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Rats fed high fat diet (HFD) eat larger meals compared to chow-fed rats before the onset of 

obesity, suggesting a reduced sensitivity to endogenous satiety signals (e.g., cholecystokinin 

(CCK)). CCK is released in response to nutrient absorption at the proximal small intestine and 

activates CCK receptors expressed on vagal afferents innervating gut mucosa, which then relay 

signals to the nucleus of the solitary tract (NTS), the site where vagal afferents terminate. Within 

the caudal NTS (cNTS), the A2 noradrenergic (NA) neuronal population is important for the 

regulation of food intake. Lesions of hindbrain A2 NA neurons eliminate the intake suppressive 

effects of CCK, suggesting that they play an important role in relaying satiety signals arising 

from the gut. A subset of A2 NA neurons is positive for prolactin-releasing peptide (PrRP), 

which suppresses food intake and body weight. This study investigates the effects of acute and 

chronic (2 and 7 weeks, respectively) HFD maintenance on the activation of hindbrain PrRP+ 

neurons and satiety. We tested the hypotheses that exposure to HFD blunts the ability of CCK to 

recruit PrRP neurons in the cNTS (experiment 1), and that chronic HFD exposure attenuates 

CCK’s satiating effects by reducing recruitment of PrRP neurons in the cNTS (experiment 2). 

Both acute and chronic HFD-fed rats consumed significantly more calories and gained more 

weight compared to chow-fed rats. In experiment 2, behavioral testing revealed a trend towards 

an attenuation of CCK’s intake suppressive effects in HFD-fed compared to chow-fed rats after 1 

week and 6 weeks of diet exposure. Finally, after 2 or 7 weeks, animals were sacrificed after 
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injections of saline (2mL), 1µg/kg or 5µg/kg CCK, or no injection and brains were assessed for 

cFos and PrRP immunolabeling. Our data provide evidence that after chronic HFD maintenance, 

PrRP+ neuronal signaling at the level of the NTS is implicated, suggesting that the activity of the 

PrRP+ population is impaired and contributes to the hyperphagia and increased weight gain 

observed in the rats fed HFD. 
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1.0 INTRODUCTION 

Excessive caloric intake beyond energy expenditure promotes weight gain in both rats and 

humans. Overconsumption of calories has been documented in subjects provided high-fat (HF) 

diets compared to high-carbohydrate (HC) diets, suggesting that macronutrient composition 

affects satiety (Warwick, 1996). Satiety is the process by which a meal is terminated. When rats 

maintained on chow were offered non-fat or HF cake, where the palatability of the cake was 

rated equally during a two-choice test, rats in the HF group consumed more cake calories per day 

and consequently gained more weight than rats offered non-fat cake (Sclafani et al., 1993; 

Warwick, 1996). Furthermore, in two separate studies, lean and obese human participants 

consumed more calories when offered a HF (minimally 50% kcals from fat) compared to HC 

(minimally 50% kcals from carbohydrates) meal (Blundell et al., 1993; Warwick, 1996). 

Together these data suggest that satiety is influenced by meal macronutrient composition, such 

that HF meals are less able to promote satiety to terminate feeding. 

HF diet (HFD) exposure, as well as intragastric delivery of HFD, where the diet is not 

tasted, promotes greater daily caloric consumption, suggesting that HFD increases the propensity 

of becoming overweight by changing the sensitivity to endogenous satiety signals (e.g. gastric 

distension and gastrointestinal (GI) hormones and peptides such as cholecystokinin (CCK); 

Warwick, 1996). While there are many gut peptides, CCK is a key player in providing intestinal 

feedback for the regulation of short-term feeding (Raybould, 2007). CCK is a GI derived 

anorectic peptide released by I cells of the upper small intestine in response to nutrient 

absorption (Moran, 2006; Moran, 2009; Moran and Dailey, 2011). In response to fat and protein 

in the intestine, endogenous CCK acts to inhibit gastric emptying, gastric acid secretion, and 

food intake (Raybould, 2007). CCK’s ability to promote satiety relies on CCK1 receptors on 
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vagal afferent fibers innervating gut mucosa that signal to the caudal brainstem (Moran, 2006; 

Moran and Dailey, 2009; Moran and Dailey, 2011; Grill and Hayes, 2012). 

Volume and chemical composition of ingested contents is transmitted to vagal afferents, 

providing feedback about overall meal composition (e.g. nutrient content) to the brain (Moran, 

2006). The interaction, integration and processing of these peripheral signals occurs within the 

caudal brainstem nucleus of the solitary tract (NTS), the site at which vagal afferents terminate 

(Grill and Hayes, 2012; de La Serre et al., 2016). The NTS receives and processes many signals 

involved in metabolic homeostasis, including GI satiation signals delivered by the vagus, energy-

related hormonal signals (e.g. leptin and ghrelin) that circulate in the blood, and neural signals 

that originate in forebrain nuclei (e.g., lateral hypothalamus, arcuate nucleus, and paraventricular 

nucleus of the hypothalamus; Grill and Hayes, 2012). The NTS contains a phenotypically diverse 

population of neurons that process incoming signals and project to a variety of CNS nuclei, 

including nuclei involved in energy balance and reward (Grill and Hayes, 2012). 

Of the various cell types in the NTS that ostensibly participate in satiety, the present study 

focuses on the A2 noradrenergic (NA) population located within intermediate and caudal levels 

of the NTS (Rinaman, 2011; Maniscalco et al., 2013). A2 NA neurons receive glutamatergic 

visceral sensory inputs from the cardiovascular, respiratory and alimentary systems (Rinaman, 

2011). The A2 NA population is distinguished by positive immunolabeling for tyrosine 

hydroxylase and dopamine-β-hydroxylase (DbH; Rinaman et al., 1993; Rinaman, 2011). A2 NA 

neurons are activated to express cFos, a common marker of neuronal activation, in response to 

systemic administration of exogenous CCK at doses that suppress food intake (Rinaman et al., 

1993; Rinaman et al., 1998). Interestingly, hindbrain NA lesions attenuate CCK’s intake 

suppressive effects (Rinaman, 2003). A2 NA neurons project to many brain areas, including the 
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paraventricular and dorsomedial nuclei of the hypothalamus (PVN and DMH), arcuate nucleus, 

parabrachial nucleus, central nucleus of the amygdala, bed nucleus of the stria terminalis 

(BNST), ventral tegmental area, and nucleus accumbens (Rinaman, 2010; Rinaman, 2011). 

