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ABSTRACT

Disease phenotyping using omics data has become a popular approach that can poten-

tially lead to better personalized treatment. Identifying disease subtypes via unsupervised

machine learning is the first step towards this goal. With the accumulation of massive high-

throughput omics data sets, omics data integration becomes essential to improve statistical

power and reproducibility. In this dissertation, two directions from sparse K-means method

will be extended.

The first extension is a meta-analytic framework to identify novel disease subtypes when

expression profiles from multiple cohorts are available. The lasso regularization and meta-

analysis can identify a unique set of gene features for subtype characterization. By adding

pattern matching reward function, consistency of subtype signatures across studies can be

achieved.

The second extension is using integrating multi-level omics datasets by incorporating

prior biological knowledge using sparse overlapping group lasso approach. An algorithm using

alternating direction method of multiplier (ADMM) will be applied for fast optimization.

For both topics, simulation and real applications in breast cancer and leukemia will show

the superior clustering accuracy, feature selection and functional annotation. These methods

will improved statistical power, prediction accuracy and reproducibility of disease subtype

discovery analysis.
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Contribution to public health: The proposed methods are able to identify disease

subtypes from complex multi-level or multi-cohort omics data. Disease subtype definition

is essential to deliver personalized medicine, since treating different subtypes by its most

appropriate medicine will achieve the most effective treatment effect and eliminate side effect.

Omics data itself can provide better definition of disease subtypes than regular pathological

approaches. By multi-level or multi-cohort omics data, we are able to gain statistical power

and reproducibility, and the resulting subtype definition is much reliable, convincing and

reproducible than single study analysis.
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1.0 INTRODUCTION

In this section, background knowledge for my dissertation is introduced. It contains several

subsections. Genomics background and techniques serves as a overview of datasets used

in this dissertation (Section 1.1). Subtype discovery via transcriptomic data describes the

biological motivation of this dissertation (Section 1.2). Basic bioinformatics approach to

high-throughput genomic data serves as the foundation on which the proposed methods will

depend on (Section 1.3). Statistical omics data integration, including meta analysis and

integrative analysis, serves as the motivation for developing these methods (Section 1.4).

Section 1.5 will give an overview of the dissertation structure and brief introduce the purpose

of each Chapter.

1.1 VARIOUS TYPES OF OMICS DATA

Omics represents the study of genomics, proteomics or metabolomics, which are all with

root -omics. Genomics aims at the collective characterization and quantification of genes,

Omics aims at the collective characterization and quantification of genes, environmental

effect to genes and their interactions. It involves a wide variety of genetic aspects including

transcription, translation, modification, protein-protein interaction and DNA structure, gene

fusion. These genomic phenomena have brought up diverse omics data types. This section

will introduce these types of data at DNA, RNA, epigenetics levels. Properly integrating

these types of omics data and combining data from different sources is very challenging and

my dissertation will solve a couple challenges in this field.
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1.1.1 Omics data at DNA level

Deoxyribonucleic acid (DNA) is a nucleic acid which carries majority of the genetic informa-

tion and controls the development and replication of all living organisms. DNA molecules

are consisted of double strands coiled around each other, with compromised nucleotides on

each base position. Each nucleotide composes one of these nitrogen-containing nucleotides,

guanine (G), adenine (A), thymine (T), or cytosine (C). DNA is a sequence of these nu-

cleotides, which is folded as chromosomes inside nuclear. The human genome contains 46

chromosomes (23 pairs) with approximately 3 billion base pairs of DNA. Fragments of DNA

could be transcripted into messenger RNA, which will form protein sequence and affect the

phenotype of the organism. DNA replicates itself during cell division and the copies of sibling

cells have the identical genetic information as their parent. Single nucleotide polymerphisms

(SNPs) is an inheritable mutation at a single base pair among different members of a pop-

ulation. Common measurement of genetic variations is often referred as SNP genotyping.

Many studies have shown that SNP is associated with phenotypic variation, response to

environment and anthropometric behavior. This type of genetic variation is usually stud-

ied in the whole genome scale and the analysis of SNP is called genome-wide association

study (GWAS). Mutation is a permanent alteration of nucleotide sequence. The resulting

change of DNA is not repairable and the errors will proceed to DNA replication and RNA

transcription. There are two types of major mutations: somatic mutation and germline

mutation. Somatic mutation is a genetic structure variance which is not inheritable from a

parent or to an offspring. It happens all the time for living organisms. Germline mutation

occurs in sperm or ova, which is heritable since it is in the lineage of germ cells. This type

of mutation will be transmitted to offspring. Mutation is associated with cancer since the

error in RNA transcription would result in undesirable protein which could lead to cancer.

Copy number variation (CNV) is a structure variation of DNA segment. It corresponds to

relative long regions of DNA being altered (either duplicated or deleted). DNA is double

strand so normal copy number is 2. Duplicated copy will be greater than 2 and deleted copy

will be smaller than 2. It is observed to relate with diseases and also accounts for regulation

of genes expression and other genomic process.

2



1.1.2 Omics data at RNA level

Ribonucleic acid (RNA) is another nucleic acid involved in various biological processes:

coding, regulation and expression of a gene. Although DNA and RNA are all chains of

nucleotides, but RNA is single strand while DNA is double strands. Cellular processes utilize

messenger RNA (mRNA) to transmit genetic information and synthesize proteins. mRNA

plays an important role for many biological process and the amount of mRNA (often called

gene expression) is directed associated to protein formation, external phenotype, cellular

pathway, disease mechanism. mRNA is also called transcriptomic data since it is transcripted

from DNA. Normally the expression of mRNA is positively correlation with CNV of the same

gene, since more copies of DNA tend to transcript more mRNA. But this is not necessarily

true since in reality there are far more complicated biological mechanism which would prevent

the mRNA to be overly expressed given the existence of more copies of DNA. Besides mRNA,

there are other types of RNA, including rRNA, tRNA, snRNA, miRNA. miRNA (short for

microRNA) is a small, non-coding RNA which could regulate gene expression via facilitating

or silencing gene expression. miRNA can target on a group of genes (usually hundreds)

and such predicted information are publicly available in several popular databases (e.g.

http://www.microrna.org/microrna/home.do, http://www.broadinstitute.org/gsea/

msigdb/collections.jsp).

1.1.3 Omics data of epigenetics

Epigenetics include DNA methylation, histone modification and chromatin structure change

and it plays a pivotal role in gene regulation. Although monozygous twins have identi-

cal genotypes, their phenotype may be discordant, such as susceptibilities to disease and

many anthropomorphic features (Fraga et al., 2005), because of the existence of epigenetic

difference. DNA methylation is one of the most crucial epigenetic effects, which will help

regulate the gene expression and silencing(Kulis and Esteller, 2010) and many other cellular

processes, including development of embryo, changing chromatin architecture, inactivation

of X chromosome, genomic imprinting and histone modification (Robertson, 2005). It is

intensely studied and it has been discovered that DNA methylation is correlated with other

3
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epigenetic effect such as histone modification and changing chromatin architecture. Cancers

are related to the alteration of DNA methylation pattern. For instance, hypermethylation of

tumor suppress genes will inactivate their transcriptional function and lead to loss of regular

cellular function (Esteller, 2007). DNA methylation happens when addition of a methyl

group (-CH3) occurs at the fifth position of the cytosine (C). Most common DNA methy-

lation are observed in CpG dinucleotides, where cytosine (C) is adjacent to guanine (G).

Both microarray technique and NGS technique (see Section 1.1.4) allow us to measure the

methylation value. Commonly the methylation value is measured in a mixture of cells given

a subject. To quantify the methylation level, researchers define beta value, which represents

for a CpG site, the percentage of methylated events out of all methylated and unmethylated

events. As a result, beta value is between 0 and 1. Normally methylation level is negatively

correlated with mRNA expression of the same gene, since the methyl group on DNA usually

inhabits the transcription of mRNA.

1.1.4 Experimental techniques

1.1.4.1 Microarray Traditionally in molecular biology, researchers could only study

some specific genes, which is very time consuming and expensive. DNA Microarray is a

break-through technique that could address this problem that was thought as impossible.

This technique enable researchers to obtain the expression of tens of thousands of genes

simultaneously. This facilitates the biological community to understand the mechanism of

many diseases and fundamental aspects of organ growth and development. A microarray ex-

periment will generate DNA templates which can target specific genes and hybridize mRNA

molecule onto it. And an array is consisted to a lot of DNA samples. The gene expres-

sion level will be evaluated by the amount of mRNA which bound to the DNA templates.

Microarray is also called gene-chips, which has been widely used for decades and its tech-

nique has been updated constantly. It enjoys tremendous popularity for its low cost and

high-throughput (measuring tens of thousands of genes at the same time).

There are three major types of microarray. The first one is expression profiling, in

which mRNA or miRNA expression level could be harvested by using the hybridization

4



technique. The detected biomarkers could be hypothesized to be associated with cancer,

other disease, treatment or response to environment. The second type is SNP array detection,

in which single nucleotide polymorphism will be identified. SNP genotyping data and copy

number variation data could be obtained from this type of array. By certain antibody

treatment, methylation level could be detected by this type of array. The third type is

ChIP-chip, which will attach antibodies to protein of interest and immunoprecipitate the

DNA/protein complex. This procedure will help identify binding sites for transcriptional

regulators (including transcription factors, histones and other DNA-binding proteins).

1.1.4.2 Next generation sequencing In the field, the traditional sequencing tech-

nique – Sanger sequencing has been dominating for more than 30 years. In 2001, the Human

Genome Project sequenced the blue print of human genome and it greatly motivated people

to explore our genetic mechanism from a sequencing perspective. However, it is not only

expensive but also only able to target several specified genes. Thus, researchers are hunger

for high throughput techniques. Next generation sequencing utilizes high-throughput DNA

sequencing techniques: DNA sequence are smashed into fragments, which are called reads,

and sequenced in parallel, yielding substantially throughput. Alignment algorithms will as-

semble these short reads to the reference genome. By reconstructing the whole genome, we

are able to know the exact nucleotide order present in DNA and the coverage of of segment

at any position. Therefore a wide variety of genomic features could be measured. Through

specific locus base, we could detect SNP/indel, structural variation and somatic mutation.

Through coverage, we will be able to detect copy number variation and mRNA expression.

By some extra bisulfite treatment technique, sequencing can also measure methylation. Be-

sides novel genomic feature such as isoform of mRNA and fusion genes could be detected.

Nowadays, millions of fragments of DNA from a single sample can be sequenced in parallel

and the entire genome can be sequenced within one day. This technique has dramatically

accelerated people’s understanding about human genome.
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1.1.5 Databases for Omics data

With advances in biological techniques, researchers are able to measure many different types

of omics data. This is often referred as high-throughput technology since relatively small-

size detection equipment could generate large amount of information. Omics datasets are

booming and accumulating in the past 10 years. The price to generate the data keeps

dropping down and large amount of datasets are available in the public domain. Over the

years large amount of omics data are accumulated in public databases and depositories;

for example, The Cancer Genome Atlas (TCGA) http://cancergenome.nih.gov, Gene

Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/, Sequence Read Archive

(SRA) http://www.ncbi.nlm.nih.gov/sra, just to name a few. These datasets provide

unprecedented opportunities to reveal cancer mechanisms via combining multiple cohorts or

multiple-level omics data types (a.k.a. horizontal omics meta-analysis and vertical omics

integrative analysis; see below) (Tseng et al., 2012). My dissertation proposes integrative

and/or meta-analysis approaches to tackle this problem.

1.2 SUBTYPE DISCOVERY VIA TRANSCRIPTOMIC DATA

Many complex diseases were once thought of as a single disease but modern transcriptomic

studies have revealed their disease subtypes that contain different disease mechanisms, sur-

vival outcomes and treatment responses. Representative diseases include leukemia (Golub

et al., 1999), lymphoma (Rosenwald et al., 2002), glioblastoma (Parsons et al., 2008; Ver-

haak et al., 2010), breast cancer (Lehmann et al., 2011; Parker et al., 2009), colorectal cancer

(Sadanandam et al., 2013) and ovarian cancer (Tothill et al., 2008). Taking breast cancer as

an example, Perou et al. (2000) was among the first to apply gene expression profile informa-

tion to identify clinically meaningful subtypes of breast cancer, such as Luminal A, Luminal

B, Her2-enriched and Basal-like. Many independent studies have followed the approach on

different cohorts and identified similar breast cancer subtypes (Ivshina et al., 2006; Loi et al.,

2007; Sørlie et al., 2001; van’t Veer et al., 2002; Wang et al., 2005). Although the breast
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cancer subtype classification models have been shown to cross-validate across studies with

moderately satisfying consistency (Sørlie et al., 2003), each study claims a different intrinsic

gene set (i.e. the list of genes used to define subtype classification) and a different character-

ization of cancer subtypes (Mackay et al., 2011), making it difficult to classify new patients

with confidence in clinical applications. Parker et al. (2009) combined five transcriptomic

studies using pre-existing subtype classifications from each study and identified 50 genes

most reproducible in the subtype classification by Prediction Analysis of Microarray (PAM)

(Tibshirani et al., 2002). These signature genes (often called PAM50) have been widely

followed up and validated thereafter but, from a statistical point of view, the construction of

PAM50 genes was an ad hoc framework and did not fully integrate information of multiple

transcriptomic studies. In a parallel line, Wirapati et al. (2008) performed meta-analysis

of breast cancer subtyping based on three pre-selected genes (ER, HER2 and ERBB2) and

the consequential subtypes were associated with the prior gene selections. These subtypes

usually have strong clinical relevance since they show different clinical outcome, and might

be responsive to different treatments (Abramson et al., 2015). However, single cohort/single

omics (e.g. transcriptome) analysis suffers from sample size limitation and reproducibility

issues (Simon et al., 2003; Simon, 2005; Domany, 2014). Section 1.1.5 describes large amount

of genomic data are available in public domain. By integrating these datasets will increase

statistical power, credibility and reproducibility.

1.3 HIGH-THROUGHPUT GENOMIC DATA ANALYSIS

In this section we will introduce several commonly used high-throughput data analysis meth-

ods. They are also the foundation for methodology development and result evaluation.

1.3.1 Differential expressed gene detection

Differential expressed gene detection is the most commonly used genomics analysis. It could

describe under different environment (case vs control), which gene expression will be altered.
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These detected biomarkers can be further utilized to characterize the disease and predict

the patients. It is also the foundation for other downstream analysis, such as pathway

enrichment analysis machine learning analysis. For continuous expression data including

microarray and RNAseq FPKM data, traditional statistical methods include the student t

test and the Wisconsin rank sum test for two class comparisons. Anova is often applied

to multiple classes comparison and linear regression will be applied to continuous covariate.

Cox proportional hazard model will be suitable for time to event data. However, there are

limitations on traditional methods. For example, with t test, sometimes features with small

effect size could also be chosen because of low variance, through they are not of biological

interest. Advanced method includes SAM (Tusher et al., 2001), LIMMA (Smyth, 2005)

which will partially account for these limitations. For RNAseq count data, edgeR(Robinson

et al., 2010) is a popular tool to detect DE genes. Meanwhile, other omics datatype may have

their own hypothesis. For methylation, people will detect differential methylation using t test

(Hansen et al., 2012) or logistic regression model(Akalin et al., 2012). However these methods

don’t fully account for the design and mechanism of methylation. The Beta binomial model

(Park et al., 2014) will fully characterize these properties. For each of these data setting,

permutation test is also a very powerful approach to detect DE genes. However, it suffers

from heavy computing.

Another problem in differential expressed genes detection is multiple comparison. In

genomics setting, we have at least tens of thousands of features. Assuming there is no DE

signal and all genes are from null. In this case, the p values will be uniformly distributed

between 0 and 1. By chance we will get very signifiant p values. Therefore, we couldn’t simply

use the standard 0.05 p value threshold. To address this problem, there are two multiple

comparison control methods. The first one is family-wise error rate (FWER) (Hochberg and

Tamhane, 2009), which gives the probability of at least one false positive. In genomic setting,

it is often too stringent to control FWER. Another commonly used measurement is false

discovery rate (FDR) (Benjamini and Hochberg, 1995). This indicates within our discoveries,

what the percentage of false positives is. These two multiple comparison procedures are

widely applied in genetics and genomics studies.
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1.3.2 Pathway enrichment analysis

In genomics analysis, we could obtain a list of genes that are related to disease or treatment.

These genes could be differential expression genes (from DE analysis) or co-expression genes

(from cluster analysis). Pathway enrichment analysis is to pursue a functional annotation

for the outcome gene list. A pathway database is a collection of genes, which are known

to be associated with specific biological states, chemical perturbations or other environmen-

tal or treatment factors. A lot commonly used pathway databases can be obtained from

public domain. To list a few, Gene Ontology (GO) http://geneontology.org, KEGG

http://www.genome.jp/kegg/, Biocarta http://www.biocarta.com, Reactome http://

www.reactome.org, MSigDB http://www.broadinstitute.org/gsea/msigdb/index.jsp.

Pathway enrichment result could serve as a validating purpose if the pathway result is highly

associated with the experimental setting,

Several hypothesis testing methods can be used to examine the association between the

experimental outcome gene list and a pathway (a list of pathway genes). Fisher’s exact tests

or Chi-square tests could test this association very well. For these two tests we only need to

use the outcome gene list and don’t need the significance score (p value of each gene). We

could construct a 2 × 2 table by two conditions: whether the gene is in outcome gene list

and whether the gene is in the pathway database. The null hypothesis is the proportion of

outcome genes inside a pathway is independent of the proportion of outcome genes outside

a pathway. Fisher’s exact tests or Chi-square tests can illustrate how significant a outcome

gene proportion is different between inside or outside pathways. Another approach is to

utilize a Kolmogorov-Smirnov test (KS test). For this test, we need to use the gene list

and significance score. The null hypothesis is the distribution of significance score of all

genes inside a pathway is same as the distribution of significance score of all genes outside a

pathway. The KS test could could tell how significant there is a significance score difference

between inside or outside pathways. Pathway enrichment analysis will be used to examine

whether the detected co-expression gene list or DE gene list is biological meaningful in result

sections of later chapters.
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1.3.3 Transcriptomic clustering analysis

1.3.3.1 General clustering analysis algorithms Unsupervised machine learning aims

to group a set of objects into clusters without the prior knowledge of class labels. It is widely

used in genomics research and other machine learning field. Clustering analysis could help

to discover disease subtypes, which could better characterize the disease property and guide

to precision medicine. In the literature, hierarchical clustering (Ward Jr, 1963) generates

clustering result at each level of hierarchy by combining clusters result of the next lower level.

