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ABSTRACT

In genetic epidemiology studies of complex traits, there are two main design types through

which we can study complex traits. The first is population-based, in which independent

cases and controls are collected to assess the difference in the underlying genetic makeup

between affected and unaffected individuals. The other is family-based, in which data from

families with at least one affected individual are collected. This allows for the study of the

transmission of genetic variants between parent and offspring and how genetic variants differ

between the affected individual(s) and the unaffected individuals within a family.

We examine two hallmarks of complex traits in this dissertation. The first is the combina-

tion of mixed data types into a single likelihood, leveraging assumptions about the genotype

frequencies to the extent that the data support them. To do this we will employ an em-

pirical Bayes-type shrinkage estimation approach. Combining multiple data structures into

a robust joint analysis may provide additional information about the disease loci driving

complex traits. Secondly, we will examine heterogeneous presentation of traits associated

with complex disorders. This phenotypic heterogeneity may arise due to genetic underpin-

nings, different environmental exposures, or perhaps by unknown factors. Specifically, we

will address the following questions: (1) How can family data be combined with case-control

data from the same study to improve estimates of disease association in a way that is ro-

bust to model misspecification? (2) How can genetic sources of phenotypic heterogeneity be

identified in case-control and family-based studies?
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The public health significance of this research is that these methods will further under-

standing of the genetic architecture and will provide framework for studying other complex

traits. Knowing the underlying genetic structure of a complex disease like orofacial cleft-

ing will aid in identifying any possible modifiable environmental factors that may also be

contributing to the etiology of the disease. In order to identify those factors, we must have

foundational knowledge of the biologic mechanism through which OFCs arise.

Keywords: genome-wide association study, empirical Bayes-type estimation, shrinkage es-

timation, phenotypic heterogeneity, complex traits.
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1.0 INTRODUCTION

The goal of genetic studies is to further understand the mechanisms contributing to a phe-

notype by measuring association between genetic variants and the phenotype in some pop-

ulation. Genome-wide association studies (GWAS) aim to do so by assessing the effect of

single-nucleotide polymorphisms (SNPs) on a trait statistically. Traditionally, an associa-

tion test is performed at every genetic marker genome-wide and the markers demonstrating

the most statistical significance are considered for further interrogation. These associations

identify candidate loci for genetic association with the trait. Importantly, these associations

are not necessarily causal, as statistical power is influenced by the allele frequency. Rather,

markers implicated in association studies are thought to be in linkage disequilibrium (i.e.

correlated) with true causal genetic marker(s).

The power of GWAS to identify a true association between a SNP and trait is depen-

dent on the variability present in the phenotype and how much of that variability can be

explained by the SNP [35]. The variability in the phenotype is determined by the effect size

of the variant and the allele frequencies in the sample. Because of this, analyzing both rare

variants and variants with small effect size can pose problems in GWAS. Additionally, sta-

tistical power to detect association between a genetic marker and a phenotype is decreased

as phenotypic variation which is not directly attributable to the genetic variant increases.

This is common in complex diseases which typically have heterogeneous presentations.

Furthermore, some traits are driven by a few loci with large effect sizes, whereas others

are controlled by more genetic loci and numerous factors including admixture, epistasis, and

environmental exposures. Investigating complex architectures requires examining population

structure and potential allele-frequency differences across populations. Spurious associations

can occur for SNPs with varying allele frequencies and trait distributions by population by
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population [35]. Additionally, investigation of potential gene-by-gene interactions (i.e. epis-

tasis) and gene-by-environment interactions is warranted. These interactions occur when

the effect a genetic locus has on a trait is modified by either another genetic locus (gene-

by-gene interaction) or an external environmental factor (gene-by-environment interaction).

These complexities in genetic architecture present challenges in GWAS. There are virtu-

ally endless possibilities for the underlying genetic model of complex traits. These models

can include any of the considerations mentioned above, including but not limited to rare

variant contributions, differing effect sizes, population differences, gene-by-gene interactions,

and gene-by-environment interactions. Assessing a genetic variant’s association with a trait

having complex genetic architecture presents an interesting challenge.

There are two primary sampling schemes for GWAS. The first is population-based, com-

prised of unrelated individuals; the second is family-based, consisting of related individuals.

Although these structures are traditionally viewed as separate analyses, they may be com-

bined as mixed data structure and analyzed together. Family-based studies are unique in

that they are robust against population stratification; spurious statistical associations due

to differences in allele frequencies across populations are generally not discovered in family-

based samples [27]. These data structures also allow for the study of transmission of alleles

from parent to offspring. In contrast, the traditional epidemiological population-based study

design is easy to implement as it does not require recruitment of every individual of inter-

est from within a family. Moreover, population-based designs are more powerful to detect

common, weak genetic associations [66].

We will investigate two of the considerations discussed above – examining heterogeneous

phenotypes and mixing data structures from population-based and family-based collection

methods. Mixed data structures are being used increasingly in the study of complex traits

because they offer the advantages of both population-based and family-based designs with-

out limiting the study with the disadvantages that come with selecting only one method

[29]. As mentioned previously, phenotypic heterogeneity is a hallmark of complex traits and

can reduce the ability to detect true genetic associations. However, there may be genetic

differences responsible for the variability in phenotype, the identification of which would

further elucidate the genetic underpinnings of complex traits. This dissertation addresses
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the philosophical and statistical considerations for mixing data structures and addressing

phenotypic heterogeneity.

1.1 MIXED DATA STRUCTURES

Genetic association studies can generally be divided into two main design types – population-

based studies and family-based studies. In the study of dichotomous traits, population-

based case-control designs, which directly compare the frequency of genetic variants between

(usually independent) cases and controls, are widely used for association studies. The goal

of these studies is to identify potential genetic loci with differential frequency between cases

and controls which may correspond to conferring disease risk. Case-control designs are

increasingly being used for GWAS due to the ease in recruitment and the decreasing cost of

genotyping large numbers of individuals [11] [36] [65].

Alternatives to case-control designs include various family-based designs, including the

case-parent trio design. The most common analysis technique with case-parent trios is

arguably the transmission/disequilibrium test (TDT). The TDT examines case-parent trios

in which the proband is an incident case [71]. In this situation, the allele at each locus of

interest (or genome-wide) is tested for whether the transmission of that allele from parent to

offspring is different from what is expected under Mendelian inheritance (i.e. each allele has

a 50% chance of being transmitted). This would provide evidence that cases are under/over

enriched for an allele due to the increased/decreased risk harbored by that variant.

The case-parent trio design is robust against population stratification as the methods

for analyzing such data include some form of conditioning on parental genotypes, which

eliminates potential bias from differing genetic background. In this setting, studying parents

provides perfectly matched controls for each incident case, and thus is robust to any existing

population substructure. However, case-parent trios are often difficult to collect as they

require the ascertainment of both DNA specimens and phenotyping for each member of the

trio. Moreover, the cost of genotyping trios is three times that for each case or control

without a corresponding linear increase in statistical power.
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While population-based studies have increased statistical power over the family-based

designs of the same number of individuals, association signals detected from this method may

be due to uncontrolled confounding factors. In particular, case-control designs are susceptible

to confounding population stratification in which the genetic ancestry is associated with both

allele frequency and disease incidence.

Population-based data collection is frequently combined with family-based data collection

for many reasons. First, in an effort to gather as much information about a trait as possible,

genotypic and phenotypic information is often collected on every available person. Secondly,

and arguably most importantly, combining family-based data with population-based data

protects against false positive association due to population substructure. Thus, combining

these approaches offers increased statistical power and protection against false positives.

An overview of the basic analyses for case-control and case-parent trio designs and a brief

review of the available methods for combining these data together is given in chapter 2.

1.2 PHENOTYPIC HETEROGENEITY IN COMPLEX TRAITS

The model of Mendelian inheritance offers a simple explanation of the genetic architecture

of a trait. It prescribes that a single gene locus produces the trait in either recessive or

dominant pattern in families. However, many traits do not follow such a straightforward

model of genetic architecture.

Complex traits are those that do not exhibit classic Mendelian recessive or dominant

inheritance attributable to a single gene locus [36]. Any break in a direct genotype-phenotype

association (i.e. the same genotype resulting in different phenotypes, or different genotypes

resulting in the same phenotype) increases the genetic complexity of the trait. This can

be caused by numerous factors, including environmental exposures, interactions with other

genes, or even chance alone.

Variability in clinical and subclinical features, referred to here as phenotypic heterogene-

ity, is common in complex diseases and is thought to arise because of a complex genetic

and environmental architecture. Such variability introduces difficulty in studying complex
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disease; it is unknown if slight variations in phenotype are caused by an unknown but identi-

fiable factor or if they carry identical risk factors and exhibit variation due to chance alone.

Environmental factors can harbor a large proportion of disease risk, as seen in many

complex traits including birth defects. While environmental factors contribute to etiology,

they do not completely explain the variability in complex traits, especially those with known

genetic risk loci. Further exploration of the genetic variation associated with phenotypic

variation, including the potential interactions between environmental and genetic factors, is

of public health significance.

Additionally, in studying the variable phenotypes associated with complex traits, many

distinct phenotypes are often collapsed into a broader phenotype to increase statistical power

for detection of genetic loci. However, the ability to capture genetic variation responsible for

subtle phenotypic variation is lost when nonhomogeneous features are misclassified as the

same disease. Furthermore, in order to identify all genetic factors contributing to disease, and

the mechanisms through which they interact to confer disease risk, these complex phenotypes

must be studied with more granularity.

Identifying genetic sources of phenotypic variation is vital in the study of complex traits,

as doing so will further the understanding of the mechanisms through which complex traits

arise.

1.3 OROFACIAL CLEFTS

Cleft lip with or without cleft palate (CL/P) is a common birth defect worldwide; it is the

most frequent craniofacial birth defect in humans. Approximately 1 in 800 live births has

CL/P; however, the birth prevalence of CL/P varies by different ethnic groups, geographic

locations and environmental exposures [64]. The highest incidence of CL/P was found in

Asian and American Indian populations, followed by Caucasian populations, with African

populations having the lowest incidence [76]. In developed countries, CL/P does not weigh

heavily on mortality, but does result in considerable morbidity, as well as economic and
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societal burden [75]. CL/P has severe consequences for affected individuals as it may inhibit

or disrupt speech, facial expression, and swallowing [79].

Individuals born with CL/P may experience problems with feeding, speaking, hearing

and socializing. These can be corrected to varying degrees by surgery, dental treatment,

speech therapy and psychosocial intervention [17]. Despite the availability of treatments,

CL/P impose a large financial and psychological affliction on affected families and society

[79]. The cost per incident of CL/P is conservatively estimated to be $92,000 with a lifetime

cost of treatment of $200,000, which ignores the psychosocial costs to the patients and

occupational cost to parents [6] [39]. Children with CL/P also experience direct nonmedical

costs, such as special education services [6]. In addition to financial costs, there are physical

costs to children with CL/P; neonatal mortality is higher among children with CL/P [6].

CL/P arises when normal fetal craniofacial development fails. Cleft lip (CL) occurs when

the lip fails to fuse completely in the early stages of embryogenesis. Similarly, cleft palate

(CP) presents when the facial primordia, the building blocks of skulls, do not join properly.

The formation of the lip is completed by the sixth week of embryogenesis, while the formation

of the palate is completed by the thirteenth week [75]. A complex series of molecular events

must occur for proper facial development including cell growth, migration, differentiation,

and apoptosis (cell death) [39]. Similar to other congenital defects, this complex process

suggests a large genetic contribution to CL/P. However, the cause of CL/P is thought to be

a complex mixture of genetic predispositions and environmental exposures [64].

CL/P are considered nonsyndromic if they occur as the only abnormality; syndromic

clefts are defined as those accompanied by additional structural and/or developmental ir-

regularities [64]. In order to examine the etiology of orofacial clefts independent of other

disorders, only nonsyndromic clefts are studied. It is further noted that the majority (ap-

prox. 70%) of cases of CL/P are nonsyndromic [64]. Many previous GWASs have examined

the genetic role of CL/P, and many biologically plausible genes have been nominated in-

cluding IRF6, FGFR1, MAFB, ABCA4, VAX1, Wnt signaling, MSX1, and BMP [64] [17].

However, the complex etiology of CL/P remains poorly described.

CL and CP can occur unilaterally or bilaterally, concurrently or separately. Examples

of some possible types of CL/P are shown in Figure 1.1. CL and cleft lip and palate (CLP)
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have historically been considered variants of the same congenital defect, differing in severity

[51]. Despite the fact that CL and CLP have separate developmental geneses, they share a

defect in the primary palate, motivating the combined phenotype CL/P [39].

Figure 1.1: Images of CL/P (A) bilateral cleft lip (B) unilateral cleft lip and palate (C) cleft

palate

Clefts are usually regarded as simple, qualitative traits (unaffected vs. affected), al-

though the range of physical presentations is quite large. Recently, there has been evidence

suggesting that these overt clefts, in addition to subclinical phenotypes, lie on a continuum

of cleft features [80]. These subclinical phenotypes may be present in unaffected relatives

and would give additional genetic information about clefts overall [81]. While CL/P are

visible deformations of the face, these subclinical phenotypes include lip print whorls [58],

orbicularis oris (OO) muscle defects [57], and others [80]. Incorporation of these additional

phenotypes may aid in explaining the complex genetic architecture of CL/P.

1.4 MOTIVATING EXAMPLES

1.4.1 CleftSeq

The CleftSeq project was the first study to perform targeted sequencing of nonsyndromic

cleft lip with or without cleft palate (NSCL/P) GWAS regions. Through this we sequenced

complete GWAS intervals, including non-coding and coding DNA. The 13 regions that were
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sequenced were those that had been shown to be previously associated with OFCs. These 13

regions, totaling 6.3 Mb, were comprised of 9 high-priority candidates from previous GWAS

and/or genome-wide linkage studies and 4 regions containing candidate genes with prior

evidence of rare variants contributing to NSCL/P (Table 1.1). One thousand four hundred

and ninety-eight case-parent trios from Europe, the United States, China and the Philippines

were sequenced.

Because of the case-parent trio design, the transmission disequilibrium test was used

to determine if there was over-transmission of risk alleles for any variant. This method

is robust to population admixture. Still, we typically separate subpopulation groups for

analysis, testing for association separately for Europeans and Asians, as previous studies

have shown different association signals for NSCL/P in Asian and European populations.

Using this method, we found three regions for functional analysis follow-up (PAX7, FGFR2,

and NOG). We believe that this targeted sequencing of trios is powerful to identify functional

variants, i.e. genetic variants which alter the function of the gene.

We also identified strong associations in multiple regions with NSCL/P in the Asian trios,

but only in a single region, 8q24, in the European trios. Previous studies have shown associ-

ation with many other regions in Europeans, so this study may have been underpowered to

detect these. We hypothesized that many regions associated with NSCL/P are shared among

different populations, and that some regions have population-specific signals. However, these

hypotheses have not been rigorously tested.

Another reason that targeted sequencing was used is because it makes it possible to

search for the contributions of rare variants as risk alleles for NSCL/P. However, only 2 of

the 13 regions (near NOG and NTN1 ) showed any evidence of rare-variant over-transmission.

We hypothesized that we would see many more regions with over-transmitted rare variants

because of the nature of NSCL/P. Only about 50% of the heritability of NSCL/P is explained

by the previously discovered genes/loci, which suggests a substantial contribution of rare

variants. Notably, we did not see any rare variant signal in the four rare-variant candidate

regions (BMP4, FGFR2, MSX1, and PTCH1 ). The rare variants in this study were analyzed

with a burden-style test. This type of test cannot distinguish direction of effect or the
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difference between functional and non-functional variants, which leads to decreased power

to detect over-transmission in both of these situations.

Table 1.1: Overview of Regions Sequenced

Region Candidate Gene in Region Target Region [GRCh37] Size (kb)

1p36 PAX7 chr1: 18,772,300 - 19,208,054 435.8

1p22 ARHGAP29 chr1: 94,324,660 - 95,013,109 688.4

1q32 IRF6 chr1: 209,837,199 - 210,468,406 631.2

previous GWAS hits 8q24 – chr8: 129,295,896 - 130,354,946 1059.1

10q25 VAX1 chr10: 118,421,625 - 119,167,424 745.8

17p13 NTN1 chr17: 8,755,114 - 9,266,060 510.9

17p22 NOG chr17: 54,402,837 - 54,957,390 554.6

20q12 MAFB chr20: 38,902,646 - 39,614,513 711.9

previous linkage hit 9q22 FOXE1 chr9: 100,357,692 - 100,876,841 519.1

4p16 MSX1 chr4: 4,825,126 - 4,901,385 76.3

candidate gene 9q22 PTCH1 chr9: 98,133,647 - 98,413,162 279.5

regions 10q26 FGFR2 chr10: 123,096,374 - 123,498,771 402.4

14q22 BMP4 chr14: 54,382,690 - 54,445,053 62.4

We concluded that sequencing of all GWAS-implicated regions in a wide range of pop-

ulations, together with functional analyses, would be necessary to fully understand the role

of these genes/regions in the etiology of NSCL/P. This would give insight into shared and

population-specific signals, as well as the role of rare variants in NSCL/P.