Importantly, A2 NA neurons appear to release more than just norepinephrine, as subsets of these 

neurons co-express markers for glutamate, neuropeptide Y, and prolactin-releasing peptide 

(PrRP; Rinaman, 2011). 

PrRP is a brain- and peripherally-derived peptide that reduces food intake and body 

weight by suppressing meal size in rats and mice after central administration (Ellacott et al., 

2003). PrRP is centrally expressed in the NTS A2 neurons, caudal DMH, and the ventrolateral 

medulla, and is expressed peripherally in adrenal chromaffin cells (Maruyama et al., 2001). 

PrRP’s putative receptor, GPR10, is expressed centrally and in the periphery (Bechtold and 

Luckman, 2006; Takayanagi et al., 2008). Intracerebroventricular injections of PrRP reduce food 

intake and suppress body weight gain in both mice and rats, but the mechanism by which 

endogenous PrRP might interact with centrally and peripherally derived signals to terminate food 

intake is not well understood (Lawrence et al., 2000, 2002; Bechtold and Luckman, 2006). It has 

been reported that the lack of functional PrRP or GPR10 in genetically engineered mice results 

in hyperphagia, accompanied by greater weight gain and abdominal adiposity compared to wild-

type controls (Takayanagi et al. 2008; Mochiduki et al., 2010). However, global knockouts of 

PrRP or GPR10 also likely induce changes in the periphery that may contribute to these effects. 

Interestingly, the hyperphagia observed in PrRP- or GPR10 knock-out mice is exacerbated when 

these animals are fed HFD, suggesting that in addition to HFD, the deficit of functional PrRP 

signaling attenuates the response to endogenous satiety signals, such as CCK.  
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To reveal changes in the behavioral sensitivity to CCK, many groups have administered 

intraperitoneal (i.p.) CCK to rodents (rats and mice) and studied their meal patterns, including 

meal size, meal frequency, and the time between meals. To examine the impact, many groups 

have used outbred Sprague Dawley rats (Covasa et al. 2000, Paulino et al. 2009). When 

maintained on HFD, some of these outbred rats gain significantly more weight than others (e.g., 

obese prone (OP) vs. obese resistant (OR)) after just 4 weeks of HFD maintenance. When OP 

rats are switched from chow to HFD, they tend to eat larger meals well before the onset of 

obesity, suggesting that reduced sensitivity to endogenous satiety signals is induced by HFD 

early on, before significant changes in body weight or adiposity (Paulino et al., 2009). One way 

to measure HFD-induced changes in sensitivity to CCK is through analysis of CCK-induced 

cFos immunoreactivity in the NTS. A second way to examine the satiating effects of exogenous 

CCK is to directly measure intake in animals after CCK administration. Covasa et al. (2000) 

assessed cFos immunoreactivity in the dorsal vagal complex (which includes the NTS, area 

postrema, and dorsal motor nucleus of the vagus) in response to a very low dose of CCK (0.25 

µg/kg of body weight) and found that cFos expression was essentially absent in rats maintained 

for two weeks on a relatively HFD (34% kcals from fat) compared to moderate cFos activation in 

rats fed a very low fat diet (5% kcals from fat). Thus, reduced sensitivity to endogenous satiety 

signals may occur as an early consequence of diet exposure. The present study was designed to 

test the hypotheses that brief exposure to HFD blunts the ability of exogenous CCK to recruit 

PrRP-positive A2 neurons in the cNTS, with greater attenuation in OP rats (Experiment 1). We 

also hypothesized that chronic HFD exposure further attenuates CCK’s satiating effects and 

ability to recruit PrRP-positive A2 neurons in the cNTS (Experiment 2). 
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1.1 MATERIALS AND METHODS 

1.1.1 Subjects 

Adult male outbred Sprague Dawley rats (Charles River; total n=112; 180-210g upon arrival) 

were individually housed in hanging wire cages in a temperature-controlled room with a 12h 

light: 12h dark cycle (lights on at 0500h). Rats were acclimated to laboratory conditions with ad 

libitum access to water and standard lab chow (Purina rat chow #5001, 3.35kcal/g; carbohydrates 

56.7% of kcals, protein 29.8% of kcals, fat 13.4% of kcals) for one week prior to diet 

assignments (detailed below in Feeding Protocol). All experiments were conducted in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved 

by the University of Pittsburgh Institutional Animal Care and Use Committee. 

1.1.2 Feeding protocol 

Rats were handled daily to obtain body weight measurements and assigned to diet conditions 6 

days after arrival [chow or high fat diet (D12451 Research Diets, NJ; 4.73kcal/g; carbohydrates 

35% of kcals, protein 20% of kcals, fat 45% of kcals)]. Rats were initially weight-matched 

between diet groups. Body weight, food intake, and spillage were recorded daily. HFD-fed rats 

were retrospectively assigned as OP vs. OR via the median split of body weight gain expressed 

as a percentage compared to baseline when first assigned to the diet. 

1.1.3 Experiment 1: 2-week study 

On days 12-14 of their assigned diet condition, rats (n=76) were acclimated to 2mL 

intraperitoneal (i.p.) injections of 0.9% saline in the early afternoon after body weight and daily 

food intake measurements. On day 15, rats in each diet group were assigned to one of four 
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experimental injection conditions: i.p saline (chow n=9, HFD n=10), i.p. CCK [1µg/kg (chow 

n=9, HFD n=9) or 5µg/kg (chow n=9, HFD =9); Bachem)]or no injection (chow n=10, HFD 

n=11). Rats were anesthetized with Fatal Plus (39mg/mL/kg i.p.; Butler Schein) and perfused 

with fixative (detailed below) 90 minutes post-injection. Injections were administered between 

0930-1100hr. See Figure 1 for a detailed timeline. 

