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ABSTRACT 

Tuberculosis remains a major health threat throughout the world, despite having a vaccine and 

treatments. Mycobacterium tuberculosis (Mtb) infects alveolar macrophages in the lung and 

inflammation occurs after infection. The lung microbiome in regards to Mtb infection is poorly 

understood, and whether inflammation from infection affects the lung microbiome is unknown. 

The goal of our study is to determine whether Mtb induces a significant and durable change in 

the lung microbiome of cynomolgus macaques. We investigated and compared the community 

clusters between the lung and oral cavity, assessed how the diversity of the lung microbiota 

changes throughout infection, and associated these changes in the lung with inflammation. 

Bronchoalveolar lavage (BAL) was obtained pre-infection and at several time points post-Mtb 

infection, as well as oral wash and saline bronchoscope control samples from respective 

macaques. Operational taxonomic units (OTUs) were generated after 16s rRNA sequencing was 

performed once DNA was extracted from collected samples.  We profiled microbial 

communities to see the community structure differences between oral and lung environment and 

show how the microbiome changes throughout infection. PET/CT imaging was used to visualize 

and quantify inflammation over the course of infection by using FDG avidity (total PET HOT). 

Our results show that the oral and lung compartments are distinct with regard to community 
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structure, distinct bacterial taxa are more relatively abundant in certain lobes, and lung 

inflammation and lung microbiome changes are variable within macaques and between 

macaques. Analysis of the first cohort of macaques (N=10) did not reveal correlations between 

lung inflammation and relative abundance or alpha-diversity, but our data is preliminary and 

based on small sample size. Our sample size will greatly increase after the second cohort of 

macaques are fully sequenced and analyzed. These changes and disruptions in the lung 

microbiome may have public health relevance in regards to overall lung health and may also play 

a role in the outcome of Mtb infection. 
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1.0  INTRODUCTION 

Tuberculosis remains a health treat throughout the entire world, despite having a vaccine and 

treatments. Development of nonhuman primate models that mimic many aspects of infection in 

humans helps researchers study the course of infection of Mycobacterium tuberculosis (Mtb), as 

well as the pathogenesis, immune response, and host interactions during disease. Nonhuman 

primate models are also useful when studying the lung microbiome, an understudied field due to 

many obstacles regarding invalid beliefs of the lung, sample collection, and respiratory tract 

kinetics. The research in this thesis focuses on investigating the changes that the lung 

microbiome undergoes after Mtb infection. A longitudinal study of the lung microbiome and 

tuberculosis has never been performed before, and investigating how the lung microbiome 

changes after and throughout Mtb infection may give us insight about important aspects of 

infection and lung health. 

1.1 TUBERCULOSIS 

1.1.1 Epidemiology and Clinical Definitions 

Tuberculosis (TB) remains a major health threat throughout the world. In 2015, there were 10.4 

million new cases of TB, and 1.8 million people died from the disease1. TB mainly affects people 
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in low and middle-income countries. For example, the incidence of TB is >250-fold higher in 

South Africa than in the United States2. Of all worldwide TB cases, 60% occur in six countries: 

China, India, Indonesia, Nigeria, Pakistan, and South Africa1. Many areas that are affected by 

TB, such as Sub-Saharan Africa, are also afflicted by the HIV epidemic, resulting in even higher 

risk for development for active (symptomatic and transmissible) TB3. Although a vaccine and 

treatments exist for TB, vaccination yields partial protection (efficacies range from 0-80%)4 and 

drug treatments are lengthy and intensive3. Lack of access to healthcare, rise of multi-drug 

resistant TB, HIV status, and other societal, environmental, and economical risk factors are also 

responsible for the high global burden of TB. 

Robert Koch discovered the etiologic agent that causes TB, Mycobacterium tuberculosis 

(Mtb), in 18825. Mtb infects via the lungs, but dissemination is possible. When an individual 

becomes infected with Mtb, 90-95% of people remain asymptomatic, which is termed latent TB 

infection (LTBI)6. The other 5-10% of people will develop active disease. Although one-third of 

the world’s population is latently infected with Mtb, only 5-10% of these people will experience 

reactivation and develop active TB in their lifetimes6.  In clinical terms, LTBI is asymptomatic 

and non-transmissible. In contrast to LTBI, active TB infection is transmissible via aerosolized 

droplets, and people with active disease experience a range of symptoms such as fever, fatigue, 

appetite loss, weight loss, and chronic cough2. Individuals who have LTBI or active disease will 

have a reaction to the tuberculin skin test (TST), which contains mycobacterial antigens, 

demonstrating an immune response to the bacteria. A non-infected person would not react to 

TST since their immune response has never seen these antigens before, therefore an immune 

response will not be elicited. During LTBI or active disease, IFN-gamma release assays (IGRA), 

which measure reactivity to Mtb-specific antigens, will also be positive2.  
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1.1.2 The Spectrum of M. Tuberculosis Infection 

It is now appreciated that strictly using ‘latent’ and ‘active’ to describe the disease status of an 

infected individual is not ideal. This is because disease status entails much diversity and can be 

described as a spectrum of disease, which can range from Mtb clearance to disseminated disease 

(Fig. 1)2,7.  

 

Figure 1. The spectrum of Mtb infection 

After infection, many possible outcomes are possible. These can range from disease clearance (either via the innate 
immune response or the adaptive immune response) to complete Mtb systemic dissemination. 
 
 

On the left-most side of the disease spectrum, one would have Mtb clearance via the 

innate immune response. These individuals do not develop an adaptive immune response to Mtb, 

resulting in negative TST and IGRA results. Bacterial clearance that is accompanied by the 

development of an adaptive immune response to Mtb is also possible; these individuals would 

have positive responses to immunological tests for TB2. In those who do not clear infection, the 

bacteria persist under strong host immune control (‘true’ LBTI)7. Further down the spectrum, 

there is subclinical infection. These individuals remain asymptomatic but are able to transmit 

Mtb, and may be culture positive, indicating active bacterial replication8. Patients who have 

active pulmonary (in the lungs) disease display symptoms, can transmit Mtb, and immune 
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responses and molecular diagnostic testing methods are all positive for bacterial presence. Mtb 

may disseminate, resulting in extra pulmonary TB or even miliary TB/sepsis2,7.  

1.1.3 Transmission and Immunology 

Mtb infection is transmitted via inhalation of droplet nuclei that have been expelled from the 

lungs of an infected person with subclinical or active disease. The bacteria travel down into the 

lower respiratory tract where they reach the lungs. Once in the lungs, the bacteria are engulfed by 

alveolar macrophages via receptor-mediated phagocytosis9. Inflammation occurs post-infection, 

and the infected macrophages then invade the lung parenchyma leading to the recruitment of 

large amounts of immune cells2,7.  

The establishment of the adaptive immune response after Mtb infection occurs at a 

relatively slow rate. A positive tuberculin skin test, showing an adaptive immune response, 

occurs at roughly 6 weeks post-infection for humans and roughly 4-6 weeks post-infection in 

macaques10. The adaptive immune response in regards to TB infection is delayed due to a 

number of immunological hindrances in the process of antigen presentation, MHC class II 

loading, and T cell priming. As Mtb infects the alveolar macrophage, there may be defects in the 

innate inflammatory response and entry of antigen presenting cells, causing delays in APC 

loading, and T cell recruitment, ultimately delaying T cell priming in the mediastinal lymph 

nodes11.  

As Mtb continues to interact with alveolar macrophages and dendritic cells throughout 

infection, several pro-inflammatory cytokines (tumor necrosis factor-α, IL-12, and IL-23) are 

released, along with several chemokines such as CCL2, CCL5, and CXCL812. IL-23 and IL-17 

are also important players in T-cell dependent inflammatory responses during infection, as both 
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IL-17- and IL-23-deficient mice displayed a decrease in antigen-specific inflammatory 

responses13,14. Inflammatory events that occur after Mtb infection are regulated by IFN-y and IL-

2 production by activated T cells that have been recruited to the infection site15. The pro-

inflammatory response helps in granuloma formation and bacterial burden reduction, therefore it 

is crucial for infection control12. There are also a number of anti-inflammatory factors involved 

in the host response to TB such as Tregs, and the release of IL-10, IDO, and PD-1 that may be 

associated with both host control and bacterial persistence and evasion16,17,18,19. 

