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ABSTRACT 

Orofacial clefts are relatively common birth defects with an estimated incidence of 1 in 

700 live births that carry a significant public health burden.  The causal factors of the development 

of orofacial clefts are complex; monogenic, multifactorial, non-syndromic and syndromic forms 

are all described in the literature.  In almost all cases, genetics are thought to play a role in the 

etiology.  In this study, we used an international cohort of 2,141 orofacial cleft patients and their 

families to find individuals with microdeletions, utilizing genome wide SNP chips for genetic 

analyses.  We identified 94 individuals with deletions greater than 750 kb and compared them to 

registries with detailed phenotypic features and medical and family histories.  We divided the 

cohort into distinct groupings: (1) individuals with a highly–penetrant orofacial cleft-associated 

deletion syndrome, (2) individuals with a lower-penetrant orofacial cleft microdeletion, (3) 

individuals with a large deletion encompassing likely contributory genes, and (4) individuals with 

a deletion of unknown significance.  This cohort helps to support previous literature describing 

patients with orofacial clefts and microdeletions, along with presenting rarer associations, 

including an individual with a 12q21.1 deletion and cardiofaciocutaneous-like phenotype, an 

individual with a 7q36.3 deletion within the SHH regulator region with an absent nasal bone and 

cartilage, and an individual with a 3p26.3 deletion with a family history of polydactyly and 
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intellectual disability.  With our cohort, we help to define the range of associated features in 

individuals with microdeletions and orofacial clefts.   
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1.0  INTRODUCTION 

Orofacial clefts are relatively common birth defects with an estimated incidence of 1 in 700 live 

births.1  The impact of clefts is significant:  cost of treatment averages $200,000 across the lifespan, and 

can affect feeding, speech, hearing, dentition, and mental health in affected individuals.2  The causal factors 

of the development of orofacial clefts are complex; monogenic, multifactorial, and syndromic forms are all 

described in the literature.  Monogenic inheritance is seen in conditions such as Stickler syndrome and Van 

der Woude syndrome, and come with health concerns other than orofacial clefts such as learning disabilities 

and vision loss.3  Non-syndromic orofacial clefts are generally seen at a higher frequency, with 

approximately 70% of individuals with cleft lip and palate, and 50% of individuals with cleft palate only, 

considered to be non-syndromic.4  Even in these cases, genetics are thought to play a role in the development 

of clefts.  Concordance between monozygotic twins has been reported as high as 40-60%, and is about 5% 

for dizygotic twins, showing that non-syndromic cleft lip and palate are quite heritable, with an 

environmental influence playing a part in the presentation as well.5  However, despite the discovery of 

many genes associated with the development of clefts, there is still a gap in knowledge in terms of 

unexplained clefting presentations.6 

Much research has been done to better understand the genetic etiology of orofacial clefting, 

including linkage association studies, candidate gene studies, and genome-wide association studies.2,3,7  

While previous studies have provided a wealth of new information, there has been recent investigation into 

the effects of copy number variants on the development of orofacial clefts.  The study of microdeletions 

has been particularly fruitful in other areas of medicine, such as the discovery of a causative gene for 

CHARGE association.8  Traditionally, copy number variants have been detected in patients with syndromic 
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orofacial clefts, such as those with DiGeorge syndrome.  However, recent research has looked at copy 

number variants in candidate genes and smaller family studies in individuals with non-syndromic clefts, 

and found associations between clefts and certain deletions in affected individuals.1,6,8 

To address these gaps in knowledge concerning microdeletions as potential causes of orofacial 

clefts, this study aims to: 

 Identify microdeletions in a cohort of cases and families with orofacial clefts   

 Characterize and review reported phenotypic features in individuals identified with 

microdeletions.  This group will include 94 individuals from multiple countries with a 

microdeletion who have a cleft lip and/or palate, or have a close family member with the 

condition.  

 For microdeletions with no previous connection to orofacial clefts, explore possible role of 

deleted genes in craniofacial development. 

The results of this study will provide information on syndromic and non-syndromic causes of 

orofacial clefting within an ethnically and geographically diverse group. This study will hopefully present 

a collection of data on microdeletions found in individuals with orofacial clefts, and serve as a foundation 

for a variety of other research projects on the molecular basis of cleft lip and palate. After more clinical 

research has been pursued, this information could be used so that individuals with orofacial clefts may be 

screened for these deletions to help predict an individual’s medical prognosis and outcome. 
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2.0  LITERATURE REVIEW  

2.1 OVERVIEW AND EPIDEMIOLOGY OF OROFACIAL CLEFTS 

Orofacial clefts are some of the most common congenital malformations worldwide.  

Orofacial clefting refers to a group of related malformations, primarily affecting the upper lip and 

palate.  The three most common types of orofacial clefts fall into three categories: cleft lip, cleft 

palate, and cleft lip with cleft palate.  Traditionally, cleft lip and cleft lip and palate have been 

combined as one disorder: cleft lip with or without cleft palate (CL/P).9 The international 

prevalence of cleft lip with or without cleft palate is approximately 9.92 per 10,000 births.10 

Worldwide, cases of cleft palate only have been found to have a birth prevalence of 6.39 per 10,000 

births, and cleft lip a prevalence of 3.28 per 10,000 births.11  Orofacial clefts also vary among 

ethnic populations. In the United States, Caucasian populations have the highest recorded 

prevalence of orofacial clefts (1.8 per 1000 births), with individuals of Asian and Hispanic descent 

following closely (1.04 per 1000 births).  African Americans consistently have the lowest 

prevalence of cleft lip and palate in comparison to other racial and ethnic populations (0.67-0.61 

per 1000 births).12  Outside of the US, orofacial clefting tends to be more common in Eastern Asia, 

India, and South America, whereas clefting is less common in Africa and Southern Europe.13  

There is also a difference of prevalence in the sexes, with cleft lip only and cleft lip and palate 

more common in males (1.23:1 and 1.56:1 respectively) and cleft palate only more common in 

females (1.77:1).14 

The high prevalence of orofacial clefts is significant because of the substantial burden these 

malformations have on affected individuals and their families as well as the health care system.  
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Cleft lip and palate increases an individual’s mortality risk, with a standardized mortality ratio of 

1.4 for males and 1.8 for females.15  Management of cleft lip and palate patients requires a team 

of specialists including dentists, radiologists, surgeons, geneticists, speech therapists, feeding 

specialists, and otolaryngologists to provide standard of care.  Surgeries are quite common in these 

patients, and they often consist of multiple oral reconstruction procedures.  Treatment and 

management of clefts is not a luxury that merely corrects cosmetic differences.16 Surgical repair 

of orofacial clefts is required because infants suffer from feeding difficulties that result in low 

weights and sometimes requiring specialized feeding appliances or tools.  As children age, an 

orofacial cleft can also negatively affect speech ability.  Difficulties relating to the palate can lead 

to problems with the middle ear, resulting in an excess of otitis media and even hearing loss.17  On 

average, the average annual cost of medical care of children with an orofacial cleft was $13,405 

more than those without an orofacial cleft in the United States.  Children with a cleft and another 

major defect had costs that were 25 times higher than an unaffected infant.  Lifetime costs for 

medical treatment have been reported to be over $100,000.18 

Medical care of orofacial clefts is not limited to infants or childhood due to additional 

comorbidities. International cleft lip and palate registries show that 29% of affected individuals 

had an additional defect, and could be considered syndromic.  These most commonly included 

polydactyly, limb abnormalities, and cardiac defects.19  Even individuals with apparently isolated 

orofacial clefts have other medical complications, which may not be visible.  For example, 

individuals with isolated orofacial clefts have been found to have abnormal brain structure and 

development in comparison to those without clefts.20  Long term, affected individuals and their 

unaffected family members have an increased risk for cancer, particularly breast cancer, more so 

than the unaffected population.321 
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Having an orofacial cleft has been shown to have a significant psychosocial effect from 

early life throughout adulthood.  Although overall functioning tends to be adequate,22 many 

children and adolescents have reported that they are teased more than their peers at school, an 

experience that often negatively effects an individual psychosocially.  Most of the bullying was 

due to the child’s facial or speech differences.  Many also have noted an unhappiness with an 

aspect of their face related to their orofacial cleft.23  Parents of children with cleft lip and palate 

also reported that their children tended to have more anxiety and depression than their unaffected 

peers, along with more behavioral problems.24 

Orofacial development is complex, as are the factors that contribute to orofacial clefts, 

which include genetic and environmental exposures.4  The negative impact of smoking during 

pregnancy has been widely documented, and orofacial clefting is one outcome that has been 

recorded.  Women who smoked during their pregnancy or were exposed to cigarette smoke (such 

as when living with a smoker) were found to be at an increased risk for isolated cleft lip and 

palate.25   Maternal alcohol use has been looked at for possible connections between cleft lip and 

palate due to the range of other congenital problems that can occur, such as fetal alcohol syndrome.  