1.1.4 Experiment 2: 7-week study 

In addition to daily body weight and food intake recordings, the effect of CCK on 1h dark-onset 

food intake was assessed in a new group of rats (n=36, 18 per diet group) at three time points 

over a 7-week period of diet maintenance (i.e., during week 2, week 4, and week 7). Over four 

days at each of the three time periods, rats were injected i.p. (in randomized order, within-

subjects design) with either saline, 1µg/kg or 5µg/kg CCK, or received no injection. Rats were 

acclimated to 2mL i.p. injections of 0.9% saline following afternoon body weight and food 

intake measurements for two days prior to each of the three time period assessments. At the 

beginning of week 8 (day 51), rats within each diet group were assigned to one of three final 

experimental injection conditions, either i.p. saline, CCK (1µg/kg), or no injection. Injections 

were administered between 0930-1100hr. Rats were anesthetized with Fatal Plus and perfused 

with fixative 90 minutes post-injection. As a measure of adiposity, inguinal fat pads were 

dissected and weighed following the perfusion. See Figure 5 for a detailed timeline. 

1.1.5 Perfusion 

Rats in both experiments were sacrificed 90 minutes after i.p. injection, or at a similar time of 

day for non-injected controls. This time point was selected based on previous evidence that cFos 
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protein immunolabeling peaks 60–90 min after the onset of neural activation and persists at peak 

levels for at least 30 additional minutes (Chaudhuri et al., 2000). Anesthetized rats were 

transcardially perfused with 100 ml saline followed by 350-400 ml of 4% paraformaldehyde (PF; 

Sigma) containing 1.37% L-lysine (Sigma) and 0.21% sodium metaperiodate (Sigma) (McLean 

and Nakane, 1974). In Experiment 2, inguinal fat pads were dissected and weighed after fixation. 

Fixed brains were removed from the skull and stored overnight in 4% PF at 4 °C, then blocked, 

cryoprotected in 20% sucrose, frozen and sectioned at 35 µm using a sliding microtome. Sections 

were collected serially in six sets that each contained a complete rostrocaudal series of sections 

spaced by 210µm. Sections were stored at −20 °C in cryoproservant solution to await 

immunohistochemical processing (Watson et al., 1986). 

1.1.6 Immunohistochemistry 

Tissue sections were removed from cryopreservant, rinsed in 0.1M phosphate buffer (PB, pH 

7.2), pre-treated in 0.5% sodium borohydride (Sigma) solution for 20 minutes, rinsed in PB, 

immersed in 0.5% H2O2 for 15 minutes, and rinsed again in PB. Primary and secondary antisera 

were diluted in PB containing 0.3% Triton X (Sigma), 1% donkey serum (Jackson 

ImmunoResearch), and 1% bovine serum albumin (BSA; Sigma).  

Two sets of pre-treated sections from each rat were incubated overnight in primary cFos 

antiserum (1:20K; rabbit anti-cFos; Calbiochem/EMD) at room temperature. After rinsing, 

sections were incubated in biotinylated donkey anti-rabbit IgG (1:1000; Jackson 

ImmunoResearch) for 1 h at room temperature, rinsed, then incubated in avidin–biotin complex 

(Vectastain Elite reagents, Vector Labs) for 1.5h. After rinsing, tissue underwent an H2O2-

catalyzed reaction in a solution of diaminobenzidine (DAB; Sigma) in 0.1M Na-Acetate buffer 
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intensified with nickel sulfate (Sigma) to produce a black/dark blue nuclear reaction product.  

One set of tissue sections from each rat was mounted and coverslipped as described below for 

quantification of cFos-positive cells in single-labeled tissue.  For dual immunolabeling, the 

second set of cFos-labeled tissue was incubated overnight at room temperature in primary PrRP 

antiserum (1:10K; rabbit anti-PrRP; Phoenix). After rinsing, sections were incubated in 

biotinylated donkey anti-rabbit IgG (1:1000; Jackson ImmunoResearch) for 1 h at room 

temperature, rinsed, then incubated in avidin–biotin complex for 1.5h. After rinsing, tissue 

underwent an H2O2-catalyzed reaction in a solution of DAB in 0.1M Tris buffer to produce a 

brown cytoplasmic PrRP peroxidase reaction product. 

After single or double immunolabeling, brain tissue sections were mounted onto adhesion 

Superfrost Plus Microscope Slides (Brain Research Laboratories), allowed to dry, then 

dehydrated and defatted in a series of graded ethanols followed by xylene. Slides were 

coverslipped with Cytoseal 60 mounting medium (Fisher Scientific) and stored at room 

temperature in covered boxes. 

1.1.7 Quantification of feeding-induced neural activation 

In double-labeled tissue sections from each rat, PrRP-positive neurons were counted within the 

caudal nucleus of the solitary tract (cNTS) through the mid level of the area postrema (AP) in 8-

12 sections per rat that were spaced by 210µm, using a light microscope and a 20x objective. 

PrRP neurons were classified as cFos-positive if their nucleus contained visible blue-black 

immunolabeling, regardless of intensity. The number of PrRP-positive neurons and the 

proportion (percentage) of PrRP neurons activated to express cFos was determined in each 

experimental case.  The other set of single-labeled tissue sections from each rat was used to 



 9 

quantify the total number of cFos-positive cells within the cNTS at the same rostro-caudal levels 

expressed as an average per tissue section. 

1.1.8 Data analysis 

All of the data are expressed as mean ± SEM. One-way, two-way, and repeated measures 

analysis of variance (ANOVA) were conducted using SPSS (Version 22, IBM), followed by 

post-hoc Fisher’s LSD tests as appropriate. The α level for significance was set to 0.05. 

1.2 RESULTS 

1.2.1 Experiment 1 

1.2.1.1 Food intake and body weight 

The timeline for Experiment 1 is depicted in Figure 1. After one week, HFD-fed rats consumed 

more calories overall and gained significantly more body weight compared to chow-fed rats 

(p<0.05; Figure 2a). The effect of HFD feeding on caloric intake and body weight gain persisted 

to the end of week 2 (p<0.05; Figure 2b). When the HFD-fed rats were retrospectively divided 

into OP vs. OR groups via median split, (i.e., "high body weight gainer" vs. "low body weight 

gainer"), OP rats consumed significantly more calories than OR and chow-fed rats (p<0.05; 

Figure 2c). Further, OP rats had already gained significantly more weight compared to OR rats 

by 4 days on HFD (p<0.01; Figure 2d), whereas OR rats gained body weight similar to rats 

maintained on chow. Thus, the ability of HFD to promote excessive caloric intake and increased 

body weight gain was observed in only a subset of rats, consistent with previous reports (Paulino 

et al., 2009; de Lartigue et al., 2012). 
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Figure 1. Timeline for Experiment 1 

Rats were assigned to either chow or HFD after one week in the animal facility. Food intake and 

body weight were recorded daily, and on days 12-14 rats were habituated to i.p. injections. On 

day 15, rats were sacrificed after being assigned to one of four injection conditions: i.p. saline 

(chow n=5-8 HFD n=7-8), 1µg/kg CCK (chow n=5-6 HFD n=5-7), 5µg/kg CCK (chow n=7 

HFD n=6-7), or no injection (chow n=7-9 HFD n=7). 