1.1.4 The Granuloma 

As large amounts of immune cells are recruited due to chemokines released, a granuloma starts 

to form. The granuloma is the hallmark of TB. The granuloma is a highly organized structure 

composed of many different types of immune cells such as macrophages, monocytes, 

neutrophils, epithelioid cells, and multi-nucleated giant cells surrounded by an area of 

lymphocytes20. Figure 2 shows a cartoon diagram of the structure and organization of cell types 

located in a granuloma found in the lungs of an infected individual. Individual granulomas can 

differ in both structure and organization. The function of the granuloma has two main, yet 

contradictory, functions that both benefit the host and bacteria. The granuloma is the site of both 

host control of Mtb and Mtb persistence 21. The accumulation of immune cells at the site of 

infection function to contain Mtb replication and prevent dissemination. However, Mtb can live 

and survive inside the granuloma by evading the host immune response.  
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Figure 2. Structure and organization in a TB granuloma 

A necrotic center is surrounded by a macrophage rich region, ultimately surrounded by a ‘lymphocyte cuff’ rich in T 
and B cells. 

1.1.5 The Use of PET/CT Imaging to Track Granulomas 

A valuable tool to track granulomas and inflammation over time is positron emission 

tomography (PET) fused with computed tomography (CT), using 2-deoxy-2-[18F]-d-

deoxyglucose (FDG) as a probe. FDG is taken up and retained by metabolically active cells, such 

as the cells of the TB granuloma. It has been shown that FDG avidity is increased when murine 

lymphocytes are activated by Con A22, indicating that FDG uptake is increased during 

inflammation. Therefore, FDG avidity can be used as a general, nonspecific marker of 

inflammation. FDG avidity is normalized in order to give us a quantifiably measurable amount 

of inflammation within the granuloma, called total PET HOT.   

PET/CT imaging has been extremely useful in studying TB infection and disease in 

macaques by allowing us to track granulomas and total inflammation over the course of 

infection. Coleman et. al (2014) has  shown that by using early PET/CT scans, it is possible to 
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predict the outcome of TB disease24. Treatment efficacy can also be assessed using this 

method25, simplifying processes that would otherwise be relatively more difficult to perform. By 

using serial PET/CT imaging techniques over the course of Mtb infection, granulomas and 

inflammation can be visualized over time. This imaging method, when used with the NHP 

model, allows us to study a wide range of questions regarding TB, such as inflammatory 

responses and infection dynamics, treatment efficacy, and disease outcomes. 

Using [18F] FDG PET/CT imaging, Lin et. al (2014) has shown that granulomas are both 

dynamic and independent, even within the same individual23. A granuloma in one area of a lung 

lobe of a macaque can slowly regress over time (Fig. 3) to the point where it may be difficult to 

even detect using PET/CT. In contrast, in another area of a lung lobe of the same macaque, 

granulomas can progress over time. Multiple granulomas can progress to such extremes that they 

can consolidate into one large granuloma.  

 

Figure 3. Hypothetical PET/CT image showing granuloma dynamism throughout time 
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In granuloma group A, granulomas progress through time and ultimately consolidate into one large granuloma. 
Granuloma B progresses until 7 months post-infection, but starts to regress by 10 months post-infection. Granuloma 
C regresses throughout infection. Regression occurs post-treatment; granuloma C cannot be detected on PET/CT 
post-treatment. (Information obtained from Lin, 201423) 
 

Granulomas also display a large range of structural heterogeneity, differing in cell 

composition and distribution. The necrotic granuloma is commonly found in active disease, and 

is composed of a non-cellular caseous center, epithelioid macrophage-rich middle region, 

ultimately surrounded by a well-defined ‘lymphocyte cuff’ of T and B cells26. Suppurative 

granulomas also have a well-defined lymphocyte cuff, an epithelioid macrophage-rich middle 

region, but contain centers that have high amounts of neutrophils. A fibrotic granuloma, 

commonly found in clinically latent TB, contains mineralized material surrounded by regions of 

fibrotic tissue26. Fibrotic granulomas usually have small numbers of lymphocytes and 

macrophages, and are considered a ‘successful outcome’. When the host controls the Mtb, 

necrosis no longer occurs and the caseum is eventually replaced with this calcified and fibrotic 

material27. There are also non-necrotic granulomas, containing dense macrophage areas, random 

neutrophil distribution, and no caseous/necrotic material26. Ultimately, the unique dynamism and 

structural heterogeneity of each granuloma results in an immunological response that is quite 

variable from granuloma to granuloma and individual to individual. 

Overall, TB displays a spectrum of outcomes over time. The infection is highly 

associated with a pro-inflammatory response, resulting in the hallmark of Mtb infection – the 

granuloma. Granulomas display large amounts of heterogeneity, and are independent and 

dynamic within individuals. The granuloma functions to immunologically contain the Mtb, and 

the Mtb can persist and survive within this structure. If a granuloma is unable to control 

infection, pathologies such as granuloma consolidation, cavity formation, TB pneumonia, or 

systemic spread may occur. 
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1.2 THE LUNG MICROBIOME 

The microbiome can be defined as the microbiota, or microbes in a population, found in a 

specific place at a specific time28. Many studies have been performed investigating the effect of 

TB on the gut microbiome. One study has found that alteration of the gut microbiota results in 

immune control failure of TB infection –colonization with H. hepaticus resulted in a imbalance 

of Mtb-immune system crosstalk, resulting in lack of Mtb growth control, inflammation 

outbreaks, and increased lung pathology.29 Another study found that altering the gut microbiota 

results in an increased susceptibility to TB30, and it has been shown that Mtb infection results in a 

loss of diversity within the gut microbiota, possibly due to immune signaling between the lung 

and the gut31. However, regardless of TB being a respiratory disease, the lung microbiome with 

respect to Mtb infection remains poorly studied. This is due to many obstacles regarding defining 

the lung microbiome, sample collection, and general knowledge regarding the lung environment. 

1.2.1 Obstacles in Studying the Lung Microbiome 

One of the first obstacles that arose in the lung microbiome field was the long-standing belief 

that the normal lung was completely sterile. Although this claim was quite remarkable – a warm, 

moist mucosal environment that undergoes high airflow with the external environment, located 

just beneath the oropharynx, would be completely sterile – it was so embedded as common 

scientific knowledge that it was usually stated without question32. Many misunderstandings led 

to the origin of this belief. Culture-based methods that supplied poor growth conditions for 
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anaerobes were originally used to identify bacteria present in healthy lungs33. Absence of growth 

was misinterpreted as absence of bacteria in the lungs. This belief halted any preliminary lung 

microbiome research from occurring and was so firmly established that the Human Microbiome 

Project omitted the lung from its list of sampling sites from its first round of the project34. 

However, in the beginning of the 21st century, culture-independent methods such as 16S 

rRNA sequencing became more popular. Applications of culture-independent methods pertaining 

to the lungs were first used in patients with cystic fibrosis35,36, showing a wide range of bacterial 

diversity in sputum samples. The use of bronchoalveolar lavage (BAL) samples allowed 

researchers to sample just the lower airways, showing that healthy airways did contain residential 

bacteria that were distinct from the upper airways, and the bacterial taxa found in healthy lungs 

were distinct from taxa found in diseased lungs32. These findings all invalidated the old belief 

that the healthy lung was sterile. 