Results have been mixed, ranging from conclusions stating that even low levels of alcohol 

consumption can lead to an increased risk for orofacial clefts, to others reporting that there is no 

significant link between the proposed exposure and outcome.262728  Similarly, there is mixed 

evidence that maternal nutritional supplements reduce the risk of orofacial clefts.  Some studies 

suggest that supplementation of folic acid, a compound that has been linked to the fusion of palate 

shelves, can help significantly reduce the risk of orofacial clefts, among other malformations, up 

to 50%.29  Similar results are found when B12 and zinc are supplemented as well.30  This has been 

supported by lower rates of cleft lip and palate in children of women who took a prenatal vitamin.31  
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Maternal health has also been suggested to play a role in orofacial cleft risk.  For example, women 

with diabetes are more likely to have children with a congenital anomaly, including cleft lip and 

palate.32  Multiple studies have supported a correlation between maternal obesity and an increased 

risk to have a child with an orofacial cleft.33,34  Finally, men older than 40 are 58% more likely to 

father children with a cleft lip or palate than their younger (20-39 year-old) male peers.35 

2.2 EMBRYOLOGY OF THE DEVELOPMENT OF THE LIP AND PALATE 

The development of the face is a relatively long, complex, and multi-stepped process.  For 

the face to grow properly, five facial primeval parts must fuse to together.  These include the 

midline frontonasal prominence, two maxillary prominences, and two mandibular prominences.36  

These five structures can be seen around the 4th week of development, and are formed from cranial 

neural crest cells, which in themselves originate from the ectodermal cells of the neural tube.37  

Through multiple stages, including growth and migration, the frontonasal prominences divide in 

to two nasal processes: the medial and the lateral.  From the 6th and 7th week of growth, the nasal 

processes along with both maxillary processes merge together to form the beginnings of the 

primary palate and upper lip.  This is a sensitive time in the development of the face, and errors 

can lead to orofacial clefts in the fetus.38  In a similar series of events, beginning in the 7th week, 

the maxillary prominences begin to form the palate shelves, which in turn becomes the rest of the 

adult hard and soft palate.  During the period, the palatal shelves grow vertically along the tongue.39  

After, the shelves of the palate fuse and elevate to a horizontal position above the tongue.  This 

sets the stage for the differentiation of muscle and bone, creating the soft and hard palates.  As this 

occurs, the palates fuse with the nasal septum, effectively separating the oral and nasal cavities.40  
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2.3 PHENOTYPIC SPECTRUM AND CLASSIFICATION OF OROFACIAL CLEFTS 

There are three general orofacial subgroups that are typically used: cleft lip only (CL), cleft 

lip and palate (CLP) and cleft palate only (CP).  Traditionally, cleft lip and cleft lip and palate have 

been lumped together in the cleft lip with or without cleft palate subgroup (CL/P).  This is because 

development of a severe cleft lip in a fetus can lead to a cleft in the hard or secondary palate.  

However, based on data describing the severity, gender, consanguinity, genetics, and other factors 

that increase the likelihood of CP versus CLP, there is more data supporting the idea of separating 

the two subgroups.4142 

Orofacial clefts vary widely among individuals in severity.  Clefts of the lip can occur 

unilaterally or bilaterally.  Among unilateral clefts, although both are prevalent, left-sided orofacial 

clefts are more common than right-sided.43  Historically, laterality was one of the only descriptors 

used for orofacial clefts.  However, clefts also vary in completeness (i.e., how severely the structure 

is affected).  The LAHSHAL coding system was invented to help easily describe orofacial clefts 

and their severity by noting the anatomy that the cleft has affected.  The acronym addresses clefts 

that affect the lip (L), the alveolus(A), hard (H), and soft (S) palates, as you look at the affected 

individual.  Thus, the left side of the acronym describes the right side of the face, and the right side 

of the acronym the left side of the face.36 More recent literature has shown that in addition to the 

type of cleft present (CP, CLP, and CL), there are also subclinical features that may contribute to 

the entire clinical picture.  These features include submucosal cleft palates, bifid uvulas, and 

microform clefts (a notch composed of a fibrous tissue across the lip).4445 These phenotypes can 

be found in individuals previously thought to be purely unaffected, and further research will 

hopefully help to predict risks for typically affected children.44  Much attention has been given to 

subepithelial defects of the orbicularis oris muscle (OOM defects) and their link to orofacial clefts. 
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OOM defects have been detected in previously described unaffected relatives of patients with 

orofacial clefts at a higher frequency than in control populations.4544  This has led some researchers 

to believe that this feature may be a mild form of orofacial cleft.  Dental anomalies are also 

commonly seen in affected individuals and their relatives.  In one study focusing on unaffected 

parents of children with orofacial clefts, 51% had one or more dental anomalies.  Defects of this 

nature that have been noted include microdontia, tooth displacement, congenital absence of teeth, 

supernumerary teeth, and enamel defects.4647  In unilaterally affected individuals, agenesis of the 

lateral incisor on the side unaffected by clefting is the most common dental anomaly, and may 

potentially be a sign of a reduced penetrance bilateral cleft lip and palate.48  Differences in overall 

face shape between unaffected relatives and control populations have been recorded in the 

literature by using 3-D image capturing to provide a closer look at the details of the face.  These 

changes found in parents of children with orofacial clefting include a flat profile, excess 

intraorbital  and nasal cavity widths, and increased lower and reduced upper facial heights.4950  

Finally, data has been found tying a pattern of lower lip “whorls” and facial clefts.  These unique 

prints resemble the lower lip pits found in the Mendelian orofacial cleft disorder known as Van 

der Woude syndrome, and are found in non-syndromic cases of cleft lip and palate as well as their 

family members.51,52 

2.4 SYNDROMIC CLEFTS 

Although most CL/P cases are isolated, approximately 30% of individuals have other 

congenital defects in addition to an orofacial cleft.19  Patients with multiple anomalies may be 

considered syndromic.  For example, aneuploidy conditions can affect multiple organ systems, and 
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orofacial development is no exception. Almost 20% of all patients with trisomy 13 have cleft lip, 

and more than 4% of patients with trisomy 18.53  Women with Turner syndrome have also been 

reported to have orofacial abnormalities, particularly cleft palate.54,55  Currently, over 500 distinct 

genetic syndromes, including single gene Mendelian disorders, have listed cleft lip and or palate 

among their described features.56 Much progress has been made in determining the genetic 

causation of these syndromes, helping researchers to glean insight into the molecular pathways of 

cleft lip and palate. 