Experiment 1 Timeline: 2-week study 

Day 0 
Diet Assignment 

Days 1-14 
Daily food intake and body weight measurements 

Days 12-14 
Habituation to i.p. injections 
of 0.9% saline (2mL) 

Day 15 
Drug Injection 
and Perfusions 

n=75; Chow=37 HFD=38 
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Figure 2. Experiment 1: Food intake and body weight 

HFD-fed rats significantly consumed more calories and gained more weight compared to chow-

fed rats. (A) HFD-fed rats consumed more calories during the first and second weeks compared 
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to chow-fed rats. (B) Cumulative 2-week intake (p<0.001). (C) HFD-fed rats had gained 

significantly more weight 7 days after diet assignment. (D) Caloric intake for chow-fed vs. OP 

(high BW gainer) vs. OR (low BW gainer) rats maintained on HFD. (E) Cumulative 2-week 

intake. (F) OP rats gained significantly more weight beginning day 4. * Indicates a significant 

difference (p<0.05). Different letters denote significant differences (p<0.05) between groups. Ψ 

Indicates a significant difference compared to chow and OR rats (p<0.05). Chow n=37, 

HFD=38: OR n=19, OP n=19. 
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1.2.1.2 CCK-induced cFos immunoreactivity 

The total number of cFos-positive cNTS neurons was similar in non-injected and saline-injected 

controls, whereas CCK dose-dependently increased cFos immunolabeling within the cNTS in 

both chow- and HFD-fed rats (Figure 3a). ANOVA revealed a main effect of injection on the 

number of cFos-positive neurons (p<0.001; Table 1). However, ANOVA revealed no main effect 

of diet on cFos activation, even when HFD rats were divided into OP vs. OR groups (Figure 3b). 

Quantification of dual immunolabeled tissue with cFos and PrRP revealed no significant 

difference in the proportion of PrRP-positive neurons activated after CCK between rats fed chow 

compared to those fed HFD (Figure 4; Table 1). CCK did not activate more PrRP neurons than 

saline. Further, for all doses no difference was observed when HFD-fed rats were divided into 

OP vs. OR groups (data not shown). 



 15 

Figure 3. Experiment 1: Total cFos immunoreactivity in the cNTS 

CCK-induced cFos in the cNTS (A) CCK dose-dependently increased cFos activation within the 

cNTS. Data presented as average cFos immunoreactivity per tissue section. A non-significant 

(p=0.15) attenuation in HFD- compared to chow-fed rats was observed for the 1µg/kg CCK dose. 

Chow no injection n=8, saline n=6, 1µg/kg n=5, 5µg/kg n=7. HFD no injection n=7, saline n=7, 

1µg/kg n=5, 5µg/kg n=6. (B) ANOVA revealed no difference between OR (n=3) and OP (n=2) 

rats. Different letters denote significant differences (p<0.05) between groups. 
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Figure 4. Experiment 1: Dual immunolabeling of cFos and PrRP 

Quantification of dual immunolabeled tissue with cFos and PrRP revealed no significant 

difference between rats fed chow compared to those fed HFD. Different letters denote significant 

differences (p<0.05) between groups. Chow no injection n=9, saline n=8, 1µg/kg n=6, 5µg/kg 

n=7. HFD no injection n=7, saline n=8, 1µg/kg n=7, 5µg/kg n=7. 
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Table 1. Experiment 1: CCK-induced cFos immunoreactivity statistics 

ANOVA F values and P values for CCK-induced cFos immunoreactivity. * Indicates statistical 

significance as determined by two-way ANOVA with Fisher’s LSD post-hoc tests (p<0.05). 

Effect source F value P value 
Experiment 1: Total cFos within the cNTS 
Injection Condition 
Chow vs. HFD (Sal vs. 1µg/kg CCK vs. 5µg/kg CCK vs. no injection) 
Chow vs. OP vs. OR (Sal vs. 1µg/kg CCK vs. 5µg/kg CCK vs. no inj) 

33.67 
25.07 

p <0.001* 
p <0.001* 

Diet 
(Chow vs. HFD) 
(Chow vs. OP vs. OR) 

1.46 
0.60 

p = 0.23 
p = 0.55 

Interaction 
Chow vs. HFD (Diet x Injection Condition) 
Chow vs. OP vs. OR (Diet x Injection Condition) 

0.48 
0.27 

p = 0.70 
p = 0.93 

Experiment 1: Dual immunolabeling of cFos and PrRP 
Injection Condition 
Chow vs. HFD (Sal vs. 1µg/kg CCK vs. 5µg/kg CCK vs. no injection) 
Chow vs. OP vs. OR (Sal vs. 1µg/kg CCK vs. 5µg/kg CCK vs. no inj) 

9.57 
9.07 

p <0.001* 
p <0.001* 

Diet 
(Chow vs. HFD) 
(Chow vs. OP vs. OR) 

0.29 
0.09 

p = 0.59 
p = 0.91 

Interaction 
Chow vs. HFD (Diet x Injection Condition) 
Chow vs. OP vs. OR (Diet x Injection Condition) 

0.38 
0.34 

p = 0.77 
p = 0.89 
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1.2.2 Experiment 2 