Although the statement of lung sterility was refuted, many obstacles remain regarding the 

lung microbiome. There remains a blurred line between the upper and lower respiratory tracts, 

which are diagramed in Figure 4. It is unknown how much the upper respiratory tract (URT) 

microbiome influences the lower respiratory tract (LRT) microbiome although many researchers 

have tried to address this question. One potential solution that has been attempted is to sample 

both the URT and LRT, and subtract the URT from the LRT37. However, a downfall to this 

methodology is that clinically important species that are in the LRT may also be present in the 

URT, and will get subtracted out and ruled as nonsignificant.  
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Figure 4. The respiratory tract 

The respiratory tract of humans starts at the mouth/nose and then ends in the lungs. The upper respiratory tract 
consists of the nasal cavity, oral cavity, nasopharynx, oropharynx, laryngopharynx, larynx. The lower respiratory 
tract consists of the lungs, bronchi, alveoli. The trachea acts as the bridge between the upper and lower respiratory 
tracts and connects the larynx to the bronchial trees. (Information obtained from Huffnagle, 201638) 
 

Another method that has been used is the application of the neutral theory of community 

ecology39. This theory states that all species in a community (the lung) are functionally 

equivalent, meaning species distribution is not due to environmental selection. Overall, the 

theory describes that microbes that differ significantly between sites (deviation from 

“neutrality”) may be important species in the lung40. 

A second theory, the island model of biogeography, proposed by Dickson et. al, explains 

that the composition of the lung microbiome depends on immigration and elimination factors, as 

well as reproduction rates of the microbial community members41. Microbial immigration into 
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the lungs may occur due to microaspiration, bacterial inhalation via the air, or through direct 

mucosal dispersion. Elimination mechanisms may consist of cough, mucociliary clearance, and 

host immune defenses41. Examples of growth conditions that may affect microbial reproduction 

rates include changes in pH, temperature, nutrient availability, inflammatory cell concentration 

and/or activation, and oxygen tension42. However, none of these methods have become widely 

accepted in the field, leaving the overall question of how the URT and LRT influence each other, 

unanswered.  

1.2.2 Contamination Controversies and Issues  

An important difficulty that arises when performing research on the lung microbiome is the 

subject of sample collection. Ideally, one would want to obtain the lung tissue itself and digest 

the entire sample, allowing us to get the best representation of the lung microbiome without 

potential contamination of other microbes from other body sites43 (Fig. 5). However, this is 

rarely feasible due to the highly invasiveness of collection procedures and cannot be used in 

longitudinal studies. For this reason, researchers tend to use either sputum or bronchoalveolar 

lavage (BAL) samples in order to simplify sample collection and accessibility. Sputum samples, 

although completely non-invasive allowing for longitudinal analysis, are always contaminated 

with microbes that are present in the oropharynx and other areas of the upper respiratory 

system44. Sputum sampling may also only sample higher sections of the lower respiratory tract. 

Sputum samples ultimately give a very inaccurate representation of the lung microbiome. 

Bronchoalveolar lavage (BAL) samples, obtained from a washing of the airways via 

bronchoscopy, are collected in a more invasive manner than sputum. However, unlike sputum, 

they give a better representation of the lung microbiome because the bronchoscope does not 
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collect from the upper respiratory tract, and mainly samples the lower respiratory tract43. 

Although a risk of potential contamination may still exist from the microbes that come into 

contact with the bronchoscope while it travels through the mouth and upper airways, BAL 

sampling is the ‘happy medium’ of lung microbiome sampling methods.  

 

Figure 5. Potential sites for contamination while sampling the respiratory tract 

Sputum samples may contain contamination from the URT, oral cavity, and nasopharynx. BAL samples may 
contain contamination from the URT if the bronchoscope has residual microbes from these sites. Ideally, one would 
sample the lung tissue itself, which samples only the LRT/lung microbiota with minimal contamination from other 
sites. 
 

In addition to contamination due to sampling method, contamination may occur during 

sampling processing. Salter et. al has shown that bacterial DNA contamination is present in 

commonly used sterile laboratory reagents and also sterile reagents that are used in DNA 
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extraction kits45. The need for negative controls is absolutely crucial because the lung contains 

such a small level of bacteria that any sort of contamination may be significant. Negative 

controls can consist of kit reagent controls, PBS extraction controls, and a bronchoscope wash 

control in order to control for every step of the sample collection and extraction processes. 

1.2.3 Lung Disease, Dysbiosis, and Inflammation  

Past studies have shown that the lung microbiome is important in respiratory diseases such as 

asthma32,46, COPD47,48, cystic fibrosis49, and pneumonia41. According to the island model of 

biogeography proposed by Dickson et al., in a state of lung disease, immigration and elimination 

becomes unbalanced and growth conditions are altered41. Microbial immigration may be 

increased due to gastroesophageal dysfunction50. Elimination may be increased due to cough or 

host inflammatory cell activation. As lung disease progresses, the lung environment shifts, 

changing growth conditions and ultimately altering the reproduction rates of lung microbiota. 

For example, inflammation of the respiratory tract during cystic fibrosis increases mucus 

production, resulting in low-oxygen pockets and increased temperature of the environment of the 

lung51,52. This change in environment may favor the growth of certain bacterial species. Overall, 

lung disease causes changes in immigration and elimination factors as well as changes in growth 

conditions, ultimately changing the composition of the lung microbiome. The microbial 

imbalances caused by lung disease can be described as dysbiosis. 

Microbial dysbiosis that occurs from lung disease not only is caused by inflammation, but 

can also cause inflammation. This results in a positive feedback dysbiosis-inflammation loop41, 

shown in Figure 7. This model states that when an inflammatory event occurs, such as an 

infection or allergy trigger, the host inflammatory response alters the lung microenvironment, 
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which in turn changes the growth conditions, resulting in dysbiosis of the microbiome 

composition. Some microbial species are favored to grow, and some species cannot continue to 

grow – this changes the microbiome. New species or species that newly become dominant in the 

lung results in a disruption in the homeostasis of the airway microbiome, causing respiratory 

dysbiosis. This respiratory imbalance in turn causes even more inflammation due to the detection 

of PAMPs on new or newly dominant microbial species. This inflammation further changes the 

growth conditions of the lung, creating a positive feedback loop. 

 

Figure 6. The inflammation-dysbiosis cycle 

An inflammatory event occurs, causing many events in the body to occur such as mucus production, catecholamine 
production53, and an increase of vascular permeability and free ATP54, changing growth conditions such as 
temperature, oxygen tension, pH, and nutrient availability. A change in growth conditions creates dysbiosis by 
bacterial clearance and selective growth for certain species of bacteria. More inflammation results from this 
dysbiosis through the immune responses initiated from PAMPs detection of the new bacterial species, causing a 
positive-feedback dysbiosis-inflammation loop. (Information obtained from Dickson, 201441) 
 

 Overall, the lung microbiome remains largely unstudied due to the blurred line between 

the URT and LRT and potential contamination issues. Many researchers are finding ways to 

overcome these obstacles, but not one method has been widely accepted. Inflammation from 
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infection or another inflammatory event changes elimination and immigration factors and alters 

growth conditions of the lung, ultimately creating dysbiosis. This dysbiosis creates an imbalance 

in the homeostatic environment of the lung, thereby creating more inflammation. This 

inflammation further alters growth conditions, further changing the lung microbiome, causing a 

positive feedback loop of inflammation and dysbiosis.  

1.2.4 The Lung Microbiome and M. tuberculosis Infection  

Few studies have been performed investigating TB and the lung microbiome, and results have 

been inconsistent. One of the first TB microbiome studies in 2012 concluded that both healthy 

and Mtb-infected lungs were dominated by Firmicutes and Bacteroidetes and also shared 

Proteobacteria, Actinobacteria28. A second study investigating the differences between Mtb-

infected and healthy lungs found Proteobactera and Bacteroidetes were the dominating 

microbiota in Mtb-infected lungs, while Firmicutes dominated in healthy control lungs55. Botero 

et al. (2014) concluded that Bacteroidetes, Fusobacteria, and Actinobacteria were the 

dominating microbiota in Mtb-infected lungs56. A fourth study found Streptococcus, 

Gramulicatella, and Pseudomonas dominating in Mtb-infected lungs, while healthy lungs had 

dominant populations of Treponema, Catonella, and Coprococcus57. Lastly, a study performed in 

2016 found that the relative abundance of Firmicutes and Actinobacteria was significantly higher 

in TB samples compared healthy controls, where Bacteroides and Proteobacteria were found to 

be higher58. The findings of these studies are summarized in Table 1, which highlight the 

variability between the results of the studies. These studies used sputum samples, which is not 

ideally representative of the lower lung microbiome due to high amounts of contamination from 

the mouth and upper airways. These studies also had relatively small sample sizes, making it 
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harder to find consistencies and trends. Lastly, these studies were cross-sectional, not allowing 

the researchers to assess the changes of the microbiome over time within the same individual. 

