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Abstract 

The importance of the gut–brain axis in regulating stress-related responses has long been 

appreciated. More recently, the microbiota has emerged as a key player in the control of this 

axis, especially during conditions of stress provoked by real or perceived homeostatic 

challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain 

axis.  The routes of communication between the microbiota and brain are slowly being 

unravelled, and include the vagus nerve, gut hormone signaling, the immune system, 

tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The 

importance of the early life gut microbiota in shaping later health outcomes also is emerging. 

Results from preclinical studies indicate that alterations of the early microbial composition by 

way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress 

exposure, and other environmental influences - coupled with the influence of host genetics - 

can result in long-term modulation of stress-related physiology and behaviour. The gut 

microbiota has been implicated in a variety of stress-related conditions including anxiety, 

depression and irritable bowel syndrome, although this is largely based on animal studies or 

correlative analysis in patient populations. Additional research in humans is sorely needed to 

reveal the relative impact and causal contribution of the microbiome to stress-related 

disorders.  In this regard, the concept of psychobiotics is being developed and refined to 

encompass methods of targeting the microbiota in order to positively impact mental health 

outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of 

experts presented the symposium “The Microbiome: Development, Stress, and Disease”.  

This report summarizes and builds upon some of the key concepts in that symposium within 

the context of how microbiota might influence the neurobiology of stress. 
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Introduction 

The concept of the gut influencing brain and behaviour, and vice-versa, has perhaps been best 

appreciated and studied as it relates to the cephalic (preparatory) phase of digestion, visceral 

pain and malaise, and the ability of emotional stress to disrupt digestive functions.  

Nonetheless, despite wide integration of the “gut-brain” concept into our everyday vernacular 

(e.g., gut feelings, gut-wrenching, gut instinct, gutted, gutsy, it takes guts, butterflies in one’s 

stomach), neuroscientists have only recently developed adequate tools with which to reveal 

the bi-directional links between gut physiology and brain function, and to determine how 

these links operate under normal and stressful conditions. At the 2016 Neurobiology of Stress 

Workshop in Newport Beach, CA, a group of experts presented the symposium “The 

Microbiome: Development, Stress, and Disease”.  This report summarizes and expands upon 

some of the key points from this symposium, focused on current understanding of how 

microbiota influence the neurobiology of stress. 

The complex and multifaceted system of gut-brain communication not only ensures 

proper maintenance and coordination of gastrointestinal functions to support behaviour and 

physiological processes, but also permits feedback from the gut to exert profound effects on 

mood, motivated behaviour, and higher cognitive functions.  The linkage between gut 

functions on the one hand and emotional and cognitive processes on the other is afforded 

through afferent and efferent neural projection pathways, bi-directional neuroendocrine 

signaling, immune activation and signaling from gut to brain, altered intestinal permeability, 

modulation of enteric sensory-motor reflexes, and entero-endocrine signaling [1, 2].  Gut 

microbiota have emerged as a critical component potentially affecting all of these neuro-

immuno-endocrine pathways [3, 4].   For example, even short-term exposure to stress can 

impact the microbiota community profile by altering the relative proportions of the main 

microbiota phyla [5], and experimental alteration of gut microbiota influences stress 
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responsiveness, anxiety-like behaviour, and the set point for activation of the neuroendocrine 

hypothalamic-pituitary-adrenal (HPA) stress axis [3, 6-9]. Disease-related animal models 

such as mild and chronic social defeat stress also lead to significant shifts in cecal and fecal 

microbiota composition; these changes are associated with alterations in microbiota-related 

metabolites and immune signaling pathways suggesting that these systems may be important 

in stress-related conditions including depression [10, 11]. 

 

The Gut Microbiome 

Within the past decade it has become clear that the gut microbiota is a key regulator of the 

gut-brain axis. The gut is home to a diverse array of trillions of microbes, mainly bacteria, but 

also archaea, yeasts, helminth parasites, viruses, and protozoa [12-16]. The bacterial gut 

microbiome is largely defined by two dominant phylotypes, Bacteroidetes and Firmicutes, 

with Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia phyla present in 

relatively low abundance [12, 17].  Although the ratio of microbial to human cells has been 

recently revised downward [18], it is evident that microbial cells outnumber human cells. The 

total weight of these gut microbes is 1 to 2 kg, similar to the weight of the human brain [19].  

Microbiota and their host organisms co-evolved and are mutually co-dependent for survival, 

and mammals have never existed without microbes, except in laboratory situations [20]. 

In humans and other mammals, colonization of the infant gut is thought to largely 

begin at birth, when delivery through the birth canal exposes the infant to its mother’s vaginal 

microbiota, thereby initiating a critical maternal influence over the offspring’s lifelong 

microbial signature [21-23].  Advances in sequencing technologies are revealing that the 

early developmental microbiota signature influences almost every aspect of the organism’s 

physiology, throughout its life. The role of microbiota composition as a susceptibility factor 

for various stressful insults, especially at key neurodevelopmental windows, is rapidly 
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emerging [24], and there is growing evidence that targeted manipulations of the microbiota 

might confer protection to the brain to ameliorate the negative effects of stress during 

vulnerable developmental periods.  

   

Gut Microbiota and Stress-Related Behaviours 

Several lines of evidence support the suggestion that gut microbiota influence stress-related 

behaviours, including those relevant to anxiety and depression. Work using germ-free (GF) 

mice (i.e., delivered surgically and raised in sterile isolators with no microbial exposure) 

demonstrates a link between microbiota and anxiety-like behaviour [25-27].  In particular, 

reduced anxiety-like behaviour in GF mice was shown in the light-dark box test and in the 

elevated plus maze (see [28] for review). On the other hand, GF rats display the opposite 

phenotype, and are characterized by increased anxiety-like behaviour [9]. Interestingly, the 

transfer of stress-prone Balb/C microbiota to GF Swiss Webster (SW) mice has been shown 

to increase anxiety-related behaviour compared to normal SW mice, while transfer of SW 

microbiota to GF Balb/C mice reduced anxiety-related behaviour compared to normal Balb/C 

mice suggesting a direct role for microbiota composition in behaviour [29]. Further, 

monocolonization of GF mice with Lactobacillus plantarum PS128 increased locomotor 

activity in comparison to control GF mice, a behavioural change that was associated with 

increased levels of dopamine, serotonin and their metabolites in the striatum [30]. 