K-means (MacQueen et al., 1967) is popular due to its simplicity and fast computing. It aims

to minimize the within cluster sum of square by iteratively optimize its cluster assignment

and cluster labels. Self organized map (SOM)(Kohonen, 1998) generates clustering diagram

by mapping a high-dimensional distribution to a low-dimensional grid. Mean shift clustering

(Cheng, 1995) performs clustering by seeking for modes through non-parametric iteration. In

terms of transcriptomic clustering analysis, popular methods include hierarchical clustering

(Eisen et al., 1998), K-means (Dudoit and Fridlyand, 2002), mixture model-based approaches

(Xie et al., 2008; McLachlan et al., 2002) and non-parametric approaches (Qin, 2006), for

analysis of single transcriptomic study. Resampling and ensemble methods have been used

to improve stability of the clustering analysis (Kim et al., 2009; Swift et al., 2004) or to

pursue tight clusters by leaving scattered samples that are different from major clusters

(Tseng, 2007; Tseng and Wong, 2005; Maitra and Ramler, 2009). Witten and Tibshirani

(2010) proposed a sparse K-means algorithm that can effectively select gene features and

perform sample clustering simultaneously.

1.3.3.2 K-means and sparse K-means K-means algorithm (Hartigan and Wong,

1979) has been a popular clustering method due to its simplicity and fast computation.

Consider Xjl the gene expression intensity of gene j and sample l. The method aims to

minimize the within-cluster sum of squares (WCSS):

min
C

p∑
j=1

WCSSj(C) = min
C

p∑
j=1

K∑
k=1

1

nk

∑
l,m∈Ck

dlm,j (1.3.1)
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where p is the number of genes (features), K is the number of clusters, C = (C1, C2, . . . , CK)

denotes the clustering result containing partitions of all samples into K clusters, nk is the

number of samples in cluster k and dlm,j = (Xjl − Xjm)2 denotes the squared Euclidean

distance of gene j between sample l and m. Although the initial development of K-means

was a heuristic algorithm, it was shown to be a special classification likelihood method in

model-based clustering when data from each cluster come from Gaussian distribution with

identical and spherical covariance structure (Tseng, 2007).

One major drawback of K-means is that it utilizes all p features with equal weights in

the distance calculation. In genomic applications, p is usually high but biologically only

a small subset of genes should contribute to the sample clustering. Witten and Tibshi-

rani (2010) proposed a sparse K-means approach with lasso regularization on gene-specific

weights to tackle this problem. One significant contribution of their sparse approach was

the observation that direct application of lasso regularization to Equation 1.3.1 will result

in a meaningless null solution. Instead, they utilized the fact that minimizing WCSS is

equivalent to maximizing between-cluster sum of squares (BCSS) since WCSS and BCSS

add up to a constant value of total sum of squares (TSSj = BCSSj(C) +WCSSj(C)). The

optimization in Equation 1.3.1 is equivalent to

max
C

p∑
j=1

BCSSj(C) = max
C

p∑
j=1

[
1

n

∑
l,m

dlm,j −
K∑
k=1

1

nk

∑
l,m∈Ck

dlm,j

]
(1.3.2)

The lasso regularization on gene-specific weights in Equation 1.3.2 gives the following sparse

K-means objective function:

max
C,w

p∑
j=1

wjBCSSj(C)

subject to ‖w‖2 ≤ 1, ‖w‖1 ≤ µ,wj ≥ 0,∀j, (1.3.3)

where wj denotes weight for gene j, C = (C1, . . . , CK) is the clustering result, K is the

pre-estimated number of clusters and ‖w‖1 and ‖w‖2 are the l1 and l2 norms of the weight

vector w = (w1, . . . , wp). The regularization shrinks most gene weights to zero and µ is a

tuning parameter to control the number of non-zero weights (i.e. the number of intrinsic

genes for subtype characterization).
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These methods serve as the background for Chapter 2 and Chapter 3, aim to develop

methodology to discover disease subtypes from omics data.

1.4 STATISTICAL DATA INTEGRATION

As described in Section 1.1.5, large amounts of omics data are accumulating and become

publicly available. How to combine these dataset to strengthen statistical analysis becomes

a natural question. Reproducibility problem is also emphasized in the literature. Ioannidis

et al. (2008) evaluated the replication of 18 microarray-based gene expression analyses, but it

turned out reproducibility was low. Integration of different omics data type and/or different

cohorts will help improve reproducible and draw robust inference. To extend single-study

techniques towards integration of multiple omics data sets, Tseng et al. (2012) categorized

omics data integration into two major types: (A) Horizontal omics meta-analysis and (B)

Vertical omics integrative analysis. Figure 1 has shown two directions for data integration

including horizontal genomics meta analysis and vertical genomic integrative analysis. For

horizontal meta-analysis (Figure 1(a)), multiple studies of the same omics data type (e.g.

transcriptome) from different cohorts are combined to increase sample size and statistical

power, a strategy often used in differential expression analysis (Ramasamy et al., 2008),

pathway analysis (Shen and Tseng, 2010), network analysis (Zhu et al., 2016) or subtype

discovery (Huo et al., 2016). In contrast, vertical integrative analysis (Figure 1(b)) aims to

integrate multi-level omics data from the same patient cohort (e.g. gene expression data,

genome-wide profiling of somatic mutation, DNA copy number, DNA methylation, or mi-

croRNA expression from the same set of biological samples (Richardson et al., 2016)).

1.4.1 Horizontal meta analysis

Horizontal genomics meta analysis aims to combine multiple transcriptomic studies or other

omics data type. Most methods have been developed to improve differential analysis (candi-

date marker detection)(Chang et al., 2013) and pathway analysis(Wang et al., 2012). Hor-
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(a) Horizontal meta-analysis (b) Vertical integration

Figure 1: Background for omics data integration.                                                                          

Meta analysis omics data integration (Horizontal direction) and integrative omics data 

integration (Vertical direction)

izontal genomics meta analysis of differential expressed genes includes method combining p 

value: Fisher(Fisher, 1925), Stoffer(Stouffer, 1949), maxP, minP, roP(Song and Tseng, 2014), 

AW(Li et al., 2011); other approach to combine effect sizes, or Bayesian approach(Scharpf et 

al., 2009). Horizontal genomics meta analysis could increase statistical power and over-come 

the difficulty that signal in single cohort is weak and not that reproducible.

As high-throughput experiments become affordable and prevalent, many data sets of the same 

omic type (e.g. transcriptome) and of a related disease hypothesis have often been col-lected 

and meta-analyzed, as is described in Section 1.4. The meta-analysis to combine mul-tiple 

studies has brought new statistical challenges. When multiple transcriptomic studies are 

combined, most methods have been developed to improve differential analysis (candidate 

marker detection) and pathway analysis (See Section 1.4). These methods mostly extend from 

traditional meta-analysis by combining effect sizes or p-values of multiple studies to a 

genome-wide scale (see review papers for microarray and GWAS meta-analysis by (Tseng et 

al., 2012; Begum et al., 2012) for details).
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1.4.2 Vertical integrative analysis

Vertical genomic integrative analysis aims to integrate multiple types of omics data from a

given cohort. The input omics data source include but not limit to transcriptome profile,

genotypes, DNA copy number alteration, DNA methylation, microRNA and proteinomics.

For instance, IBAG (Wang et al., 2013) uses model-based integration approach, combin-

ing data obtained from multiple platforms into one integrative model to discover clinically

relevant biomarker and/or to predict clinical outcome. Icluster (Shen et al., 2009) uses di-

mension reduction and latent variable techniques to combine different omics data and find

disease subtypes. Vertical genomic integrative analysis will make the result more consistent

within cohort and biological meaningful. Meanwhile by recruiting different sources of omics

data, statistical power will increase and the conclusion will be more convincing.

1.5 OVERVIEW OF THE DISSERTATION

My dissertation contains six chapters. Chapter 1 contains overall introduction of datasets,

experimental techniques, high through-put analysis methods, motivation of genomic inte-

grative analysis. These contents serve as the background knowledge for the methodology

development for Chapter 2, 3.

Chapter 2 is Meta-analytic framework for sparse K-means to identify disease subtypes

in multiple transcriptomic studies. This is a meta-analysis framework for disease subtyping

combining multiple omics cohorts. Intuitively, this method is better than single study sparse

Kmeans since meta analysis will achieve unified feature selection; increase credibility of

inference by recruiting more studies. It has also been shown to have better performance,

including clustering accuracy in simulation and resampling accuracy and stability in real

data application than single study sparse clustering. The content in this Chapter has been

published in Journal of the American Statistical Association (Huo et al., 2016).

Chapter 3 is integrative sparse Kmeans to identify disease subtypes form multiple omics

data types of the same patient cohort. This integrative approach via combining multiple
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omics data types will better characterize the disease subtypes. We also consider external

group information, which makes the selected for the disease subtype more meaningful. Per-

formance will be evaluated in simulation and real data comparing to sparse Kmeans without

group, or other integrative approach such as iCluster. The content of this chapter is accepted

by the Annals of Applied Statistics (Huo and Tseng, 2017).

Chapter 4 is discussion and future work. The future work is about two way integration to

identify disease subtypes form multiple omics data types from multiple patient cohorts. This

is an extension from both Meta Sparse Kmeans and integrative Sparse Kmeans approach. It

combines all the benefits from Chapter 2 and Chapter 3. by combining multiple omics data

types and multiple cohorts and incorporating external group information, feature selection

and clustering matching. This method would give a comprehensive representation of the

clustering result, which will lead to the most convincing result.

15



2.0 META SPARSE KMEANS

2.1 INTRODUCTION

In section 1.2, we introduced the background for disease subtype discovery via transcrip-

tomic data. With the accumulation of transcriptomic data in public domain, we will gain

statistical power and reproducibility by combining multiple studies. In section 1.3.3.1, we

introduced popular transcriptomic clustering method for single study. But when it comes to

disease subtype discovery, no integrative method for combining multiple transcriptomic stud-

ies is available, to the best of our knowledge. In this chapter, we propose a Meta-analytic

sparse K-means method (MetaSparseKmeans) (Huo et al., 2016) for combining multiple

transcriptomic studies, which identifies disease subtypes and associated gene signatures, and

constructs prediction models to classify future new patients. The method contains embedded

normalization and scaling to account for potential batch effects from different array plat-

forms and a multi-class correlations (MCC) measure (Lu et al., 2010) to account for different

sample proportions of the disease subtypes across studies. A pattern matching reward func-

tion is included in the objective function to guarantee consistency of subtype patterns across

studies. We will demonstrate improved performance of MetaSparseKmeans by simulations

and two real examples in leukemia and breast cancer studies. The content in this Chapter

has been published in Journal of the American Statistical Association (Huo et al., 2016).

This chapter is structured as the following. In Section 2.2, we will demonstrate a motivat-

ing example to combine three large breast cancer transcriptomic studies for disease subtype

discovery. We will describe the input data structure, problem setting and the biological

goals to motivate the development of MetaSparseKmeans. In Section 2.3, introduction of

classical K-means, sparse K-means and development of MetaSparseKmeans are presented.
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Section 3.4 contains simulation results and applications to real data in breast cancer and

leukemia. Finally, conclusions and discussions are included in Section 3.5.

2.2 MOTIVATING EXAMPLE

Table 1 shows a summary description of three breast cancer training transcriptomic studies:

Wang (Wang et al., 2005), Desmedt (Desmedt et al., 2007) and TCGA (Network, 2012) as

well as one testing study METABRIC (Curtis et al., 2012) with large sample size (n=1981)

and survival information. In the training set, each study contains about 150-500 samples.

Wang and Desmedt applied Affymetrix U133A chip that generated log-intensities ranging

between 2.104 and 14.389, while TCGA adopted Agilent Custom 244K array that produced

log-ratio intensities ranging between -13.816 and 14.207. All probes in three studies were

matched to gene symbols before meta-analysis. When multiple probes matched to one gene

symbol, the probe that with the largest inter-quartile range (IQR) was used (Gentleman

et al., 2005). 11,058 genes were matched across studies and three gene expression matri-

ces (11,058×260, 11,058×164 and 11,058×533) were used as input data for disease subtype

discovery. In such a meta-analysis framework of sample clustering analysis, we pursue two

goals simultaneously: identification of a gene set (often called “intrinsic gene set”) for sub-

type characterization and clustering of samples in each study. Five major analytical issues

(or procedures) have to be considered in the new meta-analytic framework: (A) combine in-

formation from multiple studies and perform feature (gene) selection; (B) use the combined

information to perform clustering on each study; (C) accommodate potential batch effect

across studies and the fact that each study contains different mixture proportions of the

subtypes. (e.g. study 1 contains 20% of the first subtype while study 2 contains 35%); (D)

guarantee that subtypes across studies can be matched with consistent gene signature and

pattern; (E) construct a prediction model based on the combined analysis to predict future

patients. In the following method section, we will develop a MetaSparseKmeans method to

answer all five issues described above. Figure 2(d)-2(f) illustrate the heatmap result of our

developed method on the motivating example (details will be discussed in the Result Sec-
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Table 1: Breast Cancer Data information

Training Testing

Study Name TCGA Wang at el. Desmedt at el. METABRIC
Platform Agilent Affymetrix Affymetrix Illumina

Number of genes 17,814 12,704 12,704 19,602
Number of patients 533 260 164 1,981
Range of intensity [−13.816, 14.207] [3.085, 14.389] [2.104, 14.160] [-1.262 16.618]

Mean intensity 0.003 6.797 5.523 6.954
Standard deviation 1.34 1.71 1.84 1.70

tion 2.4.3). 203 genes (on the rows of heatmaps) were simultaneously selected to characterize

the disease subtypes. Clustering results were shown on the color bars above the heatmaps.

The expression patterns of the five disease subtypes were matched well across studies from

visual inspection in the heatmaps and a classification model was constructed to predict fu-

ture patients. In contrast, Figure 2(a)-2(c) show sparse K-means clustering results when

applied to each study separately. Each study generates different gene selection (220, 197,

239 genes respectively) and cluster patterns that are difficult to be integrated to predict a

future patient. Throughout this chapter, we will develop and illustrate the method for com-

bining multiple transcriptomics studies, but the method is also applicable to meta-analysis

of other types of omics data, such as miRNA, methylation or copy number variation.

2.3 METHOD

2.3.1 MetaSparseKmeans

We have introduced K-means and sparse K-means in Section 1.3.3.2. Equation 1.3.3 identi-

fies gene features and performs sample clustering simultaneously for a given transcriptomic

study. To extend it for combining S(S ≥ 2) transciptomic studies, a naive solution is to
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(a) TCGA (239 genes) (b) Wang at el. (220 genes) (c) Desmedt at el. (197 genes)

(d) TCGA (203 genes) (e) Wang at el. (203 genes) (f) Desmedt at el. (203 genes)

Figure 2: Individual study clustering and MetaSparseKmeans result for 3 breast cancer

datasets.

Rows represent genes and columns represent samples. Red and green color represent higher

and lower expression. In each study, the patients are divided into 5 clusters, represented by

5 unique colors in the color bar above the heatmaps. 2(a)-2(c): Sparse K-means result from

three studies separately. 2(d)-2(f): MetaSparseKmeans result.
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consider optimization of the sum over S studies:

arg max
C(s),z

p∑
j=1

zj ×
S∑
s=1

BCSS
(s)
j (C(s))

subject to ‖z‖2 ≤ 1, ‖z‖1 ≤ µ, zj ≥ 0,∀j.

(2.3.1)

where superscript of (s) in BCSS(s) and C(s) denotes the BCSS and clustering in study s

(1 ≤ s ≤ S). A notable feature of Equation 2.3.1 is that the weights zj are identical across

all studies and thus it generates a common intrinsic gene set together with clustering of

samples in each study C(s) = (C
(s)
1 , · · · , C(s)

Ks
) (Ks is the number of clusters in study s). In

this chapter, Ks is assumed to be equal to K (equal number of clusters across studies) and

its extension is discussed later. A downside for Equation 2.3.1 is that it treats all studies

equally without considering that different studies may contain different sample sizes and

intensity ranges as shown in Table 1. As a result, studies with larger sample sizes and higher

intensity variability ranges will dominate the analysis in Equation 2.3.1. To fix this problem,

we propose to standardize BCSS score by TSS below:

arg max
C(s),z

p∑
j=1

zj ×
S∑
s=1

1

S

BCSS
(s)
j (C(s))

TSS
(s)
j

subject to ‖z‖2 ≤ 1, ‖z‖1 ≤ µ, zj ≥ 0,∀j.

(2.3.2)

Note that the standardized BCSS score in each study is always bounded between 0 and

1. The formulation so far answers issues (A)-(C) in Section 2.2 by generating a common

intrinsic gene set, clustering samples in each study and accommodating different sample sizes

and intensity ranges among studies. In Equation 2.3.2, the contribution of BCSS/TSS is

equal from each study and is not adjusted by sample size (denoted as equal weight or EW).

Alternative option is to replace the 1/S term with ns/
∑

s ns (ns is the sample size of study

s) so that studies with larger sample size contribute greater in the clustering formation

(denoted by unequal weight or UW). In the simulation section (Figure 5), EW and UW are

compared. Conceptually, when studies are homogeneous, UW performs better by accounting
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for sample size. But when studies contain heterogeneous information, EW is expected to be

more robust and will be recommended in real applications.