Cross-sectional studies make it difficult to investigate how infection impacts the microbiome 

because the microbiome is so variable between individuals.  Since the microbiome varies across 

individuals, cross-sectional studies make it difficult to determine changes induced by infection,  

as this would require extremely large sample sizes. 

A recent study using human BAL samples as their sampling method found Cupriavidus 

to be the dominating genus in Mtb-infected lungs, while Streptococcus was the dominating genus 

found in healthy lungs59. It was mentioned that the generally low quantities of colonizing 

bacteria found in the lung made it difficult to obtain ideal PCR-amplified production of microbial 

DNA. Taken together, the past studies that investigate TB and the lung microbiome are limited 

and inconsistent; this is due to past misinformation about the lung being sterile (causing many 

people to disregard studying the lung microbiome), small sample size, and non-ideal sampling 

methods. 

 

Table 1. Previous lung microbiome and TB studies 

Study Taxa highest in 
Healthy Lungs 

Taxa highest in 
TB Lungs 

Sampling 
Method 

Cui, 201228 Firmicutes 
Bacteroidetes 
Proteobacteria 
Actinobacteria 

Firmicutes 
Bacteroidetes 
Proteobacteria 
Actinobacteria 

Sputum 

Cheung, 201355 Firmicutes Proteobactera 
Bacteroidetes 

Sputum 

Botero, 201456  Bacteroidetes 
Fusobacteria 
Actinobacteria 

Sputum 

Wu, 201357 Treponema 
Catonella 
Coprococcus 

Streptococcus 
Gramulicatella 
Pseudomonas 

Sputum 

Krishna, 201658 Bacteroides 
Proteobacteria 

Firmicutes 
Actinobacteria 

Sputum 

Zhou, 201559 Streptococcus Cupriavidus BAL 
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Overall, the lung microbiome in Mtb infection is largely unstudied. Conclusions obtained 

from past research have been inconsistent. Most past studies were also not ideal in regards to 

sampling method, sample collection timing (cross-sectional vs. longitudinal) and consisted of 

small sample sizes.  

1.3 THE MACAQUE MODEL AND ITS IMPORTANCE IN TUBERCULOSIS AND 

MICROBIOME STUDIES 

1.3.1 The NHP Model and Tuberculosis 

Nonhuman primates (NHPs) are an incredibly valuable model to use in research. NHPs are 

closest to humans genetically compared to other animal models such as mice, Guinea pigs, 

rabbits or zebrafish, resulting in many similarities in immunology, pathogenesis, and 

host/pathogen interactions between NHPs and humans. The macaque model is an ideal animal 

model for both TB studies and microbiome studies.   

Rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) 

are two macaque species primarily used in TB studies. Macaques display several similarities to 

humans in regards to Mtb infection; immunology, disease outcome, clinical presentation, 

pathology, and pathogenesis in macaques species are comparable to TB in humans60.   

Previously used scientific animal models, such as the mouse model, are practical and 

relatively inexpensive but aren’t ideal to study the pathogenesis and pathology of Mtb infections. 

In mice, TB granulomas are poorly organized and lack necrosis, unlike in human TB. It is also 

important to note that mice do not display any sort of latent infection; bacterial counts remain 
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high throughout the infection, which progresses until the mouse ultimately dies61. In contrast, 

macaques display a large range of pathology throughout the course of Mtb infection that 

represents the entire clinical spectrum of TB that is seen in humans62. Rhesus macaques, when 

infected with low-dose virulent Mtb, almost always develop active TB. In contrast, when 

cynomolgus macaques are infected, an equal proportion of monkeys will develop active disease 

and latent infection (LTBI)62. The use of the cynomolgus macaque model is a fantastic tool that 

allows researchers to study the entire disease spectrum of Mtb infection, representing human 

disease. 

One of the most important comparisons between the macaque model and humans is the 

similarities in TB granulomas. Granulomas in macaques have a large range of variable 

granuloma heterogeneity. Caseous, suppurative, and non-necrotizing granulomas have been 

found, and some of these granulomas have been mineralized or largely fibrocalicified63. The 

similarities seen in granuloma heterogeneity, organization, and variability between macaque and 

human granulomas allows us to study granulomas and local immune responses more in depth. 

1.3.2 The NHP Model and the Lung Microbiome 

The use of the NHP model in microbiome studies is an excellent opportunity to increase our 

understanding of the lung microbiome composition and how it changes through time. Using a 

research model allows us to collect serial samples throughout the course of Mtb infection, 

allowing us to study the microbiome shifts over time. In humans, it is harder to obtain serial 

sampling of BAL because of the relative invasiveness of the procedure. The use of a NHP model 

also allows us to assess pre- and post-infection changes in the lung microbiome, potentially 

indicating certain bacterial taxa that are important in the course of infection or disease 
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progression. Variables that may alter results, such as diet or environmental conditions, can be 

controlled in an experimental setting unlike in humans that are sampled from the population. 

Inoculum dose and time of infection are also well-controlled. Importantly, the NHP model is 

useful as a bridge to human studies because it has been shown that the composition of the NHP 

gut microbiome is more similar to humans than other animal models64. Like humans, NHPs are 

also outbred65, creating a diverse population variability that is similar to human variability. The 

use of macaques as an in vivo model is ideal for studying the changes of the lung microbiome in 

regards to Mtb infection. 
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2.0  STATEMENT OF INTENT, HYPOTHESIS, AND SPECIFIC AIMS 

A longitudinal study investigating the changes of the lung microbiome before, during, and after 

Mtb infection has not been reported. For our study, the main goal was to assess whether Mtb 

infection induces a significant change in the lung microbiome in macaques. We hypothesized 

that inflammation from Mtb infection influences the variability of the lung microbiome in 

macaques. These changes and disruptions in the lung microbiome may have implications for 

overall lung health and also may play a role in the outcome of Mtb infection. We first determined 

the identity and compared community clusters of the lung and oral cavity in macaques to 

investigate how the oral cavity influences the lung. Second, we investigated the community 

structure and stability of the lung microbiome throughout the course of Mtb infection in 

macaques, allowing us to see how the lung microbiome changes throughout the course of 

infection. Lastly, we investigated whether the microbiota variability in the lung was associated 

with inflammation. BAL samples collected from macaques at different time points before and 

after infection were sequenced. The composition, diversity, and variability of the lung 

microbiome throughout the course of infection was determined. With this information, we 

investigated whether variability of the lung microbiome correlated with the variability of 

inflammation throughout infection, indicating that the inflammation due to Mtb infection 

changes the lung microbiome in macaques. This project is a collaboration with the Ghedin Lab 

(NYU), who performed the 16S sequencing and some statistical analyses. 



 22 
 

2.1 SPECIFIC AIM 1: IDENTIFY AND COMPARE COMMUNITY CLUSTERS OF 

THE LUNG AND ORAL CAVITY IN MACAQUES. 

One of the main questions in lung microbiome studies is how much the microbiota of the oral 

cavity (the URT) influences that of the lung. Using a cynomolgus macaque model, we obtained 

both oral and BAL samples to be sequenced to identify the composition of each respective 

environment. 16S rRNA sequencing helped generate OTUs which made comparing the relative 

abundance and composition of the oral cavity and lung microbiota. Alpha-diversity was 

determined between the two sampling sites, and a principle coordinate analysis was performed to 

further distinguish the differences between the oral and lung spaces. This aim will provide crucial 

data of the similarities and differences between the oral cavity (and URT) and the LRT. We 

hypothesized that there will be a difference in community structure between the oral cavity and 

lung. 

2.2 SPECIFIC AIM 2: INVESTIGATE THE COMMUNITY STRUCTURE AND 

STABILITY OF THE LUNG MICROBIOME THROUGHOUT THE COURSE OF M. 

