which methyl group attaches to the cytosine followed by

a guanine on the DNA sequence, known as CpG sites. In the genome, there are certain

regions enriched with these spots, e.g., CpG islands. Many of these regions are related to

gene regulatory regions. It is well known that DNA methylation alters the gene expression

level, typically represses it. This process has been found to be involved in many important

biological systems, like genomic imprinting, X-chromosome inactivation, repression of repet-

itive elements, aging and carcinogenesis (Li et al., 1993; Paulsen and Ferguson-Smith, 2001;

Robertson, 2005). In many cancer studies, aberrant DNA methylation changes are treated

as the putative leading mechanism (Esteller, 2005; Baylin, 2005; Delpu et al., 2013; Licht,

2015).

There are mainly two types of technologies used to quantify the DNA methylation. One

is methylation microarray (Schumacher et al., 2006) and the other is methylation sequenc-

ing (Methyl-Seq). Here we use “Methyl-Seq” to refer to whole genome bisulfite sequencing

(WGBS), which which relies on bisulfite conversion of unmethylated cytosine to uracil during

library preparation. Next generation sequencing (NGS) techniques are applied afterwards.

Read counts are generated and after the alignment to the reference genome we know the

percentage of methylated cytosine for each base. Reduced representation bisulfite sequenc-

ing (RRBS) (Meissner et al., 2005) is another NGS technology which only focus on 1% of

the entire genome, which are enriched for CpG contents (CpG islands). Agilent SureSelect

Methyl-Seq is a target enrichment system that enables researchers focus on biologically in-
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teresting or functional regions on the genome, e.g., CpG islands, gene regulatory regions.

Compare to earlier developed microarray technology, Methyl-Seq has shown superior perfor-

mance in many aspects as higher per-base resolution, better accuracy, and less background

noise (Hurd and Nelson, 2009). However, due to the high sequencing cost and limited bud-

get, not many large scale epigenome-wide studies have been conducted using Methyl-Seq.

Hence, sample size and power calculation methods become particularly important.

Traditional power calculations consider the relationships between effect size, α (type-I

error), statistical power (1− type− II error (β)) and sample size. For example, for a given

effect size (usually estimated from pilot or published data) and α (normally 5%), one is

interested in calculating the sample size to reach a pre-specified statistical power (e.g. 80%)

or, equivalently, to estimate statistical power given certain sample size. When analyzing

high-throughput genome-wide experimental data, the situation becomes more complicated

because of well-known multiple comparison problems. Since thousands of hypotheses are

tested simultaneously, controlling type-I error rate and reducing false discovery in a genome-

wide sense becomes critical. As a result, conservative family-wise error rate (FWER) and the

scientifically more applicable false discoverate rate (FDR; (Benjamini and Hochberg, 1995))

have been proposed in the literature. Gadbury et al. (2004) introduced expected discovery

rate (EDR) to replace univariate power 1 − β by addressing genome-wide detection power.

Conceptually, FDR is the genome-wide analogue of type-I error α from univariate hypothesis

testing and EDR is the genome-wide analogue to statistical power 1−β. Since genome-wide

screening considers the whole set of differentially methylated loci/regions (DML/DMRs),

specifying a univariate effect size for power calculation is not adequate and considering

the effect size distribution of DML/DMRs is biologically more reasonable. A good power

calculation method for high-throughput experimental data should replace α and 1− β with

FDR and EDR and consider the distribution of effect sizes among DML/DMRs.

Methyl-Seq has three unique characteristics that we need to take into account for sample

size and power calculation. First, it generates randomly sequenced short reads and produces

count data by nature. Methyl-Seq data need to be modeled with discrete distributions,

and both sampling and biological variation should be considered. For this reason, the beta-

binomial generalized linear model (GLM) (Dolzhenko and Smith, 2014; Feng et al., 2014;
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Park et al., 2014) has gained popularity over the binomial GLM. Secondly, for Methyl-

Seq experiments, one can choose different reads/sequencing depth (R) for the design. In

other words, one can choose to process one sample per lane, which results in roughly 250

million reads or three samples per lane each with 83 million reads for the same sequencing

cost. This means the power calculation problem changes from a classical one-dimensional

(sample size, N) estimation to a two-dimensional (N and R) optimization problem. Thirdly,

there are about 30 million CpG sites in human genome, based on the current technology,

it is impossible to sequence every CpG site even with very deep sequencing depth. As

a result, many CpG sites will have very low counts in many subjects, hence makes the

inference for power calculation becomes extremely difficult. To overcome this problem, we

start from region-based methylation data which aggregate across multiple CpG sites within

a particular size of window, which helps increase the total counts in a region and makes the

power calculation feasible.