1.4.2 Multiethnic Study of Orofacial Clefts

The multiethnic OFC GWAS (also known as the Pittsburgh OroFacial Cleft [POFC] study)

was a study conducted in several populations consisting of 11,727 participants recruited from

18 sites across 13 countries from North America, Central or South America, Asia, Europe,

and Africa. The overall study cohort includes OFC-affected probands, their unaffected fam-

ily members and controls with no known history of OFC or of other craniofacial anomalies.

Thus, there are many family structures present in the OFC study, including singleton cases
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and controls, sibling pairs, case-parent trios, and larger families. Currently, we have only an-

alyzed independent (unrelated) cases, controls and trios. We conducted standard association

in the cases and controls, TDT in the trios, and used inverse-variance weighted meta-analysis

to estimate the effect of each variant on NSCL/P. There were a total of 6,480 participants

(823 cases, 1700 controls, and 1319 case-parent trios) with European, Asian, African, and

Central and South American ancestry for the aforementioned analysis. All subjects were

genotyped on the same microarray with approximately 580,000 SNPs. Ideally, we would like

to combine all participants into the same analysis to maximize the information available, as

some signals might be lost by only examining independent trios, cases, and controls.

Again, we replicated many (but not all) previously-associated regions. Some of these

regions showed evidence of shared signal between the different subpopulations (e.g. NTN1 ),

but many regions appeared to be population specific. We would like to be able to quantify

the heterogeneity we see in these signals between populations and assess if the difference we

see is due to low power in some subpopulations with smaller sample size.

This study also collected extensive phenotypes on participants. We have detailed cleft

information (type of cleft, completeness, and side affected) for each participant with a cleft.

We believe that there are underlying genetic differences that contribute to these phenotypic

differences we see. Very little is known about the differentiation between the cleft subtypes

(isolated cleft lip, cleft lip with cleft palate, and isolated cleft palate), the side of the face

affected in unilateral cleft lips, and why OFCs are more frequent in males. There is a need

for a statistical test to find any underlying genetic components that contribute to these cleft

differences.

1.5 SUMMARY

In this integrated dissertation we examine methods applied to genetic epidemiology studies

of family-based and population-based data. This includes two main components. The first

component addresses methods for combining data from mixed structure designs. The second
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component examines methods of determining genetic sources of phenotypic heterogeneity in

orofacial clefts.

Specifically, we address two hallmarks of the study of complex disease: (1) How can

family data be combined with case-control data from the same study to improve estimates

of disease association in a way that is robust to model misspecification? and (2) How can

genetic sources of phenotypic heterogeneity be identified in case-control and family-based

studies?

In chapter 2, we provide an overview of existing methods for analyzing mixed data types.

First, methods for population-based and family-based data analysis are presented followed

by two classes of methods for combining these two data types into a single analysis. Mixed

data can be analyzed in two primary ways – via meta-analysis of the separate signals from the

two data sources and via a joint, retrospective likelihood. An analysis of the strengths and

weaknesses of these methods is given, including a practical application of one such method

to a genome-wide association study for orofacial clefting.

In chapter 3, we propose an empirical Bayes-type estimator for combining mixed data

structures in a retrospective likelihood to leverage the assumption of HWE among controls

and parents within trios to the extent that the data supports HWE.

In chapter 4, we present an overview of phenotypic heterogeneity in the study of complex

traits including methods for detecting genetic contributions to phenotypic heterogeneity.

A published study examining genetic sources of phenotypic heterogeneity in a targeted

sequencing study is given in chapter 5.

In chapter 6, we apply a method for detecting genetic differences in orofacial clefting to

a genome-wide meta-analysis. We present a novel approach to visually representing hetero-

geneity of genetic loci via the ”cleft map”.
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2.0 GENOME-WIDE ASSOCIATION STUDIES FOR MIXED DATA

STRUCTURES

2.1 INTRODUCTION

GWASs are popular tools used to detect genetic loci associated with a trait of interest.

The underlying concept for GWAS is to perform a test of association for each SNP across

the genome, and then examine the regions showing the most statistical significance. Thus,

GWAS is applicable for use with a variety of trait distributions. Virtually any statistical

model can be used to test each variant; the primary limitation is the computing power

required to fit such a model for millions of genetic markers.

With dichotomous traits, the most common method for GWAS is the case-control asso-

ciation study which uses either a simple chi-squared test or logistic regression to examine

differences in allele or genotype frequencies between cases and controls at each SNP. This

type of analysis is straightforward and easy to implement, but is subject to false positive

associations when there is population stratification; population allele frequency differences

can be confounded with disease frequency if not properly accounted for.

A family-based design with case-parent trios uses a different statistical method to exam-

ine linkage and association of a genetic marker and the trait. The most common methods for

case-parent trios include the TDT and a conditional on parental genotype (CPG) approach.

Unlike the case-control approach, family-based methods are not subject to inflation of results

due to population substructure, as examining transmission between parents and offspring

removes any potential effect caused by population allele frequency differences. However,

family-based methods have less statistical power than the population-based case-control de-

signs for the same number of individuals studied.

12



More recently, methods have been developed to combine these two data structures, grant-

ing the most statistical power while still protecting against artificial inflation of results. Meth-

ods for analyzing mixed data structures leverage more information from a study with mixed

data types than examining each data type separately. This chapter provides an overview

of existing statistical methods for performing GWAS with cases and controls, case-parent

trios, and the combination of them. We employ one such method for combining case-control

and case-parent trios to explore genome-wide association in the Multiethnic OFC study.

In particular, we demonstrate how utilizing mixed data structure increases the information

obtained from a GWAS, without complicated methodology.

2.2 METHODS

This section first provides a basic overview of the statistical methods used for separate

analysis of population-based and family-based data, then gives a survey of the methodology

currently in place for combining these two data structures.

2.2.1 Case Control

The goal of a case-control study is to identify risk groups by observing outcomes; the primary

interest is estimating the genotypic relative risk (GRR) given by equation 2.2.1.

γg =
P (D = 1|G = g)

P (D = 1|G = 0)
, g = 1, 2 (2.2.1)

The retrospective likelihood of the observed genotypes is composed of the independent

components for cases and controls where each component is a straightforward multinomial

probability. The likelihood for a case-control analysis is:

L(γ1, γ2, p) =
∏
j

P (Gj|Dj = 0)
∏
k

P (Gk|Dk = 1)

=
∏
j

P (Gj = g)
∏
k

γgP (Gk = g)∑
γg∗P (Gk = g∗)

(2.2.2)
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where

p = minor allele frequency, P (a), in the population

γ1 = relative risk of clefting for Aa compared to AA

γ2 = relative risk of clefting for aa compared to AA

Di = disease status of individual i

Gi = genotype of individual i

The likelihood is parametrized by the two relative risk components and the minor allele

frequency (a nuisance parameter). Typically, a genetic model is employed to reduce the

GRR parameters to one parameter. The common genetic models used to do so are given in

Table 2.1.

Table 2.1: Commonly used genetic models in terms of relative risk parameters

Genetic Model γ1 γ2

Additive γ 2γ − 1

Dominant γ γ

Recessive 1 γ

Multiplicative γ γ2

2.2.2 Trios

When studying families, it is the transmission of alleles from parent to offspring that is

analyzed. In this sense, parents are used as genotypic controls for their children. There are

three main ways in which trios are analyzed using the idea of parents as genetic controls,

each illustrated in the Figure 2.1 [74].

In the toy examples in Figure 2.1, both parents are heterozygous (Aa). (One can easily

extend this to all possible parental genotypes.) One allele from each parent is transmitted to

14



(a) TDT (b) Conditional Approach (c) Combined Likelihood

L =
∏
P (Goi |Doi = 1,Gpi

) L =
∏
P (Goi |Doi = 1,Gpi

) L =
∏
P (Gpi

, Goi |Doi = 1)

Figure 2.1: Three main ways of estimating association in trios

the child (one A from mom, one A from dad). Example A is the TDT, which is a matched

analysis comparing the child to its anti-self, the unobserved instance of a child with both non-

transmitted alleles [71]. Comparing the child with its anti-self is one way to condition on the

parental genotype. Similarly, Figure 2.1b shows the conditional logistic regression method

which compares the proband to unobserved pseudo-siblings with all possible transmission

patterns. Again, these pseudo-siblings are not observed, but the result of conditioning on

the parental genotype to create a matched analysis. If an additive genetic effect is assumed,

example 2.1a and example 2.1b are equivalent.

These first two methods only model the probability of the childs genotype conditional

on parental genotypes, but example 2.1c models the probability of the entire trios genotype.

The final method is a combined likelihood approach which jointly models the probability of

parental and case genotypes. It is notable that the likelihood for example C factors into two

components – one of which is the likelihood from example B.

Under the null hypotheses of all these methods, the alternative genotypes are equally

likely to have been transmitted to the case; any deviation from this expected distribution in

the proband is evidence of association at that locus [74].

Proceeding with the model from example C in Table 2.1, the likelihood for jointly mod-

eling proband and parent genotypes is given by [68]
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L(γ1, γ2, p) =
∏
i

P (Goi ,Gpi
|Doi = 1)

=
∏
i

P (Goi ,Gpi
|Di = 1)P (Gpi

|Doi = 1)

=
∏
i

γgP (Goi |Gpi
= gpi

)P (Gpi
= gpi

)∑
g∗
γg∗P (Goi = g∗|Gpi

= gpi
)P (Gpi

= gpi
)
×∑

g γgP (Goi |Gpi
= gpi

)P (Gpi
= gpi

)∑
gp∗

∑
g∗
γg∗P (Goi = g∗|Gpi

= gp∗)P (Gpi
= gp∗)

(2.2.3)

where

p = minor allele frequency, P (a), in the population

γ1 = relative risk of clefting for Aa compared to AA

γ2 = relative risk of clefting for aa compared to AA

Doi = disease status of offspring from trio i

Goi = genotype of offspring from trio i

Gpi
= (Gp1 , Gp2) = genotypes of parents from trio i

The likelihood is again just a multinomial likelihood for the proband, conditioning on the

disease status to model GRR and parental genotypes. Using Bayes theorem and the law of

total probability, this is expanded into a function of the GRR parameters and the observed

genotypes. This model assumes that both alleles are equally likely to be transmitted (i.e.

no meiotic drive) and that survival to birth does not depend on genotype.
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2.2.3 Combined Analysis

There are two main philosophies for combining cases, controls, and trios in such a way

as to model both association and transmission. The first is a meta-analysis approach, in

which separate analyses are conducted for the case-control data and the trio data, and then

estimates of disease risk are combined in standard meta-analysis methods. The final estimate

of disease risk is a weighted combination of the individual analyses disease risks.

The other approach combines all individuals in a single likelihood, and estimates one

overall disease risk. Many current methods exist for this approach, with varying assump-

tions and data type inclusions [56] [18]. These methods make a rare disease assumption,

and furthermore assume that the disease risk is the same for probands and cases, and that

all individuals are sampled from the same population. The class of likelihood-based esti-

mators are more powerful than meta-analysis-type methods under all genetic models except

dominant and whenever modeling association with rare variants [18].

2.2.3.1 Meta-Analysis Approach

Meta-analysis approaches combine distinct estimates from case-control and trio analyses.

Two specific approaches are described in this section.

The method introduced by Kazeem and Farrall combines log odds ratios from the sepa-

rate case-control and trio analyses into a weighted log odds ratio (ψ) [34].

ψ =
wcclog(ORcc) + wtdtlog(ORtdt)

wcc + wtdt
(2.2.4)

wi =
1

V ar[log(ORi)]

The corresponding test statistic is given in equation 2.2.5

Q =
ψ2

V ar[ψ]
∼ χ2 under H0 (2.2.5)

And the assessment of heterogeneity of effects is tested with equation 2.2.6.

X2
H =

2∑
i=1

wi(log(ORi)− ψ)2 ∼ χ2 under H0 (2.2.6)
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Combining the effect estimates in this manner implicitly assumes that the effects are

homogeneous. In this regard the meta-analysis approach is identical to a likelihood-based

approach (discussed in the next section) which estimates only one effect, assuming that the

effects are identical between cases and trio probands.

This approach is extremely easy to implement, and provides a natural interpretation of

the combined odds ratio. Independent (i.e. unrelated) cases, controls, and trios are required.

If there is overlap between the cases, control, and trios, the preferred method is that from

Chen and Lin which uses a robust variance estimate to allow for correlated data [13].

These meta-analysis approaches are useful tools for preliminary analyses; however, they

are not the most powerful methods to detect association.

The straight-forward weighted meta-analysis approach was performed with independent

cases, controls, and case-parent trios from the OFC GWAS study. (Results are detailed in

the section Genome-wide association study with mixed data structure for results).

2.2.3.2 Likelihood-Based Approach

Contrary to the meta-analysis approach, the likelihood approach combines cases, control, and

trios into a single likelihood to obtain one estimate of disease association. The likelihood

employed is a retrospective likelihood, incorporating the disease status of individuals into

the probabilities within the likelihood. Using the retrospective likelihood not only accounts

for the fact that cases, controls, and incident probands were recruited based on their disease

status, but also establishes a framework for using genetic assumptions about the distribution

of genotype probabilities to obtain more efficient estimates of the GRR parameters. The

general form of the likelihood based approaches is given by [56] (2.2.7).

L =
I∏
i=1

P (Gpi , Gi|D0i = 1)×
J∏
j=1

P (Gj|Dj = 1)×
K∏
k=1

P (Gk|Dk = 1) (2.2.7)

This can be written in terms of the relative risk parameters and the minor allele frequency

(as in equation 2.2.2).
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L(γ1, γ2, p) =
I∏
i=1

γgP (Goi |Gpi
= gpi

)P (Gpi
= gpi

)∑
g∗
γg∗P (Goi = g∗|Gpi

= gpi
)P (Gpi

= gpi
)

(2.2.8)

×
∑

g γgP (Goi |Gpi
= gpi

)P (Gpi
= gpi

)∑
gp∗

∑
g∗
γg∗P (Goi = g∗|Gpi

= gp∗)P (Gpi
= gp∗)

×
J∏
j=1

P (Gj = g)

×
K∏
k=1

γgP (Gk = g)∑
g∗
γg∗P (Gk = g∗)

In order to incorporate unrelated controls and unaffected parents, we make a rare-disease

assumption (equation 2.2.9). Similarly we make a rare-disease approximation for cases such

that equation 2.2.10 holds.

P (G = g|D = 0) ≈ P (Gp,1 = g) (2.2.9)

P (G = g|D = 1) =
γgP (Gp,1 = g)∑
g∗
γg∗P (Gp,1 = g∗)

≈ γgP (G = g|D = 0)∑
g∗
γg∗P (G = g∗|D = 0)

(2.2.10)

This assumption implies that the underlying genotype probabilities are the same for

the three types of data being combined, i.e. that these three samples come from the same

population. Epstein et al. provide a statistical procedure for testing this assumption in the

mixed data setting [18].

In addition to these assumptions, a further assumption of Hardy-Weinberg Equilibrium

(HWE) can be made in order to obtain efficient GRR estimates. The assumption of HWE

incorporates many assumptions including random mating, equal allele frequencies among

the sexes, no mutation, no selection, etc. The statistical consequence of assuming HWE is

that the genotype probabilities can be neatly defined in terms of the frequency of the major

allele – P (AA) = (1− p)2, P (Aa) = p(1− p), and P (aa) = p2, where p = P (A). Using the

genotype probabilities under HWE provides very efficient estimates of GRR, however, any

deviation in genotypic frequencies away from HWE can cause extreme type-1 error inflation.
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In order to avoid this, one possibility is to filter out variants that deviate from HWE

prior to running an association test. This will theoretically improve the robustness of the

procedure, but will also lead to a type-1 error inflation if the multiple tests in this two-stage

procedure are not accounted for.

Another option is to forgo the assumption of HWE in the genotypic probabilities and

instead model the mating type frequencies of the parents. The six possible mating-type

frequencies and their corresponding frequencies, using parental mating-type estimation and

under HWE, are shown in Table 2.2 [18].

Table 2.2: Genotype Frequencies

Gp Go under HWE not under HWE

AA,AA AA (1− p)4 µ6

AA,Aa AA p(1− p)3 1
2
µ5

AA,Aa Aa p(1− p)3 1
2
µ5

Aa,Aa AA p2(1− p)2 1
4
µ4

AA,Aa Aa p2(1− p)2 1
2
µ4

AA,Aa aa p2(1− p)2 1
4
µ4

AA,aa Aa 2p2(1− p)2 µ3

Aa,aa Aa p3(1− p) 1
2
µ2

Aa,aa aa p3(1− p) 1
2
µ2

aa,aa aa p4 µ1

Estimating the mating-type frequencies instead of assuming HWE provides a robust

estimate of the GRR, even when HWE does not hold. However, if HWE does hold, this

method loses efficiency compared to the one in which HWE is assumed.

20



2.3 GENOME-WIDE ASSOCIATION STUDY WITH MIXED DATA

STRUCTURE

We performed the genome-wide association scan of NSCL/P for the OFC study using two

subsets of our multiethnic sample and the meta-analysis approach from Kazeem and Farrall.

