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ABSTRACT 

Cross-correlated data occur in multi-sample studies with a fully crossed design. An important type 

of binary cross-correlated data results from multi-reader diagnostic imaging studies where each of 

several readers independently evaluates the same sample of subjects for the presence or absence 

of a specific condition (e.g., disease). 

The analysis of the fully crossed studies can be challenging because of the need to address 

both reader and subject variability and the related correlation structure. Generalized Linear Mixed 

Models (GLMM) are implemented in standard statistical software and offer a natural tool for the 

analysis of the cross-correlated data in the presence of covariates. However, performance of 

GLMMs for cross-correlated binary data from typical multi-reader studies is generally unknown 

and is questionable due to the specifics of the available estimation approaches. 

In the first part of the dissertation we investigate the standard built-in GLMM methods for 

cross-correlated binary data with and without covariates and explore simple combinations of the 

built-in estimation techniques to overcome existing deficiencies. In the second part, we propose a 

half-marginal GLMM approach which offers a superior interpretation in the context of multi-
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reader studies of diagnostic accuracy. Our investigation of this model demonstrates good quality 

of statistical inferences in typical scenarios, but indicates possible large-sample problems 

stemming from the pseudo-likelihood estimation approach.  In the third part of the dissertation we 

develop an explicit approach for estimating half-marginal model parameters without using pseudo-

likelihood. The consistent fixed-effect estimator and its variance are evaluated in an extensive 

simulation study. The proposed approach can be implemented using the non-iterative combination 

of results from several robust Generalized Estimating Equation (GEE) models and, for simple 

scenarios, provides estimates that are equivalent to the empirical estimates.  

Public Health Significance: Analyses of cross-correlated data from multi-reader studies are used 

to evaluate performance of medical diagnostic technologies at their development and regulatory 

approval stages. Enhanced methods of performance assessment help improve and accelerate 

optimal adaptation of diagnostic and screening technologies in clinical practice.  
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1.0  INTRODUCTION 

Cross-correlated data arise from experiments in many fields where the measures of interest depend 

on combination of factors from different populations. In medical imaging, cross-correlated data 

result from the “fully-crossed” multi-reader studies where readers evaluate the same set of subjects 

[2]. Both readers and subjects are sampled from the corresponding target populations (e.g., a 

sample of certified breast-imaging radiologists and a sample of patients undergoing evaluations of 

suspected lesions). The typical analytical goals are the evaluation of the accuracy characteristics 

of a diagnostic technology or/and comparisons across several diagnostic modalities in the targeted 

populations of readers and subjects. Usual multi-reader studies include around five to eight readers 

and fifty to hundreds of subjects with and without the condition of interest. Since human observers 

naturally have different abilities and experience, there is a natural variability in readers’ 

performance levels; the fully-crossed multi-readers studies provide an efficient way to make 

inferences about diagnostic accuracy accounting for variability due to readers and subjects [2]. To 

highlight the two important sources of variability, these multi-readers studies are frequently called 

Multi-Reader Multi-Case (MRMC) studies.  

A variety of traditional approaches exist for analyzing data from MRMC studies. A number 

of methods address the so-called “fixed-reader” question, where readers are considered fixed 

factors and between-reader variability does not directly affects the overall variance [3, 4, 5, 6, 20]. 

Another category of methods address the so-called “random-reader” question, where readers are 
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recognized as being sampled from a target population of readers and the between-reader variability 

is incorporated as a part of the overall variance [7, 8, 9, 10, 11, 12, 13, 20, 55, 56]. The random 

reader approaches extend inferences to the populations of subjects and readers, which is typically 

necessary for adequate evaluation of diagnostic technologies and practices. Some of these 

approaches [7, 8, 13] can model several different types of accuracy measures (e.g. AUC, 

sensitivity) and take into account the correlations and variability present in the data. These methods 

treat the outcome (e.g., the modeled summary index) as a continuous and asymptotically normal 

variable, but nevertheless perform quite well and are rather useful for covariate-free comparison 

of diagnostic modalities. However, majority of them do not allow incorporating continuous 

covariates (e.g., subjects’ age, lesion size). Approaches that do allow handling various covariates 

include hierarchical Bayesian approach for MRMC ROC data [14, 15], tweaked original regression 

approach for ROC curves [16], and tweaked GEE approach for area under the ROC curves [17].  

All these model-based approaches were developed for inferences about higher-level ROC indices, 

but can technically be applied to binary MRMC data, possibly after some adjustments. However, 

quality of inferences in such applications is not known and most importantly these methods require 

custom-made software for computing variance accounting for between-reader variability.  

Outside of the traditional tool box, standard statistical packages provide flexible tools for 

MRMC analysis of binary cross-correlated data with covariates: namely, functions that solve 

Generalized Linear Mixed Model (GLMM) with non-linear link functions (e.g., PROC GLIMMIX 

in SAS v9.4, package “lme4” in R v3.3.2 [25]). Unlike the Generalized Estimating Equations 

(GEE) models which can only address nested levels of clustering, GLMMs can be used to account 

for the covariance in cross-correlated data by inclusion of random crossed factors (e.g., [40]). 
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Models with crossed random effects provide the most conventional approach to model 

cross-correlated data. For example, such models have been repeatedly considered for the classic 

Salamander data, which are binary cross-correlated data from a mating experiment [1].  However, 

estimating GLMM parameters for binary data is not straightforward because of the complexity of 

the marginal likelihood function. The standard estimation techniques can be broadly classified into 

two categories: (1) methods to approximate marginal likelihood and (2) methods to approximate 

the model. The most straightforward approach to approximate the marginal likelihood is based on 

Gauss-Hermite quadrature which is computationally infeasible for cross-correlated data with 

multiple factors and is excluded from available estimation techniques in standard packages (e.g., 

PROC GLIMMIX and PROC NLMIXED in SAS, package “lme4” in R). Another approach to 

approximate the marginal likelihood is based on the Laplace approximation [26] which can be 

implemented using PROC GLIMMIX in SAS, function “glmer” in the library “lme4” in R. The 

most well-known approach to approximating the model is the pseudo-likelihood approach [21], 

which can be implemented using PROC GLIMMIX, SAS and function “glmmPQL” in library 

“nlme” in R (however, function “glmmPQL” does not currently support crossed random effects).  

The Laplace approximation (LA) provides reliable results for many scenarios, especially 

for large cluster sizes [26, 27]. However, scenarios when the dimension of the random effects 

increases with sample size, as happens in case of crossed random effects, the Laplace approach 

has been criticized for producing poor estimates especially for variance components [28, 37]. 

The Pseudo-Likelihood (PL) approach is a much less computer intensive and more 

versatile approach for estimating GLMMs [21, 29]. The underlying idea is to approximate the non-

linear model with a specific linear model at each iteration step (initially described by Lindstrom 

and Bates, 1990 [30]). However the PL estimates for simple clustered binary data can lead to 
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biased estimates of model parameters when there are only a few observations per cluster, or when 

random effects have large variances [31, 32, 33, 34, 35].  

Much of the previous GLMM investigation has been focused on simple clustered data. 

Little is, however, known about properties of GLMM for binary cross-correlated data of type 

resulting from fully crossed multi-reader studies. Good properties of some linear methods for 

MRMC analysis [7, 8], as well as some non-linear GLM for fixed-reader inferences (e,g., Toledano  

and Gatsonis, 1996 [3]) are encouraging in regard to possible performance of GLMMs for these 

types of data.  

A number of more computer intensive methods have been proposed in literature to possibly 

fix some of the issues with standard approaches. Some are based on modified Laplace approaches 

(e.g., [28, 37, 38]), some on model linearization (e.g., bias-corrected PL by Breslow and Lin, 1995 

[31]; Lin and Breslow, 1996 [36]), and others are alternative estimation techniques [25, 35, 39]. 

Some of these methods are able to handle cross-correlated data within the GLMM framework.  

However, none of these have yet been developed and validated enough to be incorporated in 

standard statistical software, and have application-specific fitting problems. For example, one of 

the simplest approaches is a hybrid approach [25] combining Bayesian estimates of variance 

components with the Laplace-based estimates of the fixed (and random) effects. This specific 

approach requires programming by the user and needs to be modified every time in terms of the 

priors that one inputs for the prior distribution of variance components. Furthermore, from our 

experience, successful implementation of the Bayesian component of this technique relies heavily 

on providing reasonable prior values which seems to be data dependent and also sensitive to the 

choice of the algorithm to generate posterior samples. Hence, although the simulation results 

provided in the original paper look promising, the method does not yet allow straightforward 
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implementation.  As another example listed earlier, Rulis et al. (2016) [28] offers a modification 

to the standard Laplace approach which can be implemented using R package iLaplace. However, 

the package requires the user to code the log integrand along with it’s first and second order 

derivatives which can be rather complicated for complex models.  

Thus, currently a practicing statistician faced with the analysis of cross-correlated multi-

reader data with covariates has a choice of either using the built-in techniques with potential 

reliability issues, or turning to Bayesian approaches based on Gibbs Sampling (e.g., [40]) which 

are computationally intensive, and has their own host of problems. In these settings use of built-in 

GLMM techniques is again rather tempting because of 1) availability and 2) possibility of good 

performance in fully crossed multi-reader studies.  

1.1 NOTATIONS AND CONVENTIONS 

In the simplest fully crossed multi-reader study each reader provides a binary response (e.g., Y = 

0 for “test negative”; Y = 1 for “test positive”) for every subject. For a study with 𝑛𝑛𝑟𝑟 readers and 

𝑛𝑛𝑐𝑐 subjects the resulting data (𝑌𝑌𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛𝑐𝑐; 𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟) can be arranged in a matrix with rows 

corresponding to observations for different subjects and columns corresponding to different 

readers. Observations in the same row (𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑗𝑗′) or column (𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖′𝑗𝑗) are correlated due to 

“sharing” the same subject or reader. Such cross-correlated data does not allow defining 

independent clusters as is needed for the application of standard clustered data analysis (e.g., based 

on GEE, [18]). 

In addition to the primary response 𝑌𝑌, diagnostic imaging studies usually provide 

additional covariate information. The most typical covariate is the “true or reference status” of a 
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subject (e.g., D = 1 for “diseased”; D = −1 for “non-diseased”), which is a subject-level covariate 

used to define sensitivity (𝑃𝑃𝑃𝑃(𝑌𝑌 = 1|𝐷𝐷 = 1)) and specificity (𝑃𝑃𝑃𝑃(𝑌𝑌 = 0|𝐷𝐷 = −1)). We shall use 

equivalent terms: the True Positive Fraction (TPF) equals sensitivity, and the False Positive 

fraction (FPF) equals 1-specificity. Another typical “assessment-level” covariate is the set of 

diagnostic conditions (“diagnostic modality”), which is of primary interest in studies comparing 

diagnostic technologies or practices [19]. Other covariates at subject or reader level can also be of 

interest (e.g., lesion size, years of radiologist’s experience).  

1.2 OBJECTIVES 

This dissertation is focused on investigating properties of GLMMs for analysis of cross-correlated 

binary data from multi-reader diagnostic imaging studies and developing simple approaches to 

correct existing deficiencies in standard GLMM tools for analyses of these studies. The overall 

goal of this work is to develop guidelines and necessary tools to enable straightforward covariate-

based analysis of multi-reader studies of diagnostic accuracy in frequently encountered settings. 

The specific objectives are outlined below: 

 Crossed-random effect GLMM for analysis of binary data from fully crossed multi-

reader studies of diagnostic accuracy 

Analysis of cross-correlated data cannot be handled using a conventional GEE mechanism, but 

can be performed using GLMM methodology with crossed random effects (often called, “subject-

specific” models). GLMMs offer an attractive alternative analytical technique due to 1) ability to 
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handle any and multiple types of covariates, 2) ability to account for variability of crossed factors, 

3) availability of built-in tools in standard software packages. In this chapter, we design a 

simulation study representing a wide range of possible analyses of multi-reader data. We 

investigate the properties of statistical inferences under the conventional GLMMs along with two 

ad-hoc approaches based on the same GLMMs for analyses of binary cross-correlated MRMC 

data. The results of this study provides guidelines on using conventional GLMM as well as the ad-

hoc approaches for analyzing data typical for multi-reader diagnostic imaging studies. 

 Half-marginal GLMM for analysis of cross-correlated binary data in multi-reader 

studies of diagnostic accuracy 

In multi-reader studies of diagnostic imaging, the frequent targets of interest are the quantities 

marginalized over the population of subjects (e.g., sensitivity and specificity). The marginal 

characteristics are only indirectly related to the parameters of the standard models based on crossed 

random effects, which we considered previously. In addition, it is common to make inferences for 

individual readers as well as for the average over all readers [2], which is even more complicated 

to achieve based on the results of the “subject-specific” models. In this chapter we propose a half-

marginal model which, marginalizes over the population of subjects but not readers, and enables 

direct inferences about marginal characteristics for individual readers and overall. This makes the 

half-marginal model practically relevant for analysis of multi-reader studies of diagnostic imaging. 

Furthermore, because of the elimination of crossed random effects estimated by standard GLMMs, 

the half-marginal model can offer both statistical and computational advantages. Although the 

proposed model can be fit using built-in machinery, it is rarely recognized and little known. 

Development and assessment of half-marginal model extends the existing methodology for 
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analysis of MRMC data by introducing a superior tool for analyzing cross-correlated multi-reader 

data in the presence of covariates. 

 An explicit approach for estimating half-marginal GLMM for analyzing cross-

correlated binary data from multi-reader studies of diagnostic accuracy 

While several estimation approaches exist for fitting crossed random effects GLMMs, the only 

built-in approach available for estimating half-marginal model is based on pseudo-likelihood under 

the linearized model [21]. The potential problems with the resulting estimates combined with non-

explicit (in terms of probability distribution) nature of the half-marginal model can be 

discouraging. To alleviate the possible criticisms and to attempt to improve the half-marginal 

approach we develop an alternative approach for inferences under the half-marginal model. The 

proposed approach exploits the small number of readers typically available in the multi-reader 

studies and applies techniques similar to those used in within-cluster-resampling approach for 

model estimation [22], model averaging [23] and multiple imputation [24]. This part of research 

develops an explicit approach for obtaining consistent estimates for half-marginal models without 

using pseudo-likelihood. The proposed approach also lays a solid foundation for further 

improvement of analytical tools for analyzing cross-correlated multi-reader data. 
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2.0  CROSSED-RANDOM EFFECT GLMM FOR ANALYSIS OF BINARY DATA 

FROM FULLY CROSSED MULTIREADER STUDIES OF DIAGNOSTIC ACCURACY 

Standard software packages provide a flexible tool to analyze cross-correlated binary data using 

the Generalized Linear Mixed Models (GLMM) which addresses heterogeneity in the samples of 

readers and subjects and allows accounting for covariates. However, reliability of GLMM 

estimates for this type of data is questionable because of possible bias in estimates noted in some 

applications. However, little is known about the severity and consequences of this bias for 

statistical inferences in data typically encountered in cross-correlated multi-reader studies. In this 

work we investigated the standard GLMM methods for cross-correlated binary data with and 

without covariates and explored a simple combination of built-in techniques that correct existing 

deficiencies. The primary focus of this investigation was on quality of fixed effect inferences 

provided by confidence intervals. In an extensive simulation study, we evaluated the coverage of 

confidence intervals for the fixed effects, as well as the bias and standard error of their estimates. 

We found that available built-in approaches fail in many practical scenarios, and that these 

deficiencies can be fixed by a simple combination of available techniques. Based on obtained 

results we provided guidelines for GLMM analysis in typical multi-reader studies. 

2.1 RELEVANT GLMM BACKGROUND 

Estimation in the GLMM models for cross-correlated binary data is not straightforward and can 

be computationally demanding because of the complexity of the marginal likelihood function. For 
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example, consider a fully crossed multi-reader data set consisting of binary responses (e.g., Y = 0 

- “test negative”; Y = 1 - “test positive”) provided by a sample of readers (𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟) for a 

sample of subjects (𝑖𝑖 = 1, … , 𝑛𝑛1). Assuming all subjects have the condition of interest (i.e., D = 1 

for “diseased”), we focus on statistical inferences of sensitivity which can be analyzed using the 

following GLMM: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 ,              ( 2.1 )  

where 𝑌𝑌𝑖𝑖𝑖𝑖|𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝𝑖𝑖𝑖𝑖� and 𝜇𝜇 is the logit of the conditional probability that the average reader 

correctly classifies the average subject, 𝑃𝑃𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝛼𝛼𝑖𝑖 = 0, 𝛽𝛽𝑗𝑗 = 0�. Sharing of subject random 

effect 𝛼𝛼𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝛼𝛼2) induces correlation among observations from the 𝑖𝑖𝑡𝑡ℎsubject but different 

readers (𝑌𝑌𝑖𝑖𝑖𝑖,  𝑌𝑌𝑖𝑖𝑗𝑗′). Similarly, sharing of reader random effect 𝛽𝛽𝑗𝑗~𝑁𝑁�0, 𝜎𝜎𝛽𝛽2� induces correlation 

among observations from the 𝑗𝑗𝑡𝑡ℎ reader but different subjects (𝑌𝑌𝑖𝑖𝑖𝑖,  𝑌𝑌𝑖𝑖′𝑗𝑗). Variability of Y is 

determined by variance of subject and reader random effects as well as the binomial variability 

(which depends on 𝑝𝑝𝑖𝑖𝑖𝑖).  

The unconditional variance-covariance matrix for outcome 𝑌𝑌 i.e. 𝑉𝑉(𝑌𝑌) can be shown as 

below (for simplicity assume 𝑛𝑛1 = 2 and 𝑛𝑛𝑟𝑟 = 2): 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖|𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗� = 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗�  

𝑉𝑉(𝑌𝑌) = 𝑉𝑉�

𝑌𝑌11
𝑌𝑌12
𝑌𝑌21
𝑌𝑌22

� ≈ 𝐵𝐵𝐵𝐵𝐵𝐵𝑍𝑍′𝐵𝐵 + 𝑅𝑅 using 1st order approximation 

The residual variance matrix, 𝑅𝑅 = 𝐴𝐴1 2⁄ 𝐵𝐵1 2⁄ 𝑃𝑃𝐵𝐵1 2⁄ 𝐴𝐴1 2⁄ = 𝐵𝐵 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑝𝑝𝑖𝑖𝑖𝑖�1 − 𝑝𝑝𝑖𝑖𝑖𝑖��,  where 𝐴𝐴 =

𝐼𝐼 since outcome in bernoulli, correlation matrix 𝑃𝑃 = 𝐼𝐼 since we don’t have any residual-side 

effects. 

𝑉𝑉(𝑌𝑌) ≈ 𝐵𝐵𝐵𝐵𝐵𝐵𝑍𝑍′𝐵𝐵 + 𝐴𝐴1 2⁄ 𝐵𝐵1 2⁄ 𝑃𝑃𝐵𝐵1 2⁄ 𝐴𝐴1 2⁄ = 𝐵𝐵𝐵𝐵𝐵𝐵𝑍𝑍′𝐵𝐵 + 𝐵𝐵 
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𝐵𝐵 =

⎣
⎢
⎢
⎡
𝑝𝑝11(1 − 𝑝𝑝11) 0 0 0

0   𝑝𝑝12(1 − 𝑝𝑝12) 0 0
0 0 𝑝𝑝21(1 − 𝑝𝑝21) 0
0 0 0 𝑝𝑝22(1 − 𝑝𝑝22)⎦

⎥
⎥
⎤
 

𝑍𝑍 = �

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

� and 𝐺𝐺 =

⎣
⎢
⎢
⎢
⎡𝜎𝜎𝛼𝛼

2 0 0 0
0 𝜎𝜎𝛼𝛼2 0 0
0 0 𝜎𝜎𝛽𝛽2 0
0 0 0 𝜎𝜎𝛽𝛽2⎦

⎥
⎥
⎥
⎤
 

𝑉𝑉(𝑌𝑌) =

⎣
⎢
⎢
⎢
⎡𝑔𝑔1

2�𝜎𝜎𝛼𝛼2 + 𝜎𝜎𝛽𝛽2� 𝑔𝑔1𝑔𝑔2𝜎𝜎𝛼𝛼2 𝑔𝑔1𝑔𝑔3𝜎𝜎𝛽𝛽2 0
𝑔𝑔1𝑔𝑔2𝜎𝜎𝛼𝛼2 𝑔𝑔22�𝜎𝜎𝛼𝛼2 + 𝜎𝜎𝛽𝛽2� 0 𝑔𝑔2𝑔𝑔4𝜎𝜎𝛽𝛽2

𝑔𝑔1𝑔𝑔3𝜎𝜎𝛽𝛽2 0 𝑔𝑔32�𝜎𝜎𝛼𝛼2 + 𝜎𝜎𝛽𝛽2� 𝑔𝑔3𝑔𝑔4𝜎𝜎𝛼𝛼2

0 𝑔𝑔2𝑔𝑔4𝜎𝜎𝛽𝛽2 𝑔𝑔3𝑔𝑔4𝜎𝜎𝛼𝛼2 𝑔𝑔42�𝜎𝜎𝛼𝛼2 + 𝜎𝜎𝛽𝛽2�⎦
⎥
⎥
⎥
⎤

, 

where 𝑔𝑔1 = 𝑝𝑝11(1 − 𝑝𝑝11); 𝑔𝑔2 = 𝑝𝑝12(1 − 𝑝𝑝12); 𝑔𝑔3 = 𝑝𝑝21(1 − 𝑝𝑝21); 𝑔𝑔4 = 𝑝𝑝22(1 − 𝑝𝑝22). This 

structure illustrates that even for simple models the estimation task is non-trivial. 

The marginal likelihood of the above model involves averaging over subject and reader 

distributions and can be written as follows: 

𝐿𝐿(𝜓𝜓) = ∫…∫ �∏ ∏ 𝑝𝑝𝑖𝑖𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖  �1 − 𝑝𝑝𝑖𝑖𝑖𝑖�
1−𝑦𝑦𝑖𝑖𝑖𝑖𝑓𝑓(𝛼𝛼𝑖𝑖)𝑓𝑓�𝛽𝛽𝑗𝑗�

𝑛𝑛1
𝑖𝑖=1

𝑛𝑛𝑟𝑟
𝑗𝑗=1 �  𝑑𝑑𝛼𝛼1. . 𝑑𝑑𝛼𝛼𝑛𝑛1𝑑𝑑𝛽𝛽1 . . 𝑑𝑑𝛽𝛽𝑛𝑛𝑟𝑟,       ( 2.2 ) 

where 𝑝𝑝𝑖𝑖𝑖𝑖 depends on 𝜇𝜇, 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗 according to equation     ( 2.1 ) and 𝜓𝜓 = �𝜇𝜇, 𝜎𝜎𝛼𝛼2, 𝜎𝜎𝛽𝛽2� is a vector 

of unknown parameters in the model we wish to estimate. The key challenge in working with 𝐿𝐿(𝜓𝜓) 

is the inability to factor the integrand due to the cross-sharing of random effects. If the data were 

not correlated the ordering of integration of the product could have been interchanged leading to 

the structure addressable by Generalized Estimating Equations, or even by Maximum Likelihood 

(if the data were completely independent). However, in the presence of the cross-correlated data, 

it is not possible to simplify equation ( 2.2 ) and we must resort to approximations. Furthermore, 

the dependence of the integral dimension on the sample size makes implementation of the 

quadrature methods infeasible, necessitating the use of less straightforward approximations.  
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2.2 STANDARD ESTIMATION TECHNIQUES  

 Laplace Approximation 

Laplace approximations (LA) are usually implemented to obtain a tractable expression for the 

parameter-dependent integral, with the goal to make numerical optimization tractable. LA is 

designed to approximate integrals of the following structure: 

𝐼𝐼 = ∫ 𝑒𝑒−𝑁𝑁ℎ(𝒙𝒙)𝑑𝑑𝒙𝒙ℝ𝑑𝑑 , 

where 𝑁𝑁 is the number of data points, ℎ(𝒙𝒙) is a scalar function and 𝒙𝒙 is a 𝑑𝑑-dimensional real 

vector. Applying the multi-variate Taylor expansion evaluated at 𝒙𝒙� the following approximation 

is obtained [37]: 

𝑙𝑙𝑙𝑙𝑙𝑙[𝐼𝐼] ≈ −𝑁𝑁ℎ(𝑥𝑥�) − 1
2
𝑙𝑙𝑙𝑙𝑙𝑙[𝑑𝑑𝑑𝑑𝑑𝑑(ℎ′′(𝒙𝒙)|𝒙𝒙= 𝒙𝒙�)] + 𝑑𝑑

2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) − 𝑑𝑑

2
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 

The h-function for the marginal likelihood in equation      ( 2.2 ) is the sum of two parts: 

the first part is the log-likelihood conditional on the specific readers and subjects in the study, 

𝜇𝜇 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 + ∑ 𝛽𝛽𝑗𝑗𝑦𝑦.𝑗𝑗 + ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖. − ∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗��𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖 , 

�𝑦𝑦𝑖𝑖. = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑗𝑗  and 𝑦𝑦.𝑗𝑗 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 � and the second part accounts for the randomness of the readers and 

subjects, 

−𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝛼𝛼 − ∑ 𝛼𝛼𝑖𝑖
2

2𝜎𝜎𝛼𝛼2𝑖𝑖 − 𝑛𝑛𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝛽𝛽 − ∑
𝛽𝛽𝑗𝑗
2

2𝜎𝜎𝛽𝛽
2𝑗𝑗 . 

The resulting function is maximized with respect to both fixed effect and variance 

components. It can be implemented using METHOD=LAPLACE in PROC GLIMMIX, SAS. 
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 Pseudo-Likelihood Method 

The Pseudo-Likelihood (PL) is a model linearization technique based on Taylor series expansion 

and Gaussian approximation. To approximate the GLMM in equation ( 2.1 ), we take the 1st order 

Taylor’s series expansion of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗�  about  𝜇𝜇,�  𝛼𝛼�𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽̂𝛽𝑗𝑗: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗�   = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇̂𝜇 + 𝛼𝛼�𝑖𝑖 + 𝛽̂𝛽𝑗𝑗� + �𝐷𝐷��
𝑖𝑖𝑖𝑖
�𝜇𝜇+𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 − 𝜇𝜇 �− 𝛼𝛼�𝑖𝑖 − 𝛽̂𝛽𝑗𝑗�, 

where 𝐷𝐷� is a diagonal matrix with elements consisting of first-order derivatives of 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇̂𝜇 + 𝛼𝛼�𝑖𝑖 + 𝛽̂𝛽𝑗𝑗� evaluated at  𝜇𝜇,�  𝛼𝛼�𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽̂𝛽𝑗𝑗 i.e. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑝̂𝑝𝑖𝑖𝑖𝑖(1 − 𝑝̂𝑝𝑖𝑖𝑖𝑖)�. 

Rearranging terms, we have: 

𝐷𝐷�𝑖𝑖𝑖𝑖
−1�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇+𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗� − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 �+ 𝛼𝛼�𝑖𝑖 + 𝛽̂𝛽𝑗𝑗�� + �𝜇𝜇 �+ 𝛼𝛼�𝑖𝑖 + 𝛽̂𝛽𝑗𝑗� = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗. 

We call the left hand side of this equation 𝑲𝑲; it is a vector of pseudo-variables of length 

𝑛𝑛𝑟𝑟 × 𝑛𝑛𝑐𝑐 that we assume is Gaussian. The mean and covariance of 𝑲𝑲 conditional on the true random 

effects are given by 

𝐸𝐸�𝐾𝐾𝑖𝑖𝑖𝑖| 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗� =  𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗, 

Cov[𝑲𝑲|𝜶𝜶,𝜷𝜷] = 𝑫𝑫−𝟏𝟏�𝑪𝑪𝑪𝑪𝑪𝑪((𝒀𝒀|𝜶𝜶, 𝜷𝜷)�𝑫𝑫−𝟏𝟏 = 𝑫𝑫−𝟏𝟏, 

since the conditional covariance of Y equals D. 

Thus, we define a new linear mixed model (LMM) as: 

𝑘𝑘𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑖𝑖, where 𝑉𝑉𝑉𝑉𝑉𝑉(𝑲𝑲) = 𝑽𝑽 = 𝒁𝒁𝒁𝒁𝒁𝒁′ + 𝑫𝑫−𝟏𝟏, 

where 𝒁𝒁 is the design matrix for random effects [(𝑛𝑛𝑟𝑟 ∗ 𝑛𝑛1) × (𝑛𝑛𝑟𝑟 + 𝑛𝑛1)] and 𝑮𝑮 is the [(𝑛𝑛𝑟𝑟 + 𝑛𝑛1) ×

(𝑛𝑛𝑟𝑟 + 𝑛𝑛1)] variance-covariance matrix of random effects. We assume 𝑮𝑮 is a diagonal matrix with 

𝜎𝜎𝛼𝛼2 and 𝜎𝜎𝛽𝛽2 on the diagonal. 
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The PL estimation of a GLMM follows a doubly iterative algorithm. First, the LMM is 

established based on initial estimates of the fixed and random effects. Then using either Maximum-

Likelihood (ML) or Restricted ML, the LMM is fit, yielding estimates of the elements of the 𝑮𝑮 

matrix: 𝜎𝜎𝛼𝛼2 and 𝜎𝜎𝛽𝛽2.  Given the variance components, the mixed-model equations are then solved 

for the fixed effects and random effects: 𝜇𝜇, {𝛼𝛼𝑖𝑖}𝑖𝑖=1
𝑛𝑛1 , and �𝛽𝛽𝑗𝑗�𝑗𝑗=1

𝑛𝑛𝑟𝑟 . Solving for the fixed and random 

effects is an iterative process; it is the inner iteration. The solution of this inner iteration also 

includes variances of the estimates of the fixed and random effects. Given estimates of the fixed 

and random effects, the whole process is repeated until convergence.  

 Combination Approaches 

Problems indicated in the literature for PL and LA estimation approaches led to several attempts 

to develop alternative combination remedies. These remedies are based on using the LA estimates 

of fixed effects, which are known to be rather accurate, while estimating the reference distribution 

or variance structure from different methods. Below we describe two such remedies that we will 

use. 

Noting problems with statistical inferences, Stroup (2012) [44] suggested using the 

Satterthwaite degrees of freedom from the PL approach for the same model. In our work, we also 

consider this suggestion when trying to make statistical inferences using the LA estimation 

technique since it does not allow the Satterthwaite option. 

As another example, Capanu et al. [25] suggested a hybrid technique in which Bayesian 

approaches are used to estimate the variance components of the random effects. These in turn are 

used to estimate the fixed-effects and corresponding standard errors (SE) based on fitting a model 
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using LA approach. We explore a similar remedy. Based on preliminary studies we found that the 

PL approach had few convergence issues and produced accurate estimates of the overall variance 

of the fixed effects. These properties led us to combine the LA estimates of the fixed effects with 

the PL estimates of the variances in the instances when the LA approach resulted in a non-positive 

definite G matrix containing estimates of variance components. In instances when the G matrix 

was not positive definite for either approach, we picked the larger SE estimates to enable more 

stable statistical inferences.  

In general, when we try to address the variability in the data through random effects, the 

problems of the inadmissible (negative values) estimates of variance and variance components 

becomes quite common during estimation. The chances become higher especially when variance 

components and sample sizes are small (Brown and Prescott [59]). These problems are typically 

handled by setting inadmissible estimates to ‘0’ (e.g.) which possibly induces bias in the results. 

However, due to specifics of estimation approaches the problems with inadmissible estimates of 

variance components are substantially more frequent for LA than for PL approach. The essence of 

the combination approach we propose is to use the PL estimates of variability in these instances. 

To summarize, we implement two combination approaches: 

1) Using LA estimates and borrowing Satterthwaite degrees of freedom from the same 

model fitted using PL. 

2) Using LA fixed effect estimates and borrowing PL standard error estimates when 

estimated G-matrix using LA approach is not positive-definite. SAS default 

containment degrees of freedom are used in this approach. 