Over 200 mutations in the interferon regulatory factor 6 (IRF6) gene located on 1q32.2 

have been linked to orofacial development and two different syndromic orofacial clefting 

syndromes: Van der Woude syndrome and popliteal pterygium syndrome.575859  As mentioned 

previously, Van der Woude syndrome is a mendelian orofacial clefting disorder.  Although only 

affecting 1 in 35,000 individuals, it accounts for approximately 2% of all orofacial clefts in 

humans.60  An autosomal dominant condition, Van der Woude syndrome (VWS) can present with 

lower lip fistulae, or lip pits, hypodontia, and CL, CP, or CLP.61  Although VWS is highly 

penetrant at about 97%, the features present in affected individuals vary, with lip pits being the 

most common phenotypic characteristic described.62 Popliteal pterygium syndrome (PPS) is the 

second syndromic orofacial clefting disorder associated with IRF6.  It is quite rare, occurring in 1 

in every 300,000 live births.  Like VWS, PPS symptoms include lower lip fistulae and CL, CP, or 

CLP.  Additional phenotypic features are frequently found in PPS patients, such as abnormal 

genitalia, webbing of the skin from the ischial tuberosities (also known as the “sit bones”) to the 

heels, syndactyly of fingers and toes, and dermatological abnormalities of the skin around the nails 

of the hands and feet.63 
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Collagen plays an important role in the development of the palatal shelves, so 

unsurprisingly mutations in collagen producing genes can lead to syndromic orofacial clefts.64  

Stickler syndrome is a highly penetrant autosomal dominant condition affecting 1 in 7,500 live 

births with 90% of patients with myopia, 60% with retinal detachment, 70% with hearing loss, 

90% with joint problems including hypermobility and early onset arthritis, and 84% with 

craniofacial anomalies including cleft palate and midface retrusion.65  Approximately 85% of 

causative pathogenic mutations for Stickler syndrome are found in the COL2A1 gene and about 

10% in the COL11A1 and COL11A2 genes. 66 

2.5 NON-SYNDROMIC CLEFTS 

The majority (approximately 70%) of cleft lip and palate patients present with no additional 

features and have a non-syndromic form of clefting.  Despite a complex array of potential causes, 

there is substantial evidence supporting a genetic etiology for non-syndromic orofacial clefts.676869  

Relative recurrence risk for a CL/P in a first degree relative is 32, indicating a strong genetic 

component to non-syndromic orofacial clefts.70  Twin studies have also provided evidence for a 

significant genetic component; dizygotic twins have a lower concordance rate of 1-5% in 

comparison to that of monozygotic twins with 35-60% concordance rate.4471 

 Multiple approaches have been used to identify genetic risk factors for orofacial clefts.  

Linkage studies, which look at segregation of alleles through families, have produced mixed 

results.  Although many different research studies have found loci thought to contribute to orofacial 

development, few have been successfully replicated.67  One significant locus found via a meta-

analysis of 388 multiplex families is 9q21, which encompasses the suspected causative FOXE1 
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gene.72  The association between this region and cleft lip and palate has been replicated in several 

further candidate gene studies.73,74  Additional linkage findings within this study include loci 2q32-

35 and 16q24. 

Studies of candidate genes like those of FOXE1 have added to the genetic orofacial cleft 

literature.  In a 2004 study, point mutations were found in FOXE1, along with GLI2, MSX2, SKI, 

SATB2 and SPRY2 in a single individual with non-syndromic cleft lip and palate, and in none of 

the 186 controls sequenced.  These results lead researchers to believe that the candidate genes 

listed have a cumulative effect.75 Candidate gene MSX1 was previously found in mice with cleft 

palate.76 Follow up human genetic studies have found that MSX1 mutations can be identified in 

approximately 2% of non-syndromic orofacial clefting.77  Candidate gene selection can be 

performed by choosing syndrome-causing genes associated with clefting.  IRF6, the causative gene 

for Van der Woude syndrome, is also known to be associated with non-syndromic orofacial 

clefts.42  TP63, associated with ectrodactyly-ectodermal dysplasia, and MID1, a causative gene for 

X-linked Opitz G/BBB syndrome, have been linked to non-syndromic clefting as well.78 

Historically, genome wide association studies (GWAS) have been the most successful 

approach for identifying genetic risk factors for orofacial clefts.  A 2010 GWAS with 401 

individuals with non-syndromic cleft lip/palate and 1323 controls showed associations between 

clefting and the loci 17q22 and 10q25.3.79  A separate GWAS that was performed within the same 

year confirmed the significance of IRF6, and also noted links between loci MAFB, ABCA4, and 

8q24.80  Two years later, new susceptibility regions were discovered, including 1p36, 2p21, 

3p11.1, 8q21.3, 13q31.1, and 15q22.81  Most recently, in 2016, 19q13 and 2p24 were new loci 

reaching genome-wide significance in relation to orofacial clefting, in addition to confirming 

associations in 1p36, 1p22, 1q32, 8q24, and 17p13.82  However, despite these successes, GWAS-
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identified loci only account for up to 25% of the heritability of orofacial clefts, indicating that the 

remaining genetic risk could reside in other types of variation such as rare mutations or copy-

number/structural variants.82 

2.6 MICRODELETIONS 

Up to 6% of malformations (including orofacial clefts) are caused by a chromosomal 

abnormality.83  As mentioned previously, aneuploidies like trisomy 13 and monosomy X 

contribute to this figure.  Smaller losses within the chromosomes can also lead to malformations 

like cleft lip or palate.  These microdeletions are commonly associated with syndromic clefting, 

and diagnostic testing like microarray is a useful clinical tool to identify such microdeletions, and 

to take precautionary care for other associated symptoms, such as surveillance for other described 

affected organs of the body. 

22q11.2 deletion syndrome, also known as DiGeorge or Velocardiofacial syndrome, is the 

most well-known microdeletion clefting syndrome.  The gene TBX1 is thought to be responsible 

for most of the features associated with this microdeletion, which include cleft palate, 

developmental delay, intellectual disability, heart defects, autoimmune disorders, hearing loss, 

kidney abnormalities, and psychiatric problems.8485  In children with cleft palate, microarray 

testing to rule out a 22q11.2 deletion is standard of care.86 Other microdeletion syndromes with 

cleft lip and/or palate include 1p36 deletion syndrome,87 Wolf-Hirschhorn syndrome (4p 

deletion),88 and Smith-Magenis syndrome (17p11.2 deletion).89 

Recently, microdeletions are being found in non-syndromic clefting.  Microarray testing 

has revealed new candidate genes for cleft lip and/or palate in individuals with isolated orofacial 
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clefts.  A 2008 study discovered that chromosomal regions 6q25.1-25.2 and 10q26.11-26.13 were 

deleted in patients with cleft lip.  Genes ESR1 and FGFR2, located within those areas, are currently 

suspected to play a role in the clefting seen in these patients.8  Shi et. al (2007) took a similar 

approach, but used genome-wide association studies to search for microdeletions within non-

syndromic orofacial cleft patients.  This data revealed deletions in CYP1B1, FGF10, SP8, SUMO1 

and TFAP2A in their cohort.  Genes such as CYP1B1 play a role in metabolizing toxins, and may 

provide a link between smoking and orofacial clefts if that ability is reduced by a deletion.  