We partitioned the total sample into two mutually exclusive analysis sets for the current

study: (1) a subset of 1,319 case-parent trios (i.e. 3,957 individuals; note, from each multiplex

family only one trio was chosen), and (2) a subset of 823 unrelated CL/P cases and 1,700

unrelated controls. There was no overlap between the case-parent trio group and the case-

control group; the groups were considered to be independent, were analyzed separately, and

then the effects were combined via meta-analysis.

The effect of each genetic variant (293,633 genotyped SNPs with MAF>1%) was analyzed

within the separate groups first, then combined into a weighted effect estimate. Cases and

controls were analyzed using logistic regression (including principal components of ancestry

as covariates to adjust for population substructure) . The case-parent trios were analyzed

with the TDT. The log odds ratios from the separate analyses were combined using inverse-

variance weighting. The resulting log odds ratio was compared to a chi-square distribution

with one degree of freedom, as prescribed by the Kazeem and Farrall method. We also

examined the heterogeneity of the effects, and excluded the variants for which the effects

were driven by one group only.

In order to detect signals common to all ancestry groups, the first scan included individ-

uals from all populations. Then, in order to detect population-specific signals, association

scans within each ancestral group (European, Asian, and Central/South American as defined

by principal components of ancestry) were performed. (Stratified analysis was not performed

separately in the African group due to small sample size.) The same procedure (i.e., meta-

analysis of results from the trio and case-control subsets) was used for the multiethnic and

population-specific scans.

Using the results from combining effects from separate case-control and TDT scans, we

identified more loci than with either scan alone (Figure 2.2 & Figure 2.3 - for full results,

please see the published paper [41]).
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In the meta-analysis with all populations, several known NSCL/P loci reached genome-

wide significance (PAX7, ARHGAP29, IRF6, 8q24, and NTN1, Figure 2.2). Only two of

these regions (IRF6 and 8q24) demonstrated genome-wide significant associations when ex-

amining the results from the separate TDT and case-control analyses.

Figure 2.2: Results of the multiethnic GWAS for (A) meta-analysis, (B) TDT, (C) case-

control

Furthermore, among individuals with European ancestry, we identified two genome-wide

significant associations on 8q24 (a known NSCL/P locus) and 17q23a (a novel association).

Three loci approached genome-wide significance: 1p36 (PAX7 ), 17p13.1 (NTN1 ), and a

novel locus on 6p21.
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Figure 2.3: Results of the European GWAS for (A) meta-analysis, (B) TDT, (C) case-control

These association signals are summarized in Table 2.3. Regional association plots for

these five significant/suggestive peaks are shown in Appendix C.

Table 2.3: Significant and suggestive loci from European GWAS

Locus SNP Risk Allele TDT OR CC OR META OR 95% CI P-value

1p36.13 rs9439714 C 1.62 1.38 1.52 1.30-1.89 1.91× 10−7

6p21.33 rs79411602 C 1.67 1.31 1.52 1.29-1.78 2.92× 10−7

8q24 rs72728734 G 2.22 1.84 2.04 1.70-2.44 7.33× 10−15

17p13.1 rs7406226 A 1.50 1.73 1.59 1.33-1.89 2.16× 10−7

17q23.2 rs1588366 A 1.63 2.09 1.78 1.46-2.17 1.41× 10−8

Analyzing the mixed data types of the OFC study yielded many genome-wide association

including both known CL/P risk loci and novel loci. As demonstrated by the manhattan plots

for the meta-analysis, TDT, and case-control results, the meta-analysis approach combined

information from both scans resulting in strong signals where both groups demonstrated some

evidence of association. The resulting effect estimates provided a natural interpretation of
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the results and any heterogeneity in effects between the trio and case-control groups was

detected by examining the separate effect estimates.

The OFC study utilized the meta-analysis approach because of the ease of implementa-

tion and to protect against type-1 error inflation that can arise when the strict assumptions

of the likelihood-based methods are violated. Although the meta-analysis approach has re-

duced power compared to the likelihood-based approach, we still detected novel CL/P risk

loci.

2.4 DISCUSSION

There are two broad categories of methods that incorporate data from population-based

and family-based designs. The first, the meta-analysis approach, separately analyzes the

information from different data structures and then uses inverse-variance-weighted meta-

analysis techniques to combine those estimates. This method is easy to implement and

does not require strict assumptions about the distribution of genotype probabilities. On

the other hand, the likelihood-based methods require more strict assumptions about these

distributions of genotype probabilities. Assuming HWE in the likelihood-based estimation

techniques produces more efficient estimates of GRR than the meta-analysis approaches,

but is subject to a rather dramatic increase in type-1 error. When these assumptions are

violated, the estimates are inappropriately inflated. Removing this assumption of HWE in

the likelihood-based methods offers one solution for balancing the trade-off between efficiency

and bias.

In the example of NSCL/P, the robustness of meta-analysis approach was preferred (as

demonstrated in the Multiethnic OFC GWAS) and still lead to the discovery of novel genetic

loci for NSCL/P. However, if the assumptions of the likelihood-based methods could be

relaxed and/or the estimates made more robust to violation of assumptions, then likelihood-

based methods could be extremely useful in discovering new loci. Such methods may help

elucidate the genetic architecture of clefting and other complex traits.
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The methods for combining data from population-based and family-based studies dis-

cussed in this chapter are those for which transmission is directly modeled. It is worthwhile

to note that many methods exist to adjust for the inclusion of related individuals, usually

via a mixed model accounting for pairwise kinship of participants, but these methods do

not model transmission of alleles from parent to offspring. An overview of these methods

is given in [19]. Many of these methods, including one popular choice (EMMAX, [33]), are

developed for quantitative phenotypes, although recently, methods have been adapted to

incorporate binary traits [12]. While these methods provide useful models to account for

population stratification and relatedness (including cryptic relatedness) among individuals,

this dissertation is focused on methods which model transmission.
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3.0 EMPIRICAL BAYES-TYPE ESTIMATION METHOD FOR MIXED

DATA STRUCTURES

3.1 INTRODUCTION

A characteristic feature of GWAS is the selection of potential genetic loci to further exam-

ine after the preliminary association scan. These loci are typically selected using a p-value

threshold for the association test. Choices for this threshold are determined by sample size

and whether the scan is hypothesis-generating or confirmatory in nature; common thresholds

are 5.00× 10−5 and 5.00× 10−8. A narrow window based on genomic position, linkage dis-

equilibrium with the most-significant SNP, and topological domains is also frequently used

to select SNPs for follow-up. Lack of statistical significance beyond such thresholds in this

preliminary step may exclude a positively-associated SNP from any downstream analyses.

This type 2 error is particularly detrimental in hypothesis-generating scans for association

as any downstream analyses, including replication efforts, will not evaluate association or

biologic importance without the preliminary nomination of the variant. However, this does

not grant license for high type-1 error levels. Thus, powerful methods for detecting associa-

tions that control the type-1 error rate, are necessary in order to produce potential genetic

loci associated with complex traits.

Moreover, these powerful methods are needed in the mixed data structure setting. As

described in chapter 2, retrospective likelihoods provide an intuitive likelihood specification

for retrospective sampling including mixed data types and a framework for utilizing con-

straints to increase statistical power. However, existing methods for combining case-parent

trios with unrelated cases and controls in a retrospective likelihood approach either assume

HWE – which is efficient but biased when the data does not follow HWE – or remove any
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assumption of genotype distribution – which is less efficient. The first of these methods,

proposed by Nagelkerke et al. [56], made use of the HWE constraint in a retrospective likeli-

hood combining independent cases, controls, and case-parent trios. The second method, set

forth by Epstein et al. [18], removed the assumption of HWE from the estimation of GRR

in a retrospective likelihood combining independent cases, controls, and case-parent trios.

Without knowing the true deviation from HWE for each genetic variant, the most powerful

statistical model cannot be selected apriori.

An ideal estimator would be a combination of these two methods such that it utilized

a HWE equilibrium assumption to shrink estimates but only to the extent that the data

supported the HWE assumption. The estimate would not be prone to the bias and corre-

sponding type-1 error inflation from a constraint of HWE but would not lose efficiency in

estimating the GRR by estimating many nuisance parameters. We propose such an esti-

mator – an empirical Bayes-type shrinkage estimator – which combines the constrained and

unconstrained estimation approaches previously described.

The proposed estimator maximizes statistical power and avoids increased type-1 error

through the use of a data-adaptive method leveraging the HWE assumption. It achieves this

by estimating the GRR parameter via ”shrinkage” of the model-free estimator (not assuming

HWE) towards a model-based estimator (assuming HWE). The procedure described here was

introduced by Mukherjee and Chaterjee and applied to retrospective case-control studies

by Luo et al. [54] [48]. We extend this method to estimate genetic risk incorporating

case-parent trios simultaneously with independent cases and controls. A key feature of

the proposed estimator is that it relaxes the model constraints through a completely data-

adaptive shrinkage estimation approach, which controls the number of false positives due to

departure from HWE.

We evaluate the performance of the proposed method compared with a constrained and

unconstrained method using both simulated genetic data and real data from the Multiethnic

OFC study. In particular, the application of this method to the Multiethnic OFC study

provides insight into the performance of the proposed estimator on a genome-wide scale.
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3.2 METHODS

3.2.1 Assumptions and Notation

We will assume a sample a cases, controls, and case-parent trios that are all genotyped at

a SNP. For generalization, we denote the two alleles at the SNP A and a. G represents the

observed genotype of the unrelated individuals (i.e. cases and controls), Go the observed

genotype of the affected offspring of the trio, and Gp = (Gp1, Gp2) the unordered genotypes

of the parents of the trio. Each genotype, g, is coded as the number of copies of the minor

allele, a, taking values 0, 1, and 2. We will further assume no Mendelian errors in the trios

and that no parent within a trio is affected. We denote affection with D, equaling 1 for

affected and 0 for unaffected individuals. We will again use a rare-disease approximation as

in equation 2.2.9 to model genotype probabilities.

3.2.2 Likelihood Formation

Consider again the the retrospective likelihood for combining independent cases, control,

and case-parent trios (2.2.7).

This likelihood depends on the GRR, γ, and the genotype probabilities from controls

and trio parents. We use a reparameterization to define the genotype frequencies (p0, p1,

and p2) in terms of HWE parameters θ and ω (3.2.1) [45].

θ =
1

2
log(

4p0p2
p21

)

ω =
1

2
log(

p0
p2

) (3.2.1)

This defines the genotype probabilities of controls in terms of their HWE parameters θ

and ω (3.2.2).
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p00 = P (AA) =
e2ω

1 + e2ω + 2eω−θ

p01 = P (Aa) =
2eω−θ

1 + e2ω + 2eω−θ
(3.2.2)

p02 = P (aa) =
1

1 + e2ω + 2eω−θ

The deviation from HWE is measured with the parameter θ. Values close to zero indicate

mild to no deviation from HWE, whereas larger absolute values indicate violation of the

HWE assumption. Specifically, θ > 0 corresponds to excess homozygosity whereas θ < 0

corresponds to excess heterozygosity.

We use the genotype frequencies from parents of case probands and unrelated controls

to estimate the HWE parameters in two ways – unconstrained (3.2.3) and constrained under

HWE (3.2.4).

ω̂ =
1

2
log(

n0

n2

)

θ̂ =
1

2
log(

4n0n2

n2
1

) (3.2.3)

ω̃ = log(
2n0 + n1

n1 + 2n2

)

θ̃ = 0 (3.2.4)

Given θ and ω, we characterize the genotype frequency of cases and trios in terms of

genotype frequencies of controls and parents (Table 3.1, Table 3.2, and Table 3.3).

Thus, the likelihood for jointly modeling the GRR for cases, controls, and case-parent

trios L = L(β, θ, ω) is a function of the relative risk and HWE parameters, where β is the

log(GRR).

To model GRR parameters, we could consider an unstructured model that allows for

estimation of γ1 and γ2 without the assumption of a genetic model. However, assuming an

additive genetic model reduces the number of parameters to estimate and eases computation.
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Table 3.1: Genotype frequencies of controls.

genotype count P (Gctrl|D = 0)

0 N00 p00

1 N01 p01

2 N02 p02

Table 3.2: Genotype frequencies of cases.

genotype count P (Gcase|D = 1)

0 N10
p00

p00+γ1p01+γ2p02

1 N11
p01

p00+γ1p01+γ2p02

2 N12
p02

p00+γ1p01+γ2p02

The additive model (i.e. γ1 = γ, γ1 = 2γ−1) is assumed here to reduce labor of computation

and because of its widespread use in association studies of orofacial clefting, our primary

application of this method.

Let β̂(θ) denote the maximum likelihood estimate of β for a fixed θ, and β̂0(θ = 0)

denote the maximum likelihood estimate of β subject to the constraint that θ = 0 (i.e.

HWE holds for controls and parents). Both of these estimates can be obtained through

standard maximum likelihood procedures, although it is worth noting that the estimates are

obtained through iteratively through numerical optimization techniques as the formula for

the MLEs cannot be expressed in closed form.

3.2.3 Construction of the Empirical Bayes-Type Estimator

We propose to combine β̂ and β̂0, the constrained and unconstrained estimators, using an

empirical Bayes-type shrinkage estimation approach as in [54].
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Table 3.3: Genotype frequencies of trios.

parental genotype offspring genotype count P (Gparents, Goffspring|Doffspring = 0)

0,0 0 N000 p200/R

0,1 0 N010 p00p01/2R

0,1 1 N011 γ1p00p01/2R

1,1 0 N110 p201/4R

1,1 1 N111 γ1p
2
01/2R

1,1 2 N112 γ2p
2
01/4R

0,2 1 N021 γ1p00p02/R

1,2 1 N121 γ1p01p02/2R

1,2 2 N122 γ1p01p02/2R

2,2 2 N222 γ2p
2
02/R

R = p200 + 1
2
p00p01 + 1

4
p201 + γ1(

1
2
p00p01 + 1

2
p201 + p00p02 + 1

2
p01p02) + γ2(

1
4
p201 + 1

2
p01p02 + p202)

In order to construct the empirical Bayes-type estimator we assume an underlying distri-

bution for a hyperparameter, called θ, with expectation zero and some variance, τ 2. Thus,

the conditional distribution of θ̂|θ has the same distribution as θ, with mean θ and variance

σ2
θ . By the rules of conditional expectation and variance, θ̂|θ has mean zero and variance

τ 2 + σ2
θ .

Importantly, only the hyperparameter is assumed to have an underlying distribution,

and other parameters are estimated with standard maximum likelihood methods, granting

the name Bayes-type estimation. The general formulation of a Bayes-type estimator is a

weighted average of a constrained estimate, β̂0, and an unconstrained estimate, β̂ (3.2.5).

β̂EB =

(
σ̂2
θ

τ̂ 2 + σ̂2
θ

)
β̂0 +

(
τ̂ 2

τ̂ 2 + σ̂2
θ

)
β̂ (3.2.5)

Considering a general empirical Bayes-type estimator as some function φ = f(θ), where

θ is the nuisance parameter (here, the HWE parameter) is assumed to have a Normal dis-
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tribution with some specific variance-covariance matrix, A. Applying Taylor’s expansion of

ψ about θ = 0, the prior on ψ can be approximated with a Normal distribution with mean

f(0) and variance-covariance matrix Vφ = f ′(0)TAf ′(0) [54]. Then the formulation of the

empirical Bayes-type estimator φ is given in 3.2.6.

φ̂ = f ′(0)TAf ′(0)[V̂φ + f ′(0)TAf ′(0)]−1f(θ̂) + V̂φ[V̂φ + f ′(0)TAf ′(0)]−1f(0) (3.2.6)

Thus, using 3.2.6, the formulation of the empirical Bayes-type estimator for combining

the constrained GRR estimate [under HWE, β̂0(θ = 0)], with the unconstrained GRR esti-

mate [β̂(θ̂)] is given in equation 3.2.7. Mukherjee and Chatterjee provide a detailed rationale

and general formulation for empirical Bayes-types estimators [54].

β̂EB = β̂ − V̂β̂(V̂β̂ + θ̂2∆̂T ∆̂)−1(β̂ − β̂0) (3.2.7)

where V̂β̂ is the estimated variance-covariance matrix of β̂ and ∆̂ = δβ̂(θ)
δθ
|θ=0.

This proposed estimate is a weighted combination of the constrained and unconstrained

estimates. This new estimate should have the ideal properties of being closer to the con-

strained estimate when HWE is indeed true in the population, and closer to the unconstrained

estimate otherwise.

Intuitively the gradient function, ∆̂, represents rate of change of the unconstrained es-

timator in direction of θ at the point when the genotype frequencies are under HWE. The

influence that θ̂ has in the weighting of the empirical Bayes-type estimator depends on ∆̂,

such that more severe deviation from HWE weights the estimator more heavily towards

the unconstrained estimate and vice versa. We employ a first-order Taylor expansion to

approximate the ∆̂ (3.2.8).

