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Neuromorphic computing, a VLSI realization of neuro-biological architecture, is inspired by the 

working mechanism of human-brain. As an example of a promising design methodology, synapse 

design can be greatly simplified by leveraging the similarity between the biological synaptic 

weight of a synapse and the programmable resistance (memristance) of a memristor. However, 

programming the memristors to the target values can be very challenging due to the impact of 

device variations and the limitation of the peripheral CMOS circuitry. A quantization process is 

used to map analog weights to discrete resistance states of the memristors, which introduces a 

quantization loss. In this thesis, we propose a regularized learning method that is able to take into 

account the deviation of the memristor-mapped synaptic weights from the target values determined 

during the training process. Experimental results obtained when utilizing the MNIST data set show 

that compared to the conventional learning method which considers the learning and mapping 

processes separately, our learning method can substantially improve the computation accuracy of 

the mapped two-layer multilayer perceptron (and LeNet-5) on multi-level memristor crossbars by 

4.30% (11.05%) for binary representation, and by 0.40% (8.06%) for three-level representation. 
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1.0  INTRODUCTION 

The modern computing industry is constructed atop two supporting pillars: semiconductor 

manufacturing and computer architecture. Scaling of conventional CMOS devices, however, is 

approaching its physical limit [1]. Moreover, the increasing gap between the computing power of 

microprocessors and available memory bandwidth (a.k.a., “memory wall” challenge) is becoming 

more prominent than ever, greatly hindering continuing performance improvement for the 

conventional von Neumann architecture [2]. 

It has been a long-held belief that a biological computing model inspired from the human 

brain may solve the challenges that the von Neumann architecture faces [3]. The VLSI realization 

of such a neuro-biological architecture, namely, neuromorphic computing, has recently been 

revitalized by the application of emerging devices [4]. As an example of a promising design 

methodology, synapse design can be greatly simplified by leveraging the similarity between the 

biological synaptic weight of a synapse and the programmable resistance (memristance) of a 

memristor [5]. 

Operation of a memristor-based neuromorphic computing systems (NCS) requires first 

training the system to a state that offers the targeted function [6]. A natural way to train NCS is 

denoted as online training, which works by iteratively adjusting the weights of the neural network 

(or, the resistance of the memristors) to the target by monitoring the discrepancy between the 

received and desired system output during training. Another way is called offline training, which 
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directly programs the weights of the neural network to pre-calculated values [7]. In a memristor-

based NCS, however, programming the resistance of the memristors suffers from intrinsic device 

parametric and switching variabilities. The number of resistance levels realized on the memristors 

is often limited, usually only four with reasonable implementation and energy costs of 

programming circuitry [8]. Mapping the neural network with floating point weights onto the 

memristors with multi-level resistance states inevitably causes computation accuracy loss, namely, 

quantization loss. 

In this thesis, we first perform a systematic analysis to understand the generation of 

quantization loss in memristor-based NCS. Based on our analysis, we propose a regularized offline 

learning method that can minimize the impact of quantization loss during neural network mapping, 

which is automatically minimized during the epochs of the learning process as a part of the 

optimization target. The efficacy of two tunable regularization terms – cosine and sawtooth 

functions, are investigated. For application to the MNIST dataset, our results show that the 

regularized learning method can improve the computation accuracy of two-layer multilayer 

perceptron (and LeNet-5) on the memristor-based NCS by 4.30% (11.05%) for binary 

representation, and 0.40% (8.06%) for three-level representation. The results also show that the 

three-level representation of neural network weights is actually sufficient for the majority of the 

regularization methods for the given benchmark. 

The remainder of the thesis is organized as follows: Chapter 2 presents the preliminaries of 

memristors and memristor-based NCS; Chapter 3 analyzes the generation of quantization loss in 

the memristor-based NCS and its impacts on computation accuracy of the NCS; Chapter 4 gives 

the details of the proposed learning method; Chapter 5 shows the experimental results and the 

relevant discussions; and Chapter 6 concludes our works.  
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2.0  PRELIMINARY 

2.1 MEMRISTOR BASICS 

The first explicit theoretical depiction of the memristor appeared in an article written by Prof. Leon 

Chua [9]. As the 4th fundamental circuit element, a memristor uniquely defines the relationship 

between magnetic flux and electrical charge. The resistance state (often referred to as memristance) 

of a memristor can be tuned by applying an electrical excitation. In 2008, HP Labs reported that 

memristive effect was realized by moving the doping front along a TiO2 thin-film device [10].  