 



16 

2.3 TYPICAL MODELS FOR ANALYSING MULTI-READER STUDIES OF 

DIAGNOSTIC ACCURACY 

In the simulation study we considered four models that address the frequent analytical questions 

in multi-reader studies of diagnostic imaging. While the models are not exhaustive of possible 

models in fully crossed multi-reader studies, they illustrate handling of the basic types of 

covariates. For each modeling setting we estimated the parameters of the models using the PL, LA 

and the combination approaches under various parameter configurations. It is also worthwhile to 

emphasize that the estimated parameters for each model are not “marginal” or “population-

averaged” quantities but rather “subject-specific” quantities in the traditional sense. Marginal 

estimates and their corresponding confidence intervals, however, can be derived using the 

“subject-specific” model (Section 3.4). The structure of the GLMM models for all models are 

summarized in Table 1. Below we provide full specifications for each model:  

 Model A: Covariate free model (e.g., inferences on sensitivity or specificity for a single 

modality) 

Performance of the covariate-free model is of interest and it provides a reference for more 

complicated models. The covariate-free GLMM can be used for estimating a single proportion in 

the fully crossed multi-reader study. This proportion can be sensitivity, specificity, or percent 

agreement. Here we focus on estimating sensitivity. 

For inferences about the sensitivity under a given diagnostic modality it is natural to use 

the model defined using equation ( 2.1 ). This model takes into account variability between readers, 
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variability between subjects, as well as the resulting correlations between observations by the same 

reader or from the same subject. 

The estimation target for this model is 𝜇𝜇 (average logit), which is the log-odds of the 

probability that the average diseased subject is correctly diagnosed by the average reader; or 

alternatively, the corresponding reader-subject specific probability, i.e., 𝑝𝑝 = (1 + exp(−𝜇𝜇))−1. 

Exclusion of ‘0’ from a 95% confidence interval (CI) for 𝜇𝜇 can be used for testing the difference 

of the reader-subject specific sensitivity from 0.5: 𝐻𝐻𝑜𝑜: 𝜇𝜇 = 0 𝑣𝑣𝑣𝑣. 𝐻𝐻1: 𝜇𝜇 ≠ 0 is equivalent to 𝐻𝐻𝑜𝑜: 𝑝𝑝 =

0.5 𝑣𝑣𝑣𝑣. 𝐻𝐻1: 𝑝𝑝 ≠ 0.5. Similar hypotheses can be set up for different values of reader-subject-specific 

sensitivities. More general inferences for this and other considered models can be based on 

integrating the confidence interval using the estimated fixed effect and variance components 

parameters (e.g., as described in Section 3.4). 

 Model B: Subject-level binary covariate (e.g. inferences on sensitivity and specificity 

combined) 

The most common type of binary subject-level covariate in diagnostic imaging studies is the true 

status of a subject (e.g., truth=“diseased” or “non-diseased”). In models with logit link this 

covariate is closely related to a “Diagnostic Likelihood Ratio” [42]. Naturally, inferences about 

the true status-related covariate requires modeling TPF and FPF simultaneously for which one can 

use the following GLMM: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝜂𝜂𝐷𝐷 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑗𝑗, 

where  𝑌𝑌𝑖𝑖𝑖𝑖|𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝𝑖𝑖𝑖𝑖�, 𝑖𝑖 = 1, … , 𝑛𝑛0 + 𝑛𝑛1 is the subject index, 𝑛𝑛0= number of non-

diseased subjects, 𝑛𝑛1= number of diseased subjects, 𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟 is the reader index, 𝜂𝜂𝐷𝐷 is the fixed 
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effect for true disease status (𝐷𝐷 = 1: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,−1 = 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) such that D depends on 

index 𝑖𝑖, 𝛼𝛼𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝛼𝛼2) is the subject random effect, 𝛽𝛽𝑗𝑗~𝑁𝑁�0, 𝜎𝜎𝛽𝛽2� is the reader random effect, 

𝛾𝛾𝑗𝑗𝑗𝑗~𝑁𝑁(0, 𝜎𝜎𝐷𝐷2) is the random effect of the interaction between true disease status and reader. 

For simplicity, we consider similar distribution for the diseased and non-diseased subjects. 

However, a model with different variability for diseased and non-diseased subject effects can also 

be implemented. Apart from the usual variability and correlations modelled by introducing subject 

and reader random effects (as in model A), the random interaction effect between reader and true 

disease status �𝛾𝛾𝑗𝑗𝑗𝑗� models varying differences between true positive fraction and false positive 

fraction for each reader through 𝜎𝜎𝐷𝐷2. 

The primary inferential target for this model is 𝜂𝜂 = 𝜂𝜂1 − 𝜂𝜂−1 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) −

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝐹𝐹𝐹𝐹) = 𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇

(1−𝑇𝑇𝑇𝑇𝑇𝑇)�
𝐹𝐹𝐹𝐹𝐹𝐹

(1−𝐹𝐹𝐹𝐹𝐹𝐹)�
�, which is the log of Diagnostic Odds Ratio, or DOR, [2] for an 

average subject and reader. Exclusion of ‘0’, from the 95% confidence interval for 𝜂𝜂 can be used 

for testing equality between TPF and FPF, or equivalently non-informativeness of the binary result 

for discriminating between diseased and non-diseased subjects. Ideally, we would like DOR>>1 

since for a reasonable test sensitivity > 1-specificity. 

 Model C: Assessment-level binary covariate (e.g., comparison of sensitivity between 

two modalities) 

In multi-reader studies, a typical covariate (“assessment-level”) that distinguishes evaluations of 

subject by a reader is the reading conditions, or “diagnostic modality”. Inference based on this 

covariate can be used to compare performance levels (e.g., TPF, FPF, DOR) under different 
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modalities. Here we consider a task of comparing TPF levels of two diagnostic modalities which 

can be performed using the following GLMM: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝛿𝛿𝑀𝑀 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑗𝑗, 

where  𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖|𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖�, 𝑖𝑖 = 1, … , 𝑛𝑛1 is the index representing diseased subjects, 𝑗𝑗 =

1, … , 𝑛𝑛𝑟𝑟 is the reader index, 𝛿𝛿𝑀𝑀 is the fixed effect of modality 𝑀𝑀 (𝑀𝑀 = −1,1),  𝛼𝛼𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝛼𝛼2) is the 

subject random effect, 𝛽𝛽𝑗𝑗~𝑁𝑁�0, 𝜎𝜎𝛽𝛽2� is the reader random effect, 𝛾𝛾𝑗𝑗𝑗𝑗~𝑁𝑁(0, 𝜎𝜎𝑀𝑀2 ) is the random 

effect of the interaction between modality and reader. This random interaction term models the 

variability in the difference between the sensitivity of the two modalities across readers via  𝜎𝜎𝑀𝑀2 . 

The primary inferential target for this model is the coefficient 𝛿𝛿 = 𝛿𝛿1 − 𝛿𝛿−1 =

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=1 = 𝑝𝑝1) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=−1 = 𝑝𝑝2) = 𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=1

(1−𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=1)�
𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=−1

(1−𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=−1)�
�, which is the log of 

the odds ratio of the probability that an average diseased subject is correctly diagnosed by an 

average reader under two modalities. Exclusion of ‘0’, from the 95% confidence interval for 𝛿𝛿 can 

be used for testing difference in sensitivity levels between diagnostic modalities. 

 Model D: Subject-level continuous covariate (e.g., lesion size effect on sensitivity) 

Similar to binary covariates, continuous factors can be related to subjects, readers, or 

“assessments”. In general, inferences on a continuous covariate in GLMM models are typically 

more stable than inferences on a binary covariate. However, while a single binary covariate can be 

easy to address in a model-free setting e.g., using contingency tables, non-parametric approaches 

[48], a continuous covariate requires modeling. Here we consider a model for a continuous subject-

level covariate for “diseased” subjects. 
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For estimating the effect of a continuous subject-level covariate (e.g., lesion size) on TPF, we 

can use the following GLMM: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝜏𝜏 ∗ 𝑋𝑋𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗 ∗ 𝑋𝑋𝑖𝑖, 

where 𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖, 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝𝑖𝑖𝑖𝑖�, 𝑖𝑖 = 1, … , 𝑛𝑛1 is the index representing diseased subjects, 𝑗𝑗 =

1, … , 𝑛𝑛𝑟𝑟 is the reader index, 𝜏𝜏 is the fixed-effect for slope where 𝑋𝑋𝑖𝑖 is the subject lesion size (mm), 

𝛼𝛼𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝛼𝛼2) is the subject random effect, 𝛽𝛽𝑗𝑗~𝑁𝑁�0, 𝜎𝜎𝛽𝛽2� is the reader random effect, 𝛾𝛾𝑗𝑗~𝑁𝑁(0, 𝜎𝜎𝑋𝑋2) 

is the random effect of the interaction between reader and lesion size which models variability 

between reader-specific slopes. 

The parameter of interest is the slope 𝜏𝜏 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥+1) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥) =

𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥+1

(1−𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥+1)�
𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥

(1−𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥)�
� which is the log of the odds ratio of “true positive” (𝑌𝑌 = 1) by an 

average reader for an average diseased subject with a 1 mm increment in lesion size 𝑋𝑋𝑖𝑖. 𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥 

represents the TPF when 𝑋𝑋 = 𝑥𝑥 whereas 𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥+1 is the TPF when 𝑋𝑋 = 𝑥𝑥 + 1. Exclusion of ‘0’ 

from the 95% confidence interval for 𝜏𝜏 can be used for testing the difference in the change in 

sensitivity as a function of lesion size.
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Table 1 Subject-Specific Analysis Models 

Model Scenario Sampling 
Populations 

Fixed 
Effects 

Random 
Effects 

Estimation 
Parameters Primary Estimation Target 

A 
(Covariate free) 

Estimating 
Sensitivity 

- Diseased subjects 
- Readers 

𝜇𝜇 or 𝑝𝑝 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇) 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗 𝜇𝜇, 𝜎𝜎𝛼𝛼2, 𝜎𝜎𝛽𝛽2 𝜇𝜇 = 𝑙𝑙𝑙𝑙 �𝑇𝑇𝑇𝑇𝑇𝑇 (1 − 𝑇𝑇𝑇𝑇𝑇𝑇)� � 

B 
(Subject level 

binary 
covariate) 

Estimating 
Diagnostic Odds 

ratio 

- Diseased subjects 
- Non-diseased 

subjects 
- Readers 

𝜇𝜇, 𝜂𝜂𝐷𝐷 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗𝑗𝑗 𝜇𝜇, 𝜂𝜂𝐷𝐷, 𝜎𝜎𝛼𝛼2, 
𝜎𝜎𝛽𝛽2, 𝜎𝜎𝐷𝐷2 

𝜂𝜂 = 𝜂𝜂1 − 𝜂𝜂−1 = 𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇

(1 − 𝑇𝑇𝑇𝑇𝑇𝑇)�
𝐹𝐹𝐹𝐹𝐹𝐹

(1 − 𝐹𝐹𝐹𝐹𝐹𝐹)�
� 

 

C 
(Assessment 
level binary 
covariate) 

Comparing 
Sensitivity levels 
for two diagnostic 

modalities 

- Diseased subjects 
- Readers 𝜇𝜇, 𝛿𝛿𝑀𝑀 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗𝑗𝑗 𝜇𝜇, 𝛿𝛿𝑀𝑀, 𝜎𝜎𝛼𝛼2, 

𝜎𝜎𝛽𝛽2, 𝜎𝜎𝑀𝑀2  

𝛿𝛿 = 𝛿𝛿1 − 𝛿𝛿−1 

= 𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=1

(1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=1)�
𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=−1

(1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=−1)�
� 

 

D 
(Subject level 

continuous 
covariate) 

Estimating effect 
of a continuous 
covariate (lesion 

size) on sensitivity 

- Diseased subjects 
- Readers 𝜇𝜇, 𝜏𝜏 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗 

𝜇𝜇, 𝜏𝜏, 𝜎𝜎𝛼𝛼2, 
𝜎𝜎𝛽𝛽2, 𝜎𝜎𝑋𝑋2 𝜏𝜏 = 𝑙𝑙𝑙𝑙 �

𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥+1
(1−𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥+1)�

𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥
(1−𝑇𝑇𝑇𝑇𝑇𝑇𝑋𝑋=𝑥𝑥)�

�  
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2.4 SIMULATION STUDY 

 Simulation Study Parameters  

For simulated datasets we considered sample sizes similar to those in real diagnostic imaging study 

by Slasky et al. [43] and other multi-reader studies of diagnostic imaging. This particular study 

included confidence ratings (on 0-4 scale) regarding the presence of lung nodules provided by 7 

radiologists for conventional and digital images acquired from the same set of 175 examinations 

without and 55 examinations with known lung nodules (www.roc.pitt.edu). The original study was 

conducted under a fully-crossed design where each radiologist evaluated images of all subjects 

under all viewing modalities. For our investigations we dichotomized responses (i.e., “positive” if 

rating > 2, “negative” if rating < 2).  

Each simulation scenario was determined by the numbers of subjects, readers, and specific 

true values for parameters of the considered subject-specific models. For each scenario we 

generated the cross-correlated data, starting with generating random effects (for subjects, readers, 

and considered interaction terms) and then generating binary responses with probabilities 

determined by the random effects and fixed parameters. The parameter configurations for models 

A, B and C were based on estimates obtained from GLMM models fit to real imaging study data  

[Table 2] with small alterations to make the scenarios more comparable across the considered 

model settings. For continuous covariate model D, we assigned true values for parameters based 

on our experience with prior analyses of detection accuracy for breast lesions in fully crossed 

multi-reader studies. 
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When planning and designing future studies or even simulation studies, there is often the 

need to understand and interpret the magnitude of the variance components (i.e., what is large, 

small, reasonable?). This specific task in the cross-correlated studies is not straightforward. To 

address this question and as an example, we developed a simple tool for interpreting magnitude of 

the variance components for the simplest no-covariate model A [0]. For example the between-

reader variability can be interpreted in terms of the smallest and largest sensitivity levels that are 

likely to be observed. The between-subject variability can be interpreted in terms of the smallest 

and largest proportions of readers who label the subject “positive”. These desired quantities can 

be computed through numerical integration by using estimated GLMM parameters.  Their 

correspondence can also be additionally checked by computing the same probabilities empirically 

using data from the multi-reader diagnostic imaging study [43]. 

We also used a similar tool to obtain reasonable values of variance components by fixing 

the fixed-effect values in the context of model D involving a continuous covariate [0]. 

These tools can help design new scenarios with practically reasonable structure of the 

variance components which can eventually help understand the generality of the phenomena and 

report findings across a range of values. 
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Table 2 Model estimates from the actual multi-reader study 

Model Sample Size Fixed effect 
(FE) 

PL Estimation 
Variance Estimates 

PL Estimation 
FE Estimate ± SE 
(95% t-based CI) 

LA Estimation 
Variance Estimates 

LA Estimation 
FE Estimate ± SE 
(95% t-based CI) 

PL+LA Estimation 
FE Estimate ± SE 
(95% t-based CI) 

A  
(Modality=1) 

𝑛𝑛1=55 
𝑛𝑛𝑟𝑟=7 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜇𝜇 

𝜎𝜎�𝛼𝛼2= 2.30 
𝜎𝜎�𝛽𝛽2= 0.71 

0.11 ± 0.40 
(-0.86, 1.09) 

𝜎𝜎�𝛼𝛼2 = 3.56 
𝜎𝜎�𝛽𝛽2 = 0.90 

0.15 ± 0.46 
(-0.98, 1.28) 

0.15 ± 0.46 
(-0.98, 1.28) 

A  
(Modality=2) 

𝑛𝑛1=55 
𝑛𝑛𝑟𝑟=7 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜇𝜇 

𝜎𝜎�𝛼𝛼2 = 3.51 
𝜎𝜎�𝛽𝛽2 = 0.62 

0.51 ± 0.41 
(-0.50, 1.53) 

𝜎𝜎�𝛼𝛼2 = 6.25 
𝜎𝜎�𝛽𝛽2 = 0.86 

0.74 ± 0.52 
(-0.54, 2.02) 

0.74 ± 0.52 
(-0.54, 2.02) 

B  
(Modality=1) 

𝑛𝑛0=175 
𝑛𝑛1=55 
𝑛𝑛𝑟𝑟=7 

𝜂𝜂 = 𝜂𝜂1 − 𝜂𝜂−1 
𝜎𝜎�𝛼𝛼2 = 1.96 
𝜎𝜎�𝛽𝛽2= 0.54 
𝜎𝜎�𝐷𝐷2 = 0.14 

3.33 ± 0.35 
(2.45, 4.20) 𝜎𝜎�𝛼𝛼2 = 3.93 

𝜎𝜎�𝛽𝛽2 = 0.57 
𝜎𝜎�𝐷𝐷2= 0.11 

4.53 ± 0.51 
(3.27, 5.79) 

4.53 ± 0.51 
(3.27, 5.79) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) 0.10 ± 0.38 
(-0.83, 1.05) 

0.16 ± 0.43 
(-0.90, 1.24) 

0.16 ± 0.43 
(-0.90, 1.24) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝐹𝐹𝐹𝐹) -3.22 ± 0.36 
(-4.11, -2.32) 

-4.36 ± 0.47 
(-5.53, -3.19) 

-4.36 ± 0.47 
(-5.53, -3.19) 

B  
(Modality=2) 

𝑛𝑛0=175 
 𝑛𝑛1=55 
𝑛𝑛𝑟𝑟=7 

𝜂𝜂 = 𝜂𝜂1 − 𝜂𝜂−1 𝜎𝜎�𝛼𝛼2 = 2.02 
𝜎𝜎�𝛽𝛽2 = 0.64 
𝜎𝜎�𝐷𝐷2 = 0.02 

 

3.36 ± 0.29 
(2.63, 4.10) 𝜎𝜎�𝛼𝛼2 = 3.78 

𝜎𝜎�𝛽𝛽2 = 0.69 
𝜎𝜎�𝐷𝐷2= 0 

 

4.47 ± 0 
(. , .) 

4.47 ± 0.29 
(3.74, 5.20) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) 0.47 ± 0.38 
(-0.47, 1.41) 

0.65 ± 0.01 
(0.63, 0.67) 

0.65 ± 0.38 
(-0.29, 1.59) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝐹𝐹𝐹𝐹) -2.89 ± 0.35 
(-3.75, -2.03) 

-3.28 ± 0.01 
(-3.84, -3.79) 

-3.28  ± 0.35 
(-4.14, -2.41) 

C 𝑛𝑛1=55 
𝑛𝑛𝑟𝑟=7 

𝛿𝛿 = 𝛿𝛿1 − 𝛿𝛿−1 𝜎𝜎�𝛼𝛼2= 3.71 
𝜎𝜎�𝛽𝛽2 = 0.86 
𝜎𝜎�𝑀𝑀2  = 0 

(G-matrix not p.d.) 

-0.42 ± 0.18 
(-0.88, 0.03) 𝜎𝜎�𝛼𝛼2 = 5.05 

𝜎𝜎�𝛽𝛽2  = 0.95 
𝜎𝜎�𝑀𝑀2  = 0 

(G-matrix not p.d.) 

-0.47 ± 0.11 
(-0.76, -0.18) 

-0.47 ± 0.18 
(-0.93, -0.01) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=1) 0.13 ± 0.45 
(-0.99, 1.25) 

0.18 ± 0.11 
(-0.09, 0.47) 

0.18 ± 0.45 
(-0.93, 1.31) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀=−1) 0.55 ± 0.46 
(-0.56, 1.68) 

0.66 ± 0 
(. , .) 

0.66 ± 0.46 
(-0.46, 1.78) 

1. p.d.= positive definite 
2. All estimates are computed on logit scale 
3. G-matrix is variance-covariance matrix of random effects 
4. t-based CI use default containment degrees of freedom 
5.  PL+LA Estimation: Combination model with fixed effect estimates from Laplace technique; Standard Error (SE) estimates of LA model replaced by those of PL 
model only when G-matrix is not p.d.. In case G-matrix is p.d. for both models, the greater of the two SE is utilized 
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 Simulation Study Details 

As mentioned earlier, in the simulation studies, we considered the performance of all four models 

described in Section 2.3 using both the PL, LA estimation and combination techniques. 

Simulations were carried out using SAS using N=1,000 Monte Carlo independent simulated 

datasets for each parameter configuration. The models were fitted with PROC GLIMMIX, SAS 

using the specification statements provided in Appendix A.  

Specifically, for each estimated model, we acquired estimates of the targeted fixed effects, 

their estimated standard errors, limits for the 95% confidence intervals, and the number of Monte 

Carlo simulations where the convergence was achieved (with and without positive definite 

estimates of the covariance matrix). 

Simulation parameters were used as the reference for estimating coverage of the confidence 

intervals and bias of the fixed effect estimates of all models. We focused on evaluating the 

coverage of the 95% CI (“Coverage (%)”) since it plays a central role in statistical inferences. It 

was estimated as the proportion of the times the true parameter (for concreteness denoted here as 

𝜃𝜃)  of the corresponding model was contained within the estimated CI. The CI were based on the 

default t-based reference distribution with containment degrees of freedom unless stated otherwise. 

We also estimated the following quantities which helped us gain insight in some of the 

observed trends and how they affected coverage rate: 

a) To assess the performance of the variance estimators, we approximated the empirical 

standard deviation (MC SD or Monte Carlo Standard Deviation) calculated from 1,000 

(sometimes 2000 to obtain a more precise estimate) MC trials per simulation configuration. 
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This is used as the gold standard or the supposedly true population standard deviation in 

this assessment. 𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆��𝜃𝜃�� = �� 1
𝑁𝑁−1

�∑ �𝜃𝜃�𝑛𝑛 − 𝜃𝜃�̅�
2

𝑁𝑁=100
𝑛𝑛=1 . 

b) Standardized bias of fixed effect estimate i.e. 𝑆𝑆𝑆𝑆 =
1
𝑁𝑁
∑ (𝜃𝜃�𝑛𝑛−𝜃𝜃𝑁𝑁=1000
𝑛𝑛=1 )

𝑆𝑆𝑆𝑆� �𝜃𝜃��
 based on MC SD. 

This quantity tells us how big of a difference there is between the true parameter of interest 

and the average of the parameter estimates relative to the MC standard deviation of that 

parameter. 

c) Relative bias of the standard error estimate (where bias is given by the difference between 

theoretical and empirical Monte Carlo standard deviation) i.e. 𝑅𝑅𝑅𝑅𝑅𝑅 = 100 ∗

��1
𝑁𝑁
∑ 𝑆𝑆𝑆𝑆��𝜃𝜃�𝑛𝑛�𝑁𝑁=1000
𝑛𝑛=1 � − 𝑆𝑆𝑆𝑆��𝜃𝜃��� /𝑆𝑆𝑆𝑆��𝜃𝜃��. 

d) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑁𝑁
∑ (𝜃𝜃�𝑛𝑛−𝜃𝜃𝑁𝑁=1000
𝑛𝑛=1 )

𝑁𝑁
 which is the bias of fixed-effect parameter estimate. 

e) 𝑆𝑆𝑆𝑆 = ∑ 𝑆𝑆𝑆𝑆��𝜃𝜃�𝑛𝑛�𝑁𝑁=1000
𝑛𝑛=1

𝑁𝑁
 is the average estimated standard error for the fixed-effect 

parameter estimates. 

f) 𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ 𝜃𝜃�𝑛𝑛𝑁𝑁=1000
𝑛𝑛=1

𝑁𝑁
= 𝜃𝜃�̅ which is the average of fixed-effect parameter estimates across 

simulations. 

 

We also showed the number of Monte Carlo simulations (“Sim Used”) used for 

computation of the quantities listed above. Specifically, we discarded all simulations where 1) 

standard error estimate was zero and 2) convergence was not achieved (based on PROC 

GLIMMIX “Convergence Status” OUTPUT). For the continuous covariate Laplace estimated 

model, we also discarded simulations where the conditional log likelihood was zero since that 
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meant that the MLE did not exist (which could be seen in terms of huge estimates of fixed effect 

and corresponding SE).  

In addition to considering the PL and LA estimation approaches on all convergent 

simulations with non-zero estimates of SE of fixed effect, we also separately considered instances 

with positive-definite estimates of the covariance matrix of random effects (G matrix). This was 

done because non-positive definite G-matrices often result in standard errors estimates of fixed 

effect which are either zero or non-reliable (perhaps smaller than usual). 

Quality of confidence intervals, estimation of fixed effects and their standard errors are 

only indirectly but related to estimation of variance components. These quantities are also 

important for planning future studies. For illustrative purposes, we partially investigated the 

quality of variance component estimation for the simple no-covariate model A and compared them 

between PL and LA approaches [Appendix C].  This was done by computing the relative bias (%) 

of the estimated variance components by comparing against their true simulation values. 

 Simulation Study Results 

For the covariate free setting (model A, Table 3, Table 4, Table 5), bias in fixed effect estimates 

was rather substantial for the PL (often larger than 1 standard error) and negligible for LA approach 

(mostly less than 0.06 standard errors). This observation was in concordance with the relative 

performance of these approaches in the simpler setting of binary clustered data [31]. For the PL 

approach, the bias worsened when the true sensitivity was far from 0.5 (e.g., TPF=0.1). The 

standard error of the fixed effect estimates was substantially underestimated under the LA method 

(by as much as -20%), but rather accurate for the PL approach. Interestingly, despite the substantial 

underestimation of the variance, the estimated 95% CI coverage rate was somewhat conservative 
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for the LA estimated model in the considered scenarios. This agrees with previously reported 

properties of the LA estimates [25]. One possible explanation for this is that the distribution of the 

fixed-effect estimator looks like normal for most part but has a thin tail due to extreme observations 

in many settings. These extreme observations tend to drive up the true variance (or MC SD) leading 

to underestimation of the variance estimates. For the PL approach, the CI coverage was 

substantially lower than nominal level for scenarios with substantial bias in the fixed effect 

estimates (e.g., TPF=0.1).  In simulated datasets resulting in positive definite G-matrix under the 

LA approach, the results were similar. Combination approaches based on the LA estimation 

(reference distribution, and variance borrowing summarized in Table 15) led to statistical 

inferences of the same quality. 
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Table 3 Simulation Results for Model A (small magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 
p=0.1 

μ=-2.20     
p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85      

 n1  n1  n1   n1  n1  n1   n1  n1  n1  
 nr 55 100 55 100 55 100  55 100 55 100 55 100  55 100 55 100 55 100 

Coverage 
(%) 

5 92 86 99 98 97 97  94 91 98 98 98 98  99 98 99 99 99 98 

 10 84 77 97 97 96 94  89 90 96 96 96 97  97 97 97 97 97 97 
Bias 
(SE) 

5 0.257 
(0.256) 

0.265 
(0.2) 

0.004 
(0.204) 

0.005 
(0.169) 

-0.097 
(0.212) 

-0.101 
(0.174) 

 0.002 
(0.332) 

0.007 
(0.234) 

0.006 
(0.221) 

0.007 
(0.179) 

-0.005 
(0.23) 

-0.007 
(0.185) 

 -0.029 
(0.369) 

0.014 
(0.266) 

0.009 
(0.232) 

0.008 
(0.188) 

-0.005 
(0.247) 

-0.008 
(0.197) 

 10 0.215 
(0.199) 

0.22 
(0.158) 

0 
(0.174) 

0.003 
(0.143) 

-0.073 
(0.177) 

-0.073 
(0.144) 

 -0.004 
(0.227) 

0.008 
(0.177) 

0.002 
(0.187) 

0.004 
(0.153) 

0.001 
(0.192) 

0.001 
(0.155) 

 -0.006 
(0.252) 

0.008 
(0.193) 

0.003 
(0.189) 

0.003 
(0.153) 

0.001 
(0.197) 

0 
(0.157) 

SB 
(RBS (%)) 

5 1 
(-1) 

1.34 
(1) 

0.02 
(-1) 

0.03 
(-3) 

-0.45 
(-3) 

-0.56 
(-3) 

 0.01 
(-11) 

0.03 
(-14) 

0.02 
(-5) 

0.04 
(-8) 

-0.02 
(-9) 

-0.04 
(-10) 

 -0.08 
(-1) 

0.05 
(-2) 

0.04 
(0) 

0.04 
(-3) 

-0.02 
(-2) 

-0.04 
(-4) 

 10 1.03 
(-4) 

1.41 
(1) 

0 
(0) 

0.02 
(0) 

-0.42 
(2) 

-0.5 
(0) 

 -0.01 
(-14) 

0.04 
(-10) 

0.01 
(-1) 

0.02 
(-2) 

0.01 
(-1) 

0.01 
(-3) 

 -0.02 
(-5) 

0.04 
(-1) 

0.02 
(0) 

0.02 
(-2) 

0 
(2) 

0 
(-2) 

Sim Used 5 1000 1000 1000 1000 1000 1000  861 854 997 994 1000 1000  535 601 661 784 654 765 
 10 1000 1000 1000 1000 1000 1000  885 907 992 997 999 1000  725 803 870 946 829 923 

 
1. Simulation parameters: Subject Variance=1, Reader Variance=0.1 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 

 



30 

Table 4 Simulation Results for Model A (medium magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 
p=0.1 

μ=-2.20     
p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85      

 n1  n1  n1   n1  n1  n1   n1  n1  n1  
 nr 55 100 55 100 55 100  55 100 55 100 55 100  55 100 55 100 55 100 

Coverage 
(%) 

5 89 87 97 97 96 95  95 95 97 96 97 96  97 97 98 96 98 96 

 10 86 84 97 97 96 95  96 96 96 96 97 96  96 96 96 96 97 96 
Bias 
(SE) 

5 0.408 
(0.382) 

0.409 
(0.344) 

-0.01 
(0.357) 

0.003 
(0.33) 

-0.154 
(0.356) 

-0.149 
(0.333) 

 -0.038 
(0.493) 

0.018 
(0.398) 

-0.009 
(0.396) 

0.004 
(0.358) 

-0.005 
(0.4) 

-0.008 
(0.361) 

 -0.033 
(0.512) 

0.028 
(0.406) 

-0.008 
(0.402) 

0.002 
(0.361) 

-0.009 
(0.407) 

-0.007 
(0.366) 

 10 0.331 
(0.305) 

0.325 
(0.275) 

0.002 
(0.301) 

0.007 
(0.273) 

-0.107 
(0.3) 

-0.099 
(0.272) 

 0.004 
(0.366) 

0.02 
(0.312) 

0.003 
(0.33) 

0.008 
(0.294) 

0.005 
(0.333) 

0.007 
(0.296) 

 0.005 
(0.368) 

0.02 
(0.312) 

0.002 
(0.33) 

0.008 
(0.294) 

0.005 
(0.333) 

0.007 
(0.296) 

SB 
(RBS (%)) 

5 1.07 
(0) 

1.17 
(-2) 

-0.03 
(0) 

0.01 
(-3) 

-0.43 
(-1) 

-0.44 
(-2) 

 -0.06 
(-21) 

0.04 
(-16) 

-0.02 
(-11) 

0.01 
(-14) 

-0.01 
(-11) 

-0.02 
(-14) 

 -0.05 
(-18) 

0.06 
(-14) 

-0.02 
(-10) 

0 
(-13) 

-0.02 
(-9) 

-0.02 
(-13) 

 10 1.12 
(3) 

1.24 
(5) 

0.01 
(1) 

0.03 
(3) 

-0.37 
(4) 

-0.37 
(3) 

 0.01 
(-6) 

0.06 
(-9) 

0.01 
(-5) 

0.03 
(-7) 

0.01 
(-5) 

0.02 
(-9) 

 0.01 
(-6) 

0.06 
(-9) 

0.01 
(-5) 

0.03 
(-7) 

0.01 
(-5) 

0.02 
(-9) 

Sim Used 5 1000 1000 1000 1000 1000 1000  953 970 996 998 1000 1000  901 944 960 984 953 978 
 10 1000 1000 1000 1000 1000 1000  998 1000 999 1000 1000 1000  989 1000 998 1000 998 999 

 
1. Simulation parameters: Subject Variance=2, Reader Variance=0.7 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 5 Simulation Results for Model A (large magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 
p=0.1 

μ=-2.20     
p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85      

 n1  n1  n1   n1  n1  n1   n1  n1  n1  
 nr 55 100 55 100 55 100  55 100 55 100 55 100  55 100 55 100 55 100 

Coverage 
(%) 

5 91 90 97 97 96 96  96 97 96 97 96 96  97 97 96 97 96 96 

 10 89 87 97 97 96 96  96 96 96 96 96 96  96 96 96 96 96 96 
Bias 
(SE) 

5 0.49 
(0.489) 

0.5 
(0.457) 

-0.018 
(0.476) 

-0.017 
(0.45) 

-0.199 
(0.478) 

-0.194 
(0.451) 

 -0.11 
(0.653) 

0.027 
(0.532) 

-0.021 
(0.547) 

-0.023 
(0.503) 

-0.017 
(0.555) 

-0.023 
(0.506) 

 -0.107 
(0.663) 

0.033 
(0.537) 

-0.024 
(0.549) 

-0.023 
(0.504) 

-0.018 
(0.558) 

-0.025 
(0.508) 

 10 0.374 
(0.4) 

0.367 
(0.372) 

-0.014 
(0.4) 

-0.01 
(0.373) 

-0.143 
(0.401) 

-0.137 
(0.374) 

 -0.027 
(0.484) 

0 
(0.425) 

-0.016 
(0.447) 

-0.012 
(0.409) 

-0.011 
(0.452) 

-0.015 
(0.412) 

 -0.027 
(0.484) 

0 
(0.425) 

-0.016 
(0.447) 

-0.012 
(0.409) 

-0.012 
(0.452) 

-0.015 
(0.412) 

SB 
(RBS (%)) 

5 0.99 
(-1) 

1.12 
(2) 

-0.04 
(-4) 

-0.04 
(-2) 

-0.4 
(-3) 

-0.42 
(-2) 

 -0.12 
(-30) 

0.04 
(-21) 

-0.04 
(-10) 

-0.04 
(-11) 

-0.03 
(-12) 

-0.04 
(-12) 

 -0.11 
(-29) 

0.05 
(-21) 

-0.04 
(-9) 

-0.04 
(-11) 

-0.03 
(-12) 

-0.04 
(-12) 

 10 0.98 
(5) 

1.07 
(8) 

-0.04 
(2) 

-0.03 
(0) 

-0.36 
(0) 

-0.37 
(2) 

 -0.05 
(-7) 

0 
(-7) 

-0.04 
(-4) 

-0.03 
(-6) 

-0.02 
(-4) 

-0.03 
(-5) 

 -0.05 
(-7) 

0 
(-7) 

-0.04 
(-4) 

-0.03 
(-6) 

-0.02 
(-4) 

-0.03 
(-5) 

Sim Used 5 1000 1000 1000 1000 1000 1000  986 994 999 1000 1000 1000  968 984 994 997 988 992 
 10 1000 1000 1000 1000 1000 1000  1000 1000 1000 1000 1000 1000  1000 1000 1000 1000 999 1000 

 
1. Simulation parameters: Subject Variance=3, Reader Variance=1.5 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Results for the setting with a subject level binary covariate (model B, Table 6, Table 7, 

Table 8) also indicated a frequently severe bias of the fixed effects estimates under the PL approach 

and a negligible bias under the LA method. The relative bias of the standard error estimate was 

again poor for the LA approach, especially for a small number of readers, while being relatively 

accurate for the PL approach. As before, the substantial bias in fixed effects of the PL model led 

to substantial under-coverage of CIs (as low as 57%). For this model, the LA-based CIs also 

demonstrated under-coverage in scenarios with few reader and extreme TPF or extreme FPF 

values.  In contrast, in the subset of simulations with positive-definite estimates of the covariance 

matrix, the LA-based CIs were conservative, thereby enabling appropriate, albeit possibly under-

powered statistical inferences.  