∆̂ ≈ 1

θ̂

(
β̂ − β̂0

)
(3.2.8)
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In order to obtain the asymptotic properties of β̂EB, we note that the score function,

that is the derivative of the log-likelihood with respect to the GRR, can be expressed as in

equation 3.2.9.

∑
i ε cases, probands

[(
xiN1i

p1i

)(
δp1i
δβ

)
+

(
(1− xi)Npi1,pi2,i

ppi1,pi2,i

)(
δpgi1,gi2,i
δβ

)]
= 0 (3.2.9)

where xi = I(i ε cases)

1− xi = I(i ε probands)

N1i = number of cases of genotype i

Npi1,pi2,i = number of trios with parent genotypes pi1 and pi2, and proband genotype i

Consequently, we can construct a partial M-estimator of the form
∑
ψ = 0 using equa-

tion 3.2.9 and creating an extension for the empirical Bayes-type estimator (3.2.10). In this

formulation, we are ignoring variation in V̂β̂ and ∆̂ and treating them as known. Logically,

the variance of these quantities approaches zero as the sample size increases, so this assump-

tion that they are fixed is only inappropriate in small sample sizes, which is uncommon for

genome-wide association studies in general.

∑
i ε cases, probands


(

xiN1i

p̃1i(β0)

)(
δp̃1i(β

0)
δβ0

)
+
(

(1−xi)Npi1,pi2,i

p̃gi1,gi2,i(β0)

)(
δp̃gi1,gi2,i(β

0)

δβ0

)
(
xiN1i

p1i(β)

)(
δp1i(β)
δβ

)
+
(

(1−xi)Npi1,pi2,i

pgi1,gi2,i(β)

)(
δpgi1,gi2,i(β)

δβ

)
β − V̂β̂(V̂β̂ + θ̂2∆̂T ∆̂)−1(β − β0)− βEB

 = 0 (3.2.10)

where p̃(β0) = the genotype frequency under the constrained model

p̃(β) = the genotype frequency under the unconstrained model
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Thus, a straightforward application of M-estimation theory provides that equation 3.2.11

holds [72].

√
N(β̂EB − βEB)

o∼ N(0, VN(βEB)) (3.2.11)

Using this theory we can construct a robust sandwich estimate of the variance through

equation 3.2.12.

VN(βEB) = A−1N BN [A−1N ]T (3.2.12)

where AN =
1

N

N∑
1

−ψ′

BN =
1

N

N∑
1

ψψT

The construction of asymptotic variance-covariance matrix is given in Appendix B.

We can then construct a simple Wald-type test using the resulting estimate of β̂EB and

V̂ (β̂EB) via equation 3.2.13 to test the null hypothesis of no association, H0 : βEB = 0.

Given the theory from M-estimation, this test statistic follows a χ2 distribution with one

degree of freedom.

Q =
β̂2
EB

V̂ (β̂EB)2
(3.2.13)

3.3 RESULTS

3.3.1 Simulation Study

We perform simulations of the empirical Bayes-type estimator, compared to the constrained

and unconstrained estimators, using the robust variance estimates from the M-estimation

framework. Under the null hypothesis (i.e. γ = 0), we simulated 10,000 genetic variants

for equal sample sizes (Ncases = 500, Ncontrols = 500, Ntrios = 500), varying θ (θ = 0,

0.5log(1.2), 0.5log(1.6), and 0.5log(2.0) representing no, small, modest, and large deviations
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from HWE) and minor allele frequency (MAF = 0.1, 0.2, 0.3). For each of these settings,

the robust constrained, unconstrained, and empirical Bayes-type estimators are extremely

conservative (average results shown in Table 3.4). Under an alternative hypothesis of modest

genetic association (i.e. γ = 1.5), we simulated the same sample size, HWE parameter, and

minor allele frequency settings, and observed the same extreme conservativeness in test of

all three robust estimators (Table 3.5). In each simulation, under the null and alternative

hypotheses, the empirical Bayes-type estimates of the GRR behave as one would expect:

they are equivalent to the constrained estimate of GRR when θ = 0 and move closer to the

unconstrained estimate as θ increases. However, for large numbers of genetic variants and/or

large sample sizes, the computational time for calculating the robust variance estimates for

the constrained, unconstrained, and empirical Bayes-type estimators was markedly increased

compared to standard genome-wide methods.

Table 3.4: Average simulation results under null hypothesis, γ = 0.

θ MAF β̂0 V̂ (β̂0) β̂ V̂ (β̂) β̂EB V̂ (β̂EB)

0 0.1 0.2379 80.9960 0.2378 81.0672 0.2379 81.0671

0 0.2 0.1893 20.9505 0.1892 20.9582 0.1892 20.9573

0 0.3 0.1460 10.1467 0.1458 10.1466 0.1460 10.1468

0.5log(1.2) 0.1 0.2360 80.8334 0.2367 81.6750 0.2360 81.6679

0.5log(1.2) 0.2 0.1879 20.8835 0.1903 21.2062 0.1879 21.1972

0.5log(1.2) 0.3 0.1454 10.1245 0.1498 10.2917 0.1454 10.2835

0.5log(1.6) 0.1 0.2356 80.7066 0.2377 83.0826 0.2356 83.0619

0.5log(1.6) 0.2 0.1855 20.6941 0.1922 21.6117 0.1855 21.5865

0.5log(1.6) 0.3 0.1420 9.9943 0.1537 10.4574 0.1420 10.4351

0.5log(2.0) 0.1 0.2331 80.2845 0.2364 84.1715 0.2331 84.1381

0.5log(2.0) 0.2 0.1838 20.6200 0.1940 22.0719 0.1838 22.0317

0.5log(2.0) 0.3 0.1405 9.9439 0.1581 10.6808 0.1405 10.6461
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Table 3.5: Average simulation results under alternative hypothesis, γ = 1.5.

θ MAF β̂0 V̂ (β̂0) β̂ V̂ (β̂) β̂EB V̂ (β̂EB)

0 0.1 0.5438 208.9158 0.5438 209.2517 0.5438 209.2515

0 0.2 0.4964 61.1924 0.4963 61.2595 0.4963 61.2572

0 0.3 0.4529 33.3825 0.4526 33.3816 0.4529 33.3823

0.5log(1.2) 0.1 0.5410 208.7897 0.5417 212.3202 0.5410 212.3079

0.5log(1.2) 0.2 0.4946 60.0873 0.4971 61.6559 0.4945 61.6400

0.5log(1.2) 0.3 0.4514 33.0785 0.4560 34.1232 0.4514 34.1002

0.5log(1.6) 0.1 0.5412 207.1902 0.5432 217.0578 0.5412 217.0224

0.5log(1.6) 0.2 0.4912 59.2110 0.4982 63.8355 0.4912 63.7881

0.5log(1.6) 0.3 0.4463 31.9479 0.4589 34.8002 0.4463 34.7376

0.5log(2.0) 0.1 0.5371 205.0775 0.5405 221.7345 0.5371 221.6768

0.5log(2.0) 0.2 0.4885 58.1676 0.4993 65.2815 0.4885 65.1995

0.5log(2.0) 0.3 0.4437 31.4537 0.4626 36.0093 0.4437 35.9122

3.3.2 Application to Genome-wide Study of Orofacial Clefts

We applied this method to a sample of 170 cases, 835 controls, and 1050 individuals from case-

parent trios (i.e. 350 trios) of European decent (as identified through principal components

of ancestry) from the Multiethnic OFC study. Association at each of 258,543 genotyped

SNPs with MAF > 5% was examined using three methods: (1) the constrained estimation

approach using the robust sandwich variance estimate, (2) the unconstrained estimation

approach using the robust sandwich variance estimate, and (3) the empirical Bayes-type

estimation approach using the robust sandwich variance estimate.

None of these methods demonstrates any statistical significance (i.e. p > 0.05 for all vari-

ants). However, if the ranked order of the variants is considered rather than a p-value thresh-

old, the highest ranked variants are those from the regions which demonstrated genome-wide
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statistical significance (i.e. 8q24 and 17p13.1) in the preliminary association scan in chapter 2

as shown in Table 3.6.

Table 3.6: Top 20 variants from empirical Bayes-type estimation.

Ranking SNP CHR BP P-value (European OFC meta-analysis)

1 rs7018093 8 129891232 1.40× 10−6

2 rs1850889 8 129890405 1.45× 10−6

3 rs7841974 8 129888565 1.86× 10−6

4 rs2056314 8 129875260 2.00× 10−6

5 rs7010446 8 129874453 2.06× 10−6

6 rs756122 8 129912740 2.64× 10−6

7 rs2395865 8 129903689 3.88× 10−6

8 rs10100830 8 129893934 2.98× 10−6

9 rs2119756 8 129898369 4.54× 10−6

10 rs1519851 8 129895819 4.66× 10−6

11 rs2395864 8 129903563 4.91× 10−6

12 rs4733659 8 129910410 6.06× 10−6

13 rs4733532 8 129881299 5.14× 10−6

14 rs1519849 8 129896967 9.51× 10−6

15 rs9297779 8 129986237 4.02× 10−5

16 rs7844704 8 129845635 1.64× 10−5

17 rs1519850 8 129896821 4.87× 10−5

18 rs3760257 17 61496471 9.25× 10−6

19 rs6470670 8 129913448 5.89× 10−5

20 rs873761 8 129863533 3.95× 10−5
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3.4 DISCUSSION

We constructed an empirical Bayes-type estimator as a weighted combination of a constrained

estimate (under HWE) and unconstrained estimate. The resulting estimate cannot be solved

exactly and linear approximations must be employed. In order to obtain the distribution

of the resulting estimate, a partial M-estimator was constructed and the robust sandwich

variance estimate calculated.

Because of the need for robust variance estimates of the empirical Bayes-type estimator,

the efficiency gained by employing a shrinkage-estimate is lost. This is seen in the all

three estimators – constrained, unconstrained, and empirical Bayes-type – using the robust

variance estimates. Each method is extremely conservative, and only provides a ranked order

of the variants.

These results are contrary to the presentation of empirical Bayes-type estimators to

improve efficiency [54] [48]. We believe this is largely due to the robust variance estimate,

which is indeed robust against model misspecification, but may not be useful in the context of

genome-wide analyses due to the inefficiency of the estimates and the computational burden.

Furthermore, the decrease in efficiency may also be due to the multiple approximations that

are required to formulate the empirical Bayes-type estimator (e.g. the approximation of ∆̂)

3.2.8. While these approximations behave well in neighborhoods of the point of expansion,

they may not achieve the same properties when used to construct an estimator which will

be tested in a genome-wide setting.

Despite these concerns of efficiency, the application to the Multiethnic OFC GWAS

demonstrates that the statistical ranking of the variants was preserved in general. Thus,

the estimator is in fact testing for genetic association and does identify regions with strong,

known effects, albeit with much less efficiency than estimators with non-robust variance

estimates.

An additional possibility for testing association with an empirical Bayes-type estimation

procedure without the robust variance estimate from M-estimation framework, would be

to perform permutations at each variant, comparing the estimate to it’s empirical distribu-
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tion. While this would provide a smaller variance estimate, it would further increase the

computational burden.

Given these considerations, other existing methods may be more useful to analyze

genome-wide associations from mixed data types. As demonstrated in chapter 2, the meta-

analysis approach combining effect estimates from logistic regression and TDT is easy to

implement and useful. If a retrospective likelihood is desired to combine cases, controls,

and trios, the SCOUT software which implements the likelihood-based method without the

assumption of HWE is preferred over methods assuming HWE [18].
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4.0 GENETICS OF PHENOTYPIC HETEROGENEITY

In the study of genetic association, a distinction is made between simple and complex traits.

Simple traits are those more-or-less following a Mendelian inheritance pattern, and are usu-

ally controlled by a single genetic factor with strong effect. Conversely, complex traits often

exhibit a sporadic inheritance pattern and often involve many genetic and environmental

factors of more modest effect sizes. Common traits are usually thought to have complex

etiology with many genes affecting the trait. Identifying these genetic variants associated

with common traits depends on the statistical power to detect them in association studies.

While variants showing strong genetic effects are easily detected, it requires large sample

sizes to detect modest effects. Furthermore, higher-frequency variants have increased power

of detection than lower-frequency variants with the same effect size. Thus, preliminary stud-

ies of complex traits mostly identified associations with common variants [84]. This leads

to the common disease-common variant (CDCV) hypothesis that has been widely used to

study complex traits. The hypothesis specifies that even though common diseases/traits are

usually determined by many genetic loci, most of the genetic risk is attributable to com-

mon variants, and each genetic locus typically has one common variant [84]. This implies

that common genetic variants, which are more readily detectable than rare variants, are

largely responsible for variation in complex diseases and traits. However, common variants

have increased statistical power for detecting associations; the contributions of rare variants

to common, complex disease may just be understudied and underpowered. While many

common-variant associations for complex traits have been detected, common variation still

has not accounted for all of the heritability present in many complex traits. The CDCV

hypothesis may not be capturing the underlying genetic etiology of complex traits, which
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could involve rare variant contribution. Further discussion of the CDCV hypothesis is given

by Pritchard and Cox [59].

Beyond the frequency of variants associated with complex traits, the heterogeneity of the

trait itself may influence the ability to identify genetic associations. The genetic architecture

of complex traits can involve numerous genetic loci (with rare or common variants) affecting

many biologic processes. Typically, complex traits exhibit more heterogeneous phenotypes

which can introduce noise into association analyses if the phenotypic variation is not entirely

related to genetic variation. Ideally, more homogeneous groups (based on genetic etiology)

would be constructed to study only the phenotypic variability associated with genetic vari-

ability. However, these groups are nearly impossible to construct without a priori knowledge

of the causal genetic mechanisms.

Statistically, the problem of phenotypic heterogeneity has been addressed in numerous

ways using classic statistical models. However, these methods have not been traditionally

employed to discover genetic differences in subphenotypes. In the following chapter, an

overview of the statistical methods capable of addressing phenotypic heterogeneity is given,

along with a comparison of how these methods operate to detect genetic sources of phenotypic

heterogeneity.

4.1 INTRODUCTION

A hallmark of common, complex disease is phenotypic heterogeneity, which arises when one

disease or disorder presents itself in multiple different ways. These differences can be based

on a number of factors including severity of disease, age of onset, and presence of disease

subtypes. The sources of this variability in phenotype are often unknown: they may be due

to genetic, environmental, or unknown variation. For complex diseases with known genetic

factors, it is very plausible that genetics also play a role in phenotypic variability.

To investigate this phenotypic heterogeneity, subphenotype groups are often defined.

These groups can be defined by categorizing a disease by severity, serological thresholds,

or even more overt subtypes that exist. Categorizing a phenotype into subphenotypes and
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studying the genetic underpinnings of each subgroup will provide meaningful insight into

the genetic architecture of a complex trait. This is especially the case when subphenotypes

have distinct causal mechanisms – only through comparing the subphenotypes would these

mechanisms be discovered. The study of subphenotypes will help elucidate the biologic

mechanisms operating to influence the trait. For example, nonsyndromic cleft lip with or

without cleft palate is a highly heterogeneous trait. It is hypothesized that some types of

clefts may share genetic etiology while others may have unique causes. Additionally, it may

be the accumulation of genetic risk factors that cause a cleft or are responsible for cleft type

differentiation. The biologic model that these risk factors operate within cannot be identified

without first understanding genetic sources of phenotypic heterogeneity.

Subgroup analysis essentially tests for three possible genetic sources of phenotypic vari-

ation, described in Figure 4.1. The first, referred to as shared genetic variants, affects

subphenotypes in the same manner, i.e. when they share a genetic etiology. The second,

referred to as subtype-specific genetic variants, increases disease risk or susceptibility in one

specific subphenotype group while the other caries the same baseline risk as controls. The

last possibility considered, referred to as modifier genetic variants, confers significantly dif-

ferent risk between subphenotypes. Modifiers can work in one of two primary ways: (1)

increasing disease susceptibility overall, but with stronger effect in one subgroup - referred

to as ”gradient”; or (2) not changing disease susceptibility overtly, but increasing risk in one

subtype while decreasing risk for another - referred to as ”opposite”.

Shared (A) Subtype-Specific (B) Modifier (C) 

Figure 4.1: Allele frequencies for possible genetic sources of phenotypic heterogeneity: (A)

Shared, (B) Subtype-Specific, and (C) Modifier.
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Importantly, each of these models are for one genetic locus at a time. Thus, a disease

may have multiple associated loci working in concert to affect phenotypic variation through

individual contributions to overt disease risk, subtype-specific risk, and/or subphenotype

differences. Detecting these different types of heterogeneity necessitates multiple methods,

as many methods are only powered to detect one type of heterogeneity.

4.2 METHODS

There are numerous methods to examine the genetic sources of phenotypic heterogeneity

and each method addresses a very specific hypothesis and study design. Some methods

require a case-control study design while a few other lend themselves to family-based or

mixed study designs. Furthermore, many methods require genotype-level data – extracting

inference from association methods – while others used summary statistics post hoc. In

general, there is a lack of consensus for the appropriate method to use given a hypothesis

of phenotypic heterogeneity. Each hypothesis for phenotypic heterogeneity (see Figure 4.1)

requires a unique contrast to test for that type of genetic variation. The following section

addresses this gap in knowledge by comparing the existing methods for testing phenotypic

heterogeneity and the corresponding philosophical question they address.