To the best of our knowledge, no existing statistically rigorous power calculation meth-

ods have been developed for Methyl-Seq data. Here, we propose a statistical framework

“MethylSeqDesign” and provide a useful R package to solve this important scientific ques-

tion.

The chapter is structured as follows. In Section 3.2, we present the statistical framework

of MethylSeqDesign using Wald test from pilot data, model fitting of the resulting p-value

distribution, parametric bootstrapping and two-dimensional smoothing for fast N and R op-

timization. In Section 3.3, we present comprehensive simulations and real data applications.

Section 3.4 provides final conclusion and discussion.

3.2 GENOME-WIDE POWER CALCULATION IN METHYL-SEQ

3.2.1 Notations and terminology

Consider D0={Y = (ygj)G×(n0+n1),M = (mgj)G×(n0+n1), X = (xjp)(n0+n1)×P} (1 ≤ g ≤ G,

1 ≤ j ≤ n0 + n1) a pilot Methyl-Seq dataset, where ygj and mgj represent the methylated
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and total read counts for CpG region g of subject j respectively, Let X be a design matrix

of dimension G × P , which contains group information and other continuous or discrete

covariates. When the design only has a case-control indicator, e.g., P = 1 and xj=0 for

controls and xj=1 for cases respectively. n0 and n1 are the number of controls and cases in

the pilot data. Denote by θp = n1/n0 the sample size ratio between the number of cases (n1)

and controls (n0). Let Rj =
∑G

g=1mgj be the total number of reads observed in subject j

(a.k.a. library size). For simplicity, we assume equal library size R0 for all pilot subjects.

As discussed in the previous section, we consider genome-wide power calculations under

genome-wide type-I error control using FDR=E(number of claimed false positives/number

of claimed positives) (i.e. FDR = V/R in Figure 2C). Following Gadbury et al. (2004), we

define expected discovery rate, EDR=E(number of claimed true positives/number of total

true positives) (i.e. EDR = S/(m −m0) in Figure 2C), as the genome-wide average power

that we aim to estimate. The basic statistical framework of RNASeqDesign is to estimate the

genome-wide power ÊDR(N0, N1, R|D0) (equivalent to the notation Pow(N,R) in Section 1)

based on the pilot data D0 for designing a future experiment with targeted sample sizes in

control and case groups (N0 and N1; denote θ = N1/N0 as the case-control ratio in targeted

samples) and targeted sequencing depth R, under certain FDR control (e.g. FDR=5%). We

assume equal sequencing depth R for all subjects in the planned experiment.

3.2.2 Four sequential steps for genome-wide Methyl-Seq Power calculation

Park and Wu (2016) proposed a decent method for detecting differentially methylated loci

(DML) or regions (DMRs) based on beta-binomial generalized linear model (GLM) with

arcsine link function. The estimation procedure is then based on generalized least square

approach without iterative steps, which helps reduce the computation demands dramatically

compared to other beta-binomial based methods (Dolzhenko and Smith, 2014; Feng et al.,

2014). Considering the computing efficiency and the ability to predict EDR, we decide to

embed Park and Wu (2016)’s method in our power calculation tool.

We propose four sequential steps in MethylSeqDesign to estimate EDR as the desired

genome-wide power. In Step I, p-values and effect size distribution of all methylated regions
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from pilot data are obtained using a beta-binomial generalized linear model with arcsine link

function and Wald test. In Step II, a beta-uniform mixture (BUM) model is applied to char-

acterize the genome-wide p-value distribution and to estimate the proportion of true DMRs.

In Step III, a parametric bootstrapping method based on DE posterior probability is used to

simulate and transform the genome-wide p-value distribution towards the targeted sample

size and sequencing depth. In the final step, two-dimensional smoothing and hypersurface

fitting is applied to stabilize the estimation of ÊDR(N,R|D0) for any N and R. Below, we

describe the details of each step.