1.2.2.1 Food intake, body weight, and adiposity 

The timeline for Experiment 2 is depicted in Figure 5. Similar to results in experiment 1, HFD-

fed rats consumed more calories (p<0.01; Figure 6a) and gained significantly more body weight 

than chow-fed rats (p<0.05; Figure 6b) after 7 days and 16 days, respectively. The magnitude of 

body weight difference continued to increase throughout the 7-week study. HFD- rats consumed 

significantly more calories throughout the entire experiment, reported as weekly intake over a 7-

week period, compared to chow-fed rats (Figure 6a). Further, when HFD-fed rats were 

retrospectively assigned to OP or OR groups, OP rats consumed significantly more calories 

compared to OR rats (data not shown) and had already gained significantly more body weight 

than OR and chow-fed rats by day 14 (p< 0.01; Figure 6c). Inguinal fat pad dissections revealed 

a greater fat pad mass as a percentage of body weight in HFD- compared to chow-fed rats after 

seven weeks of diet maintenance (Figure 6d).  There was a non-significant (p=0.15) difference in 

inguinal fat pad weight between HFD-fed OP vs. OR rats (data not shown). 
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Figure 5. Timeline for Experiment 2 

Rats were assigned to either chow or HFD after one week in the laboratory. Food intake and 

body weight was recorded daily. 2 days before beginning CCK sensitivity testing (on days 6-7, 

20-21, and 41-42) rats were habituated to i.p. injections. During the testing week for all sessions,

rats received all conditions (saline, 1µg/kg CCK, 5µg/kg CCK, and no injection). On day 51, rats 

were sacrificed after being assigned to one of three final injection conditions: i.p. saline (chow 

n=7-8, HFD n=7-8), 1µg/kg CCK (chow n=7, HFD n=5-6), or no injection (chow n=7, HFD 

n=6). Inguinal fat pads were dissected and weighed following perfusions. 

Experiment 2 Timeline: 7-week study 

Day 0 
Diet Assignment 
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Drug Injection, 
Perfusions, and 

Fat Pad Dissections 

Days 1-49 
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CCK Behavioral 
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CCK Behavioral 
Testing Session 3 

N=45; Chow=22 HFD=23 
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Figure 6. Experiment 2: Food intake and body weight 

HFD-fed rats significantly consumed more calories and gained more weight compared to chow-

fed rats. (A) HFD-fed rats consumed more calories after week 1. * Indicates a significant 

difference (p<0.05). (B) Cumulative 7-week intake. (C) HFD-fed rats gained significantly more 
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weight after 16 days. Mean percent body weight gain ± SEM chow 43.5±1.88 vs. HFD 

49.3±2.04. (D) OP rats gained significantly more weight than OR as of day 14. (E) Inguinal fat 

pad weight, as a percentage of final body weight, was significantly greater in HFD- compared to 

chow-fed rats. * Indicates a significant difference (p<0.05). Chow n=22, HFD n=23: OR n=11, 

OP n=12. 
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1.2.2.2 Behavioral sensitivity to CCK 

30-minute intake is reported for the three behavioral testing sessions (figures 7a-c). During

session 1 (assessed during the second week of diet exposure), 1µg/kg and 5µg/kg CCK 

significantly suppressed 30-minute food intake compared to non-injected and saline-injected 

controls, with no main effect of diet (Figure 7d; Table 2). A trending, but non-significant 

difference in intake between chow- and HFD-fed rats was observed after the 1µg/kg (p=0.08) 

and 5µg/kg doses (p=0.15). ANOVA revealed no significant difference in intake after any 

injection condition between OP and OR rats. 

During session 2 (assessed during the fourth week of diet exposure), 1µg/kg and 5µg/kg 

CCK significantly suppressed 30-minute food intake with no main effect of diet (figure 7e; Table 

2). A trending, but non-significant difference in intake suppression between chow- and HFD-fed 

rats was observed for the 1µg/kg dose. Surprisingly, a trend towards an attenuation was observed 

in chow- compared to HFD-fed rats for the effect of 1µg/kg CCK (p=0.11; figure 7e). When rats 

fed HFD were divided into higher and lower body weight gainers, the effect of 1µg/kg CCK was 

significantly attenuated in OP compared to OR rats (p<0.05; figure 7g). 

During testing session 3 (assessed during the seventh week of diet exposure), 1µg/kg and 

5µg/kg CCK significantly suppressed 30-minute food intake with no main effect of diet (figure 

7f; Table 2). However, a non-significant attenuation was observed for the 1µg/kg (p=0.15) and 

5µg/kg (p=0.18) doses. Interestingly, when divided into higher and lower gainers, the 

hypophagic effect of the 1µg/kg CCK dose was significantly attenuated in OP compared to OR 

rats (p<0.05; figure 7h). 
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Figure 7. Experiment 2: Behavioral sensitivity to CCK 

(A) Session 1 (after 1 week of diet exposure) intake during the first thirty minutes. (B) Session 2

(after 3 weeks of diet exposure) intake during the first thirty minutes. (C) Session 3 (after 6 

weeks of diet exposure) intake during the first thirty minutes. (D) Session 1: Percent suppression 

compared to non-injection. Chow n=18, HFD n =21. (E) Session 2: Percent suppression 

compared to non-injection. Chow n=19, HFD n=20. (F) Session 3: Percent suppression 

compared to non-injection. Chow n=15, HFD n =16. (G) Session 2: OR (n=10) vs. OP (n=10) 

percent suppression compared to non-injection. (H) Session 3: OR (n=8) vs. OP (n=8) percent 

-60.0
-40.0
-20.0

0.0 
20.0 
40.0 
60.0 
80.0 

Pe
rc

en
t s

up
pr

es
si

on
 

co
m

pa
re

d 
to

 n
on

-in
je

ct
io

n 
Session 2: 30 Minute Suppression of Intake (OR vs. OP) 7G 

-20.0

0.0 

20.0 

40.0 

60.0 

80.0 

Pe
rc

en
t s

up
pr

es
si

on
 

co
m

pa
re

d 
to

 n
on

-in
je

ct
io

n 

Session 3: 30 Minute Suppression of Intake (OR vs. OP) 

p=0.036 

7H 

Saline 
1µg/kg 

5µg/kg 
Saline 

1µg/kg 
5µg/kg 

OR OP 

Saline 
1µg/kg 

5µg/kg 

Saline 1µg/kg 
5µg/kg 

OR OP 

p=0.07 



 27 

suppression compared to non-injection. Rats were omitted if they were outliers (mean +/- 2SD). 

* Indicates a significant difference (p<0.05) compared to chow for the same condition.
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Table 2. Experiment 2: Behavioral sensitivity statistics 

ANOVA F values and P values for behavioral sensitivity to CCK. * Indicates statistical 

significance as determined by one-way ANOVA with Fisher’s LSD post-hoc tests (p<0.05). 