TFAP2A is a gene that is associated with facial development.6  Another study looking at de novo 

microdeletions in individuals with non-syndromic orofacial clefts identified a deletion in the 

7p14.1 region, which has been previously described as causing malformations of the face.90  One 

microdeletion study took a different approach, and looked at inherited deletions in non-syndromic 

clefting participants.  This study revealed two significant deleted regions on chromosomes 7 and 

8: 7q34 and 8q24.91  Further research into the possible significance of the genes involved in rare 

or common microdeletions could help enhance our understanding of the etiology of non-syndromic 

clefting. 
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3.0  MANUSCRIPT  

3.1 BACKGROUND 

Orofacial clefts (OFCs) are common birth defects with an estimated incidence of 1 in 700 

live births.1  All three categories of orofacial clefts, cleft lip (CL), cleft palate (CP), and cleft lip 

with cleft palate (CLP), are linked with many environmental and genetic factors, and can present 

with a variety of other structural anomalies (syndromic) or can be isolated (non-syndromic).3  

Approximately 50% of CP cases and 30% of CL or CLP cases occur as part of syndromes.44  In 

the past, genome wide association studies have been successful at identifying genetic risk factors 

for non-syndromic OFCs.  These studies discovered new loci for non-syndromic OFCs (e.g., 19q13 

and 1p22) as well as identified associations between non-syndromic OFCs and genes typically 

associated with OFC syndromes (e.g., IRF6, GRHL3, and TP63). 79,81,82,92  Despite this success, 

genome wide association studies identified only 25% of heritability of non-syndromic OFCs.82  

The remaining heritability may be accounted for by rare variants, gene-gene or gene-environment 

interactions, or by structural variants.69 

Chromosomal abnormalities, including microdeletions, cause up to 6% of malformations.83  

These small losses in chromosome material can lead to cleft lip and palate when the genetic 

material missing includes genes or regulatory elements that contribute to craniofacial 

development.  Historically, chromosomal aberrations have been detected using many different 

methods.  Large abnormalities such as translocations or aneuploidies can be detected using a 

karyotype, including significantly sized deletions of at least 4-6 Mb.93  This can help determine 

the etiology for a number of patients with cleft, such as those with Turner syndrome.55  
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Fluorescence in situ hybridization (FISH) can pick up known smaller duplications or deletions, 

like those in DiGeorge syndrome or Wolf-Hirschhorn syndrome, but due to its use of a probe, 

FISH is limited to detecting specific, targeted regions within a chromosome, and may miss other 

relevant aberrations within the genome.9486   To detect unknown copy number variants, array 

comparative genome hybridization (CGH) is used, which can pick up chromosomal losses or gains 

within the genome by comparing the sample to a control.95  De novo and rare inherited 

microdeletions have been tied to non-syndromic OFCs, such as in the ESR1 and FGFR2 genes, 

and have been identified in affected individuals using this method in a study performed by 

Oesagawa et al..891   

More recently, SNP arrays have been utilized in clinical and research settings to detect 

copy number variants.  Although SNP arrays are limited by SNP distribution and are not as high 

density compared to CGH testing, they have been used successfully in detection of microdeletions, 

particularly for those with non-syndromic OFCs.9695  In 2009, Shi et al. conducted a study using 

GWAS and SNP array to detect microdeletions in a clefting cohort, revealing deletions in 

candidate genes such as CYP1B1, FGF10, SP8, SUMO1 and TFAP2A.6  Younkin et al. similarly 

used SNP array in individuals with de novo deletions and non-syndromic CL/P, and found a 

deletion along 7p14.1 more commonly observed in cleft trios.90  To follow up, in 2015 Younkin 

and his colleagues conducted the study with inherited deletions within non-syndromic clefting 

individuals, and detected deletions within the MGAM, ADAM3A, and ADAM5 genes.91  In 2016, 

Fu et al. looked at the exome rather than the genome within multiplex OFC families, and utilized 

SNP array to detect microdeletions.  With the use of this technology, 88 hemizygous potentially 

causative deletions were detected from 56 families.97 
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Our international study aims to further understand the role of microdeletions as part of the 

genetic architecture of OFCs.  Using a genome wide SNP array, we have detected 94 

microdeletions larger than 0.75 Mb and have divided them into distinct groups based on 

phenotype, family history, deletion size, and deletion characterization, effectively adding to the 

literature of microdeletions in an OFC cohort. 

3.2 METHODS 

3.2.1 Study Sample 

 Our international cohort was recruited from 18 sites in 13 countries within North America, 

South America, Asia, Europe, and Africa as previously described.82  Recruitment and data 

collection were done at orofacial cleft treatment centers in respective sites as part of ongoing 

studies by the University of Pittsburgh Center for Craniofacial and Dental Genetics and the 

University of Iowa.  Institutional Review Board approval was obtained for each site; informed 

consent was obtained for all participants, including consent for large genomic studies with data 

sharing.  The full cohort of 11,727 samples were comprised of individual OFC cases, their 

unaffected family members, and unrelated controls. 
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3.2.2 Genotyping 

Samples were genotyped for 580,000 single nucleotide polymorphisms (SNPs) on the 

Illumina Human Core+Exome array at the Center for Inherited Disease Research at Johns Hopkins 

University. 

3.2.3 Identification of Deletions 

Microdeletions were identified from SNP intensity data using the Bioconductor package 

“GWASTools”.  The deletions were detected from the “Log R Ration” (LRR), a measure of the 

relative signal intensity, and “B Allele Frequency” (BAF), an estimate for the B allele frequency 

of a SNP in the population of cells the DNA originated from.  GWASTools uses circular binary 

segmentation to identify change points in BAF and loss of heterozygosity by change in LRR.  In 

a region with normal copy number, we would expect to see a B allele frequency of 0 (AA), 0.5 

(AB) or 1 (BB) with an LRR of 0.  Heterozygous deletions were identified based on a loss of the 

intermediate BAF band and corresponding decrease in LRR.  For more information, please refer 

to the Quality Control Report issued by the University of Washington GCC here: 

(http://www.ccdg.pitt.edu/docs/Marazita_ofc_QC_report_feb2015.pdf) 

We restricted our analyses to large deletions (greater than 750 kb) found in OFC cases to 

enrich for likely pathogenic variants. LRR and BAF for each deletion were plotted for the case and 

both parents (if available).  Plots were manually inspected to determine if deletions were inherited 

or occurred de novo.  Poor quality deletions were removed as likely artifacts.  Out of our original 

sample of 2,989 individuals with OFCS, we detected 94 individuals with CL, CP, or CLP with 

such deletions.   

http://www.ccdg.pitt.edu/docs/Marazita_ofc_QC_report_feb2015.pdf)
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3.2.4 Annotation 

Demographic and medical history data, pedigrees, and photos and videos were reviewed 

for each individual.  Patient presentations and deletions were then cross-referenced with the 

literature to determine whether the deletion, or the region in which the deletion was located, had 

previously been described as OFC-associated.  Based on this, our data was organized into 4 groups: 

(1) individuals with a highly–penetrant orofacial cleft-associated deletion syndrome (e.g. 

DiGeorge syndrome or Smith Magenis syndrome), (2) individuals with a lower penetrant orofacial 

cleft microdeletion (e.g. 1p36 and 1q21 microdeletions), (3) individuals with a large deletion 

encompassing likely contributory genes (e.g. COL11A), and (4) individuals with a deletion of 

unknown significance (<1 Mb).  Only one individual had a causative non-syndromic OFC gene 

deleted (FGFR2) that had been previously published by Osoegawa et al., and was excluded from 

our sample.8 
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Figure 1. Methods Flowchart 

 

2,989 OFC cases and family members

Genotyping and identification of microdeletions

Removal of poor quality deletions, those smaller than 
750 kb, and those not found in OFC cases 

Plots inspected for inheritance

Relevent data (phenotype, family history, pedigree) 
retrieved from registry and recorded for corresponding 

individuals

Literature research to determine if phenotype recorded 
matches what is recorded for the deletion/region in the 

literature (syndromic vs. non-syndromic, location of 
candidate genes, etc.)

Highly penetrant 
deletion syndromes

Lower penetrant 
deletion syndromes

Deletion of Unknown 
Significance

(Deletions under 1Mb that do 
not coincide with a known 

OFC gene and its associated 
phenotype)

Deletions over 3 MB 
that do not fall within 
described  orofacial 
cleft microdeletion 

regions

Genes within deleted 
region are researched 

and if significant to 
orofacial clefts, are 

included in the table
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3.3 RESULTS 

We identified a number of deletions that varied by size, inheritance, phenotypic spectrum, 

rarity, and previous report in the literature.  Descriptions of our subgroups are below. 