Step I. Differential expression analysis on pilot data To account for both sampling

and biological variation, Ygj is modeled using a beta-binomial distribution, noted as Ygj ∼

beta − bin (mgj, πgj, φg), where πgj and φg are the mean and dispersion parameter of beta

distribution. Under generalized linear model framework, one can associate πgj and covariates

through arcsine link function, i.e.,

arcsin (2πgj − 1) = xjβg, (3.1)

where xj is jth subject’s covariate, which is essentially the jth row of the design matrix X.

And βg is a vector of p covariate coefficients for gth CpG region.

Let Zgj = arcsin (2Ygj/mgj − 1), and the expectation of Zgj can be approximated as

E (Zgj) ≈ arcsin [2E (Ygj)/mgj − 1] = arcsin (2πgj − 1) = xjβg. Furthermore, the variance

of Zgj can be also approximated as V ar (Zgj) ≈ 1+(mgj−1)φ̂g
mgj

, which is approximately indepen-

dent of mean structure. Hence, given dispersion parameter φg, the regression coefficients βg

can be estimated using generalized least square method. That is, β̂g =
(
XTV −1

g X
)−1

XTV −1
g Z,

where Vg = diag
(

1+(mgj−1)φg
mgj

)
is the covariance matrix. Given the estimator of φg as

φ̂g =
D(σ̂2

g−1)
Σj(mgj−1)

, V̂g = diag
(

1+(mgj−1)φ̂g
mgj

)
. And then the estimator of variance of βg is

Σ̂g ≡
̂

var
(
β̂g

)
=
(
XT V̂ −1

g X
)−1

.

Hypothesis testing is tested through the Wald test. The Wald statistic is calculated as

Zg =
CT β̂g√
CT Σ̂gC

,
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where C is a vector representing any linear combination of the covariate effects. The statistics

approximately follow a standard normal distribution.

For simplicity, here we consider only have class label (case or control) as our covariate

(can be extended to general case). Let n0 = n1 = n be the number of subjects in each group.

Then the variance of
̂

V ar
(
β̂g

)
can be written as

̂
V ar

(
β̂g

)
=

n0+n1∑
j=1

mgj

1+(mgj−1)φ̂g

n0∑
j1=1

mgj1
1+(mgj1−1)φ̂g

×
n1∑
j2=1

mgj2
1+(mgj2−1)φ̂g

=

2n∑
j=1

mgj

1+(mgj−1)φ̂g

n∑
j1=1

mgj1
1+(mgj1−1)φ̂g

×
n∑

j2=1

mgj2
1+(mgj2−1)φ̂g

=

n× 1
n

2n∑
j=1

mgj

1+(mgj−1)φ̂g

n2 × 1
n

n∑
j1=1

mgj1
1+(mgj1−1)φ̂g

× 1
n

n∑
j2=1

mgj2
1+(mgj2−1)φ̂g

=
1

n

Ā+ B̄

Ā× B̄
,

(3.2)

where Ā = 1
n

n∑
j1=1

mgj1
1+(mgj1−1)φ̂g

and B̄ = 1
n

n∑
j2=1

mgj2
1+(mgj2−1)φ̂g

. Here, we assume a common

over-dispersion parameter shared by all CpG regions, and it is the median of all tag-wise

dispersion parameters estimated from the procedure proposed by Park and Wu (2016). The

reason for using a common dispersion parameter is that when sample size is small (which is

usually the case in pilot studies), estimation of tag-wise dispersion parameter is not precise.

Denote by pg the p-value of region g from the aforementioned Wald test. As we will see in

Step III, the format of variance estimator from Wald test statistic (Z-statistics) in Equation

(3.2) has a convenient form to project the observed Z-statistics distribution from pilot data to

the targeted sample size N0 and N1 and sequencing depth R. In Section 3.3, we will compare

performance of this approach (arcsine transformation + Wald test) with other conventional

options to justify that this approach not only provides a convenient mathematical form for

power calculation but also generates comparable hypothesis testing performance.
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Step II. Mixture model fitting for p-value distribution Traditionally, a beta-uniform

mixture (BUM) model (Allison et al., 2002) was used to fit the p-value distribution. To be

specific, using a beta distribution f1 with shape parameter r and s (0 < r < 1 ≤ s) for

p-values of DMRs and a uniform distribution f0 for p-values of non-DMRs. The density of

p-value distribution is f(p|r, s, λ) = λf0(p) + (1 − λ)f1(p|r, s), where λ is the proportion of

non-DMRs. Note that the constraint for r and s is necessary to guarantee a proper shape for

the p-value distribution of DMRs. Proper estimation of λ is a critical component in fitting

a BUM model. To robustly estimate λ, we use a method called censored BUM (CBUM)

proposed by Markitsis and Lai (2010), which alleviates the impact of extremely small p-

values by treating those as censored. The shape parameters r and s can then be estimated

using maximum likelihood estimator after λ is estimated from CBUM method.