Furthermore, antibiotic treatment during adolescence in mice altered microbiota composition 

and diversity with concomitant reduction in anxiety-like behaviour [31]. Interestingly, the 

reduced anxiety-like behaviour was accompanied by cognitive deficits, reduced levels of 

hippocampal brain-derived neurotrophic factor (BDNF) mRNA, and reduced levels of 

oxytocin and vasopressin in the hypothalamus [31].  
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The Microbiome and Central Stress Effects 

Individual differences in life-long stress responsiveness and susceptibility to stress-related 

disorders have been linked both to genetic and environmental factors, particularly early-life 

exposures that can alter the developmental assembly and function of central neural circuits.  

Intriguingly, it has become increasingly clear that bacteria are required for normal brain 

development [25-27, 29, 32, 33] as well as brain function in adulthood.  Indeed, key 

processes associated with neuroplasticity in the adult brain such as neurogenesis [34] and 

microglia activation [35] have been shown to be regulated by the microbiota. Findings such 

as these have contributed to a paradigm shift in neuroscience and psychiatry [36, 37], such 

that the early development and later function of the brain may be modified by targeting the 

microbiome.  

Evidence for a crucial role for the microbiota in regulating stress-related changes in 

physiology, behaviour and brain function has emerged primarily from animal studies. A very 

important discovery was made in 2004, when GF mice were found to have an exaggerated 

HPA axis response to stress, which could be reversed by colonization with a specific 

Bifidobacteria species [38]. Results from subsequent studies have continued to support a 

connection between gut microbiota and stress responsiveness, including reports that stress 

exposure early in life or in adulthood can change the organism’s microbiota composition, and 

that microbial populations can shape an organism’s stress responsiveness [6, 7, 10, 39-41].  

Recently, investigators have used fecal microbiota transplantation approaches to demonstrate 

that stress-related microbiota composition play a causal role in behavioural changes. In one 

example, investigators showed that transplanting the microbiota from stressor-exposed 

conventional mice to GF mice resulted in exaggerated inflammatory responses to Citrobacter 

rodentium infection [42]. A link between disease-related microbiota and behaviour was also 
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recently demonstrated, where fecal microbiota transplantation from depressed patients to 

microbiota-depleted rats increased anhedonia and anxiety-like behaviours [43].  

A key question in the field is whether treatments targeting the microbiota-brain axis 

may have therapeutic benefits in stress-related disorders.  To this end, several studies have 

shown that diets that modify the microbiota, prebiotics, and probiotics can reduced stress-

related behaviour and HPA activation. For example, dietary supplementation with the n-3 

polyunsaturated fatty acid, docosahexaenoic acid (DHA), in socially isolated mice reduces 

anxiety and depressive-like behaviours in male but not female mice [44]. These behavioural 

effects were associated with male-specific changes in microbiota composition suggesting that 

these protective effects were mediated by microbiota [44]. Similarly, long-term 

supplementation with eicosapentaenoic acid (EPA)/DHA mixture normalized the microbiota 

profile in rats exposed to early life stress and attenuated stress reactivity [45]. Prebiotics are 

non-digestible food ingredients that promote growth of commensal bacteria. Mice exposed to 

a social disruption stressor displayed increased anxiety-like behaviour and a reduced number 

of immature neurons in the hippocampus, whereas stressed mice that received human milk 

oligosaccharides 3’sialyllactose or 6’sialyllactose for 2 weeks prior to stress were protected 

from stress-related changes in behaviour and CNS effects [46].  Interestingly, prebiotic 

administration of bimuno-galactooligosaccharides (B-GOS) reduced salivary cortisol 

awakening response in healthy people [47]. The reversal of stress effects by probiotics has 

also been demonstrated.  For example, administration of Lactobacillus helveticus NS8 to 

Sprague Dawley rats improved stress-induced behaviour deficits and attenuated the stress-

induced levels of corticosterone [48]. Similarly, administration of L. heleveticus R0052 and 

Bifidobacterium longum R0175 prevented stress-induced changes in neurogenesis, barrier 

integrity, and stress-reactivity [49]. 
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As mentioned above, the experimental use of GF mice has been instrumental in 

revealing the impact of microbiota on early brain development [28, 50, 51].  A lack of 

microbes impacts multiple stress-related neurotransmitter systems, across multiple brain 

regions.  Using a genome-wide transcriptomic approach to compare normal control mice to 

GF mice, Diaz Heijtz and colleagues demonstrated that the GF condition was accompanied 

by upregulation of many genes associated with a variety of plasticity and metabolic pathways 

including synaptic long-term potentiation, steroid hormone metabolism, and cyclic adenosine 

5-phosphate-mediated signaling [26].  The functional consequences of this altered gene 

expression is evident in many brain regions.  For example, GF mice display increased 

expression of myelin-associated genes within the prefrontal cortex, accompanied by 

hypermyelination within the same brain region [52]. Similar findings have been reported 

within the prefrontal cortex of mice treated with antibiotics in order to deplete the 

microbiome in adulthood [53].   