 
 
 

 

Figure 1. Ion migration filament model of metal-oxide memristors [11]. 
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Figure 1 shows an ion migration filament model of metal-oxide memristors [11]. A metal-

oxide layer is sandwiched between two metal electrodes. During the reset process, the memristor 

switches from a low resistance state (LRS) to a high resistance state (HRS). The oxygen ions 

migrate from the electrode/oxide interface and then recombine with the oxygen vacancies. A 

partially ruptured conductive filament region with a high resistance per unit length (Roff) is formed 

on the left of the conductive filament region with a low resistance per unit length (Ron). Conversely, 

during the set process, the memristor switches from a HRS to LRS and the ruptured conductive 

filament region shrinks. The resistance of a memristor can be programmed to any arbitrary value 

between the LRS and HRS by tuning the magnitude and pulse width of the programming 

current/voltage. 

2.2 MEMRISTOR-BASED NCS 

 
 
 

 

Figure 2. Conceptual views of (a) memristor crossbar and (b) neural network model. 
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Figure 2(a) depicts a conceptual overview of a memristor crossbar that is used to implement the 

neural network shown in Figure 2(b). In the neural network, two groups of neurons are connected 

by synapses, which are realized using the memristors. Input neurons send voltage signals to the 

memristor crossbar and the output neurons collect the transferred signals (currents) from the input 

neurons through the memristors and process them with an activation function. Here the amplitude 

of the signals received at the output neurons is manipulated by different resistances of the 

memristors, which mimic the synaptic strengths in the neural network. In general, the relationship 

between the activity patterns of the input neurons u and the output neurons y can be described by 

[6]: 

𝑦𝑦𝑛𝑛 = 𝑾𝑾𝑛𝑛×𝑚𝑚 ∙ 𝑢𝑢𝑚𝑚.                                                    (1) 

Here the weight matrix 𝑾𝑾𝑛𝑛×𝑚𝑚 denotes the synaptic strengths between the two neuron groups. 

Feedforward testing: The computation process defined in Eq. (1) is normally called 

“feedforward testing”, which is an important component in the recall process of NCS. As shown 

in Figure 2(a), a voltage vector is applied to the word-lines (WLs) of the memristor crossbar to 

represent u while all the bit-lines (BLs) are grounded. Since each memristor has been programmed 

to a resistance state corresponding to the synaptic weight, the amplitude of the current along each 

BL reflects the product of the input signal and the synaptic weight. The output current vector y 

from the crossbar is collected and processed by output “neurons”, which may be implemented with 

CMOS analog circuitry or emerging devices.  In practice, the matrix 𝑾𝑾 is often realized by two 

sets of memristors, which represents the positive and negative elements of 𝑾𝑾, respectively. 

Training: Another important operation of memristor-based NCS is “training”. There are two 

types of training schemes: offline training and online training. Online training denotes hardware 

designs that can update 𝑾𝑾 iteratively with the feedback from the output of the NCS [6]. Online 
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training is generally associated with high circuit design complexity and implementation cost. 

Moreover, any changes in the training method require redesign of the training circuit. In offline 

training, the matrix 𝑾𝑾 is calculated by a computer based on training data. After obtaining 𝑾𝑾, the 

memristors in the NCS are directly programmed to a resistance state 𝑹𝑹 that represents 𝑾𝑾, say, 𝑹𝑹 =

1./𝑾𝑾 (which means take reciprocal by element). A programming pulse with a specific amplitude 

and duration is then applied to each memristor based on the current resistance state of the device 

and the target state. As one example, the voltages of the WL and BL connecting to the memristor 

are set to +𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and GND, respectively, while all other WLs and BLs are connected to +𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/2. 

Here +𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the bias/programming voltage applied to the memristor. Only the resistance of the 

memristor that is applied with the full +𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 above the threshold is effectively programmed while 

the resistances of other memristors in the crossbar remain unchanged. This method is referred to 

as “half-select” programming scheme [12]. In this work, we select offline training with half-select 

programming scheme as the baseline of NCS training. 