Step III. Parametric bootstrapping based on DE posterior probability to estimate

EDR

Conceptually, the p-value distribution for non-DMRs with zero effect size follows a uni-

form distribution and does not change when the sample size and sequencing depth change.

On the other hand, the p-values for those DMRs become more significant as sample sizes

and/or sequencing depth increase. Equation (3.2) is the key formula to allow transformation

of Z-statistics of DMRs to the targeted sample size N0 and sequencing depth R. Let Ig

be the latent variable representing region g to be DE (Ig=1) or non-DE (Ig=0). We com-

pute the posterior probability of Ig based on the estimated two beta mixture model from

Step II. Then p-values are drawn from the posterior probability of Ig to transform the Z-

statistics distribution to a new Z distribution at targeted N0 and R. Note that only p-values

of DMRs should be transformed, while p-values of non-DMRs stay unchanged. Parametric

bootstrapping procedures are described as below.

1. The posterior probability of the DE indicator Ig is calculated as

P (Ig = 1|λ̂, r̂, ŝ, pg) =
(1− λ̂)f̂1(pg|r̂, ŝ)

λ̂+ (1− λ̂)f̂1(pg|r̂, ŝ)
,

where λ̂, r̂ and ŝ are estimated from Step II. In the b-th simulation (1 ≤ b ≤ B), we

randomly simulate I
(b)
g from P (Ig|λ̂, r̂, ŝ, pg) for 1 ≤ g ≤ G.
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2. Only Z-statistics from DMRs are transformed. Specifically we derive

Z(b)
g = I(b)

g × Zg ×
√
N0

n0

+ (1− I(b)
g )× Zg.

In Equation (3.2), Var(β̂1) can be considered as a function of n0, θp and R0. If we assume

the effect size and the quantity Ā+B̄
Ā×B̄ of a DMR remain the same as n0 and R0 change,

the above formula can transform the test statistics of DMRs to targeted N0, θ and R.

3. Compute p-value based on the 2-sided test: p
(b)
g = 2 × (1 − Φ(|Z(b)

g |)) if region g with

I
(b)
g = 1, where Φ is a CDF of a standard normal distribution. When I

(b)
g = 0, p

(b)
g = pg.

4. Control FDR at level α:

a. In the bth simulation, calculate FDR(b)(u) =
∑G
g=1(1−I(b)

g )·χ(p
(b)
g ≤u)∑G

g=1 χ(p
(b)
g ≤u)

for a given p-value

threshold u, where χ(·) is an indicator function that takes value one when the state-

ment is true and zero otherwise.

b. Let u(b) = argmax
u

(FDR(b)(u)) ≤ α), where u(b) is the p-value threshold that controls

FDR at α level for the bth simulation.

5. The estimated EDR for the bth simulation can be calculated as ÊDR
(b)

=
∑G
g=1 I

(b)
g ·χ(p

(b)
g <u(b))∑G

g=1 I
(b)
g

.

Finally, the robust estimated EDR for all B simulations is: ÊDR(N0, N1, R|D0) =

medianb(ÊDR
(b)

). The first and third quantile of estimated EDR can be also derived and

used to account for the variability of EDR estimation. For simplicity of presentation, we

assume N0 = N1 = N hereafter although the restriction can be relaxed easily and use

EDR(N,R|D0) to represent EDR(N0, N1, R|D0).

Step IV. Two-dimensional smoothing and hypersurface fitting The inverse power

law model has been widely applied in the machine learning field to model learning accuracy

curves with increasing sample size (Mukherjee et al., 2003; Ding et al., 2014). Here we

propose a two-way inverse power law hypersurface model to fit the EDR hypersurface:

EDR(N,R|D0) = 1− b×N−c − d×R−e. (3.3)

We first calculate ˆEDR(N,R|D0) from Step I-III for grid selections of N and R. The inverse

power law hypersurface is then fitted by minimizing sum of squared errors using BFGS

quasi-Newton method (Lewis and Overton, 2009) in R with “optim” function to estimate

parameters b, c, d and e. With smoothing and hypersurface fitting, the EDR estimation is

59



more stable and can be calculated for any N and R. In Step III, we use a small B = 10 for

faster computing and rely on hypersurface smoothing to reduce variability.