The LA estimation approach very frequently had fitting problems leading to up to 34% of 

scenarios where the statistical inferences were not possible (mostly due to problems estimating the 

variance of the fixed effect). At the same time the PL approach had only a few convergence 

problems across all simulations in the considered scenarios.  

Previously recommended combination approach based on borrowing Satterthwaite 

approximation from the PL approach for LA-based estimates did not lead to any improvement in 

coverage and even resulted in the decreased coverage in some scenarios. However, borrowing the 

PL estimates of variability in scenarios only where the LA estimates were not usable i.e. resulting 

from a non-positive definite G-matrix, resulted in substantial improvements in the coverage of 

confidence intervals, while enabling statistical inferences in almost all instances. Results are 

shown in Table 15.
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Table 6 Simulation Results for Model B (small magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0  

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0  

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0 
 n0  n0  n0   n0  n0  n0   n0  n0  n0  

 nr n1 100 175 100 175 100 175  100 175 100 175 100 175  100 175 100 175 100 175 
Coverage (%) 5 55 91 88 89 84 99 99  81 82 85 80 95 95  99 100 100 98 99 99 

 5 100 90 87 84 80 98 99  81 80 85 83 94 95  99 98 99 98 99 99 
 10 55 79 73 81 79 98 98  88 89 95 95 96 96  97 97 98 98 98 97 
 10 100 77 67 76 73 98 98  89 89 95 94 96 97  98 98 98 97 98 98 

Bias 
(SE) 

5 55 -0.374 
(0.323) 

-0.386 
(0.281) 

0.367 
(0.275) 

0.374 
(0.253) 

0.003 
(0.253) 

0.004 
(0.239) 

 0.028 
(0.321) 

0.007 
(0.278) 

0.016 
(0.294) 

0.05 
(0.247) 

0.005 
(0.271) 

0.014 
(0.249) 

 0.01 
(0.406) 

0.003 
(0.355) 

0.012 
(0.344) 

0.054 
(0.307) 

0.007 
(0.285) 

0.014 
(0.269) 

 5 100 -0.373 
(0.304) 

-0.381 
(0.255) 

0.374 
(0.249) 

0.374 
(0.224) 

0 
(0.226) 

0.007 
(0.21) 

 0.014 
(0.284) 

0.008 
(0.244) 

0.021 
(0.254) 

0.052 
(0.225) 

0.002 
(0.255) 

0.006 
(0.218) 

 -0.015 
(0.368) 

-0.025 
(0.306) 

0.037 
(0.301) 

0.047 
(0.265) 

0.003 
(0.254) 

0.014 
(0.23) 

 10 55 -0.355 
(0.256) 

-0.359 
(0.225) 

0.301 
(0.227) 

0.299 
(0.21) 

0.007 
(0.217) 

0.003 
(0.205) 

 0.012 
(0.276) 

0.004 
(0.253) 

0.023 
(0.254) 

0.013 
(0.232) 

0.006 
(0.235) 

0.004 
(0.219) 

 0.007 
(0.307) 

0.002 
(0.268) 

0.02 
(0.264) 

0.011 
(0.24) 

0.008 
(0.237) 

0.002 
(0.223) 

 10 100 -0.349 
(0.237) 

-0.353 
(0.203) 

0.296 
(0.204) 

0.299 
(0.185) 

0.006 
(0.19) 

0.005 
(0.176) 

 0.015 
(0.251) 

0 
(0.213) 

0.012 
(0.226) 

0.019 
(0.2) 

0.008 
(0.203) 

0.003 
(0.187) 

 0.01 
(0.276) 

0.001 
(0.234) 

0.015 
(0.233) 

0.017 
(0.207) 

0.008 
(0.206) 

0.003 
(0.189) 

SB 
(RBS (%)) 

5 55 -1.09 
(-6) 

-1.37 
(0) 

1.3 
(-2) 

1.4 
(-5) 

0.01 
(-5) 

0.02 
(-3) 

 0.07 
(-22) 

0.02 
(-24) 

0.04 
(-20) 

0.16 
(-22) 

0.02 
(-7) 

0.05 
(-7) 

 0.02 
(-1) 

0.01 
(-2) 

0.03 
(-6) 

0.17 
(-3) 

0.02 
(-2) 

0.05 
(1) 

 5 100 -1.18 
(-4) 

-1.44 
(-3) 

1.44 
(-4) 

1.54 
(-8) 

0 
(-6) 

0.03 
(-3) 

 0.04 
(-25) 

0.03 
(-25) 

0.07 
(-20) 

0.19 
(-20) 

0.01 
(-7) 

0.03 
(-10) 

 -0.04 
(-3) 

-0.08 
(-6) 

0.11 
(-6) 

0.17 
(-6) 

0.01 
(-7) 

0.06 
(-5) 

 10 55 -1.45 
(4) 

-1.61 
(1) 

1.33 
(1) 

1.42 
(-1) 

0.03 
(1) 

0.02 
(2) 

 0.04 
(-4) 

0.02 
(-6) 

0.09 
(-1) 

0.06 
(-3) 

0.03 
(1) 

0.02 
(0) 

 0.02 
(7) 

0.01 
(-1) 

0.08 
(2) 

0.05 
(1) 

0.03 
(2) 

0.01 
(1) 

 10 100 -1.57 
(6) 

-1.77 
(2) 

1.49 
(3) 

1.64 
(2) 

0.03 
(2) 

0.03 
(4) 

 0.06 
(-1) 

0 
(-8) 

0.05 
(-2) 

0.09 
(-3) 

0.04 
(0) 

0.02 
(1) 

 0.04 
(8) 

0 
(1) 

0.06 
(1) 

0.08 
(1) 

0.04 
(1) 

0.02 
(3) 

Sim Used 5 55 1000 1000 1000 1000 1000 1000  627 597 486 550 779 781  314 335 407 431 562 625 
 5 100 1000 1000 1000 1000 1000 1000  623 645 561 605 796 845  358 406 472 510 635 733 
 10 55 1000 1000 1000 1000 1000 1000  778 778 731 787 908 914  598 649 704 760 807 845 
 10 100 1000 1000 1000 1000 1000 1000  795 824 778 878 946 955  646 707 753 848 888 917 

 
1. Simulation parameters: Subject Variance=1, Reader Variance=0.25, Reader*Truth Variance=0.07 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 7 Simulation Results for Model B (medium magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0  

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0  

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0 
 n0  n0  n0   n0  n0  n0   n0  n0  n0  

 nr n1 100 175 100 175 100 175  100 175 100 175 100 175  100 175 100 175 100 175 
Coverage (%) 5 55 78 75 82 79 99 98  87 87 90 91 97 97  99 98 99 99 99 99 

 5 100 73 70 75 72 98 98  85 85 91 93 96 96  98 97 98 99 98 98 
 10 55 66 60 76 77 97 98  92 94 95 96 96 98  96 97 97 97 96 98 
 10 100 64 57 72 69 97 98  93 95 94 96 96 98  97 97 95 96 96 98 

Bias 
(SE) 

5 55 -0.629 
(0.352) 

-0.621 
(0.321) 

0.55 
(0.321) 

0.531 
(0.304) 

0.004 
(0.308) 

0.003 
(0.293) 

 0.003 
(0.399) 

0.002 
(0.362) 

0.059 
(0.372) 

0.03 
(0.341) 

-0.003 
(0.353) 

0.001 
(0.329) 

 -0.011 
(0.472) 

-0.021 
(0.415) 

0.05 
(0.41) 

0.027 
(0.374) 

-0.005 
(0.363) 

0.004 
(0.343) 

 5 100 -0.626 
(0.326) 

-0.61 
(0.295) 

0.547 
(0.294) 

0.537 
(0.274) 

-0.006 
(0.278) 

0.002 
(0.263) 

 -0.029 
(0.348) 

0 
(0.317) 

0.039 
(0.336) 

0.045 
(0.304) 

-0.017 
(0.31) 

-0.001 
(0.291) 

 -0.059 
(0.415) 

-0.022 
(0.365) 

0.035 
(0.362) 

0.048 
(0.324) 

-0.022 
(0.322) 

-0.006 
(0.299) 

 10 55 -0.517 
(0.295) 

-0.527 
(0.268) 

0.407 
(0.28) 

0.397 
(0.261) 

-0.002 
(0.275) 

-0.01 
(0.262) 

 0.015 
(0.345) 

-0.018 
(0.318) 

0.012 
(0.326) 

0.012 
(0.3) 

-0.002 
(0.309) 

-0.01 
(0.291) 

 0.009 
(0.366) 

-0.016 
(0.326) 

0.012 
(0.331) 

0.011 
(0.303) 

-0.003 
(0.306) 

-0.01 
(0.291) 

 10 100 -0.511 
(0.272) 

-0.51 
(0.244) 

0.401 
(0.252) 

0.395 
(0.231) 

-0.005 
(0.245) 

-0.005 
(0.229) 

 0.008 
(0.312) 

-0.008 
(0.283) 

0.008 
(0.29) 

0.003 
(0.262) 

-0.01 
(0.271) 

-0.004 
(0.25) 

 0.006 
(0.327) 

-0.012 
(0.287) 

0.007 
(0.292) 

0.003 
(0.264) 

-0.009 
(0.271) 

-0.005 
(0.251) 

SB 
(RBS (%)) 

5 55 -1.77 
(-1) 

-1.89 
(-3) 

1.69 
(-1) 

1.76 
(1) 

0.01 
(-4) 

0.01 
(-2) 

 0.01 
(-19) 

0 
(-19) 

0.14 
(-12) 

0.08 
(-12) 

-0.01 
(-8) 

0 
(-6) 

 -0.02 
(-4) 

-0.05 
(-8) 

0.12 
(-3) 

0.07 
(-3) 

-0.01 
(-5) 

0.01 
(-2) 

 5 100 -1.89 
(-1) 

-2 
(-3) 

1.83 
(-2) 

1.94 
(-1) 

-0.02 
(-5) 

0.01 
(-1) 

 -0.07 
(-22) 

0 
(-23) 

0.1 
(-16) 

0.13 
(-13) 

-0.05 
(-11) 

0 
(-8) 

 -0.13 
(-7) 

-0.05 
(-12) 

0.09 
(-9) 

0.14 
(-7) 

-0.06 
(-8) 

-0.02 
(-5) 

 10 55 -1.72 
(-2) 

-1.95 
(-1) 

1.44 
(-1) 

1.53 
(1) 

-0.01 
(-2) 

-0.04 
(1) 

 0.04 
(-10) 

-0.05 
(-6) 

0.04 
(-4) 

0.04 
(-1) 

-0.01 
(-2) 

-0.04 
(-1) 

 0.02 
(-5) 

-0.05 
(-3) 

0.03 
(-3) 

0.04 
(1) 

-0.01 
(-3) 

-0.03 
(-1) 

 10 100 -1.91 
(2) 

-2.06 
(-2) 

1.58 
(-1) 

1.69 
(-1) 

-0.02 
(-2) 

-0.02 
(1) 

 0.02 
(-6) 

-0.03 
(-7) 

0.02 
(-6) 

0.01 
(-6) 

-0.04 
(-4) 

-0.02 
(-2) 

 0.02 
(-2) 

-0.04 
(-6) 

0.02 
(-5) 

0.01 
(-5) 

-0.03 
(-4) 

-0.02 
(-2) 

Sim Used 5 55 1000 1000 1000 1000 1000 1000  662 701 652 709 850 835  457 525 577 637 714 753 
 5 100 1000 1000 1000 1000 1000 1000  670 722 726 775 881 897  494 569 660 723 791 830 
 10 55 1000 1000 1000 1000 1000 1000  861 882 895 912 959 970  769 820 881 900 924 933 
 10 100 1000 994 1000 1000 1000 1000  877 921 931 950 977 984  822 886 925 944 962 976 

 
1. Simulation parameters: Subject Variance=1.9, Reader Variance=0.5, Reader*Truth Variance=0.14 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 8 Simulation Results for Model B (large magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0  

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0  

TPF=0.5 
FPF=0.03 

η=3.48 

TPF=0.3 
FPF=0.9 
η=-3.04 

TPF=0.6 
FPF=0.6 

η=0 
 n0  n0  n0   n0  n0  n0   n0  n0  n0  

 nr n1 100 175 100 175 100 175  100 175 100 175 100 175  100 175 100 175 100 175 
Coverage (%) 5 55 76 76 82 80 97 98  91 93 95 94 95 96  97 97 97 97 97 97 

 5 100 74 73 80 77 97 97  91 92 94 93 96 95  97 97 96 96 97 96 
 10 55 75 69 81 80 98 97  96 97 97 96 98 96  97 97 97 96 98 97 
 10 100 73 65 80 79 98 97  96 95 96 96 97 96  97 96 96 96 97 96 

Bias 
(SE) 

5 55 -0.803 
(0.451) 

-0.802 
(0.428) 

0.69 
(0.439) 

0.694 
(0.424) 

0 
(0.431) 

0 
(0.418) 

 0 
(0.555) 

-0.012 
(0.507) 

0.058 
(0.53) 

0.075 
(0.49) 

-0.002 
(0.497) 

0.006 
(0.478) 

 -0.028 
(0.583) 

-0.021 
(0.531) 

0.049 
(0.544) 

0.072 
(0.503) 

-0.007 
(0.508) 

0.007 
(0.484) 

 5 100 -0.795 
(0.433) 

-0.788 
(0.406) 

0.689 
(0.415) 

0.689 
(0.399) 

0.005 
(0.408) 

0.008 
(0.395) 

 -0.022 
(0.499) 

-0.025 
(0.449) 

0.066 
(0.483) 

0.067 
(0.444) 

0.008 
(0.465) 

0.016 
(0.442) 

 -0.044 
(0.531) 

-0.037 
(0.476) 

0.06 
(0.493) 

0.07 
(0.457) 

0.008 
(0.469) 

0.018 
(0.447) 

 10 55 -0.63 
(0.394) 

-0.632 
(0.37) 

0.503 
(0.387) 

0.495 
(0.371) 

0.007 
(0.389) 

0.004 
(0.375) 

 0.027 
(0.475) 

-0.01 
(0.438) 

0.018 
(0.452) 

0.011 
(0.425) 

0.011 
(0.438) 

0.008 
(0.418) 

 0.025 
(0.478) 

-0.01 
(0.438) 

0.017 
(0.453) 

0.012 
(0.426) 

0.009 
(0.437) 

0.007 
(0.419) 

 10 100 -0.62 
(0.371) 

-0.62 
(0.346) 

0.495 
(0.361) 

0.492 
(0.343) 

0.006 
(0.36) 

0.009 
(0.343) 

 0.016 
(0.43) 

-0.006 
(0.395) 

0.018 
(0.413) 

0.026 
(0.384) 

0.007 
(0.399) 

0.011 
(0.378) 

 0.014 
(0.435) 

-0.006 
(0.397) 

0.018 
(0.413) 

0.025 
(0.385) 

0.007 
(0.4) 

0.01 
(0.379) 

SB 
(RBS (%)) 

5 55 -1.66 
(-7) 

-1.78 
(-5) 

1.5 
(-5) 

1.59 
(-3) 

0 
(-7) 

0 
(-4) 

 0 
(-21) 

-0.02 
(-22) 

0.09 
(-16) 

0.13 
(-16) 

0 
(-14) 

0.01 
(-13) 

 -0.04 
(-17) 

-0.03 
(-18) 

0.08 
(-14) 

0.12 
(-14) 

-0.01 
(-12) 

0.01 
(-12) 

 5 100 -1.74 
(-5) 

-1.85 
(-5) 

1.59 
(-4) 

1.65 
(-4) 

0.01 
(-6) 

0.02 
(-4) 

 -0.03 
(-21) 

-0.04 
(-24) 

0.11 
(-17) 

0.12 
(-20) 

0.02 
(-14) 

0.03 
(-14) 

 -0.07 
(-16) 

-0.06 
(-19) 

0.1 
(-16) 

0.12 
(-18) 

0.01 
(-13) 

0.04 
(-13) 

 10 55 -1.69 
(5) 

-1.76 
(3) 

1.35 
(4) 

1.39 
(4) 

0.02 
(3) 

0.01 
(2) 

 0.06 
(-2) 

-0.02 
(-3) 

0.04 
(-2) 

0.03 
(-2) 

0.02 
(-1) 

0.02 
(-3) 

 0.05 
(-2) 

-0.02 
(-3) 

0.04 
(-2) 

0.03 
(-2) 

0.02 
(-1) 

0.02 
(-2) 

 10 100 -1.77 
(6) 

-1.91 
(6) 

1.47 
(7) 

1.53 
(6) 

0.02 
(4) 

0.03 
(5) 

 0.04 
(-4) 

-0.01 
(-4) 

0.04 
(-2) 

0.07 
(-2) 

0.02 
(-1) 

0.03 
(0) 

 0.03 
(-3) 

-0.02 
(-4) 

0.04 
(-2) 

0.06 
(-2) 

0.02 
(-1) 

0.03 
(0) 

Sim Used 5 55 1000 1000 1000 1000 1000 1000  837 840 834 865 903 913  724 752 802 830 831 863 
 5 100 1000 999 1000 999 1000 1000  850 862 871 901 934 940  751 790 843 868 882 902 
 10 55 1000 1000 1000 1000 1000 1000  971 972 969 986 982 990  956 957 963 983 976 982 
 10 100 1000 996 1000 1000 1000 1000  973 982 976 982 983 990  959 972 975 980 975 983 

 
1. Simulation parameters: Subject Variance=3, Reader Variance=1, Reader*Truth Variance=0.5 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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For an assessment level covariate in model C, comparing the sensitivity between the two 

modalities (Table 9, Table 10, Table 11), we observed patterns similar to the previous setting. The 

PL approach yielded biased fixed effect estimates and inadequate confidence intervals when TPF 

were substantially different (e.g., 𝑝𝑝1 = 0.1, 𝑝𝑝2 = 0.7).  The LA model resulted in negligible bias 

of the covariate’s fixed effect across all scenarios, but lead to CIs with substantially lower than 

nominal coverage when the variance was substantially underestimated (more than by -20%). This 

tended to happen when the numbers of readers were small and TPF values were substantially 

different (e.g., 𝑛𝑛𝑟𝑟 = 5, 𝑝𝑝1 = 0.1, 𝑝𝑝2 = 0.7).  However, in the subset of simulations with positive-

definite estimates of the covariance matrix, the LA based CIs had close to nominal coverage.  

Again, the LA estimation approach very frequently had fitting problems leading up to 20% 

of scenarios where the statistical inferences were not possible (mostly due to problems estimating 

variance of the fixed effect). At the same time the PL approach had only a few convergence 

problems across all simulations in the considered scenarios. 

The combination approach based on borrowing Satterthwaite approximation from the PL 

approach did not help to improve CI coverage in problematic scenarios. In contrast, borrowing the 

PL estimates of variability in scenarios where the LA estimates were not usable resulted in 

substantial improvements in the coverage of confidence intervals, while enabling statistical 

inferences in almost all instances. Results are shown in Table 15.
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Table 9 Simulation Results for Model C (small magnitude of variance components) 

 PL Estimation*    LAPLACE Estimation*    LAPLACE Estimation**   

 

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0           

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0           

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0          
 n1   n1   n1    n1   n1   n1    n1   n1   n1   

 nr 55 100 55 100 55 100  55 100 55 100 55 100  55 100 55 100 55 100 
Coverage 

(%) 
5 98 96 91 90 99 98  91 92 74 82 97 93  99 97 99 99 99 98 

 10 96 95 87 85 95 95  94 94 89 91 94 94  96 95 95 95 95 94 
Bias 
(SE) 

5 0.047 
(0.276) 

0.039 
(0.243) 

0.32 
(0.316) 

0.323 
(0.268) 

0.002 
(0.293) 

0 
(0.256) 

 0.026 
(0.276) 

0.008 
(0.238) 

0.002 
(0.283) 

0.012 
(0.254) 

-0.003 
(0.332) 

-0.004 
(0.259) 

 0.021 
(0.305) 

0.007 
(0.256) 

-0.022 
(0.381) 

0.021 
(0.306) 

-0.013 
(0.324) 

-0.009 
(0.274) 

 10 0.025 
(0.204) 

0.02 
(0.182) 

0.209 
(0.233) 

0.201 
(0.201) 

-0.001 
(0.214) 

0 
(0.187) 

 0.002 
(0.211) 

-0.004 
(0.182) 

-0.004 
(0.242) 

-0.001 
(0.206) 

0.004 
(0.225) 

-0.001 
(0.19) 

 0 
(0.214) 

-0.005 
(0.185) 

0 
(0.26) 

-0.002 
(0.214) 

0.001 
(0.226) 

-0.003 
(0.191) 

SB 
(RBS (%)) 

5 0.17 
(-1) 

0.15 
(-7) 

0.98 
(-3) 

1.17 
(-3) 

0.01 
(-1) 

0 
(-5) 

 0.08 
(-9) 

0.03 
(-16) 

0 
(-27) 

0.04 
(-21) 

-0.01 
(1) 

-0.01 
(-15) 

 0.07 
(0) 

0.03 
(-10) 

-0.06 
(-2) 

0.07 
(-5) 

-0.04 
(-1) 

-0.03 
(-10) 

 10 0.12 
(-1) 

0.11 
(-1) 

0.86 
(-4) 

0.95 
(-4) 

0 
(-4) 

0 
(-4) 

 0.01 
(-4) 

-0.02 
(-7) 

-0.01 
(-11) 

0 
(-11) 

0.02 
(-6) 

-0.01 
(-8) 

 0 
(-2) 

-0.03 
(-5) 

0 
(-4) 

-0.01 
(-8) 

0 
(-5) 

-0.01 
(-7) 

Sim Used 5 1000 1000 1000 1000 1000 1000  761 841 687 731 769 840  603 747 504 604 555 725 
 10 1000 1000 1000 1000 1000 1000  904 963 833 927 908 959  850 941 773 890 807 932 

 
1. Simulation parameters: Subject Variance=1.9, Reader Variance=0.5, Reader*Modality Variance=0.14 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 10 Simulation Results for Model C (medium magnitude of variance components) 

 PL Estimation*    LAPLACE Estimation*    LAPLACE Estimation**   

 

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0           

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0           

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0          
 n1   n1   n1    n1   n1   n1    n1   n1   n1   

 nr 55 100 55 100 55 100  55 100 55 100 55 100  55 100 55 100 55 100 
Coverage 

(%) 
5 95 96 89 88 97 96  93 93 86 89 96 94  96 95 97 96 98 96 

 10 96 96 89 87 97 96  95 95 94 94 95 95  95 95 96 95 95 95 
Bias 
(SE) 

5 0.054 
(0.382) 

0.051 
(0.351) 

0.395 
(0.405) 

0.407 
(0.364) 

-0.002 
(0.385) 

-0.003 
(0.359) 

 0 
(0.428) 

0 
(0.355) 

-0.032 
(0.415) 

0.003 
(0.368) 

-0.01 
(0.419) 

0.001 
(0.364) 

 -0.008 
(0.411) 

0.003 
(0.362) 

-0.031 
(0.472) 

0.005 
(0.398) 

-0.007 
(0.418) 

-0.001 
(0.372) 

 10 0.032 
(0.292) 

0.035 
(0.278) 

0.263 
(0.313) 

0.245 
(0.289) 

-0.001 
(0.298) 

0.002 
(0.279) 

 0.002 
(0.3) 

0.007 
(0.282) 

0.003 
(0.332) 

0.011 
(0.298) 

-0.001 
(0.312) 

0.003 
(0.285) 

 0 
(0.3) 

0.008 
(0.283) 

0.005 
(0.339) 

0.01 
(0.301) 

-0.001 
(0.307) 

0.003 
(0.283) 

SB 
(RBS (%)) 

5 0.13 
(-4) 

0.14 
(-7) 

0.93 
(-5) 

1.06 
(-5) 

-0.01 
(-7) 

-0.01 
(-7) 

 0 
(-5) 

0 
(-18) 

-0.06 
(-21) 

0.01 
(-20) 

-0.02 
(-11) 

0 
(-17) 

 -0.02 
(-9) 

0.01 
(-16) 

-0.06 
(-10) 

0.01 
(-13) 

-0.01 
(-11) 

0 
(-15) 

 10 0.11 
(-3) 

0.13 
(1) 

0.82 
(-2) 

0.85 
(0) 

0 
(2) 

0.01 
(0) 

 0.01 
(-8) 

0.03 
(-5) 

0.01 
(-8) 

0.03 
(-8) 

0 
(-2) 

0.01 
(-6) 

 0 
(-8) 

0.03 
(-5) 

0.01 
(-6) 

0.03 
(-7) 

0 
(-4) 

0.01 
(-6) 

Sim Used 5 1000 1000 1000 1000 1000 1000  868 905 804 850 867 910  765 847 703 786 729 838 
 10 1000 1000 1000 1000 1000 1000  977 991 963 981 979 992  957 988 944 971 959 983 

 
1. Simulation parameters: Subject Variance=3.71, Reader Variance=0.8672, Reader*Modality Variance=0.4 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 11 Simulation Results for Model C (large magnitude of variance components) 

 PL Estimation*    LAPLACE Estimation*    LAPLACE Estimation**   

 

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0           

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0           

p1=0.5 
p2=0.6 
δ=-0.41      

p1=0.1 
p2=0.7 
δ=-3.04      

p1=0.8 
p2=0.8 

δ=0          
 n1   n1   n1    n1   n1   n1    n1   n1   n1   

 nr 55 100 55 100 55 100  55 100 55 100 55 100  55 100 55 100 55 100 
Coverage 

(%) 
5 96 96 91 90 96 96  94 93 91 92 95 93  96 95 97 96 96 94 

 10 96 95 91 92 96 95  95 93 95 94 94 95  95 93 95 95 95 95 
Bias 
(SE) 

5 0.069 
(0.524) 

0.057 
(0.507) 

0.47 
(0.538) 

0.468 
(0.512) 

-0.01 
(0.527) 

0.002 
(0.507) 

 0.02 
(0.552) 

0.011 
(0.52) 

-0.001 
(0.572) 

0.012 
(0.53) 

-0.017 
(0.585) 

-0.002 
(0.525) 

 0.021 
(0.56) 

0.008 
(0.526) 

-0.006 
(0.61) 

0.019 
(0.55) 

-0.019 
(0.568) 

0.002 
(0.526) 

 10 0.031 
(0.422) 

0.035 
(0.412) 

0.296 
(0.435) 

0.276 
(0.418) 

-0.016 
(0.426) 

0.005 
(0.413) 

 -0.008 
(0.438) 

0.001 
(0.424) 

-0.014 
(0.467) 

0.001 
(0.436) 

-0.018 
(0.445) 

0.004 
(0.426) 

 -0.007 
(0.438) 

0 
(0.424) 

-0.014 
(0.469) 

0.002 
(0.438) 

-0.02 
(0.445) 

0.003 
(0.426) 

SB 
(RBS (%)) 

5 0.12 
(-8) 

0.11 
(-5) 

0.83 
(-4) 

0.88 
(-4) 

-0.02 
(-6) 

0 
(-6) 

 0.03 
(-17) 

0.02 
(-17) 

0 
(-19) 

0.02 
(-18) 

-0.03 
(-10) 

0 
(-17) 

 0.03 
(-16) 

0.01 
(-16) 

-0.01 
(-14) 

0.03 
(-15) 

-0.03 
(-14) 

0 
(-16) 

 10 0.07 
(1) 

0.08 
(-1) 

0.68 
(0) 

0.66 
(0) 

-0.04 
(1) 

0.01 
(-1) 

 -0.02 
(-5) 

0 
(-7) 

-0.03 
(-6) 

0 
(-7) 

-0.04 
(-5) 

0.01 
(-7) 

 -0.02 
(-5) 

0 
(-7) 

-0.03 
(-6) 

0 
(-7) 

-0.04 
(-5) 

0.01 
(-7) 

Sim Used 5 1000 1000 1000 1000 1000 1000  915 930 886 927 921 940  859 892 830 893 844 894 
 10 1000 1000 1000 1000 1000 1000  991 996 986 990 994 992  983 990 982 986 985 988 

 
1. Simulation parameters: Subject Variance=5, Reader Variance=2, Reader*Modality Variance=1 
2. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
3. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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For the setting with a continuous covariate (model D, Table 12, Table 13, Table 14), the 

PL estimated model resulted in adequate coverage for smaller values of slope but started to decline 

for higher values (slope = 0.1). Like other models, the standardized bias using the LA approach 

was negligible. The coverage for the LA approach was conservative despite the serious under-

estimation of standard error especially with fewer readers. Similar observations prevailed in the 

subset of simulations with positive-definite estimates of the covariance matrix. Combination 

approaches (Table 15) based on the Satterthwaite approximation led to somewhat better coverage 

rate, while borrowing PL variance estimator enabled use of the model in larger number of 

instances, while making CIs slightly more conservative. 
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Table 12 Simulation Results for Model D (small magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 
τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0   

τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0   

τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0  

 n1  n1  n1  n1   n1  n1  n1  n1   n1  n1  n1 n1  
 nr 55 100 55 100 55 100 55 100  55 100 55 100 55 100 55 100  55 100 55 100 55 100 55 100 

Coverage 
(%) 

5 98 98 98 96 96 92 93 88  98 96 98 96 97 96 98 97  98 97 99 96 97 97 99 97 

 10 97 97 96 95 90 89 82 77  96 97 96 97 96 96 97 97  96 97 96 97 96 96 97 97 
Bias 
(SE) 

5 0 
(0.01) 

0 
(0.009) 

-0.004 
(0.01) 