Gene expression within the hippocampus also is markedly different in GF mice 

compared to normal controls. The hippocampus exerts strong control over the HPA stress 

axis, and GF mice are characterized by markedly increased hippocampal 5-HT concentrations 

[27], accompanied by decreased 5-HT1A receptor gene expression in the dentate gyrus in 

female (but not male) GF mice [25]. Intriguingly, other CNS alterations in GF mice also are 

sex-dependent; e.g., altered expression of BDNF has been documented only in male GF mice 

[27].  BDNF is an important plasticity-related protein that promotes neuronal growth, 

development and survival, with key roles in learning, memory and mood regulation. BDNF 

gene expression is lower in the cortex and amygdala in male GF mice compared with controls 

[26], whereas hippocampal BDNF  levels in GF mice have been reported to either increase 

[25] or decrease [26, 27, 38].  Hippocampal neurogenesis also is regulated by the 

microbiome, such that GF mice exhibit increased neurogenesis in the dorsal hippocampus 
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[34]. Adult hippocampal neurogenesis plays a critical role not only in modulating learning 

and memory, but also in mediating behavioural responses to stress and antidepressant drugs 

[54]. Although adult GF mice display modest increases in hippocampal volume, ventral 

hippocampal pyramidal neurons and dentate granule cells are characterized by reduced 

dendritic branching, with pyramidal neurons displaying fewer stubby and mushroom spines 

[55].   Postweaning microbial colonization of GF mice failed to reverse the changes in adult 

hippocampal neurogenesis, suggesting that there is a critical pre-weaning developmental 

window during which the microbiota shapes life-long capacity for hippocampal neurogenesis 

[34]. Conversely, hippocampal neurogenesis is reduced in normal adult mice after they are 

exposed to an antibiotic regimen to deplete microbiota, an effect that is reversible by exercise 

or administration of a probiotic cocktail [56]. 

The microbiome also affects the structure and function of the amygdala, another key 

stress-related brain region.  The amygdala is critical for emotional learning and social 

behaviour, and is critical for the gating of behavioural and physiological responses to 

stressful stimuli, especially those that trigger anxiety and/or fear [33, 57]. Altered amygdalar 

processes are associated with a variety of neuropsychiatric disorders, ranging from autism 

spectrum [58, 59] to anxiety disorders [57, 60]. GF mice (on a SW background) display 

increased amygdala volume, accompanied by dendritic hypertrophy within the basolateral 

amygdala (BLA). Accordingly, BLA pyramidal neurons are characterized by increased 

numbers of thin, stubby and mushroom spines in GF mice compared to normal controls [55]. 

RNA sequencing studies have revealed significant differences in differential gene expression, 

exon usage, and RNA-editing within the amygdala. The amygdala of GF mice displays 

increased expression of immediate early response genes such as Fos, Fosb, Egr2 and Nr4a1, 

along with increased signaling of the transcription factor CREB [33]. Differential amygdalar 

expression and recoding of genes involved in neuronal plasticity, metabolism, 
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neurotransmission, and morphology also were identified in GF mice. A significant 

downregulation of immune system-related genes was noted in GF mice [33], consistent with 

a reportedly underdeveloped immune and brain microglia systems [35]. Indeed, the immune 

system may provide a crucial link for microbiota effects on brain physiology and behaviour, 

perhaps via the recently discovered lymphatic branches within the central nervous system 

[61]. 

Although GF mice have been instrumental in advancing all aspects of microbiome 

research, including microbiome-to-brain signaling [28, 62], the experimental GF mice model 

has many drawbacks that limit its utility for clinical translation [63-65] . Nevertheless, GF 

mice provide a platform on which to explore the role of bacteria on early host development 

and function [63, 64, 66, 67].  Antibiotic treatment is an alternative approach that can bypass 

the perinatal developmental period.  Antiobiotic treatment in adult mice alters BDNF protein 

levels in both the amygdala and hippocampus [29]. When administered during postnatal 

development, antibiotics promote visceral hypersensitivity in adult male rats without 

affecting anxiety, cognitive, immune or stress-related responses [68]. In this model, visceral 

hypersensitivity was paralleled by specific changes in the spinal expression of pain-

associated genes (transient receptor potential cation channel subfamily V member 1, the α-2A 

adrenergic receptor and cholecystokinin B receptor) [68].  Conversely, antibiotic depletion of 

microbiota later in life (i.e., in adolescent mice after weaning) led to reduced anxiety coupled 

with cognitive deficits measured in adulthood [31]. Altered tryptophan metabolism also was 

observed in the same animals, along with significantly reduced BDNF, oxytocin and 

vasopressin gene expression [31]. More recently, antibiotic depletion in adult rats reportedly 

has been reported to have a limited impact on stress, anxiety or HPA axis function, but 

increases depressive-like behaviours, reduces visceral pain responses, and impairs cognition 
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[52].  Together these results highlight the importance of microbiome integrity at key 

developmental windows. 

 

Mechanisms of Communication from Gut Microbiota to Brain 

The precise role played by the microbiota in gut-brain-gut signaling pathways remains to be 

elucidated. Hindering our efforts is the limited current state of knowledge regarding the 

identity and function of the gut’s vast and diverse microbial composition. However, advances 

in the field of metagenomics promise to address this concern [69, 70]. For example, a recent 

paper [71] examining the role of gut microbiota in cerebral metabolism reports that GF mice 

have an altered metabolic profile compared to their conventionally colonised counterparts, 

with 10 of these metabolites thought to be specifically involved in brain function.  However, 

the key question remains:  through what mechanisms do the gut microbiota influence the 

CNS, and vice-versa?  

A complex communication network exists between the gut and the CNS, which 

includes the enteric nervous system (ENS), sympathetic and parasympathetic branches of the 

autonomic nervous system (ANS), neuroendocrine signaling pathways, and neuroimmune 

systems [72]. Afferent spinal and vagal sensory neurons carry visceral feedback from the gut 

to the thoracic and upper lumbar spinal cord and to the nucleus of the solitary tract within the 

caudal brainstem, engaging polysynaptic inputs to higher brain regions, including the 

hypothalamus and limbic forebrain.  Bi-directional control is provided by descending pre-

autonomic neural projections from the cingulate and insular cortices, amygdala, bed nucleus 

of the stria terminalis, and hypothalamus, all of which are positioned to alter vagal and spinal 

autonomic outflow to the gut [73]. Collectively, the microbiota–brain–gut axis is thought to 

communicate not only via these neural routes, but also via humoral signaling molecules and 
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hormonal components. Together, this intricate network exerts effects which alter both GI and 

brain function [74, 75].   