TUBERCULOSIS INFECTION IN MACAQUES. 

How the lung microbiome changes throughout the course of Mtb remains largely unstudied. BAL 

samples were obtained from time points from before and after Mtb infection to study the changes 

throughout infection. Obtaining samples before infection and 1, 4, and 5 months post-infection 

made it possible to study the changes in the OTU composition and relative abundance change in 
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the microbiota present in the lung throughout infection. We hypothesize that there will be a change 

in the overall stability and composition of the lung microbiome after Mtb infection. 

2.3 SPECIFIC AIM 3: ASSOCIATE MICROBIOTA VARIABILITY IN THE LUNG 

WITH INFLAMMATION. 

Inflammation plays a large role in Mtb infection and is important in the immunology of the 

granuloma. We evaluated how levels of inflammation vary over time in individual macaques using 

PET/CT imaging. By quantifying overall FDG avidity, we have a measure of total inflammation, 

referred to as ‘total PET HOT’. We then investigated whether there is an association between the 

variability of the lung microbiome and the changes of inflammation throughout Mtb infection by 

assessing the correlations between total PET HOT, relative abundance, and alpha-diversity over 

time. If there is a correlation between microbiome variability and PET HOT, we will investigate 

if inflammation caused by infection creates these changes in the composition of the lung 

microbiome. 
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3.0  METHODS 

3.1 INFECTION AND NHP MODEL 

Twenty-six cynomolgus macaques (Macaca fascicularis) were used for this study. Macaques 

were obtained from Valley Biosystems (Sacramento, CA) and housed in designated biosafety 

level 3 (BSL-3) laboratory animal space at the University of Pittsburgh. All macaques receive 

essentially the same diet, including enrichment foods, and are housed in the same facility. 

Monkeys used for this study were parts of separately funded studies. We often perform serial 

BALs as a normal procedure throughout infection. The BAL collection procedure for the 

microbiome studies were performed slightly different than usual BAL collection procedures, 

explained below. These monkeys remain un-manipulated other than Mtb infection during the 

period of microbiome sampling. 

Macaques were infected with <25 CFU Mtb strain Erdman via bronchoscopic instillation 

into the lower lung, as previously described in 66 and 67. PET/CT imaging was used post-

infection to determine which lobe was successfully infected, as well as subsequent lobe 

involvement due to dissemination of the infection. 

3.2 BRONCHOALVEOLAR LAVAGE COLLECTION 

Oral, saline/bronchoscope control wash, and right and left lower lobe samples were collected 

approximately 3 weeks pre-infection and approximately 1, 4, and 5 months post-infection. Oral 
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washes were obtained by a 5mL rinse of a cheek pouch. Bronchoscope washes were obtained by 

a 5mL saline wash of the sterilized instrument. The monkeys’ mouths were swabbed with 

antiseptic chlorohexane immediately prior to the insertion of the bronchoscope for BAL 

collection, minimizing contamination from the oral cavity. A 7mL lavage of the left lower lobe is 

performed, followed by sterilization of the bronchoscope via antiseptic solution (Cidvex, Civco 

Medical Solutions) and lavage of the right lower lobe is performed thereafter. Lavages yield 

approximately 4-5 mL from each lobe. After collection lavages were immediately aliquoted into 

4.5 mL cryovials and frozen at -80°C until time of DNA extraction. Overall, each macaque will 

have 4 samples at each time point (oral wash, saline bronchoscope wash, right lower lung, and 

left lower lung), ultimately yielding 372 total samples. For this study, data from the first 10 

monkeys were analyzed. An additional data set from 16 more monkeys is awaiting sequencing 

and analysis. 

3.3 DNA EXTRACTION/ISOLATION 

DNA extraction was performed on all collected samples. Previously collected samples were 

removed from -80°C, thawed, and centrifuged. The PowerSoil® DNA Isolation Kit (MO BIO) 

was used in which BAL samples (containing liquid and cells) were thoroughly homogenized and 

lysed, then bound to a silica membrane in order to capture DNA for DNA elution. This kit 

incorporated the use of bead-beating tubes to ensure thorough homogenization and cell lysis. 

Extraction was performed in BSL-3 laboratory conditions under a biological safety 

cabinet using sterile technique. Reagent controls and PBS controls were performed for each 

monkey to assess any residual DNA from kit reagents, tubes, and pipette tips. Proper PPE was 
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worn at all times, and BSL-3 protocols were followed. Measures were taken to minimize 

contamination, such as using ultra-violet light and bleach to sterilize the working space and 

equipment before extraction, changing gloves after every centrifugation step, only extracting 

DNA from one macaque at a time to minimize cross-contamination between monkeys, using a 

microcentrifuge specific to DNA extractions that is kept under a biosafety cabinet at all times, 

and using designated pipettes and sterile tips. 

3.4 16S RRNA SEQUENCING AND DATA ANALYSIS 

Sample preparation for 16S rRNA sequencing and sequencing of DNA eluted from BAL 

samples was performed by Dr. Elodie Ghedin and lab members (NYU). Barcodes were added to 

DNA to prime the target V4 hypervariable amplicon. Amplicons were purified and library 

preparation was performed using the KAPA HTP Library Preparation Kit (KAPA Biosystems). 

Primer dimers were removed and confirmation of removal was given by TapeStation (Agilent 

Genomics). Library quantification was performed using the KAPA Library Quantification Kit 

(KAPA Biosystems), which contain DNA standards, 10X Primer Premix, and KARA SYBR® 

FAST qPCR Kits, to quantify the number of amplifiable molecules in the prepared Illumina 

library.  

After qPCR was performed, the V4 region was sequenced using the MiSeq (Illumina) 

instrument. The Mothur pipeline, modified for the MiSeq platform, includes the removal of low 

quality reads, chimeras (UCHIME), non-mate-paired reads, and merging of paired-end reads. 

Classification of sequences to the genus level was made by using the RDP (Ribosomal Database 

Project) classifier. Operational Taxonomic Units (OTUs) were generated by clustering sequences 
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that share >97% nucleotide identity similarities (UCLUST). The ‘top 10 OTUs’ were generated 

by choosing the OTUs that had the highest proportion of reads present in the BAL samples. 

Using the taxonomic assignments and OTU-based profiles generated from sequencing data, 

many ordination, clustering, and community structure analyses were performed. Abundance and 

ubiquity between samples were visualized using CORBATA and QIIME. 

3.5 PET/CT IMAGING 

PET/CT scans were obtained from macaques at different time points post-infection, as described 

in 24 and 25. 18F-fluorodeoxyglucose (FDG) was used as a probe to label metabolically active 

cells, serving as a nonspecific marker of inflammation. FDG avidity can give us total PET HOT, 

allowing us to obtain a quantifiable measure of inflammation over time. FDG avidity is 

normalized to each macaque’s dorsal muscle, individually, allowing us to normalize baseline 

inflammation. 

3.6 STATISTICAL ANALYSIS 

Statistical analysis in regards to the lung microbiome portion of the study was performed by Dr. 

Elodie Ghedin and lab members (NYU). Analyses were performed on an integrated QIIME and 

R package. Whole community structure changes were analyzed via Adonis. PCoA plot was 

generated by Yixuan Ma, Ghedin Lab, and used with permission. 



 28 
 

Statistical analyses were performed at the University of Pittsburgh using JMP Pro 11 and 

Graphpad Prism 6, with the help of Pauline Maiello. Wilcoxon rank sum analyses were 

performed to determine differences of individual OTUs between involved and uninvolved lobes, 

differences over time, and differences between the oral cavity and lower lobe samples. Individual 

OTU relative abundance correlations (at four months post-infection) were performed using a 

Spearman’s 𝞀𝞀 Correlation, as were correlations between the ranges of OTU relative abundances 

and range of total PET HOT. Spearman’s 𝞀𝞀 and Pearson’s r were used for analyzing the 

correlation between alpha-diversity and total PET HOT over time and range of diversity and 

range of total PET HOT of involved lobes, respectively. An unpaired t-test was performed to 

compare the range of diversity over time between involved and uninvolved lobes. Diversity was 

determined by the Inverse Simpson Index. Multiple-lobe involvement was accounted for in 

analyses. 
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4.0  RESULTS 

4.1 EXPERIMENTAL OVERVIEW 

To investigate the changes in microbiome variability throughout the course of Mtb infection, 

samples were collected at multiple time points (Fig. 7, top) from macaques. Oral cavity swab 

samples were collected to assess differences in microbial diversity (species richness and 

evenness) between the oral cavity and lung samples. A bronchoscope saline wash was performed 

to control for any residual DNA on the bronchoscope during sample collections (Fig. 7, bottom). 

