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In the first chapter, I investigate the effects of the Residential Lead Based Paint Hazard

Reduction Act. Enacted in 1996, the lead hazard disclosure policy requires sellers and land-

lords to disclose known lead-based paint hazards to potential buyers or renters. Employing a

difference-in-differences approach, I find evidence that the law prompted some families with

children to reallocate toward homes without significant lead risks, increased lead mitiga-

tion in rental properties, and reduced blood-lead levels among children in rental properties.

However, because white families appear to be more responsive to information disclosure

than other groups, the information disclosure law might exacerbate racial disparities in lead

exposure.

In the second chapter, I estimate the spatio-temporal dynamics between wildfire and

infant birthweight. Exposure to wildfire smoke is determined using the latitude and longitude

coordinates of each infant’s home address and a fine-scaled, spatial dataset of wildfire smoke

plumes re-constructed in GIS from satellite images of the landscape. Using a difference-in-

differences estimation strategy, model estimates show that wildfire smoke leads to a 4% to

6% reduction in birthweight. These effects are most pronounced among mothers exposed

during their second and third trimesters of pregnancy and attenuate with respect to distance

to a fire. We find no statistically significant relationships between proximity to wildfire and

the birthweights of infants located outside the path of wildfire smoke.

In the third chapter, I examine the relationship between hurricanes, the salience of flood

risk, and residential property investment. Utilizing a difference-in-differences estimation

strategy, I find a significant increase in the probability a homeowner invests in a damaged
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building located in a statutorily designated flood risk area. However, I find no change in

the rate of property investment in damaged homes located outside of these areas. Results

suggest that a recent storm may elevate households’ perceptions of flood risk; however, we

show that the primary mechanism driving these changes is a household’s exposure to storm

damage. We find no evidence of saliency effects in regions less proximate to storm damage.

These findings cast doubt on the potential for an information-based regulation to align risk-

perceptions with risk-actualities.
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1.0 INTRODUCTION

My dissertation consists of three chapters. “Information Disclosure, Housing Markets and

Public Health” contributes to two bodies of literature, one on socioeconomic disparities in

lead exposure, as well as emerging literature on information-based environmental regula-

tions, which are often claimed to be more efficient than traditional command-and-control

approaches. This paper examines the economic and health effects of the Residential Lead

Based Paint Hazard Reduction Act (Title X). An information-based approach to environ-

mental regulation, Title X was enacted in 1996 and requires home sellers and landlords to

disclose to potential buyers and renters any hazards related to lead-based paint. The Act

applies only to houses built before 1978, however, when the use of lead-based paint was out-

lawed. Using houses built after 1978 as a control and a difference-in-differences strategy to

identify the impact of Title X on various market-related and health outcomes allowed me to

reveal several interesting findings: Title X prompted some families with children to move to

homes without significant lead risks, increased lead mitigation, and reduced blood-lead lev-

els among children in rental properties. However, because white families appear to be more

responsive to information disclosure than other groups, Title X appears to exacerbate racial

disparities in lead exposure. The results as a whole suggest that regulation by information

can be an effective approach to managing environmental risk, but at the cost of potential

distributional effects across racial and socioeconomic groups.

In a second paper co-authored with Shawn McCoy, we estimate the effects of wildfires

on infant health. Previous attempts to identify the effects of wildfires and other forms of

air pollution on infant health rely on relatively coarse measures of exposure and cannot

precisely distinguish between children who were exposed to the contaminant and those who

were not. To address this concern, we identify the latitude and longitude of each infants

1



home address and use satellite imagery to locate the trail of wildfire smoke plumes in relation

to each infants residence. Using a difference-in-differences estimation strategy, we find that

children living within the smoke plume experienced a 4-6% reduction in birthweight, while

those near wildfires but just outside the smoke plume experienced no such reduction. These

results are important on two levels: First, it is well established that birthweight plays a

key role in determining long-term economic outcomes. Our results suggest that birthweight

reduction induced by wildfires ultimately translates into a 0.54-0.72 percent decrease in full-

time earnings. Second, because children just outside the smoke plume do not experience

any detectable adverse effects, our results suggest that maternal stress is not an important

pathway to low birthweight in this setting. This result contrasts with findings by Dunkel

Schetter (2011), Torche (2011), and Simeonova (2011), who find that maternal stress caused

by natural disasters can reduce birthweight. One of the key features of this paper is that we

used big data a confidential database detailing the vital statistics and natality records for

every infant born in the state of Colorado. As explain below, I will be using this dataset in

future projects as well.