4.2.1 Genotype-level Tests

The primary types of methods considered here are (1) a pooled approach which combines

subphenotypes for analysis, (2) a separate approach which analyzes subphenotypes inde-

pendently, (3) a case-only approach which directly compares one subtype to another, (4)

a likelihood approach for genome-wide scans of multiple types of heterogeneity, and (5) a

gene-by-environment framework that leverages information from case-parent trio designs.

Each of these methods requires genotype-level data.
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4.2.1.1 Pooled Method

Combining subphenotypes into a broader phenotypic definition is a common approach to

increase statistical power to detect association. However, it is not a method for exploring

phenotypic heterogeneity; rather, it models perfect homogeneity of effects. Nevertheless,

employing the pooled method is useful in examining genotype-phenotype association. The

association signal detected with the pooled method may be caused by a shared variant signal,

by a subtype-specific signal, or by a type 1 modifier signal (increasing risk overall but with

different risk conferred between subphenotypes).

When it is hypothesized that subtypes share genetic etiology, combining similar pheno-

types for analysis is common. If subphenotypes have the same genetic underpinnings, then

pooling these cases yields the most power to detect genetic variation that is associated with

this pooled phenotype. If the true genetic signal is subtype-specific, it may be possible to

detect the signal in a pooled analysis but the effect will be watered down by the presence of

the unassociated second subphenotype. Finally, a modifier genetic effect could be detected

if the variant conferred at least some disease risk to each subphenotype, but the disease risk

is assumed to be identical between subphenotypes and is thus biased. If the modifier results

in effects with opposite direction, this method will fail to detect any association.

As previously mentioned, this type of analysis is commonly used for complex traits due

to limited sample sizes when phenotypes are broken down into more homogeneous groups.

While association signals using a pooled approach can be driven by a shared genetic etiology,

it is not reasonable to assume this is true without follow-up. This is particularly problematic

when one subphenotype occurs more frequently than another. As a result of disparate sample

sizes, little information is obtained from the less-frequent subphenotype and results are driven

by the more frequent one. In any case, further steps should be taken to narrow down the

source of the effect – whether it is shared, driven by one subphenotype, or different between

subphenotypes.
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4.2.1.2 Separating Method

Identifying sources of unique pathophysiology is the goal of methods which separate subphe-

notypes into distinct groups for different analyses. In this approach, only genetic markers

that have a signal in the more homogeneous phenotype groups will be detected.

When the genetic markers are truly associated with both subphenotypes, the separating

approach will only detect association when the sample sizes are sufficient. In general, it is less

powered to detect shared effects than the pooled approach. Thus, only when the association

signal is strong (i.e., large effect) or the sample sizes very large, will the separate approach

detect any association shared between both subphenotypes. In the case when the increased

disease risk is unique to one subphenotype, the subphenotypes should be analyzed separately

to capture the distinction. Both modifier variants with varying degrees of increased risk in

both subphenotypes and those with opposite effects may be detected using this method,

although there would be no indication of the modifying nature of the locus.

A natural next step for this type of analysis is to compare the results from each of

the separate analyses. However, direct comparison of the resulting p-values from separate

analyses is not a valid method for examining heterogeneity, as p-values are dependent on

sample size and phenotypic distribution. Furthermore, qualitative comparison of p-values

and effect estimates does not give any information about potential differences between the

subphenotype specific analyses. Methods for comparing these results are discussed in the

summary-level tests section.

Similar to the pooled approach, it is feasible to perform separate analyses for subphe-

notypes with virtually any study design and statistical method, simply by changing the

phenotype definition.

4.2.1.3 Case-only Modifier Method

Unlike the two previous methods, which use all cases and controls in comparative analy-

ses, the case-only modifier directly compares allele frequencies of two subphenotype groups

without use of unaffected individuals. This provides a direct test of phenotypic differences

attributable to genetic heterogeneity. This analysis has high power to find genetic risk fac-

tors that differ between the two groups. Conversely, it will fail to detect any factors shared
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between both groups. Thus, this is strictly a test for heterogeneity of association between

genotype and phenotype; it is not a test of overall genetic effect. Ideally, this test will also

discover new loci for which there is only an effect in one subgroup (since the other subgroup

and controls are theoretically identical at this locus). As this method extracts cases from

the whole set of individuals being studied, it can be universally applied regardless of study

design.

4.2.1.4 Likelihood Method for Genome-wide Scans

Lee et al. propose a likelihood-based method to test for association, specifically to identify

any variants associated with phenotypic heterogeneity [37]. The purpose of this method is to

identify multiple types of modifying and subtype-specific variants from a genome-wide scan,

rather than improve power for detecting associations via genome-wide scans. This method

uses log-linear modeling to test for association in two stages. In the first stage, two models

(null and unstructured genetic effect) are compared using a two degree-of-freedom likelihood

ratio test. If, and only if, the first test is rejected at the prescribed level, the procedure

proceeds to stage two in which multiple models are compared using multiple information

criteria to identify exactly what effect the variant (which has already shown some level of

association with the unstructured genetic effect model) has on the disease. The models

considered in the second stage of the likelihood-based method are basic, subset, inv-subset,

general, and modifier which directly correspond to the five allele frequency possibilities for

phenotypic heterogeneity given in Figure 4.1.

After all of these models are fit in stage two, the AIC and BIC of the subtype-specific

models are compared. The model with the lowest AIC/BIC classifies the variant. Thus, this

approach can detect numerous types of variant associations genome-wide, including the three

primary types discussed. The authors do note that while this method is useful in identifying

many types of variants, it is not necessarily the most powerful technique for each specific

type of variant that may be present, as it employs two-stage testing.

Another potential issue with this likelihood-based approach is that it requires the speci-

fication of the population disease subtype frequency, s. If the value of s is misspecified, the
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correct variant model may not be chosen. This method also relies on log-linear modeling, so

it can only take independent cases and controls. However, extending this modeling approach

to accept case-parent trios or other combined data types is feasible using conditional logistic

regression or other maximum likelihood approaches.

4.2.1.5 Gene-by-Environment Method

In the case of family-based design (i.e. trios), genetic sources of phenotypic heterogeneity

were tested using the genotypic transmission disequilibrium test (gTDT) [70]. This method

uses cases and pseudo-controls in a conditional logistic regression framework. Pseudo-

controls are created from a trio consisting of two founders and one proband (i.e., affected

offspring). Using the genotypes of the founders, all possible genotypes of offspring are calcu-

lated. From this list of possible offspring genotypes, the observed genotype of the proband

is treated as a case while the unobserved genotypes are used as controls in a conditional

logistic regression. Similar to the standard TDT, only informative founder pairs are used for

analysis.

To investigate the heterogeneity in association results for two or more phenotypes, the

conditional logistic regression models are fit with interactions between genotype and pheno-

type case status. This provides a measure of association for the effect that case type has in

moderating the effect of genotype on affection status.

This method will theoretically identify genetic variants with differing effects between

subphenotypes, controlling for parental genotypes. However, this method requires the as-

sumption of a genetic model and has particularly low power to detect and subtype differences,

except in very common variants. Thus, it will be outperformed by other methods unless the

true underlying genetic model is known.

The technique can be performed on case-parent trios using the R package trio. It is not

extendable to any other data structure as the subtype indicator variable is defined at the

trio level.

47



4.2.2 Summary-level Tests

Individual genotype-level data is a gold standard for genetic associations, but frequently

only summary statistics from previous association scans are available. There are still useful

methods for detecting genetic sources of phenotypic heterogeneity that leverage summary

statistics. Furthermore, assessing heterogeneity after individual association scans provides

an intuitive and easy to use framework for detecting modifying and subtype-specific variants.

The three methods presented in the following section are capable of detecting subtype-

specific and modifier genetic variants as they compare the effect estimates from subtype-

specific analyses. It does not detect an overall association, i.e. shared variants. It is impor-

tant to note that the failure to detect a difference in two subphenotypes does not demonstrate

proof that the variant in question is shared between them both.

Summary-level tests are attractive as they can be performed post primary analyses and

do not require individual genotypes. Furthermore, they can be used for any statistical test,

provided it results in an effect estimate and corresponding standard error, and are not limited

to one study design. These methods are generally more flexible than the genotype-level tests.

4.2.2.1 Overlapping Confidence Intervals Method

A näıve, but reasonable, approach to assessing heterogeneity is readily available through

summary statistics. Analyzing subgroups separately, one can obtain two effect estimates

and their corresponding confidence intervals. These resulting regions are represented by the

following:

Q̂1 ± 1.96× ˆSE1

Q̂2 ± 1.96× ˆSE2

The confidence intervals are then compared. Only if they are disjoint, is there said to

be any difference between the effects of the two subphenotypes. The significance level of

the confidence intervals can be changed to investigate the evidence of difference between

the two subphenotypes. One must be especially careful in the interpretation of visually

examining the overlap of confidence intervals. Non-overlapping confidence intervals indicate
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statistically significantly different point estimates, whereas overlapping confidence intervals

do NOT indicate non-significantly different point estimates.

4.2.2.2 Q Statistic Method

Unlike the visual inspection of confidence intervals, the Q statistic method provides statistical

framework for detecting differences in effect estimates [69].

This method is less conservative than the method of examining overlapping confidence

intervals, i.e. the overlapping confidence intervals method will reject a null hypothesis of no

association every time it is rejected via the Q statistic method, but the converse is not true

[69].

The difference in these two methods can be seen by examining the difference intervals.

Q statistic method:

(
Q̂1 − Q̂2

)
± 1.96

√(
ˆSE1

2
+ ˆSE2

2
)

Examining overlap method:

(
Q̂1 − Q̂2

)
± 1.96

(
ˆSE1 + ˆSE2

)
In both methods, the null hypothesis of no difference is rejected when the interval does

not contain 0. The difference between the Q statistic method and that of the overlapping

confidence intervals is the width of the interval: the interval from the overlapping method is

always larger than that of the Q statistic method.

The Q statistic method assumes that estimates are (1) consistent, (2) asymptotically

normal, and (3) asymptotically independent [69]. These requirements are typically satisfied

in the case of examining log odds ratios from two non-overlapping association scans, given

a large enough sample size.

4.2.2.3 Cochran’s Q Method

Cochrans Q is a test statistic for assessing heterogeneity of the effects of multiple studies in

a meta-analysis setting [14].
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The idea of detecting heterogeneity among two or more signals comes from meta-analysis.

One main assumption of meta-analysis is that the individual effects are homogeneous. If so,

the combined effect estimate is a true representation of the individual signals. Thus inter-

pretation of meta-analysis results depends on identifying heterogeneity, which is commonly

tested in a fixed-effects meta-analysis setting using Cochrans Q. This test seeks to find loci

for which the individual effects are heterogeneous. This approach is conservative, i.e. it has

low power to detect weak heterogeneity, especially when only two individual effects are being

tested.

There is also an extension of Cochrans Q for a random-effects meta-analysis; however,

in the context of orofacial clefting, we are looking at combining only two or three effects,

making a random-effects approach inappropriate. The same philosophical conclusions would

also hold for a random-effects test of heterogeneity.

Cochrans Q is calculated in the following way:

The pooled treatment effect is a weighted average of the individual treatment effects (e.g.

log odds ratios).

Tpooled =

∑
wiTi∑
wi

where wi =
1

SE(Ti)2)

The standard error of the pooled treatment effect is given by //

SE(Tpooled) =
1√∑
wi

The Cochran Q statistic is given by

Q =
k∑
i=1

wi(Ti − Tpooled)2

which follows a Chi-square distribution with k-1 degrees of freedom.

Cochrans Q statistic, which employs the pooled treatment effect, measures deviation

from a weighted average of two estimates. If there is large deviation, we reject the null

hypothesis that the effects are the same. This addresses a fundamentally different question
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than the one we ask when studying phenotypic heterogeneity. The pooled treatment effect

is assumed to be the true underlying genetic effect and only variants with enough distance

from this effect show evidence of heterogeneity. Although this formulation of this method

does not visually lend itself to the idea of detecting heterogeneity, it can be shown that for

the two subgroups, it is identical to the Q-statistic method. Thus, Cochrans Q provides an

extension of the Q-statistic method for more than three groups.

This method is applicable in any study design as it is a comparison of summary statistics

– it does not require genotype-level data. This method may also be used to compare more

than two subgroup estimates; however, it is underpowered to detect a difference in fewer

than 5 groups.
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Table 4.1: Comparison of the methods for testing genetic sources of phenotypic heterogeneity.

Method Type of variants detected Study Design Requirements

Pooled (p1 + p2) v. control shared genotype-level data

Separate p1 v. control, p2 v. control subtype-specific, modifier* genotype-level data

Case-only modifier p1 v. p2 modifier, subtype-specific* genotype-level data, cases only

Likelihood subtype-specific, modifier*, shared* genotype-level data, case-control

GxE modifier* genotype-level data, case-parent trios

Overlapping Confidence Intervals subtype-specific*, modifier* summary-level data

Q-statistic subtype-specific*, modifier* summary-level data

Cochrans Q subtype-specific*, modifier* summary-level data

* indicates that this method is not well-powered to find this type of variant
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4.3 RESULTS

In order to demonstrate the properties and efficiency of the most commonly used methods

for detecting phenotypic heterogeneity, a toy simulation was performed. Genotypes were

randomly simulated assuming HWE and some true genetic model: (1) the risk was shared

equally among the two case subtypes (i.e. shared), (2) only one case subtype had increased

risk (i.e. subtype), (3) the risk increased linearly across the two case subtypes (i.e. gradient),

(4) the risk increased for one subtype and decreased for the other (i.e. opposite). The GRRs

under which these genotypes were simulated are summarized in Table 4.2.

Table 4.2: Genotypic relative risks for phenotypic heterogeneity demonstration.

Model
Genotypic Relative Risk

Controls Subtype 1 Subtype 2

Shared 1 3 3

Subtype 1 3 1

Modifier - gradient 1 1.5 3

Modifier - opposite 1.5 1 3

For the combined, separate and case-only modifier tests, genotypes of the two case sub-

types and controls were directly compared according to the prescribed statistical procedure.

Additionally, the two sets of results from the separate analysis for case subtype 1 and case

subtype 2 were compared using Cochran’s Q and the Q-statistic. The resulting p-values

from these association tests are given in Table 4.3.
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Table 4.3: Example performance of methods for testing genetic sources of phenotypic heterogeneity under multiple true models.

True Model

Analysis P-value

Combined Separate Modifier Cochran’s Q Q-statistic

type 1 v. control type 2 v. control

Shared 3.57× 10−29 3.82× 10−26 1.15× 10−22 3.80× 10−1 5.38× 10−1 5.38× 10−1

Subtype-specific 3.58× 10−15 6.42× 10−30 3.02× 10−1 8.39× 10−28 2.41× 10−11 2.41× 10−11

Modifier (gradient) 1.82× 10−15 2.67× 10−22 3.28× 10−5 6.93× 10−11 1.96× 10−4 1.96× 10−4

Modifier (opposite) 1.66× 10−2 3.67× 10−13 7.07× 10−6 1.25× 10−26 7.59× 10−16 7.59× 10−16
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Under the shared genetic model, the combined association clearly outperforms the

subtype-specific model. However, with this strong of a genetic effect, it is worthwhile to note

that both separate analyses demonstrate rather strong association signals. Appropriately,

the case-only modifier and comparison methods do not show evidence of statistically different

signals.

The performance of the various association tests under subtype-specific genetic model is

also expected; the separate analysis including only those cases with increased risk demon-

strated the most statistical significance; but the combined, case-only modifier, and summary-

level comparison approaches all detected association.

The gradient genetic model, in which there is increased risk for each subtype but one

subtype has increased risk over the other, may be the underlying genetic model that is not

completely obvious from the statistical results. In this situation, caution must be exercised in

interpreting the results from these multiple association scans. In this situation, examining the

GRRs and corresponding confidence intervals may be more illuminating that the association

test p-values.

When the effects for the two case subtypes are in the opposite direction, the case-only

modifier detects this difference most optimally, followed by the summary-level comparison

approaches. Notably in this situation, if the two subtypes were combined for analysis, no

association would be detected. This underscores the importance of examining phenotypic

heterogeneity not just within the top results from a combined analysis, but also from subtype

specific analyses.

4.4 DISCUSSION

There are many possible approaches to examine genetic sources of phenotypic heterogeneity

- each with it’s own advantages and disadvantages. Examining phenotypic heterogeneity can

be done using genotype-level data or summary-level data. As summary statistics are more

easily obtainable than genotype-level data, the summary-level tests can provide valuable

insight into the genetic architecture of complex traits. These methods tend to be more con-
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servative than the genotype-level test, but are useful when genotype level data is unavailable,

and when the true genetic model of risk loci is unknown.

Currently, the only method to assess genetic contributions to phenotypic heterogeneity

using case-parent trios at the genotype-level is the gene-by-environment framework, which

has very low statistical power and is not feasible for small sample sizes nor low-frequency

variants. In these situations, and in those with mixed data structures, summary-level meth-

ods, which can combined results from multiple analyses including those with different data

structures (with the assumption that the effects are the same), are invaluable.