Effect source F value P value 
Experiment 2: Percent suppression compared to no-injection (Session 1) 
(Chow vs. HFD) 

Saline 
1µg/kg CCK 
5µg/kg CCK 

(Chow vs. OP vs. OR) 
Saline 
1µg/kg CCK 
5µg/kg CCK 

0.47 
3.21 
2.12 

0.47 
1.36 
1.03 

p = 0.50 
p = 0.08 
p = 0.15 

p = 0.63 
p = 0.27 
p = 0.37 

Experiment 2: Percent suppression compared to no-injection (Session 2) 
(Chow vs. HFD) 

Saline 
1µg/kg CCK 
5µg/kg CCK 

0.44 
2.71 
0.34 

p = 0.84 
p = 0.11 
p = 0.57 

(Chow vs. OP vs. OR) 
Saline 
1µg/kg CCK 
5µg/kg CCK 

2.54 
3.28 
0.28 

p = 0.09 
p < 0.05* 
p = 0.76 

Experiment 2: Percent suppression compared to no-injection (Session 3) 
(Chow vs. HFD) 

Saline 
1µg/kg CCK 
5µg/kg CCK  

(Chow vs. OP vs. OR) 
Saline 
1µg/kg CCK 
5µg/kg CCK 

0.19 
2.23 
1.86 

3.81 
3.42 
1.38 

p = 0.89 
p = 0.15 
p = 0.18 

p = 0.03* 
p < 0.05* 
p = 0.27 
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1.2.2.3 CCK-induced cFos immunoreactivity 

Only the low dose of CCK (1µg/kg) was used for the final experiment comparing cFos 

expression and PrRP neuronal activation in Experiment 2, given that the largest differences in 

behavioral sensitivity to CCK between diet groups was evident at this lower dose. 

Administration of CCK significantly (p<0.001) increased cFos expression within the cNTS 

compared to non-injected and saline-injected control conditions in both chow- and HFD-fed rats. 

ANOVA revealed no main effect of diet (figure 8; Table 3). 

Quantification of dual immunolabeled tissue with cFos and PrRP revealed a significant 

difference between chow- and HFD-fed rats (Figure 9; Table 3). ANOVA revealed a significant 

diet effect (p=0.015), treatment effect (p<0.001), and interaction of diet*injection treatment 

(p=0.034). Surprisingly, there was no difference in cFos expression between OR and OP rats 

after any injection condition. Compared to Experiment 1, the percentage of double-labeled PrRP+ 

neurons is similar in chow-fed rats, but most interesting is the reduced activation observed in 

HFD-fed rats, suggesting that exposure to the diet is changing the recruitment of this population 

to promote satiety (Table 3). 
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Figure 8. Experiment 2: Total cFos immunoreactivity in the cNTS 

Diet does not affect cFos expression in the cNTS. Data presented as average cFos 

immunoreactivity per tissue section. i.p. saline (chow n=8, HFD n=8), 1µg/kg CCK (chow n=7, 

HFD n=5), or no injection (chow n=7, HFD n=6). ANOVA revealed no main effect of diet. 

Different letters denote significant differences (p<0.05) between groups. 
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Figure 9. Experiment 2: Dual immunolabeling of cFos and PrRP 

Dual-immunolabeling of cFos and PrRP suggests a difference due to diet. i.p. saline (chow n=7, 

HFD n=7), 1µg/kg CCK (chow n=7, HFD n=6), or no injection (chow n=7, HFD n=6). ANOVA 

revealed a significant diet effect (p=0.015), treatment effect (p<0.001), and interaction of 

diet*injection treatment (p=0.034). Different letters denote significant differences (p<0.05) 

between groups. 
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Table 3. Experiment 2: CCK-induced cFos immunoreactivity statistics 

ANOVA F values and P values for CCK-induced cFos immunoreactivity. * Indicates statistical 

significance as determined by two-way ANOVA with Fisher’s LSD post-hoc tests (p<0.05). 

Effect source F value P value 
Experiment 2: Total cFos within the cNTS 
Injection Condition 
Chow vs. HFD (Saline vs. 1µg/kg CCK vs. no injection) 
Chow vs. OP vs. OR (Saline vs. 1µg/kg CCK vs. no injection) 

23.15 
19.62 

p <0.001* 
p <0.001* 

Diet 
(Chow vs. HFD) 
(Chow vs. OP vs. OR) 

0.92 
0.46 

p = 0.34 
p = 0.64 

Interaction 
Chow vs. HFD (Diet x Injection Condition) 
Chow vs. OP vs. OR (Diet x Injection Condition) 

0.227 
0.78 

p = 0.80 
p = 0.55 

Experiment 2: Dual immunolabeling of cFos and PrRP 
Injection Condition 
Chow vs. HFD (Saline vs. 1µg/kg CCK vs. no injection) 
Chow vs. OP vs. OR (Saline vs. 1µg/kg CCK vs. no injection) 

42.13 
28.67 

p <0.001* 
p <0.001* 

Diet 
(Chow vs. HFD) 
(Chow vs. OP vs. OR) 

6.54 
3.73 

p= 0.02* 
p= 0.04* 

Interaction 
Chow vs. HFD (Diet x Injection Condition) 
Chow vs. OP vs. OR (Diet x Injection Condition) 

3.73 
2.44 

p =0.03* 
p =0.07 
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1.3 DISCUSSION 

In the present study, the difference in body weight gain between chow- and HFD-fed rats was 

expected, but unlike other studies utilizing outbred Sprague Dawley rats, we observed a 

significant difference in body weight gain after 7 days. After retrospective assignment of HFD-

fed rats to OP or OR groups, the difference in weight gain became evident after just 4 days of 

diet exposure, much earlier than previously reported (Paulino et al., 2009; de Lartigue et al. 

2012). While a significant difference in body weight gain was evident before the end of the 

second week in Experiment 2, this difference did not reach significance until 16 days of diet 

maintenance. When HFD-fed rats were assessed retrospectively as OP vs. OR, a significant 

difference in weight gain was observed at day 14 of diet exposure. 

Body weight results in the present study are consistent with previously published reports 

that maintenance on HFD promotes significant increase of body weight compared to body 

weight in chow-fed rats (Paulino et al., 2009; de Lartigue et al. 2012). Rats fed HFD consumed 

significantly more calories than chow-fed rats by the end of the first week in both experiments. 