Neural pathways.  The gut is innervated by the ENS, a complex peripheral neural 

circuit embedded within the gut wall comprising sensory neurons, motor neurons, and 

interneurons. While the ENS is capable of independently regulating basic gastrointestinal 

(GI) functions (i.e., motility, mucous secretion, and blood flow), central control of gut 

functions is provided by vagal and, to a lesser extent, spinal motor inputs that serve to 

coordinate gut functions with the general homeostatic state of the organism [76].  This central 

control over the ENS is important for adaptive gut responses during stressful events that 

signal homeostatic threat to the organism. The vagus nerve has been proposed to serve as the 

most important neural pathway for bidirectional communication between gut microbes and 

the brain [77-79]. For example, an intact vagal nerve appears necessary for several effects 

induced by two separate probiotic strains in rodents [80]. Specifically, chronic treatment with 

Lactobacillus rhamnosus (JB-1) led to region-dependent alterations in central GABA 

receptor expression, accompanied by reduced anxiety- and depression-like behaviour and 

attenuation of stress-induced corticosterone response; these effects required an intact vagus 

nerve [81]. Similarly, in a colitis model, the anxiolytic effect of Bifidobacterium longum was 

absent in vagotomised mice [82] . In contrast to effects mediated by probiotics (i.e., microbial 

supplementation), changes in the microbial ecology as a consequence of antibiotic treatment 

in mice did not depend on vagal nerve integrity [29].  Thus, additional signaling pathways are 

likely involved in microbiota–brain–gut communication [83]. 

In a subset of ENS neurons (i.e., sensory after-hyperpolarization neurons), the 

probiotic Lactobacillus reuteri was found to increase excitability and the number of action 

potentials per depolarizing pulse, to decrease calcium-dependent potassium channel opening, 

and to decrease the slow after-hyperpolarization.  Thus, L. reuteri appears to target an ion 
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channel in enteric sensory neurons which may mediate its effects on gut motility and pain 

perception [84]. More recently, the electrophysiological properties of myenteric neurons were 

found to be altered in GF mice, in which myenteric sensory neurons displayed reduced 

excitability that was restored after colonization with normal gut microbiota [85].  

Enteroendocrine Signaling.  A functional microbiota–neurohumoral relationship is 

established during early microbial colonization of the gut. A multitude of biologically active 

peptides are present at numerous locations throughout the brain–gut axis, and have a broad 

array of functions that include not only gut motility and secretion, but also regulation of 

emotional affect and stress resilience. Bacterial by-products that come into contact with the 

gut epithelium are known to stimulate enteroendocrine cells (EECs) to produce several 

neuropeptides such as peptide YY, neuropeptide Y (NPY), cholecystokinin, glucagon-like 

peptide-1 and -2, and substance P [86, 87]. After their secretion by EECs, these neuropeptides 

presumably diffuse throughout the lamina propria, which is occupied by a variety of immune 

cells, en route to the bloodstream and/or local receptor-mediated effects on intrinsic ENS 

neurons or extrinsic neural innervation (e.g., vagal sensory afferents) [88].  However, it still 

is unknown whether any of these EEC peptides are necessary or sufficient for bidirectional 

communication between the microbiota and CNS. A different type of potential signaling 

pathway was revealed more recently[89], demonstrating direct paracrine communication 

between EECs and neurons innervating the small intestine and colon [89].  This newly-

identified neuroepithelial circuit may act as a sensory channel for signaling from luminal gut 

microbiota to the CNS via the ENS, and vice versa. The physical innervation of sensory 

EECs suggests the presence of an accurate temporal transfer of sensory signals originating in 

the gut lumen with a real-time modulatory feedback to EECs.  

Serotonin & Tryptophan metabolism.  Serotonin [5-hydroxytryptamine (5-HT)] is a 

biogenic amine that functions as a neurotransmitter within the brain and also within the ENS. 
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Indeed, approximately 95% of 5-HT within the body is produced by gut mucosal 

enterochromaffin cells and ENS neurons. Peripherally, 5-HT is involved in the regulation of 

GI secretion, motility (smooth muscle contraction and relaxation), and pain perception [90, 

91], whereas in the brain 5-HT signaling pathways are implicated in regulating mood and 

cognition [92]. Thus, dysfunctional 5-HT signaling may underlie pathological symptoms 

related to both GI and mood disorders, and may also contribute to the high co-morbidity of 

these disorders [93]. Supporting this idea, drugs that modulate serotonergic 

neurotransmission, such as tricyclic antidepressants and specific serotonin reuptake 

inhibitors, also have efficacy for treating irritable bowel syndrome (IBS) and other GI 

disorders [94, 95].  It also recently has been shown that the microbiota can regulate 5-HT 

synthesis in the gut. Specifically, indigenous spore-forming bacteria from the mouse and 

human microbiota have been shown to promote 5-HT biosynthesis from colonic 

enterochromaffin cells [96]. 

Serotonin synthesis is crucially dependent on the availability of tryptophan, an 

essential amino acid which must be supplied by the diet.  Clinical depression is associated 

with reduced plasma tryptophan concentrations and enhanced enzyme activity [97].  

Interestingly, the early life absence of microbiota in GF mice leads to increased plasma 

tryptophan concentrations and increased hippocampal levels of 5-HT in adulthood [27]. 