3.3 SIMULATION ANALYSIS AND REAL DATA ANALYSIS

3.3.1 Simulation

The motivating dataset is from Katz et al. (2015), which investigated the protective effect of

pregnancy toward breast cancer in mice. The DNA methylation data is from the mammary

gland tissue. The sample library is prepared using Agilent SureSelectXT Mouse Methyl-

Seq Kit. The Kit design covers 109 Mb of Ensemble regulatory features (CpG shores and

shelves, DNAse I hypersensitive sites, transcription factor-binding sites, etc.), CpG islands,

known tissue-specific DMR, and open regulatory elements. The alignment reference genome

used was mm9 assembly (Kent et al., 2002).The mm9 DNA reference genome was converted

to a DNA methylation reference genome. Genome indexing was performed using Bismark

genome preparation tools. Aligned reads outside of the targeted regions (provided from

Agilent SureSelectXT Mouse Kit) were removed. Data preprocessing is performed by R

package ”MethyKit”. We only use samples of time point one which included 6 vs. 6 mice

for the analysis.

We simulated data based on parameters that we estimated directly from above mouse

pregnancy dataset. We empirically draw mean counts, baseline methylation proportion in

control group, and effect size (methylation level difference between different groups) from

the data. In total 2000 regions were simulated and we assume 10% of them are DMRs. The

common dispersion parameter is set to 0.048, which was estimated by the median of tag-wise

dispersion parameters.

The detailed steps to simulate pilot data with (n0, R0) and targeted data with (N , R)

are shown below.

1. Mean counts: Randomly sample mean counts µg for each CpG region from the empirical

distribution as estimated by the mouse pregnancy data.
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2. Baseline methylated proportion: Randomly baseline methylated proportion pg for each

CpG region from the empirical distribution as estimated by the mouse pregnancy data.

3. DE index: Generate random number rg from Uniform(0, 1) for each gene, if rg ≤0.1

then g-th region is DMR, otherwise, it is non-DMR.

4. Effect size 4: Generate effect size from Uniform(0.1, 0.2) for each DMR. The effect size

for non-DMRs is set to 0.

5. Generate count data for pilot data for each sample: If the g-th region is DMR and the j-th

subject belongs to control group, then the methylated counts ygj ∼ beta−bin(µg, αg, βg),

where αg and βg are estimated from given φ and pg. If the subject belongs to case group,

then ygj ∼ beta−bin(µg, α
′
g, β

′
g), where α′g and β′g are estimated from φ and p′g = pg+4g.

If the g-th region is non-DMR, then ygj ∼ beta− bin(µg, αg, βg).

6. Generate count data for true data for each sample: If the g-th region is a DMR and the

j-th subject belongs to the control group, then the methylated counts ygj ∼ beta −

bin(µg × R
R0
, αg, βg), where αg and βg are estimated from φ and pg. If the subject

belongs to the case group, then ygj ∼ beta − bin(µg × R
R0
, α′g, β

′
g), where α′g and β′g

are estimated from φ and p′g = pg + 4g. If the g-th region is a non-DMR, then

ygj ∼ beta− bin(µg × R
R0
, αg, βg).

Hypothesis testing performance Here we first compared the power performance of our pro-

posed test statistic with other three naive methods: Beta value with t-test, M value with

t-test, and our Z value with t-test.

To compare the performance, we conduct the analysis by stratifying the baseline methy-

lation proportion in control group into three categories: low (0 < p < 0.2), middle (0.2 <

p < 0.8), and high (0.8 < p < 1). In each baseline group, we simulate 20 times independent

analysis, in which pilot data have 10 subjects in each group (e.g., n0 = n1 = 10), and 2000

regions (200 are DMRs). As shown in figure 14, under FDR control 0.05, we compare the

power based on how many true DMR can be declared among top declared DMR. As a result,

our proposed method outperforms all other methods in all baseline groups. Furthermore, we

observe that the power of each method is stronger in either low or high baseline group and

relatively weaker in middle baseline group, which is reasonable.