A next issue in this meta-analytic framework is to match the cluster patterns obtained

from different studies (issue (D) in Section 2.2). For example, samples of the light blue

cluster in all three studies in Figure 2(d)-2(f) are up-regulated (red) in the upper part of

genes and down-regulated (green) in the lower part of genes. Equation 2.3.2 guarantees

to generate sample clusters with good separability in each study but does not warrant such

subtype matching across studies. To achieve this purpose, we added pattern matching reward

function fmatchj (M) in the objective function:

max
C(s),z,M

p∑
j=1

zj ×

[
1

S

S∑
s=1

BCSS
(s)
j (C(s)(K))

TSS
(s)
j

+ λ× fmatchj (M)

]
subject to ‖z‖2 ≤ 1, ‖z‖1 ≤ µ, zj ≥ 0,∀j,

(2.3.3)

where M is the cluster matching enumeration across S studies, M = M(C(1), . . . , C(S)). For

example, when S = 3 and K = 3, denote (C
(1)
1 −C

(2)
3 −C

(3)
1 , C

(1)
2 −C

(2)
2 −C

(3)
3 , C

(1)
3 −C

(2)
1 −

C
(3)
2 ) as a possible matching function of M , where the first cluster in study 1, the third

cluster in study 2 and the first cluster in study 3 are matched with similar gene expression

pattern to represent the first disease subtype. Similarly, patients in the second clusters in

study 1, second cluster in study 2 and third cluster in study 3 form the second disease

subtype and so on. Under this notation, the total number of possible pattern matching of

M is (K!)(S−1). M can be regarded as a cluster label reordering operator for all S studies:

M = (φ(1)(C(1)), φ(2)(C(2)), . . . , φ(S)(C(S))), where φ(s)(C(s)) maps the K clusters in the sth

study C(s) = (C
(s)
1 , C

(s)
2 , . . . , C

(s)
K ) to disease subtype 1, 2, . . . , K. In the example above,

the corresponding mapping is φ(1)(C
(1)
1 , C

(1)
2 , C

(1)
3 ) = (1, 2, 3), φ(2)(C

(2)
1 , C

(2)
2 , C

(2)
3 ) = (3, 2, 1),

φ(3)(C
(3)
1 , C

(3)
2 , C

(3)
3 ) = (1, 3, 2).

The pattern matching reward function fmatchj (M) borrows the concept from multi-class

correlation (MCC) (Lu et al., 2010) that was developed to quantify concordant multi-class

(more than two classes) expression pattern for candidate marker detection in the meta-

analysis of multiple transcriptomic studies. Traditionally, one can calculate the Pearson
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(a) gene CENPA with similar pattern in all studies

(b) gene TUBGCP4 with discordant pattern in different studies

Figure 3: Two real gene examples to show the idea of MCC.

The x axis is the cluster index and y axis is the expression intensity. Gene CENPA shows

similar patterns across studies and MCCs are large (Figure 3(a)). Gene TUBGCP4 shows

discordant patterns across studies and MCCs are smaller (Figure 3(b)).
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correlation of two vectors with equal lengths. However, our pattern matching score needs

to consider the correlation of identical number of clusters with unequal number of samples

in each cluster. For example, Figure 3(a) shows the expression pattern of a given gene

CENPA in the three breast cancer studies, each with 5 clusters of samples. All studies have

relatively high expression in cluster 5, intermediate expression level in cluster 2 and 3, and

lower expression in cluster 1 and 4. This is our desired concordant pattern gene which would

generate high total MCC scores. Figure 3(b) shows a gene with different cluster patterns in

different studies. In Wang the pattern is higher expression in cluster 1, 3 and 4, and lower

expression in cluster 2 and 5. The TCGA study, however, does not have a clear pattern.

Desmedt is somewhat similar to Wang but very different from TCGA. Since the patterns

are not consistent across studies, the total MCC scores in this case should be lower.

Below we describe the MCC score definition from the empirical distributions of each

cluster in a pair of studies study (See Lu et al. (2010) for more details). Consider DX = {xki}

(1 ≤ k ≤ K, 1 ≤ i ≤ nk) to represent expression intensity of class k and sample i for the

first study and DY = {ykj} (1 ≤ k ≤ K, 1 ≤ j ≤ mk) for the second study, where nk

and mk are the number of samples of class k in the first and second studies. We first

define an imaginary bivariate distribution (X,Y) that is a mixture of the K independent

bivariate distributions (X1, Y1), . . . , (XK , YK) with equal probability where Xk and Yk are

empirical distributions from {xk1, . . . , xknk
} and {yk1, . . . , ykmk

}
(
i.e. the CDF of (X,Y) is

GX,Y(x, y) = 1
K

∑K
k=1 GXk,Yk(x, y) = 1

K

∑K
k=1 GXk

(x)GYk(y)
)
. MCC score is defined as the

Pearson correlation of X and Y as shown below

MCC(DX , DY ) = cor(X,Y) =

(
K∑
k=1

µXk
µYk)−Kµ̄X µ̄Y√[ K∑

k=1

σ2
Xk

+
K∑
k=1

(
µXk
− µ̄X

)2][ K∑
k=1

σ2
Yk

+
K∑
k=1

(
µYk − µ̄Y

)2]

,where µXk
=
∑nk

i=1 xki/nk, µYk =
∑mk

j=1 ykj/mk, σ
2
Xk

=
∑nk

i=1

(
xki − µXk

)2
/nk, σ

2
Yk

=∑mk

j=1

(
ykj − µYk

)2
/mk, µ̄X =

∑K
k=1 nkµXk

/
∑K

k=1 nk, µ̄Y =
∑K

k=1 mkµYk/
∑K

k=1 mk.

It is worth noting that MCC is defined from conventional Pearson correlation and is

restricted between −1 and 1. When n1 = . . . = nk = n and m1 = . . . = mk = m, MCC
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reduces to

MCC =
r~µX~µY√

1
FX
· K
K−1

+ 1
√

1
FY
· K
K−1

+ 1

,where r~µX~µY =
∑

k(µXk
−µ̄X)(µYk−µ̄Y )√∑

k(µXk
−µ̄X)2

√∑
k(µYk−µ̄Y )2

is the sample correlation of ~µX = (µX1 , . . . , µXk
)

and ~µY = (µY1 , . . . , µYk). FX =
∑

k(µXk
−µ̄X)2/(K−1)∑

k

∑
i(xki−µXk

)2/
(

(n−1)K
) and FY =

∑
k(µYk−µ̄Y )2/(K−1)∑

k

∑
j(ykj−µYk )2/

(
(m−1)K

)
are exactly the F-statistics in ANOVA for DX and DY . When the within-class variation is

much smaller than the between-class variation, FX and FY become large. MCC converges

to r~µX~µY as expected.

Finally, the pattern matching reward function is defined as the average of MCC of all

pairs of studies as below:

fmatchj (M) =

(
1(
S
2

) ∑
s,s′∈S

MCCj(φ
(s)(C(s)), φ(s′)(C(s′))) + 1

)
/2

where s and s′ denote any two studies from all S studies and φ(s)(C(s)) was previously

defined for cluster matching function M . Note that the pattern matching reward function

is transformed to guarantee taking values between 0 and 1.

In summary, the objective function of MetaSparseKmeans in Equation 2.3.3 generates

a common feature set from the non-zero estimated weights and sample clustering in each

study. The first term in Equation 2.3.3 ensures good cluster separation in each study, the

second term guarantees the consistent patterns of identified disease subtypes across studies

and the l1 penalty generates sparsity on gene weights to facilitate feature selection.

2.3.2 Implementation of MetaSparseKmeans

In this subsection, we discuss the optimization procedure, parameter estimation and how

the classification model from the clustering can predict a future patients cohort.

2.3.2.1 Optimization without pattern matching reward function For clarity of

demonstration, we first illustrate the optimization procedure without reward function as

shown in Equation 2.3.2. The algorithm is a simple extension from Witten and Tibshirani

(2010).
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1. Initialize z such that zj =
sdj

sd1+...+sdp
× µ, where sdj is the standard deviation of gene j.

2. Fix z, update C(s) for study s (∀s ∈ S) by optimizing Equation 2.3.2 applying conven-

tional weighted K-means.

3. Fix C(s), update z by optimizing Equation 2.3.2 following Karush-Kuhn-Tucker (KKT)

condition.

4. Iterate Step 2-3 until converge.

In Step 1, we apply unequal initialization weight that is proportional to the standard de-

viation of each gene. We have found better performance of this initialization compared to

equal weight initialization suggested in (Witten and Tibshirani, 2010). In Step 2, since the

weights are fixed and TSS
(s)
j is irrelevant to the clustering result, the optimization is es-

sentially to repeat regular K-means algorithm with weighted gene structure for each study

independently. In Step 3, fixing aj =
∑S

s=1

BCSS
(s)
j (C(s)(K))

TSS
(s)
j

, optimization of weights z is a

convex optimization problem that leads to zj =
Γ∆(aj)

‖Γ∆(aj)‖2 following KKT condition, where

Γ is the soft-thresholding operator which is defined as Γ∆(x) = max(x − ∆, 0). ∆ > 0 is

chosen such that ‖z‖1 = µ; otherwise ∆ = 0 if ‖z‖1 < µ. Readers may refer to (Boyd and

Vandenberghe, 2004; Witten and Tibshirani, 2010) for more details. Finally, Steps 2 and 3

are iterated until convergence of the weight estimate (i.e.
∑p

j=1 |z
(r)
j −z

(r−1)
j |∑p

j=1 |z
(r−1)
j |

< 10−4), where z
(r)
j

represents the zj estimate in the rth iteration. In our simulation and real data experiences,

the algorithm usually converges within 20 iterations.

2.3.2.2 Optimization with pattern matching reward function When the pattern

matching reward function is added, the iterative optimization has an additional step to

estimate the best clustering matching across studies M. In this case we split optimization of
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Equation 2.3.3 into 3 parts:

C(s)+ = arg max
C(s)

p∑
j=1

zj ×

[
1

S

S∑
s=1

BCSS
(s)
j (C(s))

TSS
(s)
j

]
(2.3.4a)

M+ = arg max
M

p∑
j=1

zj × fmatchj (M) (2.3.4b)

z+ = arg max
z

p∑
j=1

zj ×

[
1

S

S∑
s=1

BCSS
(s)
j (C(s))

TSS
(s)
j

+ λ× fmatchj (M)

]

subject to ‖z‖2 ≤ 1, ‖z‖1 ≤ µ, zj ≥ 0,∀j, (2.3.4c)

where C(s)+,M+, z+ are the updating rule in the iteration. The optimization algorithm

becomes:

1. Initialize z such that zj =
sdj

sd1+...+sdp
× µ, where sdj is the standard deviation of gene j.

2. Fix z, for ∀s ∈ S, update C(s) by weighted K-means according to Equation 2.3.4a.

3. Fix z and C(s), update M by using exhaustive search or simulated annealing (see below)

according to Equation 2.3.4b.

4. Fix C(s) and M , update z by KKT condition according to Equation 2.3.4c.

5. Iterate Step 2-4 until converge.

One potential concern in Equation 2.3.4a is the lack of consideration of fmatchj (M). In-

cluding fmatchj (M) in Equation 2.3.4a will greatly complicate the optimization for C(s). We

decided to remove this term so that C(s) can be efficiently estimated in each study separately

and then update M right after updating C(s). The simplified algorithm performed well in

all our applications.

When updating M in Equation 2.3.4b, exhaustive search requires evaluation of all pos-

sible (K!)S−1 combinations. In our motivating example of K = 5 and S = 3, it takes 14,400

evaluations. The number of evaluations increases to 207.36 million when S increases to 5.

As an alternative, we propose a linear stepwise search to reduce the computational burden.

In the first step, we match the first two studies with the largest sample sizes. Then the

third study is added to match with existing patterns and the procedure continues by adding

one study at a time. This approach will reduce to (K!)× (S − 1) possible evaluations. The

search space will reduce from exponential order to linear order of the number of studies. In
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the case of K = 5 and S = 5, the number of evaluations reduces from 207.36 million to

480. In case that the linear stepwise search may reach an undesirable suboptimal solution,

we propose a third approach to apply stepwise search solution as an initial value to a simu-

lated annealing algorithm (Kirkpatrick et al., 1983) (see Appendix for detailed algorithm).

Simulated annealing is an MCMC-based stochastic optimization algorithm for non-convex

function. We expect that the third approach will achieve the best balance for affordable

computing time while maintaining high clustering accuracy (Table ??). The computing load

and performance of these three matching approach will be evaluated in Section 2.4.4. In

our software package, we suggest to perform exhaustive search when (K!)S−1 ≤ 14, 400 and

automatically switch to simulated annealing otherwise.

2.3.2.3 Parameter selection In the MetaSparseKmeans formulation above, the num-

ber of clusters K are assumed pre-specified. In practice, it has to be estimated from data.

The issue of estimating the number of clusters has received wide attention in the litera-

ture (Milligan and Cooper, 1985; Kaufman and Rousseeuw, 2009; Sugar and James, 2003).

Here, we suggest the numbers of clusters to be estimated in each study separately using

conventional methods such as prediction strength (Tibshirani and Walther, 2005) or gap

statistics (Tibshirani et al., 2001) and jointly compared across studies (such that the num-

bers of clusters are roughly the same for all studies) for a final decision before applying

MetaSparseKmeans. Below we assume that a common K is pre-estimated for all studies.

Another important parameter to be estimated is µ that controls the number of non-zero

weights in the lasso regularization. Larger µ results in larger number of non-zero weights

(i.e. the number of intrinsic genes to characterize the subtypes). We follow and extend the

gap statistic procedure in sparse K-means (Witten and Tibshirani, 2010) to estimate µ:

1. For each gene feature in each study, randomly permute the gene expression row vector

(permute samples). This creates a permuted data set X(1). Repeat for B times to

generate X(1), X(2), . . . , X(B).

2. For each potential tuning parameter µ, compute the gap statistics as below.

Gap(µ) = O(µ)− 1

B

B∑
b=1

Ob(µ), (2.3.5)
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where O(µ) =
∑p

j=1 z
∗
j [

1
S

(
∑S

s=1

BCSS
(s)
j (C(s)∗(K))

TSS
(s)
j

)+λ×fmatchj (M∗)] is from observed data,

where z∗, C∗(K),M∗ are the maximizers of the objective function. Ob(µ) is similar to

O(µ) but it is from permuted data X(b)

3. For a range of selections of µ, select µ∗ such that the gap statistics in Euqation 3.3.6 is

maximized. Figure 11 shows the candidate region and the corresponding gene numbers

of different µ for a simulated dataset that will be discussed in Section 3.4.1.

Figure 4: Gap statistics to select µ in simulated data with biological variance σ1 = 1.

X-axis: µ; y-axis: gap statistics. V and µ on top give the number of non-zero weight 

features and corresponding tuning parameter. Gap statistics is maximized at µ = 9, which 

is coresponding to 151 genes.

Our simulation has shown good performance of the gap statistics procedure but the 

performance may vary in real data. In practice, the users may test different selections of µ and 

examine the change of clustering assignment. In general, slight change of µ (or equivalently 

the number of selected genes) does not greatly change the clustering result. Another 

possibility is to use clinical or survival information to guide estimation of µ although we chose 

not to do so in the breast cancer example to avoid re-using the survival information in the 

evaluation.
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Finally, the parameter λ controls the balance of the standardized BCSS and pattern 

matching rewards in Equation 2.3.3. The former term drives the optimization to seek for 

clear cluster separations while the latter term emphasizes on concordant pattern of disease 

subtypes across studies. We performed sensitivity analysis on λ in the applications and 

found that slightly changing λ had little impact on the final clustering result in most cases. 

Since considerations of both terms are biologically important, we suggest to use λ = 0.5 in 

general unless users have particular reasons to change. Note that the first and second terms 

in Equation 2.3.3 are standardized to range between 0 and 1 and are at comparable scales.

2.3.2.4 Data visualization To generate heatmaps similar to Figure 2(a)-2(f), data nor-

malization is necessary so genes at different expression scales can be presented simultane-

ously. Conventional wisdom in microarray analysis is to standardize each gene vector to have 

zero mean and unit variance in each study independently. This is, however, not applicable 

in our situation since the sample proportions of each disease subtype are not equal across 

studies. We instead applied a ratio-adjusted gene-wise normalization (Cheng et al., 2009) 

that accounts for differential subtype mixture proportions in the studies.

2.3.2.5 Classification of a future patient cohort For a future dataset that possibly 

comes from a different experimental platform, models from MetaSparseKmeans can help 

cluster the new cohort and match the signature patterns to determine the subtypes. The 

algorithm goes with two steps:

1. The optimal weights z∗ from MetaSparseKmeans algorithm on training data are used

to cluster patients of the new cohort using conventional K-means with pre-specified

weighted gene structure:

C(new) = arg min
C

p∑
j=1

z∗j

K∑
k=1

1

nk

∑
l,m∈Ck

dlm,j

2. The generated clusters C(new) are then matched back to disease subtypes determined

by MetaSparseKmeans training results. Specifically, we ask for the best cluster pattern
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matching of the new clusters to the original subtypes. Since the matching in the train-

ing studies are fixed, the optimization only requires MCC calculation of new cohort

clustering C(new) with clustering of each training study C(1), . . . , C(S).

M (new∗) = arg max
M(new)

p∑
j=1

∑
s∈S

z∗jMCCj(φ
(s)(C(s)), φ(new)(C(new)))

2.3.2.6 Extensions for practical applications Below we discuss two extensions for

practical applications. Firstly, our framework has applied equal K in all studies. The

question is whether and how to allow variable K across studies. Biologically, it is not

reasonable to have wildly different number of disease subtypes across studies. Thus, we

decided not to extend the algorithm for automatically searching variable K. Instead, we

suggest the users to apply equal K and perform ad hoc analysis if evidence shows that some

studies have almost no samples for a particular subtype or an additional subtype is needed

(e.g. reduce from K=(5,5,5) to K = (5, 4, 5) in the second study). Secondly, the number

of genes may reduce greatly in the gene matching step if one or two studies apply an old

array platform with less comprehensive coverage of the genome. In this case, our framework

can easily extend to allow missing genes in partial studies (by simply ignoring the terms of

a specific missing gene in a study). We have included this function in the software package

and suggest to include genes as long as they appear in > 70% of studies.

2.4 RESULT

We evaluated MetaSparseKmeans on simulation datasets as well as two real multi-center

examples in leukemia and breast cancer. In the simulation datasets, we showed that

MetaSparseKmeans could recover the underlying true clusters with higher accuracy than

single study analysis. We also showed that MetaSparseKmeans using equal weight (EW)

is superior than MetaSparseKmeans using unequal weight (UW) in heterogenous scenario

and reversely MetaSparseKmeans UW is superior than MetaSparseKmeans EW in homoge-
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nous scenario. In leukemia dataset, we demonstrated that MetaSparseKmeans obtained

unified gene selection and stable cluster pattern while single study analysis by sparse K-

means claimed different gene selections and unmatched cluster patterns in different studies.

In the breast cancer dataset, we applied MetaSparseKmeans to 3 breast cancer studies

and showed that MetaSparseKmeans had better performance than single study sparse K-

means. The classification model was used to predict the fourth METABRIC dataset and

the meta-analyzed model generated more significant survival differences than the prediction

based on single study models. Lastly we evaluated the computation time and accuracy for

MetaSparseKmeans using different matching algorithm. MCMC (with linear stepwise search

initial) will balance the computing load and optimization performance.