These effects are normalized following the introduction of bacteria to GF mice post-weaning, 

with the probiotic B. infantis reported to affect tryptophan metabolism [98].  Therefore, gut 

microbiota may play a crucial role in tryptophan availability and metabolism to consequently 

impact central 5-HT concentrations. Although the specific mechanisms underlying this 

putative modulatory interaction are unknown, they are potentially mediated indirectly 

through an immune-related mechanism linked to microbial colonization [99].  
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Immune signaling.  The immune system plays an important intermediary role in the 

dynamic equilibrium that exists between the brain and the gut [100]. The HPA axis, ANS and 

ENS all directly interact with the immune system [101-105], and the gut itself is an important 

immune organ that provides a vital defensive barrier between externally-derived pathogens 

and the internal biological environment. Gut-associated lymphoid tissues form the largest 

immune organ of the human body, comprising more than 70% of the total immune system 

[106]. A direct link between infection and brain function has long been known, mainly 

through the observation that syphilis and Lyme disease often promote psychiatric symptoms 

[107]. Research using animal models has clearly demonstrated that infectious 

microorganisms affect behavioural measures through activation of the immune signaling 

pathways from body to the brain. For example, the pathogenic bacteria Campylobacter jejuni, 

when administered to mice at subclinical doses, results in anxiety-like behaviour [108]. 

Peripheral administration of pro-inflammatory cytokines in rodents induces a variety of 

depressive-like behaviours, including sleep disturbances, reduced appetite, and suppression of 

exploratory behaviour, collectively referred to as sickness behaviours [109]. Although gut 

microbes are known to contribute to the maturation and fortification of the immune response, 

the molecular basis of these contributions is not yet clear. The immunoregulatory effects of 

probiotic microorganisms have been proposed to occur through the generation of T regulatory 

cell populations and the synthesis and secretion of the anti-inflammatory cytokine, IL-10 

[110]. In support of this, oral consumption of Bifidobacterium infantis 35624 in humans is 

associated with enhanced IL-10 expression in peripheral blood [109]. Furthermore, feeding of 

a commensal bacteria to GF mice promotes Treg production and IL-10 synthesis [111]. 

Therefore, the balance of gut microbes may closely regulate host inflammatory responses.  

Disturbances to this microbial balance, particularly in early life [39], may promote a chronic 
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inflammatory state that can lead to maladaptive changes in mood and behaviour, including 

increased responsiveness to stress and increased incidence of stress-related disorders.  

 

Stress-Related Disorders and the Microbiome–Gut–Brain Axis 

Major Depressive Disorder (MDD).  One of the principal mechanisms proposed to underlie a 

gut-brain link in stress-related disorders is via disrupted gut barrier function commonly 

known as the “leaky gut” phenomenon [112], which is proposed to contribute to MDD. The 

proposed mechanism of action is that the epithelial barrier of the GI tract becomes 

compromised as a result of psychological or organic stress, leading to increased intestinal 

permeability and subsequent translocation of gram-negative bacteria across the mucosal 

lining to access immune cells and the ENS [113]. Bacterial translocation leads to activation 

of an immune response characterised by increased production of inflammatory mediators 

such as IL-6 and IFNγ.  In mice, pre-treatment with the probiotic L. farciminis attenuates the 

ability of acute restraint stress to increase intestinal permeability and HPA axis responsivity 

[49]. In further support of the “leaky gut” hypothesis, serum concentrations of IgM and IgA 

against LPS of enterobacteria is significantly higher in MDD patients compared to healthy 

controls [114].  This would suggest that bacterial translocation from the gut is increased in 

MDD, and the resulting inflammatory response may contribute to the mood disorder.  

Currently, however, clinical evidence linking MDD with alterations in the gut microbiota is 

relatively sparse. Naseribafrouei and colleagues failed to identify any differences in terms of 

microbial diversity within faecal samples obtained from MDD patients and controls, although 

the levels of Bacteroidetes were lower in MDD patients [115]. Conversely, Jiang and 

colleagues reported increased diversity (using the Shannon index) in the composition of 

faecal sample microbiota in MDD patients compared to healthy controls, including increased 

diversity in the Bacteroidetes and Proteobacteria (which include the LPS-expressing 
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Enterobacteriaceae) phyla, countered by a concomitant reduction in the diversity of 

Firmicutes [116]. The basis for conflicting results between these two studies is unclear, but 

may stem from the different control groups that were used (i.e., outpatients from a 

neurological unit versus healthy control subjects).  More recently, a decreased gut microbial 

richness and diversity was observed in depressed patients [117].  

Animal models have improved our understanding of how the gut microbiota may 

influence stress-related disorders, including depressive-like behaviours. Maternal separation 

is frequently used as a model of early life stress that provokes an adult depressive and 

anxiety-like phenotype, along with alterations in monoamine turnover, immune function and 

HPA axis activation [39, 73, 118]. Early work from Bailey and Coe demonstrated that 

maternal separation decreased faecal Lactobacillus in rhesus monkeys 3 days post-separation 

[119]. In rodents, early life maternal separation disrupts the offspring’s microbiota and 

promotes colonic hypersensitivity [39, 73].  More recent work by De Palma and colleagues 

has elaborated upon the role of the gut bacterial commensals in the development of 

behavioural despair using the maternal separation model [7].  In their study, a developmental 

history of maternal separation was associated with increased circulating corticosterone in 

adult GF mice, but not depressive- or anxiety-like behaviours. Thus, the presence of gut 

microbiota may be unnecessary for the ability of early life maternal separation to alter stress-

related HPA axis activity, but may be necessary to alter the development of anxiety- and 

depressive-like behaviours. 