Thus, HFD-induced effects on caloric intake precede the onset of obesity by several weeks, 

suggesting that HFD rapidly alters feedback signals to the brain that control food intake. 

CCK is a very well studied gut peptide that contributes to feedback regulation of food 

intake (Ritter et al., 1994; Moran, 2006; Raybould, 2007; Moran and Dailey, 2011). In 

Experiment 2, exogenous CCK was used as a tool to assess changes in the ability of CCK to 

suppress feeding in chow- vs. HFD-fed rats at the beginning of the dark cycle, when rats 

naturally consume their largest meals. The significantly increased weight gain observed in HFD-

fed rats in Experiment 1, after just seven days of diet exposure contributed to the selection of 

time points to assess behavioral sensitivity to CCK in Experiment 2. During each behavioral 
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testing session in Experiment 2 (i.e., after 1 week, after 3 weeks, and after 6 weeks of diet 

exposure), both doses of CCK significantly suppressed 30-minute food intake, with no main 

effect of diet. During session 1, a trending but non-significant difference between CCK-induced 

feeding suppression in chow- and HFD-fed rats was observed after both doses, but there was no 

significant difference between OP and OR rats. In session 2, a trending but non-significant 

difference between CCK-induced feeding suppression in chow- and HFD-fed rats was observed 

after the lower dose, but surprisingly unlike session 1, the trending attenuation was observed in 

rats fed chow and not the HFD-fed rats. When HFD-fed rats were divided into higher (OP) and 

lower (OR) body weight gainers, the feeding inhibitory effect of 1µg/kg CCK trended an 

attenuation in OP compared to OR rats. Interestingly, during session 3, the suppressive effect of 

1µg/kg CCK on food intake was significantly attenuated in OP compared to OR rats, consistent 

with previously published data investigating changes in vagal sensory neuron sensitivity as a 

result of diet manipulation (Paulino et al., 2009; Nefti et al., 2009; de Lartigue et al., 2012; 

Kentish and Page, 2015; Ueno and Nakazato, 2016). 

Another way to assess central neural sensitivity to systemic CCK is by quantifying CCK-

induced cFos immunoreactivity. In Experiment 1, i.p. administration of CCK dose-dependently 

increased cFos activation in the cNTS, but there was no main effect of diet. There also was no 

significant difference in CCK-induced cFos activation when the HFD-fed rats were divided into 

OP vs. OR groups. When dual immunolabeled tissue was examined to assess activation of PrRP-

positive neurons, there also was no difference between chow- and HFD-fed rats. Thus, despite 

the significantly increased caloric intake and body weight gain of HFD-fed compared to chow-

fed rats after 1 week of diet exposure, there were no apparent differences in CCK-induced neural 

activation within the cNTS. 
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Given these results, along with the behavioral data obtained throughout Experiment 2, 

only one dose of CCK (1µg/kg) was used as one of the final injection treatments to assess diet-

related effects on CCK-induced cFos activation in 7-week chow- and HFD-fed animals. CCK 

(1µg/kg body weight) significantly increased cFos activation in both chow- and HFD-fed rats, 

but there was no main effect of diet. It is interesting that in both diet groups and for each 

treatment the average of total cFos counts within the cNTS is approximately half of what was 

observed in Experiment 1, suggesting that both chow- and HFD-fed rats become less sensitive to 

i.p. injections after repeated treatments. While the behavioral sensitivity assessments suggest that 

the 1µg/kg dose continues to suppress intake compared to saline and non-injected conditions, it 

is possible that the attenuated cFos response is a result of repeated injections in both diet groups. 

Interestingly, however, the percentage of PrRP+ neurons activated to express cFos after CCK 

treatment is similar in chow-fed rats in Experiments 1 and 2, whereas CCK activated smaller 

proportions of PrRP+ neurons in HFD-fed rats in Experiment 2 compared to Experiment 1. This 

supports the hypothesis that CCK loses some its ability to activate PrRP neurons, which may 

contribute to the blunted effect on food intake observed during the final testing session. 

We expected to observe a reduced ability of CCK to activate cFos within the cNTS in 

HFD-fed rats based on Covasa et al.’s (2000) study. In that study, outbred Sprague Dawley rats 

were maintained on either a very low fat or a moderately HFD for two weeks before CCK-

induced cFos was assessed in response to a very low dose (i.e., 0.25µg/kg). The authors reported 

that HFD essentially eliminated CCK-induced cFos expression in the NTS, However, it is critical 

to understand that their control rats were fed an unusually low fat diet (5% kcals from fat), 

approximately one-third of the fat content found in standard rat chow (13% kcals from fat). 

During our 2-week diet exposure a non-significant, but trending, difference in CCK-induced 
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cFos activation between chow- and HFD-fed rats was observed in the response to the 1µg/kg 

CCK dose. While this dose is larger than the one administered by Covasa et al., it increases 

plasma levels of CCK to reported peak endogenous levels in rats after meal consumption (Zittel 

et al., 1999). Incorporating our results, and data obtained from other groups using similar diet 

manipulation paradigms in rats, it is possible that Covasa et al. (2000) did not find reduced 

satiety in HFD-fed rats, but rather an increased sensitivity in rats maintained on an isocaloric 

very low fat diet (Torregrossa and Smith, 2003). 

Rats in our study were designated OP or OR retrospectively, with the top 50% body 

weight gainers designated as OP and the bottom 50% body weight gainers as OR. While a 

standard method has not been declared by the ingestive behavior field, it is not uncommon to 

retrospectively assign animals to OP or OR with 50% as the dividing factor (Levin, 1993; de 

Lartigue et al., 2012). Further, this median split kept the low body weight gainers on HFD (OR) 

equivalent to the percentage in body weight gain recorded for rats fed chow. 

Our experimental model is based on a proposed role for impaired NTS signaling to be the 

main contributor to HFD-induced hyperphagia and body weight gain (Figure 10), but it is 

important to recognize that the vagus also exhibits changes in response to HFD. Several 

published studies using rats and mice have focused on diet-induced changes in nodose ganglion 

vagal sensory neurons, focusing on receptor expression profiles, which include: CCK1, 

cannabinoid type 1, glucagon-like peptide 1, ghrelin, peptide YY type 2, melanin-concentrating 

hormone, leptin, and orexin receptors (Nefti et al., 2009; Paulino et al., 2009; de Lartigue et al. 