2.4.1 Simulation

2.4.1.1 Simulation setting To evaluate the performance of MetaSparseKmeans and

compare with sparse K-means, we simulated S(S = 3) studies with K(K = 3) subtypes

in each study. To best mimic the nature of microarray study, we will simulate confounding

variables, gene correlation structure and noise genes (e.g. housekeeping genes or unexpressed

genes). Below are the detailed generative steps to create subtype predictive genes, confounder

impacted genes and noise genes.

(a) Subtype predictive genes.

1. We simulate Nk1 ∼ POI(400), Nk2 ∼ POI(200), Nk3 ∼ POI(100) samples for subtype

k(1 ≤ k ≤ 3) in study s(1 ≤ s ≤ 3). The number of subjects in study s is Ns =∑
kNks.

2. Sample M = 20 gene modules (1 ≤ m ≤ 20). In each module, sample nm genes where

nm ∼ POI(20). Therefore, there will be an average of 400 subtype predictive genes.

3. µsik is the template gene expression of study s(1 ≤ s ≤ S), subtype k(1 ≤ k ≤ 3) and

module m(1 ≤ m ≤ M). For the first study, sample the template gene expression

µ1km ∼ UNIF(4, 10) with constrain maxp,q |µ1pm − µ1qm| ≥ 1, where p, q denote two

subtypes. For the second and third study, set µ2km = µ3km = µ1km,∀k,m. This part

define the subtype mean intensity for each module in all studies. To simulate the
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situation that the first study (with the largest sample size) containing stronger signal,

we introduced a new parameter f (for fold) to recalculate the template gene expression

for the first study µ1km: µ?1km = (µ1km −mink,m{µ1km})× f + mink,m{µ1km}, We set

f = 1 unless otherwise mentioned.

4. Add biological variation σ2
1 to the template gene expression and simulate X

′

skmi ∼

N(µskm, σ
2
1) for each module m, subject i(1 ≤ i ≤ Nks) of subtype k and study s.

5. Sample the covariance matrix Σmks for genes in module m, subtype k and study s,

where 1 ≤ m ≤ 20, 1 ≤ k ≤ 3 and 1 ≤ s ≤ 3. First sample Σ
′

mks ∼ W−1(Φ, 60),

where Φ = 0.5Inm×nm + 0.5Jnm×nm , W−1 denotes the inverse Wishart distribution, I

is the identity matrix and J is the matrix with all elements equal 1. Then Σmks is

calculated by standardizing Σ
′

mks such that the diagonal elements are all 1’s.

6. Sample gene expression levels of genes in cluster m as (X1skmi, . . . , Xnmskmi)
> ∼

MVN(X
′

skmi,Σmks), where 1 ≤ i ≤ Nks, 1 ≤ m ≤M , 1 ≤ k ≤ 3 and 1 ≤ s ≤ 3.

(b) Confounder impacted genes.

1. Sample 4 confounding variables. In practice, confounding variables can be gender,

race, other demographic factors or disease stage etc. They will add heterogeneity to

each study to complicate disease subtype discovery. For each confounding variable c,

we will sample R = 15 modules. For each of these modules rc(1 ≤ rc ≤ R), sample

number of genes nrc ∼ POI(20). These genes will be the same for all 3 studies.

Therefore, there will be an average of 1,200 confounder impacted genes.

2. For each study s(1 ≤ s ≤ 3) and each confounding variable c, sample the number of

confounder subclass hsc ∼ POI(3) with constraint hsc > 1. The Ns samples in study

s will be randomly divided into hsc subclasses.

3. Sample confounding template gene expression µslrc ∼ UNIF(4, 10) for confounder

c, gene module r, subclass l(1 ≤ l ≤ hsc) and study s. We recalculate µ?1lrc =

(µ1lrc −minlrc{µ1lrc}) × f + minlrc{µ1lrc}, which is similar to Step 3. Add biological

variation σ2
1 to the confounding template gene expression X

′

scrli ∼ N(µslrc, σ
2
1). Similar

to Step 6 and 7, we simulate gene correlation structure within modules of confounder

impacted genes.

(c) Noise genes.
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1. Sample 8,400 noise genes denoted by g(1 ≤ g ≤ 8, 400). For each study, we gener-

ate the mean template gene expression µsg ∼ UNIF(4, 10). Then we add biological

variation variance σ2
2 = 1 to generate Xsgi ∼ N(µsg, σ

2
2), 1 ≤ i ≤ Ns. Gene expres-

sion level generated here will be relatively stable. Therefore these genes could be

regarded as housekeeping genes if their expression are high, or un-expressed genes if

their expression are low.

2.4.1.2 Simulation result In this section we compared the performance of

MetaSparseKmeans using equal weight (EW) and unequal weight (UW), and compared

metaSparseKmeans with single study sparse K-means result. The tuning parameter for

MetaSparseKmeans was selected from gap statistics. For a fair comparison, we selected the

tuning parameter in single study such that the number of selected genes are similar to the

number in MetaSparseKmeans. We compared the results by adjusted Rand index (Hubert

and Arabie, 1985) (ARI) with the underlying truth in each study. The ARIs were averaged

over 3 studies. Figure 5(a) shows the performance of three methods for B = 100 simulations

and σ1 = 0.6, 0.8 ∼ 3 (error bars represent mean ± standard error). When the biolog-

ical variation increases, performance of all three methods decreases. MetaSparseKmeans

(both EW and UW) outperforms individual analysis. Figure 5(b) shows the performance

of three methods when the subtype predictive gene fold change in the largest study f

varies: f = 0.8, 0.9 ∼ 2 (error bars represent mean ± standard error). When the largest

study has stronger signal f > 1, performance of MetaSparseKmeans-UW is better than

MetaSparseKmeans-EW. When the largest study has weaker signal f < 1, performance of

MetaSparseKmeans-EW is better than MetaSparseKmeans-UW. Figure 5(c) shows a third

simulation when the fold change of the confounding impacted genes in the largest study

varies: f = 0.8, 0.9 ∼ 2 (error bars represent mean ± standard error). When the largest

study has strong confounding effect (i.e. heterogeneous compared to other studies) f > 1,

MetaSparseKmeans-UW has worse performance than MetaSparseKmeans-EW and can be

even worse than individual study clustering. When the studies are more homogeneous f < 1,

performance of MetaSparseKmeans-UW is superior.
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(a) Vary biological variance

(b) Vary subtype signal in the largest study (c) Vary confounding effect in the largest study

Figure 5: Simulation result comparing MetaSparseKmeans.

Simulation result comparing MetaSparseKmeans(EW), MetaSparseKmeans (UW) and

sparse K-means under different scenarios. Figure 5(a): varying biological variance. Fig-

ure 5(b): varying subtype predictive gene intensity in the first study with the largest sample

size. Figure 5(c): varying confounding impacted gene intensity in the first study with the

largest sample size.
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Table 2: Leukemia dataset information

Study Name Verhaak at el. Balgobind at el. Kohlmann at el.

Number of probes 48,788 48,788 48,788

Number of patients 89 74 105

True class label ? (33, 21, 35) (27, 19, 28) (28, 37, 40)

Data range [4.907, 14.159] [3.169, 15.132] [0, 1]

Mean intensity 6.163 6.093 0.309

Standard deviation 1.543 1.334 0.196

Platform Affymetrix human genome u133 plus 2.0 array

?: true class labels are the number of samples for (inv(16), t(15:17), t(8,21))

2.4.2 Leukemia example

Table 2 shows a summary description of three Leukemia transcriptomic studies: Verhaak

(Verhaak et al., 2009), Balgobind (Balgobind et al., 2011), Kohlmann (Kohlmann et al.,

2008). We only considered samples from acute myeloid leukemia (AML) with subtype

inv(16)(inversions in chromosome 16), t(15;17)(translocations between chromosome 15 and

17), t(8;21)(translocations between chromosome 8 and 21). These three gene-translocation

AML subtypes have been well-studied with different survival, treatment response and prog-

nosis outcomes. We treat these class labels as the underlying truth to evaluate the clustering

performance. The expression data for Verhaak, Balgobind ranged from around [3.169, 15.132]

while Kohlmann ranged in [0, 1]. All the datasets were downloaded directly from NCBI GEO

website. Originally there were 54,613 probe sets and we filtered out probes with 0 standard

deviation in any study. In the end 48,788 probes were remained matched across studies.

Three gene expression matrices with sample size 89, 74 and 105 were used as input data for

disease subtype discovery.

To compare the performance between MetaSparseKmeans and single sparse K-means,

we chose µ such that the number of selected probe sets was around 200-300 in each method.
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Table 3: Comparison between MetaSparseKmeans and sparse K-means on Leukemia dataset

MSKM Verhaak Balgobind Kohlmann

µ 12 10 10 10

Number of selected probes 245 266 257 218

ARI 0.97/1/0.95 0.97 0.41 0.95

Figure 6(a)-6(c) show heatmap of clustering results from each single study sparse K-means.

Each study generated three disease subtypes using different intrinsic gene sets, making it

difficult to classify future patients with a unified classification rule. Figure 6(d)-6(f) demon-

strate heatmap from MetaSparseKmeans clustering using 245 probe sets. We not only

obtained a common intrinsic gene set, but also observed clear consistent patterns of the

three disease subtypes across the three studies. Table 3 shows the ARI of each cluster-

ing result with the underlying leukemia subtype truth. Single study analysis in Verhaak

and Kohlmann produced almost perfect clustering (ARI = 0.97 and 0.95) while Balgobind

gave a poor ARI = 0.41. The MetaSparseKmeans generated improved ARIs in each study

(ARI = 0.97, 1 and 0.95).

2.4.3 Breast cancer example

2.4.3.1 Clustering result and survival association As shown in the motivating ex-

ample in Figure 2(a)-2(c), single study sparse K-means generated different sets of intrinsic

genes. MetaSparseKmeans obtained 203 common intrinsic genes to cluster the patients into

five disease subtypes with consistent expression pattern across studies. Since the underlying

true cancer subtypes are not available in this example, we applied the models from each

method to classify an independent testing cohort METABRIC (Curtis et al., 2012), which

contained 1,981 samples from Illumina HT12 arrays. This serves the purpose of extend-

ing the training model to a validating dataset. Figure 7(a) shows the subtype prediction

patterns from MetaSparseKmeans method. We can clearly see that the resulting expres-
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(a) Verhaak at el. (266 probes) (b) Balgobind at el. (257 probes) (c) Kohlmann at el. (218 probes)

(d) Verhaak at el. (245 probes) (e) Balgobind at el. (245
probes)

(f) Kohlmann at el. (245
probes)

Figure 6: Leukemia results after MetaSparseKmeans.

The three figures on top are heatmaps of Leukemia dataset after sparse K-means. The three

figures on bottom are results from MetaSparseKmeans.
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Table 4: Survival analysis in METABRIC

Model # of Samples # of selected genes p value

Meta(TCGA+Wang+Desmedt) 533+260+164 203(194) 3.79× 10−25

TCGA 533 239(233) 1.46× 10−19

Wang 260 220(214) 3.31× 10−14

Desmedt 164 197(193) 7.81× 10−14

PAM50 50 1.01× 10−20

Classification models trained in each single study and combined meta-framework are applied

to METABRIC. P-value of survival differences of identified subgroups were evaluated based

on log-rank test. The previously published PAM50 model was also compared. The number

in () indicates the actual number of genes used in the prediction model since a few genes

were not observed in the METABRIC array platform.

sion patterns are consistent with those from three training studies in Figure 2(d)-2(f). The

Kaplan-Meier survival curves of the five disease subtypes are well-separated with p-value

3.79 × 10−25 from log-rank test (Figure 7(b)). The survival separation demonstrates high

potential of clinical utility of the discovered disease subtypes. Note that although only 194

out of 203 genes appeared in the METABRIC dataset, those genes still had enough power to

separate the subtypes. Table 4 shows log-rank p-value of survival separation from each in-

dividual sparse K-means classification and PAM50. MetaSparseKmeans generated the best

survival separation of the subtypes. PAM50 is currently the most well-accepted transcrip-

tomic subtype definition of breast cancer. We have further compared the clustering results

from MetaSparseKmeans and PAM50 in the Appendix and Supplement Table 12

2.4.3.2 Pathway Enrichment In order to evaluate whether the genes obtained from

each model are biologically meaningful, pathway enrichment analysis was perform using

Fisher’s exact tests by testing association of selected intrinsic genes and genes in a par-

ticular pathway. We applied the BioCarta Database obtained from MSigDB (http://www.

broadinstitute.org/gsea/msigdb/collections.jsp#C2). This database contains 217 cu-
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(a) Heatmap of METABRIC based on 194 genes
from MetaSparseKmeans.

(b) Survival curves of the 5 subtypes from
MetaSparseKmeans validation. The color is cor-
responding to the subtype color in the heatmap.

Figure 7: Clinical result of METABRIC dataset

rated cancer related pathways and is particularly suited to evaluate the breast cancer exam-

ple. Figure 8 shows the jitter plot pathway enrichment q-values at log-scale (base 10). The

horizontal solid line corresponds to the q = 0.05 significance level threshold. The pathway

enrichment result from MetaSparseKmeans yielded more significant pathways than the in-

dividual models(7 significant pathway in MetaSparseKmeans versus 1 in individual sparse

K-means). All 8 significant pathways are listed in Table 5.

2.4.3.3 Accuracy and stability analysis We have performed additional subsampling

evaluation on breast cancers studies to evaluate the accuracy and stability of

MetaSparseKmeans compared to single study analysis. For accuracy, since TCGA had larger

sample size than the other two studies, we randomly subsampled 50%, 60%, 70%, 80%, 90%

of samples in TCGA for evaluation. Sparse K-means was applied to the whole TCGA data

(n=533) without considering Wang and Desmedt to generate sample clustering CTCGA,all and

this result was treated as a pseudo-gold standard. Sparse K-means was then similarly ap-
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Table 5: Eight significant BIOCARTA pathways.

Pathway name MetaSparseKmeans TCGA Wang Desmedt

BIOCARTA SRCRPTP PATHWAY ?0.0255 1 1 1

BIOCARTA MCM PATHWAY ?6.47× 10−6 1 1 1

BIOCARTA G1 PATHWAY ?0.0427 1 1 1

BIOCARTA G2 PATHWAY ?0.0367 1 1 1

BIOCARTA P27 PATHWAY ?0.0472 1 1 1

BIOCARTA RANMS PATHWAY ?0.0229 1 1 1

BIOCARTA PTC1 PATHWAY ?0.0287 1 1 1

BIOCARTA HER2 PATHWAY 0.149 0.170 ?0.0078 0.0817

The p-values were obtained using Fisher’s exact tests based on selected genes from

MetaSparseKmeans or individual study clustering and Benjamini-Hochberg correction (Ben-

jamini and Hochberg, 1995) was applied to generate q-values in the table. ?: q-value smaller

than 0.05 cutoff.
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Figure 8: Pathway enrichment result from four different models (Meta, TCGA, Wang,

Desmedt).

Clustering from meta-analysis identified intrinsic genes more associated to cancer related

pathways.
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plied to 100 independently subsampled p%(p = 50, 60, 70, 80, 90) TCGA dataset to generate

clustering result C
(b)
TCGA,p% (1 ≤ b ≤ 100). The adjusted Rand index (ARI) was calculated

between C
(b)
TCGA,p% and CTCGA,all and the trajectories with error bar (standard error) are

shown in Figure 9(a) (blue). Similar analysis was performed for MetaSparseKmeans when

the TCGA subtype clustering results were combined with Wang and Desmedt for cluster-

ing and the ARI results were shown in red. In this analysis, we used the large sample size

of TCGA data to generate the subtype clustering result and treated it as a pseudo-gold

standard. The data subsampling represented the situation when sample size was not large

and the ARI value represented an indirect evidence of the clustering accuracy. Figure 9(a)

demonstrates a clearly better accuracy for MetaSparseKmeans than single study sparse K-

means and the increased power evidently comes from the incorporated information from the

other two studies, Wang and Desmedt.

For stability, we performed similar subsampling in TCGA data as before. But instead

of comparing to the whole data clustering results, we restricted to all pair-wise comparison

of subsampled data. For a given p% subsampling rate, B (B = 100) TCGA subsampled

data were generated and sparse K-means were applied to each subsampled dataset. ARIs

were calculated for each pair-wise comparison that generated C100
2 = 4950 ARIs and the

trajectories with error bar (standard error) are shown in Figure 9(b) (blue). Similar analysis

for MetaSparseKmeans was performed where Wang and Desmedt were combined with sub-

sampled TCGA data in the subtype clustering (red in Figure 9(b)). The result showed that

MetaSparseKmeans generated more stable disease subtype assignments than single study

sparse K-means by incorporating information from the other two studies. Note that when

comparing two p% subsampled clustering results, only overlapped samples were considered

in the ARI calculation.

2.4.4 Computation time and matching accuracy

To evaluate computation time for the MetaSparseKmeans algorithm using different pattern

matching algorithms, we will use the simulation scenario in Section 3.4.1 with different S, K

and σ. We use two criteria to evaluate the accuracy for using different matching algorithms
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Table 6: Computing time for different matching methods

Algorithm S=3 S=5 S=15

Exhaustive 2.604 5.614 > 2.9× 104

K=3 Stepwise 2.854 5.290 18.024

MCMC 4.288 7.429 35.736

Exhaustive 15.616 > 2.9× 104 > 2.9× 104

K=5 Stepwise 8.738 13.951 39.273

MCMC 11.645 16.541 78.687

Computing time in minutes comparing different combination of S and K using a regular

desktop computer.

described in Section 2.3.2.2: percent of reaching global optimal based on Equation 2.3.4b,

and the resulting cluster agreement with the underlying truth using ARI. Table 6 shows

that stepwise and MCMC searching greatly reduced computing time for large S. Even in

a large meta-analysis of S = 15 and K = 5, computing time was at 39 and 79 minutes

without using any powerful machine or parallel programming. In Table 7, we fixed S = 3

and K = 3 and varied biological variance σ = 2, 6 and did 100 simulations for each σ.

On the left, the performance of matching score is evaluated by comparing with exhaustive

matching score. We observed that stepwise matching sometime will deviate from the optimal

matching, but MCMC (with stepwise initial) can increase the chance to the best matching.