 

Table 1. Highly Penetrant Deletion Syndromes 

DELETION Mb INHERITANCE PHENOTYPE FAMILY HISOTRY SYNDROME 
4p16.3-p16.2 4.6 unknown, not maternal BCL, bifid uvula, pulmonary stenosis, 

seizures, hypoplastic kidney, triangular 

face, micrognathia, down slanting 

palpebral fissures, hypertelorism, simple 

ears, intellectual disability, developmental 

and speech delay 

sister with speech and 

developmental delay, 

synophrys, upward 

slanting palpebral 

fissures 

Wolf-Hirschhorn 

syndrome88 

17p11.2 3.6 de novo CP, micrognathia, chronic ear infections, 

and mild to moderate intellectual 

disability 

father with bifid uvula; 

brother with 

convergent strabismus 

Smith Magenis 

syndrome89 

22q11.21 2.6 unknown, not maternal LCLP, speech delay, type 1 diabetes, 

protruding ears with bumps, macroglossia, 

and micrognathia 

NA DiGeorge 

syndrome85 

22q11.21 2.6 de novo SMCP, dysmorphic features, double 

hernias, malrotation of organs, difficulty 

swallowing, and large tongue 

mother with SMCP; 

brother with functional 

heart murmur, frontal 

bossing, 

prominent/protruding 

ears, single palmar 

creases 

DiGeorge 

syndrome85 

22q11.21 2.1 de novo RCLP NA DiGeorge 

syndrome85 
22q11.21 2.6 de novo LCLP NA DiGeorge 

syndrome85 
22q11.21 1.4 unknown, not maternal CP maternal 5th degree 

relative with CP 
DiGeorge 

syndrome85 
22q11.21 2.4 de novo BCLP NA DiGeorge 

syndrome85 
22q11.21 2.6 unknown LCLP NA DiGeorge 

syndrome85 
22q11.21 2.8 unknown, not maternal CP NA DiGeorge 

syndrome85 
22q11.21 2.6 unknown, not maternal SMCP, chronic ear infections, VSD, 

hoarseness, loss of voice 
NA DiGeorge 

syndrome85 
22q11.21-

q11.23 
2.2 de novo BCLP NA DiGeorge 

syndrome85 
22q11.22-

q11.23 
2.0 de novo CLP NA DiGeorge 

syndrome85 
22q11.21-

q11.22 
2.9 de novo SMCP, speech delay, learning disability, 

fine motor skill delay, ADHD, anxiety, and 

hearing loss in left ear 

father with speech 

delay; mother with 

SMCP, speech delay, 

nerodermatitis; brother 

with speech delay 

DiGeorge 

syndrome85 

whole X 100 unknown CP NA Turner syndrome55 
whole X 90 unknown BCLP NA Turner syndrome55 

 

CL – cleft lip; RCL – right cleft lip; LCL – left cleft lip; BCL – bilateral cleft lip; CP – cleft palate; RCP – right cleft palate; LCP – left cleft palate; 

SMCP – submucosal cleft palate; CLP – cleft lip and palate; LCLP – left cleft lip and palate; RCLP – right cleft lip and palate; BCLP – bilateral 

cleft lip and palate; ADHD – attention deficit hyperactive disorder; VSD- ventricular septal defect 
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3.3.1 Highly Penetrant Deletion Syndromes 

As shown in Table 1, 22q11.2 deletions, the most common cause of cleft palate syndromes, 

make up more than 75% of our highly penetrant deletions group.  These deletions were on average 

around the standard 3Mb and encompassed the regions typical of DiGeorge syndrome.  Most were 

de novo, and if not listed as such, were described as having “unknown inheritance” because a DNA 

sample was unavailable from one or both parents.  Some of our registry data entries were more 

descriptive than others, including characteristic DiGeorge features such as developmental and 

speech delay, dysmorphic facial features, hoarse voice, and ventricular septal defect.  Others were 

sparse in information outside of clefting type.  Two individuals within this subgroup were found 

to have monosomy X, or Turner syndrome, but had no phenotypic information detailed other than 

cleft type. 

Wolf-Hirschhorn syndrome and Smith Magenis syndrome were represented in our cohort 

with one individual respectively.  Both patients presented with typical characteristics of their 

respective conditions, such as intellectual disability, dysmorphic facies, and seizures.  The 

individual with Smith Magenis syndrome had a 3 Mb de novo 17p11.2 deletion.  DNA was 

unavailable from the father of the patient with Wolf-Hirschhorn syndrome, so we could not 

determine if the deletion was inherited or de novo.  Interestingly, the proband’s sister also had 

delays and dysmorphic facies (although much milder than our patient), but no deletion was 

detected. 
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Table 2. Lower Penetrant Deletion Syndromes 

DELETION Mb INHERITANCE PHENOTYPE FAMILY HISTORY POSSIBLE 

SYNDROME 
RELEVANT 

GENES 
1p36.21 2.6 de novo RCL NA 1p36 microdeletion 

syndrome 
PDPN - 

usually results 

in heart 

defects, not 

CL/P98 
1p36.33-p36.23 6.9 de novo BCLP, seizures, 

hearing loss, 

hypotonia, 

hydronephrosis 

NA 1p36 microdeletion 

syndrome 
SKI; 

PRMD16 

cleft in mice98 

1q21.1-q21.2 1.5 maternal BCLP, learning and 

speech delays, 

clogged tear ducts, 

kidney reflux, 

hypertelorism, 

smooth philtrum 

maternal half-brother 

with supernumerary 

teeth, fetal pads, 

kidney reflux, 

learning disability in 

reading, 

tracheomalacia, ADD 

1q21.1 microdeletion 

syndrome 
GJA5, GJA8, 

CDH1L, 

GPR89B, 

NBFL11, 

BCL9 - 

usually low 

penetrance99,10

0 
1q21.1-q21.2 1.5 paternal BCLP paternal uncle with 

seizures 
1q21.1 microdeletion 

syndrome 
GJA5, GJA8, 

CDH1L, 

GPR89B, 

NBFL12, 

BCL9 - 

usually low 

penetrance99,10

0 
3p26.3 .86 paternal BCLP paternal aunt with 

intellectual disability; 

paternal aunt with 

absent fingers; brother 

with polydactyly 

CNTN6 deletion CNTN6101 

3q29 1.6 paternal BCLP brother with LCLP 3q29 microdeletion 

syndrome 
DLG1, 

PAK2102 
3q29 .92 maternal BCL, leukemia sister with 

hypertelorism, 

nystagmus, 

hypermobile joints, 

single palmar; 

paternal half-brother 

with severe acne, 

frontal bossing, right 

epicanthal folds, 

bilateral ptosis, 

anteverted nares, 

tapering fingers 

3q29 microdeletion 

syndrome 
DLG1102 

3q29 1.9 de novo RCLP NA 3q29 microdeletion 

syndrome 
DLG1, 

PAK2102 
3q29 1.7 de novo RCLP and was born at 

37 weeks and weighed 

4 lbs. 8 oz. 

NA 3q29 microdeletion 

syndrome 
DLG1, 

PAK2102 

6p25.3-p24.3 9.1 de novo RCLP, hypertelorism, 

Dandy Walker 

malformation 

NA 6p25 deletion 

syndrome 
FOXC1, 

F13A1, 

BMP1, 

DSP103104,105 
6p25.1-p24.3 2.9 maternal LCLP sister with BCLP, 

mother (LCL) and 

aunt (BCLP) with 

microdeletion  

6p25 deletion 

syndrome 
BMP1, 

DSP103104,105 

7q36.3 5.9 Unknown CLP NA 7q36 deletion 

syndrome 
SHH106 

7q36.3 2.7 de novo RCL, autism, 

strabismus, slanting 

palpebral fissures, 

NA 7q36.3 deletion 

syndrome 
LMBR1107108 
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epicanthal folds, 

missing nasal bone 

and cartilage 
12q14.3-q21.1 7.1 unknown BCLP, bifid uvula, 

0.1 percentile for 

weight and BMI, 20th 

percentile for height, 

small facial features 

NA 12q14 microdeletion 

syndrome 
GRIP1, 

HMGA2 

12q21.1 2.1 de novo SMCP, pyloric 

stenosis, low set ears, 

dysmorphic facies, 

curly hair, speech 

delays 

sister with LCLP Cardiofaciocutaneous-

like syndrome109110111 
TRHDE and 

ATXN7L3B 

14q32.32-

q32.33 
4.3 de novo LCLP, right inguinal 

hernia, developmental 

delay, hearing 

impairment 

NA 14q32  JAG2112, 

XRCC3, 

ZFYVE21113 

15q11.2 .85 paternal BCLP, speech delays 2nd cousin with 

speech delay, LCLP; 