In addition to public health implications of natural disasters, I am also deeply curious

about how natural disasters affect risk assessments and decision-making. In “City Under

Water,” my coauthor and I investigate how Hurricane Sandy affected homeowners decisions

to invest in their residences. Combining a micro-level data set on household investments,

which details the complete history of alterations made to residential structures, with a spatial

data set of every property damaged by the storm, we estimate changes in householders

perceptions of risk. To do this, we model relative changes in investment between properties

in statutorily-designated flood risk areas and properties immediately outside of these areas,

restricting attention to structures that were not damaged by the storm. Model results suggest

that a recent storm may elevate householder perceptions of flood risk; however, we show that

the primary mechanism driving these changes is a householder’s exposure to storm damage.

We find no evidence of saliency effects in regions further from storm damage. These findings

are important because they cast doubt on the potential for information-based regulation to

link risk-perceptions with risk-actualities.
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2.0 INFORMATION DISCLOSURE, HOUSING MARKETS, AND PUBLIC

HEALTH

Since the late 1980s, information disclosure has been widely used to regulate environmental

risks, with much of the popularity due to its low cost when compared with command-and-

control regulations.1 In this paper, I examine the effectiveness of information disclosure as a

policy tool by studying the impacts of the Residential Lead-Based Paint Hazard Reduction

Act (Title X). Introduced in 1996, Title X requires sellers and landlords to disclose known

lead-based paint hazards to potential buyers or renters. Because lead is a neurotoxin that

impairs cognitive and behavioral development, and because the most significant source of

lead exposure is lead paint in old houses (EPA, 2012, Lanphear et al., 1998, Binns et al.,

2007), Title X may have significant effects on housing markets and public health. Despite this

potential significance only one study, Bae (2012), provides econometric evidence of Title X’s

effects.2 One particularly important question that has yet to be addressed is how Title X, and

information disclosure regulation more generally, might reinforce socioeconomic disparities.

In the case of lead, it is widely recognized that African American children face the greatest

risks (Markowitz and Rosner, 2013). If disadvantaged socioeconomic groups are less able to

exploit information disclosure than others, such laws might exacerbate differences.

In this paper, I offer a detailed and comprehensive econometric evaluation of Title X.

1One example of information disclosure regulations is the Toxics Release Inventory (TRI) which was
established in 1986 requiring facilities whose toxic emission exceeds certain threshold to disclose annual
emission of toxic chemicals. Another example, Natural Hazards Disclosure Act was enacted in 1998 in
California which requires real estate seller and brokers to disclose “if the property being sold lies within one
or more state or locally mapped hazard areas.”

2In this paper, Bae (2012) finds that information disclosure increases the probability of home buyers
lead testing and decreases the probability of having peeling paint in old homes. Bae also finds that the
policy reduces the instances of households with young children occupying old homes. Finally, Bae shows
that information disclosure does not result in a substantial switch from old houses to new houses for any
socioeconomic group.
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The analysis is based on a difference-in-differences estimation strategy that exploits the fact

that Title X only applies to homes built before 1978, when the residential use of lead-based

paint was banned. Homes built before 1978 are assigned as treated properties, while homes

built after 1978 are assigned as control properties. In this way, for instance, a comparison

of sale prices between treated and control properties sold before and after 1996 - when

Title X was enacted - offers a causal estimate of information disclosure on sale prices. This

strategy allows me to assess the effects of Title X on various market-related and health

outcomes, while controlling for contemporaneous shifts in labor and housing markets, the

age of the housing stock, and preferences over the age of homes. Not surprisingly, I find

that homeowners with children are more likely to move away from lead risky properties,

since children are the group with the greatest risk of lead poisoning. Following information

disclosure, homeowners are shown to be not only more aware of lead-based paint, but also

lead hazards from pipes and solders. Education and income play important roles in how

homeowners respond to information disclosure, with high-income and educated families more

responsive to disclosure.