61



Stratified power comparisons with naive methods in three different signal level, low, middle and
high. Different color represents different methods as shown in the legend (Beta values with t-tests
in black, M values with t-tests in green, arcsine transformed Z statistics with t-tests in blue, and
arcsine transformed Z statistics with Wald tests in cyan). X-axis is the number of top declared
DMRs and Y-axis is the number of true DMRs among selected. Over all conditions, the Wald tests
with arcsine transformed Z statistics perform the best.

Figure 14 Hypothesis testing performance comparisons based on stratified baseline methylation level

Performance Evaluation We simulated B=10 pilot datasets (b = 1, 2, ...B) with pilot sample

size n0= 2, 4, 6, 8, 9 and 10 with R0=2M reads. For each pilot dataset with (n0, R0), the

projected power for target sample size Nj = 5, 10, 15, 20, 30, 50 (j = 1, 2, ..., 6) and R from a

power calculation method is denoted as ÊDR(Nj, R;n0, R0). Since the underlying truth is

known, the true EDR for each (Nj, R) can be estimated as ÊDR (Nj, R) =

B∑
b=1

ÊDR
(b)

(Nj ,R)

B
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where ÊDR
(b)

(Nj, R) is the actual EDR in the b-th simulation when sample size Nj and

R are simulated. We propose the following benchmarks based on root mean squared error

(RMSE) to evaluate performance of different power calculation methods:

1. Benchmark 1: Consider R = R0 for one-dimensional power calculation from n0 to Nj

(j = 1, 2, ..., 6). The RMSE of estimated EDR from power calculation is

√√√√√ B∑
b=1

6∑
j=1

[
ÊDRj

(b)
(Nj, R;n0, R0)− ÊDR (Nj, R)

]2

B · 7

We first perform a stratified analysis based on different level of effect size, as we already know

it will impact the EDR. 4 are set as 0.1, 0.14, and 0.18. In each setting, we generate the

same number of regions to compare the performace (Figure 15). Table 5 shows the RMSEs

of Figure 15 based on Benchmark 1 and computing time. The predictive EDR curves from

MethylSeqDesign was close to the true EDR curve and the performance improved when

sample size of pilot data (n0) increased, as expected. The result also showed affordable

computing time (6-7 minutes using a regular laptop) for this simulation setting. Secondly,

to mimic real situation, we generate4 from Uniform(0.1, 0.2) and compare the performance

(Figure 16).

3.3.2 Real data application

In this section, we demonstrate the performance of MethylSeqDesign using a real dataset

which studied the epigenetic changes in chronic lymphocytic leukemia (CLL). It contains 43

tumors and 8 controls subjects in total. The GEO accession number is GSE66167.

In real applications, the true underlying EDR is unknown. We instead showed how our

method performed by comparing the predicted EDR from smaller sample size (pretended

as pilot data) to full sample size (N0 = 8, N1 = 43). Since the sample size in control and

tumor groups are unbalanced (tumor samples is roughly 5 times larger than control groups),

we keep this ratio and randomly subsampled n0=2, 4 and 6 from full data to treat as pilot

data and repeated independent subsampling for 10 times for each n0. For full data, we also

derived predicted EDR and treated it as a reference to compare with predicted EDR from
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Table 5 Performance evaluation in simulation study stratified by different effect sizes

Benchmark 1

Pilot n0 4 = 0.1 4 = 0.14 4 = 0.18 Overall

2 0.27 0.12 0.04 0.2

4 0.16 0.04 0.04 0.1

6 0.08 0.02 0.02 0.05

8 0.05 0.02 0.01 0.01

9 0.03 0.02 0.02 0.01

10 0.2 0.01 0.03 0.01

Performance evaluation based on RMSE of ÊDR(D;D0) (Benchmark 1) in simulation analysis.
Results based on different pilot sample size (n0 = 2, 4, 6, 8, 9, and 10) are shown in different rows.
In the first three columns, stratified analysis is performed as 4 =0.1, 0.14, and 0.18. In the last
column, “Overall” refers as analysis generating 4 from Uniform(0.1, 0.2).

pilot data (shown in the Figure 17). Although no underlying truth was available for this

application, predicted EDR from our method seemed to give reasonable results.