Examining each of these methods together highlights the need for post-statistical testing

analysis. Without examining the estimated effects, the underlying genetic model will remain

obscured. It is the result of the phenotypic heterogeneity methods coupled with a depiction

of the effect estimates for each subtype that will paint a more comprehensive picture of the

statistical model of the genetic variants. Doing so may elucidate the biologic mechanism for

each risk locus, and in turn, further understanding of the genetic architecture of complex

traits.
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5.1 ABSTRACT

Background: Orofacial clefts (OFCs), including nonsyndromic cleft lip with or without cleft

palate (NSCL/P), are common birth defects. NSCL/P is highly heterogeneous with multiple

phenotypic presentations. Two common subtypes of NSCL/P are cleft lip (CL) and cleft
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lip with cleft palate (CLP) which have different population prevalence. Similarly, NSCL/P

can be divided into bilateral and unilateral clefts, with unilateral being the most common.

Individuals with unilateral NSCL/P are more likely to be affected on the left side of the

upper lip, but right side affection also occurs. Moreover, NSCL/P is twice as common in

males as in females. The goal of this study is to discover genetic variants that have different

effects in case subgroups.

Methods: We conducted both common variant and rare variant analyses in 1,034 in-

dividuals of Asian ancestry with NSCL/P, examining four sources of heterogeneity within

CL/P: cleft type, sex, laterality, and side.

Results: We identified several regions associated with subtype differentiation – cleft

type differences in 8q24 (p=1.00 × 10−4), laterality differences in IRF6, a gene previously

implicated with wound healing (p=2.166 × 10−4), sex differences and side of unilateral CL

differences in FGFR2 (p=3.00 × 10−4, p=6.00 × 10−4), and sex differences in VAX1 (p<

1.00× 10−4) among others.

Conclusions: Many of the regions associated with phenotypic modification were either

adjacent to or overlapping functional elements based on ENCODE chromatin marks and

published craniofacial enhancers. We have identified multiple common and rare variants as

potential phenotypic modifiers of NSCL/P, and suggest plausible elements responsible for

phenotypic heterogeneity, further elucidating the complex genetic architecture of OFCs.

5.2 INTRODUCTION

Orofacial clefts (OFCs) are common birth defects, affecting approximately 1 in 800 births

worldwide [39]. Approximately 30% of OFCs are syndromic, occurring in combination with

some other structural, cognitive, or developmental anomalies. The remaining 70% of OFCs

occur as isolated (i.e. nonsyndromic) defects. Nonsyndromic OFCs have complex etiology

with multiple genetic and environmental factors interacting to influence risk.

Nonsyndromic OFCs are highly heterogeneous with multiple phenotypic presentations

[17]. OFCs are most commonly divided into three major subtypes: cleft lip (CL), cleft
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palate (CP), and cleft lip with cleft palate (CLP). CL and CLP share a defect of the lip

and are commonly combined for analyses as cleft lip with or without cleft palate (CL/P)

[21] [23]. CL/P and CP have historically been considered distinct disorders with separate

etiologies because of the different developmental origins of the lip and palate and markedly

different prevalence rates in males and females (CP is twice as common in females as in

males, while the opposite is true for CL/P [53]). However, they occasionally occur within

the same family, an event known as mixed clefting commonly observed in syndromic OFCs,

including Van der Woude syndrome [39].

The CL/P subgroup itself is quite heterogeneous and can be further subdivided into

bilateral and unilateral clefts, affecting either the left or right side of the upper lip. Of these,

left sided unilateral clefts are the most common and bilateral clefts are the least common [26].

The causes of variability in phenotype are largely unknown, and may arise due to underlying

genetic factors, different environmental exposures, or other unknown factors. There have

been many studies investigating the genetic architecture of NSCL/P, most collapsing cleft

subtypes into one larger group (primarily CL/P) for analysis [17] [39]. While this approach

is powerful to identify sources of genetic variation that contribute to overall NSCL/P, any

signal from genetic variation specific to only one subtype or that differentiates subtypes

will be masked. Very few studies have explored genetic associations for clefting phenotypes

beyond CL and CLP. There is some evidence that the 13q31 locus near SPRY2 has a stronger

effect in CLP [30] [46]. Similarly, variants in IRF6 are more strongly associated with CL

than CLP [52] [63]. Recent evidence suggests that GREM1 is associated with clefts in the

lip and soft palate [47]. Furthermore, variants in GRHL3 are associated with CP and not

with CL/P [42] [50] [78]. Examining CL/P subtypes may elucidate more of the complex

genetic architecture of OFCs by identifying genetic mechanisms that modify cleft subtype.

We hypothesized that genetic components of phenotypic heterogeneity, including any

contribution of rare variants, can be found for recognized clefting loci. We performed asso-

ciation tests for four sources of phenotypic heterogeneity within CL/P: cleft type (CL vs.

CLP), sex (male vs. female), laterality (unilateral vs. bilateral), and side (right unilateral

vs. left unilateral) in targeted sequencing from the CleftSeq study [40].
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5.3 METHODS

5.3.1 Sample

We compared subtypes within clefting cases from the CleftSeq study to investigate the

potential genetic contribution to clefting heterogeneity. CleftSeq is a targeted sequencing

study of 13 previously reported loci associated with NSCL/P [40]. These 13 regions, totaling

6.3 Mb, were comprised of 9 high-priority candidates from previous GWAS and/or genome-

wide linkage studies and 4 regions containing candidate genes with prior evidence of rare

variants contributing to NSCL/P (Table 1.1). Sequencing was performed on 1,498 case-

parent trios from Europe, the United States, China and the Philippines.

From the 1,489 trios, we extracted 1,034 probands with NSCL/P of Asian (i.e. Chinese

or Filipino) ancestry for analysis and cross-classified them using the four clefting subtype

definitions (Table 5.1). Among the 1,034 cases, 33 with unknown laterality were excluded

from the analysis of laterality and side of cleft lip groups.

Table 5.1: Sample used for modifier analyses by population.

Cleft Type Sex Laterality Side of Cleft Lip

CL CLP Female Male Unilateral Bilateral Right Left

China 117 284 126 275 278 101 112 166

Philippines 171 462 219 414 440 182 147 293

Total 288 746 345 689 718 283 259 459

5.3.2 Common Variant Analysis

For each factor (i.e. cleft type, sex, laterality, and side), we performed a case vs. case

analysis, directly comparing allele frequencies at each SNP between the two groups (e.g. CL

vs. CLP, male vs. female, etc.). This type of analysis has very high power to find genetic

risk factors that differ between the two groups, but it has no power to find factors that
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are important in both groups. Thus this design is strictly a test for heterogeneity in the

genotype/phenotype relationship, not an overall test of genetic effect. Ideally, this test will

discover new loci for which there is an effect in only one subgroup; such loci may be masked

in an overall scan when groups are combined.

We analyzed the association between the four cleft subtype phenotypes and 19,982-20,089

common SNPs (MAF > 0.01) in the thirteen candidate regions by directly comparing the

two case subtypes using traditional Chi-Square tests for association. Each Asian population

(Chinese and Filipino) was analyzed separately to account for any population stratifica-

tion. Low-quality SNPs (missing genotypes > 5% or HWE p < 0.0001) were excluded from

analyses.

Inverse-variance effects-based meta-analysis of the two population-specific scans was per-

formed on 13,183-13,427 SNPs to detect any signal common to Asian populations. SNPs

were excluded from the meta-analyses if they were flagged as low-quality in at least one

population-specific analysis, or if effects were heterogeneous between populations (Cochrans

Q p < 0.05). Statistical significance was determined using a Bonferroni threshold adjusting

for four scans of thirteen regions of 9.615 × 10−4 (i.e. 0.05/52). This threshold allows for

the generation of hypotheses regarding the genetic mechanisms of clefting subtypes and thus

is not as strictly conservative as a Bonferroni correction for the number of markers tested

(5200 tests, p-value threshold of 1 × 10−5 [40]). Thus, the suggestive associations found in

this study should be followed up rigorously. Common variant analyses were performed using

PLINK software [61].

5.3.3 Rare Variant Analysis

Rare variants (MAF < 0.01) were also interrogated for association with subtype differentia-

tion using the same phenotype definitions as in the common variant analysis.

First, variants within exons of canonical transcripts of each gene were examined using

gene-based versions of the Collapsed Multivariate and Combining (CMC) test [44] and the

Sequence Kernel Association Test (SKAT) [82].
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Secondly, two window-based approaches were used to investigate burdens of all rare

variants. SNPs were combined into regions using two window-based methods – 2,662 windows

using a fixed window size of 5Kb with 2.5Kb overlap between windows, and 14,232 windows

using exactly 20 SNPs per window with 10 SNP overlap between windows (windows at

the end of each region contained at least 14 SNPs). Each window was comprised of SNPs

from only one of the candidate regions. Windows are highly correlated within each candidate

region, so statistical significance was again determined using a Bonferroni threshold of 9.615×

10−4. Rare variants were analyzed with the SKAT option in RVTESTS software [83].

5.3.4 Functional Annotation of Rare Variant Windows

The CleftSeq project sequenced 6.3Mb of largely non-coding DNA around these GWAS

and OFC candidate genes. We failed to identify significant associations in analyses of coding

variants (results not shown), so we hypothesized that functional variants would be regulatory.

We examined intervals containing overlapping windows for functional elements based on

ENCODE chromatin marks [15] [67] and published craniofacial enhancers [3] [10] [62].

5.4 RESULTS

5.4.1 Cleft Type

In the common variant meta-analysis, 20 SNPs from 4 loci were significantly associated with

CL v. CLP differentiation (Figure 5.1A). These associations were seen in SNPs on 9q22 near

PTCH1 and FOXE1, on 17p22 near NOG, and on 20q12 near MAFB. Specifically, a set of

variants in and near PTCH1 were more strongly associated with CL than with CLP (lead

SNP: rs202111971 p = 6.484×10−4, Figure 5.1B). A neighboring set of variants did not show

formally significant differences by cleft type, but tended to be more strongly associated with

CLP (Figure 5.1B). In the 9q22 region, a set of SNPs downstream of the FOXE1 transcription

start site were more strongly associated with CLP than with CL (lead SNP: rs73492791 p =

1.138× 10−4, Figure 5.1C). Moreover, minor alleles in the 17p22 regions and 20q12 regions
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were more strongly associated with CLP (lead SNPs: rs7208145 p = 9.041×10−4, rs6129626

p = 5.039 × 10−4, Figure 5.1C,E). Notably, none of these SNPs associated with cleft type

differentiation (CL vs. CLP) was significantly associated with risk of OFC overall [40].

Twenty-five windows of rare variants in the PAX7, ARHGAP29, 8q24, FOXE1, VAX1,

NTN1, and NOG sequencing regions were significantly associated with cleft type differentia-

tion (CL vs. CLP) (Table D1). Of these, two sets of three overlapping windows (8:129790677-

129795772 [min p = 4.50×10−4] and 8:130298273-130305772 [min p = 1.00×10−4]) on 8q24

are particularly interesting because they contain SNPs that individually show strong as-

sociation with NSCL/P in Europeans. Furthermore, one of these intervals (8:129790677-

129795772) consisting of three overlapping windows was located adjacent to a putative

regulatory element as defined by H3K27Ac marks in multiple cell types from ENCODE

(Figure 5.4A).

5.4.2 Laterality

In the common variant meta-analysis, 27 SNPs from 2 loci were significantly associated with

laterality differences (Figure 5.2A). These associations were seen for 26 SNPs on 1q32 near

IRF6 (lead SNP: rs6540559 p = 2.166× 10−4, Figure 5.2B) and a single SNP on 17p22 near

NOG (rs184942776 p = 5.262 × 10−5, Figure 5.2C). SNPs in IRF6 were associated with

differentiation between bilateral and unilateral CL/P. Specifically, minor alleles of SNPs

in IRF6 were associated with unilateral CL/P. The minor alleles at these SNPs also are

significantly protective against overall OFC risk (Table D5).

Differences in CL/P laterality were observed in 17 windows of rare variants (Table 5.1).

Despite having many overlapping windows of rare variants, there was no evidence of known

regulatory or enhancer elements within these intervals.

5.4.3 Sex

While no significant associations for sex differences were observed in the common variant

analysis (Figure 5.3A), 28 windows of rare variants were significantly associated with sex

differences (Table D3).
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Eight windows defining three larger intervals (10:118624030-118629029 [min p = 5.00×

10−4], 10:118638519-118644029 [min p < 1.00 × 10−4], and 10:118851530-11885725 [min p

< 1.00 × 10−4]) near VAX1 were significantly associated with sex differences in Filipinos.

One of these intervals (10:118851530-11885725), comprised of three windows near VAX1,

overlapped a craniofacial regulatory element identified from p300 ChIP-Seq in craniofacial

tissue in mouse embryos [3] [77] (Figure 5.4B). It is unclear what gene is regulated by this

element, as the activity pattern of the enhancer resembles the endogenous expression of both

adjacent genes VAX1 and SHTN1 [2] [16]. Interestingly, other significant windows in this

region occurred immediately downstream of SHTN1.

Two non-overlapping windows near FGFR2 (10:123368869-123373868 [p = 3.00× 10−4]

and 10:123479803-123483275 [p = 8.00 × 10−4]) were also significantly associated with sex

differences in Filipinos. The first of these windows overlapped multiple regulatory annota-

tions including a binding site for p63, a transcription factor known to regulate FGFR2 [20]

[22] (Figure 5.4C). The second window overlaps more regulatory annotations characteristic

of epithelial enhancers (Figure 5.4C).

5.4.4 Side of Lip

We did not observe any significant associations with right unilateral vs. left unilateral CL/P

in the common variant analysis (Figure 5.3B). However, 13 windows of rare variants were

significantly associated with side of cleft lip differentiation (Table D4). Interestingly, one

window near FGFR2 (10:123431369-123436368 [p = 6.00×10−4]) was significantly associated

with side of cleft lip differentiation in Filipinos and was adjacent to active enhancers from

human neural crest cell lines and a putative palate enhancer from p300 ChIP-seq of mouse

palatal tissue (Figure 5.4C).
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Figure 5.1: CL vs. CLP cleft type modifiers. (A) Cleft type (CL vs. CLP) association

results from the common-variant meta-analysis of Filipino and Chinese populations. (B)-

(E) Regional association plots for 9q22 (x2), 17q22, and 20q12 showing log10(P-values)

for SNPs with stronger association with CL (squares) and stronger association with CLP

(circles) based on the direction of the odds ratio. Plots were generated using LocusZoom

[60]. The recombination overlay (blue line, right y-axis) indicates the boundaries of the

LD-block. Points are color coded according to pairwise linkage disequilibrium (r2) with the

index SNP.

65



ARHGAP29
PAX7

IRF6
MSX1

8q24
PTCH1

FOXE1
FGFR2

VAX1
BMP4

NTN1
NOG

MAFB

A

rs6540559

rs184942776

B C

Figure 5.2: Unilateral vs. bilateral CL/P modifiers. (A) Laterality (unilateral vs. bilat-

eral) association results from the common-variant meta-analysis of Filipino and Chinese

populations. (B) Regional association plots for 1q32 showing log10(P-values) for SNPs with

stronger association with unilateral CL/P (squares) and stronger association with bilateral

CL/P (circles) based on the direction of the odds ratio. (C) Regional association plots

for 17q22 showing log10(P-values) for SNPs with stronger association with unilateral CL/P

(squares) and stronger association with bilateral CL/P (circles) based on the direction of the

odds ratio. Plots were generated using LocusZoom [60]. The recombination overlay (blue

line, right y-axis) indicates the boundaries of the LD-block. Points are color coded according

to pairwise linkage disequilibrium (r2) with the index SNP.
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Figure 5.3: Sex-specific modifiers of CL/P. (A) Sex (male vs. female) association results

from the common-variant meta-analysis of Filipino and Chinese populations. (B) Side (right

unilateral vs. left unilateral) association results from the common-variant meta-analysis of

Filipino and Chinese populations.
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Figure 5.4: Significant rare variant windows with potential regulatory effects. (A) 8q24 for cleft type, (B) VAX1 for sex, and

(C) FGFR2 for sex and side.
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5.5 DISCUSSION

NSCL/P is a complex disorder with many different anatomical forms. GWASs have identified

dozens of genetic associations with NSCL/P [4] [41] [46] [49]; however, a small number of

studies have identified cleft subtype specific associations, most of which are reflect differences

between CL and CLP [46] [52] [63]. The current study adds to these findings by identifying

both common and rare variants that are associated with subtype differentiation in cleft type,

laterality, sex, and side of unilateral CL. We performed common and rare variant association

testing with four cleft subtypes (cleft type: CL vs. CLP; laterality: unilateral vs. bilateral;

sex; and side: right vs. left CL/P) to further interrogate OFC-associated regions from

the CleftSeq targeting sequencing study. We identified several regions associated with cleft

subtype differentiation – common variants in IRF6 and rare variants in 8q24, FGFR2, and

VAX1, among others. Notably, these associations are found with both previously known

clefting-associated variants and variants that were not significantly associated with overall

clefting (CL/P). Multiple associations with regulatory (non-coding) elements and differences

in clefting subtypes were discovered, contributing to the evidence that non-coding variants

have a significant role in the genetic causes of NSCL/P [39] [40] [63]. However, it is not

clear from the association results which alleles are relevant to these phenotypes; systematic

studies in model systems will likely be required to identify functional SNPs and a possible

mechanism.