I also explore the possibility that Title X had differential effects on owner and rental

markets, as the two markets are fairly distinct (Glaeser and Gyourko, 2007). Not surpris-

ingly, I find different responses among renters, where there are no measurable effects on the

demographic composition of properties. In addition, results suggest that landlords mitigate

lead hazards following the law, and that disclosure significantly reduces blood lead levels

(BLLs) among the children of renters. I show suggestive evidence that the decrease in BLLs

can be attributed to a reduction in homes’ lead dust levels.

One key aspect of the lead poisoning problem is the high incidence rate among low-

income, minority families (CDC, 2013, Jacobs et al., 2003, Gaitens et al., 2009, Lanphear

et al., 1996, Lanphear et al., 1998, Lanphear et al., 2002). Elevated BLLs have been shown

to lower IQ and educational attainment, as well as cause behavioral problems and increased

criminal activity. Therefore, understanding the racial and socioeconomic disparities in BLLs

can help to explain other gaps across groups.

Previous research has shown that minority children are more likely to be exposed to

pollutants. One reason is that their mothers are less likely to move away from harmful
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sources of pollution when new information about toxic releases around their homes becomes

available (Currie, 2011, Currie and Walker, 2011). This may result from the fact that

they are “less aware of them, less able to move, or perhaps more concerned about other

problems in their lives” (Currie, 2011). For similar reasons, Title X may not benefit minority

children. My research shows that, although minority children are the group most at risk,

white homeowners with children, especially those with higher education, are much more

likely to move away from lead risky properties.

2.1 BACKGROUND

Lead has long been recognized as a harmful environmental pollutant. Many neurodevelop-

mental studies have shown that developing fetuses, infants, and children are at the greatest

risk of lead exposure.3 In 1991, US Secretary of Health and Human Services called lead the

“number one environmental threat to the health of children in the United States” (Goldman,

1997, EPA, 2012). Figure (1) shows the percentage of children under six that have BLLs

above 5 g/dL over years, the reference level at which the Centers for Disease Control and

Prevention (CDC) recommends public health actions be initiated (CDC, 2013).4 According

to a 2013 estimate from CDC (2013), approximately half a million US children ages one to

five have BLLs above 5 g/dL.

A long list of epidemiological literature provides evidence on the link between lead ex-

posure and both cognitive and non-cognitive outcomes. Because lead exposure is often

associated with socio-environmentally disadvantaged families, disentangling confounding fac-

tors is a major challenge to identifying a causal relationship between exposure and relevant

outcomes. Even so, after controlling for confounding effects, an overwhelming majority of

studies continue to find associations of lead exposure with intellectual ability, even at a rela-

3see Bellinger (2011) for a detail neurological literature review on lead hazard
4In 1991, CDC defined BLLs ≥ 10 µg/dL as the “level of concern” for children aged 15 years. However,

in May 2012, CDC accepted the recommendations of its Advisory Committee on Childhood Lead Poisoning
Prevention (ACCLPP) that the term “level of concern” be replaced with an upper reference interval value
defined as the 97.5th percentile of BLLs in US children aged 15 years from two consecutive cycles of the
NHANES. Recent studies suggest that lead has detrimental effects even at a very low level.
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tively low level of exposure (Bellinger et al., 1992, Canfield et al., 2003, Dietrich et al., 1993,

Grandjean et al., 1991, Lanphear et al., 2000, Lanphear et al., 2005, McMichael et al., 1994,

Stiles and Bellinger, 1993,Needleman et al., 1990). In particular, Ferrie, Rolf and Troesken

(2012) exploits variation in the use of lead water pipes across time and place to estimate a

negative relationship between exposure to leaded water at an early age and later intelligence

test scores among WWII army enlistees.

Significant associations have also been reported in academic achievement (Bellinger et

al., 1992, Bellinger et al., 1994, Chandramouli et al., 2009, Fergusson and Horwood, 1993,

Fergusson et al., 1993, Fulton et al., 1987, Needleman et al., 1990, Yule et al., 1981). No-

tably, exploiting a unique individual-level longitudinal dataset that links preschool BLLs and

students’ test scores, Aizer et al. (2016) find that a 5 µg/dL increase in child lead levels

reduces test scores by 30-60 percent of a standard deviation. Furthermore, the gap in BLLs

relates to the gap in test scores of children across racial groups.