3.4 DISCUSSION AND CONCLUSION

Careful power calculation and study design is critical in high-throughput experiments to save

cost and maximize the yield of experimental effort. Due to simultaneous testing of thousands

of CpG sites/regions, power calculation of high-throughput experiments needs to consider

multiple comparison control, genome-wide statistical power and distribution of effect sizes in

DMRs. For Methyl-Seq, we need to further consider the nature of count data and the balance

between sample size and sequencing depth, which leads to a constrained optimization prob-

lem in the study design. In this paper, we propose a MethylSeqDesign statistical framework

to accommodate all the features using information from a pilot dataset. MethylSeqDesign

provides: (1) better model fitting: Our method is based on beta-binomial model for methy-
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EDR prediction from MethylSeqDesign compared to true EDR using different pilot data sample
sizes from 2 to 10. Effect sizes are fixed at 0.1, 0.14, and 0.18 respectively.

Figure 15 Stratified simulation study for MethylSeqDesign

lation count data, instead of Gaussian or Binomial assumption; (2) genome-wide type I error

control and power: We use genome-wide type I error control (FDR) and genome-wide power

(EDR), which consider DMR detection in the realm of whole genome, instead of a single

site/region level; (3) better accuracy: Simulation and real data analysis demonstrate high

accuracy of MethylSeqDesign; (4) optimal study design guidance: We consider the influ-

ence of both sample size and read depth on genome-wide power; (5) better utilization of

pilot data: Our method performs self-learning and utilizes the pilot data without the needs

to specify arbitrary fold change for DMR detection or proportion of true DMRs. To our

knowledge, MethylSeqDesign is the first statistical tool that comprehensively addresses the

power calculation and study design issues for Methyl-Seq data. As the sequencing cost keeps
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EDR prediction from MethylSeqDesign compared to true EDR. Effect sizes are sampled from
Uniform(0.1, 0.2).

Figure 16 Simulation study for MethylSeqDesign with variable effect size

dropping, Methyl-Seq experiments will become more and more prevalent and projects of

large sample sizes will be expected. Thoughtful study planning will be essential. We believe

MethylSeqDesign will provide guidance for an economical and effective study design under

realistic settings.

The current MethylSeqDesign framework needs a pilot dataset as an input. If no pilot

data exists from the same lab, one can seek existing public datasets with similar biological

setting (e.g. similar tissue, disease or treatment). If possible, a recommended strategy is

to perform a two-stage design by first generating suitable pilot data (e.g. n0=n1=6 with

adequately deep sequencing). MethylSeqDesign can then help determine the optimal sample

size and sequencing depth needed to achieve the optimal power under a certain budget.
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As pilot data has larger sample size, the performance is closer to the full dataset.

Figure 17 Real data application using CLL dataset

There are a few technical considerations and limitations in our model and performance

evaluation. The Wald test in MethylSeqDesign is based on Gaussian approximation of the

Z-statistics. Our simulation result has shown superior performance of the Wald test over

other tests, e.g., Beta values with t-tests, M values with t-tests, and arcsine transformed Z

statistics with t-tests. One possible reason of the good approximation and performance of

the Wald test could be the nature of sequencing, i.e., most CpG regions have large enough

number of counts. Hence although the pilot sample size could be small, rich counts sufficed

the normality approximation in Wald test. Secondly, MethylSeqDesign adopts the mixture

model fitting of the p-value distribution. It is possible that some applications may generate

p-value distributions that deviate from the parametric mixture model. More sophisticated

semi-parametric model fitting will be necessary for realistic power calculation.

An R package “MethySeqDesign” is under preparation and will be released publicly soon.
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4.0 DISCUSSION AND FUTURE DIRECTION

Careful power calculation and study design is critical in high-throughput experiments to

save cost and maximize the yield of experimental effort. Due to simultaneous testing of

thousands of genes, power calculation of high-throughput experiments needs to consider

multiple comparison control, genome-wide statistical power and distribution of effect sizes

in DML/DMRs. For NGS data, we need to further consider the nature of count data

and the balance between sample size and sequencing depth, which leads to a constrained

optimization problem in the study design. For RNA-Seq, although several methods have been

proposed for RNA-Seq power calculation, these methods miss many of the necessary elements

described in Table 2. For Methyl-Seq, unfortunately, to the best of our knowledge, no existing

methods had been proposed. In this dissertation, we propose two statistical frameworks to

accommodate all the features using information from a pilot dataset, RNASeqDesign and

MethylSeqDesign. These two methods have several unique advantages over existing methods:

(1) better model fitting: Our methods are based on widely accepted negative binomial (for

RNA-Seq) model and Beta-binomial (for Methyl-Seq) for count data to better account for

both biological and sampling variation, instead of Poisson (for RNA-Seq), Binomial (for