2nd cousin with 

learning disability 

15q11.2 microdeletion 

syndrome 
NIPA1, 

NIPA2, 

CYFIP1114 

15q14 3.5 maternal BCLP maternal aunt with 

deletion and LCLP 
15q14 deletion 

syndrome 
does not 

include 

candidate 

cleft gene 

MEIS2115 
 

CL – cleft lip; RCL – right cleft lip; LCL – left cleft lip; BCL – bilateral cleft lip; CP – cleft palate; RCP – right cleft palate; LCP – left cleft palate; 

SMCP – submucosal cleft palate; CLP – cleft lip and palate; LCLP – left cleft lip and palate; RCLP – right cleft lip and palate; BCLP – bilateral 

cleft lip and palate; ADD – attention deficit disorder 

 

3.3.2 Lower Penetrant Deletion Syndromes 

18 microdeletions were placed into our lower penetrant deletion syndrome subgroup as 

shown in Table 2. These are deletions that are found in the region of known deletion syndromes, 

but are often smaller than those described in the literature. Moreover, our sample clearly showed 

a range of penetrance and severity.  For example, we identified two deletions each on 1q21 and 

1p36; in both cases, one individual presented with only an OFC while the other had a syndromic 

presentation, showing symptoms such as seizures, hearing loss, and global delays. In the case of 

1p36, the syndromic features were present in the individual with a large 6.9Mb deletion. The 

apparently isolated OFC individual had a much smaller 2.6Mb deletion. 

Table 2 Continued 
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Some deletions had less of a recorded phenotypic impact than predicted based on the 

literature.  An almost 6 Mb 7q36.3 deletion, which included the SHH gene, had no recorded effects 

other than CLP, however photographs were unavailable to assess minor features of 

holoprosencephaly. Other phenotypes more clearly matched their genotypes; for example, an 

individual with a de novo 6p25 microdeletion had Dandy Walker malformation along with RCLP, 

consistent with the brain anomalies often seen with the syndrome.116  Similarly, a large 14q32 

terminal deletion patient had OFC (LCLP), developmental delay, and inguinal hernia which are 

often seen in terminal 14q32 microdeletion syndrome.1123 

The most represented deleted region in this subgroup was 3q29, with four individuals 

carrying a deletion.  The deletions averaged 1.5 Mb, the typical size of the deletion and in the same 

critical region.  Unlike what has been described in the literature (affected individuals with delays, 

kidney anomalies, microcephaly, and skin conditions), few features other than OFCs were 

recorded.  Two individuals with inherited microdeletions, one with a small 15q11.2 deletion and 

another with a large 14q14 deletion, also had limited phenotypic descriptions other than OFC, and 

few affected relatives.  This seemed to be consistent with the literature: 15q11.2 deletions are 

commonly cited as low penetrance, and the 15q114 deletion did not have many of the causative 

genes typically seen within the syndrome, such as MEIS2.  

Interestingly, we saw a family with a mid-sized 2.9Mb 6p25 microdeletion showing clear 

autosomal dominant inheritance and penetrance: an affected individual with LCLP had an affected 

mother with LCL and maternal aunt with BCLP, both who had the recorded deletion.  Although 

the region did not contain some of the genes more commonly encompassed within 6p25 

microdeletion syndrome, such as FOXC1, it seems possible that the deletion may be causative of 

the OFC phenotype within the family. 
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3.3.3 Rare Syndromic Deletions of Interest 

Within our “Lower penetrant deletion syndromes” subgroup, four individuals stood out: 

one with a 3p26.3 deletion with a family history of polydactyly, a patient with a 12q14.3-q21.1 

deletion and 12q14 deletion syndrome phenotype, another individual on the holoprosencephaly 

spectrum with a 7q36.3 deletion not including SHH, and one with a 12q21.1 deletion and a 

cardiofaciocutaneous syndrome-like phenotype. 

 
Table 3. Large Deletions 

DELETION Mb INHERITANCE PHENOTYPE FAMILY HISTORY RELEVANT 

GENES 
1p21.1-p13.3 4.1 de novo LCLP brother with LCLP COL11A11772 
1q31.1-q31.3; 

1p31.3; 1p22.3; 

1p22.1 

7.6 unknown LCLP NA LHX875118 

4p15.1-p14 6.3 unknown BCLP NA NA 
4q35.2 3.1 Paternal LCLP NA FRG1119 
10p13-p12.31 3.9 unknown, not 

maternal 
RCLP, intellectual disability, 

developmental delay, ADD 
brother with developmental delay, 

learning disability 
NA 

11p15.1-p14.3 3.7 maternal BCLP NA NA 
12q14-q15 4.8 de novo  CLP NA GRIP1120 
18q22.1-q23 14 de novo LCL maternal aunt with LCL TXNL4A121 
20p12.3-p12.1 7.7 de novo CP NA BMP2122, 

JAG1123 
 

CL – cleft lip; RCL – right cleft lip; LCL – left cleft lip; BCL – bilateral cleft lip; CP – cleft palate; RCP – right cleft palate; LCP – left cleft palate; 

SMCP – submucosal cleft palate; CLP – cleft lip and palate; LCLP – left cleft lip and palate; RCLP – right cleft lip and palate; BCLP – bilateral 

cleft lip and palate; ADD – attention deficit disorder 

3.3.4 Large Deletions 

 Table 3 included microdeletions larger than 3 Mb that did not fall into our high or low 

penetrant deletion syndrome categories because there were no associated syndromes. However, 

given their size, they may contribute to the pathogenesis of OFCs. We reviewed each deletion for 

potentially causative genes and the following were found: COL11A1, LHX8, FRG1, GRIP1, 

TXNL4A, BMP2, and JAG1.  Other deletions, including a paternally inherited 6.3 Mb 4p14.1-p14 

deletion, a maternally inherited 3.7 MB 11p15.1-p14.3 deletion, and a 3.9 Mb 10p14-p12.31 
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deletion, had no genes within the deleted regions that were suspected to be causative and could be 

considered variants of unknown significance. 

3.3.5 Deletions of Unknown Significance 

Table IV (Appendix A) includes deletions that do not have clear connections to OFC 

syndromes or OFC-associated genes.  In our cohort, 54% of the deletions fall into this category. 

These deletions should be further inspected in other OFC cohorts and in controls to determine if 

they may be associated with OFCs. The genes within them should also be considered for 

expression analyses or animal model studies. 

3.4 DISCUSSION 

The goal of this study was to describe the deletions and characteristics of an international 

orofacial clefting cohort with microdeletions.  We found that in our 94-patient sample, most of the 

microdeletions within our cohort were associated with a syndromic presentation, particularly 

DiGeorge syndrome.  Based on the empirical literate, we expect that these deletions are causal 

alone.  A large subset was also composed of lower penetrance microdeletions, such as individuals 

with 3q29 microdeletion syndrome.  These deletions are most likely contributing to the 

multifactorial inheritance of OFCs, and together with environmental and other genetic factors, 

produced an OFC phenotype.  Nine individuals had substantially sized deletions, most containing 

OFC-contributing genes such as JAG1 and COL11A. Fifty-one deletions were of uncertain 

significance, or came with limited phenotypic data.  Interestingly, only one non-syndromic OFC-
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associated deleted region was found within our sample, despite non-syndromic OFCs traditionally 

being cited as more common than syndromic OFCs.2  Finally, four deletions of interest were noted 

in our sample, and their potential significance along with suggestions for future review are 

described in the following section: 

3.4.1 3p26.3 

3p26 deletions, particularly terminal 3p26.1 deletions, have been associated with a wide 

variety of symptoms, including developmental delay, intellectual disability, polydactyly, renal 

anomalies, heart defects, ptosis, and sacral dimples.124125  Although some research has suggested 

that smaller 3p deletions, such as 3p26.3 deletions which encompass the CNTN6 gene, may cause 

developmental delay, learning disabilities, or milder intellectual disability, the broader range of 

symptoms seen with larger deletions has not been recorded.101  An individual with a paternally 

inherited 0.9 Mb 3p26.3 microdeletion has a bilateral cleft palate, along with a brother with 

polydactyly and a paternal aunt with intellectual disability.  Although these phenotypic findings 

may be associated with other genetic or environmental factors, they may also be suggestive of 

3p26.3 and CNTN6 microdeletions having a larger range of associated phenotypes than previously 

suggested.  Genetic testing of the possibly affected family members would be helpful in 

determining the significance of the deletion. 