On the right, we evaluated the final cluster agreement. We observed that all of the three

methods would achieved similar performance. The result demonstrates that MCMC achieves

the best balance between computing load and optimization performance. Besides, in our real

data examples, all three matching algorithms will yield the same clustering result.
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Table 7: Accuracy for different matching methods

% of optimal accuracy

Variance σ = 2 σ = 6 σ = 2 σ = 6

Exhaustive 100% 100% 0.829± 0.031 0.020± 0.002

Stepwise 93.3% 92.8% 0.828± 0.031 0.020± 0.002

MCMC 100% 100% 0.828± 0.031 0.020± 0.002

Performance comparing with the best matching score (percentage of agreement with optimal

matching) and clustering accuracy by ARI (mean estimate± standard error) under different

biological variances (σ = 2 and σ = 6).

(a) accuracy (b) robustness

Figure 9: Accuracy comparison of MetaSparseKmeans and sparse K-means.

Figure 9(a) compares the accuracy of MetaSparseKmeans and sparse K-means. For sparse

K-means we used the TCGA data (n=533) only and for MetaSparseKmeans we combined

TCGA, Wang and Desmedt. At each sub-sampling point, ARI was calculated 100 times and

averaged. Figure 9(b) compares the stability of MetaSparseKmeans and sparse K-means.

At each sub-sampling point, ARI was calculated 4950 times and averaged.
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2.5 DISCUSSION

Disease phenotyping and subtype discovery have received increasing attention since high-

throughput experimental data have become more and more affordable and prevalent. In the

literature, such a modeling is usually performed in a single study and attempts have been

made to validate in other studies. As more and more studies of the same disease are available,

combining multiple studies for simultaneous subtype clustering is an appealing approach

to identify a common set of intrinsic genes and a common model of subtype definition

for future prediction. In this chapter, we developed a MetaSparseKmeans framework that

can achieve this goal. Simulations and applications to leukemia datasets and breast cancer

datasets demonstrated improved performance by meta-analysis. We demonstrated a superior

accuracy and stability of MetaSparseKmeans compared to individual analysis counterpart

in the breast cancer example. We also performed an validation on a large independent

METABRIC study which evaluated its potential clinical significance by survival analysis

and demonstrated the better pathway association of the identified intrinsic genes with cancer

related pathways.

Although MetaSparseKmeans was mainly applied to transcriptomic studies in this chap-

ter, it can also be applied to other high-throughput omics data such as methylation, copy

number variation, miRNA and proteomics. There are a few potential extensions of

MetaSparseKmeans. First of all, the feature selection in sparse K-means ignores prior

knowledge or dependence structure between features. For example, if features contain both

gene expression and methylation, the inter-relationship between multi-omics data may be

modeled to improve the analysis and interpretation. Secondly, the gap statistic usually leads

to a candidate region with near optimal µ and we selected µ corresponding to less number

of features. One may design a penalized gap statistics for which µ could be automatically

selected. Thirdly, disease-related genes or pathways may be available in well-studied diseases.

Incorporating these prior biological information may generate more biologically relevant

results and is a future direction. Finally, subtypes identified by MetaSparseKmeans do not

necessarily guarantee association with clinical outcome (e.g. survival, tumor stage, tumor

grade etc). It is possible that less obvious subtypes with important clinical association may
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be masked by strong subtypes with no clinical importance. A guided clustering approach

incorporating prior clinical information may help identify clinically relevant disease subtypes.

MetaSparseKmeans inherits fast computation from K-means algorithms. The stepwise

search algorithm and simulated annealing also provide a viable solution to the large searching

space of cluster matching when the number of studies is large. In the breast cancer example

(K = 5 and S = 3), MetaSparseKmeans took only about 8 minutes for exhaustive search

using a regular laptop (CPU 2GHz and 4GB RAM). An R package MetaSparseKmeans is

available to perform the analysis.
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3.0 INTEGRATIVE SPARSE KMEANS

3.1 INTRODUCTION

In section 1.2, we introduced the background for disease subtype discovery via transcrip-

tomic data. In section 3.1, we introduced the background of horizontal meta-analysis for 

disease subtype discovery via combining multiple transcriptomic studies. Over the years 

large amount of omics data are accumulated in public databases and depositories, vertical 

integrative analysis is appealing since we are able to draw robust conclusion by taking into 

account the regulatory relationships between different levels of omics data. Omics integrative 

analysis has been found successful in many applications: (e.g. breast cancer (Koboldt et al., 

2012), stomach cancer (Bass et al., 2014)). On the other hand, tremendous amount of bio-

logical information has been accumulated in public databases. Proper usage of these prior 

information (e.g. pathway information and miRNA targeting gene database) can greatly 

guide the modeling of omics integrative analysis.

In this chapter, we focus on vertical omics integrative analysis for disease subtype discov-

ery. Several methods for this purpose have been proposed in the literature. Lock and Dunson 

(2013) fitted a finite Dirichlet mixture model to perform Bayesian consensus clustering that 

allows common clustering across omics types as well as omics-type-specific clustering. The 

model, however, does not perform proper feature selection and thus is not suitable for high-

dimensional omics data. Shen et al. (2009) proposed a latent variable factor model (namely 

iCluster) to cluster cancer samples by integrating multi-omics data. The method does not 

incorporate prior biological knowledge and requires extensive computing due to EM algo-

rithm with large matrix operation. We will use the popular iCluster method as the baseline 

method to compare in this chapter. The content of this chapter is accepted by the Annals

of Applied Statistics (Huo and Tseng, 2017).
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The central question we ask in this Chapter is: “Can we identify cancer subtypes by 

simultaneously integrating multi-level omics datasets and/or utilizing existing biological 

knowledge to increase accuracy and interpretation?” Several statistical challenges will arise 

when we attempt to achieve this goal: (1) If multi-level omics data are available for a given 

patient cohort, what kind of method is effective to achieve robust and accurate disease sub-

type detection via integrating multi-omics data? (2) Since only a small subset of intrinsic 

omics features are relevant to the disease subtype characterization, how can we perform 

effective feature selection in the high-dimensional integrative analysis? (3) With the rich 

biological information (e.g. targeted genes of each miRNA or potential cis-acting regulatory 

mechanism between copy number variation, methylation and gene expression), how can we 

fully utilize the prior information to guide feature selection and clustering? In this chapter, we 

propose an integrative sparse K-means (IS-Kmeans) (Huo and Tseng, 2017) approach by 

extending the sparse K-means algorithm with overlapping group lasso technique to accom-

modate the three goals described above. The lasso penalty in the sparse K-means method 

allows effective feature selection for clustering. In the literature, (non-overlapping) group lasso 

(Yuan and Lin, 2006) has been developed in a regression setting to encourage features of the 

same group to be selected or excluded together. The approach, however, has two major 

drawbacks: (1) it does not allow sparsity within groups (i.e. a group of features are either all 

selected or all excluded), and (2) the penalty function does not allow overlapping groups. For 

the first issue, Simon et al. (2013) proposed a sparse group lasso with both an l1 lasso penalty 

and a group lasso penalty to allow sparsity within groups while the approach does not allow 

overlapping groups. For the latter issue, overlapping group information from biological 

knowledge is frequently encountered in many applications. In genomic application, for 

example, the targeted genes of two miRNAs are often overlapped or two pathways may 

contain overlapping genes. Jacob et al. (2009) proposed a duplication technique to allow 

overlapping groups in regression setting while the approach does not allow sparsity within 

groups. In this chapter, we attempt to simultaneously overcome both aforementioned diffi-

culties in a clustering setting, which brings optimization challenges beyond the duplication 

technique by Jacob et al. (2009) and the sparse group lasso optimization by Simon et al.
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(2013). In our proposed IS-Kmeans method, we will develop a novel reformulation of l1 lasso

penalty and overlapping group lasso penalty so that a fast optimization technique using al-

ternating direction method of multiplier (ADMM) (Boyd et al., 2011) can be applied (see

Section 3.3.3.1).

The rest of the chapter is structured as following. Section 3.2 gives a motivating example.

Section 3.3 establishes the method and optimization procedure. Section 3.4.1-3.4.3 compre-

hensively compares the proposed method with the popular iCluster method using simulation

and two breast cancer applications on multi-level omics data. Section 3.4.4 provides another

type of IS-Kmeans application of pathway-guided clustering on single transcriptomic study.

Section 3.5 includes final conclusion and discussion.

3.2 MOTIVATING EXAMPLE

Figure 10A shows a clustering result using single study sparse K-means (detailed algorithm

see Section 1.3.3.2) on the mRNA, methylation and copy number variation (CNV) datasets

separately from 770 samples in TCGA. As expected, they generate very different disease

subtyping without regulatory inference across mRNA, methylation and CNV. In this exam-

ple, single study sparse K-means fails to consider that different omics features belonging to

the same genes are likely to contain cis-acting regulatory mechanisms related to the disease

subtypes. Figure 10B combines the three datasets to perform IS-Kmeans. The IS-Kmeans

generates a single disease subtyping and takes into account of the prior regulatory knowledge

between mRNA, methylation and CNV. The prior knowledge can also be pathway database

(e.g. KEGG, BioCarta and Reactome) or knowledge of miRNA targets prediction databases

(e.g. PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA) (Witkos et al., 2011;

Fan and Kurgan, 2015). Incorporating such prior information of feature grouping increases

statistical power and interpretation. Figure 10C shows a simple example of such group prior

knowledge. Pathway J1 includes mRNA1, mRNA2, mRNA3 and mRNA6 while pathway

J2 includes mRNA3, mRNA4, mRNA5 and mRNA7. Note that mRNA3 appears in both

pathway J1 and J2, which requires our algorithm to allow overlapping groups. Our goal is
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to develop a sparse clustering algorithm integrating multi-level omics datasets and the afore-

mentioned prior regulatory knowledge by overlapping group lasso. The algorithm is also

suitable for single omics dataset with incorporating prior overlapping pathway information

(see the leukemia examples in Section 3.4.4).

3.3 METHOD

3.3.1 Integrative Sparse K-means (IS-Kmeans)

We have introduced K-means and sparse K-means in Section 1.3.3.2. We extend the sparse

K-means objective function to group structured sparse K-means. Here we consider J to be

the total number of features combing all levels of omics datasets. In order to make features

of different omics data types on the same scale and comparable, we normalized BCSSj by

TSSj and denote

Rj(C) =
BCSSj(C)

TSSj

We put the overlapping group lasso penalty term Ω(z) in the objective function.

min
C,z
−

J∑
j=1

zjRj(C) + γα‖z‖1 + γ(1− α)Ω(z) (3.3.1)

subject to ‖z‖2 ≤ 1, zj ≥ 0,

where γ is the penalty tuning parameter controlling the numbers of non-zero features, α ∈

[0, 1] is a term controlling the balance between individual feature penalty and group feature

penalty. If α = 1, there is no group feature penalty term and the objective function is

equivalent to sparse K-means objective function after standardizing each feature. If α = 0,

there is no individual feature penalty and only group feature penalty exists. The overlapping

group lasso penalty term is defined as

Ω(z) =
∑

1≤g≤G0

wg‖mg ◦ z‖2,

where G0 is the number of (possibly overlapping) feature groups from prior biological knowl-

edge, wg ∈ R is the group weight coefficient for group g, mg = (mg1, . . . ,mgJ) is the design

50



vector of the gth feature group and ◦ represents Hadamard product. The design of wg and mg 

is discussed in Section 3.3.2. Note that features with no group information are also treated

as a group by itself (a group only contains a feature); such a design is to avoid bias towards

a feature with no group information by receiving no penalization. The feature groups can

either come from existing biological databases (e.g. pathway or miRNA target database), or

from basic biological cis-regulatory knowledge (CNV and methylation features in the neigh-

borhood of a nearby gene region). The first term in Equation 3.3.1 encourages large weights

for features with strong clustering separability. The second term is an l1 norm lasso penalty

to encourage sparsity. Finally, Ω(z) serves as overlapping group lasso to encourage features

in the prior knowledge groups to be selected simultaneously (or discarded together). The

intuition of group lasso is that if we transform the Lagrange form of Ω(z) to its constraint

form, it becomes an elliptic constraint and features of the same group are preferred to be

selected together (Yuan and Lin, 2006; Jacob et al., 2009). The combination of l1 norm lasso

penalty and overlapping group lasso penalty Ω(z) serves to achieve a sparse feature selection

and also encourages (but does not force) features of the same group to be selected together.

Remark. Since different types of omics datasets may have different value ranges and dis-

tributions, additional normalization may be needed in the preprocessing. For example, the

commonly-used beta values from methy-seq (defined as “methylation counts”/“total counts”)

represent the proportions of methylation and range between 0 and 1. A logit transformation

to so-called M-values is closer to Gaussian distribution and is more suitable to integrate

with other omics data. Similarly, log-transformation of expression intensities from microar-

ray, log-transformation of RPKM/TPM (summarized expression values) from RNA-seq and

log-ratio values of CNV values from SNP arrays have been shown to be roughly Gaussian

distributed and are proper for multi-omics integration. Another possibility is by replacing

Euclidean distance to an appropriate distance measurement (e.g. Gower’s distance for bi-

nary categorical and ordinal data, and Bray-Curtis dissimilarity for count data). Under this

scenario, Equation 3.3.1 remains valid under such modification and we only need to incorpo-

rate partition around medoids (PAM) (Kaufman and Rousseeuw, 1987) instead of K-means

in the optimization procedure in Section 3.3.3.1. However, heterogeneity of different distance

measurement may require extra different sparsity penalties and this is beyond consideration

in this dissertation.
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3.3.2 Design of overlapping group lasso penalty

In this section, we discuss and justify the design of overlapping group lasso penalty for 

wg and mg. We denote by Jg as the collection of features in group g (1 ≤ g ≤ G0) and

define frequency of feature j appearing in different groups: h(j) =
∑

1≤g≤G0
I{j ∈ Jg}. We

also define the intrinsic feature set I (i.e. features that contribute to the underlying true

sample clustering) and the non-intrinsic feature set Ī. We first state an “Unbiased Feature

Selection” principle under a simplified situation:

Definition 3.3.1 (“Unbiased Feature Selection” principle). Suppose equal separation ability

in all intrinsic features I = {j : Rj = R > 0} and no separation ability in non-intrinsic

features Ī = {j : Rj = 0} under the true clustering label. The proposed overlapping group

lasso design (wg and mg) is said to satisfy the “Unbiased Feature Selection” principle if

under Equation 3.3.1, it generates equal weights zj = 1/
√
|I| for j ∈ I and zj = 0 for j ∈ Ī

given any prior knowledge of feature groups Jg, 1 ≤ g ≤ G0.

The theorem below states an overlapping group lasso penalty design that satisfies “Un-

biased Feature Selection” principle when all features are intrinsic features (i.e. Ī = φ).

Theorem 3.3.1. Consider Ω(z) =
∑

1≤g≤G0
wg‖mg ◦z‖2 and mg = (mg1, . . . ,mgj, . . . ,mgJ)

in Equation 3.3.1. Suppose equal separation ability for all features R1 = . . . = RJ = R (Ī =

φ) and further assume R > γ. The design of mgj = I{j ∈ Jg}/
√
h(j), wg =

√∑
j∈Jg 1/h(j)

satisfies the “Unbiased Feature Selection” principle such that optimum solution of z from

Equation 3.3.1 generates zj = 1/
√
J , ∀j.

Theorem 3.3.1 gives a design of overlapping group lasso penalty such that given equal

separation ability for all features, the feature selection is not biased by the prior group

knowledge. When all the groups are non-overlapping, h(j) = 1,∀j, then

Ω(z) =
∑

0≤g≤G0

(√
|Jg|

√∑
j∈Jg

z2
j

)
,
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where |Jg| is number of features in group Jg, which is the non-overlapping group lasso

penalty (Yuan and Lin, 2006). However, this weight design
(
wg =

√∑
j∈Jg 1/h(j)

)
is not

applicable when the underlying intrinsic feature set is sparse (i.e. Ī 6= φ). If there are

many non-intrinsic features inside group g, the intrinsic features in group g is over penalized

since wg is inflated by the contribution of non-intrinsic features. Therefore, we propose

the following overlapping group lasso penalty and show that the design satisfies “Unbiased

Feature Selection” principle when intrinsic feature set is sparse.

mgj = I{j ∈ Jg}/
√
h(j) (3.3.2)

wg =

√ ∑
j∈(Jg∩I)

1/h(j)

Theorem 3.3.2. Suppose the intrinsic feature set I = {j : Rj = R > 0} and the non-

intrinsic feature set Ī = {j : Rj = 0}. We further assume R > γ. The overlapping group

lasso penalty in Equation 3.3.2 satisfies the “Unbiased Feature Selection” principle such that

the optimum solution of z from Equation 3.3.1 is zj = 1/
√
|I| for j ∈ I and zj = 0 for

j ∈ Ī.

Note that we take into account both the non-intrinsic features and the intrinsic features

in the penalty design in Equation 3.3.2. Only intrinsic features contribute to the group

weight coefficient wg. The design vector mg remains the same as non-overlapping group

lasso. In practice, the intrinsic feature set I is unknown. We follow the coefficient design

of adaptive lasso (Zou, 2006) and adaptive group lasso (Huang et al., 2010), which have

been discussed in the literature and they maintain consistency property under certain mild

conditions. Specifically, we set α = 1 in Equation 3.3.1 where only individual feature

penalty is considered and use the solution ẑ to define estimated intrinsic feature set Î =

{j : ẑj > 0} and non-intrinsic feature set ˆ̄I = {j : ẑj = 0} for Equation 3.3.2. In the

example of Figure 10C, suppose all 7 features are intrinsic genes. Pathway J1 contains

mRNA1, mRNA2, mRNA3 and mRNA6, reflecting prior knowledge from pathway databases.
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Similarly, group for pathway J2 contains mRNA3, mRNA4, mRNA5 and mRNA7. As a

result, m1 = (1, 1, 1/2, 0, 0, 1, 0) and m2 = (0, 0, 1/2, 1, 1, 0, 1) and

Ω(z) =
√

1 + 1 + 1/2 + 1
√
z2

1 + z2
2 + 1/2× z2

3 + z2
6+√

1/2 + 1 + 1 + 1
√

1/2× z2
3 + z2

4 + z2
5 + z2

7 .

Note that in our example mRNA3 is shared by pathway groups J1 and J2, representing

overlapping group lasso penalty.

3.3.3 Optimization

In this section, we discuss major issues for optimization of Equation 3.3.1. Firstly we intro-

duce transformation of Equation 3.3.1 such that l1 norm penalty can be absorbed in l2 norm

group penalty. Secondly we introduce the optimization procedure for the proposed objective

function. Thirdly, we discuss how to use ADMM to optimize the weight term, which is

critical and a difficult problem since it involves both the l1 norm penalty and overlapping

group lasso penalty. Lastly, we discuss the stopping rule for the optimization.