2012; Ronveaux et al., 2015). It has previously been reported that mice deficient in CCK1 

receptors exhibit a shorter latency to initiate a meal, suggesting an increased drive to eat that is 

especially pronounced when animals are fed HFD (Donovan et al., 2007). If HFD exposure 
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results in immediate changes to the receptor profile of physiologically relevant feeding-related 

peptides at the nodose, such as CCK, leptin, and ghrelin, then chronic HFD maintenance is likely 

to maintain or further drive changes in receptor expression. Therefore, chronic HFD maintenance 

not only changes the sensitivity to endogenous satiety signals which alters signaling to the NTS 

via the vagus, but it also induces changes within the vagus, altogether contributing to impaired 

NTS signaling. 

In conclusion, our data are consistent with previously published data reporting 

differences in intake and body weight between chow- and HFD-fed rats, but the apparent 

difference in body weight gain as early as 4 days is novel. Further, behavioral sensitivity to CCK 

assessments revealed a difference between OP and OR rats after 7 weeks of diet maintenance, 

and dual-immunolabeling of cFos and PrRP suggest that the A2 NA PrRP+ neurons in the cNTS 

may be involved in the diminished sensitivity. Future studies should further explore the role of 

A2 NA PrRP+ neurons by selectively activating and inactivating the population via Designer 

Receptors Exclusively Activated by Designer Drugs (DREADDs) as well as by selectively 

lesioning the population and examining food intake, particularly meal size and manipulations 

with CCK (Urban and Roth, 2014).  
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Figure 10. Proposed model of how HFD contributes to hyperphagia and weight gain 

Maintenance on HFD changes the signal being relayed via the vagus nerve to the NTS. A 

reduced signal through the vagus will impair the satiety signaling at the level of the NTS, 

contributing to increased food consumption and weight gain. Figure is adapted from Kentish and 

Page (2015). 
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in the development and maintenance of obesity. This
review will briefly outline changes that occur in food intake
in obesity, and then focus on the vagal mechanisms that are
disrupted in obesity and provide evidence suggesting that
the vagus is an important pathway in the development of
obesity. It should be pointed out that GI vagal afferents are
involved in many different processes, not just regulation of
food intake and satiety. However, this review will largely
focus on possible contributions vagal afferents make in
relation to food intake. Beyond the scope of the current
review, but equally important in food intake regulation,
are reward and emotional factors associated with external
stimuli, such as palatable food, which influence regions
in the CNS involved in the control of ‘hedonic’ feeding
(Berthoud, 2011).

Changes in feeding behaviour in obesity

It has long been observed that obesity is accompanied by
changes in food intake behaviour. Human studies have
suggested that the primary changes are increased levels of
snacking (Bertéus Forslund et al. 2002, 2005), increased
portion sizes (Bertéus Forslund et al. 2002; Berg et al. 2009)
and meal number (Bertéus Forslund et al. 2002). However,
there are a number of inherent issues with the majority
of human-based food intake studies. Firstly, with the
exception of studies involving remote isolated populations
or monozygotic twins it is almost impossible to control for
genetic factors. Secondly, it would not normally be possible
to observe the changes in food intake that occurred as the
obesity developed. Finally, well-controlled long term food
intake studies are very rare and as such most of the evidence
comes from self-reported means including food diaries
and surveys, which are prone to errors (Cook et al. 2000).
In contrast, there are some very elegant data that have come
from rodent studies that support the human data. Firstly,
rats fed a cafeteria diet (suggested to be representative of
the obesogenic foods humans consume) display long term
increases in meal size, eating rate, total caloric increase and
a transient increase in meal number (Rogers & Blundell,
1984). High fat diet-induced obese (DIO) rats are hyper-
phagic displaying an increase in meal size and eating rate,
but no changes in meal number (Furnes et al. 2009), which
suggests that there may be intricate differences between the
impact in excess of specific macronutrients with regard to
food intake patterns; however, an in depth discussion of
this falls outside the scope of this review.

From both the human and rodent data available it
becomes evident that, at least with respect to the change
in meal size, there is a likely dampening in the response to
food intake through a reduction in the ability to initiate
satiety signals which helps to perpetuate and protect the
obese state (Fig. 1). This is supported by findings that
obese humans can tolerate an increased level of intragastric

volume before discomfort is felt (Geliebter, 1988). The
major neural pathway by which gastric and small intestinal
meal-related signals are transmitted to the CNS is through
vagal afferents. The following is a description of the vagal
connection between the GI tract and a selection of vagal
afferent signals that are disrupted in obesity and how they
may contribute to altered eating behaviour.

The vagal gut–brain axis in food intake

The vagus has dense afferent innervation through
the layers of the stomach and small intestine.
The endings respond to mechanical and chemical
(hormonal/nutrient/peptide) stimuli to initiate satiety
signals as well as other modulatory effects (Fig. 2). They
project from the GI tract to activate neurons within
the nucleus of the solitary tract (NTS; Gil et al. 2011).
Activation of regions of the brain involved in the regulation
of food intake, including the arcuate nucleus (Faipoux et al.
2008) and the paraventricular nucleus (Mönnikes et al.
1997), then occurs subsequent to NTS neuronal activation.
Initial studies investigating the role of vagal afferents in
the regulation of food intake utilised crude measures
for disrupting vagal signalling, including vagotomies and
‘selective deafferentation’ using chemical compounds,
most commonly capsaicin (Schwartz, 2000). However,

HYPERPHAGIA

WEIGHT GAIN
IMPAIRED

VAGAL SATIETY
SIGNALLING 

 

OBESITY

HIGH FAT DIET 

Figure 1. Maintenance of diet-induced obesity through a cycle
of obesity, weight gain and impaired vagal signalling
Feeding of a palatable high fat diet induces excessive caloric intake
(hyperphagia), which in turn causes an increase in weight and
suppresses anorexigenic vagal satiety signals induced by mechanical
stimuli or chemicals. This impaired vagal satiety signalling leads to
continued hyperphagia and weight gain even in the absence of a
palatable high fat diet, protecting and perpetuating the obese state.

C⃝ 2014 The Authors. The Journal of Physiology C⃝ 2014 The Physiological Society
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