Recently, increased attention has been directed to examining behavioral problems in

children exposed to lead. Children exposed to lead in early childhood are more likely to

behave in an impulsive, aggressive, antisocial, and delinquent manner (Bellinger et al., 1994,

Byers and Lord, 1943, Dietrich et al., 2001, Feldman and White, 1992, Needleman et al.,

1996, Mendelsohn et al., 1998). These childhood behavioral problems often lead to violent or

criminal behavior later in life (Reyes, 2015). Indeed, recent economic research has shown the

link between childhood lead exposure and increased criminal activity later in life (Feigenbaum

and Muller, 2016, Grönqvist et al., 2014, Masters et al., 1998, Mielke and Zahran, 2012,

Nevin, 2007, Nilsson, 2009).

Today, the most significant source of lead exposure comes from lead-based paint (EPA,

2012, Lanphear et al., 1998, Binns et al., 2007), as over 4 million households with children

contain high levels of lead (Jacobs et al., 2002). Lead-based paint first came into use in

the early 17th century and quickly became popular due to its durability and resistance

to moisture (Warren, 1999). Although researchers began documenting lead poisoning in

children as early as the 1900s, the US government did not curb residential lead paint use

until 1978 (Gibson, 2005). In 1978, the US Consumer Product Safety Commission banned

paint containing more than 0.06 percent lead (by weight of dried product) for residential
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use (16 Code of Federal Regulations CFR 1303).5 Notably, the ban only applied to the new

paint, and did not affect the existing housing stock. In addition, lead remains in a house

permanently unless the lead-based paint coat is completely removed. As a result, 64 million

housing units in the US, approximately 75% of the total housing stock, contain lead-based

paint as of 1996, and there are about 1.7 million children who have BLLs above the old safe

limits (10 µg/dL), mostly due to exposure to lead-based paint (EPA and HUD, 1996).

In this context, the US Environmental Protection Agency (EPA) and the Department of

Housing and Urban Development (HUD) jointly issued a regulation in March 1996, under

Title X: The Residential Lead-Based Paint Hazard Reduction Act of 1992, Section 1018.

Title X requires sellers and landlords of homes built before 1978 to disclose known lead-

based paint and to provide available reports to buyers or renters of the property prior to

purchase or rental. Title X also requires that the potential buyer or tenant be given the lead

information pamphlet, “Protect Your Family From Lead In Your Home”, which contains low-

cost tips on identifying and controlling lead-based paint hazards.6 Title X also allows home

buyers to get a 10-day period to conduct a lead-based paint inspection or risk assessment.

Sellers, landlords, and real estate agents are responsible for compliance. Title X took effect

on December 6, 1996.

According to a CDC estimate (2013), 2.1 percent of children who lived in homes built

after 1978 have BLLs of more than 5 µg/dL, compared with 18.4 percent who lived in older

houses. This suggests that the high incidence rate of lead poisoning in minority children

may result from high residency rates in poorly maintained, older homes that still contain

lead-based paint. However, complete avoidance of the old homes as residential choices is not

an optimal response to Title X: maintaining paint surfaces in good condition is sufficient to

eliminate lead paint hazard. Moreover, the high-cost permanent removal of lead paint is not

only inefficient but also often ineffective, as the process might leave lead paint dust or soil

tainted with lead, both of which are even more difficult to remove.

According to estimates in the Presidents Task Force (2000), the cost of interim controls

of lead-based paint is about $1,200 per housing unit. For full abatement of lead-based paint,

5In 2009 that limit further dropped to 0.009 percent.
6The pamphlet is available in both English and Spanish.
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the estimated cost is $10,800 per housing unit. The abatement varies due to variation in

abatement requirements, regional differences in costs, housing stock condition, and local

regulations. Korfmacher (2003) estimates the national average cost of making housing lead-

safe as $7,000 per unit.