 
 
 

 

Figure 3. The conceptual diagram of two MBC crossbars with Integrate and Fire Circuit [13]. 
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Figure 3 shows a conceptual diagram of the hardware realization using memristor-based 

crossbars in the NCS. Two blocks of crossbars, 𝑾𝑾+  and 𝑾𝑾− , represent positive weights and 

negative weights, respectively. In the offline training stage, 𝑾𝑾 will be written into two crossbars 

and satisfies: 𝑾𝑾+ −𝑾𝑾− = 𝑾𝑾, in which 𝑤𝑤𝑏𝑏𝑖𝑖 = 0 corresponds to the HRS in memristor crossbars. 

In the testing stage, the current sensing circuit reads the weight-related current and the integrate-

and-fire circuit (IFC) is used to convert analog computing data into digital outputs [13].  



 8 

 

3.0  QUANTIZATION IN NCS DESIGNS 

3.1 WHAT IS QUANTIZATION 

 
 
 

 

Figure 4. Quantization process in NCS design. 

 
 
 

Theoretically, a memristor can be programmed to any arbitrary resistance state. In reality, 

however, the programming process is limited by the resolution that CMOS circuitry can offer. In 

memristor-based NCS designs, limited programming resolution requires a quantization process 

that maps each analog weight to one of the values that are represented by the discrete resistance 

states of the memristors. As illustrated in Figure 4, an analog weight within the range between 𝑎𝑎𝑏𝑏 
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and 𝑎𝑎𝑏𝑏+1 (𝑖𝑖 = 0,⋯ ,𝑚𝑚− 1)  in the neural network are represented by only one value 𝑎𝑎𝐿𝐿𝑏𝑏 ∈

[𝑎𝑎𝑏𝑏,𝑎𝑎𝑏𝑏+1] after quantization. Here m is the number of distinctive levels that the resistance of 

memristors can be programmed to. The process of quantization is straightforward once each 

quantization range [𝑎𝑎𝑏𝑏, 𝑎𝑎𝑏𝑏+1] and quantization value 𝑎𝑎𝐿𝐿𝑏𝑏 are determined. 

3.2 IMPACT OF DEVICE VARIATIONS 

Besides the resolution that the programing circuitry can offer, i.e., programming signal amplitude 

and duration, another factor that greatly affects the maximum number of the resistance levels of a 

memristor is device variations, including both parametric and switching variabilities. Many 

previous studies [14] have proved that the programmed resistance state of the memristor generally 

follows a lognormal distribution, say, 𝑟𝑟 → 𝑒𝑒𝜃𝜃 ∙ 𝑅𝑅𝑞𝑞 . Here, 𝜃𝜃~𝒩𝒩(0,𝜎𝜎2)  and 𝑅𝑅𝑞𝑞  is the nominal 

resistance level that the memristor should be programmed to, as depicted in Figure 4. 

Robust computation of NCS requires maintaining minimum distinction between resistance 

levels in order to keep the referencing error rate below a threshold. Hence, the number of the 

resistance levels that a memristor can be programmed to is further limited by memristor device 

variations in addition to the resolution of the programming circuitry. In offline training, obtaining 

a high precision of memristor resistance levels, say, more than four levels (2-bit), requires precise 

output signal monitoring and programming signal control [8]. The overheads quickly become 

unaffordable when the scale of the NCS increases. Therefore, an approach that can achieve high 

computation accuracy of the memristor-based NCS with limited precision of the quantized neural 

network is important in neuromorphic computing research.  
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As aforementioned, the weights of neural network are indeed shown as the conductance of 

the memristors. Since the resistance states of the memristors follow a lognormal distribution, it is 

widely accepted that the values of 1/𝑎𝑎𝐿𝐿𝑏𝑏 shall be evenly distributed between 1/𝑎𝑎𝐿𝐿(𝑚𝑚−1) and 1/𝑎𝑎𝐿𝐿0 

to achieve the maximum distinction between the adjacent resistance levels when device variations 

are taken into account. Here 𝑎𝑎𝐿𝐿0 and 𝑎𝑎𝐿𝐿(𝑚𝑚−1) are the lowest and the highest nominal resistance 

levels of the memristors, which correspond to the LRS and HRS, respectively. 

3.3 QUANTIZATION LOSS 

 
 
 

 

Figure 5. An example of the deviation between the trained analog weight matrix of the neural network and the 

quantized weight matrix presented on a 300×784 memristor crossbar. 