-0.004 
(0.009) 

-0.007 
(0.011) 

-0.008 
(0.01) 

-0.013 
(0.015) 

-0.013 
(0.012) 

 0 
(0.011) 

0 
(0.009) 

0 
(0.011) 

-0.001 
(0.009) 

0 
(0.012) 

0 
(0.01) 

0.003 
(0.018) 

0.001 
(0.013) 

 0 
(0.01) 

0 
(0.009) 

-0.001 
(0.011) 

-0.001 
(0.009) 

0 
(0.013) 

-0.001 
(0.01) 

0.003 
(0.019) 

0 
(0.014) 

 10 0 
(0.008) 

0 
(0.007) 

-0.003 
(0.008) 

-0.003 
(0.007) 

-0.007 
(0.008) 

-0.007 
(0.007) 

-0.012 
(0.011) 

-0.012 
(0.009) 

 0 
(0.008) 

0 
(0.007) 

0 
(0.009) 

0 
(0.008) 

0 
(0.01) 

0 
(0.008) 

0.001 
(0.013) 

0 
(0.01) 

 0 
(0.008) 

0 
(0.007) 

0 
(0.009) 

0 
(0.007) 

0 
(0.01) 

0 
(0.008) 

0.001 
(0.013) 

0 
(0.01) 

SB 
(RBS 
(%)) 

5 0 
(4) 

-0.03 
(-3) 

-0.36 
(3) 

-0.44 
(-1) 

-0.66 
(3) 

-0.79 
(-1) 

-0.94 
(12) 

-1.05 
(3) 

 0.03 
(4) 

0.01 
(-10) 

-0.02 
(-4) 

-0.05 
(-12) 

0.01 
(-8) 

-0.02 
(-14) 

0.16 
(-5) 

0.05 
(-11) 

 0.01 
(-3) 

-0.05 
(-10) 

-0.07 
(-2) 

-0.07 
(-10) 

-0.03 
(-4) 

-0.11 
(-11) 

0.16 
(1) 

0 
(-6) 

 10 0.03 
(3) 

0.01 
(0) 

-0.37 
(2) 

-0.44 
(1) 

-0.8 
(1) 

-0.92 
(1) 

-1.17 
(3) 

-1.36 
(2) 

 0.05 
(0) 

0.02 
(-2) 

0.02 
(-3) 

-0.02 
(-3) 

0 
(-2) 

-0.04 
(-4) 

0.05 
(-3) 

-0.02 
(-4) 

 0.02 
(-2) 

0.01 
(-3) 

0.01 
(-3) 

-0.03 
(-4) 

-0.02 
(-3) 

-0.05 
(-4) 

0.06 
(-2) 

-0.01 
(-3) 

Sim Used 5 907 956 908 948 879 919 603 721  978 973 988 988 993 994 997 998  569 737 542 713 449 627 306 459 
 10 984 993 986 998 966 982 728 845  975 988 980 998 989 996 975 997  831 932 805 928 738 897 571 764 

 
1. Simulation parameters: Subject Variance=1, Reader Variance=0.1, Reader*LesionSize Variance=0.0004 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
3. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
4. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 13 Simulation Results for Model D (medium magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 
τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0   

τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0   

τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0  

 n1  n1  n1  n1   n1  n1  n1  n1   n1  n1  n1 n1  
 nr 55 100 55 100 55 100 55 100  55 100 55 100 55 100 55 100  55 100 55 100 55 100 55 100 

Coverage 
(%) 

5 99 98 98 96 94 91 86 84  97 96 98 96 98 96 97 97  98 96 98 97 98 97 97 97 

 10 97 97 96 95 91 90 74 75  96 96 96 96 96 96 97 96  96 97 96 96 97 96 97 96 
Bias 
(SE) 

5 0 
(0.014) 

0 
(0.013) 

-0.006 
(0.014) 

-0.006 
(0.013) 

-0.012 
(0.014) 

-0.011 
(0.013) 

-0.02 
(0.017) 

-0.019 
(0.015) 

 0.001 
(0.015) 

0 
(0.014) 

0 
(0.015) 

0 
(0.014) 

0 
(0.017) 

0 
(0.014) 

0.002 
(0.022) 

0 
(0.017) 

 0 
(0.015) 

0 
(0.014) 

-0.001 
(0.015) 

-0.001 
(0.014) 

-0.001 
(0.017) 

-0.001 
(0.014) 

0.001 
(0.022) 

-0.001 
(0.017) 

 10 0 
(0.011) 

0 
(0.01) 

-0.004 
(0.011) 

-0.004 
(0.01) 

-0.009 
(0.011) 

-0.009 
(0.01) 

-0.018 
(0.013) 

-0.016 
(0.011) 

 0 
(0.012) 

0 
(0.011) 

0 
(0.012) 

0 
(0.011) 

0 
(0.013) 

0 
(0.012) 

0 
(0.016) 

0 
(0.013) 

 0 
(0.012) 

0 
(0.011) 

0 
(0.012) 

0 
(0.011) 

0 
(0.013) 

0 
(0.012) 

0 
(0.016) 

0 
(0.013) 

SB 
(RBS 
(%)) 

5 0 
(3) 

-0.02 
(-3) 

-0.42 
(4) 

-0.43 
(-4) 

-0.83 
(4) 

-0.87 
(0) 

-1.25 
(8) 

-1.38 
(5) 

 0.03 
(-4) 

0.01 
(-11) 

-0.01 
(-6) 

-0.01 
(-15) 

0 
(-6) 

-0.02 
(-15) 

0.06 
(-12) 

0.01 
(-14) 

 0.01 
(-7) 

-0.01 
(-12) 

-0.06 
(-5) 

-0.06 
(-14) 

-0.07 
(-6) 

-0.06 
(-14) 

0.06 
(-8) 

-0.03 
(-13) 

 10 0.02 
(2) 

0.01 
(1) 

-0.38 
(2) 

-0.41 
(2) 

-0.87 
(6) 

-0.9 
(4) 

-1.46 
(5) 

-1.56 
(4) 

 0.04 
(-2) 

0.01 
(-4) 

0.03 
(-3) 

0 
(-4) 

0.02 
(-1) 

-0.02 
(-4) 

0.03 
(-4) 

-0.02 
(-6) 

 0.01 
(-3) 

0 
(-4) 

0.03 
(-4) 

-0.01 
(-4) 

0.02 
(-2) 

-0.03 
(-4) 

0.02 
(-4) 

-0.03 
(-6) 

Sim Used 5 939 980 940 970 921 953 794 892  968 975 985 994 991 994 984 997  758 855 728 851 690 822 537 725 
 10 996 997 992 999 971 984 891 950  979 997 991 997 991 998 986 997  935 977 926 976 897 972 821 942 

 
1. Simulation parameters: Subject Variance=2, Reader Variance=0.2, Reader*LesionSize Variance=0.001 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
3. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
4. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 14 Simulation Results for Model D (large magnitude of variance components) 

 PL Estimation*   LAPLACE Estimation*   LAPLACE Estimation**  

 
τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0   

τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0   

τ=0 
μ=0  

τ=.03 
μ=0  

τ=.06 
μ=0  

τ=0.1 
μ=0  

 n1  n1  n1  n1   n1  n1  n1  n1   n1  n1  n1 n1  
 nr 55 100 55 100 55 100 55 100  55 100 55 100 55 100 55 100  55 100 55 100 55 100 55 100 

Coverage 
(%) 

5 97 96 96 96 96 96 92 93  96 95 96 95 97 95 96 96  96 95 95 95 97 96 96 96 

 10 96 96 96 95 94 95 90 91  96 95 95 95 96 95 95 95  96 95 95 95 96 95 95 95 
Bias 
(SE) 

5 0 
(0.034) 

0 
(0.034) 

-0.007 
(0.034) 

-0.007 
(0.034) 

-0.016 
(0.035) 

-0.014 
(0.034) 

-0.027 
(0.035) 

-0.025 
(0.035) 

 0.001 
(0.041) 

0 
(0.039) 

0.001 
(0.041) 

-0.001 
(0.039) 

0 
(0.043) 

0 
(0.04) 

0.002 
(0.046) 

-0.001 
(0.041) 

 0 
(0.041) 

-0.001 
(0.039) 

-0.001 
(0.041) 

-0.001 
(0.039) 

-0.001 
(0.043) 

-0.001 
(0.04) 

0.001 
(0.046) 

-0.002 
(0.041) 

 10 0 
(0.027) 

0 
(0.027) 

-0.006 
(0.027) 

-0.005 
(0.027) 

-0.013 
(0.027) 

-0.011 
(0.027) 

-0.023 
(0.027) 

-0.02 
(0.027) 

 0 
(0.032) 

0 
(0.03) 

0 
(0.032) 

0 
(0.031) 

0 
(0.032) 

0 
(0.031) 

0.001 
(0.034) 

-0.001 
(0.031) 

 0 
(0.032) 

0 
(0.03) 

0 
(0.032) 

0 
(0.031) 

0 
(0.032) 

0 
(0.031) 

0.001 
(0.034) 

-0.001 
(0.031) 

SB 
(RBS 
(%)) 

5 0 
(0) 

0 
(-3) 

-0.22 
(1) 

-0.2 
(-4) 

-0.46 
(3) 

-0.4 
(-3) 

-0.81 
(5) 

-0.72 
(1) 

 0.03 
(-12) 

0 
(-15) 

0.01 
(-12) 

-0.01 
(-16) 

0.01 
(-12) 

0 
(-17) 

0.04 
(-25) 

-0.03 
(-15) 

 -0.01 
(-12) 

-0.01 
(-15) 

-0.02 
(-13) 

-0.03 
(-16) 

-0.03 
(-13) 

-0.02 
(-17) 

0.01 
(-24) 

-0.05 
(-15) 

 10 0.02 
(2) 

0.01 
(0) 

-0.24 
(1) 

-0.2 
(0) 

-0.5 
(2) 

-0.42 
(1) 

-0.91 
(5) 

-0.78 
(4) 

 0.01 
(-4) 

0.01 
(-6) 

0.01 
(-6) 

0 
(-6) 

0.01 
(-5) 

0 
(-6) 

0.02 
(-5) 

-0.03 
(-6) 

 0.01 
(-5) 

0.01 
(-6) 

0.01 
(-6) 

0 
(-6) 

0.01 
(-5) 

0 
(-6) 

0.02 
(-6) 

-0.03 
(-6) 

Sim Used 5 994 994 990 997 983 995 968 978  971 991 992 995 996 1000 998 998  915 968 911 967 918 969 890 951 
 10 989 998 990 996 983 997 967 989  999 1000 999 1000 998 1000 996 1000  994 1000 993 999 993 999 990 1000 

 
1. Simulation parameters: Subject Variance=3, Reader Variance=1, Reader*LesionSize Variance=0.01 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
3. * : Sim Used=Used simulations: (1) Non-zero positive standard errors in convergent simulations (2)  PROC GLIMMIX convergence criteria satisfied 
4. ** : Sim Used=Used simulations: (1) PROC GLIMMIX convergence criteria satisfied (2) Positive-definite G matrix 
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Table 15 Coverage of 95% CI for Models A, B, C and D using Combination Approaches 

 
LA + Satterthwaite d.f. from PL 

[44]  
PL+LA Estimation (containment 

d.f.)  
 Coverage (%)  Sim Used   Coverage (%)  Sim Used  
 nr  nr   nr  nr  

Model  Fixed Effect Parameters Sample Size 5 10 5 10  5 10 5 10 
A  p=0.1, μ=-2.20 n1=55 92 94 953 998  95 96 999 1000 

   n1=100 94 95 970 1000  95 96 1000 1000 

  p=0.5, μ=0 n1=55 94 95 996 999  97 96 1000 1000 

   n1=100 93 95 998 1000  95 96 1000 1000 

  p=0.7, μ=0.85 n1=55 95 96 1000 1000  97 97 1000 1000 
   n1=100 93 95 1000 1000  96 96 1000 1000 

B  TPF=0.3, FPF=0.9, η=-3.04 n1=55, n0=100 88 93 652 895  96 96 1000 999 

   n1=55, n0=175 88 94 709 912  97 96 1000 999 

   n1=100, n0=100 88 93 726 931  96 95 1000 1000 

   n1=100, n0=175 90 93 775 950  96 95 1000 1000 

  TPF=0.6, FPF=0.6, η=0 n1=55, n0=100 93 94 850 959  97 96 999 1000 

   n1=55, n0=175 93 97 835 970  97 97 1000 1000 

   n1=100, n0=100 92 94 881 977  97 96 998 1000 

   n1=100, n0=175 94 96 897 984  97 98 1000 999 

  TPF=0.5, FPF=0.03, η=3.48 n1=55, n0=100 83 90 662 861  96 95 999 996 
   n1=55, n0=175 84 92 701 882  95 97 1000 997 

   n1=100, n0=100 81 91 670 877  95 95 999 999 

   n1=100, n0=175 83 94 722 921  94 96 1000 998 

C  p1=0.5, p2=0.6, δ=-0.41 n1=55 92 94 868 977  94 95 1000 999 

   n1=100 92 95 905 991  94 95 1000 1000 
  p1=0.1, p2=0.7, δ=-3.04 n1=55 85 94 804 963  95 96 1000 1000 

   n1=100 89 94 850 981  94 95 1000 1000 

  p1=0.8, p2=0.8, δ=0 n1=55 94 95 867 979  95 95 1000 999 

   n1=100 93 95 910 992  93 95 999 1000 

D  μ=0, τ=0 n1=55 95 95 968 979  97 96 993 1000 
   n1=100 94 95 975 997  96 97 998 1000 

  μ=0, τ=0.03 n1=55 96 96 985 991  98 96 996 994 

   n1=100 94 95 994 997  96 96 997 999 

  μ=0, τ=0.06 n1=55 97 96 991 991  98 96 997 997 

   n1=100 94 95 994 998  96 96 998 1000 
  μ=0, τ=0.1 n1=55 96 96 984 986  97 97 988 991 

   n1=100 95 95 997 997  97 96 997 999 

 
1. LA + Satterthwaite d.f. from PL: Laplace model with sattherthwaite degrees of freedom borrowed from PL model 
2. PL+LA Estimation: Combination model with fixed effect estimates from Laplace technique; Standard Error (SE) estimates of LA model 
replaced by those of PL model only when G-matrix is not positive definite (p.d.). In case G-matrix is p.d. for both models, the greater of the two 
SE is utilized 
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 Overall Summary of Simulation Results 

Overall, we observed that both the default PL and LA approaches had problems of different nature. 

The PL approach led to bias estimating the fixed effect and poor CI coverage across all considered 

models, except for scenarios when the true probabilities were close to 0.5 or when the slope was 

small with bigger values of variance components. The LA approach performed well when the 

reader sample size was large and the probabilities were closer to 0.5. However, in other scenarios, 

the LA approach, while producing nearly unbiased estimates of the fixed effects, occasionally led 

to substantial underestimation of variability, non-positive definite covariance matrix and the 

related inadequately low CI coverage. In general, we encountered more convergence problems 

with this approach. We also observed that in instances when the LA approach led to positive 

definite covariance matrix, fixed effect estimates remain accurate and the confidence intervals 

become somewhat conservative. However, the chances of model converging and having positive 

definite covariance matrix were not high.  

Previously recommended use of the Satterthwaite approximation had little effect on 

coverage of the LA-based confidence intervals, and by design, could not remedy the instances 

where statistical inferences with the LA estimates were not possible. However, a simple borrowing 

of the PL variance estimate in instances when the LA estimates of the G matrix was not positive 

definite, enabled adequate statistical inferences in virtually all instances (Table 15). 

To cover a broader range of variance parameters, we also provided results of simulations 

for models A, B, C and D for scenarios with smaller and larger variance structures. Across all four 

models we observed that for smaller choice of variance components, there were more issues with 

the convergence and the confidence interval coverage. These specific cases would especially 
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benefit from the combination strategy we considered. In cases when the variance components were 

large, there were fewer issues with the CI coverage, but still a number of scenarios where 

simulations did not converge or the estimated SE was zero. In these scenarios the combination 

approach also enabled adequate statistical inferences. 

One of the remaining questions is the relative performance of the built-in approaches as 

compared with more complicated methods based on the modified LA, MCMC or other techniques. 

Our simulation results indicate that application of these extensions is not necessary for inferences 

about fixed effect estimates since the drawbacks of the built-in LA approach, with a possible 

combination with PL estimates, are negligible, if present, for these purposes. However, application 

of more advanced techniques might be necessary for variance components estimation, where both 

PL and LA approaches have substantial deficiencies. Appendix F illustrates possible differences 

between the results of various approaches, by comparing estimates for fixed effects and variance 

components obtained from the well-known Salamander mating dataset [1]. Assuming that the 

relationship between these estimates are representative of a general scenario (i.e., LA estimates 

are virtually unbiased for fixed effects, but biased downward for variance components), these 

results indicate that while MCMC approaches [40, 60] may lead to variance components estimates 

without negative bias, they might provide upwardly biased estimates of the fixed effects.  
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2.5 SUMMARY AND DISCUSSION 

Our investigation demonstrated that for typical data from fully crossed multi-reader studies, the 

available built-in GLMMs for cross-correlated data while being easy to implement, frequently 

require adjustments to enable adequate statistical inferences. Our results indicated that the 

problems of Pseudo-Likelihood (PL) estimation approach stemmed from the large bias of fixed 

effect estimates, while the problems of the Laplace (LA) approach resulted from frequent 

convergence issues and substantial underestimation of variance. At the same time we demonstrated 

that when the LA approach leads to positive definite estimate of covariance matrix, the coverage 

of its confidence intervals is never less than nominal, across all scenarios. Unfortunately, positive 

definite estimates are not frequent, and in some scenarios are obtained only in 55% of instances, 

which make the restricted application of the LA approach impractical.  

In line with previously proposed combination approaches [25, 44], we noted that the 

complementary nature of problems in the PL and LA estimation of the same model suggest a 

simple combination strategy. Namely, in instances when the LA approach leads to non-positive 

definite estimates of covariance matrix one can enable adequate statistical inferences by borrowing 

variance from PL approach.  Due to the virtual absence of convergence issues with the PL approach 

in the considered models, this simple combination approach enables statistical analysis with 

adequate statistical properties in the absolute majority of cases. A potentially better but 

cumbersome approach could be to only replace certain variance components instead of borrowing 

the estimate of SE of fixed effect (similar to Capanu et al. [25]). Even though it is known that the 

PL estimates of variance components are more biased than the corresponding LA estimates, 
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borrowing them only in situations when the latter are degenerate (zero or negative) might have 

little detrimental effect on the CI coverage, if any. 

These results also indicate that for inferences about fixed effects it is not necessary to use 

more advanced estimation techniques since the built-in LA approach, with a possible combination 

with PL estimates, provides adequate results for these purposes. At the same time, our results 

confirm the expectation that more advanced techniques are necessary if the goal is to obtain 

accurate estimates of the variance components (which are often used for planning future studies). 

Once of the commonly recommended approaches is the Markov Chain Monte Carlo methods. 

However, these methods can also lead to substantially different estimates of the variance 

components (e.g., [60], [40]). For simpler models, e.g., models A-C, the probability-scale variance 

components can also be estimated using non-parametric methods (Gallas et al. 2007 [52]). 

A possible reason for smaller bias in fixed effect estimates of the LA vs. PL approach could 

be the fact that the former is a single-iterative approach where fixed effect and variance 

components are estimated simultaneously, leading to less severe dependence on the estimated 

variance parameters. However, this approach also seems to lead to more frequent problems in 

obtained positive-definite estimates of covariance matrix. For the PL estimation of a GLMM with 

a non-linear link function, the pseudo-deviates are estimated at every iteration step. Estimation of 

the pseudo-deviates depends on the variance components estimated based on the pseudo-

likelihood. As a result, the PL estimation approach imposes substantial dependence between the 

fixed effect estimates and the estimated variance components [29]. This property, on the other 

hand, seems to reduce the problems with inadmissible variance estimates enabling a practical 

approach based on combination of LA and PL estimates.  
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The models we considered in the simulation study represent typical analyses of multi-

reader diagnostic imaging studies. These models are complex enough to identify some essential 

advantages and drawbacks of standard GLMM in multi-reader studies. However, our assessment 

was focused on scenarios where the structure of the estimated GLMM is perfectly correct (i.e., 

when the simulations and analytical models are exactly the same). Robustness of the considered 

approaches to model misspecification can be evaluated using alternative simulation models for 

multi-reader data [58]. 

Overall, the GLMM approaches currently available in standard software packages offer 

simple and flexible tools for handling categorical and continuous covariates in non-linear models 

for fully crossed data. However, deficiencies of the LA and PL estimation techniques individually, 

require awareness of possible problems. It is a good practice to carefully examine both types of 

estimates for a given dataset. When the covariance matrix is not positive definite for LA, but not 

for PL approach, borrowing the PL estimate of variance could enable conservative inferences.  

Thus, when used in combination, the Laplace and Pseudo-likelihood estimates of GLMMs enable 

straightforward and adequate, albeit somewhat conservative, statistical inferences for analyses of 

cross-correlated binary data from typical multi-reader studies of diagnostic imaging. 
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3.0  HALF-MARGINAL GLMM FOR ANALYSIS OF CROSS-CORRELATED 

BINARY DATA IN MULTI-READER STUDIES OF DIAGNOSTIC ACCURACY 

A standard approach for analyzing cross-correlated data is based on the Generalized Linear Mixed 

Models (GLMM) with crossed random effects.  For models with non-linear link this implies a 

“subject-specific” interpretation of the estimated coefficients. For typical multi-reader studies of 

diagnostic imaging, the corresponding coefficients are not the primary targets of interests and have 

a rather artificial interpretation which is difficult to illustrate with data.  

In this section, we propose a half-marginal GLMM which offers a more natural 

parametrization for modeling cross-correlated data from a multi-reader study. We illustrate that 

the model can easily be implemented using the built-in machinery and that for simple models the 

resulting Pseudo-Likelihood estimates are close to the simple empirical estimates. 

 Investigations of statistical properties of half-marginal models are complicated by the 

difficulty to fully specify the probability distribution of the data in terms of model’s parameters. 

To circumvent this problem we considered half-marginal models induced by a range of the subject-

specific GG models. The half-marginal model coefficients were derived for standard models for 

multi-reader data and estimated numerically for the considered range of parameter configurations. 

Simulation results indicate that the model performs very well across the number of scenarios 

typical for multi-reader studies. However, the patterns observed for bias of fixed effect estimates 

indicate potential large-sample problems at least in some modeling scenarios.  
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3.1 MECHANISMS FOR USING SUBJECT-SPECIFIC (G) AND MARGINAL (R) 

STRUCTURES IN GLMM 

Because of the non-linear link function in GLMM, the interpretation of a model’s parameter 

changes from individuals to entire population depending on whether we address the correlation 

through G side (via. introduction of random effects) or R side (directly modeling correlation) or a 

mixture of both. In standard mixed model notation, G is the variance-covariance matrix of random 

effects whereas R is the variance-covariance matrix of residuals. To illustrate that coefficients have 

a different interpretation in GLMMs, observe that for a linear mixed model with identity link: 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖� = 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝑍𝑍𝑖𝑖𝑖𝑖′ 𝑏𝑏𝑖𝑖, 

where 𝑋𝑋 is the design matrix for fixed-effects and 𝑍𝑍 is the design matrix for random effects. 

Also, 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖| 𝑋𝑋𝑖𝑖𝑖𝑖� = 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 when averaged over distribution of random effects 𝑏𝑏𝑖𝑖 

i.e. fixed effects (𝛽𝛽) in model for conditional means also have same interpretation in terms of 

population means. However, for a GLMM model with logit link (in case of binary data): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 �𝐸𝐸�𝑌𝑌𝑖𝑖𝑗𝑗|𝑋𝑋𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖�� = 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 + 𝑍𝑍𝑖𝑖𝑖𝑖′ 𝑏𝑏𝑖𝑖, 

i.e. 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖� is a non-linear function of 𝛽𝛽, b and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 �𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖�� ≠ 𝑋𝑋𝑖𝑖𝑖𝑖′ 𝛽𝛽 for any 𝛽𝛽. 

In the context of multi-reader studies where we have a representative sample of both 

readers and subjects, when using a GG/”subject-specific” model as in Chapter 2.0  (where readers 

and subjects are both specified as crossed-random effects), the regression parameters have a 

“subject-specific” interpretation (or more precisely “reader-subject specific”) e.g., the effect on 

probability of calling an average subject “positive” by an average reader. However, in such studies 

of diagnostic imaging, the frequent target of interest is for e.g., sensitivity or specificity, which are 

marginal quantities (averaged over the population of subjects). Hence, it is natural to account for 
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subject-related correlation i.e. between 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑗𝑗′  with R side effects. In contrast, correlation and 

heterogeneity due to readers is natural to address with the G side mechanism since it is common 

to make inferences for individual readers as well as for the average over all readers in the study 

[2]. The corresponding half-marginal model (which we call RG model, with R side effects for 

subjects and G side effects for readers) allows inferring about reader-specific, subject-marginal 

characteristics, e.g., effect on sensitivity for an average reader. Considering the most basic 

scenario, the half-marginal GLMM model can be written as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗� = 𝜇𝜇� + 𝛽𝛽�𝑗𝑗,             ( 3.1 ) 

where 𝑌𝑌𝑖𝑖𝑖𝑖|𝛽𝛽�𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝�𝑗𝑗�, 𝑖𝑖 = 1, … , 𝑛𝑛1 is the index representing diseased subjects, 𝑗𝑗 =

1, … , 𝑛𝑛𝑟𝑟 is the reader index, 𝛽𝛽�𝑗𝑗~𝑁𝑁�0, 𝜎𝜎�𝛽𝛽2� is the reader random effect. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑗𝑗′|𝛽𝛽�𝑗𝑗, 𝛽𝛽�𝑗𝑗′� = 𝜌𝜌 

is conditional correlation (i.e., compound symmetry structure), hence the correlation matrix 𝑃𝑃 ≠ 𝐼𝐼 

for this model (unlike the GG model). The residual matrix should be 𝑅𝑅 = 𝐴𝐴1/2𝐵𝐵1/2𝑃𝑃𝐵𝐵1/2𝐴𝐴1/2 =

𝐵𝐵1/2𝑃𝑃𝐵𝐵1/2 such that 𝐵𝐵 = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑝𝑝�𝑗𝑗�1 − 𝑝𝑝�𝑗𝑗��� and 𝐴𝐴 = 𝐼𝐼. 

Here,  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇� + 𝛽𝛽�𝑗𝑗� is the sensitivity for reader 𝑗𝑗 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇�) is the reader-averaged 

sensitivity. 

The estimation target for this RG model is 𝜇𝜇�, which is the log-odds of a probability for a 

population of diseased subjects being correctly diagnosed by an average reader for which  𝛽𝛽�𝑗𝑗 = 0 

(or alternatively the sensitivity itself: 𝑝𝑝� = �1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜇𝜇�)�
−1

).  

Ability to address both reader-specific and overall parameters of diagnostic accuracy 

makes a half-marginal (RG) model rather relevant for analysis of multi-readers studies of 

diagnostic imaging. However, properties of this type of model are little known. Moreover, in 

contrast with the GG model, the RG model, although not directly comparable, does not require 
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estimation of multiple subject-related random effects and therefore could lead to more stable 

estimates with decreased computation problems. 

3.2 ESTIMATION TECHNIQUE FOR RG MODEL 

Currently, the only standard built-in estimation technique to estimate parameters of the RG model 

is the PL technique by Wolfinger and O’Connell (1993) [21] as described in Section 2.2.2. The 

difference from the GG model lies in the specification of the correlation matrix 𝑃𝑃 which will not 

be identity and will assume a different working correlation structure. For the RG models that we 

consider, 𝑃𝑃 has a compound symmetry structure which mimics the default variance-covariance 

structure implied by GG models. Laplace approximation in most software packages cannot 

currently handle R side random effects and hence is not a valid option to fit RG models. 

Since the RG model is implied from the GG model by averaging out the subject random 

effects, it is possible to obtain the estimates of the fixed-effect RG parameter and corresponding 

confidence limits using the GG model. Numerical integration can be performed conditioning on 

the GG estimates of fixed effect or CI along with estimates of variance components. Similar 

approaches have been described in Section 3.4 (illustrate computation of fully-marginal estimates 

from RG model) and Section 3.5.2 (derivation of true RG fixed-effect parameters from GG model). 

Also, as seen earlier in Chapter 2.0 , the GG model can be fit using either the PL or LA approaches. 

However, since both the approaches have been criticized for producing biased variance component 

estimates [25, Appendix C], possible bias may creep in the RG estimates of fixed-effect or CI 

estimates which are computed using these variance components. 
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3.3 HALF-MARGINAL MODELS FOR TYPICAL ANALYSES OF MULTI-READER 

DIAGNOSTIC ACCURACY STUDIES 

To investigate the quality of statistical inferences based on fitting RG model using PL approach, 

we performed simulation studies and again considered modeling scenarios similar to ones 

considered in Section 2.3. The model structure this time is different due to the inclusion of both R 

and G side effects instead of only G side effects. In effect, we still consider the important sources 

of variability and correlations possible in a particular multi-reader data but through a combination 

of R and G side mechanism. The SAS code to implement these models is provided in Appendix 

B. Below is a brief description of the RG analysis models. The indexes hold the same meaning as 

in Section 2.3. 

 RG Model A: Covariate free model (e.g. inferences on sensitivity or specificity for a 

single modality) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗� = 𝜇𝜇� + 𝛽𝛽�𝑗𝑗. 

This model has been fully specified using equation ( 3.1 ). Here,  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇� + 𝛽𝛽�𝑗𝑗� is the sensitivity 

for reader 𝑗𝑗. 

 RG Model B: Subject-level binary covariate (e.g. inferences on sensitivity and 

specificity combined) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗𝑗𝑗� = 𝜇𝜇� + 𝜂𝜂�𝐷𝐷 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗𝑗𝑗, 

where 𝑌𝑌𝑖𝑖𝑖𝑖|𝛽𝛽�𝑗𝑗, 𝛾𝛾�𝑗𝑗𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝�𝑗𝑗𝑗𝑗�, 𝑖𝑖 = 1, … , 𝑛𝑛0 + 𝑛𝑛1 is the subject index, 𝑛𝑛0= number of non-
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diseased subjects, 𝑛𝑛1= number of diseased subjects,  𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟 is the reader index, 𝜂𝜂�𝐷𝐷 is the 

fixed effect for true disease status (𝐷𝐷 = 1: 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,−1: 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), 𝛽𝛽�𝑗𝑗~𝑁𝑁�0, 𝜎𝜎�𝛽𝛽2� is the 

random reader effect, 𝛾𝛾�𝑗𝑗𝑗𝑗~𝑁𝑁(0, 𝜎𝜎�𝐷𝐷2) is the random interaction term between reader and true disease 

status. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑗𝑗′𝐷𝐷|𝛽𝛽�𝑗𝑗, 𝛽𝛽�𝑗𝑗′ , 𝛾𝛾�𝑗𝑗𝑗𝑗, 𝛾𝛾�𝑗𝑗′𝐷𝐷� = 𝜌𝜌 is the conditional correlation structure for any given subject 

specified using compound symmetry and assumed to be same across both disease statuses.  

The primary inferential target for this model is coefficient 𝜂𝜂� = 𝜂𝜂�1 − 𝜂𝜂�−1 = 𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇�

�1−𝑇𝑇𝑇𝑇𝑇𝑇���

𝐹𝐹𝐹𝐹𝐹𝐹�
�1−𝐹𝐹𝐹𝐹𝐹𝐹���

�, 

which is the natural log of Diagnostic Odds Ratio (DOR) [2] for an average reader for a population 

of diseased and non-diseased subjects. Additional targets which could be of interest are an average 

reader’s 𝑇𝑇𝑇𝑇𝑇𝑇� i.e. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇� + 𝜂𝜂�1) and 𝐹𝐹𝐹𝐹𝐹𝐹� i.e. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇� + 𝜂𝜂�−1). 