It has been well documented in the public health literature that minority children are

more likely to suffer from lead poisoning than white children. Figure (2) shows the racial

disparities in lead poisoning using National Health and Nutrition Examination Surveys.

Between 1991 and 1994, African American children showed an 11.2 percent incidence rate

of lead poisoning (defined as BLLs ≥ 10µg/dL), while white children reported a 2.3 percent

incidence rate (CDC, 1997). An assessment of Mexican-American children showed that

approximately five percent of children of all ages still have BLLs above 10µg/dL at the same

time (Pirkle et al., 1994). According to the 1999-2002 NHANES, African American children

showed an 18.5 percent incidence rate of lead poisoning (defined as BLLs ≥ 5µg/dL), while

white children reported a 7.1 percent incidence rate (CDC, 2013). Lanphear et al (2002)

concludes that differences in housing conditions and exposures to lead-contaminated dust

contribute strongly to the racial disparity in children’s BLLs. These disparities are consistent

with a large literature on environmental inequalities. In the next section, I will provide a

simple model to discuss when and how information disclosure may change housing prices

and demographic compositions of occupants in lead risky houses.

2.2 A SIMPLE MODEL OF PRICE, WILLINGNESS TO PAY, AND

SORTING

To better understand the link between housing prices, and residents occupancy choices, I

formulate a simple theoretical model of preference-based sorting in response to information

disclosure. Using this framework, my model can provide insights regarding the relationship

of dynamics between price change, and sorting behaviors of heterogeneous buyers.

I consider an economy comprised of a continuum of individuals of measure one who

choose to live in one of the two types of houses j ∈ {f, r}. I define f as a lead free
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house and r as a lead risky house. A lead risky house has a positive probability to contain

lead. Houses are identical within types. Prior to information disclosure, these two types of

houses are substitutes. Denote the price premium of a type f house over a type r house as

p = p̄f − p̄r. I fixed the price of a type r house at p̄r, such that the price premium p adjusts

endogenously to clear both housing markets. Suppose there are two types of individuals

in this economy, i ∈ {c, n}, with each type of population Ni. Note that Nn + Nc = 1. I

define c as a type of individuals who care about whether their house has lead and type n

as those who do not. Each individual has an exogenously determined willingness to pay for

the price premium, WTPi whose distribution can be described by Fi(·), a strictly increasing

cumulative distribution function (CDF).

I assume that the economy contains a unit measure of housing supply, with qf + qr = 1.

Since any individual with WTPi ≤ p∗ prefers a type r house, in equilibrium the price

premium adjusts endogenously to satisfy the equilibrium condition:

NnFn(p∗) +NcFc(p
∗) = qr. (2.1)

That is, p adjusts such that the share of individuals satisfy WTPi ≤ p∗ exactly equals to the

share of the housing supply of type r.

To conceptualize the effects of information disclosure, I assume that WTPc shifts to the

right by γ as a result of information disclosure; at the same time, the distribution of WTPn

does not change. This assumption indicates that individuals who consider lead as a nuisance

increase their willingness to pay for a type f house once they realize a type r house may

contain lead; while those who are indifferent to the presence of lead in their house do not

change their willingness to pay following disclosure.

After disclosure, the price premium, p, adjusts to satisfy the equilibrium condition:

NnFn(p∗) +NcF̃c(p
∗) = qr, (2.2)

where F̃c(·) is a shift of the Fc(·) to the right γ units. As such, the new market clearing

condition post disclosure is equivalent to

NnFn(p∗) +NcFc(p
∗ − γ) = qr, (2.3)
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With this framework in place, I make two observations regarding how equilibrium changes

following information disclosure.

Observation 1: Lead free houses become more expensive following information disclo-

sure, and the changes in price are smaller than the changes in type c individuals’ willingness

to pay for a lead free house. Observation 1 follows directly from the following. First, I take

a partial derivative with respect to γ in equation (2.3), I obtain

∂p∗

∂γ
=

NcF
′
c(p
∗ − γ)

NnF ′n(p∗) +NcF ′c(p
∗ − γ)

(2.4)

All terms in equation (2.4) are non-negative; as such, dp∗/dγ is greater than zero. This

suggests that lead free houses become more expensive, when there is a positive shift of γ

following disclosure. In addition, dp∗/dγ is also no larger than one. That being said, one

unit change in willingness to pay for a lead free house leads to less than one unit change in

price. This suggests that price effect is an underestimate of changes in willingness to pay.