 
 
 
The deviation between the trained analog weight matrix of the neural network 𝑾𝑾 and the quantized 

weight matrix 𝑾𝑾𝒒𝒒 presented on the memristor crossbar results in quantization loss of the NCS. 

Figure 5 virtualizes such a deviation on a 300×784 memristor crossbar of a NCS that is used for 
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MNIST applications [15]. After quantization, the testing accuracy of the NCS reduces from 

95.66% down to 89.27%, even without including device variations.  

Based on Eq. (1), the output current y at each column of the memristor crossbar in the NCS 

is a linear combination of the products between the input signals and the programmed weights on 

the column. Hence, the “accumulated squared error (ASE)” on the weight matrix 𝑾𝑾 is often used 

to measure the impact of quantization and device variations as: 

𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑾𝑾−𝑾𝑾𝒒𝒒 ∙ 𝑒𝑒𝜽𝜽� = ∑ ∑ (𝑤𝑤𝑏𝑏𝑖𝑖 − 𝑤𝑤𝑞𝑞,𝑏𝑏𝑖𝑖 ∙  𝑒𝑒𝜃𝜃𝑖𝑖𝑖𝑖)2.𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑏𝑏=1                         (2) 

As shown in Eq. (2), ASE calculates the total squared deviation between the trained weight matrix 

𝑾𝑾 and the actually mapped and programmed weight 𝑾𝑾𝒒𝒒 ∙ 𝑒𝑒𝜽𝜽 on the memristors. Here θ is a 𝑚𝑚 ×

𝑛𝑛 matrix where 𝜃𝜃𝑏𝑏𝑖𝑖~𝒩𝒩(0,𝜎𝜎2). A larger ASE generally implies a higher quantization loss.  

Once the weight values of a neural network are obtained, we can estimate the quantization 

error from a statistic point of view. For instance, according to central limit theorem (CLT), a 

common approximation of the weight value distribution is Gaussian distribution, i.e., 

𝑤𝑤~𝒩𝒩(𝜇𝜇,𝜎𝜎2). Here, 𝜇𝜇 and 𝜎𝜎 are the mean and the variance of all the weights of the neural network, 

respectively. Thus, the probability density function (PDF) of 𝑤𝑤 can be expressed as: 

𝑝𝑝 =  1
𝜎𝜎√2𝜋𝜋

𝑒𝑒− (𝑤𝑤−𝜇𝜇)2

2𝜎𝜎2 .                                                          (3) 

For illustration purpose, here we assume 𝜇𝜇 = 0 and the lowest and the highest resistance levels of 

the memristors bound 3-sigma deviations of the weight distribution as 𝑤𝑤 ∈ [−3𝜎𝜎, +3𝜎𝜎] . In 

quantization process, we divide the bounded range into several segments 𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑚𝑚, each of 

which is assigned with a quantized weight value 𝑤𝑤𝑞𝑞𝑏𝑏 (𝑖𝑖 = 1,⋯ ,𝑚𝑚). Since the positive and the 

negative elements of the weight matrix 𝑾𝑾 are represented by different memristor sets/crossbars, 

respectively, we can assign equal number of the quantization segments 𝑀𝑀 to the positive and 
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negative weights, such as 𝑚𝑚 = 2𝑀𝑀  and 𝑋𝑋𝑏𝑏 = �(𝑏𝑏−𝑀𝑀−1) ∙ 3𝜎𝜎
𝑀𝑀

, (𝑏𝑏−𝑀𝑀) ∙ 3𝜎𝜎
𝑀𝑀

�, 𝑖𝑖 = 1,⋯ , 2𝑀𝑀 . The mean 

square error (MSE) between the weight 𝑤𝑤 and its quantized value 𝑤𝑤𝑞𝑞 can be then expressed by: 

𝑀𝑀𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 =  1
2𝑀𝑀
∑ 𝑀𝑀𝐴𝐴𝐴𝐴(𝑋𝑋𝑏𝑏)2𝑀𝑀
𝑏𝑏=1 =  1

2𝑀𝑀
∑ ∫ [𝑤𝑤 − (2𝑏𝑏−2𝑀𝑀−1) ∙ 3𝜎𝜎

2𝑀𝑀
]2(𝑏𝑏−𝑀𝑀) ∙ 3𝜎𝜎 / 𝑀𝑀

(𝑏𝑏−𝑀𝑀−1) ∙ 3𝜎𝜎 / 𝑀𝑀
2𝑀𝑀
𝑏𝑏=1  .         (4) 

When 𝑀𝑀 = 3 (three-level memristor), 𝑀𝑀𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 8.327𝜎𝜎2. 