 RG Model C: Assessment-level binary covariate (e.g., comparisons of sensitivity 

between two modalities) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗𝑗𝑗� = 𝜇𝜇� + 𝛿𝛿𝑀𝑀 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗𝑗𝑗, 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖|𝛽𝛽�𝑗𝑗, 𝛾𝛾�𝑗𝑗𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝�𝑗𝑗𝑗𝑗�, 𝑖𝑖 = 1, … , 𝑛𝑛1 is the subject index representing only diseased 

subjects, 𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟 is the reader index, 𝛿𝛿𝑀𝑀 is the fixed effect of modality 𝑀𝑀 (𝑀𝑀 = 1,−1), 

𝛽𝛽�𝑗𝑗~𝑁𝑁�0, 𝜎𝜎�𝛽𝛽2� is the random reader effect, 𝛾𝛾�𝑗𝑗𝑗𝑗~𝑁𝑁(0, 𝜎𝜎�𝑀𝑀2 ) is the random interaction term between 

reader and modality. 



56 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑗𝑗′𝑀𝑀|𝛽𝛽�𝑗𝑗, 𝛽𝛽�𝑗𝑗′ , 𝛾𝛾�𝑗𝑗𝑗𝑗, 𝛾𝛾�𝑗𝑗′𝑀𝑀� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑖𝑖𝑀𝑀′|𝛽𝛽�𝑗𝑗, 𝛾𝛾�𝑗𝑗𝑗𝑗, 𝛾𝛾�𝑗𝑗𝑀𝑀′� =

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑗𝑗′𝑀𝑀′|𝛽𝛽�𝑗𝑗, 𝛽𝛽�𝑗𝑗′ , 𝛾𝛾�𝑗𝑗𝑗𝑗, 𝛾𝛾�𝑗𝑗′𝑀𝑀′� = 𝜌𝜌 is assumed to be compound symmetry for any given 

subject 

The primary estimation target for this RG model is coefficient 𝛿𝛿 = 𝛿𝛿1 − 𝛿𝛿−1 =

𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇�𝑀𝑀=1 

(1−𝑇𝑇𝑇𝑇𝑇𝑇�𝑀𝑀=1) �

𝑇𝑇𝑇𝑇𝑇𝑇�𝑀𝑀=−1
(1−𝑇𝑇𝑇𝑇𝑇𝑇�𝑀𝑀=−1)�

� which is the log of odds ratio for comparing sensitivity levels of two 

modalities for an average reader. Additional targets of interest can be an average reader’s 

𝑇𝑇𝑇𝑇𝑇𝑇�𝑀𝑀=1 i.e. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇� + 𝛿𝛿1) and 𝑇𝑇𝑇𝑇𝑇𝑇�𝑀𝑀=−1 i.e. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇� + 𝛿𝛿−1).  

 RG Model D: Subject-level continuous covariate (e.g., lesion size effect on sensitivity) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗𝑗𝑗� = 𝜇𝜇� + 𝜏̃𝜏 ∗ 𝑋𝑋 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗 ∗ 𝑋𝑋, 

where 𝑌𝑌𝑖𝑖𝑖𝑖|𝑋𝑋, 𝛽𝛽�𝑗𝑗, 𝛾𝛾�𝑗𝑗~𝐵𝐵𝐵𝐵𝐵𝐵�1, 𝑝𝑝�𝑗𝑗𝑗𝑗�, 𝑖𝑖 = 1, … , 𝑛𝑛1 is the subject index, 𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟 is the reader index, 

𝜏̃𝜏 is the fixed effect of slope, 𝛽𝛽�𝑗𝑗~𝑁𝑁�0, 𝜎𝜎�𝛽𝛽2� is the random reader effect, 𝛾𝛾�𝑗𝑗~𝑁𝑁(0, 𝜎𝜎�𝑋𝑋2) is the random 

interaction term between reader and lesion size (𝑋𝑋). 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑗𝑗′|𝛽𝛽�𝑗𝑗, 𝛽𝛽�𝑗𝑗′ , 𝛾𝛾�𝑗𝑗, 𝛾𝛾�𝑗𝑗′� = 𝜌𝜌 is the 

working correlation structure for any given subject. 

The estimation target for this RG model is coefficient 𝜏̃𝜏 = 𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑇𝑇𝑇𝑇� 𝑋𝑋=𝑥𝑥+1

(1−𝑇𝑇𝑇𝑇𝑇𝑇� 𝑋𝑋=𝑥𝑥+1)�

𝑇𝑇𝑇𝑇𝑇𝑇� 𝑋𝑋=𝑥𝑥
(1−𝑇𝑇𝑇𝑇𝑇𝑇� 𝑋𝑋=𝑥𝑥)�

�  which 

is the slope for an average reader. 
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3.4 COMPUTATION OF FULLY-MARGINAL ESTIMATES FROM RESULTS OF 

HALF-MARGINAL MODELS  

Given that we primarily focus on GG and RG models in this dissertation, it may also be of interest 

to fit a fully marginal (RR) model since the parameters of that model are directly relevant in 

practice e.g., overall sensitivity of a modality across a population of readers and subjects. However, 

standard software like PROC GLIMMIX in SAS does not allow fitting such models due to the 

inability to fit two residual side effects in the same model. Regardless, one can compute the 

estimate and the corresponding confidence interval for the marginal parameter by conditioning on 

the estimated variance components and integrating the RG fixed-effect estimate or individual CI 

over the distribution of reader. In the simplest scenario this leads to the CI for the marginal 

probability (e.g., sensitivity), which can then be compared to the CI based on the non-parametric 

variance estimate for U-statistic [48].  

For example, consider using the simple no-covariate RG model A: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝛽𝛽�𝑗𝑗�� = 𝜇𝜇� + 𝛽𝛽�𝑗𝑗 such that 𝛽𝛽�𝑗𝑗~𝑁𝑁(0, 𝜎𝜎�𝛽𝛽2): 

Let 𝜇𝜇�̂ be the RG estimate of interest with CI limits as �𝜇𝜇𝑙𝑙�� , 𝜇𝜇𝑢𝑢���. The marginal sensitivity can 

be derived through numerical integration as follows: 

𝑝̂𝑝𝑅𝑅𝑅𝑅 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇�̂ + 𝛽𝛽�� 𝑓𝑓�𝛽𝛽�|𝜎𝜎�𝛽𝛽2��𝑑𝑑𝛽𝛽�∞
−∞  such that 𝜇̂𝜇𝑅𝑅𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝̂𝑝𝑅𝑅𝑅𝑅) 

A naïve way to calculate this integral is by means of taking a simple average across readers: 

𝑝̂𝑝𝑅𝑅𝑅𝑅 =
1
𝑛𝑛𝑟𝑟
� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 �𝜇𝜇�̂ + 𝛽𝛽�𝚥𝚥� �

𝑛𝑛𝑟𝑟

𝑗𝑗=1
 

For the 95% fully-marginal confidence limits: 

𝑝̂𝑝𝑙𝑙
𝑅𝑅𝑅𝑅 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇𝑙𝑙�� + 𝛽𝛽�� 𝑓𝑓�𝛽𝛽�|𝜎𝜎�𝛽𝛽2��𝑑𝑑𝛽𝛽� such that  𝜇̂𝜇𝑙𝑙

𝑅𝑅𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 𝑝̂𝑝𝑙𝑙
𝑅𝑅𝑅𝑅� is the lower limit 
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𝑝̂𝑝𝑢𝑢
𝑅𝑅𝑅𝑅 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇𝑢𝑢�� + 𝛽𝛽�� 𝑓𝑓�𝛽𝛽�|𝜎𝜎�𝛽𝛽2��𝑑𝑑𝛽𝛽� such that  𝜇̂𝜇𝑢𝑢

𝑅𝑅𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 𝑝̂𝑝𝑢𝑢
𝑅𝑅𝑅𝑅� is the upper limit 

Similar procedure can be used to estimate fully marginal parameters and their CI from GG 

model by performing integration over both the distribution of reader and subject as below: 

 𝑝̂𝑝𝑅𝑅𝑅𝑅 = �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇̂𝜇 + 𝛼𝛼 + 𝛽𝛽) 𝑓𝑓(𝛼𝛼|𝜎𝜎�𝛼𝛼2) 𝑓𝑓�𝛽𝛽|𝜎𝜎�𝛽𝛽2� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 

𝑝̂𝑝𝑙𝑙
𝑅𝑅𝑅𝑅 = �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇̂𝜇𝑙𝑙 + 𝛼𝛼 + 𝛽𝛽) 𝑓𝑓(𝛼𝛼|𝜎𝜎�𝛼𝛼2) 𝑓𝑓�𝛽𝛽|𝜎𝜎�𝛽𝛽2� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 

𝑝̂𝑝𝑢𝑢
𝑅𝑅𝑅𝑅 = �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇̂𝜇𝑢𝑢 + 𝛼𝛼 + 𝛽𝛽) 𝑓𝑓(𝛼𝛼|𝜎𝜎�𝛼𝛼2) 𝑓𝑓�𝛽𝛽|𝜎𝜎�𝛽𝛽2� 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 

  

We illustrate the above method using an actual multi-reader study [43] where we obtain 

the fully-marginal estimates using the RG model. Results are summarized in Table 16. We 

observed that the marginal estimate of fixed-effect 𝜇𝜇� obtained using direct integration i.e. 0.0644 

was closer, although a bit smaller to the empirical marginal estimate i.e. 0.0675. The corresponding 

95% CI was also comparable. Similar behavior was seen for estimates and CI on probability scale. 
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Table 16  Compute marginal estimates of fixed-effect and corresponding CI from RG estimates based on real dataset 

    Logit Scale Probability Scale 

Model Sample Size Parameter 

PL-RG 
model 

variance 
estimate 

(logit scale) 

PL-RG model 
(Estimate ± SE) 
95% t-based CI 

Empirical estimates 
(Estimate ± SE) 
95% z-based CI 

PL-RG model  
 (Estimate ± SE) 
95% t-based CI 

Empirical estimates 
(Estimate ± SE) 
95% z-based CI  

A 
(modality=1) 

𝑛𝑛𝑟𝑟 = 7 
𝑛𝑛1 = 55 

𝜇𝜇�  
(average reader i.e. 𝛽𝛽� = 0) 

𝜎𝜎�𝛽𝛽2 = 0.4035 0.0705 ± 0.3044 
(-0.67, 0.81) 

0.0763RG 
0.0675M 

(-0.53, 0.67)M 

0.5176 ± 0.0759 
(0.33, 0.69) 

0.5190RG 
0.5168M ± 0.0745D 

(0.37, 0.66)M 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  0.4338 ± 0.2674 
(-0.22, 1.08) 

0.4818 ± 0.2775B 

(-0.06, 1.02) 
0.6067 ± 0.0638 

(0.44, 0.74) 
0.6181 ± 0.0655B 

(0.48, 0.73) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 2: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  -0.1589 ± 0.2626 
(-0.80, 0.48) 

-0.1823 ± 0.2708B 

(-0.71, 0.34) 
0.4603 ± 0.0652 

(0.30, 0.61) 
0.4545 ± 0.0671B 

(0.33, 0.58) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 3: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  0.5717 ± 0.2715 
(-0.09, 1.23) 

0.6391 ± 0.2836B 

(0.08, 1.19) 
0.6391 ± 0.0626 

(0.47, 0.77) 
0.6545 ± 0.0641B 

(0.52, 0.76) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 4: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  -0.7781 ± 0.2798 
(-1.46, -0.09) 

-0.8910 ± 0.2969B 

(-1.47, -0.31) 
0.3147 ± 0.0603 

(0.18, 0.47) 
0.2909 ± 0.0612B 

(0.18, 0.42) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 5: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  0.9415 ± 0.2881 
(0.23, 1.64) 

1.0745 ± 0.3095B 

(0.46, 1.68) 
0.7194 ± 0.0581 

(0.55, 0.83) 
0.7454 ± 0.0587B 

(0.61, 0.84) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 6: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  -0.3575 ± 0.2656 
(-1.00, 0.29) 

-0.4055 ± 0.2752B 

(-0.94, 0.13) 
0.4115 ± 0.0643 

(0.26, 0.57) 
0.4 ± 0.066B 

(0.28, 0.53) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 7: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)  -0.1589 ± 0.2626 
(-0.80, 0.48) 

-0.1823 ± 0.2708B 

(-0.71, 0.34) 
0.4603 ± 0.0652 

(0.30, 0.61) 
0.4545 ±0.0671B 

(0.33, 0.58) 

Averaging technique (approximation to direct integration) 
**Marginal FE estimate: 0.064 

**Marginal CI: 
(-0.55, 0.68 ) 0.0675M 

(-0.53, 0.67)M  
Length of CI=1.2 

*Marginal FE estimate: 
0.5160 

*Marginal 95% CI: 
(0.36, 0.66) 0.5168M ± 0.0745D 

(0.37, 0.66)M 
Length of CI=0.29 

Direct Integration 

**Marginal FE estimate: 0.0644 
**Marginal 95% CI: 

(-0.62 0.74) 
Length of CI: 1.36 

*Marginal FE estimate: 
0.5161 

*Marginal 95% CI: 
(0.35, 0.67) 

Length of CI=0.32 
1. Marginal quantities on probability scale (*): have been derived by averaging the fixed effects, lower limit, upper limit across all readers and using direct integration as well 
2. Marginal quantities on logit scale (**): have been computed taking the logit of the corresponding marginal quantities (*) 
3. SE=Standard Error, M=Marginal, FE=Fixed-Effect, RG=Half-Marginal, CI=Confidence Interval 
4. D=Variance calculated using Delong’s Method (to account for variability between subjects and readers) [48] 
5. B=binomial variance for each reader(observations within reader are independent) obtained using simple logistic models 
6. CI are based on t-distribution with containment degrees of freedom 
7. RG empirical estimates on logit scale for target parameter are obtained by averaging reader-specific logit scale estimates 
8. RG empirical estimates for each reader can be computed in a model-free way using the data or by simple logistic regression. The resulting estimates will be same. 
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3.5 SIMULATION STUDY 

 Simulation Study Details 

For evaluating performance of the RG models we use the same data as was generated for evaluation 

of GG models. However, the true fixed effects values for RG models as well as the variance 

components are different from the GG model parameters. For each considered simulation scenario, 

these true RG values under the RG model were computed from GG parameters using the 

formulations derived in Section 3.5.2. The true RG values were used to compute bias of the fixed 

effect and coverage rates.  

To evaluate statistical properties of RG estimates, we used the same summary indices as in the 

investigation of GG models (Section 2.4.2). For each simulation, 95% confidence intervals were 

constructed using the default t-distribution with the containment degrees of freedom (𝑛𝑛𝑟𝑟 − 1) as 

well as the Satterthwaite degrees of freedom, which is the frequently recommended option. 

 Derivation of true RG fixed-effect parameters 

In this section we outline derivation of the true RG fixed effect parameters for all four models (A, 

B, C and D).  Since the resulting integrals don’t have closed form solutions, we need to numerically 

approximate the true RG values. 
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The true RG parameters should be smaller in magnitude than the original GG parameters, 

shrinking towards 0 in logit scale, or 0.5 in probability scale as demonstrated  by Nehuas et al. 

(1991) [45]. 

3.5.2.1 Model A: Derived RG parameter 𝝁𝝁� 

RG model A is defined as follows:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗� = 𝜇𝜇� + 𝛽𝛽�𝑗𝑗 , where 𝜇𝜇� = 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗��          ( 3.2 ) 

𝑝𝑝�𝑗𝑗 is the reader-specific probability, which can be derived from the GG model A (namely 𝑝𝑝𝑖𝑖𝑖𝑖 =

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1( 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗))  as follows: 

 𝑝𝑝�𝑗𝑗 = 𝐸𝐸�𝑝𝑝𝑖𝑖𝑖𝑖�𝛽𝛽𝑗𝑗� = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 �𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗� 𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖          ( 3.3 ) 

By combining equations ( 3.2 ) and ( 3.3 ), we obtain the following expressions for 𝜇𝜇�: 

𝜇𝜇� = � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1 �𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗� 𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖�  𝑓𝑓�𝛽𝛽𝑗𝑗� 𝑑𝑑𝛽𝛽𝑗𝑗 

Correspondingly, 𝑝𝑝� = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇�). 

3.5.2.2  Model B: Derived RG parameter 𝜼𝜼� 

RG model B is defined as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗𝑗𝑗� = 𝜇𝜇� + 𝜂𝜂�𝐷𝐷 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗𝑗𝑗 

𝑝𝑝�𝑗𝑗(1) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇� + 𝜂𝜂�1 + 𝛽𝛽�𝑗𝑗 +  𝛾𝛾�𝑗𝑗(1)�, hence  𝜂𝜂�1 = 𝐸𝐸[ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(1) �] −  𝜇𝜇� 

𝑝𝑝�𝑗𝑗(−1) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇� + 𝜂𝜂�−1 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗(−1)�, hence 𝜂𝜂�−1 = 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(−1) �� −  𝜇𝜇� 

Subtracting the terms, we get: 

𝜂𝜂� = 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(1) �� − 𝐸𝐸� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(−1) ��             ( 3.4 ) 
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𝑝𝑝�𝑗𝑗𝑗𝑗 is the reader and truth specific probability, which can be derived from the GG model 

B as follows: 

𝑝𝑝�𝑗𝑗𝑗𝑗 = 𝐸𝐸�𝑝𝑝𝑖𝑖𝑖𝑖�𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗𝑗𝑗� = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 +  𝜂𝜂𝐷𝐷 +  𝛼𝛼𝑖𝑖 +  𝛽𝛽𝑗𝑗 +  𝛾𝛾𝑗𝑗𝑗𝑗� 𝑓𝑓(𝛼𝛼𝑖𝑖) 𝑑𝑑𝛼𝛼𝑖𝑖           ( 3.5 ) 

By combining equations ( 3.4 ) and ( 3.5 ) we obtain the following expression for 𝜂𝜂�: 

𝜂𝜂� = ��𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝜂𝜂1 +  𝛼𝛼𝑖𝑖 +  𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗(1)� 𝑓𝑓(𝛼𝛼𝑖𝑖) 𝑑𝑑𝛼𝛼𝑖𝑖�  𝑓𝑓�𝛽𝛽𝑗𝑗� 𝑓𝑓�𝛾𝛾𝑗𝑗(1)� 𝑑𝑑𝛽𝛽𝑗𝑗 𝑑𝑑(𝛾𝛾𝑗𝑗(1))� 

                  –  �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝜂𝜂−1 +  𝛼𝛼𝑖𝑖 +  𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗(−1)� 𝑓𝑓(𝛼𝛼𝑖𝑖) 𝑑𝑑𝛼𝛼𝑖𝑖�  𝑓𝑓�𝛽𝛽𝑗𝑗� 𝑓𝑓�𝛾𝛾𝑗𝑗(−1)� 𝑑𝑑𝛽𝛽𝑗𝑗 𝑑𝑑(𝛾𝛾𝑗𝑗(−1))� 

3.5.2.3 Model C: Derived RG parameter 𝜹𝜹� 

RG model C is defined as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗𝑗𝑗� = 𝜇𝜇� + 𝛿𝛿𝑀𝑀 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗𝑗𝑗 

𝑝𝑝�𝑗𝑗(1) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇� + 𝛿𝛿1 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗(1)), hence  𝛿𝛿1 = 𝐸𝐸� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(1) �� − 𝜇𝜇� 

𝑝𝑝�𝑗𝑗(−1) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇� + 𝛿𝛿(−1) + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗(−1)), hence  𝛿𝛿(−1) = 𝐸𝐸[ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(−1) �] −  𝜇𝜇� 

Subtracting the terms, we get: 

𝛿𝛿 = 𝐸𝐸� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(1) �� − 𝐸𝐸� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(−1) ��             ( 3.6 ) 

𝑝𝑝�𝑗𝑗𝑗𝑗 is the reader and modality specific probability, which can be derived from the GG 

model C as follows: 

𝑝𝑝�𝑗𝑗𝑗𝑗 = 𝐸𝐸�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗𝑗𝑗� = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝛿𝛿𝑀𝑀 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑗𝑗� 𝑓𝑓(𝛼𝛼𝑖𝑖) 𝑑𝑑𝛼𝛼𝑖𝑖        ( 3.7 ) 

Combining equations ( 3.6 ) and ( 3.7 ) we obtain the following expression for 𝛿𝛿: 

𝛿𝛿 =  �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝛿𝛿1 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗(1)� 𝑓𝑓(𝛼𝛼𝑖𝑖) 𝑑𝑑𝛼𝛼𝑖𝑖�  𝑓𝑓�𝛽𝛽𝑗𝑗� 𝑓𝑓�𝛾𝛾𝑗𝑗(1)� 𝑑𝑑𝛽𝛽𝑗𝑗 𝑑𝑑𝛾𝛾𝑗𝑗(1)�] − 

�� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝛿𝛿−1 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗(−1)� 𝑓𝑓(𝛼𝛼𝑖𝑖) 𝑑𝑑𝛼𝛼𝑖𝑖�  𝑓𝑓�𝛽𝛽𝑗𝑗� 𝑓𝑓�𝛾𝛾𝑗𝑗(−1)� 𝑑𝑑𝛽𝛽𝑗𝑗 𝑑𝑑𝛾𝛾𝑗𝑗(−1)� 
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3.5.2.4 Model D: Derived RG parameter 𝝉𝝉� 

RG model D is defined as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗𝑗𝑗� = 𝜇𝜇� + 𝜏̃𝜏 ∗ 𝑋𝑋 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗 ∗ 𝑋𝑋 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(𝑥𝑥)� = 𝜇𝜇� + 𝜏̃𝜏 ∗ 𝑥𝑥 + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗 ∗ 𝑥𝑥, hence 𝜇𝜇� + 𝜏̃𝜏 ∗ 𝑥𝑥 = 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(𝑥𝑥)�� 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(𝑥𝑥+1)� = 𝜇𝜇� + 𝜏̃𝜏 ∗ (𝑥𝑥 + 1) + 𝛽𝛽�𝑗𝑗 + 𝛾𝛾�𝑗𝑗 ∗ (𝑥𝑥 + 1), hence 𝜇𝜇� + 𝜏̃𝜏 ∗ 𝑥𝑥 + 𝜏̃𝜏 = 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(𝑥𝑥+1)�� 

Subtracting the terms, we get: 

𝜏̃𝜏 = 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(𝑥𝑥+1)�� − 𝐸𝐸�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝�𝑗𝑗(𝑥𝑥��              ( 3.8 ) 

Based on the GG model D, the reader-specific probabilities at a particular value of 

covariate can be expressed as follows: 

𝑝𝑝�𝑗𝑗(𝑥𝑥) = 𝐸𝐸�𝑝𝑝𝑖𝑖𝑖𝑖�𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗, 𝑋𝑋 = 𝑥𝑥� = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝜏𝜏 ∗ 𝑥𝑥 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗 ∗ 𝑥𝑥� 𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖         ( 3.9 ) 

𝑝𝑝�𝑗𝑗(𝑥𝑥+1) = 𝐸𝐸�𝑝𝑝𝑖𝑖𝑖𝑖�𝛽𝛽𝑗𝑗, 𝛾𝛾𝑗𝑗, 𝑋𝑋 = 𝑥𝑥 + 1� = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝜏𝜏 ∗ (𝑥𝑥 + 1) + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗 ∗ (𝑥𝑥 +

1)� 𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖                ( 3.10 ) 

Combining equations ( 3.9 ) and ( 3.10 ), we obtain the following expression for the 

estimation target in RG model D: 

𝜏̃𝜏 = �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝜏𝜏 ∗ (𝑥𝑥 + 1) + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗 ∗ (𝑥𝑥 + 1)� 𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖 �  𝑓𝑓�𝛽𝛽𝑗𝑗�𝑓𝑓�𝛾𝛾𝑗𝑗�𝑑𝑑�𝛽𝛽𝑗𝑗�𝑑𝑑�𝛾𝛾𝑗𝑗�

−�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝜏𝜏 ∗ (𝑥𝑥) + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗 ∗ (𝑥𝑥)� 𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖 �  𝑓𝑓�𝛽𝛽𝑗𝑗�𝑓𝑓�𝛾𝛾𝑗𝑗�𝑑𝑑�𝛽𝛽𝑗𝑗�𝑑𝑑�𝛾𝛾𝑗𝑗� 

For the simulation study the targeted value of the parameter was estimated at 𝑋𝑋 = 0 and 𝑋𝑋 

= 1  (i.e. unit increment). 
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 Simulation Study Results 

Model A: 

For the covariate free setting (model A, Table 17, Table 18, Table 19), PL-RG model led to rather 

accurate estimates of the intercept and its standard error across the considered scenarios. The 

standardized bias of the fixed effect estimate was well below 1 and tended to be larger for larger 

variance components (Table 18, Table 19). However, the fixed effect estimate illustrated a 

bothersome trend to increasingly underestimate the true value for larger sample sizes, which may 

be an indication of the inconsistency of the pseudo-likelihood estimates for the considered models.   

Nevertheless, the magnitude of the bias was small enough to be inconsequential for the coverage 

of confidence intervals. The confidence intervals tended to be overly conservative when the default 

containment degrees of freedom was used, but had nearly ideal coverage with the Satterthwaite 

approximation. In this simple model we observed very few convergence problems. 

Model B: 

Results for model B [Table 20, Table 21, Table 22] showed a similar behavior as in model A, with 

conservative containment-based confidence intervals which were substantially improved using the 

Satterthwaite degrees of freedom. The standardized bias of fixed effect estimator was well below 

1, but both raw and standardized bias demonstrated a bothersome downward trend with increasing 

sample size. Nevertheless, this did not have any substantial effect on the coverage of the 

confidence intervals. The relative bias of SE estimate was relatively small across the considered 

scenarios. Convergence problems were more frequent with this model than with model A, but were 

still within 3%. 
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Model C: 

When considering RG model C, i.e. comparing sensitivity levels across the two modalities [Table 

23, Table 24, Table 25], we observed accurate fixed effect estimates but noticeably underestimated 

variance. The standardized bias was within 1 across all settings. The relative bias of estimated SE, 

however, was ranged up to 14% for scenarios when the true probabilities were small, especially in 

presence of small variance components.  The underestimation of variance appeared to have a slight, 

but noticeable effect on the coverage of confidence interval, especially those based on the 

Satterthwaite degrees of freedom. Very few convergence problems were noted for this model. 

Model D: 

For model D [Table 26, Table 27, Table 28], the 95% CIs had coverage above the nominal level 

and were less conservative under the Satterthwaite approximation across all parameter 

combinations. The standardized bias was small but increased for large value of true slope, 

especially when variance components were small.  The bias of the SE estimates was also relatively 

small. With this model we also observed more frequent convergence issues, especially in presence 

of larger variance components.
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Table 17 Simulation Results for RG Model A (small magnitude of variance components) 

 

pGG=0.1 
μGG=-2.20 
μRG=-1.87     

pGG=0.5 
μGG=0 
μRG=0         

pGG=0.7 
μGG=0.85 
μRG=0.70      

 n1  n1  n1  
 nr 55 100 55 100 55 100 

Coverage (%) (c/s) 5 99/96 98/94 99/96 99/95 99/95 98/96 
 10 97/95 96/94 97/96 97/95 97/95 97/95 

Bias 
(SE) 

5 -0.02 
(0.254) 

0 
(0.201) 

-0.002 
(0.194) 

-0.004 
(0.162) 

-0.003 
(0.204) 

-0.006 
(0.168) 

 10 0.007 
(0.195) 

0.009 
(0.154) 

-0.003 
(0.159) 

-0.003 
(0.13) 

-0.011 
(0.163) 

-0.01 
(0.133) 

SB 
(RBS (%)) 

5 -0.08 
(-2) 

0 
(-1) 

-0.01 
(0) 

-0.03 
(4) 

-0.02 
(1) 

-0.03 
(1) 

 10 0.03 
(-4) 

0.05 
(-5) 

-0.02 
(1) 

-0.02 
(-1) 

-0.07 
(-2) 

-0.07 
(-2) 

Sim Used 5 1000 1000 1000 1000 1000 1000 
 10 999 999 1000 1000 1000 1000 

 
1. Simulation parameters: Subject Variance=1, Reader Variance=0.1 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated 
standard error for fixed-effect parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 18 Simulation Results for RG Model A (medium magnitude of variance components) 

 

pGG=0.1 
μGG=-2.20 
μRG=-1.66     

pGG=0.5 
μGG=0 
μRG=0         

pGG=0.7 
μGG=0.85 
μRG=0.63      

 n1  n1  n1  
 nr 55 100 55 100 55 100 

Coverage (%) (c/s) 5 98/94 97/95 98/95 97/95 98/95 98/95 
 10 96/93 95/94 97/96 96/95 97/96 96/95 

Bias 
(SE) 

5 -0.001 
(0.364) 

0.009 
(0.328) 

-0.003 
(0.313) 

-0.007 
(0.292) 

-0.009 
(0.323) 

-0.009 
(0.297) 

 10 0.059 
(0.275) 

0.036 
(0.247) 

-0.004 
(0.249) 

-0.004 
(0.224) 

-0.029 
(0.252) 

-0.018 
(0.228) 

SB 
(RBS (%)) 

5 0 
(-5) 

0.03 
(-3) 

-0.01 
(-2) 

-0.02 
(-1) 

-0.03 
(-3) 

-0.03 
(-1) 

 10 0.2 
(-4) 

0.14 
(-4) 

-0.01 
(2) 

-0.02 
(0) 

-0.11 
(0) 

-0.08 
(-1) 

Sim Used 5 1000 999 1000 1000 1000 1000 
 10 1000 1000 1000 999 1000 1000 

 
1. Simulation parameters: Subject Variance=2, Reader Variance=0.7 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated 
standard error for fixed-effect parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 19 Simulation Results for RG Model A (large magnitude of variance components) 

 

pGG=0.1 
μGG=-2.20 
μRG=-1.52     

pGG=0.5 
μGG=0 
μRG=-0        

pGG=0.7 
μGG=0.85 
μRG=0.57      

 n1  n1  n1  
 nr 55 100 55 100 55 100 

Coverage (%) (c/s) 5 97/95 96/94 97/95 97/95 97/95 97/95 
 10 96/94 94/94 97/96 96/95 97/96 96/95 

Bias 
(SE) 

5 0.01 
(0.449) 

0.01 
(0.415) 

0 
(0.398) 

-0.007 
(0.376) 

-0.013 
(0.405) 

-0.014 
(0.382) 

 10 0.072 
(0.332) 

0.049 
(0.308) 

-0.006 
(0.31) 

-0.004 
(0.286) 

-0.035 
(0.314) 

-0.019 
(0.289) 

SB 
(RBS (%)) 

5 0.02 
(-5) 

0.02 
(-4) 

0 
(-2) 

-0.02 
(-2) 

-0.03 
(-2) 

-0.03 
(-2) 

 10 0.21 
(-4) 

0.15 
(-3) 

-0.02 
(3) 

-0.01 
(0) 

-0.11 
(2) 

-0.07 
(-2) 

Sim Used 5 1000 999 1000 1000 1000 1000 
 10 1000 999 1000 999 1000 999 

 
1. Simulation parameters: Subject Variance=3, Reader Variance=1.5 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated 
standard error for fixed-effect parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 20 Simulation Results for RG Model B (small magnitude of variance components) 

 

TPFGG=0.5, FPFGG=0.03 
ηGG=3.48 
ηRG=3.05 

TPFGG=0.3, FPFGG=0.9 
ηGG=-3.04 
ηRG=-2.58 

TPFGG=0.6, FPFGG=0.6 
ηGG=0 
ηRG=0 

 n0  n0  n0  
 nr n1 100 175 100 175 100 175 

Coverage (%) (c/s) 5 55 99/95 98/94 99/96 98/95 99/96 99/95 
 5 100 99/95 98/94 98/95 98/95 99/96 98/94 
 10 55 97/95 96/94 97/94 97/94 97/94 97/95 
 10 100 97/95 97/95 97/95 96/94 98/97 97/95 

Bias 
(SE) 

5 55 -0.026 
(0.321) 

-0.023 
(0.272) 

0.021 
(0.269) 

0.02 
(0.245) 

-0.006 
(0.243) 

0.004 
(0.228) 

 5 100 -0.025 
(0.31) 

-0.023 
(0.258) 

0.018 
(0.248) 

0.009 
(0.22) 

0.002 
(0.215) 

-0.001 
(0.199) 

 10 55 -0.063 
(0.25) 

-0.04 
(0.21) 

0.048 
(0.215) 

0.033 
(0.195) 

-0.006 
(0.197) 

-0.001 
(0.187) 

 10 100 -0.062 
(0.245) 

-0.049 
(0.201) 

0.046 
(0.198) 

0.029 
(0.175) 

-0.001 
(0.174) 

-0.008 
(0.162) 

SB 
(RBS (%)) 

5 55 -0.08 
(1) 

-0.08 
(-5) 

0.08 
(3) 

0.08 
(-2) 

-0.02 
(1) 