Observation 2: Information disclosure leads to resorting. The share of type r houses

being occupied by type c individuals is

Sc
r =

NcFc(p
∗ − γ)

NcFc(p∗ − γ) +NnFn(p∗)
=

Fc(p
∗ − γ)

Fc(p∗ − γ) + Nn

Nc
Fn(p∗)

. (2.5)

This share depends on the CDF of WTPi and the ratios of the population of types of

individuals. Keeping everything else constant, a higher Nn/Nc leads to a lower share of type

c individuals living in type r houses.

Now, I take a look at how disclosure affects resorting. Take the derivative of Sc
r w.r.t γ,

we obtain

∂Sc
r

∂γ
= − NnF

′
n(p∗)

NcFc(p∗ − γ) +NnFn(p∗)
= −NnF

′
n(p∗)

qr
× ∂p∗

∂γ
. (2.6)

Since ∂Sc
r/∂γ is non-negative, Sc

r decreases with γ: the share of type r houses being occupied

by type c individuals decreases after disclosure. By the same token, the share of type r houses

being occupied by type n individuals increases as a result of disclosure. The magnitude of

resorting effect is determined by the population at margin, NnF
′
n(p∗). Notably, when Nn is

large, the effect of disclosure on sorting is large, with a small price effect.

10



To summarize the theoretical results, the predictions of my model allow me to interpret

price and sorting responses following information disclosure. My model predicts a price

change and changes in compositions of occupants. Notably, the change in price is smaller

than the change in willingness to pay, in line with the empirical evidence by Kuminoff and

Pope (2014). In addition, when the share of individuals who are indifferent to lead is large,

a small effect on price and a large effect on sorting are expected.

2.3 DATA

2.3.1 American Housing Survey

The first data set in this study comes from the American Housing Survey National Sample

(AHS) 1993 to 2005. The AHS is used to estimate the market and risk mitigation responses

to Title X. Designed to be representative of the housing stock in the US, the AHS is a

panel of database that tracks roughly 55,000 randomly selected houses every other year.

The survey collects information about self-reported house prices (if owner occupied); rents

(if renter occupied); dwelling characteristics (e.g., metropolitan area of the house, the type

of house, number of bedrooms, number of bathrooms, year built); occupant characteristics

(e.g. age , race, education, income); when the current occupants moved in; whether there

is peeling paint in the house; and whether the occupants tested for lead-based paint when

purchasing the properties. The AHS does not collect information about whether a house

contains lead-based paint.

Table (1) presents summary statistics of the AHS data for this analysis. The data is

subdivided into owner and rental markets. Column (1) in Table (1) shows the summary

statistics of owner occupied housing units. Columns (2) - (4) present summary statistics of

the sample that this paper focuses on. Column (3) shows characteristics of houses built before

1978 - houses at risk of lead - which forms the treatment group in this paper; Column (4)

shows characteristics of houses that are free of lead risk. Comparison between Columns (3)

and (4) suggests that houses built between 1975 and 1978 and those built between 1979 and
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1982 are statistically identical in all characteristics.7 Columns (5) - (8) present summary

statistics in renter occupied housing units. Similarly, a comparison between Columns (7)

and (8) suggests that houses built before and after 1978 are similar in terms of housing

characteristics. For the remainder of this paper, I’ll refer to observations in Columns (2) and

(6) as the “study sample.”

Table (1) also provides evidence for disparities between owners and renters in the charac-

teristics of their housing units. Owner occupied units are more likely to have more bedrooms,

bathrooms, and square footage. In addition, homeowners are more likely to be white, with

higher education and longer tenure in their properties.