3.3.3.1 Reformulation and iterative optimization We use the fact that γα‖z‖1 can

be re-written as γα‖z‖1 = γα
∑J

j=1 ‖zj‖2 and zj = (0, . . . , zj, . . . , 0)> with only the jth

element non-zero. In other words, the l1 norm penalty of a single feature can be deemed

as group penalty with only one feature within a group. Therefore we can rewrite objective

function Equation 3.3.1 as

min
C,z
−

J∑
j=1

zjRj(C) +
J∑
j=1

‖γαφj ◦ z‖2 +
∑

0≤g≤G0

‖γ(1− α)mg ◦ z‖2 (3.3.3)

s.t. ‖z‖2 ≤ 1, zj ≥ 0, where φj = (φj1, . . . ,φjJ), φj i = 1 if j = i and φj i = 0 if j 6= i. We

combine J and G0 groups and the combined groups are of size G = J + G0. Define

βg =

γαφj , if 1 ≤ g ≤ J,

γ(1− α)mg, if J + 1 ≤ g ≤ G.
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Therefore we can rewrite objective function Equation 3.3.3 as

min−R(C)>z +
∑

1≤g≤G

‖βg ◦ z‖2 (3.3.4)

subject to ‖z‖2 ≤ 1, zj ≥ 0,

where R(C) = (R1(C), . . . , RJ(C))>. The optimization procedure are outlined below:

1. Initialize weight z using the original sparse K-means method without the group lasso

term.

2. Given weight z, use weighted K-means to update cluster labels C (R is the normalized

WCSS so minimizing −R(C)>z is essentially weighed K-means). This is a non-convex

problem so multiple random starts are recommended to alleviate local minimum problem.

3. Given the cluster label C, R is fixed so optimizing the objective function is a convex

problem with respect to solving weight z. We use ADMM in the next subsection to

update weight z.

4. Iterate 2 and 3 until converge.

The detailed algorithm for Step 3 is outlined in Section 3.3.3.2 and the stopping rules of

Step 3 and Step 4 are described in Section 3.3.3.3.

3.3.3.2 Update weight using ADMM Alternating direction method of multiplier

(ADMM) (Boyd et al., 2011) is ideal for solving the optimization in Equation 3.3.4. We

introduce an auxiliary variable xg and write down the augmented Lagrange.

min−R(C)>z +
∑

1≤g≤G

‖xg‖2 +
∑

1≤g≤G

{y>g (xg − βg ◦ z) +
ρ

2
‖xg − βg ◦ z‖2

2} (3.3.5)

s.t. ‖z‖2 ≤ 1, zj ≥ 0, and xg = βg ◦z. This problem (Equation 3.3.5) is clearly equivalent to

the original objective function (Equation 3.3.4), since for any feasible z the terms added to

the objective is zero. ρ is the augmented Lagrange parameter which will be discussed in more

detail in Section 3.3.3.4. Here the augmented Lagrange is minimized jointly with respect to

the two primal variables xg, z and the dual variable yg. In ADMM, xg, z and yg are updated

in an alternating or sequential fashion (Boyd et al., 2011) and thus the optimization problem
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can be decomposed into three parts. Given (xg, z and yg), the new iteration of (x+
g , z+ and

y+
g ) in Equation 3.3.5 is updated as following.



x+
g = arg minxg ‖xg‖2 + y>g xg + ρ

2
‖xg − βg ◦ z‖2

2

z+ = arg minz−
∑
zjRj −

∑
1≤g≤G y>g (βg ◦ z) + ρ

2
‖x+

g − βg ◦ z‖2
2

subject to ‖z‖2 ≤ 1, zj ≥ 0.

y+
g = yg + ρ(x+

g − βg ◦ z+)

Where the updating equation of x+
g and z+ are derived from Equation 3.3.5 and the the

updating equation of y+
g is imbedded in ADMM procedure (Boyd et al., 2011). We can

derive close form solution for xg part and z part by Karush-Kuhn-Tucker (KKT) condition.

Details are given in the Appendix.

1. Define ag = βg ◦ z− yg

ρ
, we have x+

g = (1− 1
ρ‖ag‖2 )+ag, where (·)+ = max(0, ·).

2. Define bj =
∑

1≤g≤G ρβ
2
gj and cj =

∑
1≤g≤G

(
ρx+

gj + ygj
)
◦ βgj, where

βg = (βg1,βg2, . . . ,βgJ)>, xg = (xg1,xg2, . . . ,xgJ)> and yg = (yg1,yg2, . . . ,ygJ)>. The

solution is given as following: we define fj(u) = (
Rj+cj
bj+2u

)+. If
∑

j fj(u)2 < 1, z+
j = fj(0)

∀j. Otherwise z+
j = fj(u) ∀j and u is selected s.t. ‖z+‖2 = 1.

3.3.3.3 Stopping rules We have two algorithms which require stopping rules. For

ADMM in the optimization of Step 3, the primal residual of group g in ADMM iteration t

is: rtg = xtg − βg ◦ zt, and the l2 norm of primal residual is rt =
√∑

g ‖rtg‖2
2. The l2 norm

of dual residual is: vt =
√∑

g ‖βg ◦ (zt − zt−1)‖2
2. We set our ADMM stopping criteria

such that simultaneously rt < 10−10 and vt < 10−10. For convergence of IS-Kmeans, we

iterate weighted K-means (Step 2) and updating weight by ADMM (Step 3) until converge.

(i.e.
∑J

j=1 |z
(c)
j −z

(c−1)
j |∑J

j=1 |z
(c−1)
j |

< 10−4), where z
(c)
j represents the zj estimate in the cth iteration of the

IS-Kmeans algorithm.
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3.3.3.4 augmented Lagrangian parameter ρ Augmented Lagrangian parameter ρ

controls the convergence of ADMM. In fact, large value of ρ will lead to small primal residual

by placing a large penalty on violations of primal feasibility. And conversely, small value of ρ

tend to produce small dual residual, but it will result in a large primal residual by reducing

the penalty on primal feasibility (Boyd et al., 2011). An adaptive scheme of varying ρ to

balance the primal and dual residual has been proposed (He et al., 2000; Wang and Liao,

2001) which greatly accelerates ADMM convergence in practice.

ρt+1 =


τ incrρt, if ‖rt‖2 > η‖vt‖2,

ρt/τdecr, if ‖vt‖2 > η‖rt‖2,

ρt, otherwise.

We set η = 10 and τ incr = τdecr = 2. The intuition behind this scheme is to control both

primal and dual residuals for converging to zero simultaneously.

3.3.4 Select tuning parameters

In the objective function of IS-Kmeans, the number of clusters K is pre-specified. The issue

of estimating K has been widely discussed in the literature and has been well-recognized as a

difficult and data-dependent problem. (Milligan and Cooper, 1985; Kaufman and Rousseeuw,

2009). Here, we suggest the number of clusters to be estimated in each study separately

using conventional methods such as prediction strength (Tibshirani and Walther, 2005) or

gap statistics (Tibshirani et al., 2001) and jointly compared across studies (such that the

numbers of clusters are roughly the same for all studies) for a final decision before applying

integrative sparse K-means. Below we assume that a common K is pre-estimated for all

omics datasets.

Another important parameter to be determined is α, which controls the balance between

individual feature penalty and overlapping group penalty. According to the Equation 3.3.1,

α = 1 means we only emphasize on individual feature penalty and ignore overlapping group

penalty. In this case the IS-Kmeans is equivalent to sparse K-means. α = 0 means we only

emphasize overlapping group penalty and ignore individual feature penalty. Simon et al.

(2013) argued that there is no theoretically optimal selection for α because selection of α
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relates to multiple factors such as accuracy of prior group information and sparsity within

groups. In general, a large α (e.g. α = 0.95) is suitable when prior group information may

not be accurate or features within selected groups may be sparse. On the other hand, if we

expect mild sparsity within groups and high accuracy of prior group information, a small

α (e.g. α = 0.05) help select features by groups. In Section 3.4.1.2, we have performed

simulation of different level of prior group information accuracy (θ = 1 and θ = 0.2) and

found that α = 0.5 generates robust and high performance results in the sensitivity analysis.

As a result, we apply α = 0.5 throughout the chapter unless otherwise indicated.

The last tuning parameter is γ, which is the penalty coefficient. When γ is large, we

place large penalty on the objective function and end up with less selected features. When

γ is small, we put small penalty and will include more features. We follow and extend the

gap statistic procedure (Tibshirani et al., 2001) to estimate γ:

1. For each feature in each omics type, randomly permute the gene expression (permute

samples). This creates a permuted data set X(1). Repeat for B times to generate

X(1), X(2), . . . , X(B).

2. For each potential tuning parameter γ, compute the gap statistics as below.

Gap(γ) = O(γ)− 1

B

B∑
b=1

Ob(γ), (3.3.6)

where O(γ) = −
∑J

j=1 z
∗
jRj(C

∗) is from observed data, where z∗, C∗ are the minimizer of

the objective function in Equation 3.3.1 given γ. Ob(γ) is similar to O(γ) but generated

from permuted data X(b). Note that for

3. For a range of selections of γ, select γ∗ such that the gap statistics in Equation 3.3.6 is

minimized.

Figure 11 shows an example of a simulated dataset that will be discussed in Section 3.4.1. In

this example, we used α = 0.5 for IS-Kmeans and the minimum gap statistics corresponded

to 1778 genes, which is very close to the underlying truth 1800. The gap statistics for

α = 0.05, 0.95, 1 are plotted in Supplementary Figure 13 and they all provided adequate

γ estimation. In practice, calculating gap statistics from a chain of γ can be performed

efficiently by adopting warm start for adjacent γ’s. For example, after calculating O(γ1), the
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resulting weights can be used as an initial value for the next nearby γ2 = γ1 + ∆ to calculate

O(γ2) in the optimization iteration for fast convergence.

3.4 RESULT

We evaluated integrative sparse K-means (IS-Kmeans) on simulation datasets in

Section 3.4.1, multiple-level omics applications using breast cancer TCGA (combining mRNA

expression, DNA methylation and copy number variation) and METABRIC (combining

mRNA expression and copy number variation) examples in Section 3.4.2 and 3.4.3, and

a pathway-guided single transcriptomic application in leukemia in Section 3.4.4. In the sim-

ulation, the underlying sample clusters and intrinsic feature set were known and we demon-

strated the better performance of IS-Kmeans compared to iCluster and sparse K-means

by cluster accuracy, feature selection and computing time. For the TCGA and METABRIC

application, the underlying true clustering and intrinsic feature set were not known. We eval-

uated the performance by clustering similarity using adjusted Rand index (ARI) (Hubert

and Arabie, 1985) with subtype definition by PAM50 (Parker et al., 2009), cis-regulatory

groups, survival difference between clusters and computing time. In the leukemia exam-

ples, the disease subtypes were defined by observable fusion gene aberration. We evaluated

the performance by clustering accuracy (ARI) and pathway enrichment analysis on selected

genes.

3.4.1 Simulation

3.4.1.1 Simulation setting To assess the performance of integrative sparse K-means

with different choices of α and compare to the original sparse K-means and iCluster, we

simulated K = 3 subtypes characterized by several groups of subtype predictive genes in

each of S = 2 omics datasets with 1 ≤ s ≤ S as the omics dataset index (e.g. s = 1 represents

gene expression and s = 2 represents DNA methylation). The prior group information was

imposed between groups of subtype predictive genes across omics datasets. These prior group
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information represent the possibility that a group of genes and DNA methylations might

be co-regulated. To best preserve the data nature of genomic studies, we also simulated

confounding variables, correlated gene structure and non-informative genes. Below is the

generative process:

(a) Subtype predictive genes (intrinsic feature set).

1. Denote by Nk is the number of subjects in subtype k(1 ≤ k ≤ 3). We simulate N1 ∼

POI(40), N2 ∼ POI(40), N3 ∼ POI(30) and the number of subjects is N =
∑

kNk.

Simulate S = 2 omics datasets, which share the samples and subtypes. Specifically, we

denote s = 1 to be the gene expression dataset and s = 2 to be the DNA methylation

dataset.

2. Simulate M = 30 feature modules (1 ≤ m ≤ M) for each omics dataset. Denote

nsm to be the number of features in omics dataset s and module m. For each module

in s = 1, sample n1m = 30 genes. For each module in s = 2, sample n2m = 30

methylations. Therefore, there will be of 1800 subtype predictive features among two

omics datasets.

3. Denote by µskm is the template gene expression (on log scale) of omics dataset s(1 ≤

s ≤ S), subtype k(1 ≤ k ≤ 3) and module m(1 ≤ m ≤ M). Simulate the template

gene expression µskm ∼ N(9, 22) with constrain maxp,q |µspm − µsqm| ≥ 1, where p, q

denote two subtypes. This part defines the subtype mean intensity for each module

in all omics datasets. Note that since in Equation 3.3.1 we used Rj =
BCSSj

TSSj
for

standardization, performance of the algorithm is robust to gene expression distribution

(e.g. the Gaussian assumption here).

4. In order to tune the signal of the template gene expression, we introduce a relative

effect size f > 0, such that µ
′

skm = (µskm −mink µskm)× f + mink µskm. If f = 1, we

don’t tune the signal. If f < 1, we decrease the signal and if f > 1, we amplify the

signal.

5. Add biological variation σ2
1 = 1 to the template gene expression and simulate X

′

skmi ∼

N(µ
′

skm, σ
2
1) for each module m, subject i(1 ≤ i ≤ Nk) of subtype k and omics dataset

s.
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6. Simulate the covariance matrix Σmks for genes in module m, subtype k and omics

dataset s, where 1 ≤ m ≤ M , 1 ≤ k ≤ 3 and 1 ≤ s ≤ S. First simulate Σ
′

mks ∼

W−1(Φ, 100), where Φ = 0.5Insm×nsm + 0.5Jnsm×nsm , W−1 denotes the inverse Wishart

distribution, I is the identity matrix and J is the matrix with all elements equal 1.

Then Σmks is calculated by standardizing Σ
′

mks such that the diagonal elements are

all 1’s.

7. Simulate gene expression levels of genes in cluster m as (X1skmi, . . . , Xnsmskmi)
> ∼

MVN(X
′

skmi,Σmks), where 1 ≤ i ≤ Nks, 1 ≤ m ≤M , 1 ≤ k ≤ 3 and 1 ≤ s ≤ S.

(b) Non-informative genes.

1. Simulate 5000 non-informative genes denoted by g(1 ≤ g ≤ 5000) in each omics

dataset. First, we generate the mean template gene expression µsg ∼ N(9, 22). Then

we add biological variance σ2
2 = 1 to generate Xsgi ∼ N(µsg, σ

2
2), 1 ≤ i ≤ Ns.

(c) Confounder impacted genes.

1. Simulate C = 2 confounding variables. In practice, confounding variables can be gen-

der, race, other demographic factors or disease stage etc. These will add heterogeneity

to each study to complicate disease subtype discovery. For each confounding variable

c(1 ≤ c ≤ C), we simulate R = 10 modules in each omics dataset. For each of these

modules rc(1 ≤ rc ≤ R), sample number of genes nrc = 30. Therefore, totally 600

confounder impacted genes are generated in each omics dataset. This procedure is

repeated in all S omics datasets.

2. For each omics dataset s(1 ≤ s ≤ S) and each confounding variable c, sample the

number of confounder subclass hsc = k. The N samples in omics dataset s will be

randomly divided into hsc subclasses.

3. Simulate confounding template gene expression µslrc ∼ N(9, 22) for confounder c,

gene module r, subclass l(1 ≤ l ≤ hsc) and omics dataset s. Similar to Step 5,

we add biological variation σ2
1 to the confounding template gene expression X

′

scrli ∼

N(µslrc, σ
2
1). Similar to Step 6 and 7, we simulate gene correlation structure within

modules of confounder impacted genes.

(d) Gene grouping information.

61



1. We assume omics dataset s = 1 and s = 2 have prior group information on subtype

predictive gene modules. There are M = 30 modules in each omics dataset.

2. Suppose subtype predictive genes in the mth module of the first omics dataset are

grouped with methylation features in the second omics dataset (totally n1m + n2m =

30+30 = 60 features are in the same group). With probability 1−θ (0 ≤ θ ≤ 1), each

feature out of the 60 features will be randomly replaced by a confounder impacted

gene or non-informative gene. Note that the same replaced feature can appear in

multiple subtype predictive gene groups. We set θ = 1 and 0.2 to reflect 100%, 20%

accuracy of prior group information.

3.4.1.2 Simulation result For IS-Kmeans, the tuning parameter γ was selected by gap

statistics introduced in Section 3.3.4. Table 8 shows the result of gap statistics to select

the best γ in the simulation of α = 0.5, θ = 1. The smallest gap statistics was selected at

γ = 0.21 that correspond to selecting 1778 features, which was close to the underlying truth.

Similarly, gap statistics result for α = 1, 0.95, 0.05 are in the Supplementary Figure 13. For

simulation, we generated two scenarios with relative effect size f = 0.6 and f = 0.8. The

complete simulation result of f = 0.6 is shown in Table 8 and the result for f = 0.8 is in

the supplementary materials supplementary Table 13. For iCluster and sparse K-means,

we allowed them to choose their own optimum tuning parameters. Note that sparse K-

means was adopted to each individual omics datatype. We used ARI (Hubert and Arabie,

1985) and Jaccard index (Jaccard, 1901) to evaluate the clustering and feature selection

performance. ARI calculated similarity of the clustering result with the underlying true

clustering in simulation (range from -1 to 1 and 1 represents exact same partition compared

to the underlying truth). Jaccard index compared the similarity and diversity of two feature

sets, defined as the size of the intersection of two feature sets divided by the size of the union

of two feature sets (range from 0 to 1 and 1 represent identical feature sets compared to the

underlying truth). Clearly, IS-Kmeans outperformed iCluster and individual study sparse

K-means in terms of ARI and Jaccard index. IS-Kmeans and sparse K-means outperformed

iCluster in terms of computing time. Within IS-Kmeans, we compared feature selection

in terms of area under the curve (AUC) of ROC curve, which avoids the issue of tuning

62



parameter selection. When θ = 1 (representing the grouping information is accurate), smaller

α (representing larger emphasize on grouping information) yielded better feature selection

performance in terms of AUC as expected. However, when θ = 0.2 (representing many errors

in the grouping information), smaller α yielded worse performance in terms of AUC. Note

that α = 0.5 gives robustness and performs well in the two extremes of θ = 1 and θ = 0.2.