We identified 26 SNPs within IRF6 associated with differences between unilateral and

bilateral CL/P. Specifically, individuals with unilateral CL/P had higher frequencies of minor

alleles in these 26 variants than did bilateral CL/P individuals. IRF6 has been previously

implicated in wound healing [8] [7] [32], so these cleft laterality differences are particularly

interesting. The same alleles showing a protective effect for overall cleft risk were more

strongly associated with unilateral CL/P than bilateral. If we consider unilateral CL/P as

a less severe presentation of clefting than bilateral CL/P, our finding that OFC-protective

variants are associated more strongly with unilateral CL/P and previous evidence that IRF6

is associated with CL [63] together suggest that the IRF6 locus is associated with decreased

risk of severe clefting.
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Rare variants on 8q24 were found to significantly differ between CL and CLP, including

an interval adjacent to a putative regulatory element. This provides strong evidence for

a regulatory role of variants within 8q24 on the presentation of NSCL/P. Furthermore,

SNPs on 8q24 have previously shown very strong association with cleft risk in European

GWAS [5] [9] [24] [55], but are not associated with cleft risk in Asian GWAS(i.e. in common

variant analyses). This may be due to population-specific differences in SNP informativeness

within 8q24, which reflects haplotype diversity [55]. SNPs within 8q24 have markedly higher

heterozygosity in Europeans than Asians, making common-variant associations within this

region far more powerful among Europeans. We hypothesize that this region also is associated

with clefting risk in other populations, although the statistical evidence from analyses of

common variants is lacking. The association with cleft type differentiation within windows

of 8q24 rare variants observed in the Filipino population here may be evidence that some

SNPs within 8q24 confer clefting risk in Asian populations.

Additionally, rare variant associations with potential regulatory elements were observed

when examining sex differences and markers near VAX1 and FGFR2 and those near FGFR2

and the left vs. right side of unilateral CL/P. While it is not immediately clear how VAX1 and

FGFR2 specifically contribute to sex differences in NSCL/P, biological hypotheses regarding

sex differences in other disorders (e.g. autism) involve a multiple-threshold multifactorial

liability model in which females have a higher threshold than males. In other words, affected

females are hypothesized to carry a higher mutational burden than affected males. The

same would hold for NSCL/P, where there are more affected males than females. Under this

hypothesis, relatives of affected females are at increased risk for CL/P, which is supported by

population-based recurrence risk estimates from Denmark [25]. A similar threshold model

may also pertain to differences in laterality and severity of NSCL/P.

Contrary to the common disease-common variant hypothesis, we observed clear contri-

butions from both common and rare variants in this study of the genetic underpinnings

of NSCL/P and the potential differences within NSCL/P subtypes. This work adds to a

growing body of evidence implicating rare variants in risk of NSCL/P [1] [38] [40]. Impor-

tantly, this work highlights the impact of rare variants as potential phenotypic modifiers,

an area that needs larger studies in additional populations that are expanded to the entire
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genome. As costs of whole genome sequencing decrease, these studies will be more feasible

for NSCL/P and will continue to improve our understanding of the genetic architecture of

NSCL/P.
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6.1 INTRODUCTION

Orofacial clefting is a common complex birth defect with multiple phenotypic presentations.

OFCs can arise when there is a disruption in fetal craniofacial development, approximately
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during weeks four through ten of embryogenesis [17]. The upper lip and primary palate are

formed by the sixth week and the secondary palate is formed by the tenth week [17]; any

disruption in these processes many results in an orofacial cleft. Numerous genetic studies (in-

cluding genome-wide linkage and association) have made substantial progress in identifying

genetic risk factors for OFCs in the past decade.

The primary focus of the OFC genetics literature has been on the two most common

presentations: cleft lip with or without cleft palate (CL/P) and isolated cleft palate (CP)

[17] [39]. CL/P and CP have historically been considered distinct disorders due to the

different developmental origins of the lip and palate [31], different prevalence rates among

males and females [53], and different proportions of syndromic cases (50% CP vs. 30% for

CL/P) [39]. At least 20 genetic risk loci have been identified for CL/P [43]; only one locus

has been identified for CP [42]. Despite this progress, the identified risk loci only account

for a modest portion of the genetic variance of OFCs, suggesting that additional genetic risk

factors may be involved.

In the current study, we sought to identify additional genetic risk variants for specific

OFC subtypes - CL, CLP and CP - including exploring the possibility of shared etiology

between two or more subtypes. To do so, we conducted genome-wide meta-analyses for CL,

CLP, and CP using two large OFC studies.

6.2 METHODS

6.2.1 Contributing GWAS studies

Two consortia contributed to this study (Table 6.1). The first, hereafter called GENEVA

OFC, used a family-based design and included 461 case-parent trios with CL, 1143 case-

parent trios with CLP, and 451 case-parent trios with CP, from populations in Europe

(Denmark and Norway), the United States, and Asia (Singapore, Taiwan, Philippines, Ko-

rea, and China). The specifics of this study were previously described in [4] [5]. Briefly,

samples were genotyped for 589,945 SNPs on the Illumina Human610-Quadv.1 B Bead-
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Chip, genetic data were phased using SHAPEIT, and imputation was performed with IM-

PUTE2 software to the 1000 Genomes Phase 1 release (June 2011) reference panel. Geno-

type probabilities were converted to most-likely genotype calls with the GTOOL software

(http://www.well.ox.ac.uk/ cfreeman/software/gwas/gtool.html), using a genotype proba-

bility threshold of 0.9.

The second consortium included samples contributing to the Pittsburgh Orofacial Cleft

(POFC) study, comprising 179 cases and 271 case-parent trios with CL, 644 cases and 1048

case-parent trios with CLP, 78 cases and 165 case-parent trios with CP, plus 1700 unaffected

controls. Participants were recruited from 13 countries in North America (United States),

Central or South America (Guatemala, Argentina, Colombia, Puerto Rico), Asia (China,

Philippines), Europe (Denmark, Turkey, Spain), and Africa (Ethiopia, Nigeria). Additional

details on recruitment, genotyping, and quality controls are described in [41] [42]. Briefly,

samples were genotyped for 539,473 SNPs on the Illumina HumanCore + Exome array.

Data were phased with SHAPEIT2 and imputed using IMPUTE2 to the 1000 Genomes

Phase 3 release (September 2014) reference panel and converted to most-likely genotypes for

statistical analysis.

A total of 412 individuals were in both the GENEVA OFC and POFC studies, so we ex-

cluded these participants from the GENEVA OFC study for this analysis. Informed consent

was obtained for all participants and all sites had both local IRB approval and approval at

the University of Pittsburgh, the University of Iowa, or Johns Hopkins University.

Table 6.1: Counts of Cases, Controls, and Trios from the POFC and GENEVA studies.

Study
CL CLP CP

Controls Trios Cases Trios Cases Trios Cases

POFC 1700 271 179 1048 644 165 78

GENEVA – 461 – 1143 – 451 –
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6.2.2 SNP selection

Quality control procedures were completed in each contributing study and have been de-

scribed extensively in the original publications [41] [42] [4] [5]. In the POFC study, SNPs

with minor allele frequencies (MAF) less than 1% or those deviating from HWE (p<0.0001)

in genetically defined, unrelated European controls were excluded.

Similarly, SNPs with MAF <1% or those deviating from HWE were excluded. To ac-

count for different marker sets and identifiers between the two imputed datasets, the final

analysis included only those overlapping SNPs that were matched on chromosome, nucleotide

position, and alleles. A total of 6,090,031 SNPs were included in the meta-analysis.

6.2.3 Statistical Analysis

We identified three analysis groups from the contributing studies: a case-control subgroup

from POFC, an unrelated case-parent trio group from POFC, and an unrelated case-parent

trio group from GENEVA OFC. In the casecontrol subgroup, logistic regression was used to

test for association under the additive genetic model, while including 18 principal components

of ancestry (generated via principal component analysis [PCA] of 67,000 SNPs in low linkage

disequilibrium across all ancestry groups) to adjust for population structure [41]. The two

case-parent trio subgroups from POFC and GENEVA were analyzed separately using the

TDT. The resulting effect estimates for the three analysis groups were combined in an

inverse variance-weighted fixed-effects meta-analysis. The combined estimate, a weighted

log odds ratio, was compared to a Chi-squared distribution with two degrees of freedom.

This procedure was followed for three GWASs, one for each cleft type.

From these three scans, SNPs demonstrating suggestive association (i.e. p < 1.00×10−5)

in any of the three scans were considered for further analysis. For each SNP, the effects of

CL were compared to those of CLP, and the effects of CLP compared to those of CP using

the Q-statistic [69]. These two contrasts were chosen based on the biologic plausibility of

shared genetic effects between clefts affecting the lip (CL and CLP) and clefts affecting the

palate (CLP and CP). A strict statistical significance threshold was set at 8.6 × 10−4 [(i.e.

0.05/(29 ∗ 2)], but results were also considered for suggestive evidence. The goal of this
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method was to examine the results holistically to gain further understanding of cleft-specific

signals. Further, the direction of association was determined by the difference in absolute

values of the log odds ratios (i.e. |log(ORCLP )|−|log(ORCL)|, |log(ORCLP )|−|log(ORCP )|).

This set of 1,375 SNPs was collapsed into 29 loci based on genomic position and linkage

disequilibrium. Loci spanning large regions with evidence of multiple, statistically indepen-

dent signals (i.e. IRF6 and 8q24) were subdivided into multiple groups of SNPs based on

LD grouping in PLINK software [41] [61]. The p-values comparing CL to CLP and CLP to

CP were averaged across the SNPs within a locus. Similarly, the direction of association for

CL to CLP and CLP to CP was averaged across the SNPs within a locus. The sign of this

average direction indicated the cleft type with the strongest association signal for that locus.

These loci were then represented graphically on what is hereinafter referred to as the cleft

map. The x-axis on the cleft map is given by the average log10 p-value of the comparison

between CL and CLP of the locus times the sign of the average direction (CLP or CL) of the

locus. The y-axis of the cleft map is given by the average log10 p-value of the comparison

between CLP and CP of the locus times the sign of the average direction (CLP or CP) of

the locus. Thus, loci nearest the origin do not demonstrate any subtype-specific signals in

our sample. Loci along the x-axis in the left half of the map demonstrate evidence for CL-

specific association; loci along the y-axis in the lower half of the map demonstrate evidence

for CP-specific association; loci in the upper-right quadrant demonstrate evidence for CLP-

specific association; loci along the y-axis in the upper half of the map demonstrate evidence

for CL/P-specific association. A summary of this is represented in Figure 6.1. Loci further

away from the origin exhibit more statistical evidence of cleft-specific signals. Concentric

circles about the origin based on log10 p-values of the Q-statistics are given for reference.

Also, the size of the point on the map represents the strength of association in the separate

GWASs.
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Figure 6.1: Guide to interpret cleft subtype-specific signals

6.3 RESULTS

In our comparison of the effects for CL, CLP, and CP for 29 loci with marginal associ-

ation for at least one subtype, we identified many loci with stronger association in one

cleft subtype in addition to a handful of loci demonstrating no evidence of subtype-specific

signals. Specifically, two genes (UGT3A2 and GRHL3 ) show evidence of CP-specific asso-

ciation (average p-values: (pCLP.CL = 0.93, pCLP.CP = 8.9 × 10−5) and (pCLP.CL = 0.64,

pCLP.CP = 2.2 × 10−5) respectively). We also identified two possible CL-specific asso-

ciations in SLC28A3 and possibly COL8A1 (average p-values: (pCLP.CL = 4.1 × 10−5,

pCLP.CP = 0.24) and (pCLP.CL = 4.9 × 10−3, pCLP.CP = 0.011) respectively). WNT5A and

MSX2 are among a few genes demonstrating CLP-specific association (average p-values:

(pCLP.CL = 9.8× 10−5, pCLP.CP = 0.073) and (pCLP.CL = 3.8× 10−3, pCLP.CP = 3.7× 10−4)

respectively). Further, many loci including known CL/P risk genes with substantial evidence
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(IRF6a,b and 8q24a,b,c gene desert) appear in the combined CL and CLP area (average p-

values shown in Table 6.2).

A brief summary of the findings is given in this Table 6.2.

Table 6.2: Average p-values from the Q-statistic comparison of CLP to CL, and CLP to CP

for each locus.

Locus # SNPs PCLP.CL PCLP.CP Locus # SNPs PCLP.CL PCLP.CP

PAX7 60 0.084 0.056 FOXE1 36 0.67 0.25

CAPZB 21 0.065 2.1× 10−3 VAX1 41 0.58 0.26

GRHL3 17 0.64 2.2× 10−5 KRT18 7 0.18 4.5× 10−5

ARHGAP29 26 0.79 0.031 SPRY2 15 0.16 2.3× 10−4

WNT5A 14 9.8× 10−5 0.073 ARID3B 148 0.82 7.6× 10−3

ERC2 18 0.064 0.23 NTN1 48 0.24 3.0× 10−3

COL8A1 226 4.9× 10−3 0.011 GOSR2 62 0.50 0.38

TP63 9 0.78 0.013 NOG 4 0.47 0.41

SHROOM3 36 0.95 6.3× 10−4 MAFB 46 0.22 0.011

UGT3A2 7 0.93 8.9× 10−5 IRF6a 126 0.81 6.2× 10−8

MSX2 20 3.8× 10−3 3.7× 10−4 IRF6b 60 0.063 3.0× 10−4

TRIM10 1 0.33 0.36 8q24a 136 0.57 3.0× 10−5

DCAF4L2 8 0.55 0.023 8q24b 117 0.78 3.1× 10−3

BAALC 5 0.012 0.14 8q24c 52 0.022 0.042

SLC28A3 9 4.1× 10−5 0.24
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Figure 6.2: Cleft Map

6.4 DISCUSSION

This analysis comparing association signals from three GWAS of the primary cleft subtypes

(CL, CLP, and CP) detected numerous cleft-type-specific signals. These findings add to the

evidence that many OFC-risk genes operate in a way that may increase risk of one cleft
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type. Specifically, we have demonstrated that many known cleft-risk regions (e.g. IRF6

and the 8q24 gene desert) are common to CL/P as demonstrated by numerous GWASs.

Further, we note that GRHL3, which is the only gene implicated for isolated cleft palate

in a genome-wide association study, demonstrated a CP-specific signal in our analysis. We

also note that many candidate genes for OFCs (e.g. FOXE1 ) may generally increase risk of

clefting in a non-cleft-type-specific manner. Replication attempts for these and the rest of

the regions depicted in the ”map” are currently underway to compare our findings to those

using a similar procedure in a set of independent OFC cases and controls.

It is important to note the limitations of using statistical comparisons to identify these

cleft-type-specific signals. A failure to demonstrate a statistically significant signal for one

cleft type does not prove that the signal is common to all clefts. Further investigation of the

signals that appear to be common to OFCs in general, regardless of cleft type, should be

conducted.

Methods similar to the one proposed here are necessary to explain the system by which

OFCs occur. Identifying statistically different association signals among clefting subtypes

will be crucial in understanding the biologic systems through which OFCs develop. These

methods are fundamental to understanding difference in association signals from multiple

subtypes. The naive approach to compare results from separate analyses lacks statistical

rigor and is inappropriate. Statistical significance (i.e. p-values) are dependent upon sample

size and, as with most clefting studies, there is not perfect balance among the cases of

different cleft types; the naive approach (i.e. comparing p-values between association scans)

is unsuitable to detect differences.

This method of comparison may also be extended to study other subphenotypes in oro-

facial clefting or other complex traits. Specifically within clefting, the contribution of sub-

clinical phenotypes to the transmission of cleft-risk variants has been suggested, especially

in the case of the obicularis oris muscle defects [57]. Extending the subphenotype defini-

tions for OFCs to include the presence and absence of subclinical phenotypes may further

demonstrate the role of subclinical phenotypes in the OFC-transmission. Furthermore, this

method may be useful in untangling the mechanisms determining cleft severity, which can

be measured by the completeness of a cleft and whether one, or both, sides of the face

80



is affected. The POFC study has detailed phenotyping for individuals with OFC, which

when accompanied with this method to distinguish specific signals, may further elucidate

the genetic mechanisms operating to form each specific cleft type.
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7.0 CONCLUSIONS

In this multifaceted dissertation, we examined two hallmarks of common, complex traits –

the analysis of mixed data structures and phenotypic heterogeneity – in a genome-wide asso-

ciation setting. For the analysis of mixed data structures, we provided an overview of existing

methods for combining data from case-parent trios and unrelated cases and controls and pro-

posed a new empirical Bayes-type shrinkage estimator for estimating genotypic relative risk

in mixed data structures. The application of these methods was also studied in an example

of a multiethnic study of orofacial clefts. Furthermore, we examined sources of phenotypic

heterogeneity in complex traits, and conducted a philosophical evaluation of existing statis-

tical methods capable of identifying genetic sources of phenotypic heterogeneity. We then

applied some of these tools to identify cleft subtype-specific signals in a targeted sequencing

study of orofacial clefting and to classify associated variants by which cleft types they are

associated with in the context of genome-wide meta-analysis. Through these investigations

we have provided insight into the statistical methods commonly employed to address mixed

data structures and phenotypic heterogeneity as well as the genetic architecture of orofacial

clefting.