0.02 
(1) 

 5 100 -0.08 
(2) 

-0.08 
(-5) 

0.07 
(1) 

0.04 
(-3) 

0.01 
(-2) 

0 
(-3) 

 10 55 -0.26 
(2) 

-0.19 
(-2) 

0.22 
(0) 

0.17 
(-2) 

-0.03 
(0) 

-0.01 
(1) 

 10 100 -0.27 
(6) 

-0.25 
(4) 

0.24 
(3) 

0.16 
(-2) 

-0.01 
(3) 

-0.05 
(3) 

Sim Used 5 55 991 996 999 999 1000 999 
 5 100 988 994 999 998 1000 999 
 10 55 977 987 996 996 999 999 
 10 100 981 995 997 998 998 996 

 
1. Simulation parameters: Subject Variance=1, Reader Variance=0.25, Reader*Truth Variance=0.07 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for fixed-effect 
parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 21 Simulation Results for RG Model B (medium magnitude of variance components) 

 

TPFGG=0.5, FPFGG=0.03 
ηGG=3.48 
ηRG=2.75 

TPFGG=0.3, FPFGG=0.9 
ηGG=-3.04 
ηRG=-2.31 

TPFGG=0.6, FPFGG=0.6 
ηGG=0 
ηRG=0 

 n0  n0  n0  
 nr n1 100 175 100 175 100 175 

Coverage (%) (c/s) 5 55 99/95 98/93 99/96 99/95 99/96 99/95 
 5 100 98/95 98/94 98/94 98/94 98/95 98/94 
 10 55 96/94 96/93 96/94 97/95 97/95 97/95 
 10 100 96/94 96/95 97/94 97/95 98/96 98/96 

Bias 
(SE) 

5 55 -0.041 
(0.334) 

-0.035 
(0.298) 

0.03 
(0.303) 

0.023 
(0.279) 

-0.003 
(0.278) 

0.004 
(0.264) 

 5 100 -0.039 
(0.322) 

-0.037 
(0.278) 

0.025 
(0.278) 

0.018 
(0.251) 

0.002 
(0.25) 

0.001 
(0.235) 

 10 55 -0.099 
(0.27) 

-0.067 
(0.238) 

0.064 
(0.247) 

0.043 
(0.229) 

-0.005 
(0.233) 

-0.001 
(0.221) 

 10 100 -0.1 
(0.26) 

-0.079 
(0.225) 

0.062 
(0.228) 

0.037 
(0.206) 

0.001 
(0.206) 

-0.008 
(0.194) 

SB 
(RBS (%)) 

5 55 -0.12 
(-1) 

-0.11 
(-7) 

0.1 
(0) 

0.08 
(-2) 

-0.01 
(0) 

0.01 
(0) 

 5 100 -0.12 
(0) 

-0.13 
(-7) 

0.09 
(-1) 

0.07 
(-3) 

0.01 
(-1) 

0 
(-3) 

 10 55 -0.37 
(0) 

-0.27 
(-4) 

0.26 
(0) 

0.19 
(0) 

-0.02 
(2) 

-0.01 
(2) 

 10 100 -0.4 
(3) 

-0.35 
(1) 

0.28 
(3) 

0.18 
(0) 

0.01 
(4) 

-0.04 
(4) 

Sim Used 5 55 994 996 999 1000 1000 1000 
 5 100 997 994 1000 996 1000 1000 
 10 55 976 983 997 997 999 999 
 10 100 995 984 995 997 999 996 

 
1. Simulation parameters: Subject Variance=1.9, Reader Variance=0.5, Reader*Truth Variance=0.14 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for fixed-effect 
parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 22 Simulation Results for RG Model B (large magnitude of variance components) 

 

TPFGG=0.5, FPFGG=0.03 
ηGG=3.48 
ηRG=2.48 

TPFGG=0.3, FPFGG=0.9 
ηGG=-3.04 
ηRG=-2.09 

TPFGG=0.6, FPFGG=0.6 
ηGG=0 
ηRG=0 

 n0  n0  n0  
 nr n1 100 175 100 175 100 175 

Coverage (%) (c/s) 5 55 98/94 97/94 98/95 98/94 98/96 98/94 
 5 100 97/94 97/94 97/94 96/94 98/95 96/94 
 10 55 95/93 95/93 96/94 96/95 98/96 98/96 
 10 100 96/94 95/94 97/95 97/96 98/96 98/96 

Bias 
(SE) 

5 55 -0.069 
(0.412) 

-0.046 
(0.393) 

0.035 
(0.391) 

0.033 
(0.372) 

-0.003 
(0.37) 

0.003 
(0.36) 

 5 100 -0.07 
(0.398) 

-0.054 
(0.373) 

0.037 
(0.373) 

0.024 
(0.349) 

0.001 
(0.347) 

0 
(0.336) 

 10 55 -0.128 
(0.33) 

-0.085 
(0.308) 

0.084 
(0.315) 

0.063 
(0.301) 

-0.006 
(0.304) 

-0.003 
(0.292) 

 10 100 -0.134 
(0.317) 

-0.098 
(0.293) 

0.081 
(0.296) 

0.052 
(0.279) 

0.003 
(0.28) 

-0.007 
(0.267) 

SB 
(RBS (%)) 

5 55 -0.16 
(-3) 

-0.11 
(-4) 

0.09 
(-2) 

0.08 
(-5) 

-0.01 
(-2) 

0.01 
(-1) 

 5 100 -0.17 
(-3) 

-0.14 
(-5) 

0.1 
(-2) 

0.07 
(-6) 

0 
(-3) 

0 
(-4) 

 10 55 -0.39 
(1) 

-0.27 
(-1) 

0.27 
(1) 

0.22 
(2) 

-0.02 
(3) 

-0.01 
(4) 

 10 100 -0.45 
(5) 

-0.34 
(0) 

0.28 
(3) 

0.19 
(5) 

0.01 
(4) 

-0.03 
(6) 

Sim Used 5 55 996 989 999 998 1000 998 
 5 100 989 987 999 996 1000 999 
 10 55 982 974 999 993 1000 998 
 10 100 971 980 995 994 1000 998 

 
1. Simulation parameters: Subject Variance=3, Reader Variance=1, Reader*Truth Variance=0.5 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for fixed-effect 
parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 23 Simulation Results for RG Model C (small magnitude of variance components) 

 

p1GG=0.5, p2GG=0.6 
δGG=-0.41 
δRG=-0.30 

p1GG=0.1, p2GG=0.7 
δGG=-3.04 
δRG=-2.31 

p1GG=0.8, p2GG=0.8 
δGG=0 
δRG=0 

 n1  n1  n1  
 nr 55 100 55 100 55 100 

Coverage (%) (c/s) 5 98/96 96/94 97/93 96/93 97/94 97/94 
 10 95/95 96/96 93/92 93/93 96/95 95/95 

Bias 
(SE) 

5 -0.007 
(0.229) 

-0.008 
(0.201) 

0.001 
(0.267) 

0.005 
(0.223) 

-0.007 
(0.243) 

-0.009 
(0.211) 

 10 0 
(0.161) 

-0.002 
(0.146) 

0.017 
(0.187) 

0.013 
(0.162) 

-0.005 
(0.173) 

-0.002 
(0.153) 

SB 
(RBS (%)) 

5 -0.03 
(3) 

-0.04 
(-4) 

0 
(-7) 

0.02 
(-14) 

-0.03 
(-1) 

-0.04 
(-7) 

 10 0 
(-3) 

-0.01 
(0) 

0.08 
(-13) 

0.07 
(-11) 

-0.03 
(-1) 

-0.01 
(-1) 

Sim Used 5 1000 1000 1000 1000 1000 1000 
 10 999 999 999 997 1000 998 

 
1. Simulation parameters: Subject Variance=1.9, Reader Variance=0.5, Reader*Modality Variance=0.14 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for 
fixed-effect parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 24 Simulation Results for RG Model C (medium magnitude of variance components) 

 

p1GG=0.5, p2GG=0.6 
δGG=-0.41 
δRG=-0.26 

p1GG=0.1, p2GG=0.7 
δGG=-3.04 
δRG=-1.96 

p1GG=0.8, p2GG=0.8 
δGG=0 
δRG=0 

 n1  n1  n1  
 nr 55 100 55 100 55 100 

Coverage (%) (c/s) 5 97/96 95/95 96/94 95/94 96/94 96/95 
 10 96/95 96/96 92/92 93/93 95/94 96/96 

Bias 
(SE) 

5 -0.01 
(0.278) 

-0.008 
(0.259) 

0.002 
(0.302) 

-0.001 
(0.273) 

-0.003 
(0.283) 

-0.006 
(0.267) 

 10 -0.001 
(0.199) 

-0.001 
(0.19) 

0.019 
(0.216) 

0.013 
(0.203) 

-0.003 
(0.205) 

0.001 
(0.194) 

SB 
(RBS (%)) 

5 -0.04 
(-1) 

-0.03 
(-5) 

0.01 
(-10) 

0 
(-13) 

-0.01 
(-7) 

-0.02 
(-7) 

 10 -0.01 
(-1) 

-0.01 
(1) 

0.08 
(-15) 

0.06 
(-11) 

-0.01 
(-4) 

0 
(-2) 

Sim Used 5 1000 998 998 999 1000 1000 
 10 1000 1000 1000 999 1000 994 

 
1. Simulation parameters: Subject Variance=3.71, Reader Variance=0.8672, Reader*Modality Variance=0.4 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for 
fixed-effect parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 25 Simulation Results for RG Model C (large magnitude of variance components) 

 

p1GG=0.5, p2GG=0.6 
δGG=-0.41 
δRG=-0.24 

p1GG=0.1, p2GG=0.7 
δGG=-3.04 
δRG=-1.81 

p1GG=0.8, p2GG=0.8 
δGG=0 
δRG=0 

 n1  n1  n1  
 nr 55 100 55 100 55 100 

Coverage (%) (c/s) 5 97/96 96/96 96/95 94/94 96/95 96/96 
 10 96/96 97/97 94/94 95/95 95/95 96/96 

Bias 
(SE) 

5 -0.01 
(0.377) 

-0.009 
(0.363) 

0.001 
(0.394) 

0.005 
(0.373) 

-0.011 
(0.381) 

-0.005 
(0.372) 

 10 -0.003 
(0.274) 

0.001 
(0.267) 

0.023 
(0.289) 

0.015 
(0.278) 

-0.004 
(0.279) 

-0.002 
(0.27) 

SB 
(RBS (%)) 

5 -0.03 
(-5) 

-0.02 
(-5) 

0 
(-10) 

0.01 
(-10) 

-0.03 
(-8) 

-0.01 
(-6) 

 10 -0.01 
(-1) 

0 
(0) 

0.07 
(-7) 

0.05 
(-6) 

-0.01 
(-4) 

-0.01 
(-2) 

Sim Used 5 1000 1000 1000 1000 1000 1000 
 10 999 999 995 997 998 997 

 
1. Simulation parameters: Subject Variance=5, Reader Variance=2, Reader*Modality Variance=1 
2. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
3. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
4. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
5. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for 
fixed-effect parameter estimate (using MC Standard Deviation) 
6. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 26 Simulation Results for RG Model D (small magnitude of variance components) 

 

μGG=0 
τGG=0 
τRG=0  

μGG=0 
τGG=0.03 
τRG=0.025   

μGG=0 
τGG=0.06 
τRG=0.050   

μGG=0 
τGG=0.10 
τRG=0.083  

 n1  n1  n1  n1  
 nr 55 100 55 100 55 100 55 100 

Coverage (%) (c/s) 5 98/96 98/95 99/97 98/95 98/96 98/95 99/96 98/95 
 10 98/96 97/96 97/96 97/96 97/95 97/96 96/95 97/95 

Bias 
(SE) 

5 0 
(0.009) 

0 
(0.008) 

0 
(0.01) 

0 
(0.009) 

0.001 
(0.011) 

0.001 
(0.009) 

0.005 
(0.014) 

0.003 
(0.012) 

 10 0 
(0.007) 

0 
(0.006) 

-0.001 
(0.007) 

-0.001 
(0.007) 

-0.001 
(0.008) 

-0.001 
(0.007) 

0.001 
(0.01) 

0.001 
(0.008) 

SB 
(RBS (%)) 

5 0 
(4) 

-0.02 
(-3) 

-0.02 
(2) 

-0.02 
(-2) 

0.07 
(0) 

0.06 
(-4) 

0.3 
(-6) 

0.27 
(-6) 

 10 0.03 
(6) 

0 
(3) 

-0.1 
(5) 

-0.1 
(2) 

-0.12 
(1) 

-0.08 
(1) 

0.12 
(-7) 

0.13 
(-3) 

Sim Used 5 999 1000 997 998 993 993 938 972 
 10 996 997 1000 999 982 993 917 930 

 
1. Simulation parameters: Subject Variance=1, Reader Variance=0.1, Reader*LesionSize Variance=0.0004 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
3. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
4. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
5. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
6. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for 
fixed-effect parameter estimate (using MC Standard Deviation) 
7. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 27 Simulation Results for RG Model D (medium magnitude of variance components) 

 

μGG=0 
τGG=0 
τRG=0  

μGG=0 
τGG=0.03 
τRG=0.022  

μGG=0 
τGG=0.06 
τRG=0.044  

μGG=0 
τGG=0.10 
τRG=0.073  

 n1  n1  n1  n1  
 nr 55 100 55 100 55 100 55 100 

Coverage (%) (c/s) 5 98/96 98/95 99/97 97/95 98/96 97/95 99/95 98/95 
 10 98/97 97/97 97/97 97/96 97/96 97/96 95/94 97/95 

Bias 
(SE) 

5 0 
(0.012) 

0 
(0.011) 

0 
(0.012) 

0 
(0.011) 

0 
(0.013) 

0 
(0.012) 

0.003 
(0.016) 

0.002 
(0.014) 

 10 0 
(0.009) 

0 
(0.009) 

-0.001 
(0.009) 

-0.001 
(0.009) 

-0.002 
(0.01) 

-0.001 
(0.009) 

-0.001 
(0.011) 

0 
(0.01) 

SB 
(RBS (%)) 

5 0 
(4) 

-0.01 
(-2) 

-0.01 
(4) 

-0.01 
(-3) 

0.02 
(0) 

0.04 
(-5) 

0.21 
(-7) 

0.17 
(-4) 

 10 0.02 
(10) 

0.01 
(6) 

-0.12 
(7) 

-0.08 
(4) 

-0.21 
(5) 

-0.13 
(1) 

-0.07 
(-9) 

-0.01 
(-4) 

Sim Used 5 999 1000 995 998 989 994 943 972 
 10 981 995 982 993 972 979 900 918 

 
1. Simulation parameters: Subject Variance=2, Reader Variance=0.2, Reader*LesionSize Variance=0.001 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
3. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
4. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
5. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
6. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for 
fixed-effect parameter estimate (using MC Standard Deviation) 
7. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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Table 28 Simulation Results for RG Model D (large magnitude of variance components) 

 

μGG=0 
τGG=0 
τRG=0  

μGG=0 
τGG=0.03 
τRG=0.020  

μGG=0 
τGG=0.06 
τRG=0.040  

μGG=0 
τGG=0.10 
τRG=0.067  

 n1  n1  n1  n1  
 nr 55 100 55 100 55 100 55 100 

Coverage (%) (c/s) 5 97/96 97/96 97/96 96/96 97/96 97/96 97/96 97/95 
 10 97/97 97/97 98/97 96/96 97/96 96/96 96/96 96/96 

Bias 
(SE) 

5 0 
(0.032) 

0 
(0.031) 

0 
(0.032) 

0 
(0.031) 

0.001 
(0.032) 

0.001 
(0.031) 

0.002 
(0.033) 

0.002 
(0.032) 

 10 0 
(0.023) 

0 
(0.022) 

-0.001 
(0.023) 

0 
(0.022) 

-0.001 
(0.023) 

-0.001 
(0.023) 

-0.002 
(0.023) 

-0.001 
(0.023) 

SB 
(RBS (%)) 

5 0 
(1) 

0.01 
(-1) 

0 
(1) 

0 
(-3) 

0.02 
(0) 

0.03 
(-5) 

0.05 
(-3) 

0.05 
(-6) 

 10 0 
(9) 

0.01 
(4) 

-0.02 
(7) 

0 
(4) 

-0.06 
(3) 

-0.03 
(2) 

-0.09 
(-2) 

-0.05 
(-2) 

Sim Used 5 984 981 979 975 969 975 961 954 
 10 919 935 905 946 913 939 916 922 

 
1. Simulation parameters: Subject Variance=3, Reader Variance=1, Reader*LesionSize Variance=0.01 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
3. GG="Subject-Specific" parameter, RG="Half-Marginal" parameter 
4. Coverage (%)=Estimated 95% coverage of t-based confidence interval; c=containment df; s=sattherthwaite df 
5. Bias=Bias of fixed effect parameter estimate; SE=Average Estimated Standard Error for fixed effect parameter estimate 
6. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation); RBS (%)=Relative bias of estimated standard error for 
fixed-effect parameter estimate (using MC Standard Deviation) 
7. Sim Used=Used simulations: (1) Non-zero positive standard errors (2) PROC GLIMMIX convergence criteria satisfied 
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3.6 SUMMARY AND DISCUSSION 

The RG model estimated used the PL approach demonstrated the ability to perform valid statistical 

inferences in all modeling settings and across a range of parameter configurations. The usage of 

Satterthwaite containment degrees of freedom led to slight improvement in the coverage rates 

based on using the t-reference distribution as compared to using the default containment degrees 

of freedom. The coverage was either adequate, although often conservative for both approaches. 

Using data from an actual multi-reader study of diagnostic imaging, we illustrated the ability of 

the half-marginal model to provide estimates of parameters that are relevant in multi-reader studies 

that agree with empirical estimates. In addition, the RG model is easy to implement (e.g., using 

PROC GLIMMIX, SAS) and leads to substantial reduction in computation time compared to more 

standard GG models.  

As other modeling techniques, the proposed RG model has limitations. First, the RG model 

can be criticized for its non-probabilistic nature. Second, RG model necessitates the use of the 

pseudo-likelihood (PL) estimation approach. Although our results indicate very good performance 

of PL-RG estimates in typical multi-reader settings, there could still be a lingering concern about 

possible large-sample reliability problems based on trends we observed in simulation study and 

the results discussed in other articles for simple binary clustered data. 

Overall, for data with structure and size typical for multi-reader studies, half-marginal 

models provides a convenient and flexible framework for analyzing multi-reader studies. Being 

GLMMs, they allow incorporating both continuous and categorical types of covariates into the 
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analysis. Usefulness of the half-marginal modeling approach can be further increased by 

developing robust alternatives to the pseudo-likelihood estimation technique.  
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4.0  AN EXPLICIT APPROACH FOR ESTIMATING HALF-MARGINAL GLMM 

FOR ANALYZING CROSS-CORRELATED BINARY DATA FROM MULTI-READER 

STUDIES OF DIAGNOSTIC ACCURACY 

Previously, we proposed a half-marginal model that is particularly suited for binary data from 

fully-crossed multi-reader studies. The half-marginal model offers parameters that are more 

interpretable in practice, enables estimation of both overall and reader-specific estimates, and 

provides estimates that are more in agreement with non-parametric estimates obtainable from raw 

data. However, a half-marginal model is often faced with the criticism of being artificial due to its 

non-probabilistic nature and of relying solely on pseudo-likelihood techniques, whose validity for 

binary data is questionable. To address these criticisms we have developed a new semi-parametric 

approach for estimating half-marginal model which offers straightforward estimation based on 

probability models for analyzing cross-correlated data from multi-reader diagnostic imaging 

studies.  

4.1 INTRODUCTION 

One of the essential components of the proposed work is focused on developing the variance 

estimator for the estimated model parameters based on cross-correlated data. This task is usually 

not straightforward [16]. The general difficulty stems from the need to reflect the two sources of 

variability (in our application: subjects and readers) and account for correlation between the 

observations. A frequent remedy is to use bootstrap resampling [54, 55] to obtain variance 
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estimates. However, resampling approaches for iteratively fit models can be very computer 

intensive. 

One of the basic examples of the variance estimator for cross-correlated data is the variance 

estimator of the two-sample U-statistic. Based on the theory of U-statistic, variability can be 

conveniently partitioned into two components reflecting variability due to each of the involved 

populations [46]. The components permit simple estimates leading to an accurate estimator of the 

overall variance [47, 48, 49].  

Extensions of these approaches have also been used to derive variance for quantities of 

interest in cross-correlated multi-reader data in ROC analysis [6]. In such a setting, the overall 

variance estimator includes additional components that reflects between-reader variability. The 

estimator of between-reader variance is based on a small number of readers. However, the resulting 

estimator of the overall variance is adequate for typical multi-readers studies of diagnostic 

accuracy. 

Despite good overall accuracy of variance estimators for cross-correlated data, they are 

typically biased (often upwardly). A number of successful efforts have been employed to reduce 

and sometimes even eliminate the bias of variance estimates for simple U-statistics [50, 51] and 

for statistics in multi-reader data [52]. 

4.2 PROPOSED APPROACH 

As we discussed previously, the only standard approach for estimating parameters of the half-

marginal models is based on Pseudo-Likelihood for linearized model, which suffers from it’s own 

criticisms and potentially sub-optimal performance for binary data in complex studies. We develop 
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a semi-parametric estimation approach for parameters of the half-marginal model introduced 

earlier in Section 3.1 which involves a two-step model fitting process: 

(1) A separate model is fit for each reader based on the corresponding subset of the cross-

correlated dataset. We note that the binary observations are still correlated between the sub-

datasets since all the readers evaluate the same set of subjects. But, within the reader-specific sub-

dataset, the observations are independent in some simple models (e.g., model A, B and D) or have 

clustered correlation structure in other models (e.g., model C). Each of the reader-specific model 

is a probability model (e.g., GLM model with logit link fitted using GEE), with reliable and easy-

to-obtain estimates. 

(2) Another model is fit to the entire data as a whole with readers as fixed effect and 

accounting for correlation arising from observations from the same subject. This model is fit using 

GEE estimation approach which is known to produce consistent estimates of regression parameters 

and their estimated standard errors (when using robust estimator) even if the dependency is mis-

specified, as long as the model for the marginal mean is correctly specified. The efficiency of the 

parameter estimates increases if the chosen working correlation structure is closer to the true 

correlation structure. Hence, instead of using the model-based estimates of SE, and given that we 

have a moderate number of subjects/clusters in our balanced datasets, we opt to using the robust 

estimates of standard error which are consistent regardless of the true form of the correlation 

structure. 

Variability of the RG parameter estimate can then be constructed based on the variance 

estimates within readers (obtained from the individual reader-specific models), estimation of 

variability across the models (obtained based on estimates of the fixed-effects) and variance 

estimate of average coefficient conditional on readers (obtained from model fitted to overall data 
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with readers as fixed-effects). Similar approach has been utilized previously in different 

applications [16, 22, 53] but no analogs currently exist for half-marginal models of cross-correlated 

binary data. We note that because of the relatively small number of readers in multi-reader studies, 

the proposed approach is not computationally intensive.  

We now lay down formal derivation of the RG fixed-effect estimator and it’s corresponding 

variance estimator. For these derivations, we assume a general notation i.e. 𝑛𝑛𝑐𝑐 representing number 

of subjects and 𝑛𝑛𝑟𝑟 representing number of readers. 

 Derivation of fixed-effect estimator 

In order to estimate an RG fixed-effect parameter (e.g., 𝜃𝜃� = 𝐸𝐸�𝜃𝜃�𝑗𝑗�) which in essence is a reader-

averaged quantity, we can use individual reader-specific logistic models and estimate 𝜃𝜃�𝑗𝑗  

(𝑗𝑗 = 1, . . , 𝑛𝑛𝑟𝑟) for a sample of independent readers in a given study. For logistic models, 𝜃𝜃�𝑗𝑗 is the 

logit of some probability 𝑝𝑝�𝑗𝑗 and 𝜃𝜃� could represent e.g. the expectation of log odds of probability 

𝑝𝑝�𝑗𝑗 or the difference in the expectation of log odds of probabilities 𝑝𝑝�1𝑗𝑗and 𝑝𝑝�2𝑗𝑗 respectively for 

reader 𝑗𝑗. 

Next, we can define the following fixed-effect estimator for generic 𝜃𝜃�: 

𝜃𝜃�̅. =
∑ 𝜃𝜃�𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
 ,           ( 4.1 ) 

which is a simple average of the estimates across individual readers. 𝜽𝜽�𝒋𝒋’s are still dependent since 

the readers share overlapping set of subjects. However, this dependency does not affect this 

proposed estimator and is taken into account when constructing the variance estimator. 

Note that in situations when we can assume independence among observations from the 

same reader (e.g., RG models A without covariate, B with subject level binary covariate and D 
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with subject level continuous covariate), we can simply fit reader-specific logistic models using 

GEE technique with independence correlation structure (same as fitting a simple logistic model 

using maximum likelihood approach). The GEE estimators are known to be consistent and 

asymptotically normally distributed and hence the estimates resulting from these individual models 

are consistent. Averaging them also yields a consistent estimate. 

However, when we need to assume dependence (e.g., RG model C with assessment level 

binary covariate) due to the structure of the data, we can again fit reader-specific logistic models 

using GEE approach but with a different correlation structure other than independence. Again 

since we have consistent estimates, when averaging across readers, we still get a consistent 

estimate of the reader-averaged effect of interest. 

Finally, a positive aspect of this approach is that the estimates of the average effect that we 

obtain for models A, B and C are exactly similar to the empirical estimates. 

 Derivation of variance estimator 

In this section we will exploit the simple structure of the proposed estimator of the fixed effect to 

develop the variance estimator accounting for both subject and reader-related variability sources.  

Note, that the estimator will have the same form for all models considered. We now derive 

𝑉𝑉 � 𝜃𝜃�̅.� i.e. 𝑉𝑉 �
∑ 𝜃𝜃�𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
�: 

By conditioning on reader-related random effects, including all possible interactions, for 

brevity all denoted as (𝜷𝜷) , we can decompose the overall variance as follows: 

𝑉𝑉 � 𝜃𝜃�̅.� = 𝑉𝑉 �E �𝜃𝜃�̅.|𝜷𝜷�� + E �𝑉𝑉 �𝜃𝜃�̅.|𝜷𝜷�� 

𝑉𝑉 � 𝜃𝜃�̅.� = reader-related component + expected variance of reader-averaged index 
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Using the structure of the proposed estimator of the fixed-effect, we obtain 

𝑉𝑉 � 𝜃𝜃�̅.� = 𝑉𝑉 � 1
𝑛𝑛𝑟𝑟
∑ 𝐸𝐸 �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�𝑗𝑗 � + 𝐸𝐸 �𝑉𝑉 � 1

𝑛𝑛𝑟𝑟
∑ �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�𝑗𝑗 �� = (𝐴𝐴) + (𝐵𝐵)          ( 4.2 ) 

In equation      ( 4.2 ) above, term (A) is the variance of the sum of independent terms (due 

to independence of the reader-effects and marginalizing over the subjects). In contrast, variance 

within term (B) is over 𝜃𝜃�𝑗𝑗′𝑠𝑠 which are still correlated due to sharing of same subjects. Thus, using 

the identical distribution of random effects, we further partition the variance as follows: 

𝑉𝑉 � 𝜃𝜃�̅.� = 1
𝑛𝑛𝑟𝑟2
∗ 𝑛𝑛𝑟𝑟 ∗ 𝑉𝑉 �𝐸𝐸 �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�� + 𝐸𝐸 � 1

𝑛𝑛𝑟𝑟2
�∑ 𝑉𝑉 �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗� + ∑ 2 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 �𝜃𝜃�𝑗𝑗, 𝜃𝜃�𝑘𝑘|𝛽𝛽𝑗𝑗, 𝛽𝛽𝑘𝑘�𝑗𝑗≠𝑘𝑘𝑗𝑗 ��        ( 4.3 ) 

Finally, we can use the following plug-in estimators for equation       ( 4.3 ): 

𝑉𝑉� � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑉𝑉�� 𝜃𝜃��.� = 1
𝑛𝑛𝑟𝑟
∗ 1
𝑛𝑛𝑟𝑟−1

∑ �𝜃𝜃�𝑗𝑗 − 𝜃𝜃��.�
2

+ 𝑉𝑉��𝜃𝜃��.|𝜷𝜷�
𝑛𝑛𝑟𝑟
𝑗𝑗=1 = 1

𝑛𝑛𝑟𝑟
∗ 𝑩𝑩𝑩𝑩 + 𝑩𝑩𝑩𝑩 ,       ( 4.4 ) 

where  𝑩𝑩𝟏𝟏 represents the sample variance of reader-specific coefficient estimates which is a 

consistent estimator and 𝑩𝑩𝟐𝟐 represents the variance estimator of average regression coefficient 

which is also consistent since we obtain it from fixed-reader model fitted using GEE. 

 Derivation of bias-corrected variance estimator 

𝑉𝑉� � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 is generally upward-biased i.e. it tends to overestimate variance for finite 

sample sizes, primarily due to the bias of the estimate of the first term. Repeating the formulation 

of this original estimator: 

𝑉𝑉� � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑉𝑉�� 𝜃𝜃��.� = 1
𝑛𝑛𝑟𝑟
∗ 1
𝑛𝑛𝑟𝑟−1

∑ �𝜃𝜃�𝑗𝑗 − 𝜃𝜃��.�
2

+ 𝑉𝑉��𝜃𝜃��.|𝜷𝜷�
𝑛𝑛𝑟𝑟
𝑗𝑗=1 = 1

𝑛𝑛𝑟𝑟
∗ 𝑩𝑩𝑩𝑩 + 𝑩𝑩𝑩𝑩 ,  

the bias of the first term i.e.  1
𝑛𝑛𝑟𝑟
∗ 𝑩𝑩𝟏𝟏 can be showed through the following steps noting that these 

derivations are for fixed-readers: 
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𝐸𝐸 �
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃�𝑗𝑗 − 𝜃𝜃.���
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

� =
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

𝐸𝐸 ���𝜃𝜃�𝑗𝑗
2 + 𝜃𝜃.��

2
− 2𝜃𝜃�𝑗𝑗𝜃𝜃.���

𝑛𝑛𝑟𝑟

𝑗𝑗=1

� 

=
1

𝑛𝑛𝑟𝑟
∗

1

𝑛𝑛𝑟𝑟 − 1
∗ 𝐸𝐸 ��𝜃𝜃�𝑗𝑗

2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

−  𝑛𝑛𝑟𝑟𝜃𝜃.��
2
� 

=
1

𝑛𝑛𝑟𝑟
∗

1

𝑛𝑛𝑟𝑟 − 1
∗ ���𝑉𝑉�𝜃𝜃�𝑗𝑗� + 𝐸𝐸�𝜃𝜃�𝑗𝑗�

2
� − 𝑛𝑛𝑟𝑟 �𝑉𝑉�𝜃𝜃.��� + 𝐸𝐸�𝜃𝜃.���

2
�

𝑛𝑛𝑟𝑟

𝑗𝑗=1

� 

=
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

∗ ��𝐸𝐸�𝜃𝜃�𝑗𝑗�
2 − 𝑛𝑛𝑟𝑟𝐸𝐸 �𝜃𝜃.���

2
𝑛𝑛𝑟𝑟

𝑗𝑗=1

� +
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

∗�𝑉𝑉�𝜃𝜃�𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑗𝑗=1

−
1

𝑛𝑛𝑟𝑟 − 1

∗ 𝑉𝑉 �𝜃𝜃.��� 

Rearranging terms, we have: 

𝐸𝐸 �
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃�𝑗𝑗 − 𝜃𝜃.���
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

� =
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝐸𝐸�𝜃𝜃�𝑗𝑗� − 𝐸𝐸 �𝜃𝜃.����
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

+
1

𝑛𝑛𝑟𝑟 − 1
�

𝑉𝑉�𝜃𝜃�𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟

𝑗𝑗=1

−
1

𝑛𝑛𝑟𝑟 − 1
∗ 𝑉𝑉 �𝜃𝜃.��� 

Thus, the bias of the first term � 1
𝑛𝑛𝑟𝑟
∗ 𝐵𝐵1� i.e. 1

𝑛𝑛𝑟𝑟−1
∑ 𝑉𝑉�𝜃𝜃�𝑗𝑗�

𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟
𝑗𝑗=1 − 1

𝑛𝑛𝑟𝑟−1
∗ 𝑉𝑉 �𝜃𝜃.��� depends on other 

variance terms of order 1
𝑛𝑛𝑟𝑟−1

 as 𝑛𝑛𝑟𝑟, 𝑛𝑛𝑐𝑐 → ∞ , which can be noticeable due to typically small number 

of readers in the multi-reader studies. We estimate this bias using the following plug-in estimator: 

1
𝑛𝑛𝑟𝑟−1

∑
𝑉𝑉��𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�

𝑛𝑛𝑟𝑟
− 1

𝑛𝑛𝑟𝑟−1
∗ 𝑉𝑉��𝜃𝜃��.|𝜷𝜷�𝑗𝑗  based on combination of consistent estimates of variance.  