 

3.4 IMPACT OF WEIGHT VALUE DISTRIBUTION ON QUANTIZATION LOSS 

The previous analysis shows that the weight value distribution of a neural network greatly affects 

the quantization loss in NCS designs. Here, let’s consider a different weight value distribution that 

can be expressed by: 

𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 =  ∑ 𝑏𝑏𝑖𝑖 ∙ 𝑁𝑁(𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖
2)2𝑀𝑀

𝑖𝑖=1
∑ 𝑏𝑏𝑖𝑖2𝑀𝑀
𝑖𝑖=1

 .                                                    (5) 

In this new weight value distribution, 2𝑀𝑀 quantization segments are retained as the same as the 

original distribution in Chapter 3.3. However, the contained weight values in each segment now 

follow a Gaussian distribution, where 𝜇𝜇𝑏𝑏 =  (2𝑏𝑏−2𝑀𝑀−1) ∙ 3𝜎𝜎
2𝑀𝑀

 and 𝜎𝜎𝑏𝑏 ≤  𝜎𝜎
2𝑀𝑀

 . As such, the MSE 

between 𝑤𝑤𝑞𝑞 and 𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛 becomes: 

𝑀𝑀𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 =  ∑ 𝑏𝑏𝑖𝑖  ∙ 𝜎𝜎𝑖𝑖
22𝑀𝑀

𝑖𝑖=1
∑ 𝑏𝑏𝑖𝑖2𝑀𝑀
𝑖𝑖=1

≤  𝜎𝜎2

4𝑀𝑀2 < 𝑀𝑀𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 .                     (6) 

The above mathematic analysis shows that different weight value distribution may introduce 

different quantization loss, which indeed inspires this work: if we can optimize the weight value 

distribution by considering the quantization process during learning process, we may be able to 

reduce the quantization loss and therefore improve the computation accuracy of the NCS.  



 13 

 

4.0  REGULARIZED LEARNING METHOD 

4.1 TRADITIONAL REGULARIZATION 

In the study of machine learning, regularization is referred to as the process of introducing 

additional information to prevent overfitting. Without loss of generality, the regularization term 

can be expressed by a complexity penalty added to the cost function of the learning process, such 

as 

𝐽𝐽′ = 𝐽𝐽 + 𝜆𝜆 ∙ 𝑅𝑅(𝐽𝐽).                                                   (7) 

Here coefficient 𝜆𝜆  controls the importance of the regularization term and 𝑅𝑅(𝐽𝐽)  is the added 

complexity in addition to the original cost function 𝐽𝐽.  

 
 
 

 

Figure 6. Four regularizations investigated in this thesis. 

 
 
 
Two popular regularization methods are L1-norm regularization and L2-norm regularization as: 

𝑅𝑅𝐿𝐿1(𝐽𝐽) = ‖𝑤𝑤‖, and                                                       (8) 

CosineL1-norm L2-norm Sawtooth
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𝑅𝑅𝐿𝐿2(𝐽𝐽) = ‖𝑤𝑤‖2,                                                         (9) 

respectively, as depicted in Figure 6. The hypothesis behind these two regularization methods is 

that a bigger weight in a neural network is likely to produce larger impact on the output of system. 

Compared to L1-norm, L2-norm gives more bias to the large weights during cost function 

optimization and pushes the weight value distribution to the small value side. When utilizing the 

MNIST dataset [15], for example, both cases result in very similar classification rates (i.e., 

95.639% for L1-norm and 95.654% for L2-norm) with the same network structures. Nonetheless, 

none of these two regularization methods consider the quantization loss that were discussed in 

Chapter 3.3. 

4.2 COSINE REGULARIZATION 

An obvious derivation from the analysis in Chapter 3.3 is that if the trained weights are “clustered” 

around the quantized weights, the quantization loss will be effectively reduced. For a NCS with 

multi-level representation, the trained weights shall be clustered around each level, as is discussed 

in Chapter 3.4.  