Other animal models of chronic stress/depression have been shown to induce 

alterations in the microbiota. In rodents, olfactory bulbectomy produces an array of 

physiological and behavioural symptoms with features similar to MDD, including altered 

neuroendocrine and neuroimmune responses. The model also has strong predictive validity, 

as the depressive-like behaviours are normalized only after long-term treatment with 
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antidepressant drugs [120]. Interestingly, Park and colleagues demonstrated that bulbectomy 

affects gut transit and the composition of the microbiota by redistributing the relative 

abundances of bacterial phyla [121]. While these findings are intriguing, it is difficult to 

extrapolate how an altered composition of the gut microbiota in bulbectomized animals might 

relate to clinical depression, or even to other animal models of depression [122].  For 

example, social defeat stress profoundly alters the operational taxonomic units of the gut 

microbiota, associated with deficits in sociability. A reduction in diversity was associated 

with decreases in the abundance of Clostridium species, as well as decreases in fatty acid 

production and biosynthesis pathways leading to dopamine and 5-HT production [10]. This 

decrease in Clostridium abundance following social defeat stress is in contrast to previous 

work from Bailey and colleagues, who demonstrated an increase in the relative abundance of 

Clostridium species following social disruption stress [40]. Despite their considerable 

differences in experimental approach, these animal studies collectively highlight an 

association between altered gut microbiota and depressive-like behaviour. 

While clinical studies have not yet assessed whether probiotics or prebiotics are 

successful in the treatment of MDD, several groups have documented the beneficial effects of 

probiotics and prebiotics in healthy individuals (see Table 1). Indeed, the idea that 

Lactobacillus strains may improve quality of life and mental health is not new.  Dr. George 

Porter Phillips first reported in 1910 that a gelatin-whey formula with live lactic acid bacteria 

improved depressive symptoms in adults with melancholia [123]. More recently, 3-week 

supplementation with the prebiotic B-GOS was found to decrease the cortisol awakening 

response and to increase attentional vigilance towards positive stimuli [47]. This finding is 

consistent with those of a functional magnetic resonance imaging (fMRI) study, which 

demonstrated that long-term administration of a probiotic mixture of various Bifidobacterium 

and Lactobacillus species resulted in reduced neural activity within a widely distributed brain 
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network in response to a task probing attention towards negative stimuli [124]. A recent study 

by Steenbergen and colleagues further demonstrated the beneficial effects of a Lactobacillus 

and Bifidobacterium mixed probiotic on mood in healthy individuals [125]. Moreover, 

clinical data from healthy participants suggest that probiotics are also effective in alleviating 

behavioural symptoms of anxiety [126]. While the reported effects of prebiotics and 

probiotics to improve mood in healthy individuals lends support to their use in treating 

depression and anxiety, carefully controlled clinical trials will be necessary to fully determine 

their efficacy in treating depression and anxiety. 

 

Table 1 

Clinical and preclinical evidence for the antidepressant and anxiolytic properties associated with targeting the 
gut microbiota (modified from reference [2]). 

  Behavioural outcomes Physiological outcomes References 

Clinical evidence 

 B-GOS 

Increased cognitive 
processing of positive 
versus negative attentional 
vigilance 

Reduced cortisol awakening response [47] 

 Lactobacillus casei strain 
Shirota 

Reduced anxiety scores in 
patients with chronic 
fatigue syndrome 

Increased numbers of Lactobacillus and 
Bifidobacterium in faecal samples 

[127] 

Improved mood in 
individuals with a low 
mood prior to taking the 
probiotic 

NA [128] 

 Probiotic formulation: 
Lactobacillus helveticus 
and Bifidobacterium 
longum 

Reduced psychological 
distress as measured by the 
HADS 

Reduced 24-h UFC levels [126] 

  

Multispecies probiotic 
formulation: Lactobacillus 
and Bifidobacterium 
species 

Reduced cognitive 
processing of sad mood; 
decreased aggressive 
feelings and rumination 

NA [125] 

 

Preclinical evidence 

Prebiotic- FOS and GOS 
 

Increased BDNF, NR1 and NR2A 
mRNA, and protein expression in the 
dentate gyrus and frontal cortex 

[129] 
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  Behavioural outcomes Physiological outcomes References 

  

 

 

 

Prebiotic- 3′Sialyllactose 
and 6’sialyllactose 

 

Antidepressant and 
anxiolytic-like effects in 
adult mice. Reversed the 
behavioural effects of 
chronic psychosocial stress 
in mice.  

Anxiolytic effect in mice 
exposed to SDR 

Reduced   acute and chronic stress-
induced   corticosterone   release.   
Modified   specific   gene  expression  in  
the  hippocampus  and  hypothalamus. 
Reduced    chronic    stress-induced    
elevations    in  pro-inflammatory  
cytokines  levels, 

Prevented SDR-mediated reduction in the 
number of immature neurons 

[130] 

 

 

[46] 

Prebiotic- GOS & 
polydextrose with 
lactoferrin (Lf) and milk 
fat globule membrane 

Bifidobacterium infantis 

 

 

 

Reduced immobility time 
of maternally separated rats 
in a forced swim test 

 

Improves NREM Sleep, Enhance REM 
Sleep Rebound and Attenuate the Stress-
Induced Decrease in Diurnal Temperature 

Attenuated exaggerated IL-6 response in 
maternally separated rats following 
concanavalin A stimulation 

 

[131] 

 

[118] 

 Bifidobacterium breve 
Improved depressive and 
anxiety-related behaviours 
in mice 

No effect upon circulating corticosterone [132] 

 Bifidobacterium longum 
Anxiolytic effect in step-
down inhibitory avoidance 

Anxiolytic effect mediated via the vagus 
nerve 

[82] 

 Lactobacillus plantarum 
PS128 

Reduced immobility time 
and increased sucrose 
preference in ELS mice 

Decreased basal and stress-induced 
circulating corticosterone levels; 
attenuated circulating TNF-α and IL-6 
levels while increasing IL-10 levels in 
ELS mice 

[133] 

 

Lactobacillus rhamnosus 

 

 

 

 

Reduced immobility time 
in the forced swim test 

 