The bias of the second term (𝐵𝐵2) is typically of order 1
𝑛𝑛𝑐𝑐

, which is much less noticeable, 

due to relatively large number of subjects in multi-reader studies.  

Thus, we propose the following bias-corrected (𝑏𝑏𝑏𝑏) variance estimator: 

𝑉𝑉� � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

= 𝑉𝑉� � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� 

𝑉𝑉� � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

=
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃�𝑗𝑗 − 𝜃𝜃��.�
2

+ 𝑉𝑉��𝜃𝜃��.|𝜷𝜷� − �
1

𝑛𝑛𝑟𝑟 − 1
�

𝑉𝑉� �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

−
1

𝑛𝑛𝑟𝑟 − 1
∗ 𝑉𝑉��𝜃𝜃��.|𝜷𝜷�

𝑗𝑗

�
𝑛𝑛𝑟𝑟

𝑗𝑗=1
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𝑉𝑉� � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

=
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃�𝑗𝑗 − 𝜃𝜃��.�
2

+
𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟 − 1
∗ 𝑉𝑉��𝜃𝜃��.|𝜷𝜷� − 

1
𝑛𝑛𝑟𝑟 − 1

�
𝑉𝑉� �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�

𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟

𝑗𝑗=1

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

𝑉𝑉� � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

=
1
𝑛𝑛𝑟𝑟
∗ 𝑩𝑩𝑩𝑩 +

𝑛𝑛𝑟𝑟
𝑛𝑛𝑟𝑟 − 1

∗ 𝑩𝑩𝑩𝑩 −
1

𝑛𝑛𝑟𝑟 − 1
∗ 𝑩𝑩𝑩𝑩 = 𝑪𝑪𝑪𝑪 + 𝑪𝑪𝑪𝑪 − 𝑪𝑪𝑪𝑪 

Usually, 𝑪𝑪𝑪𝑪 is greater than 𝑪𝑪𝑪𝑪 in absolute value such that the overall variance (over both 

readers and subjects) is greater than 𝑪𝑪𝑪𝑪 (sample variability of reader-specific summary index). 

When this is not true, which sometimes happens in practice, the overall variance becomes less than 

𝑪𝑪𝑪𝑪 (even attains a negative value sometimes). In this case, we may use 𝑪𝑪𝑪𝑪 i.e. 

� 1
𝑛𝑛𝑟𝑟
∗ 1
𝑛𝑛𝑟𝑟−1

∑ �𝜃𝜃�𝑗𝑗 − 𝜃𝜃��.�
2𝑛𝑛𝑟𝑟

𝑗𝑗=1 � as our overall random-reader variance estimate (as suggested by the 

original DBM approach [7] or [13]). This constraint on the variance corrects instances of invalid 

estimates of specific variance components, thereby helping with attaining coverage closer to the 

nominal value. 

Overall, both the original and bias-corrected variance estimators for the RG fixed-effect 

estimator have a simple structure which is linear combination of different variance terms that are 

simple to compute. 

 Asymptotic properties of fixed-effect estimator 

Next, we would like to demonstrate that our fixed-effect estimator satisfies the much desirable 

MSE consistency property which implies consistency (convergence in probability). For this 

purpose, we show 1) it is asymptotically unbiased and 2) it’s variance approaches “0” as sample 

size increases. 
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First, the fixed-effects estimator can be shown to be asymptotically unbiased with respect 

to 𝜃𝜃� since a) each 𝑝𝑝𝚥𝚥�
𝑝𝑝
→ 𝑝𝑝𝑗𝑗 by Law of Large Numbers and by continuity theorem (CMT), 𝜃𝜃𝚥𝚥�

𝑝𝑝
→𝜃𝜃𝑗𝑗  

as subject sample size (denoted as 𝑛𝑛𝑐𝑐 here) increases, b) convergence in probability implies 

convergence in distribution i.e. 𝜃𝜃𝚥𝚥�
𝑑𝑑
→𝜃𝜃𝑗𝑗, hence  lim

𝑛𝑛𝑐𝑐→∞
𝐸𝐸�𝜃𝜃𝚥𝚥�� = 𝐸𝐸�𝜃𝜃𝑗𝑗�,  c) for a random sample of 

readers 𝐸𝐸 �𝜃𝜃�̅.� = 𝐸𝐸�𝜃𝜃𝑗𝑗|𝜶𝜶�, and  lim
𝑛𝑛𝑐𝑐→∞

E �𝜃𝜃�̅.� = lim
𝑛𝑛𝑐𝑐→∞

E �
∑ 𝜃𝜃�𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
� = 𝐸𝐸�𝜃𝜃𝑗𝑗� = 𝜃𝜃� . Hence, 𝜃𝜃�̅. is an 

asymptotically unbiased estimator for 𝜃𝜃� as subject and reader sample sizes increase. 

Second, by examining the variance of the fixed-effect estimator i.e.: 

𝑉𝑉 � 𝜃𝜃�̅.� = 1
𝑛𝑛𝑟𝑟2
𝑉𝑉 �∑ 𝐸𝐸 �𝜃𝜃�𝑗𝑗|𝛽𝛽𝑗𝑗�𝑗𝑗 � + E �𝑉𝑉 �𝜃𝜃�̅.|𝜷𝜷�� = (𝐴𝐴) + (𝐵𝐵), 

we note that term (A) is the variance of the average of independent conditional expectations which 

diminishes with increasing number of readers, and (B) is an expectation of the fixed reader 

variance of the average fixed effect which converges to 0 with increasing number of subjects. 

Thus, the Mean Square Error (MSE) of the proposed fixed effect estimator diminishes with 

increasing number of subjects and readers, ensuring the consistency of the proposed estimator.   

It is also worth noting that, due to the balanced structure of the fully-crossed data, the 

proposed estimator (simple average of the estimates from the reader specific models) is equivalent 

to the GEE estimator with the independent working correlation matrix. Then, due to the 

consistency and asymptotic normality of the GEE estimates for clustered data regardless of the 

correctness of working correlation matrix, the same properties can be claimed for proposed 

estimator conditional on the readers’ effects. 
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 Algorithm for computing fixed-effect estimate and its variance 

As mentioned earlier, the first step of the proposed approach involves fitting GLM models with 

logit link for individual readers 𝑗𝑗 = 1, … , 𝑛𝑛𝑟𝑟 (all other notations remain the same as defined in 

previous chapters). For each modeling scenario, we lay down the model specification and the 

different estimators that are used to compute estimates of fixed effect and different components of 

the fixed-effect variance: 

 

Table 29: Computing estimates from logistic models 

 

 

Modeling 
Scenario 

Fitted Reader-Specific 
logistic model using GEE 

Fixed-Effect 
Estimator Component B1 Component B3 

Model A 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑗𝑗� = 𝜇𝜇𝑗𝑗 𝜇̅̂𝜇. =
∑ 𝜇̂𝜇𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
 

1
𝑛𝑛𝑟𝑟 − 1

��𝜇̂𝜇𝑗𝑗 − 𝜇̅̂𝜇.�
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 
1
𝑛𝑛𝑟𝑟
�𝑉𝑉��𝜇̂𝜇𝑗𝑗|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

Model B 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑗𝑗𝑗𝑗� = 𝜇𝜇𝑗𝑗 + 𝜂𝜂𝑗𝑗 ∗ 𝐷𝐷 𝜂̅̂𝜂. =
∑ 𝜂̂𝜂𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
 

1
𝑛𝑛𝑟𝑟 − 1

��𝜂̂𝜂𝑗𝑗 − 𝜂̅̂𝜂.�
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 
1
𝑛𝑛𝑟𝑟
�𝑉𝑉��𝜂̂𝜂𝑗𝑗|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

Model C 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑗𝑗𝑗𝑗� = 𝜇𝜇𝑗𝑗 + 𝛿𝛿𝑗𝑗 ∗ 𝑀𝑀 
with 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗, 𝑌𝑌𝑗𝑗𝑗𝑗𝑀𝑀′� = 𝜌𝜌 

for given single subject 𝑖𝑖 
since each subject was 
examined under two 

modalities 

𝛿𝛿.̅ =
∑ 𝛿𝛿𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
 

1
𝑛𝑛𝑟𝑟 − 1

��𝛿𝛿𝑗𝑗 − 𝛿𝛿.̅�
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 
1
𝑛𝑛𝑟𝑟
�𝑉𝑉��𝛿𝛿𝑗𝑗|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

Model D 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑗𝑗𝑗𝑗� = 𝜇𝜇𝑗𝑗 + 𝜏𝜏𝑗𝑗 ∗ 𝑋𝑋 𝜏̅̂𝜏. =
∑ 𝜏̂𝜏𝑗𝑗
𝑛𝑛𝑟𝑟
𝑗𝑗=1

𝑛𝑛𝑟𝑟
 

1
𝑛𝑛𝑟𝑟 − 1

��𝜏̂𝜏𝑗𝑗 − 𝜏̅̂𝜏.�
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 
1
𝑛𝑛𝑟𝑟
�𝑉𝑉��𝜏̂𝜏𝑗𝑗|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

𝐁𝐁𝐁𝐁: Sample variance of reader-specific coefficient estimates 
B3: Average of variance estimators for reader-specific coefficient estimates 
Models A, B and D assume independence working correlation structure while model C assumes compound 
symmetry working correlation structure 
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The second step involves fitting logistic models using GEE mechanism with readers 

considered as fixed effect and necessary interaction terms. Working correlation structure is set to 

compound symmetry. These models are used to obtain the variance estimate of the average 

coefficient estimate conditioning on readers (𝑩𝑩𝑩𝑩) which can be easily obtained using appropriate 

ESTIMATE/LSMEANS/LSMESTIMATE statements in PROC GLIMMIX/GENMOD 

procedures in SAS. The robust standard error estimates will be consistent due to the virtue of using 

GEE. 

Table 30 provides a summary of the fitted GEE models for each modeling scenario: 

 

 

Table 30: Models fitted using GEE mechanism 

  

Modeling 
Scenario Fitted Logistic Model to overall data using GEE Component 

B2 

Model A 
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍�𝒑𝒑𝒋𝒋� = 𝝁𝝁 +  𝝎𝝎 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝒅𝒅𝒆𝒆𝒆𝒆𝒋𝒋 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑖𝑖′� = 𝜌𝜌 
𝑉𝑉��𝜇̅̂𝜇.|𝜷𝜷� 

Model B 
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍�𝒑𝒑𝒋𝒋𝒋𝒋� = 𝝁𝝁 + 𝜼𝜼 ∗ 𝑫𝑫 +  𝝎𝝎 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒋𝒋 + 𝜿𝜿 ∗ �𝑫𝑫 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒋𝒋� 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖𝑖𝑖′� = 𝜌𝜌 remains similar for diseased and non-diseased subjects 
𝑉𝑉��𝜂̅̂𝜂.|𝜷𝜷� 

Model C 

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍�𝒑𝒑𝒋𝒋𝒋𝒋� = 𝝁𝝁 + 𝜹𝜹 ∗ 𝑴𝑴 +  𝝎𝝎 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒋𝒋 + 𝝊𝝊 ∗ �𝑴𝑴 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒋𝒋� 
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪�𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊, 𝒀𝒀𝒊𝒊𝒊𝒊′𝑴𝑴′� = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪�𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊, 𝒀𝒀𝒊𝒊𝒊𝒊𝑴𝑴′� = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪�𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊, 𝒀𝒀𝒊𝒊𝒊𝒊′𝑴𝑴� = 𝝆𝝆 for a single 

subject 
(correlations can be allowed to differ across both modalities by using 

“group=modality” statement in PROC GLMMIX, SAS) 

𝑉𝑉� �𝛿̂𝛿.̅|𝜷𝜷� 

Model D 
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍�𝒑𝒑𝒋𝒋𝒋𝒋� = 𝝁𝝁 + 𝝉𝝉 ∗ 𝑿𝑿 +  𝝎𝝎 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒋𝒋 + 𝜻𝜻 ∗ �𝑿𝑿 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒋𝒋� 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪�𝒀𝒀𝒊𝒊𝒊𝒊, 𝒀𝒀𝒊𝒊𝒋𝒋′� = 𝝆𝝆 
𝑉𝑉��𝜏̅̂𝜏.|𝜷𝜷� 

1. B2: Variance estimator of average regression coefficient 
2. Working correlations structure is compound symmetry 
3.  𝜔𝜔 is the fixed reader effect;  𝜂𝜂 is the fixed effect for true disease status;  𝜅𝜅 is the fixed reader*truth interaction 
effect;  𝛿𝛿 is the fixed modality effect; 𝜐𝜐 is the fixed reader*modality interaction effect;  𝜏𝜏  is the fixed-slope;  𝜁𝜁 is 
the fixed reader*X interaction effect 
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4.3 SIMULATION STUDY 

 Simulation Study Details 

In the simulation study we considered the same data as was used for evaluating built in GG and 

RG models (Chapters 2 and 3). The true values for models’ parameters were the same as for 

investigating the built-in RG model (as described in 3.5.2). Here we focus only medium-sized 

variance components for simplicity and easy comparison with the PL-RG approach. 

For evaluating performance of the proposed approach we used the same summary indices 

as for evaluations in previous chapters. For construction of confidence interval we considered 

standard normal and t-distribution with containment degrees of freedom. T-distribution is a default 

for built-in RG approach and can be useful for the procedure based on the bias-reduced variance 

estimator. 

The following notations are used for the tables presented in the “Simulation Study Results” 

section: 

1. GG="Subject-Specific" parameter; RG="Half Marginal" parameter 

2. Original=Original SE Estimator; Bias-Corrected=Bias-Corrected SE Estimator 

3. Coverage (%)= Coverage of the 95% CI 

4. Est=Average of fixed effect parameter estimate 

5. MC SD=Monte Carlo Standard Deviation 

6. SB=Standardized bias of fixed effect parameter estimate (using MC Standard Deviation) 

7. SE=Average Estimated Standard Error for fixed effect parameter estimate 

8. RBS (%)=Relative bias of estimated standard error for fixed-effect parameter estimate 

(using MC Standard Deviation) 
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9. Sim Used=Used simulations: (1) Simulations resulting in non-zero standard error 

estimates of fixed-effect (2) PROC LOGISITIC/GLIMMIX/GENMOD convergence 

criteria satisfied 

10. If one or more readers satisfied conditions (1) and/or (2) entire simulation was discarded 

 Simulation Study Results 

For model A with covariate-free setting [Table 31], we observed the following: 

i. Standardized bias of the fixed effect estimate was well within 1 Monte Carlo SD. The 

fixed-effect estimates displayed asymptotically unbiased property, mostly with increasing 

number of subjects. 

ii. In all scenarios, the relative bias of the SE based on the original SE estimator was positive 

which did not decrease with increasing readers and was unlike what was expected. The 

bias-corrected SE estimator was substantially less biased and decreased with increasing 

number of readers. 

iii. Z-approximation based on original SE estimator led to coverage which was close to 

nominal. But, when used along with the bias corrected SE, led to slightly elevated type I 

error rate. 

iv. T-based reference distribution with containment degrees of freedom along with original 

SE estimate led to over conservative coverage while the bias-corrected estimate led to some 

improvement. 

v. We also noted the decreased number of simulations that converged especially when true 

GG probabilities were extreme (e.g., 0.1) especially with large number of readers. This 

seem to have resulted from data separation issues for specific readers which led to 
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discarding the entire simulation that the reader/s were part of. It seems tempting to use 

information from the remaining readers but the proposed approach requires fitting an 

additional overall GEE model which from our experience does not converge in such cases. 

Hence, it is not a practical option. The reason for this is the need to combine the information 

from both models and use simulations only where we have information from both the 

models. 

 

When comparing the results of this approach vs the PL-RG approach, we observed that we 

obtained appropriate coverage rates using both the approaches. For this simple model, the 

standardized bias of the fixed effect estimator was more or less similar. At the same time, the 

relative bias of bias-corrected SE estimator from the proposed approach was similar in magnitude 

and direction as compared to the PL-RG SE estimator. There were slightly more convergence 

issues with the proposed approach for smaller probability values whereas almost all simulations 

converged for the PL-RG approach. 
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Table 31 Simulation Results for Model A fitted used Proposed Method 

 Proposed Approach  

 

pGG=0.1 
μGG=-2.20 
μRG=-1.66     

pGG=0.5 
μGG=0 
μRG=0         

pGG=0.7 
μGG=0.85 
μRG=0.63      

 n1  n1  n1  
 nr 55 100 55 100 55 100 

t-Coverage containment df (%) 
(Original/BC) 

5 99/98 98/97 98/97 98/97 98/97 98/97 

 10 98/97 98/97 98/97 97/97 98/97 98/97 
Z-Coverage (%) 

(Original/BC) 
5 94/90 94/91 93/91 93/92 93/91 92/91 

 10 96/94 96/94 95/95 95/94 95/94 95/94 
Est (MC SD) 5 -1.69 

(0.382) 
-1.69 

(0.348) 
0.01 

(0.326) 
0.01 

(0.303) 
0.65 

(0.341) 
0.64 

(0.305) 
 10 -1.7 

(0.296) 
-1.68 

(0.256) 
0 

(0.258) 
0 

(0.223) 
0.65 

(0.264) 
0.64 

(0.228) 
SB 5 -0.08 -0.1 0.02 0.03 0.06 0.04 

 10 -0.12 -0.09 0 0.01 0.09 0.07 
Original SE (RBS (%)) 

Bias-Corrected SE (RBS (%)) 
5 0.405 (6) 

0.366 (-4) 
0.36 (4) 

0.336 (-3) 
0.338 (4) 
0.318 (-2) 

0.306 (1) 
0.294 (-3) 

0.354 (4) 
0.332 (-3) 

0.315 (3) 
0.302 (-1) 

 10 0.321 (8) 
0.296 (0) 

0.275 (7) 
0.26 (2) 

0.268 (4) 
0.255 (-1) 

0.235 (5) 
0.228 (2) 

0.274 (4) 
0.26 (-1) 

0.242 (6) 
0.233 (2) 

Sim Used 5 966 999 1000 1000 998 1000 
 10 922 990 1000 1000 998 999 

 
Simulation parameters: Subject Variance=2, Reader Variance=0.7 
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We observed the following when applying the proposed approach to model B [Table 32]: 

i. Similar to model A, we saw small standardized bias of the fixed effect. 

ii. The estimates using original SE estimator where heavily upward-biased which got 

worse when the true GG probabilities were close to 0 or 1. The bias-corrected SE 

estimator was substantially less biased. 

iii. Using the z-reference distribution with the original SE estimator (although quite-

upward biased) led to almost optimal coverage of the 95% CI. However, using it 

in conjunction with the bias corrected SE estimator led to coverage on the lower 

end but yet above 90%. 

iv. The t-based approximation led to extremely over conservative coverage with the 

original SE estimator and still conservative coverage with it’s biased corrected 

version. 

v. Once again since we have a binary covariate, data from several readers suffered 

from data-separation issues which led to quit a bit of loss in the number of 

converged simulations used for computation. 

 

On comparison with PL-RG model results, we observed good coverage rates using both 

techniques. The standardized bias had no clear trend and was similar for both approaches in some 

scenarios (TPF=0.6, FPF=0.6) while completely different in magnitude and direction for others 

(e.g., TPF=0.3, FPF=0.9). Finally, the relative bias of the bias-corrected SE estimator was more 

closer to the PL-RG SE estimator as compared to the original SE estimator.
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Table 32 Simulation Results for Model B fitted used Proposed Method 

 

TPFGG=0.5, FPFGG=0.03 
ηGG=3.48 
ηRG=2.75 

TPFGG=0.3, FPFGG=0.9 
ηGG=-3.04 
ηRG=-2.31 

TPFGG=0.6, FPFGG=0.6 
ηGG=0 
ηRG=0 

 n0  n0  n0  
 nr n1 100 175 100 175 100 175 

t-Coverage containment df (%): (Original/BC) 5 55 100/98 100/98 100/99 100/99 100/99 100/98 
 5 100 99/97 99/98 100/98 99/98 99/98 99/98 
 10 55 99/97 99/97 99/97 99/97 98/97 98/97 
 10 100 99/97 99/97 98/97 98/97 99/98 99/98 

Z-Coverage (%):(Original/BC) 5 55 97/93 97/92 97/94 96/93 96/93 96/92 
 5 100 97/92 96/92 96/92 95/92 96/93 94/91 
 10 55 98/94 97/94 96/95 97/95 96/94 96/94 
 10 100 97/94 97/94 96/94 96/95 97/95 96/94 

Est (MC SD) 5 55 2.8 (0.351) 2.79 (0.333) -2.35 (0.317) -2.34 (0.298) 0 (0.288) 0.01 (0.274) 
 5 100 2.8 (0.333) 2.79 (0.314) -2.35 (0.294) -2.34 (0.271) 0 (0.259) 0 (0.246) 
 10 55 2.79 (0.284) 2.8 (0.265) -2.35 (0.263) -2.35 (0.241) 0 (0.24) 0.01 (0.228) 
 10 100 2.79 (0.261) 2.8 (0.243) -2.35 (0.235) -2.34 (0.213) 0 (0.206) 0 (0.193) 

SB 5 55 0.15 0.13 -0.13 -0.1 0 0.03 
 5 100 0.17 0.14 -0.13 -0.1 0 0.01 
 10 55 0.15 0.21 -0.17 -0.16 0 0.03 
 10 100 0.17 0.21 -0.15 -0.15 0 -0.02 

Original SE (RBS (%)) 
Bias-Corrected SE (RBS (%)) 

5 55 0.426 (21) 
0.349 (-1) 

0.376 (13) 
0.32 (-4) 

0.361 (14) 
0.314 (-1) 

0.329 (11) 
0.291 (-2) 

0.316 (10) 
0.282 (-2) 

0.298 (9) 
0.267 (-3) 

 5 100 0.403 (21) 
0.33 (-1) 

0.346 (10) 
0.294 (-6) 

0.327 (11) 
0.287 (-3) 

0.29 (7) 
0.258 (-5) 

0.28 (8) 
0.253 (-2) 

0.26 (6) 
0.237 (-4) 

 10 55 0.338 (19) 
0.292 (3) 

0.302 (14) 
0.267 (1) 

0.29 (10) 
0.262 (0) 

0.266 (10) 
0.243 (1) 

0.258 (7) 
0.238 (-1) 

0.243 (7) 
0.225 (-1) 

 10 100 0.315 (21) 
0.271 (4) 

0.277 (14) 
0.244 (1) 

0.262 (11) 
0.238 (1) 

0.233 (9) 
0.215 (1) 

0.226 (9) 
0.21 (2) 

0.209 (9) 
0.196 (1) 

Sim Used 5 55 887 966 992 998 1000 1000 
 5 100 887 966 994 998 1000 1000 
 10 55 784 951 992 998 999 990 
 10 100 784 951 993 995 1000 994 

 
Simulation parameters: Subject Variance=1.9, Reader Variance=0.5, Reader*Truth Variance=0.14 
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In case of model C which uses an assessment-level covariate [Table 33], the following was 

observed: 

i. Small standardized bias (<<50%) indicating that this bias has a minimal affect on 

the coverage. 

ii. The original and the bias-corrected version of the SE estimator showed similar 

behavior as in models A and B. The original SE estimator was highly upward biased 

and this bias did not always decrease with increasing number of readers. On the 

other hand, the bias corrected one was less biased, mostly under biased and this 

bias usually decreased when number of readers went up from 5 to 10. 

iii. The z-based CI using the original SE estimator led to more optimal coverage while 

the bias-corrected SE estimator led to poor coverage (e.g. <90%) when number of 

readers was small. 

iv. The t-based CI with the original SE estimator led to over conservative coverage, 

while it’s bias corrected counterpart led to coverage closer to nominal. 

v. The simulation models also suffered from data separation issues resulting in loss of 

simulations. The loss was however less significant as compared to model B. 

 

When comparing the results from this approach vs. the PL-RG approach, the coverage rates 

when using based on the proposed approach when optimal were very similar to the PL-RG 

approach. The standardized bias of the fixed-effect estimator was more or less close using both 

approaches except that it was slightly higher in magnitude (but under-biased) for the proposed 

approach when the GG true positive fraction rates was close to 0 or 1. When comparing the relative 

bias of the SE estimator, the PL-RG approach led to under-biased and bigger SE estimates in 
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magnitude. There were slightly more convergence issues with the proposed method due to data 

separation issues and the usage of two different models simultaneously.
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Table 33 Simulation Results for Model C fitted used Proposed Method 

 Proposed Method   

 

p1GG=0.5, p2GG=0.6 
δGG=-0.41 
δRG=-0.26 

p1GG=0.1, p2GG=0.7 
δGG=-3.04 
δRG=-1.96 

p1GG=0.8, p2GG=0.8 
δGG=0 
δRG=0 

 n1  n1  n1  
 nr 55 100 55 100 55 100 

t-Coverage containment df (%) 
(Original/BC) 

5 99/96 98/96 99/97 98/96 99/96 98/96 

 10 99/96 98/96 98/96 98/97 98/96 98/96 
Z-Coverage (%) 

(Original/BC) 
5 95/90 93/89 95/92 94/89 94/88 93/88 

 10 96/93 96/94 96/93 95/93 96/92 96/94 
Est (MC SD) 5 -0.27(0.291) -0.27(0.277) -2.02(0.351) -2(0.323) 0(0.322) -0.01(0.297) 

 10 -0.26(0.208) -0.26(0.193) -2.01(0.266) -1.99(0.24) 0(0.229) 0(0.205) 
SB 5 -0.06 -0.04 -0.17 -0.13 -0.01 -0.02 

 10 -0.04 -0.03 -0.19 -0.16 -0.01 0 
Original SE (RBS (%)) 

Bias-Corrected SE (RBS (%)) 
5 0.328 (13) 

0.292 (0) 
0.29 (4) 

0.266 (-4) 
0.395 (13) 
0.344 (-2) 

0.332 (3) 
0.299 (-8) 

0.349 (8) 
0.303 (-6) 

0.308 (4) 
0.279 (-6) 

 10 0.233 (12) 
0.208 (0) 

0.21 (9) 
0.195 (1) 

0.294 (11) 
0.261 (-2) 

0.253 (6) 
0.232 (-3) 

0.254 (11) 
0.224 (-2) 

0.222 (8) 
0.204 (-1) 

Sim Used 5 999 1000 968 993 986 997 
 10 1000 1000 939 987 979 996 

 
Simulation parameters: Subject Variance=3.71, Reader Variance=0.8672, Reader*Modality Variance=0.4 
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Finally, when dealing with a continuous covariate, as in model D [Table 34], we observed 

the following: 

i. The standardized bias of the fixed-effect was within 1 MC SD but was a little higher >50% 

for bigger GG slope values e.g., 0.1 which did not affect the coverage much except that the 

z-based coverage using bias-corrected variance estimator dropped below 90%. 

ii. The relative bias of the standard error estimates using original SE estimator was sometimes 

slightly upward biased and sometimes slightly downward biased. This bias did not always 

decrease with increasing number of readers. In contrast, the bias resulting from using the 

bias corrected alterative always led to substantial decrease in bias and always decreased as 

number of readers increased. 

iii. The z-based coverage based on the original variance estimator led to more or less close to 

nominal coverage. However, with the bias corrected estimator we saw a further decrease 

in the coverage which was unacceptable especially as the slope got bigger. 

iv. The t-based coverage using original variance estimator led to extremely over-conservative 

coverage. However, when this reference distribution was used along with the bias-

corrected variance estimator, there was a slight improvement in the coverage which was 

still conservative. 

v. Very minimal convergence issues were noted for this model. 

 

Comparing this approach with the PL-RG approach, both approaches gave acceptable 

coverage rates. However, the standardized bias of the fixed-effect estimator was greater for the 

proposed approach especially for large slope values whereas the relative bias of the PL-RG SE 

estimator was mostly somewhere in between the original and biased corrected version of the SE 
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estimator for the proposed approach. Overall there were far less convergence issues for this model 

using the new approach vs. the PL-RG estimation approach. 