In observation of the periodic property of multi-level representation, we propose a novel 

cosine regularization to intentionally cluster the weight values during the learning process as: 

𝑅𝑅𝑐𝑐𝑜𝑜𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛(𝐽𝐽) = cos(𝜔𝜔 ∙ 𝑾𝑾).                                              (10) 

Compared to L1-norm and L2-norm regularizations, the cosine regularization  demonstrates the 

following two major advantages: 1) The periodicity of cosine function can be leveraged to reshape 

the distribution of the weight values so that the weight values are concentrated around the 

corresponding quantized levels; 2) Compared to L1-norm and L2-norm, the additional parameter 
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𝜔𝜔  in cosine function can help the fine-tuning process to further improve the NCS accuracy, 

indirectly reducing the quantization loss. 

4.3 OPTIMIZATION OF COSINE REGULARIZATION 

We have two parameters for tuning cosine regularization: 𝜔𝜔 and 𝜆𝜆. 𝜔𝜔 is the parameter that defines 

the periodicity of the cosine regularization and hence the quantized levels. 𝜆𝜆  controls the 

contribution (strength) of the cosine regularization term to the cost function. How to optimize these 

parameters is critical to improving the testing accuracy of the trained neural network. In machine 

learning practices, the optimum values of these parameters vary with specific applications and 

data. Hence, a fine-tuning process is often needed.  

One practical way to perform fine-tuning is to scan the concerned range of parameters and 

compare the learning results. In this work, we propose a stochastic training process with dynamic 

learning rates, i.e., changing the learning rate in some specified epochs. The training samples are 

randomly selected from the training dataset to minimize the influence of data selection bias. The 

training processes are repeated by scanning the values of 𝜔𝜔  and 𝜆𝜆  until the optimum 

parameters/accuracy are obtained. 

4.4 SAWTOOTH REGULARIZATION 

Cosine regularization is not the only periodic regularization function that satisfies the advantage 

statement in Chapter 4.2. A periodic extension of L1-norm regularization - sawtooth regularization 
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- possesses the characteristic similar to that of cosine regularization, as also shown in Figure 6. 

Sawtooth regularization also has two parameters 𝜆𝜆 and 𝜏𝜏, which define the height and the base-

side of the triangles, respectively. Same as their counterparts in cosine regularization, 𝜆𝜆 and 𝜏𝜏 

define the strength and periodicity of the sawtooth regularization, respectively. Here the sawtooth 

shape is maintained only within the concerned range, as shown in Figure 6.  

However, sawtooth regularization still has many differences from cosine regularization that 

affect the training effect. First, the cosine function and its derivative are both continuous and easy 

to compute, while sawtooth function’s derivative is not. Second, cosine function has infinite 

number of local minima’s in [−∞,∞]. Some trained weights may fall into the minima’s that are 

far from zero. The local minima’s of the sawtooth function, however, are distributed over only the 

concerned range. This helps to maintain the trained weights within a specified, in our case, near-

zero, range. As we will show in our experimental results in Chapter 5, the above differences 

generate considerable impact on the training process of the NCS.  
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5.0  EXPERIMENTAL RESULTS 

5.1 PLATFORM AND BENCHMARK 

To evaluate our proposed regularized learning methods, we implement a two-layer multilayer 

perceptron (MLP) and train it in MATLAB for targeting the MNIST digits classification dataset 

[15], which contains 60,000 training samples and 10,000 testing samples. The input data of the 

MLP are 28×28 pixels images and 64 hidden neurons are used, requiring a 784×64 matrix to store 

the hidden weights. The output is a 10×1 matrix, which indicates ten classes from ‘0’ to ‘9’. As a 

result, the output weights are stored on a 64×10 matrix. For each layer, we use two memristor 

crossbars to represent the positive and the negative weights, respectively. 

As aforementioned in Chapter 4.3, in our proposed stochastic training process, 100 training 

samples are randomly chosen from the training dataset in each epoch to eliminate the influence of 

accidental errors. 1,000 epochs are performed in each training and the learning rate is halved in 

specified epochs to train the neural network completely. The optimal parameters of the cosine and 

the sawtooth regularizations are obtained by scanning the concerned range. In all simulations, the 

learning rate remains fixed for the same epochs to ensure a fair comparison between different 

regularizations. Each experiment runs 10 times and the results are averaged to eliminate result 

fluctuations. This results in a total of 100,000 samples for each case which is proved in pre-test to 
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be sufficient for preventing accidental error and over-fitting. Table 1 summarizes the parameters 

of the memristors, MBC and IFC designs used in our NCS simulations. 