In all applications below, we will apply α = 0.5 unless otherwise noted.

3.4.1.3 Data perturbation We also evaluated the stability of the algorithm against

data perturbation. Instead of Gaussian distribution in the data generative process, we

utilized heavy tailed t-distribution to generate the expression. In the simulation setting

Step a3, the template gene expression is simulated from a t-distribution with degree of

freedom 3, location parameter 9 and scale parameter 2. In Step a4, we set relative effect size

f = 0.6 and f = 0.8 respectively. In Step a5, X ′skmi is simulated from a t-distribution with

degree of freedom 3, location parameter µ′skm and scale parameter σ2
1. The result for data

perturbation is in supplementary Table 16 and 17. The resulting message remains almost

the same as the conclusion in Section 3.4.1.2. Therefore, our proposed algorithm is robust

against non-Gaussian or heavy tail distributions.

3.4.2 Integrating TCGA Breast cancer mRNA, CNV and methylation

We downloaded TCGA breast cancer (BRCA) multi-level omics datasets from TCGA NIH

official website. TCGA BRCA gene expression (IlluminaHiSeq RNAseqV2) was downloaded

on 04/03/2015 with 20,531 genes and 1,095 subjects. TCGA BRCA DNA methylation

(Methylation450) was downloaded on 09/12/2015 with 485,577 probes and 894 subjects.

TCGA BRCA copy number variation (BI gistic2) was downloaded on 09/12/2015 with 24,776

genes and 1,079 subjects. There were 770 subjects with all these three omics data types.

Features (probes/genes) with any missing value were removed. For gene expression, we

transformed the FPKM value by log2(· + 1), where 1 is a pseudo-count to avoid undefined

log2(0), such that the transformed value was on continuous scale. For methylation, the

Methylation450 platform provided beta value with range 0 < β < 1, where 0 represents un-
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methylated and 1 represents methylated. We transformed the beta value to M value, which

is defined by a logit transformation (M = log2[ β
1−β ]). Therefore methylation characterized by

M value is on continuous scale, similar to mRNA and CNV. If multiple methylation probes

matched to the same gene symbol, we selected one methylation probe as representative,

which had the largest average correlation with other methylation probes of the same gene

symbol. We ended up with 20,147 methylation probes with unique gene symbols.

We filtered out 50% low expression genes (unexpressed genes) and then 50% low variance

genes (non-informative genes). 50% low expression genes are genes with the lowest 50%

mean of gene expression across samples and 10,250 genes remained after this filtering step.

50% low variance genes are genes with the lowest 50% variance of gene expression across

samples and 5,125 genes remained after this filtering step. We obtained 4,815 CNV features

and 5,035 methylation features by matching to the 5,125 gene symbols. The features from

three different omics datasets that shared the same cis-regulatory annotation (same gene

symbol) were grouped together to form 5,125 feature groups. In this case, each group

had one mRNA gene expression, one CNV gene and/or one methylation probe. Each group

contained candidate multi-omics regulatory information because CNV and methylation could

potentially regulate mRNA expression. We applied IS-Kmeans with α = 0.5, sparse K-

means by directly merging three omics datasets together as well as iCluster. Number of

clusters K was set to be 5 since it was well established that breast cancer has 5 subtypes

by PAM50 definition (Parker et al., 2009). For a fair comparison, we selected the tuning

parameter for each method such that number of selected features are close to 2,000.

For evaluation purpose, we investigated three categories of groups among selected fea-

tures: G1, G2 and G3. G3 represents feature groups (gene symbol) where all three types

(mRNA, CNV and methylation) of features are selected. Similarly, G2 represents feature

groups (gene symbol) where only two types of features are selected; G1 represents feature

groups (gene symbol) where only one type of feature is selected; We also compared the clus-

tering result with PAM50 subtype definition in terms of ARI. The result is shown in Table 9.

Clearly, IS-Kmeans obtained more G2 and G3 features than sparse K-means and iCluster.

This is biologically more interpretable but not surprising since IS-Kmeans incorporated the

multi-omics regulatory information and we expected feature of the same group were en-
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couraged to come out together. Besides, IS-Kmeans has higher ARI compared to sparse

K-means and iCluster, indicating the clustering result of IS-Kmeans is closer to PAM50

definition than sparse K-means and iCluster. The 5 by 5 confusion table of IS-Kmeans

clustering result and PAM50 subtypes is shown in supplementary Table 14. One should note

the the ARI for all these three methods are not very high. This could be because PAM50 was

defined by gene expression only and in our scenario we integrated multi-omics information.

The heatmaps of IS-Kmeans result is shown in Figure 10B. In terms of computing time,

IS-Kmeans is nearly 20 times faster than iCluster.

3.4.3 Integrating METABRIC Breast cancer mRNA and CNV

We tested the performance of IS-Kmeans in another large breast cancer multi-omics (sample

size n=1,981) dataset METABRIC (Curtis et al., 2012) with mRNA expression (llumina

HumanHT12v3) and CNV (Affymetrix SNP 6.0 chip) and survival information. The datasets

are available at https://www.synapse.org/#!Synapse:syn1688369/wiki/27311. There

were originally 49,576 probes in gene expression. If multiple probes matched to the same

gene symbol, we selected the probe with the largest IQR (interquartile range) to represent

the gene. After mapping the probes to gene symbols, we obtained 19,489 mRNA expression

features and 18,538 CNV features, which shared 1981 samples. After filtering out 30%

low expression mRNA based on mean gene expression across samples and then 30% low

variance mRNA based on variance of gene expression across samples, we ended up with

9,504 mRNA features. We obtained 8,696 CNV feature symbols by matching with mRNA

feature symbols. Therefore, we had totally 18,200 features and 9,504 feature groups (share

the same gene symbol) among 1,981 samples.

We applied IS-Kmeans with α = 0.5, sparse K-means by directly merging three omics

dataset together as well as iCluster. Number of clusters K was set to be 5 (same reason in

TCGA). For a fair comparison, we selected the tuning parameter for each method such that

number of selected features are close to 2,000. For evaluation purpose, we similarly defined

two categories of groups among selected features. G2 represents feature groups (gene symbol)

where both types of features are selected and G1 represents feature groups (gene symbol)
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where only one type of feature is selected. We also compared the clustering result with

PAM50 subtype definition in terms of ARI. The result is shown in Table 10.

Similar to the TCGA example in Section 3.4.2, IS-Kmeans obtained more G2 features

than sparse K-means and iCluster. The log-rank test of survival difference for the clustering

result defined by IS-Kmeans is more significant than sparse K-means and iCluster. Fur-

thermore, IS-Kmeans has higher ARI compared to sparse K-means and iCluster, indicating

the clustering result of IS-Kmeans is closer to PAM50 definition than sparse K-means and

iCluster. The 5 by 5 confusion table of IS-Kmeans clustering result and PAM50 subtypes

is in supplementary Table 15. In terms of computing time, IS-Kmeans and sparse K-means

are much faster than iCluster.

3.4.4 Three leukemia transcriptomic datasets using pathway database as prior

knowledge

In the simulations and applications so far (Section 3.4.1-3.4.3), we have focused on using

cis-regulatory mechanism as grouping information for integrating multi-level omics data for

sample clustering. In this subsection, we present a different but commonly encountered

application of pathway-guided clustering in single transcriptomic study. Specifically, we use

pathway information from databases to provide prior overlapping group information (i.e.

a pathway is a group containing tens to hundreds of genes and two pathways may contain

overlapping genes). A transcriptomic study is used for sample clustering with the overlapping

group information. We apply IS-Kmeans to three leukemia transcriptomic datasets (Verhaak

et al. (2009), Balgobind et al. (2011) and Kohlmann et al. (2008)) separately and using three

pathway databases (KEGG, BioCarta and Reactome) independently, generating nine IS-

Kmeans clustering results (see Table 11). Table 2 shows a summary description of the three

leukemia transcriptomic studies.

We only considered samples from acute myeloid leukemia (AML) with three fusion gene

subtypes: inv(16) (inversions in chromosome 16), t(15;17) (translocations between chro-

mosome 15 and 17), t(8;21) (translocations between chromosome 8 and 21). These three

gene-translocation AML subtypes have been well-studied with different survival, treatment
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response and prognosis outcomes. Since the three subtypes are observable under micro-

scope, we treated these class labels as the underlying truth to evaluate the clustering per-

formance. The expression data for Verhaak, Balgobind ranged from around [3.169, 15.132]

while Kohlmann ranged in [0, 1]. All the datasets were downloaded directly from NCBI GEO

website. Originally there were 54,613 probe sets in each study. For each study, we removed

genes with any missing value in it. If multiple microarray probes matched to the same gene

symbol, we selected the probe with the largest interquartile range (IQR) to represent the

gene. We ended up with 20,154 unique genes in Verhaak and 20,155 unique genes in Balgo-

bind and Kohlmann. We further filtered out 30% low expression genes in each study, which

were defined as 30% of genes with the lowest mean expression. We ended up with 14,108

unique genes in each study.

We obtained the three pathway databases (BioCarta, KEGG and Reactome) from

MSigDB (http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C2) as the

prior group information to guide feature selection in IS-Kmeans. The original pathway sizes

were 217, 186 and 674 for BioCarta, KEGG and Reactome. We only kept pathways with

size (number of genes inside pathway) greater or equal to 15 and less or equal to 200 after

intersecting with 14,108 unique genes. After gene size restriction, we ended up with 114,

160 and 428 pathways for BioCarta, KEGG and Reactome. Note that these pathway groups

have large overlaps (i.e. many genes appear in multiple pathways).

For each of the three studies, we applied IS-Kmeans (with BioCarta, KEGG and Re-

actome as prior group information respectively), sparse K-means and iCluster. Note that

in this example, IS-Kmeans dealt with single omics dataset with prior knowledge. For a

fair comparison, we tuned the parameters so that the number of selected features are close

to 1,000. The result is shown in Table 11. For Verhaak and Kohlmann, IS-Kmeans and

sparse K-means almost recovered the underlying true clustering labels (ARI=0.901-0.932),

while iCluster had relatively smaller ARI (ARI=0.733). We investigated the heatmap of

the clustering result of Verhaak using iCluster (supplementary Figure 15) to understand

reasons of its worse performance (lower ARI) and found that its solution converged to a

stable clustering configuration with clear clustering separation. Thus, the worse clustering

performance in iCluster likely comes from a local optimum solution. For Balgobind, the
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clustering results from IS-Kmeans and sparse K-means had smaller ARI (ARI=0.792) but

iCluster performed even worse (ARI=0.214).

To further evaluate functional annotation of the selected intrinsic genes via each method,

we explored pathway enrichment analysis (Figure 12) using BioCarta database via Fisher’s

exact test. Five methods (iCluster, IS-Kmeans (BioCarta), IS-Kmeans (KEGG), IS-Kmeans

(Reactome), sparse K-means) were compared. Jittered plot of − log10 p-values are shown in

Figure 12. IS-Kmeans (BioCarta) shows the most significant pathways consistently across

three studies, this is somewhat expected since we used BioCarta pathway as prior knowledge

to guide our feature selection. IS-Kmeans (KEGG) and IS-Kmeans (Reactome) also showed

more significant pathways than sparse K-means and iCluster, indicating incorporating prior

knowledge indeed improved feature selection (in the sense that the selected feature are more

biological meaningful). Note that IS-Kmeans (KEGG) and IS-Kmeans (Reactome) did not

have overfitting issue since the test pathway database (BioCarta) was different from the prior

knowledge we utilized. Similarly, the results using KEGG and Reactome as testing pathway

are in supplementary Figure 15.

3.5 CONCLUSION AND DISCUSSION

Cancer subtype discovery is a critical step for personalized treatment of the disease. In

the era of massive omics datasets and biological knowledge, how to effectively integrate

omics datasets and/or incorporate existing biological evidence brings new statistical and

computational challenges. In this dissertation, we proposed an integrative sparse K-means

(IS-Kmeans) approach for this purpose. The existing biological information is incorporated

in the model and the resulting sparse features can be further used to characterize the cancer

subtype properties in clinical application.

Our proposed IS-Kmeans has the following advantages. Firstly, integrative analysis

increases clustering accuracy, statistical power and explainable regulatory flow between dif-

ferent omics types of data. The existing biological information is taken into account by

using overlapping group lasso. Fully utilizing the inter-omics regulatory information and
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external biological information will increase the accuracy and interpretation of the cancer

subtype findings. Secondly, we reformulated the complex objective function into a simplified

form where weighted K-means and ADMM can be iteratively applied to optimize the convex

sub-problems with closed form solutions. Due to the nature of classification EM algorithm

in K-means and close form iteration updates of ADMM, implementation of the IS-Kmeans

framework is computationally efficient. IS-Kmeans only takes 10-15 minutes for 15,000 omics

features and more than 700 subjects on a standard desktop with single computing thread

while iCluster takes almost 4 hours. Thirdly, the resulting sparse features from IS-Kmeans

have better interpretation than features selected from iCluster.

IS-Kmeans potentially has the following limitations. The existing biological information

is prone to errors and can be updated frequently. Incorporating false biological information

may dilute information contained in the data and even lead to biased finding. Therefore,

we suggest not to over-weigh the overlapping group lasso term and choose α = 0.5 to adjust

for the balance between information from existing biological knowledge and information

from the omics datasets. The users can, however, tune this parameter depending on the

strength of their prior belief of the biological knowledge. Another limitation is that IS-

Kmeans can only deal with one cohort with multiple types of omics data. How to effectively

combine multiple cohorts with multi-level omics data will be a future work. R package

“ISKmeans” incorporates C++ for fast computing and it is publicly available on GitHub

https://github.com/Caleb-Huo/IS-Kmeans as well as authors’ websites. All the data and

code presented in this dissertation are also available on authors’ websites.
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Figure 10: Illustration of IS-Kmeans.

(A) Clustering of mRNA (upper heatmap) CNV (middle heatmap) and methylation

(lower heatmap) profiles separately results in different five clusters of breast cancer sub-

types (represented by color bars of five colors). (B) IS-Kmeans merges mRNA (up-

per heatmap) CNV (middle heatmap) and methylation (lower heatmap) and perform

sample clustering. Inter-omics biological knowledge is also taken into account by over-

lapping group lasso. (C) An illustrating example of design of overlapping group lasso

penalty term Ω(z) to incorporate prior knowledge of pathway information. Here Ω(z) =√
1 + 1 + 1/2 + 1

√
z2

1 + z2
2 + 1/2× z2

3 + z2
6 +

√
1/2 + 1 + 1 + 1

√
1/2× z2

3 + z2
4 + z2

5 + z2
7 .
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Figure 11: Selection of tuning parameter γ.

This figure was from the simulated dataset in Section 3.4.1 with α = 0.5. X-axis represents

tuning parameter γ. Red curve and left y-axis denote the corresponding gap statistics. Black

curve and right y-axis denote the corresponding number of selected features. The blue dots

(γ = 0.21) represent where the gap statistics is minimized, and the corresponding number

of selected feature is 1778.
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Table 8: Comparison table of simulation with relative effect size f = 0.6.

θ method α ARI Jaccard index AUC # features time [mins]

1 IS-Kmeans

1 0.940 (0.239) 0.781 (0.202) 0.943 (0.138) 1465 0.44
0.95 0.940 (0.239) 0.791 (0.204) 0.945 (0.136) 1483 0.52
0.5 0.940 (0.239) 0.779 (0.202) 0.971 (0.084) 1420 0.56
0.05 0.940 (0.239) 0.946 (0.214) 0.997 (0.012) 1723 0.67

0.2 IS-Kmeans

1 0.940 (0.239) 0.781 (0.202) 0.943 (0.138) 1465 0.44
0.95 0.940 (0.239) 0.783 (0.202) 0.943 (0.138) 1469 0.57
0.5 0.940 (0.239) 0.602 (0.159) 0.943 (0.134) 1105 0.57
0.05 0.940 (0.239) 0.467 (0.096) 0.888 (0.111) 2824 1.2

iCluster 0.374 (0.323) 0.383 (0.274) 1239 26
sparse Kmeans 1 0.312 (0.370) 0.105 (0.101) 896 0.12
sparse Kmeans 2 0.361 (0.424) 0.204 (0.124) 2137 0.13

We simulated B = 100 times and calculated mean and standard deviation of each quantity.

θ denotes the probability grouping information is correct for each feature inside groups.

α is the tuning parameter balancing the emphasis between individual penalty and group

penalty. For each method, we allow its own tuning parameter selection method to optimize

its performance.

Table 9: Comparison of different methods using TCGA breast cancer (K=5).

method ARI nfeature G1 G2 G3 time

ISKmeans 0.379 2066 843 538 49 12.1 mins

SparseKmeans 0.332 2034 1466 284 0 6.85 mins

iCluster 0.272 2475 1725 375 0 3.91 hours

G3 represents feature groups (gene symbol) where all three types of features are selected.

Similarly, G2 represents feature groups (gene symbol) where only two types of features

are selected; G1 represents feature groups (gene symbol) where only one type of feature is

selected; We also compared the clustering result with PAM50 subtype definition in terms of

ARI.
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Table 10: Comparison of different methods using metabric breast cancer (K=5).

method ARI nfeature G1 G2 p value time

ISKmeans 0.233 1882 1494 194 8.29×10−17 38.4 mins

SparseKmeans 0.22 2004 2004 0 3.04×10−13 34.3 mins

iCluster 0.0572 2471 2471 0 0.143 11.8 hours

G2 represents feature groups (gene symbol) where all two types of features are selected; G1

represents feature groups (gene symbol) where only one type of feature is selected; Clustering

result is compared with PAM50 subtype definition in terms of ARI. Survival p-value obtained

from log rank test are given for clustering assignment for each method.

Table 11: Comparison of different methods by ARI for IS-Kmeans

Verhaak Kohlmann Balgobind
method pathway # features ARI # features ARI # features ARI

IS-Kmeans
Biocarta 1009 0.932 1000 0.948 999 0.792
KEGG 1002 0.901 1013 0.948 990 0.792

Reactome 993 0.932 994 0.948 1008 0.792
iCluster 982 0.733 1233 0.504 1020 0.214

sparse K-means 992 0.932 998 0.948 1014 0.792
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Figure 12: Pathway enrichment analysis result for Leukemia BioCarta
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4.0 DISCUSSION AND FUTURE WORK

4.1 DISCUSSION

Clustering analysis is essential to disease subtype discovery, which is a first step toward

personalized medicine. With the accumulation of large amount of genomic data, it is urgent

and practical to combine multiple cohorts/omics types to increase statistical power and

reproducibility. It is also challenging because there are many statistical difficulties. In

this these, we proposed both meta-analysis sparse Kmeans and integrative sparse Kmeans

to tackle this problem. Simulation and real data application both showed promising result.