To explore the effects of Title X information disclosure, I constructed a “new occupant

sample” from the survey information. The AHS samples the same houses every other year

regardless of whether a house’s occupants have changed. The new occupant sample is con-

structed by taking the entire AHS sample and selecting only the houses that have changed

occupants between surveys. Whether the occupant has changed is determined to have oc-

curred if the move in date was after the previous survey date and the survey respondent was

not reported as part of the same household as in the previous survey. For owner markets,

the new occupant sample is the sale data: each observation is a unique housing transac-

tion, together with the new homeowner’s characteristics. Similarly, for rental markets, each

observation in the new occupant sample contains information about new rental rate, and

new tenant information. Using the new occupant sample, I can analyze not only how price

responds to Title X information disclosure, but also who moved into the lead risky and

non-risky houses.

2.3.2 National Health and Nutrition Examination Survey

The second data set in this study is from the National Health and Nutrition Examination

Survey (NHANES). The NHANES is a nationally representative cross-sectional household

survey, which uses a complex, stratified, multi-stage probability sampling design to track the

health of civilian US population. The NHANES conducts a nationally representative sample

7I cannot reject the null hypothesis that characteristics of pre- and post-1978 houses are identical at the
5% level.
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of about 5,000 people each year and collects information on demographics, socioeconomic

status, housing characteristics, and health.

I examine four waves of the NHANES data for children aged under six years old at

the time they first moved into current homes (1999-2000, 2001-2002, 2003-2004, 2005-2006).

The NHANES - which has been the primary source of information about the national dis-

tribution of children’s BLLs - provides BLL estimates for population subgroups by age, sex,

race/ethnicity, etc. The NHANES also contains information about respondents’ housing

characteristics, including year built; year moved in and lead dust level in the house. One

point worth mentioning is that, the NHANES and the AHS cannot be linked. In this paper,

I analyze these two datasets separately.

The NHANES has collected separate single-surface floor dust lead loading samples from

the room where children spent most of their time while awake. Lead poisoning is often caused

by lead dust from lead-based paint, and even very small amounts can be devastating health

hazards. I use floor dust lead loadings as a measure of lead risk mitigation effort.8 The ap-

propriate sample weights for combined NHANES 1999-2006 were constructed using National

Center for Health Statistics guidelines (NCHS, 2013). Table (2) presents the weighted and

unweighted summary of statistics from the NHANES.

Column (1) in Table (2) shows the summary statistics of children living in owner occupied

properties. Columns (2) - (4) present summary statistics of the sample that form the analysis

of this paper. The NHANES does not report specific year built information. Instead the

surveys collect a range of years built such as whether the house was built between 1960 and

1978 or between 1979 and 1989. Columns (3) and (4) display the characteristics of children

living in lead risky and non-risky houses, respectively. Lead dust levels and average BLLs

are lower in post-1978 homes.9 Comparisons between Columns (1) and (5) suggest that

rental units are more likely to have lead-based paint hazards than owner occupied units. In

addition, children living in renter occupied houses tend to have higher BLLs than those in

owner occupied houses.

8Details of the NHANES protocol, survey and analytical procedures, and handling of samples are available
at: http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.html

9Lead dust in households results not only from deteriorating lead-based paint, but also other sources
outside houses, such as industrial pollution and soil contaminated by exteriors of lead-based paint and past
use of gasoline.
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2.4 ESTIMATION APPROACH

2.4.1 Impacts on Sale and Rental Prices

Housing prices serve as a useful way to track people’s willingness to pay to avoid disamenities.

I investigate the impact of the Title X’s information disclosure policy on housing markets

using hedonic models of residential sale and rental prices. Contemporaneous shifts in local

and macroeconomic housing and labor markets complicate the identification of information

disclosure on housing and rental prices. A further complication is that older houses and

newer houses are systematically different in many ways that are difficult to account for using

data.

To overcome these empirical challenges, I employ a difference-in-differences estimation

strategy. I assign homes to the treatment group (labeled Risky in the model) based on their

years built, with houses built between 1975 and 1978 being treated. Houses built between

1979 and 1982 are assigned to the control group.10 I then compare sale and rental prices

in the treatment group to those in the control group before and after Title X disclosure

policy was enacted (labeled “Disclosed” in the model). To control for confounding factors

mentioned above, I use data with years sold a few years before and after 1996 when the

information disclosure rule was enacted.