 
 
 

Table 1. Simulation Parameters for MLP [7] 

Device 
Ron Roff σ ω 

(2π/τ) λ 

10 kΩ 1 MΩ 0 - 2.0 10 - 150 0.01 - 0.1 

MBC 
Vbias Vread Hidden Layer Output Layer 
2.9 V 1.0 V 784×64 64×10 

IFC [13] 
Vdd Vth Power Max Throughput 

1.2 V 0.5 V 0.48 pJ/spike 568.2M spikes/sec 

 
 
 

Our results show that a classification accuracy of 95.64% can be achieved using L1-norm 

regularization, which is even slightly better than the result (95.3%) reported in [15] about a two-

layer neural network with 300 hidden neurons. The result of L2-norm regularization is also very 

similar (95.65%). Hence, for simplicity, we use L1-norm regularization as the baseline example in 

our discussions. 

5.2 OPTIMAL PARAMETER SELECTION OF COSINE REGULARIZATION 

As previously discussed, during the fine-turning process, we vary the values of parameters of each 

regularization and look for the peak accuracy that can be reached. For example, our simulations 

show that the best classification rate of the designed NCS with binary memristor resistance levels 

is 92.65%. The corresponding optimal values of 𝜔𝜔 and 𝜆𝜆 are 15 and 0.02, respectively. 



 19 

An important observation from the results is that the values of 𝜔𝜔 and 𝜆𝜆 resulting in the 

highest trained accuracy are not necessarily the ones which supply the highest accuracy after 

quantization. In fact, the selection of 𝜔𝜔 imposes very minimum impact on the trained accuracy 

while increasing 𝜆𝜆  causes monotonic degradation of the trained accuracy. After quantization, 

however, there exists optimal values of 𝜔𝜔 and 𝜆𝜆. 

5.3 EFFICACY OF REGULARIZATION METHOD 

 
 
 

Table 2. Accuracy comparison of different regularizations (MLP) 

 Regularization Trained Accuracy Quantized Accuracy 

Binary 

L1-norm 95.66% 89.27% 
L2-norm 95.32% 91.52% 
Cosine 95.51% 92.65% 
Sawtooth 95.41% 93.57% 

3-level 

L1-norm 95.64% 93.90% 
L2-norm 95.49% 93.83% 
Cosine 95.59% 94.11% 
Sawtooth 95.63% 94.30% 

 
 
 
Table 2 compares the NCS accuracy using different regularizations before and after quantization. 

Here the weights are represented as a binary memristor resistance level. Slightly higher or similar 

trained accuracies are achieved in L1-norm (95.66%) and L2-norm regularizations (95.32%) 

compared to cosine regularization (95.51%). After quantization, the NCS accuracies of L1-norm 

and L2-norm regularizations significantly drop down to 89.27% and 91.52%, respectively. Cosine 

regularization, however, can achieve a considerably higher quantization accuracy of 92.65% at the 
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optimal [ω, λ] = [15, 0.02], indicating the good efficacy of our proposed learning methods. Note 

that here the impacts of device variations have not been considered yet in the simulations. 

We also evaluate the efficacy of the regularized learning methods when the programming 

resolution of the memristors increases to three levels. For all regularizations, the trained accuracies 

are almost the same as that in binary-level while the quantized accuracies are all improved. It 

implies that increasing the resolution of the weights stored on the memristors can effectively 

enhance the NCS accuracy by reducing the quantization loss. Nonetheless, cosine regularization 

achieves higher quantized accuracy than L1/L2-norm, which (94.11%) is very close to the 

originally trained one (95.59%). This result implies that three-level representation may be 

sufficient for MINIST applications. Continuing to increase the number of levels may result in only 

marginal benefit from quantization. Here the peak quantized accuracy of the NCS happens when 

[ω, λ] = [20, 0.01].  

 
 
 

 

Figure 7. Comparison of weight distributions of (a) L1-norm and (b) cosine regularizations after training for three-

level representation. 
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Figure 7 compares the weight distributions of L1-norm and cosine regularizations for three-

level representation. The small figure in Figure 7(b) shows the same weight distribution plotted 

with x-axis in log scale. Compared to L1-norm regularization, training weights cluster around the 

six quantized levels (including positive and negative ones) in cosine regularization, showing a 

better tolerance to quantization loss. 