Methyl-Seq) or Gaussian assumption (for both!); (2) genome-wide type I error control and

power: We use genome-wide type I error control (FDR) and genome-wide power (EDR),

which consider DE gene/DMR detection in the realm of whole genome, instead of a single

gene/CpG region level; (3) better accuracy: Simulation and real data analysis demonstrate

high accuracy of our methods; (4) optimal study design guidance: We consider cost-benefit

analysis and the influence of both sample size and read depth on genome-wide power, which

provides guidance for scientists decision making in five commonly encountered study design

tasks(i.e. T1 to T5 in Section 2.3.2); (5) better utilization of pilot data: Our methods
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perform self-learning and better utilizes the pilot data, compared to existing methods and

there is no need to specify arbitrary fold change for DE gene/DMR detection or proportion of

true DE genes/DMRs. To our knowledge, RNASeqDesign and MethylSeqDesign are the first

statistical tools that comprehensively address the power calculation and study design issues

for RNA-Seq and Methyl-Seq data respectively, with the key elements mentioned in Table 1.

As the sequencing cost keeps dropping, RNA-Seq and Methyl-Seq experiments will become

more and more prevalent and projects of large sample sizes will be expected. Thoughtful

study design planning, including the five tasks included in this dissertation, will be essential.

We believe these two methods will provide guidance for an economical and effective study

design under a realistic setting.

The current framework needs a pilot dataset as an input for inference. If no pilot data

exists from the same lab, one can seek existing public datasets with similar biological setting

(e.g. similar tissue, disease or treatment). If possible, a recommended strategy is to perform

a two-stage design by first generating suitable pilot data (e.g. n0=n1=6 with adequately

deep sequencing). Then our methods can then help determine the optimal sample size and

sequencing depth needed to achieve the optimal power under a certain budget. Alternatively,

as a future work, when pilot data is not available, we can use a full parametric model by

imposing distributions of parameters for DE genes/DMRs and non-DE genes/DMRs, e.g.,

mean counts, effect sizes, and dispersion parameters. Afterwards, our methods can work

given these simulated parameters.

There are a few technical considerations and limitations in our model and performance

evaluation. In RNASeqDesign, we consider problem of thousands of simultaneous hypothesis

tests and we use EDR (defined as the proportion of true detected positives among all true DE

genes) as the genome-wide power. While in RNASeqPower and other methods, they usually

pursue statistical power or type I error control for a single test setting. Consequently, the

power from different methods are not directly comparable although we have made best

effort to match them. Secondly, the Wald test in RNASeqDesign is based on Gaussian

approximation of the Z-statistics. Our simulation result has shown comparable performance

of Wald test with the exact test used in edgeR. One possible reason of the good approximation

and performance in Wald test could be the nature of sequencing, i.e., most genes have

69



large enough number of counts. Hence although the pilot sample size could be small, rich

counts sufficed the normality approximation in Wald test. Finally, RNASeqDesign adopts

the mixture model fitting on p-value distribution. It is possible that some applications

may generate p-value distributions that deviate from the parametric mixture model. More

sophisticated semi-parametric model fitting will be necessary for realistic power calculation.

There are several future directions from this dissertation. One is the case when there is

no pilot data, which we mentioned above. Secondly, I would like to explore the possibility to

apply this framework to other omics data. One example is microRNA, which is a small non-

coding RNA molecule (only containing about 22 nucleotides). The function of microRNA

is mostly in RNA silencing and post-transcriptional regulation of gene expression. Also,

the aberrant expression of microRNA has been found associated with human diseases (e.g.,

chronic lymphocytic leukemia) (Musilova and Mraz, 2015). The second direction is for RNA

isoforms (as a result of alternative splicing). RNA-Seq has the advantages over microarray to

detect isoform-specifc expression levels. Many studies have shown that aberrant expression

of some RNA isoforms are associated with certain diseases (Cooper et al., 2009; Scotti and

Swanson, 2016). We expect in RNA-isoform data, sequencing depth will play even more

important role since we need deep enough reads to discover the existent of specific isoforms.

The challenges of this direction include the detection of RNA-isoforms and the following DE

analysis.

We believe in the near future these experiments will become more and more prevalent

and projects of large sample sizes will be expected. In other words, the demands of good

sample size and power calculation tools with rigorous statistical framework will keep growing

and we believe our approach has the potential to generalize to various types of data.
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