PET/CT imaging was also performed 1, 4, and 5 months post-infection. 

 

Figure 7. Experimental layout of sample collection sites and timeline 

Oral wash, right lower lobe (RLL), left lower lobe (LLL), and saline bronchoscope wash samples were collected 
before Mtb infection and 1, 4, and 5 months post-Mtb infection. 
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Two cohorts of 10 and 16 macaques were used in this study yielding a total of 424 samples, 

including reagent and PBS controls during DNA extraction (Table 2).  

 

Table 2. Sample distribution of cohorts 

Cohort # of 
Macaques 

# BAL 
Samples 

# Oral Wash 
Samples 

# Bronchoscope 
Controls 

# Reagent 
Controls 

Total 

1 10 70 36 36 20 162 

2 16 114 58 58 32 262 

 

4.2 THE ORAL CAVITY AND LUNG COMMUNITY STRUCTURES ARE 

DISTINCT 

To determine how the community structures between the oral cavity and the lung differ, 16S 

rRNA sequencing was performed on oral cavity swab samples and bronchoalveolar lavage 

(BAL) samples. Sequencing was performed by the Ghedin Lab, NYU and the resulting data was 

used with permission. Lobe involvement is determined by inflammation: lobes that displayed 

inflammation via PET/CT imaging were grouped as ‘involved lobes’, and lobes that displayed no 

inflammation via PET/CT imaging were grouped as ‘uninvolved lobes’. It is important to note 

that absence of inflammation does not necessarily mean absence of infection; it is possible to 

have granulomas that are not FDG avid in a lobe, and therefore minimal inflammation. The 

following presented data are for the first cohort of N=10 macaques. The second cohort of N=16 

macaques are being sequenced and analyzed. Thus, the following data is preliminary.  
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The genetic diversity between oral and lung BAL samples was visualized through the use 

of a principle coordinate analysis (Fig. 8). The data shows that oral samples cluster tightly 

together in one space, away from BAL samples, while the BAL samples cluster together in a 

different space. There is no pronounced difference in clustering between involved and 

uninvolved lobes. This data suggests that the genetic diversity of the oral cavity microbiome and 

the lung microbiome are distinct from one another, suggesting that the lung microbiome is not 

strictly just contamination by the oral cavity when the BAL washes were performed. 

 

Figure 8. Principle coordinate analysis comparing the genetic diversity between oral wash and lung BAL samples 
 
Oral wash samples (orange) cluster together, while lung BAL samples (pink and blue) cluster together in a different 
space. Graph generated by Yixuan Ma, Ghedin Lab, and used with permission. 
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Operational taxonomic units (OTUs) were generated by UCLUST, clustering together 

sequences that shared >97% nucleotide identity similarities. Our ‘top 10 OTUs’ were generated: 

Burkholderia (genus-level), Actinomycetales (order-level), Actinobacillus (genus-level), 

Neisseria (genus-level), Aggregatibacter (genus-level), Moraxellaceae (family-level), 

Fusobacterium (genus-level), Acinetobacter (genus-level), Gemellaceae (family-level), and 

Streptococcus (genus-level). These OTUs had the highest proportion of reads present in the BAL 

and oral wash samples after sequencing (data not shown). To assess whether there was a 

compositional difference between the oral wash samples and lobe samples in regards to the top 

10 OTUs, the relative abundances of the top 10 OTUs were determined for the oral wash, 

involved lobe, and uninvolved lobe samples (Fig. 9). Relative abundance is relative to all OTUs 

found in the sample. Four of the top 10 OTUs were found in noticeably higher proportions in 

lobe samples vs. oral samples (Burkholderia, Actinomycetales, Moraxellaceae, and 

Acinetobacter), showing that a compositional difference between oral wash samples and lower 

lobe does exist. This further confirms our observation that the lung microbiome has a distinct 

composition than the oral cavity microbiome. 
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Figure 9. Relative abundance of top 10 generated OTUs between oral wash, involved lobe, and uninvolved lobe 
samples 
 
Relative abundance is relative to all OTUs found in the sample. 
 

To determine how lung and oral microbiome species diversity changes over time, the 

community alpha-diversity was determined by using the average Inverse Simpson Index for 

saline bronchoscope wash, oral wash, involved lobe, and uninvolved lobe samples at each time 

point (Fig. 10). A high Inverse Simpson Index confers a higher level of alpha-diversity. Oral 

wash, involved lobes, and uninvolved lobes were compared to one another to determine any 

trends of alpha-diversity. Our results show that the oral microbiome maintains a high amount of 

alpha-diversity pre-Mtb infection and throughout the entire course of infection. The oral wash 
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had a significantly higher level of alpha-diversity compared to all lung samples (p=0.0001, 

Wilcoxon rank sums). 

The stable, high level of alpha-diversity of the oral cavity contrasts with the lobe samples, 

which have more variability in alpha-diversity over time. Alpha-diversity is variable in lobe 

samples throughout the course of Mtb infection, increasing and decreasing at different time 

points. There is a trend towards more species diversity in the involved vs. the uninvolved lobes 4 

months post-infection (p=0.0574, Wilcoxon rank sums). Our results also show that the saline 

bronchoscope control wash maintains a low level of alpha-diversity before and throughout 

infection, implying that there is minimal contamination from the upper respiratory tract when 

collecting BAL samples. It is important to reiterate that these data represent only the first cohort 

of macaques (N=10), so the trend may become more pronounced as the sample size increases. 
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Figure 10. Lung microbiome diversity over the course of Mtb infection. 
 
Alpha-diversity of involved lobes (pink) were calculated for each time point. The same was performed with 
uninvolved lobes (blue), oral washes (orange) and saline bronchoscope control washes (purple). 

 

Overall, these data show that the community structures of the oral cavity and the lung are 

distinct, confirming that the lung cavity is not just a contamination by the oral flora. 

4.3 LUNG MICROBIOTA ARE VARIABLE THROUGHOUT INFECTION 

Next, our goal was to determine how the composition of the lung microbiome changes throughout 

the course of Mtb infection. The relative abundance of the top 10 OTUs in BAL samples of 

involved lobes was determined for each time point for each individual monkey over time (Fig. 11). 
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Our data show that the relative abundances of the top 10 OTUs over time is variable. It is also 

apparent that the relative abundances and overall composition of the top 10 OTUs stays relatively 

stable over time. For example, monkey #15313 displays similar relative abundances of the top 10 

OTUs throughout baseline and infection. In contrast, some monkeys display a high amount of 

variability in the relative abundances and composition of the top 10 OTUs over time. Monkey 

#16914 displays a wide range of changes in the relative abundances of the OTUs over time. For 

example, at baseline a high relative abundance of Moraxellaceae is seen, but as infection 

progresses, the relative abundance of this OTU decreases as Burkholderia becomes a dominating 

OTU by month 5. Overall, some macaques display high microbiota variability and some display 

low amounts of microbiota variability. 

 

  

Figure 11. Relative abundance of top 10 generated OTUs over time by macaque in involved lobes 
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Some monkeys display low amounts of change in the composition of these OTUs over time, while others display 
high amounts of change. (B = Pre-infection; 1, 4, 5 = 1, 4, 5 months post-infection, respectively). Relative 
abundance is relative to all OTUs found in the sample. 
 