7.1 STRENGTHS, LIMITATIONS, AND FUTURE WORK

7.1.1 Empirical Bayes-Type Estimator

The empirical Bayes-type estimator defined in chapter 3 demonstrated no gain in efficiency,

likely due to the use of a robust variance estimate, as the analytical variance of the estimator

82



cannot be formulated. In general, empirical Bayes-type estimators are good ways to gain

efficiency even when assumptions are violated, but in this case the maximum likelihood esti-

mates were not tractable. Thus, this method requires a robust sandwich estimate of variance.

Notably, conservative estimates were also obtained for the constrained and unconstrained

estimators employing robust variance estimates.

As evidenced in the application to the multiethnic study of orofacial clefts, the empirical

Bayes-type estimator preserves the ranking of the most significantly-associated regions. This

demonstrates the utility of the empirical Bayes-type estimator, in that it appropriately orders

genetic variants by strength of association. Further simulation is warranted to investigate if

the preservation of ranked variants holds in general.

Additionally, the variance of the empirical Bayes-type estimator could be estimated em-

pirically through permutations. Using an permutation-based variance estimate may improve

the behavior of the association test by eliminating the overly conservative nature of the test

statistic. By using an empirical variance estimate, the resulting test statistic should more

closely follow a uniform distribution under the null hypothesis and improve the behavior

of the significance test. Thus, this empirical Bayes-type estimator proposed in chapter 3

may demonstrate practical importance to mixed data studies, as it preserves the order of

significant variants and could be improved through empirically estimated variance.

This method assumes an additive genetic model for each variant. This does not present a

problem in studying OFCs, as the majority of the variants discovered do not deviate severely

from an additive model. However, should other genetic models be desired, this method could

be extended to model them. This method currently assesses association for common variants

only; low-frequency variants are excluded because of the nature of the estimator. There are

existing rare variant methods that work for case-control and trios separately and SKAT for

larger families, but none that incorporates mixed data types [28] [73]. Development of a

similar, empirical Bayes-types estimator to assess a burden of rare variants would require

defining the constrained and unconstrained models; the notation of HWE across a set of

SNPs would need to be specified.

Many extensions of the TDT, which account for missing parental genotypes, an addi-

tional offspring, and affected parents exist. Currently, this method does not provide similar
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accommodations, but extensions may be feasible. Along those same lines, the only family-

based data this method takes is the case-parent trio. It may be beneficial to extend this

method to larger pedigrees by including them in the formation of the likelihood. This would

require specifying the exact nature of the likelihood, and would not necessarily account for

all familial relationships like some genome-wide association methods do.

This method does not adjust for principal components of ancestry or other covariates,

but rather assumes homogeneity of effects within the population being studied.

Lastly, the construction of the partial M-estimator assumes θ̂ and VB are known quan-

tities. It could be adapted to incorporate the estimation of these parameters into the esti-

mating equations at the expense of computational time.

7.1.2 Phenotypic Heterogeneity

We explored many new aspects for detecting genetic differences for trait differences in com-

plex disease. We presented numerous statistical methods for detecting genetic variants as-

sociated with phenotypic heterogeneity, both for analyzing genotype-level data and for com-

bining summary-level results from multiple analyses. In doing so, we identified the situations

in which each method for detecting phenotypic heterogeneity is most optimal.

Additionally, in chapter 5, we determined specific genetic loci associated with differen-

tiating OFC subphenotypes in a targeted sequencing study. We observed both common

and rare variants contributing to the genetic underpinnings and subphenotype differences of

CL/P. Importantly, this work motivates the study of rare variants as potential phenotypic

modifiers.

Furthermore, we developed a novel visualization tool for displaying genetic risk factors

for OFCs in chapter 6. This tool presents statistical evidence for heterogeneity within a

risk locus by examining differences in effects between multiple subphenotypes of OFCs.

Particularly, this tool avoids the traditional dichotomization of statistical significance (i.e.

p-value < 0.05) but rather visualizes the statistical evidence of heterogeneity for each genetic

locus. From this visualization, we can motivate potential biologic mechanisms which may

drive the heterogeneous process through which OFCs arise.
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Future analyses examining phenotypic heterogeneity will include examining gene×gene

interactions between loci shown as potential modifiers with CL/P risk loci or general OFC

risk loci. Ideally, these potential interactions will motivate biological mechanisms underlying

the genetic association with OFCs.

The analysis of genetic sources of phenotypic heterogeneity may provide insight into

the mechanisms by which OFCs come about. Examining genetic sources of phenotypic

heterogeneity may be excellent for nominating possible biologic mechanisms/processes that

may be responsible for modifying phenotypes. Moreover, the methods and tools discussed

here can and should be applied to the study of other complex traits to advance understanding

of the genetic architecture of diverse traits across the phenotypic spectrum.
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APPENDIX A

TABLE OF ABBREVIATIONS

Table A1: Commonly-used abbreviations

GWAS Genome-wide association study

SNP single-nucleotide polymorphism

OFC orofacial cleft

CL isolated cleft lip

CLP cleft lip and palate

CL/P cleft lip with/without cleft palate

CP isolated cleft palate

NSCL/P nonsyndromic cleft lip with/without cleft palate

TDT transmission-disequilibrium test

CPG conditional on parental genotype

GRR genotypic relative risk

MAF minor allele frequency

HWE Hardy-Weinberg Equilibrium
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APPENDIX B

VARIANCE CALCULATION FOR THE EMPIRICAL BAYES-TYPE

ESTIMATOR

B.1 ROBUST SANDWICH ESTIMATE OF VARIANCE FOR

CONSTRAINED ESTIMATE

VN(β̂0) =

1

N

N∑
1

(f1i(β
0)xi + f2,gpi,i(β

0)(1− xi))2
(
xif

′
1i(β) + (1− xi)f ′2,gpi,i(β)

)2(
xif ′1i(β

0) + (1− xi)f ′2,gpi,i(β0)
)2 (

xif ′1i(β) + (1− xi)f ′2,gpi,i(β)
)2 (B.1.1)
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)(
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δβ

)
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)
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B.2 ROBUST SANDWICH ESTIMATE OF VARIANCE FOR

UNCONSTRAINED ESTIMATE

VN(β̂0) =

1

N

N∑
1

(f1i(β)xi + f2,gpi,i(β)(1− xi))2
(
xif

′
1i(β
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xif ′1i(β) + (1− xi)f ′2,gpi,i(β)
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)
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B.3 ROBUST SANDWICH ESTIMATE OF VARIANCE FOR EMPIRICAL

BAYES-TYPE ESTIMATE

VN(β̂EB) =

1

N

N∑
1

(f1i(β
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where f1i =

(
N1i

p1i

)(
δp1i(β)

δβ

)
f2,gpi,i =

(
Ngpi,i
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and

K = V̂β̂(V̂β̂ + θ̂2∆̂T ∆̂)−1
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APPENDIX C

SUPPLEMENTAL FIGURES

Figure C1: Regional association plot showing −log10(P − value) for genotyped SNPs at the

1p36 locus from the meta-analysis of the European-ancestry group
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Figure C2: Regional association plot showing −log10(P − value) for genotyped SNPs at the

6p21 locus from the meta-analysis of the European-ancestry group
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Figure C3: Regional association plot showing −log10(P − value) for genotyped SNPs at the

8q24 locus from the meta-analysis of the European-ancestry group
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Figure C4: Regional association plot showing −log10(P − value) for genotyped SNPs at the

17p13 locus from the meta-analysis of the European-ancestry group
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Figure C5: Regional association plot showing −log10(P − value) for genotyped SNPs at the

17q23 locus from the meta-analysis of the European-ancestry group
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APPENDIX D

SUPPLEMENTAL TABLES
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Table D1: Windows of rare variants with statistically significant association with cleft type

(CL vs. CLP).

Window Range Population Window Type P-value

1:18943576-18946340 Philippines 20 SNP 6.00E-04

1:18999691-19004690 Philippines 5 KB 6.00E-04

1:19000487-19002797 Philippines 20 SNP 4.00E-04

1:19002191-19007190 Philippines 5 KB 3.00E-04

1:19002383-19004086 Philippines 20 SNP 3.00E-04

1:19004691-19009690 Philippines 5 KB 9.00E-04

1:19005587-19007798 Philippines 20 SNP 5.00E-04

1:95007579-95012578 China 5 KB 2.00E-04

8:129790677-129793236 Philippines 20 SNP 8.00E-04

8:129790773-129795772 Philippines 5 KB 6.00E-04

8:129791975-129794554 Philippines 20 SNP 4.50E-04

8:130298273-130303272 Philippines 5 KB 1.00E-04

8:130300154-130302665 Philippines 20 SNP 2.50E-04

8:130300773-130305772 Philippines 5 KB 5.00E-04

9:100464682-100465908 China 20 SNP 2.00E-04

9:100487529-100492528 China 5 KB 3.00E-04

9:100680029-100685028 Philippines 5 KB 2.00E-04

9:100681080-100683520 Philippines 20 SNP 8.00E-04

10:118459030-118464029 Philippines 5 KB 7.00E-04

10:118653761-118655989 China 20 SNP 3.00E-04

10:118724030-118729029 Philippines 5 KB 6.00E-04

17:8998160-9001204 China 20 SNP 7.50E-04

17:9000016-9005015 China 5 KB 1.00E-04

17:9057516-9062515 China 5 KB 7.00E-04

17:54817004-54818659 China 20 SNP 8.00E-04
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Table D2: Windows of rare variants with statistically significant association with laterality

(unilateral vs. bilateral).

Window Range Population Window Type P-value

1:94925079-94930078 Philippines 5 KB 6.00E-04

1:94925714-94928273 Philippines 20 SNP 4.00E-04

1:94927110-94929746 Philippines 20 SNP 9.00E-04

1:94981785-94983950 Philippines 20 SNP 4.50E-04

8:129515829-129517924 Philippines 20 SNP 7.00E-04

8:129557483-129559460 China 20 SNP 6.00E-04

8:129575655-129577099 China 20 SNP 1.00E-04

8:129576195-129578952 China 20 SNP 4.00E-04

8:129888186-129889673 China 20 SNP < 0.0001

9:98133816-98138815 Philippines 5 KB 7.00E-04

9:98136401-98138871 Philippines 20 SNP 7.00E-04

9:98148816-98153815 China 5 KB 7.00E-04

9:98149174-98150718 China 20 SNP 1.00E-04

17:9234571-9236098 China 20 SNP 6.50E-04

17:54567773-54572772 China 5 KB 1.00E-04

20:39260700-39265699 China 5 KB 3.00E-04

20:39264089-39265758 China 20 SNP 1.00E-04
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Table D3: Windows of rare variants with statistically significant association with sex (male

vs. female).

Window Range Population Window Type P-value

1:19198100-19199678 Philippines 20 SNP 2.00E-04

1:19199721-19200817 Philippines 20 SNP 7.00E-04

1:94327579-94332578 China 5 KB 5.00E-04

1:94328844-94331028 China 20 SNP 5.00E-05

1:94342579-94347578 China 5 KB 9.00E-04

1:94385079-94390078 China 5 KB 8.00E-04

4:4876429-4878242 China 20 SNP 9.50E-04

8:130028642-130030604 China 20 SNP 3.50E-04

9:100697529-100702528 Philippines 5 KB 9.00E-04

9:100697713-100700826 Philippines 20 SNP 9.00E-04

10:118541530-118546529 Philippines 5 KB 3.00E-04

10:118596325-118598622 Philippines 20 SNP 4.00E-04

10:118624030-118629029 Philippines 5 KB 5.00E-04

10:118625260-118628030 Philippines 20 SNP 7.00E-04

10:118638519-118640461 Philippines 20 SNP 1.00E-04

10:118639030-118644029 Philippines 5 KB 2.00E-04

10:118639485-118641706 Philippines 20 SNP < 0.0001

10:118851530-118856529 Philippines 5 KB 2.00E-04

10:118854083-118856514 Philippines 20 SNP < 0.0001

10:118854900-118857525 Philippines 20 SNP 1.00E-04

10:123368869-123373868 Philippines 5 KB 3.00E-04

10:123479803-123483275 Philippines 20 SNP 8.00E-04

17:54615714-54618317 China 20 SNP 6.00E-04

17:54766942-54767309 Philippines 20 SNP 9.50E-04

17:54811309-54812853 Philippines 20 SNP 4.00E-04

99



Table D3 (continued)

Window Range Population Window Type P-value

20:39291288-39293331 China 20 SNP 9.00E-04

20:39444857-39446029 China 20 SNP 1.00E-04

20:39445740-39446718 China 20 SNP 6.00E-04
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Table D4: Windows of rare variants with statistically significant association with side (uni-

lateral left vs. unilateral right).

Window Range Population Window Type P-value

1:19044691-19049690 Philippines 5 KB 3.00E-04

1:19044786-19046526 Philippines 20 SNP 2.50E-04

1:94745898-94747471 China 20 SNP 8.00E-04

1:94860079-94865078 Philippines 5 KB 7.00E-04

1:94861794-94864557 Philippines 20 SNP 5.00E-04

9:98306107-98308002 Philippines 20 SNP 6.50E-04

9:100631558-100633036 Philippines 20 SNP 5.00E-04

9:100652529-100657528 China 5 KB 9.00E-04

10:123431369-123436368 Philippines 5 KB 6.00E-04

17:54567379-54569266 Philippines 20 SNP 2.00E-04

17:54567773-54572772 Philippines 5 KB 6.00E-04

17:54568409-54570881 Philippines 20 SNP 4.00E-04

20:39231214-39232819 Philippines 20 SNP 7.00E-04
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Table D5: Modifier association results for laterality (unilateral vs. bilateral) and TDT results for NSCL/P for variants within

IRF6.

CHR SNP BP Minor Allele Major Allele OR (modifier) P-value (modifier) OR (TDT) P (TDT)

1 rs4844895 209958580 C T 0.6869 8.32E-04 0.6541 2.34E-10

1 rs2235372 209960436 A G 0.6753 6.46E-04 0.6558 9.56E-10

1 rs742214 209960925 C T 0.6899 9.13E-04 0.6697 1.78E-09

1 rs742215 209961023 A T 0.6896 9.06E-04 0.6721 2.56E-09

1 rs2073485 209962794 A G 0.6891 8.89E-04 0.6697 1.97E-09

1 rs2235373 209963803 A G 0.6766 5.18E-04 0.6613 5.96E-10

1 rs2235375 209965587 C G 0.691 5.91E-04 0.6912 1.44E-08

1 rs6685182 209968319 A C 0.698 8.31E-04 0.6973 3.35E-08

1 rs2013162 209968684 A C 0.6869 4.84E-04 0.6954 2.48E-08

1 rs2236907 209971628 A C 0.6947 7.18E-04 0.6991 4.10E-08

1 rs2236908 209971640 C G 0.6872 5.07E-04 0.6907 1.39E-08

1 rs2236909 209971655 G A 0.6917 6.15E-04 0.6972 3.03E-08

1 rs2294408 209973549 A G 0.7005 9.52E-04 0.6943 2.32E-08

1 rs2073486 209976215 A G 0.6837 4.22E-04 0.6872 9.20E-09

1 rs2073487 209976646 C T 0.6776 3.07E-04 0.6942 2.09E-08

1 rs17015250 209978777 G T 0.6887 5.19E-04 0.6888 1.02E-08

102



Table D5 (continued)

CHR SNP BP Minor Allele Major Allele OR (modifier) P-value (modifier) OR (TDT) P (TDT)

1 rs12403599 209979014 C G 0.6895 5.52E-04 0.6831 5.83E-09

1 rs7545538 209979613 G C 0.6832 4.16E-04 0.6912 3.05E-08

1 rs7545542 209979635 T C 0.6744 2.75E-04 0.6774 3.63E-09

1 rs2357229 209980489 T G 0.6801 3.85E-04 0.6798 5.18E-09

1 rs1005287 209980757 A G 0.6928 6.48E-04 0.6849 7.20E-09

1 rs6540559 209982025 A G 0.6572 2.17E-04 0.6606 7.01E-10

1 rs6696825 209982372 G A 0.6715 3.80E-04 0.6679 1.42E-09

1 rs6659367 209982408 T G 0.6649 3.00E-04 0.6667 1.97E-09

1 rs764093 209983331 G A 0.6765 4.77E-04 0.6631 6.77E-10

1 rs12070337 209992127 A G 0.6901 8.82E-04 0.6679 1.42E-09
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