3.4.2 7q36.3 

 The SHH gene is well known for playing a role in embryonic development, taking part in 

craniofacial, limb, and spinal cord organization and growth, with a particular influence on the 
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midline of the body.126  The cis-regulators that help moderate SHH are located within SHH, in the 

gene desert adjacent to SHH, and the genes following it, including LMBR1, in which the ZRS 

regulator falls.  Mutations within LMBR1 can affect ZRS, which impacts the development of the 

limbs, causing symptoms such as post-axial polydactyly.107,108   Our cohort contains an individual 

with a 7q36.3 deletion that does not include SHH, but does include LMBR1.  Although our 

individual does not have any recorded limb abnormalities, they do have an absent nasal bone and 

cartilage, a phenotype seen in individuals with midline defects tied to the SHH gene.  This opens 

the possibility of the presence of other regulatory factors, perhaps within LMBR1, that can affect 

SHH and its role in the development of the midline. 

3.4.3 12q14.3-q21.1 

12q14 microdeletion syndrome, a condition often compared to Russel-Silver syndrome,  

encompasses a spectrum of characteristics including dwarfism, slow growth, small facial features, 

developmental delay, and osteopoikilosis (dense, hyperstatic areas of the bone).127 In the literature, 

loss of the gene HMGA2 within this region is thought to be the cause of the growth problems seen 

within the disorder.  We identified one deletion of 12q14 that included HMGA2 with concomitant 

features, such as being in the 0.1 percentile for BMI and 20th percentile for height, and having 

small facial features. A second, smaller deletion did not include HMGA2, leading to the possibility 

that another gene may be contributing to the clefting phenotype shared between these individuals. 

Both deletions included GRIP1, a gene also associated with 12q14 microdeletion syndrome, but 

not tied directly to problems of size and growth.128   
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3.4.4 12q21.1 

Cardiofaciocutaneous syndrome (CFC) is a genetic syndrome with features including heart 

defects, dysmorphic facial features, skin and hair abnormalities, and intellectual disability.129  Most 

commonly, mutations are found in the BRAF gene on chromosome 7.  However, in recent years, 

multiple case reports have been published describing individuals with a CFC-like phenotype and 

12q21 deletions, despite some controversy concerning the fit of the diagnosis.130  The three patients 

described have some shared features with CFC including ptosis, low set ears, micrognathia, sparse, 

coarse hair, cardiac defects, developmental delay, generalized follicular hyperkeratotic papular 

eruption, and pyloric stenosis.109–111  Within our cohort, we have also found an individual with a 2 

MB de novo 12q21.1 deletion presenting with submucosal cleft palate, pyloric stenosis, speech 

delays, low set ears, curly hair, dysmorphic facies, and a rash on the skin like that seen in children 

with generalized follicular hyperkeratotic papular eruption (Figure 2).  These phenotypic findings 

may represent a candidate gene location for CFC or new condition with similar symptoms. 
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Figure 2. Patient with 12q21 Deletion and CFC-like Features 

 

A limitation of our study was that the data was collected in a research setting, and not a 

clinical one.  Patients were assessed by people without medical training, and not by clinical 

geneticists with expertise in dysmorphology; photographs were only taken sporadically. Most of 

the subjects were recruited as part of the Pittsburgh Orofacial Cleft Study (POFC), focused on 

identifying subclinical phenotypes of OFCs. The protocols for this study are extensive compared 

to other recruitment strategies, but still rely on self-reported demographic and medical histories. 

POFC involved multiple international recruitment sites, each with variations in the amount of 

phenotypic data recorded.  When available, the 3D photographs and videos were useful in 

identifying dysmorphic features, however not all relevant features are visible in photographs or 

known to the families. This is especially true when the children were recruited during infancy or 

as toddlers, who may not have had prominent dysmorphic facies or who had not yet failed to meet 
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developmental milestones. Even for a well-described microdeletion syndrome like DiGeorge 

syndrome, a heart defect may have previously gone undetected, due to a lack of prior concern for 

a chromosomal disorder. 

Another consideration is that the standard of care continues to change. At present, infants 

with multiple congenital anomalies typically receive a clinical microarray to identify or rule out 

microdeletion syndromes; others receive mutation screening or clinical whole exome sequencing. 

The POFC sample was recruited over the last twenty years, prior to widespread use of clinical 

microarrays. In addition, many of the subjects were recruited from international sites, including on 

cleft repair missions to the Philippines and Guatemala, where diagnosing syndromes is not the 

highest priority. It is also important to note that diagnosis of syndromes is often easier after the 

identification of the deletion, as was the case in this study.   

3.5 CONCLUSION 

The international data we have collected and analyzed adds to the literature of deletions 

associated with OFCs.  Unlike previous research that examined microdeletions in OFCs, our data 

showed almost no deletions in previously described non-syndromic regions.8,80,131  Most of our 

deletions were within described syndromic regions previously associated with OFCs, with many 

that have a wide variety of other associated symptoms. These additional deletions will be helpful 

in delineating critical regions for craniofacial and OFC phenotypes. Our cohort, by showing the 

range of body systems affected by these deletions, help to demonstrate that careful monitoring 

along with proactive care are important for clinical management when one of the deletions is 

detected.  Finally, the syndromic deletions of interest that we have noted could also open avenues 
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of new and further research into their significance, and could potentially enter the clinical realm 

in the future. 
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4.0  RESEARCH SIGNFICANCE TO GENETIC COUNSELING AND PUBLIC 

HEALTH 

Orofacial clefts (OFCs) pose a significant public health burden.  OFCs are common 

malformations, occurring in 1 in every 700 births worldwide.  The health care cost of these 

malformations has been well documented; the average cost over the lifetime for cleft lip and palate 

(CLP) treatment is over $200,000.   Monetary consequences are not the only ones that exist; OFCs 

can cause a range of health concerns including dental, feeding, hearing, speech, and mental health 

problems.2  Because of this, research to determine the etiology of OFCs has been extensive to help 

identify possible targets for treatment development to relieve the economic and medical burden 

that present with OFCs.  Although the literature on the genetics of OFCs is extensive, only 25% 

of the heredity of non-syndromic OFCs has been explained, with 75% still unexplained. 

The present study looks at only one kind of causative genetic abnormality, microdeletions.  

Despite this narrow scope, the information gleaned from our research adds to the growing literature 

of the genetics of OFCs.  The data also contributes meaningful information when considering the 

public health significance of these malformations.  In terms of the first core function of public 

health, assessment, our research has successfully “collect(ed) and analyz(ed) information about 

health problems.”  Within our cohort, we have identified and described new microdeletion 

syndromes, particularly in the case of the individual with a de novo 12q21.1 deletion and a 

cardiofaciocutaneous-like presentation.  Additionally, in terms of previously described 

microdeletions, we have found several features that have extended our understanding about 

potential phenotypes, such as the individual with 12q14 deletion syndrome who had bilateral cleft 

lip and palate, which has not been described in the literature.  With the recognition of these rare 



 34 

syndromes, we have collected information to provide to medical professionals, including genetic 

counselors that will aid in the diagnosis and management of individuals with OFCs.  As more is 

studied and understood, we can give this information to families to provide accurate descriptions 

of phenotypic presentations, disease course, and recurrence risk, along with using it for shaping 

management and surveillance standards. 