Decreased stress-induced 
anxiety-like behaviour  

 

Decreased stress-induced circulating 
corticosterone secretion and altered 
central GABA receptor subunit 
expression 

Attenuated chronic stress-related 
activation of dendritic cells while 
increasing IL-10+ regulatory T cells 

 

 

[81] 

 

[134] 

 

 

 Lactobacillus fermentum 
NS9 

Reduced ampicillin-
induced anxiety behaviour 

Decreased ampicillin-induced 
corticosterone secretion and increased 
hippocampal mineralocorticoid receptor 
and NMDA receptor levels 

[135] 

 Butyric acid 

Reduced immobility time 
in Flinders sensitive line 
rats exposed to a forced 
swim test 

Increased BDNF expression within the 
prefrontal cortex 

[136] 

BDNF brain-derived neurotrophic factor, ELS early life stress–exposed, FOS fructo-oligosaccharide, GABA γ-
aminobutyric acid, GOS galacto-oligosaccharide, HADS Hospital Anxiety and Depression Scale, IL interleukin, 
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mRNA messenger RNA, NA not assessed, NMDA N-methyl-d-aspartate, SDR social disruption stress, 
TNF tumour necrosis factor, UFC urinary free cortisol, NR NMDA Receptor 

 

 

Irritable Bowel Syndrome (IBS).  Stress, including early life stress, is a key risk factor for 

IBS, the most common functional gastrointestinal disorder [137].  IBS is considered to reflect 

pathologically altered gut-brain axis homeostasis.  This disorder is associated with abdominal 

visceral pain and altered bowel habits, and is strongly comorbid with anxiety and depression. 

Various animal models of visceral hypersensitivity have been exploited to determine the 

involvement of gut microbiota on visceral pain pathways [138, 139].  Assessing visceral 

sensitivity most often occurs with the use of a balloon inflated to specific pressures using a 

barostat [140, 141]. Many of the preclinical models of increased visceral pain are induced by 

applying a psychological or physical stressor that relate to factors known to predispose to 

IBS, a clinical disorder characterized by visceral hypersensitivity to pain [142].  Early life 

stress or chronic stress later in life are thought to potentiate visceral pain responses and 

associated co-morbidities [137]. Antibiotics administered early in life have been shown to 

induce long-lasting effects on visceral pain responses, coupled with alterations in pain 

signaling pathways [68]. Results from animal studies of antibiotic-induced dysbiosis 

demonstrate that microbiota influence the wiring of pain pathways early in development, and 

that visceral hypersensitivity can persist into adulthood despite later microbial normalization 

[68].   

Disturbance of the gut microbiota in adult mice also induces local changes in immune 

responses and enhanced visceral pain signaling [143]. Studies using GF mice before and after 

bacterial colonization indicate that commensal intestinal microbiota are necessary for the 

normal excitability of gut sensory neurons [85]. Furthermore, live luminal Lactobacillus 
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reuteri (DSM 17938) reduced jejunal spinal nerve firing evoked by distension or capsaicin 

[144].  It has also recently been shown that IBS-like abnormal gut fermentation and visceral 

hypersensitivity can be induced in rats after transplantation of fecal microbiota from 

constipation-predominant IBS patients [145].  

The gut microbiota has emerged as an important factor that potentially contributes to 

the pathophysiology of IBS [146, 147], despite conflicting evidence regarding the 

organisation and function of the gut microbiota in both adult and paediatric patients. In this 

regard, prolonged exposure of mice to a high fat diet (HFD) induces low-grade chronic 

intestinal inflammation, changes the microbiota composition, and increases bacterial 

translocation across the intestinal mucosal barrier [148, 149] . Further, diets high in saturated 

fat are a risk factor for the development of human inflammatory bowel diseases, including 

IBS.  Exposure to stress impacts colonic motor activity, which can alter gut microbiota 

profiles, including lower numbers of potentially beneficial Lactobacillus [150].   Thus, stress 

may interact with diet to contribute to IBS. Several studies comparing normal controls to IBS 

patients have reported decreased proportions of the genera Lactobacillus and Bifidobacterium 

with increased ratios of Firmicutes to Bacteroidetes at the phylum level [151, 152] (for 

review see [153]). One study indicates that subtypes of IBS patients cluster with regard to 

changes in diversity and Firmicutes to Bacteroidetes ratios compared to healthy controls 

[154]. This study is particularly interesting, as it highlights evidence that subtypes of IBS 

patients have a relatively “normal” microbiota phenotype while others display either 

decreased or increased diversity. Those with the “normal” microbiota were more likely to 

display comorbid depression, which also was associated with deceased intestinal transit time.  

This subtype clustering may also be linked to differential responses to microbiota 

manipulation.  For example, one study reported that individuals suffering from anxiety and 

depression showed improvement of these symptoms after consumption of Lactobacillus and 
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Bifidobacteria, whereas other studies reported a lack of improvement after similar probiotic 

treatment  [1, 128].  In a recent systematic review of specified probiotics in the management 

of IBS and other lower gastrointestinal disorders, an overall beneficial effect of probiotics 

was evident in terms of reduced abdominal pain, bloating, and/or distension in a subset of 

patients  [155]. However, results from clinical trials testing probiotics in IBS remain difficult 

to compare, due to widespread differences in study design, probiotic dose, and probiotic 

strain [69]. Interestingly there has been some success with the gastrointestinal selective 

antibiotic rifaxamin in treating IBS [156]. Future studies should also focus on the the 

relationship between  rifaxamin-induced changes in microbiota and stress responses. 