To assess the potential advantages for improving the fixed effect estimate for the proposed 

approach we tried to use the estimate from the fixed-reader GEE model while using the proposed 

variance estimator. Simulation results [Table 34, Table 35] comparing “Estimator 1” (based on 

using simple average of the reader-specific estimates which also happens to be similar to the 

estimate obtained from a GEE model with fixed-reader effect and independence correlation 

structure) and “Estimator 2” (using a GEE model with fixed-reader effect with compound 

symmetry correlation structure) showed that results based on using “Estimator 2” were less biased 

and slightly improved the CI coverage. 
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Table 34 Simulation Results for Model D fitted used Proposed Method (Estimator 1) 

 Proposed Method  

 

μGG=0 
τGG=0 
τRG=0         

μGG=0 
τGG=.03 

τRG=0.022      

μGG=0 
τGG=.06 

τRG=0.044      

μGG=0 
τGG=0.1 

τRG=0.073      
 n1  n1  n1  n1  

 nr 55 100 55 100 55 100 55 100 
t-Coverage containment df (%) 

(Original/BC) 
5 99/98 98/97 99/98 98/97 99/98 99/97 100/97 99/97 

 10 98/97 98/97 98/97 97/96 98/97 97/96 97/93 97/94 
Z-Coverage (%) 

(Original/BC) 
5 95/92 92/90 96/93 92/91 95/92 93/89 96/88 94/89 

 10 95/94 95/94 95/94 94/93 96/94 95/94 94/88 94/89 
Est (MC SD) 5 0(0.013) 0(0.012) 0.024(0.014) 0.023(0.013) 0.049(0.016) 0.047(0.014) 0.087(0.023) 0.082(0.016) 

 10 0(0.01) 0(0.009) 0.024(0.011) 0.023(0.009) 0.05(0.012) 0.047(0.01) 0.087(0.018) 0.082(0.012) 
SB 5 0 -0.01 0.17 0.11 0.36 0.27 0.64 0.53 

 10 0.02 0.01 0.24 0.16 0.48 0.37 0.79 0.71 
Original SE (RBS (%)) 

Bias-Corrected SE (RBS (%)) 
5 0.013 (3) 

0.013 (-3) 
0.012 (-2) 
0.011 (-6) 

0.014 (5) 
0.013 (-3) 

0.012 (-2) 
0.012 (-7) 

0.016 (4) 
0.015 (-6) 

0.013 (-1) 
0.013 (-8) 

0.022 (-3) 
0.019 (-17) 

0.017 (2) 
0.015 (-9) 

 10 0.01 (4) 
0.01 (-1) 

0.009 (2) 
0.009 (-1) 

0.011 (3) 
0.01 (-3) 

0.009 (1) 
0.009 (-2) 

0.013 (6) 
0.012 (-3) 

0.01 (4) 
0.01 (-2) 

0.017 (-4) 
0.015 (-16) 

0.013 (4) 
0.012 (-6) 

Sim Used 5 1000 1000 1000 1000 1000 1000 996 1000 
 10 1000 1000 1000 1000 1000 1000 991 1000 

 
1. Simulation parameters: Subject Variance=2, Reader Variance=0.2 Reader*LesionSize Variance=0.001 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
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Table 35 Simulation Results for Model D fitted used Proposed Method (Estimator 2) 

 Proposed Method  

 

μGG=0 
τGG=0 
τRG=0         

μGG=0 
τGG=.03 

τRG=0.022      

μGG=0 
τGG=.06 

τRG=0.044      

μGG=0 
τGG=0.1 

τRG=0.073      
 n1  n1  n1  n1  

 nr 55 100 55 100 55 100 55 100 
t-Coverage containment df (%) 

(Original/BC) 
5 99/98 98/97 100/99 98/97 99/98 98/97 100/97 99/97 

 10 98/97 98/97 98/97 97/96 98/97 97/96 98/95 98/95 
Z-Coverage (%) 

(Original/BC) 
5 95/92 92/90 96/93 92/91 95/92 93/89 96/88 94/89 

 10 96/94 95/94 96/95 94/93 96/94 96/94 95/90 94/91 
Est (MC SD) 5 0(0.013) 0(0.012) 0.024(0.013) 0.023(0.013) 0.049(0.015) 0.047(0.013) 0.087(0.022) 0.081(0.016) 

 10 0(0.01) 0(0.009) 0.024(0.01) 0.023(0.009) 0.049(0.012) 0.047(0.01) 0.086(0.017) 0.081(0.012) 
SB 5 0 -0.01 0.16 0.1 0.34 0.25 0.63 0.51 

 10 0.02 0.01 0.22 0.14 0.44 0.32 0.76 0.66 
Original SE (RBS (%)) 

Bias-Corrected SE (RBS (%)) 
5 0.013 (4) 

0.013 (-2) 
0.012 (-2) 
0.011 (-5) 

0.014 (6) 
0.013 (-2) 

0.012 (-2) 
0.012 (-6) 

0.016 (5) 
0.015 (-5) 

0.013 (-1) 
0.013 (-7) 

0.022 (1) 
0.019 (-14) 

0.017 (3) 
0.015 (-8) 

 10 0.01 (5) 
0.01 (0) 

0.009 (3) 
0.009 (-1) 

0.011 (5) 
0.01 (-1) 

0.009 (2) 
0.009 (-2) 

0.013 (9) 
0.012 (0) 

0.01 (5) 
0.01 (-1) 

0.017 (0) 
0.015 (-13) 

0.013 (6) 
0.012 (-4) 

Sim Used 5 1000 1000 1000 1000 1000 1000 996 1000 
 10 1000 1000 1000 1000 1000 1000 991 1000 

 
1. Simulation parameters: Subject Variance=2, Reader Variance=0.2 Reader*LesionSize Variance=0.001 
2. Continuous variable (LesionSize)~Unif(1,100) and has been centered at 50.5 mm during simulation and fitting process 
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Table 36 Comparison of PL-RG Model estimates with Proposed Method estimates based on real dataset 

Model Sample Size Parameter 
PL-RG model on 

logit scale  
(Estimate ± SE) 

Proposed Method on 
logit scale* 

(Estimate ± SE) 
A 

(modality=1) 
𝑛𝑛𝑟𝑟 = 7 
𝑛𝑛1 = 55 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜇𝜇� 0.0705 ± 0.3044 0.0763 ± 0.3191Orig 

0.0763 ± 0.3072BC 
A 

(modality=2) 
𝑛𝑛𝑟𝑟 = 7 
𝑛𝑛1 = 55 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜇𝜇� 0.3187 ± 0.2826 0.3452 ± 0.2969Orig 

0.3452 ± 0.2861BC 

B 
(modality=1) 

𝑛𝑛𝑟𝑟 = 7 
𝑛𝑛0 = 175 
𝑛𝑛1 = 55 

ln(𝑂𝑂𝑂𝑂) = 𝜂𝜂� 2.8448 ± 0.3086 2.9759  ± 0.3707Orig 
2.9759  ± 0.3369BC 

B 
(modality=2) 

𝑛𝑛𝑟𝑟 = 7 
𝑛𝑛0 = 175 
𝑛𝑛1 = 55 

ln(𝑂𝑂𝑂𝑂) = 𝜂𝜂� 2.8170 ± 0.2595 2.9760 ± 0.3388Orig 
2.9760 ± 0.3072BC 

C 𝑛𝑛𝑟𝑟 = 7 
𝑛𝑛1 = 55 ln(𝑂𝑂𝑂𝑂) = 𝛿𝛿 -0.2687 ± 0.1159 -0.2689 ± 0.1523Orig 

-0.2689 ± 0.1083BC 
Orig: Original Standard Error Estimate 
BC: Bias corrected Standard Error Estimate 
*The fixed effect estimates for models A-C are exactly the same as empirical estimates 

 

.
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We compared the PL-RG approach with the proposed approach based on the real-life data [43] as 

illustrated in Table 36. We observed that the fixed-effect estimates from the proposed approach 

closely agreed with those from the PL-RG approach, although a bit larger. For models A, B and 

C, they were exactly similar to the empirical RG estimates. The original standard errors were 

slightly greater than the ones from PL-RG approach. Overall, the two approaches led to much 

similar results. 

4.4 SUMMARY AND DISCUSSION 

The proposed approach offers an acceptable alternative to the PL-RG approach for estimating half-

marginal models in multi-reader studies. The primary advantage of this approach is the 

probabilistic nature and explicit estimation based on non-iterative combination of results from 

robust GEE approaches. The fixed-effect estimator is also consistent and produces the exact same 

estimate as the empirical estimates when using simple models with binary covariates or no 

covariates. This is very much unlike the PL-RG approach which is often criticized for it’s non-

probabilistic nature and possible consistency problem of its estimates. On the other hand, both the 

proposed approach and built in PL-RG technique allow us to make statistical inferences with 

confidence, and the fixed-effect estimator from the PL-RG approach often leads to more precise 

estimates in the considered scenarios.  

The simple and well-grounded formulation of proposed estimators of fixed effects and their 

variance creates a solid foundation for developing improved approach for estimating useful half-

marginal models in the future. However, the currently proposed approach has limitations. First of 

all, it requires fitting and implementing two separate types of models unlike fitting a single model 
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for the PL-RG approach which is more convenient. In many cases that leads to lower 

implementation than for the built-in PL-RG approach (PROC GLIMMIX, SAS). Furthermore, 

there is a greater chance of data separation issues (more so due to the presence of categorical 

covariates) resulting from fitting reader-specific models and GEE models with readers as fixed-

effects creating convergence issues not typically seen with PL-RG models. 

In the future developments, I plan to address these issues by using more efficient and robust 

techniques for estimating fixed effects. It would also be of interest to extend the proposed 

technique for estimating variance components, which are important for understanding the sources 

of variability in the considered multi-reader studies. These components are generally useful in 

designing future studies and also may be useful in improved estimation methods. For the biased-

reduced variance estimator, it might be worthwhile to investigate the distribution of the 

corresponding test-statistic and possibly derive the Satterthwaite-like degrees of freedom. This 

could possibly lead to further improvement in coverage especially when fitting more complex 

models. 
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APPENDIX A: IMPLEMENTATION OF THE SUBJECT-SPECIFIC MODELS IN SAS 

Model A 

proc glimmix data=nodule; 
class subject reader; 
model y(event="1")=/dist=binary; 
random reader subject; 

run; 
 

Model B 

proc glimmix data=nodule; 
class truth subject reader; 
model y(event="1")=truth/dist=binary; 
random subject reader reader*truth; 

run; 
 

Different variability for “diseased” and “non-diseased” subjects can be modeled using the option 

“/group=truth” in the “random” statement. 

 
Model C 

proc glimmix data=nodule  
class modality subject reader; 
model y(event="1")=modality/dist=binary; 
random subject reader reader*modality; 

run; 
 

Model D 

proc glimmix data=nodule method=RSPL ; 
class subject reader ; 
model y(event="1")= X/dist=binary; 
random subject reader reader*X; 

run; 
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Estimation of these models using Laplace approximation is achieved by using option 

METHOD=LAPLACE (METHOD=RSPL is the default option engaging the PL estimation). 
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APPENDIX B: IMPLEMENTATION OF THE HALF MARGINAL MODELS IN SAS 

Model A 

proc glimmix data=nodule method=RSPL; 
class subject reader; 
model y(event="1")=/dist=binary; 
random reader; 
random intercept/subject=subject type=cs residual; 

run; 
 

Model B 

proc glimmix data=nodule order=data method=RSPL; 
class truth subject reader; 
model y(event="1")=truth/dist=binary; 
random reader reader*truth; 
random intercept/subject=subject type=cs residual; 

run; 
 

Model C 

proc glimmix data=nodule method=RSPL;  
class modality subject reader; 
model y(event="1")=modality/dist=binary; 
random reader reader*modality; 
random intercept/subject=subject type=cs residual; 

run; 
 

Model D 

proc glimmix data=nodule method=RSPL ; 
class subject reader ; 
model y(event="1")= X/dist=binary; 
random reader reader*X; 
random intercept/subject=subject type=cs residual; 

run; 
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APPENDIX C: ACCURACY OF ESTIMATED VARIANCE COMPONENTS FOR 

MODEL A 

We tested the accuracy of each variance component (reader and subject variability) of model A 

for different variance component configuration (small, medium and large in magnitude). As 

observed in tables below, PL estimated technique resulted in substantial bias in each variance 

component as compared to the LA estimated technique. To compute the relative bias, we used the 

true variance parameters values as set in simulations.  
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Table 37 Model A: Variance Estimation (Small variance components) 

 PL Estimation*   LAPLACE Estimation*  

 
p=0.1 

μ=-2.20     
p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85      

 n1  n1  n1   n1  n1  n1  
 nr 55 100 55 100 55 100  55 100 55 100 55 100 

RB of 
Subject 

Variance (%) 

5 -35 -36 -31 -32 -33 -33  5 -1 -11 -12 -12 -12 

 10 -28 -28 -19 -20 -20 -21  -6 -5 -5 -5 -4 -5 

Sim Used 
(Subject 

Var) 

5 955 991 1000 1000 998 1000  952 990 1000 1000 997 1000 

 10 996 1000 1000 1000 1000 1000  996 1000 1000 1000 999 1000 

RB of 
Reader 

Variance (%) 

5 81 23 7 -10 18 -3  49 -4 5 -10 12 -8 

 10 25 6 -9 -12 -4 -11  21 0 -2 -6 1 -7 

Sim Used 
(Reader Var) 

5 638 714 702 822 708 808  573 621 678 796 670 780 

 10 743 827 878 949 841 931  740 810 876 947 842 930 

 
1. Simulation parameters (variance components in logit scale): Subject Variance=1, Reader Variance=0.1 
2. p=TPF/Sensitivity, nr=Number of readers, n1=Number of diseased subjects 
3. Statistics are computed on logit scale 
4. RB: Relative Bias of Variance Components 
5. Sim Used: Number of simulatons used for calculations out of 1000 simulations 
6.* : Sim Used=Used simulations: (1) Nonzero positive standard errors in convergent simulations 
 (2)  PROC GLIMMIX convergence criteria satisfied 
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Table 38: Model A: Variance Estimation (Medium variance components) 

 PL Estimation*   LAPLACE Estimation*  

 
p=0.1 

μ=-2.20     
p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85      

 n1  n1  n1   n1  n1  n1  
 nr 55 100 55 100 55 100  55 100 55 100 55 100 

RB of 
Subject 

Variance (%) 

5 -45 -46 -39 -39 -40 -41  19 -7 -7 -9 -6 -10 

 10 -34 -35 -24 -25 -26 -27  -4 -7 -1 -3 -2 -4 

Sim Used 
(Subject 

Var) 

5 998 999 1000 1000 1000 1000  997 999 1000 1000 1000 1000 

 10 1000 1000 1000 1000 1000 1000  1000 1000 1000 1000 1000 1000 

RB of 
Reader 

Variance (%) 

5 -18 -26 -28 -29 -29 -28  -11 -28 -18 -21 -20 -22 

 10 -23 -22 -21 -19 -22 -20  -12 -15 -9 -9 -10 -10 

Sim Used 
(Reader Var) 

5 915 963 964 986 956 981  905 948 961 986 954 979 

 10 989 1000 997 1000 998 999  991 1000 998 1000 998 999 

 
1. Simulation parameters (variance components in logit scale): Subject Variance=2, Reader Variance=0.7 
2. p=TPF/Sensitivity, nr=Number of readers, n1=Number of diseased subjects 
3. Statistics are computed on logit scale 
4. RB: Relative bias of variance component 
5. Sim Used: Number of simulatons used for calculations out of 1000 simulations 
6.* : Sim Used=Used simulations: (1) Nonzero positive standard errors in convergent simulations  
(2)  PROC GLIMMIX convergence criteria satisfied 
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Table 39: Model A: Variance Estimation (Large variance components) 

 PL Estimation*   LAPLACE Estimation*  

 
p=0.1 

μ=-2.20     
p=0.5 
μ=0         

p=0.7 
μ=0.85       

p=0.1 
μ=-2.20     

p=0.5 
μ=0         

p=0.7 
μ=0.85      

 n1  n1  n1   n1  n1  n1  
 nr 55 100 55 100 55 100  55 100 55 100 55 100 

RB of 
Subject 

Variance (%) 

5 -51 -52 -44 -44 -46 -45  20 -11 -6 -8 -7 -9 

 10 -37 -37 -29 -28 -31 -30  -3 -5 -3 -2 -3 -3 

Sim Used 
(Subject Var) 

5 1000 1000 1000 1000 1000 1000  999 999 1000 1000 1000 1000 

 10 1000 1000 1000 1000 1000 1000  1000 1000 1000 1000 1000 1000 

RB of Reader 
Variance (%) 

5 -32 -34 -34 -35 -33 -35  -18 -28 -18 -22 -18 -23 

 10 -27 -24 -23 -22 -23 -22  -11 -13 -7 -9 -7 -9 

Sim Used 
(Reader Var) 

5 974 988 994 997 989 993  970 984 994 997 988 995 

 10 1000 1000 1000 1000 999 1000  1000 1000 1000 1000 999 1000 

 
1. Simulation parameters (variance components in logit scale): Subject Variance=3, Reader Variance=1.5 
2. p=TPF/Sensitivity, nr=Number of readers, n1=Number of diseased subjects 
3. Statistics are computed on logit scale 
4. RB: Relative Bias of Variance Components 
5. Sim Used: Number of simulatons used for calculations out of 1000 simulations 
6.* : Sim Used=Used simulations: (1) Nonzero positive standard errors in convergent simulations  
(2)  PROC GLIMMIX convergence criteria satisfied 
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APPENDIX D: MAGNITUDE OF VARIABILITY COMPONENTS 

In order to gauge the magnitude of variance components on logit scale that can ultimately be useful 

for deriving parameters for reasonable modeling settings, we use the simplest model setting (model 

A) to perform our illustration. Suppose the between-reader variance is 0.7 and the between-subject 

variance is 2.0 on the logit scale. To better understand the magnitude of between-reader variability, 

we can compute the probability/sensitivity corresponding to a low-performing reader (e.g. at 5th 

percentile of the distribution of the reader random factor) and the sensitivity corresponding to a 

high-performing reader (e.g. at the 95th percentile). This can be computed exploiting the fact that 

random effects are normally distributed i.e. 𝛼𝛼𝑖𝑖~𝑁𝑁(0,2) for subjects and 𝛽𝛽𝑗𝑗~𝑁𝑁(0,0.7) for readers 

and 𝜇𝜇 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝑝𝑝) = 0. In particular, the reader-specific probabilities can now be computed by 

evaluating the following general integral: 

𝑝𝑝𝑘𝑘 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1(𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑘𝑘)𝑓𝑓(𝛼𝛼𝑖𝑖)𝑑𝑑𝛼𝛼𝑖𝑖, 

where 𝑥𝑥𝑘𝑘 = 𝑘𝑘𝑡𝑡ℎ percentile of the reader random effect distribution. This leads to the following 

quantities: 

Probability of an average subject being classified as positive by a (i) low performing reader (5th 

percentile) = 0.296 (ii) average performing reader (50th percentile) = 0.499 and (iii) high 

performing reader (95th percentile) = 0.771 

Similarly, in order to assess the between-subject variability, we can estimate the smallest 

and the largest proportion of readers who will label a specific subject “positive” (or equivalently 

the probability of a subject with a certain severity of the condition being classified as “positive” 

by an average reader). Namely, by evaluating the following integral: 
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𝑝𝑝𝑘𝑘 = ∫ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1�𝜇𝜇 + 𝑥𝑥𝑘𝑘 + 𝛽𝛽𝑗𝑗�𝑓𝑓�𝛽𝛽𝑗𝑗�𝑑𝑑𝛽𝛽𝑗𝑗, 

where  𝑥𝑥𝑘𝑘 = 𝑘𝑘𝑡𝑡ℎ percentile of the subject random effect distribution, we obtain the following 

estimates: 

• Probability of a subject with subtle condition (5th percentile) being classified as 

positive by an average reader = 0.051 

• Probability of a subject with average condition (50th percentile) being classified as 

positive by an average reader = 0.498 

• Probability of a subject with obvious condition (95th percentile) being classified as 

positive by an average reader = 0.952 

An alternative way to gauge between-subject variability is to compute the correlation 

coefficient for the response of two readers (e.g. assuming the readers are very close to the average 

i.e. have reader-effects as “0”). 

Since the chosen variance components for this illustration came from fitting subject-

specific models to the real observer study [43], it is easy to verify the integral-based computed 

probabilities by means of computing the empirical estimates of these probabilities using the same 

dataset. Note that the marginal sensitivity is 0.516 based on the subset of this data (modality=1, 

𝑛𝑛1 = 55, 𝑛𝑛𝑟𝑟 = 7). Typically when the sensitivity is 0.5, the subject-specific and marginal 

sensitivities coincide. 

Now, we compute the empirical probability estimates: 

The percentiles of the distribution of empirical proportions for each reader (𝑛𝑛𝑟𝑟 = 7) are as follows: 

• 5th percentile/minimum observation (low-performing reader) = 0.2909 

• 50th percentile (average-performing reader) = 0.4545 

• 95th percentile/maximum observation (high-performing reader) = 0.7454 
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The percentiles of the distribution of empirical proportions for each subject (𝑛𝑛1 = 55) are as 

follows: 

• 5th percentile/3rd observation (subject with subtle condition) = 0 

• 50th percentile (subject with average condition) = 0.428 

• 95th percentile/53rd observation (subject with obvious condition) = 1 

We observed that the empirical estimates are very close to the ones computed numerically. 

Thus, we illustrated a simple tool to understand the magnitude of the chosen variance components 

in a cross-correlated study. 
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We also used similar approach to assess reasonable variance parameter configurations for model 

D i.e. �𝜎𝜎𝛼𝛼2, 𝜎𝜎𝛽𝛽2, 𝜎𝜎𝑋𝑋2� given the fixed effect 𝜇𝜇 = 0 and 𝜏𝜏 = 0, 0.03, 0.06, 0.1. This simulation model 

is defined as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝜏𝜏 ∗ 𝑋𝑋𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑗𝑗 ∗ 𝑋𝑋𝑖𝑖, 

where 𝑋𝑋𝑖𝑖∗~ Unif(1,100) is the lesion size, 𝑋𝑋𝑖𝑖 is centered at 50.5mm i.e. 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖∗ − 50.5,  

𝛼𝛼𝑖𝑖 ~𝑁𝑁(0, 𝜎𝜎𝛼𝛼2) is the subject random effect, 𝛽𝛽𝑗𝑗 ~𝑁𝑁�0, 𝜎𝜎𝛽𝛽2� is the reader random effect and 

𝛾𝛾𝑗𝑗 ~𝑁𝑁(0, 𝜎𝜎𝑋𝑋2) is the reader*covariate interaction random effect. Next, we performed the following 

steps: 

Table 40: Obtain value for variance components which lead to reasonable reader-specific probabilities 

Model & Distribution of Linear Predictor 

𝝈𝝈𝜷𝜷𝟐𝟐 = 𝟎𝟎. 𝟐𝟐 

𝝉𝝉 

𝑿𝑿 = −𝟒𝟒𝟒𝟒. 𝟓𝟓 
𝑿𝑿∗ = 𝟏𝟏 

𝑿𝑿 = 𝟎𝟎 
𝑿𝑿∗ = 𝟓𝟓𝟓𝟓. 𝟓𝟓 

𝑿𝑿 = 𝟒𝟒𝟒𝟒. 𝟓𝟓 
𝑿𝑿∗ = 𝟏𝟏𝟏𝟏𝟏𝟏 

Reader-specific probability range (5th – 95th 
percentile of distribution of linear predictor) 

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍�𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊� = 𝝁𝝁 + 𝝉𝝉 ∗ 𝑿𝑿𝒊𝒊 + 𝜷𝜷𝒋𝒋 = 𝝍𝝍𝒊𝒊𝒊𝒊 
𝜓𝜓𝑖𝑖𝑖𝑖~𝑁𝑁(𝜇𝜇 + 𝜏𝜏 ∗ 𝑋𝑋𝑖𝑖, 𝜎𝜎𝛽𝛽2) 

0 0.32 – 0.67 0.32 – 0.67 0.32 – 0.67 
0.03 0.09 - 0.32 0.32 - 0.67 0.67 – 0.90 
0.06 0.02 – 0.09 0.32 – 0.67 0.90 - 0.97 
0.1 0.003 – 0.01 0.32 – 0.67 0.98 – 0.99 

      
𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍�𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊� = 𝝁𝝁 + 𝝉𝝉 ∗ 𝑿𝑿𝒊𝒊 + 𝜷𝜷𝒋𝒋 + 𝜸𝜸𝒋𝒋 ∗ 𝑿𝑿𝒊𝒊

= 𝝍𝝍𝒊𝒊𝒊𝒊 
𝜓𝜓𝑖𝑖𝑖𝑖~𝑁𝑁(𝜇𝜇 + 𝜏𝜏 ∗ 𝑋𝑋𝑖𝑖, 𝜎𝜎𝛽𝛽2 + 𝜎𝜎𝑋𝑋2 ∗ 𝑋𝑋𝑖𝑖2) 

𝝈𝝈𝜷𝜷𝟐𝟐 = 𝟎𝟎. 𝟐𝟐 
𝝈𝝈𝑿𝑿𝟐𝟐 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 

0 0.06 – 0.93 0.06 – 0.93 0.06 – 0.93 
0.03 0.01 – 0.76 0.32 – 0.67 0.23 – 0.98 
0.06 0.003 – 0.43 0.32 – 0.67 0.57 – 0.99 
0.1 0 – 0.09 0.32 – 0.67 0.90 – 0.99 

 
Step 1: Chose 𝜎𝜎𝛽𝛽2 = 2 that lead to realistic probabilities for a low and high performing reader for 

varying values of lesion size. Additionally, we chose 𝜎𝜎𝑋𝑋2 = 0.001 which together with 𝜎𝜎𝛽𝛽2 = 2 lead 

to acceptable range of probabilities. 

Step 2: Since subjects are expected to vary a lot naturally, it makes sense to choose a slightly bigger 

value for 𝜎𝜎𝛼𝛼2 as compared to reader variance. Values were chosen similar to those in models A, B 

and C. 
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APPENDIX E: IMPLEMENTATION OF THE PROPOSED APPROACH IN SAS 

The proposed approach can be implemented in the following seven steps (A through G): 

A. Fit a GEE model for each reader separately and record the reader-specific coefficient, 

e.g., 𝜃𝜃𝚥𝚥�
𝑠𝑠 where 𝑠𝑠 = 1, … ,1000 is the index to denote simulation 

Model A SAS code: 

proc logistic data=data; 
by sim reader; 
model rating_binary(event="1")=; 
estimate "Int" int 1/cl ilink; 
ods output  Estimates=est_log; 
run; 

 

Model B SAS code: 

proc logistic data=data; 
by sim reader; 
class truth(ref='0') / param = glm; 
model rating_binary(event="1")=truth; 
lsmeans truth/ilink cl diff; 
ods output  Diffs=diff_log; 
run; 

  
Model C SAS code: 

proc glimmix data=data order=data empirical; 
by sim reader; 
class modality; 
model rating_binary(event="1")=modality/dist=binary; 
random _residual_/subject=subject type=cs; 
lsmeans modality/ilink cl diff; 
ods output diffs=diff; 
run; 
 

  



119 

Model D SAS code: 

proc logistic data=data; 
by sim reader; 
model rating_binary(event="1")=X; 
ods output ParameterEstimates=parm;  
run; 

 

B. Compute average of the estimated coefficient (logit scale) across the readers which 

gives us the model-averaged estimate of the desired parameter for model A, B, C and 

D (based on “Estimator 1”): 

𝜃𝜃�̅.
𝑠𝑠

=
1
𝑛𝑛𝑟𝑟
�𝜃𝜃𝚥𝚥�

𝑠𝑠
𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

 
For model D, we can also use estimate based on “Estimator 2” i.e. average slope coefficient 

using the following SAS statements: 

proc genmod data=data; 
by sim; 
class  subject reader; 
model rating_binary(event="1")=X reader reader*X/dist=bin ; 
repeated subject=subject/ type=cs; 
estimate "avg slope" X 1/e; 
ods output Estimates=est_all_cs; 
run; 

 
 
C. Compute sample variance of the estimated coefficient (logit scale) across the readers: 

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃𝚥𝚥�
𝑠𝑠 − 𝜃𝜃�̅.

𝑠𝑠
�
2

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

D. Compute the average of the estimated variance of the estimated coefficient (logit scale) 

across the readers: 

�
𝑉𝑉�𝑠𝑠 �𝜃𝜃𝑗𝑗�

𝑠𝑠|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟

𝑗𝑗=1
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E. Record the variance of the average coefficient for fixed readers  𝑉𝑉� 𝑠𝑠 �𝜃𝜃�̅.
𝑠𝑠
|𝜷𝜷�. For this, 

we fit a marginal model using GEE technique. This average coefficient and its 

corresponding standard error can be computed by formulating the linear combination 

that we are interested in and then writing appropriate “estimate” or “lsmestimate” 

statements within the SAS GLIMMIX/GENMOD procedure. In particular, we use the 

following SAS code for each type of modeling scenario: 

Model A SAS code: 

proc glimmix data=data empirical; 
by sim; 
class subject reader; 
model rating_binary(event="1")=reader /dist=binary; 
random _residual_/subject=subject type=cs; 
estimate "Int" int 1/cl ilink; 
ods output  Estimates=est_all; 
run; 

 
Model B SAS code: 

proc glimmix data=data empirical; 
by sim; 
class truth subject reader; 
model rating_binary(event="1")=truth reader truth*reader/dist=binary; 
random _residual_/subject=subject type=cs; 
lsmestimate  truth*reader "avg diff" -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1/divisor=7 e; 
ods output LSMEstimates=lsm_all; 
run; 

 
Model C SAS code: 

proc glimmix data=data empirical; 
by sim; 
class modality subject reader; 
model rating_binary(event="1")=modality reader modality*reader/dist=binary; 
random _residual_/subject=subject type=cs; 
lsmestimate  modality*reader "avg diff" 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1/divisor=7 e; 
ods output LSMEstimates=lsm_all ; 
run; 
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Model D SAS code: 
 
proc genmod data=data; 
by sim; 
class subject reader; 
model rating_binary(event="1")=X reader reader*X/dist=bin ; 
repeated subject=subject/ type=cs; 
estimate "avg slope" X 1/e; 
ods output Estimates=est_all_cs; 
run; 

 

 
F. Combine the various components of the original and bias-corrected variance estimator 

using the following formulas: 

𝑉𝑉� 𝑠𝑠 � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃𝚥𝚥�
𝑠𝑠 − 𝜃𝜃�̅.

𝑠𝑠
�
2

+ 𝑉𝑉� 𝑠𝑠 �𝜃𝜃�̅.|𝜷𝜷�
𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

𝑉𝑉� 𝑠𝑠 � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

=
1
𝑛𝑛𝑟𝑟
∗

1
𝑛𝑛𝑟𝑟 − 1

��𝜃𝜃𝚥𝚥�
𝑠𝑠 − 𝜃𝜃�̅.

𝑠𝑠
�
2

+
𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟 − 1
∗ 𝑉𝑉� 𝑠𝑠 �𝜃𝜃�̅.|𝜷𝜷� − 

1
𝑛𝑛𝑟𝑟 − 1

�
𝑉𝑉� 𝑠𝑠�𝜃𝜃𝚥𝚥�

𝑠𝑠|𝛽𝛽𝑗𝑗�
𝑛𝑛𝑟𝑟

𝑛𝑛𝑟𝑟

𝑗𝑗=1

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 

𝑉𝑉� 𝑠𝑠 � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

= 1
𝑛𝑛𝑟𝑟
∗ 1
𝑛𝑛𝑟𝑟−1

∑ �𝜃𝜃𝚥𝚥�
𝑠𝑠 − 𝜃𝜃�̅.

𝑠𝑠
�𝑛𝑛𝑟𝑟

𝑗𝑗=1  in case of using the constraint on variance estimator 

 

G. Create z-based and t-based (containment df = 𝑛𝑛𝑟𝑟 − 1) 95% confidence intervals: 

𝜃𝜃�̅.
𝑠𝑠

± 𝑧𝑧0.975 ∗ �𝑉𝑉�𝑠𝑠 � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 and  𝜃𝜃�̅.
𝑠𝑠

± 𝑧𝑧0.975 ∗ �𝑉𝑉�𝑠𝑠 � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏

 

 

𝜃𝜃�̅.
𝑠𝑠

± 𝑡𝑡0.975,𝑑𝑑𝑑𝑑 ∗ �𝑉𝑉�𝑠𝑠 � 𝜃𝜃�̅.�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 and 𝜃𝜃�̅.
𝑠𝑠

± 𝑡𝑡0.975,𝑑𝑑𝑑𝑑 ∗ �𝑉𝑉�𝑠𝑠 � 𝜃𝜃�̅.�
𝑏𝑏𝑏𝑏
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APPENDIX F: SALAMANDER DATA ILLUSTRATION 

As mentioned earlier, the Salamander mating data [1] is a popular binary cross-correlated dataset 

which has been used by several authors [25, 28, 37, 40, 29] to illustrate and compare results from 

different estimation techniques. The experiment was conducted in the summer of 1986 and 

involved 40 animals, 20 rough butt (RB) and 20 whiteside (WS) salamanders, with equal number 

of males and females. The bernoulli response was the success or failure of a mating between two 

salamanders. There were four mating types possible – RB/RB, RB/WS, WS/RB and WS/WS 

(female/male). The following GLMM model was fitted: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑃𝑃�𝒀𝒀𝑖𝑖𝑖𝑖 = 1|𝒇𝒇,𝒎𝒎� = 𝑿𝑿𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑓𝑓𝑖𝑖 + 𝑚𝑚𝑗𝑗, 

where 𝛽𝛽 = �𝛽𝛽0, 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊, 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊, 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊∗𝑊𝑊𝑊𝑊𝑊𝑊�
𝑇𝑇
are the fixed-effects determined by salamanders’ 

populations and gender, 𝑓𝑓𝑖𝑖~𝑁𝑁�0, 𝜎𝜎𝑓𝑓2� are female random effects assumed independent of 

𝑚𝑚𝑗𝑗~𝑁𝑁(0, 𝜎𝜎𝑚𝑚2 ) which are the male random effects, 𝑖𝑖 = 1, … ,20 is female index and 𝑗𝑗 = 1, … ,20 is 

male index. 𝑊𝑊𝑊𝑊𝑊𝑊 = 1 if the observation is from a Whiteside female and zero otherwise. 

 In Table 41, we assembled the results from fitting this model using PL, LA (standard LA), 

Gibbs Sampling [40], Metropolis-Hastings algorithm using PROC MCMC in SAS [60], Modified 

LA [37] and Improved LA [28]. 
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Table 41: Salamander data estimates from different GLMM estimation methods 

Method 𝜷𝜷�𝟎𝟎 𝜷𝜷�𝑾𝑾𝑾𝑾𝑾𝑾 𝜷𝜷�𝑾𝑾𝑾𝑾𝑾𝑾 𝜷𝜷�𝑾𝑾𝑾𝑾𝑾𝑾∗𝑾𝑾𝑾𝑾𝑾𝑾 𝝈𝝈�𝒇𝒇𝟐𝟐 𝝈𝝈�𝒎𝒎𝟐𝟐  

PL 1.16 -2.57 -0.37 2.80 1.41 0.09 

LA 1.34 -2.94 -0.42 3.18 1.58 0.07 

Modified LA [37] 1.37 -3.02 -0.44 3.27 1.72 0.19 

Improved LA [28] 1.36 -2.99 -0.44 3.24 1.72 0.15 

Gibbs Sampling [40] 1.48 -3.25 -0.50 3.62 2.35 0.14 

Metropolis-Hastings 
Algorithm (PROC 
MCMC, SAS) [60] 

1.96 -4.43 -0.76 4.76 5.71 2.41 

 

Table 41 illustrates the amount of underestimation of the variance components under the PL, LA 

and other approaches for the GLMM estimation. The Modified LA, Improved LA, Gibbs Sampling 

and Metropolis-Hastings algorithm provided larger estimates than the standard LA and PL 

approaches. The fixed effect estimates from the PL approach were also attenuated comparing to 

other approaches. 
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