 

We investigated how individual OTU relative abundance changes over time between 

uninvolved and involved lobes. Figure 12 shows uninvolved lobes and involved lobes change 

differently in terms of relative abundance of OTUs over time. For example, the relative 

abundance of certain OTUs in the involved lobe, such as Acinetobacter, stay relatively stable 

until 4 months post-infection, followed by a sharp increase. In contrast, the relative abundance of 

Acinetobacter in the uninvolved lobes increase throughout infection, and sharply decline after 4 

months post-Mtb infection. 

 

Figure 12. Median OTU relative abundance by involvement over time 
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We wanted to investigate if there were any differences of OTU relative abundance 

between involved and uninvolved lobes before and after Mtb infection. Our analyses show that 

before infection, there are no significant differences in relative abundance of the top ten OTUs 

between involved and uninvolved lobes (Table 3). However, after infection there are significant 

differences in relative abundance of between involved and uninvolved lobes for specific OTUs. 

Our results show that post-Mtb infection, Fusobacterium and Aggregatibacter is significantly 

more relatively abundant in involved lobes, while Burkholderia is significantly more relatively 

abundant in uninvolved lobes (Table 3, Figure 13). Taken together, these data show relative 

abundance of specific OTUs change post infection, and certain OTUs are more relatively 

abundant in either involved or uninvolved lobes post-Mtb infection, suggesting that Mtb 

infection changes the lung microbiome.  

 

Table 3. Involved vs uninvolved lobes, OTU relative abundance p-values  

OTU pre-Mtb p-value post-Mtb p-value 
Actinomycetales 0.5208 0.2333 
Streptococcus 0.7345 0.8522 
Gemellaceae 0.8506 0.0697 
Fusobacterium 0.7345 0.0396 
Burkholderia 0.2703 0.0481 
Neisseria 1 0.2412 
Actinobacillus 0.7345 0.2659 
Aggregatibacter 0.5208 0.0437 
Moraxellaceae 0.8506 0.9765 
Acinetobacter 0.7345 0.1208 
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Figure 13. OTU relative abundance pre- vs. post-Mtb infection of involved and uninvolved lobes 
 
Median relative abundance is plotted for pre-infection (0) and post-infection (1). 
  
 

To further investigate at what time point these post-infection differences between 

involved and uninvolved lobes were the greatest, how OTU relative abundance changes over 

time was assessed for each time point (Fig. 14). Our analyses show that there is the greatest 

difference between OTU relative abundance at four months. At four months, involved lobes had 

significantly higher relative abundances of Fusobacterium (p=0.0473) and Aggregatibacter 

(p=0.0387). In contrast, uninvolved lobes had a significantly higher relative abundance of 

Burkholderia (p=0.0201). It is important to note that visually, it looks like there is a higher 

difference in the uninvolved vs. involved lobes at 5 months post-infection for Burkholderia than 
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at 4 months post-infection. However, there was a lack of 5 month samples (due to treatment or 

necropsy), reducing the sample size at this time point and ultimately making statistics on this 

time point difficult. The addition of the second cohort of macaques will improve our sample size, 

allowing us to fully analyze the differences between uninvolved and involved lobes. 

 

Figure 14. OTU relative abundance (median) over time by involvement 
 

An even deeper investigation of these OTUs show that the relative abundance of OTUs 

are not only variable over time, but it is also variable among monkeys. Figure 15 shows 

examples of relative abundances of OTUs over time by individual monkey. The amount of 

relative abundance per OTU changes throughout time and changes differently in each macaque, 

showing relative abundance is variable within macaques and among macaques.  
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Figure 15. Relative abundance of OTUs (median) over time by individual macaque in involved and uninvolved 
lobes 

 

 

Next, we assessed how alpha-diversity changes over time. A trend (p= 0.0574) of an 

increased alpha-diversity existed in involved lung lobes at 4 months post-infection (Fig. 16), 

confirming that alpha-diversity between involved and uninvolved lobes is variable. 
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Figure 16. Alpha-diversity (median) over time by involvement 
 

We also evaluated how alpha-diversity changes over time in individual monkeys in 

involved lobes (Fig. 17). Our data show, that much like relative abundance, diversity is also 

variable within monkeys and among monkeys throughout time. 

 

Figure 17. Alpha-diversity (median) over time of uninvolved and involved lung lobes 
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Spearman 𝞀𝞀 correlation analyses were performed to test whether there was any 

correlation between the relative abundances of the top 10 OTUs. We found there were both 

positive and negative correlations (Fig. 18A-C) with specific OTUs at 4 months post-infection in 

involved lobes. Gemellaceae was significantly positively correlated with Aggregatibacter and 

Actinobacillus, showing that when Gemellaceae is highly abundant, Aggregatibacter and 

Actinobacillus are likely to be highly abundant as well (Fig. 18A-B). In contrast, Neisseria was 

significantly negatively correlated with Actinomycetales, showing that when Neisseria is highly 

abundant, Actinomycetales is found in lower levels of relative abundance (Fig. 18C).  
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Figure 18. Spearman 𝞀𝞀 correlations between individual OTUs for all lobes 

A) Gemellaceae vs. Aggregatibacter; B) Gemellaceae vs. Actinobacillus; C) Neisseria vs. Actinomycetales show 
significant (p < 0.05) correlations. 

 

Taken together, these data show that the change of the lung microbiota is variable 

throughout time in regards to both OTU relative abundance and alpha-diversity. This variability 

is seen within individual macaques over time and among different macaques. Certain bacterial 

OTUs are characteristic of either involved lobes or uninvolved lobes. Lastly, individual OTUs 

are correlated with each other at 4 months post-Mtb infection. 
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4.4 INFLAMMATION IS VARIABLE THROUGHOUT INFECTION 

To assess the variability of inflammation throughout the course of Mtb infection, total PET HOT 

was determined by quantifying FDG avidity, a nonspecific marker of inflammation (Fig. 19). 

The FDG probe labels metabolically active cells, inferring inflammation is occurring during Mtb 

infection. Our data shows us that total PET HOT changes throughout the course of infection 

within individual monkeys. An individual macaque at 1 month post-infection can have a 

relatively low total PET HOT, but by month 4 their total PET HOT may increase to a higher 

level. By month five, most macaques’ total PET HOT levels seems to start to decline. This 

implies that the amount of inflammation throughout the course of Mtb is variable within 

individual monkeys. Inflammation is also variable between monkeys. Some monkeys maintain a 

relatively high amount of inflammation (ex. #16814), while other monkeys maintain a relatively 

low amount of inflammation (ex. 16514) over time.  
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Figure 19. Total PET HOT over the course of Mtb infection for N=26 macaques 
 
Each line on the graph represents a different macaque. The amount of inflammation changes throughout infection in 
individual macaques and is variable between macaques. 
 

We have shown that relative abundance, alpha-diversity, and total PET HOT are variable 

within and among macaques over the course of infection. To determine whether the variability of 

total PET HOT over the course of Mtb infection correlates with the variability of the microbiota 

over time, we investigated total PET HOT in regards to both relative abundance of specific 

OTUs and alpha diversity. Sample size for these analyses were limited to the first cohort of 

macaques. The following data is preliminary. 

A Spearman’s 𝞀𝞀 correlation analysis was performed on the ranges of total PET HOT and 

ranges of relative abundance of the top ten OTUs. Using the range gave us the overall degree of 

change. No significant correlations were observed (Table 4), implying that high changes in 

relative abundance are not correlated with changes in total PET HOT at this time. 