Another essential public health core function that our research addresses is assurance, 

particularly in terms of “assur(ing) a competent public health and personal healthcare workforce.”  

As mentioned previously, many of the individuals in our cohort would benefit from surveillance 

to determine whether other previously recorded characteristics are present.  However, many of the 

individuals within our cohort were not recognized as having a syndromic presentation prior to 

genetic testing, despite a wide range of other symptoms being listed.  These missed diagnoses may 

be indicative of a lack of proper genetics education among national and international medical 

professionals.  Additionally, microarray, a genetic test used to detect microdeletions, is a front-

line test now offered to individuals with a congenital anomaly.1  Many of these individuals, 

particularly with common microdeletions such as 22q11.2, the causative deletion for DiGeorge 

syndrome, could have been diagnosed much earlier if they had been given this testing upon 

detection of an OFC and other symptoms.  This is particularly relevant because other internal 

anomalies associated with the condition could be recognized and treated early, such as heart 

defects, and supports like early intervention services could be offered to individuals at risk for 

developmental delay.  Again, our research illustrates the differences in standards of care and the 

importance of educating clinicians on the relevance of genetic testing for their patients.  Genetic 

counselors are uniquely qualified for this type of role, and perhaps in the future could develop 

educational programs and/or resources targeted in areas known for having a lower genetic literacy. 
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This research provides information that could impact genetic counseling practice.  The 

etiology of CL, CP, and CLP is complex; as described previously, environmental multifactorial, 

and Mendelian causes all exist.  This can make genetic counseling for orofacial clefts challenging.  

Typically, recurrence risks are cited as 3-5% when a previous child or other close relative has non-

syndromic CL/P (the typical recurrence risk quoted for most congenital anomalies).  This is based 

on the thought that most non-syndromic OFCs are due to multifactorial inheritance.69  Although 

the discovery of new genetic regions tied to OFC help elucidate possible causes, it remains unclear 

about how much (or little) they contribute to the phenotype.  Deletions within the 1q21 region, for 

example, though associated with a wide array of symptoms including OFC, have a low penetrance, 

and characteristics in individuals with the deletion can vary significantly even within a family.100  

Because of this level of uncertainty, more research will need to be conducted on non-syndromic 

OFC related regions to better counsel patients on risk.  Once this is done, we will be able to quantify 

and quote more accurate risk values to patients and their families.  This study has outlined many 

low penetrance deletions, their inheritance patterns, and phenotypic characteristics.  The 

information we found can be used clinically to help inform patients of the spectrum their child 

may fall along.  As similar studies are performed in the future and more data on these specific 

deletions are collected, we may be able to better determine the significance of the deletions and 

how they interact with the genome and the environment.  
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APPENDIX A: SUPPLEMENTARY TABLE 

Table 4. Deletions of Unknown Significance 

DELETION Mb INHERITANCE PHENOTYPE FAMILY HISTORY 
1p22.1 1.0 de novo SMCP NA 
1p22.1 1.0 de novo LCLP father with LCLP 
1p22.1 1.4 de novo RCLP NA 
1p22.1 .84 both 

(homozygosity) 
LCL, minor epicanthal folds NA 

1p22.1 .89 unknown CLP brother with LCL; brother with 

bifid uvula 
1p22.1 .89 unknown, not 

maternal 
microform LCL NA 

1p35.3 .88 unknown, not 

paternal 
BCLP brother with LCLP; brother with 

CLP; brother with RCL; paternal 

half-brother with CLP 
2p25.3 1.5 paternal RCLP NA 
2q11.2 1.4 unknown LCL NA 
2q12.3 1.3 unknown LCLP mother with SCP, bifid uvula 
2q14.2 1.2 maternal CP NA 
2q33.2-q33.3 1.1 de novo RCLP father with CP; first cousin once 

removed with RCLP 
2q33.2-q33.3 .77 unknown LCLP father with LCLP 
2q33.2-q33.3 .77 unknown BCLP NA 
2q33.2-q33.3 .77 maternal CLP, heart murmur mother with learning disability; 

sister with heart murmur 
3q26.1 1.4 de novo RCLP, chronic ear infections, blocked left tear 

duct 
maternal grandmother with 

intellectual disability, paternal 

grandmother with extra adult 

teeth, father with heart murmur, 

mother with bipolar disorder 
3q28 1.9 unknown, not 

maternal 
RCLP great nephew with speech and 

developmental delay 
4q35.2 .95 maternal BCLP NA 
5q13.1-q13.2 1.6 unknown BCLP NA 
5q21.2 .90 maternal RCLP NA 
6p22.1 1.3 paternal incomplete LCL NA 
6q22.32-q22.33 .94 unknown BCLP NA 
7p22.1 1.9 unknown, not 

maternal 
BCLP 5th degree paternal relative with 

RCLP 
7p22.3-p22.1 2.9 de novo LCL NA 
7q11.23 1.4 unknown, not 

maternal 
LCLP NA 

8q23.2-q23.3 3.8 unknown, not 

maternal 
RCL NA 

10q25.3-q26.11 .78 unknown, not 

from mother 
incomplete RCL maternal grandmother LCLP 

10q25.3-q26.11 .79 unknown LCL NA 
10q25.3-q26.15 .79 unknown, not 

maternal 
BCLP, speech and behavioral disorder, low set 

ears 
NA 

11p11.12-p11.1 1.0 paternal BCLP NA 
11p15.4 1.1 unknown RCL brother with CL; sister with CL; 

father with CLP; first maternal 

cousin with LCLP 
13q12.12-q12.3 1.4 unknown BCLP NA 
13q31.3 .79 maternal CP brother with CL 
13q33.2-q34 8.9 unknown, not 

maternal 
BCLP NA 

14q11.2 .94 unknown RCLP NA 
14q12 .90 unknown BCLP NA 
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15q11.1-q11.2 3.1 maternal LCL NA 
15q11.2 .77 maternal LCLP NA 
15q11.2 .85 paternal RCLP NA 
15q13.3 .87 paternal LCLP, speech delays, learning disability, small father with hemihypertrophy 
15q13.3-q14 1.9 maternal BCLP NA 
15q14 .90 unknown BCLP and speech delays father with behavioral problems, 

learning disability, undescended 

left testicle 
17p12 1.3 de novo LCL NA 
17q11.2 1.2 de novo BCLP and bifid uvula NA 
17q21.33 1.6 unknown BCLP, speech delay brother with CL, and 4th degree 

paternal relative with CL 
17q22-q23.2 2.0 de novo BCLP NA 
17q25.3 .77 maternal BCLP maternal half-brother with CL; 

maternal half-brother with CLP; 

maternal 5th degree relative with 

CP; maternal 5th degree relative 

with CL 
18q11.2-q12.1 1.3 paternal LCLP NA 
19q13.12 .85 unknown, not 

from mother 
SMCP, bifid uvula, learning disability, 

difficulty running, hearing loss 
father with CP; twin sister with 

bifid uvula 
19q13.12-q13.2 .98 de novo CP, speech delay, behavioral problems, learning 

disability, failure to thrive, heart murmur, ODD 

and ADHD 

4th and 5th degree maternal 

relatives with CP 

 

CL – cleft lip; RCL – right cleft lip; LCL – left cleft lip; BCL – bilateral cleft lip; CP – cleft palate; RCP – right cleft palate; LCP – left cleft palate; 

SMCP – submucosal cleft palate; CLP – cleft lip and palate; LCLP – left cleft lip and palate; RCLP – right cleft lip and palate; BCLP – bilateral 

cleft lip and palate 

 

Table 4 Continued 
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