 

High-Fat Diet, Stress, and the Gut Microbiome 

As reviewed in previous sections of this article, the gut-brain axis exerts a substantial 

physiological impact on mood, behaviour, and stress responsiveness.  Acute and chronic 

exposure to stress can alter both the quality and quantity of calories consumed, and stress-

induced alterations in food intake and energy balance can interact with emotional state  

[157].  In particular, ingestion of foods rich in fat has been reported to modulate emotional 

states in humans and animal models [158].  Using the diet-induced obesity (DIO) animal 

model, Sharma and Fulton demonstrated that adult C57Bl6 mice consuming a diet containing 

58% of calories as trans-fat for 12 weeks develop depressive-like behaviours, including 

increased immobility in the forced swim task and reduced time spent in open areas of the 

elevated-plus maze and open field tests [159].  These behavioural indices of despair and 

anxiety were accompanied by elevated basal HPA activity and increased corticosterone 

secretion in response to stress [160].  

A role for gut microbiota in the long-known link between diet and emotion has 

emerged over the past few years, including evidence that high-fat diet feeding promotes a 
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“leaky gut” (i.e., increased intestinal permeability; [161-163]), similar to the effect of chronic 

stress alone [113, 114, 164], and the combination of high-fat diet and stress exposure may 

promote even greater bacterial translocation.  In mice, chronic stress combined with a diet 

high in fat and sugar has been reported to exacerbate changes in intestinal tight junction 

proteins that were associated with altered behaviours and altered inflammatory markers 

within the hippocampus, with the hippocampal and behavioural effects shown to be diet-

dependent [165]. A direct link between high-fat diet, gut microbiota, and behaviour was 

demonstrated in a recent study in which microbiota from high-fat fed donor mice were 

transferred to chow-fed recipients whose own microbiota had been depleted by antibiotic 

treatment [166].  Intriguingly, transfer of the high-fat-related donor microbiota led to 

increased intestinal permeability and inflammatory markers in the chow-fed recipient mice, 

accompanied by anxiety-like behaviours [166]. These results are consistent with a large 

literature supporting the view that increased circulating cytokines subsequent to bacterial 

translocation can sensitize the HPA axis to stress-induced activation, and also can increase 

anxiety- and depressive-like behaviours [167-170].  Conversely, probiotic treatment in mice 

was found to be sufficient to prevent the ability of chronic stress to increase intestinal 

permeability, and also was sufficient to reduce stress-induced sympathetic outflow and HPA 

axis activation [164].  Interestingly, however, high-fat diet exposure does not always 

exacerbate the deleterious effects of stress [158].  Indeed, one study using mice found that 

high fat diet ameliorated the ability of chronic social stress to increase anxiety- and 

depressive-like behaviours; in other words, high fat diet had a selective “protective effect” 

[171].  These results emphasize the complex influence of dietary factors on stress-related 

outcomes, and highlight the need for additional research to unravel complex interactions and 

causal relationships among diet, stress exposure, and the microbial gut-brain axis. 
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Future Directions 

The concept of psychobiotics, bacteria with positive effects on mental health, was coined in 

2013 [110] and has recently been expanded to include other microbiota-targeted interventions 

that can positively modify mental health including in healthy volunteers [172].  Animal 

studies have led the way in showing that specific strains of Bifidobacteria, Lactobacillus or 

Bacteroides can have positive effects on brain and behaviour [32, 81, 82, 132, 173], including 

evidence that certain bacteria can enhance cognitive processes and affect emotional learning 

[48, 50, 81, 173, 174]. However, results from these studies are only slowly being translated to 

humans, primarily through research using healthy volunteers [124-126, 175, 176].  Indeed, 

recent studies have highlighted the difficulties of translating such responses even within the 

same laboratory. Bifidobacterium longum 1714 is a bacterium with positive anti-stress and 

pro-cognitive effects in an anxious mouse strain [132, 173]. Ingestion of this potential 

psychobiotic by healthy male volunteers was able to attenuate the increases in cortisol output 

and subjective anxiety in response to the socially evaluated cold pressor test.  Furthermore, 

daily reported stress was reduced by psychobiotic consumption. Finally subtle improvements 

in hippocampus-dependent visuospatial memory performance, as well as enhanced frontal 

midline electroencephalographic mobility were observed following the  consumption of 

Bifidobacteria [177]. On the other hand, while Lactobacillus rhamnosus (JB-1) has one of the 

strongest preclinical profiles of any potential psychobiotic [81], it had no discernible effect 

when tested in a similar battery of human stress and neuropsychology tests as the 

Bifidobacterium longum [117]. 

Over the next few years it is hoped that the mechanisms underpinning the beneficial 

effects of specific bacterial strains will be elucidated. Improved understanding of the 

developmental impact of microbiota perturbations on behaviours relevant to stress and 

cognitive-related disorders is sorely needed [178, 179].  Finally, a greater investment in large-
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scale clinical trials is needed to determine whether psychobiotic-based interventions have 

efficacy in stress-related disorders. Moreover, the relationship between diet and the 

microbiota-gut-brain axis is ripe for exploitation to develop therapeutic strategies for treating 

stress-related disorders. 
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Figure Legend 

Figure 1.  Key communication pathways of the microbiota–gut–brain axis. There are 

numerous mechanisms through which the gut microbiota can signal to the brain. These 

include activation of the vagus nerve, production of microbial antigens that recruit immune B 

cell responses, production of microbial metabolites (i.e. short-chain fatty acids [SCFAs]), and 

enteroendocrine signaling from gut epithelial cells (e.g., I-cells that release CCK, and L-cells 

that release GLP-1, PYY and other peptides). Through these routes of communication, the 

microbiota–gut–brain axis controls central physiological processes, such as 

neurotransmission, neurogenesis, neuroinflammation and neuroendocrine signaling that are 

all implicated in stress-related responses. Dysregulation of the gut microbiota subsequently 

leads to alterations in all of these central processes and potentially contributes to stress-

related disorders.  

 

5-HT serotonin, CCK cholecystokinin, GABA γ-aminobutyric acid, GLP glucagon-like 

peptide, IL interleukin, PYY peptide YY, TNF tumour necrosis factor 
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