 

Total PET HOT Over Time  Monkey #: 
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Table 4. Spearman’s 𝞀𝞀 correlation values and associated p-values in involved lobes 

Variable 1 vs. Variable 2 Spearman's 𝞀𝞀 (p-value) 
Range (PET HOT) Range (Actinomycetales) 0.7162 
Range (PET HOT) Range (Streptococcus) 0.6033 
Range (PET HOT) Range (Gemellaceae) 0.3273 
Range (PET HOT) Range (Fusobacterium) 0.9038 
Range (PET HOT) Range (Burkholderia) 0.6111 
Range (PET HOT) Range (Neisseria) 0.9562 
Range (PET HOT) Range (Actinobacillus) 0.7245 
Range (PET HOT) Range (Aggregatibacter) 0.8174 
Range (PET HOT) Range (Moraxellaceae) 0.5051 
Range (PET HOT) Range (Acinetobacter) 0.2082 

 
 
 We then investigated the relationship between alpha-diversity and total PET HOT, 

allowing us to see whether there were any correlations between the richness and evenness of the 

lung microbiome and inflammation. A Spearman’s 𝞀𝞀 correlation between total PET HOT and 

Inverse Simpson Index of involved lobes revealed that alpha-diversity is not associated with 

inflammation in involved lobes (p=0.4858) within the first cohort of macaques. Our results also 

show that at this time, changes in total PET HOT are not associated with changes in alpha-

diversity over time (p=0.9436).  

 Lastly, we wanted to know whether a high range in alpha diversity over time could be a 

predictor of lobe involvement (Fig. 20). Our data show that there is no significant difference 

between the ranges of diversity between uninvolved and involved lobes (p=0.5404) at this time. 
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Figure 20. Range of diversity over time in uninvolved and involved lung lobes 
 
A significant difference between uninvolved and involved lobes does not exist (p = 0.5404, unpaired t-test). 
 
 
 Taken together, our preliminary results suggest that although PET HOT is variable 

throughout infection, it is not associated with relative abundance of our top ten OTUs or alpha-

diversity. At this time, the range of diversity cannot be used to predict lung inflammation 

involvement. However, this sample size is very limited, and results may improve when the 

second cohort of macaques are added to the dataset. 
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5.0  DISCUSSION 

We assessed how the lung microbiome of macaques change throughout the course of Mtb 

infection, and how the composition of the lung microbiome differs from that of the oral cavity. 

There is a compositional difference between oral wash samples and BAL samples in regards to 

overall genetic diversity and OTU relative abundance. There is a trend of increased average 

alpha-diversity within involved lobe sides compared to uninvolved lobes at 4 months post-Mtb 

infection. The overall relative abundances for the ‘top ten’ OTUs are highly variable throughout 

infection in some monkeys but stay relatively stable in other monkeys. OTU relative abundance 

and alpha-diversity of involved lobes is variable over the course of Mtb infection within 

macaques and among macaques. It is also shown that certain bacterial taxa are correlated with 

each other - Gemellaceae was significantly positively correlated with Aggregatibacter and 

Actinobacillus. We also investigated how inflammation changes over time due to Mtb infection 

in macaques. Our data show that inflammation over time is variable within individual monkeys 

and also among macaques. Lastly, we investigated how the changes in the microbiota are 

associated with inflammation. Our results show that at this time, there is no correlation between 

PET HOT and relative abundance or alpha-diversity. However, this may change once the second 

cohort of monkeys is added to the dataset. 
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5.1 POSSIBLE MECHANISM 

Inflammation variability throughout infection and among different macaques is perhaps caused by 

the vast heterogeneity of Mtb infection in general. Disease is not the same within each macaque, 

and each macaque does not progress throughout infection the same way. Differences in immune 

responses, granuloma dynamism and heterogeneity, and other factors may play a role in 

inflammation variability.  

The changes of the microbiota abundance and diversity throughout infection may be related 

to infection, but this remains unclear. Even if microbiota variability is not directly related to 

inflammation, disease parameters such as CFU, disease spread, and gross pathology score may 

still be correlated to these changes in the microbiome of the lung. Newly introduced species into 

the lung post-infection may be a result from increased microaspiration or an increase in other 

immigration factors, causing an influx of members to travel from the oropharynx down intro the 

lower airway. Correlations between OTUs may be a result of changes in growth conditions in the 

lung, or due to microbial interactions between species. 

It is interesting to note that multiple ‘peak’ events were observed at 4 months post-Mtb 

infection: peak total PET HOT and largest difference of OTU relative abundance and alpha-

diversity between involved and uninvolved lobes. This time point also correlates with the peak of 

Mtb infection. A more thorough investigation of events happening during this time point will be 

performed. Unfortunately, many questions regarding microbiota variability throughout the 

course of Mtb infection remain unanswered. We suspect that further investigation and analyses 

will allow us to answer these questions. 
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5.2 ISSUES 

Lung microbiome studies present a number of obstacles regarding sample contamination and 

bacterial yield. We believe we minimized contamination to the best of our ability (see Methods), 

and samples were qPCR amplified before sequencing to get a better picture of the relative 

abundance found in the macaque BAL. Because of high variability in in vivo studies, each 

macaque was assessed individually when seeing how the relative abundance of the ‘top ten’ 

OTUs changed over time. The use of the cynomolgus macaque was an ideal model for both Mtb 

infection and lung microbiome assessment. These NHPs present the full spectrum of disease and 

allowed us to longitudinally sample BAL throughout infection. 

 Using an NHP model allows us to control many possible confounding variables. 

However, we do not have control over any antibiotic usage or treatments given to the macaques 

before they become enrolled in our studies. If macaques were treated with antibiotics before 

enrollment, this may alter the baseline lung microbiome. When the macaques are brought into 

the university, quarantine procedures involve standard protocol antibiotic treatments. For 

example, macaques may get treated for potential parasitic worms (with ivermectin). Nonetheless, 

we try to limit antibiotic usage, and record any treatments given to the macaques prior to 

enrollment, allowing us to take note of this when looking at the microbiota pre-Mtb infection. 

Looking at our data, it is important to note that sample size remains an issue for this 

cohort. For this first cohort, there are few total PET HOT data for early (1 month) time points. In 

contrast, the diversity/abundance data is mainly at early time points. Not all macaques were 

sampled to 5 months post-infection due to treatment or necropsy, and not all PET/CT scans were 

obtained at 1 month post-Mtb infection, leaving many gaps within the datasets (Fig. 21). This 



 52 
 

greatly reduced our ideal sample size when assessing correlations between total PET HOT and 

relative abundance or alpha-diversity over time. 

 

Figure 21. Alpha-diversity and total PET HOT over time by individual macaque 

 
However, the second cohort of macaques contains a fuller data set, improving our data 

overlap and sample size. This will allow us to fully assess if there is a correlation between 

inflammation and the changes in the lung microbiome over time. 

5.3 FUTURE DIRECTIONS 

In the future, we will investigate what may account for some macaques to display a high amount 

of variability of the relative abundance of the ‘top ten’ OTUs throughout infection and other 
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macaques stay relatively stable throughout time. All correlation analyses will be rerun once the 

second cohort of macaques are added to the data, allowing us to improve our sample size.  

 It is important to note that we did not find Mtb in our BAL samples. This may be for a 

number of reasons: Mtb likely clusters together in an OTU (Actinomycetales), it is possible that a 

different region of the 16S rRNA is used to distinguish Mtb from other species, or other taxa 

have outcompeted Mtb resulting in a very low relative abundance. We will evaluate this 

predicament further upon deeper analysis. 

Because of the novelty of this type of study, we only assessed early time points of 

infection (until 5 months post-Mtb infection). This is because after this time point, macaques are 

usually treated or necropsied. This makes it difficult to assess the full spectrum of changes of the 

microbiome that can occur throughout infection. However, future studies will investigate the 

effects of both treatment and/or SIV infection on the lung microbiome. We also will be assessing 

the microbiome and metatranscriptome of individual granulomas. 

5.4 PUBLIC HEALTH SIGNIFICANCE AND FINAL THOUGHTS 

Overall, the changes in inflammation, microbiome relative, and abundance and diversity 

throughout the course of Mtb infection are variable. This variability is seen throughout time 

within individual monkeys and also seen among different monkeys. Our data has shown that 

there is no association between total PET hot and relative abundance of certain OTUs or alpha-

diversity. However, with the addition of the second cohort of monkeys and increase of sample 

size, trends may emerge that could not have been assessed before. These results are important to 

the field of TB and public health importance because it may have implications for overall lung 
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health or disease outcome. If associations are found between inflammation and the lung 

microbiome, alterations to the lung microbiota could serve as a form of treatment to reduce 

inflammation or decrease the chance of developing active disease. 
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