5.4 TOLERANCE TO RESISTANCE VARIATIONS 

 
 
 

 

Figure 8. Tradeoffs between the resistance variations, ASE and NCS accuracy for cosine regularization with three-

level representation. 

 
 
 
Memristor resistance variation introduces additional inaccuracy to NCS computation atop 

quantization loss. Figure 8 shows the tradeoff between the memristor resistance variations, the 
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ASE, and the NCS accuracy for cosine regularization with three-level representation. Here σ of 

the lognormal distribution of the memristor resistance varies from 0 to 2. As 𝜎𝜎 increases, the ASE 

keep increasing, leading to continuous drop of the NCS accuracy. Furthermore, the derivatives of 

both ASE and NCS accuracy increase when 𝜎𝜎 increases. As 𝜎𝜎 increases from 0 to 0.6, the NCS 

accuracy drops only 7.09% (from 94.11% to 87.02%), but with 𝜎𝜎 increases to 1.2, the increase of 

ASE is 3.25× of the former chapter and the NCS accuracy drops significantly to 48.16%. These 

results prove the discussion in Chapter 3.3 and show that the NCS accuracy is still limited by 

device variations regardless of regularization method used. 

5.5 SAWTOOTH REGULARIZATION 

Similar simulations are performed on sawtooth regularization to evaluate the corresponding 

property. As summarized in Table 2, sawtooth regularization achieves similar trained accuracy but 

the highest quantized accuracy among all the regularizations for both binary and three-level 

memristor resistance levels. The corresponding optimal values of λ and τ are [λ,τ] = [0.02, 0.419] 

for binary and [λ,τ] = [0.02, 0.314] for three-level memristor resistance levels. These results imply 

that sawtooth regularization offers the best capability to reduce quantization loss for two-layer 

MLP. 
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5.6 LENET-5 ON THE MEMRISTOR-BASED NCS 

We also evaluate our method on LeNet-5 [15], which is a convolutional neural network (CNN) 

with convolutional layers, subsampling layers, and one fully connected layer. In our simulation, 

LeNet-5 is trained in MATLAB (1,200 training epochs/case) using MNIST as input dataset and 

then two convolutional layers and one fully connected layer are mapped to the memristor-based 

NCS. The trained and quantized accuracies of four different regularizations before and after 

quantization are as illustrated in Figure 9, the margin between the dotted line and the bar indicates 

the quantization loss.  

 
 
 

 

Figure 9. Accuracy comparison of different regularizations on LeNet-5. 

 
 
 

From the results, we can come to the conclusion that our proposed regularizations outperform 

the traditional methods in both binary representation and three-level representation. Using binary 
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representation, cosine and sawtooth regularizations show better performance than L1-norm and 

L2-norm. Cosine regularization achieves the highest quantized accuracy (93.29%), 11.05% higher 

than the quantized accuracy of L1-norm regularization (82.24%), which is the lowest among four 

regularizations. With three-level representation, cosine and sawtooth regularizations still have a 

better quantization loss tolerance than L1-norm and L2-norm, although the accuracy difference 

between the quantized accuracies of cosine (94.35%) and L1-norm (86.29%) shrinks to 8.06%. 

This is because three-level representation is more precise than binary representation, as we 

discussed in Chapter 5.3. 

Compared with two-layer MLP, the differences between using proposed regularizations and 

traditional regularizations in LeNet-5 is much more significant because as the complexity of the 

neural network or the total number of layers increases, quantization loss has a greater negative 

impact on the NCS designs.  
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6.0  CONCLUSION 

In this thesis, we propose a regularized learning method that can take into account the quantization 

loss in the memristor-based NCS design with limited number of resistance levels. Two 

regularizations, cosine and sawtooth, are introduced to the cost function of learning process in 

order to concentrate the trained weights around the quantized levels for quantization loss reduction. 

For MNIST applications, experimental results show that compared to conventional learning 

method with L1/L2-norm regularizations, our learning method can substantially improve 

computation accuracy of the mapped MLP and LeNet-5 on the memristor-based NCS. The 

regularization selection and the optimal parameters are related to both application type and 

network topology, which will be investigated in the future. Although we use the memristor-based 

NCS as the example to demonstrate the efficacy of the regularized learning methods, our methods 

can be easily extended to other hardware platforms that suffer from low weight precision.  
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