These works are nice contribution to both statistical and biological community. They are not

only innovative statistical methodologies, but also practice tools for real data applications.

4.2 INTEGRATIVE META SPARSE KMEANS

In this section we want to propose a unified framework extending both meta Sparse Kmeans

and integrative sparse Kmeans. This part is unfinished and left as a future work. This

method will integrate multiple types of omics data and combine multiple cohorts. Several

issues have to be considered simultaneously. 1, combining multiple cohorts. 2, integrating

different omics data types. 3, allowing missing datatype in several cohorts. 4, allowing over-

lapping group information. 5, achieving sparse clustering. We propose tentative objective

function to tackle this problem. Evaluation will be performed in the future.
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min−
∑
j

zj

(
1

S

S∑
s=1

BCSS
(s)
j (C(s)(K))

TSS
(s)
j

+ λ× fmatchj (M)

)
+ γ1‖z‖1 + γ2Ω(z)

s.t. ‖z‖2 ≤ 1, zj ≥ 0, ∀j.

min−
∑

zjRj + γ1‖z‖1 + γ2Ω(z)

s.t. ‖z‖2 ≤ 1, zj ≥ 0, ∀j, Rj = 1
S

∑S
s=1

BCSS
(s)
j (C(s)(K))

TSS
(s)
j

+ λ× fmatchj (M)
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APPENDIX A

APPENDIX FOR META SPARSE KMEANS

A.1 ALGORITHMS FOR SIMULATED ANNEALING

When the number of studies is large, the space to search for matching clusters across studies

is not viable with exhaustive search. To maximize the matching objective Equation 2.3.4b,

denoted as π(M), we applied simulated annealing, a stochastic optimization algorithm for

non-convex function (Kirkpatrick et al., 1983). Our configuration space is defined as a

matching matrix, where the columns correspond to the studies, and the rows correspond to

the matched clusters. For example, if the first row of 3 studies is (1,2,1), that means the first

cluster of 1st study, second cluster of 2nd study and first cluster of 3rd study are matched as

one disease subtype. Also denote 0 ≤ β ≤ 1 as the temperature cooling coefficient and αi as

the acceptance rate at temperature Ti, which is defined as:

αi =
total number of acceptance

total number of simulated annealing steps

at each temperature. β will decide how slow the temperature T decreases and balance

between the accuracy of the result and computation speed. η is the acceptance threshold

which decides when the algorithm stops.

The simulated annealing is conducted in the following steps:

1. Start with a high temperature Ti(i = 1).
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2. At temperature Ti (one simulated annealing step), we perturb the configuration space

by randomly choosing two elements in the cluster matching enumeration M from two

studies and switch their positions, then calculate the new target value π(Mnew). Accept

the new configuration with probability:

Pacc = min

(
1, exp

(
− π(Mnew)− π(M old)

T

))
This procedure will be repeated N times (MC steps).

3. Set Ti+1 = Ti × β

4. Repeat Step 2-3 until αi < η,

In our analysis, we used the MC steps N = 300 at each temperature Ti. The temperature

decreasing rate β is 0.9. The simulated annealing stops when the acceptance ratio drops

below η = 0.1 or the total simulated annealing steps exceed 10, 000. The initial temperature

T1 is set as the objective function value of the initial configuration. In case the initial

temperature is too high which result in a high acceptance ratio, we multiply the temperature

with β = 0.7 whenever the acceptance rate αi > 0.5. This will accelerate the convergent

rate at initial steps when the acceptance rate is high.

A.2 COMPARING METASPARSEKMEANS AND PAM50 CLUSTERS ON

METABRIC

PAM50 is currently the most popular transcriptomic subtype definition of breast cancer. The

model consists of 50 intrinsic genes to predict the five subtypes of breast cancer. Among

these 50 genes, 42 appeared in the METABRIC dataset and among these 42 genes, 22

overlapped with 194 genes selected by our MetaSparseKmeans result (Fisher’s exact tests p-

value for overlap enrichment < 2.2×10−16). supplementary Table 12 shows a full comparison

of the two clustering results by PAM50 and MetaSparseKmeans. There are significant

similarity but also discrepancy between the two. Since no underlying truth is known in such

a real application, it is difficult to judge which one is better (although MetaSparseKmeans

generated smaller p-value of survival difference of the subtypes). Conceptually, PAM50 is a
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supervised machine learning result that utilizes class labels determines by many past studies

with prior biological knowledge. On the other hand, MetaSparseKmeans is a pure in silico

clustering approach.

Table 12: Comparison of MetaSparseKmeans clustering and PAM50 clustering results on

METABRIC dataset.

1 2 3 4 5

Basal 8 122 8 10 180

Her2 9 95 67 60 7

LumA 354 1 34 330 0

LumB 16 3 261 205 5

Normal 122 11 10 57 0

Columns: 5 clusters defined by MetaSparseKmeans. Rows: 5 clusters defined by PAM50.
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APPENDIX B

APPENDIX FOR INTEGRATIVE SPARSE KMEANS

B.1 PROOF FOR THEOREM OF IS-KMEANS

Proof of Theorem 3.3.1. Given equal separation ability for each feature R1 = . . . = Rj =

. . . = RJ = R and the proposed design of overlapping group lasso penalty, Equation 3.3.1

becomes

min
C,z
−

J∑
j=1

zjR + γα‖z‖1 + γ(1− α)
∑

1≤g≤G0

(√∑
j∈Jg

1/h(j)

√∑
j∈Jg

1/h(j)× z2
j

)
,

subject to ‖z‖2 ≤ 1, zj ≥ 0, ∀j.

First we can take away the constraint zj ≥ 0,∀j. It is easy to see that if any zj < 0, we

can always use −zj to replace the solution and the objective function will decrease. We can

write down the Lagrange function of Equation 3.3.1 after dropping the constraint zj ≥ 0,∀j:

L(z, λ) = −
J∑
j=1

zjR+γα‖z‖1+γ(1−α)
∑

1≤g≤G0

(√∑
j∈Jg

1/h(j)

√∑
j∈Jg

1/h(j)× z2
j

)
+λ(‖z‖2

2−1)

Partial derivative of the Lagrange is:

∂L(z)

∂zj
= −R + γα

∂|zj|
∂zj

+ γ(1− α)
∑

1≤g≤G0

(√∑
j′∈Jg

1/h(j′)
I{j ∈ Jg} × 1/h(j)× zj√∑

j′∈Jg 1/h(j′)× z2
j′

)
+ 2λzj

It is easy to verify that z1 = z2 = . . . = zJ = 1/
√
J , λ =

√
J(R−γ)

2
will make ∂L(z)

∂zj
= 0,∀j.

Since the object function is a convex function, according to sufficiency of KKT condition, the
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proposed penalty design will lead to the solution of “Unbiased Feature Selection” principle.

Proof of Theorem 3.3.2. For intrinsic gene set I, we have Rj = R > 0 for j ∈ I. For non-

intrinsic gene set Ī, we have Rj = 0 for j ∈ Ī. Given the proposed design of overlapping

group lasso penalty, Equation 3.3.1 becomes

min
C,z
−

J∑
j=1

zjRI(j ∈ I) + γα‖z‖1 + γ(1− α)
∑

1≤g≤G0

(√ ∑
j∈(Jg∩I)

1/h(j)

√∑
j∈Jg

1/h(j)× z2
j

)
,

subject to ‖z‖2 ≤ 1, zj ≥ 0,∀j.

First we can similarly take away the constraint zj ≥ 0,∀j. We can write down the

Lagrange function of Equation 3.3.1 after dropping the constraint zj ≥ 0,∀j:

L(z, λ) =−
J∑
j=1

zjRI(j ∈ I) + γα‖z‖1+

γ(1− α)
∑

1≤g≤G0

(√ ∑
j∈(Jg∩I)

1/h(j)

√∑
j∈Jg

1/h(j)× z2
j

)
+ λ(‖z‖2

2 − 1)

Partial derivative of the Lagrange is:

∂L(z)

∂zj
=−RI(j ∈ I) + γα

∂|zj|
∂zj

+

γ(1− α)
∑

1≤g≤G0

(√ ∑
j′∈(Jg∩I)

1/h(j′)
I{j ∈ Jg} × 1/h(j)× zj√∑

j′∈Jg 1/h(j′)× z2
j′

)
+ 2λzj

It is easy to verify that if for j ∈ I, zj = 1/
√
J , j ∈ Ī, zj = 0 and λ =

√
J(R−γ)

2
is a zero

solution to the partial derivative of the Lagrange function. Note here we set the subgradient

∂|zj |
∂zj

= 0 at zj = 0. Since the object function is a convex function, according to sufficiency of

KKT condition, the proposed penalty design leads to “Unbiased Feature Selection” principle.
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B.2 OPTIMIZATION BY KKT CONDITION

There are two optimization problems.
x+
g = arg minxg ‖xg‖2 + y>g xg + ρ

2
‖xg − βg ◦ z‖2

2

z+ = arg minz−
∑
zjRj −

∑
1≤g≤G y>g (βg ◦ z) + ρ

2
‖x+

g − βg ◦ z‖2
2

subject to ‖z‖2 ≤ 1, zj ≥ 0.

It is a convex optimization problem for x+
g with no constraint. The stationarity condition

states that the sub-gradient of the objective function will be 0 at the optimum solution.

Therefore we have:

S(x+
g ) + yg + ρ(x+

g − βg ◦ z) = 0,

where S(v) is the sub-gradient of ‖v‖2 and

S(v) ∈


v
‖v‖2 , if ‖v‖2 ≥ 1

0, otherwise

If we define ag = βg ◦ z − yg

ρ
, it can be derived that x+

g = (1 − 1
ρ‖ag‖2 )+ag, where (·)+ =

max(0, ·).

The optimization problem for z+ is a convex optimization problem with two constraints.

We first write down the Lagrange function and convert the constrained optimization problem

into an un-constrained optimization problem:

arg min
z
−
∑
j

zjRj −
∑

1≤g≤G

y>g (βg ◦ z) +
ρ

2
‖x+

g − βg ◦ z‖2
2 + u(‖z‖2 − 1)−

∑
j

vjzj

such that u ∈ R, u ≥ 0, vj ∈ R and vj ≥ 0 ∀j. Taking gradient of the Lagrange function

with respect to z and use the constraints, we can derive the solution to this problem. Define

bj =
∑

1≤g≤G ρβ
2
gj and cj =

∑
1≤g≤G

(
ρx+

gj + ygj
)
◦mgj, where βg = (βg1,βg2, . . . ,βgJ)>,

xg = (xg1,xg2, . . . ,xgJ)>, yg = (yg1,yg2, . . . ,ygJ)>, and mg = (mg1,mg2, . . . ,mgJ)>. The

solution is given as following: we define fj(u) = (
Rj+cj
bj+2u

)+. If
∑

j fj(u)2 < 1, z+
j = fj(0).

Otherwise z+
j = fj(u) and u is selected s.t. ‖z+‖2 = 1.

81



B.3 SUPPLEMENTARY MATERIALS FOR IS-KMEANS
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(a) α = 1
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(b) α = 0.95
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(c) α = 0.05

Figure 13: Selection of tuning parameter γ.

This figure is from the simulated dataset in Section 4.1 with relative effect size f = 0.6 and

θ = 1. Complementary to Figure 2, simulation setting with α = 1, 0.95, 0.05 are evaluated.

X-axis is tuning parameter γ, red curve and left y-axis denote the corresponding gap statis-

tics, black curve and right y-axis denote the corresponding number of selected features. The

blue dots represent where the gap statistics is minimized, and the corresponding number of

selected features are 1548, 1566, 1800.
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Table 13: Comparison table of simulation with relative effect size f = 0.8.

θ method α ARI Jaccard index AUC # features time [mins]

1 IS-Kmeans

1 1.000 (0.000) 0.812 (0.042) 0.995 (0.004) 1461 0.38
0.95 1.000 (0.000) 0.826 (0.041) 0.996 (0.004) 1486 0.49
0.5 1.000 (0.000) 0.904 (0.032) 0.999 (0.001) 1627 0.52
0.05 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1800 0.57

0.2 IS-Kmeans

1 1.000 (0.000) 0.812 (0.042) 0.995 (0.004) 1461 0.38
0.95 1.000 (0.000) 0.771 (0.045) 0.995 (0.004) 1388 0.55
0.5 1.000 (0.000) 0.835 (0.038) 0.994 (0.004) 1512 0.49
0.05 1.000 (0.000) 0.495 (0.021) 0.938 (0.004) 2815 1

iCluster 0.722 (0.325) 0.672 (0.198) 1906 26
sparse Kmeans 1 0.931 (0.209) 0.159 (0.073) 5777 0.13
sparse Kmeans 2 0.898 (0.253) 0.070 (0.035) 506 0.11

We simulated B = 100 times and calculated mean and standard deviation of each quantity.

θ denotes the probability grouping information is correct for each feature inside groups.

α is the tuning parameter balancing the emphasis between individual penalty and group

penalty. For each method, we allow its own tuning parameter selection method to optimize

its performance.
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(a) IS-Kmeans Biocarta (b) IS-Kmeans KEGG (c) IS-Kmeans Reactome

(d) Sparse K-means (e) iCluster

Figure 14: Heatmap of Verhaak by IS-Kmeans.

Heatmap of Verhaak by IS-Kmeans (using BioCarta, KEGG and Reactome pathway

databases as prior knowledge), Sparse K-means and iCluster. Number of selected features

are: 1,009 for Figure S14(a), 1,002 for Figure S14(b), 993 for Figure S14(c), 982 for Fig-

ure S14(d), 992 for Figure S14(e).
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(a) test KEGG pathway
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Figure 15: Pathway enrichment analysis result for Leukemia using KEGG and Reactome

as testing database.

Table 14: Comparison of IS-Kmeans and PAM50 clustering results on TCGA multi-omics

dataset.

1 2 3 4 5

Basal 0 4 8 135 13

Her2 4 54 4 0 42

LumA 59 25 153 0 0

LumB 86 89 13 0 1

Normal 1 6 68 0 3

Columns: five clusters defined by IS-Kmeans. Rows: five clusters defined by PAM50.
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Table 15: Comparison of IS-Kmeans and PAM50 clustering results on METABRIC multi-

omics dataset.

1 2 3 4 5

Basal 0 69 24 0 235

Her2 8 133 78 19 0

LumA 343 2 146 228 0

LumB 112 5 147 226 0

Normal 45 29 106 9 11

Columns: five clusters defined by IS-Kmeans. Rows: five clusters defined by PAM50.
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Table 16: Comparison table of perturbation analysis for IS-Kmeans with f = 0.8.

θ method α ARI Jaccard index AUC # features time [mins]

1 IS-Kmeans

1 0.980 (0.078) 0.817 (0.066) 0.973 (3e-02) 1701 0.53
0.95 0.980 (0.078) 0.825 (0.065) 0.975 (3e-02) 1715 0.64
0.5 0.980 (0.078) 0.905 (0.063) 0.990 (1e-02) 1652 0.59
0.05 0.984 (0.068) 0.993 (0.005) 1.000 (1e-04) 1812 0.67

0.2 IS-Kmeans

1 0.980 (0.078) 0.817 (0.066) 0.973 (3e-02) 1701 0.52
0.95 0.980 (0.078) 0.817 (0.065) 0.973 (3e-02) 1708 0.7
0.5 0.980 (0.078) 0.777 (0.058) 0.973 (3e-02) 1863 0.68
0.05 0.980 (0.078) 0.496 (0.032) 0.911 (2e-02) 3002 1.3

iCluster 0.717 (0.291) 0.679 (0.186) 1657 27
sparse Kmeans 1 0.824 (0.285) 0.096 (0.026) 2065 0.13
sparse Kmeans 2 0.826 (0.291) 0.119 (0.043) 6139 0.16

In the simulation setting Step a3, the template gene expression is simulated from a t-

distribution with degree of freedom 3, location parameter 9 and scale parameter 2. In Step a4,

we set relative effect size f = 0.8. In Step a5, X ′skmi is simulated from a t-distribution with

degree of freedom 3, location parameter µ′skm and scale parameter σ2
1. We simulated B = 100

times and calculated mean and standard deviation of each quantity. θ denotes the probabil-

ity grouping information is correct for each feature inside groups. α is the tuning parameter

balancing the emphasis between individual penalty and group penalty. For each method, we

allow its own tuning parameter selection method to optimize its performance.
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Table 17: Comparison table of perturbation analysis for IS-Kmeans with f = 0.6.

θ method α ARI Jaccard index AUC # features time [mins]

1 IS-Kmeans

1 0.798 (0.368) 0.592 (0.260) 0.811 (0.204) 1455 0.55
0.95 0.798 (0.368) 0.601 (0.262) 0.817 (0.200) 1474 0.68
0.5 0.793 (0.368) 0.710 (0.292) 0.899 (0.126) 1426 0.68
0.05 0.801 (0.358) 0.914 (0.150) 0.992 (0.013) 1760 0.91

0.2 IS-Kmeans

1 0.809 (0.352) 0.600 (0.249) 0.829 (0.190) 1468 0.55
0.95 0.809 (0.352) 0.600 (0.248) 0.829 (0.189) 1478 0.74
0.5 0.809 (0.352) 0.573 (0.227) 0.832 (0.184) 1678 0.74
0.05 0.809 (0.352) 0.397 (0.122) 0.791 (0.147) 2900 1.5

iCluster 0.300 (0.313) 0.261 (0.196) 790 27
sparse Kmeans 1 0.334 (0.377) 0.243 (0.202) 4755 0.17
sparse Kmeans 2 0.187 (0.304) 0.022 (0.036) 725 0.13

In the simulation setting Step a3, the template gene expression is simulated from a t-

distribution with degree of freedom 3, location parameter 9 and scale parameter 2. In Step a4,

we set relative effect size f = 0.6. In Step a5, X ′skmi is simulated from a t-distribution with

degree of freedom 3, location parameter µ′skm and scale parameter σ2
1. We simulated B = 100

times and calculated mean and standard deviation of each quantity. θ denotes the probabil-

ity grouping information is correct for each feature inside groups. α is the tuning parameter

balancing the emphasis between individual penalty and group penalty. For each method, we

allow its own tuning parameter selection method to optimize its performance.
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