The hedonic model for price effects takes the form:

yit = β1Riskyi + β2Disclosedit + β3Riskyi ×Disclosedit

+αXit + δi + Ti + (δi × Ti) + εit,
(2.7)

with yit is the log form of price: sale price or rent. Riskyi is an indicator set equal to

one if a house is built before 1978, zero otherwise.11 Disclosedit is an indicator set equal

to one if a family moved into the property after 1996; if a family moved into a pre-1978

property after 1996, they should have been informed about the potential lead hazard in the

property. Xit includes a set of housing characteristics including the number of bedrooms,

number of bathrooms, lot size, lot size squared, square footage, square footage squared,

10For houses built before 1975, the AHS documents decade built instead of detailed year built. The AHS
also only indicates whether a house is built between 1975 and 1978 without further detailed year built.

11I do not include observations from Maryland, since Maryland banned lead-based paint prior to 1978.
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number of porches, number of garages, stories of the property, and house age at the time

the occupants moved in. Ti controls for the sale year (or move in year) fixed effect. δi is

a metropolitan statistical area (MSA) fixed effect. To account for heterogeneous housing

market shifts across MSAs, I also control for the sale year (or move in year) by MSA fixed

effect for owner markets: δi × Ti. Controlling for these fixed effects allows me to compare

the prices of old and new houses within a small spatial and temporal range. Standard errors

are clustered at the MSA and treatment group levels. The coefficient of interaction between

Riskyi and Disclosedit is the coefficient of interest which captures the casual effect of the

information disclosure on prices.

It is worth noting that I only select houses that have changed hands between surveys for

rental properties. The first reason I dropped returning respondents is that typically landlords

can only modestly increase the rent, if at all. Therefore, using multiple years of rents from

the same renters does not add information about rental prices. The second reason is that the

disclosure rule has more stringent requirements for new leases compared to lease renewals.12

It is reasonable to believe that, compared to signing a new lease, renters living in pre-1978

houses are less likely to receive the information treatment when they renew a lease. As such,

the effect on rental prices captured in equation (2.7) is the effect on new lease rents.

Unlike sale prices, rents are reported in each survey. To take advantage of rich information

on rental prices, I also use all the rental properties across all years and estimate the hedonic

model with house fixed effects to account for any unobserved heterogeneity among individual

houses.13 An additional hedonic model for price effects in the rental market takes the form:

yit = β1Disclosedit + β3Riskyi ×Disclosedit + αXit + τi + Ti + νit, (2.8)

where τi represents house fixed effects, and all other variables are defined the same as in

equation (2.7).

12The disclosure rule does not require repeated disclosure during the renewal of existing leases in which the
lessor has previously disclosed all required information and no new information has come into the possession
of the lessor.

13The EPA and the HUD interpret renewal to occur at the point when the parties agree to a significant
written change in the terms of the lease, such as a rental rate adjustment. The disclosure requirements apply
to any new information obtained subsequent to the original disclosure. For this reason, I also examine the
hedonic model selecting houses that have changed rents between surveys. This approach is similar to the
model presented in equation (2.7), but with an additional sample. The regression results are statistically
very similar and are available upon request.
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2.4.2 Impacts on Demographic Composition of Lead Risky Houses

It is important to understand whether and how homeowners and renters change their res-

idential choices as a result of information disclosure. Following Bae (2012), I adopt the

random bidding model (RBM) introduced by Ellickson (1981). The RBM assumes that

houses choose their occupant’s based on their bidding prices; the regression model places oc-

cupants characteristics on the left-hand side of the equation as a dependent variable, while

housing characteristics on the right-hand side of the equation act as explanatory variables. A

linear probability model is adopted, and the econometric framework takes exactly the same

form as equation (2.7).

Variables on the right hand side are defined in the same way as in equation (2.7). yit

is a dummy variable that describes certain family characteristics, including the educational

attainment of family head, race of family head, whether there are kids under six years old

living in the house, and combinations of these characteristics. I use a linear probability

model to estimate the causal effect of information disclosure on demographic composition:

how information disclosure changes the probability that a lead risky house is occupied by a

certain type of family.

In my main specification, I use the new occupant sample to understand how informa-

tion disclosure affects sorting behaviors by comparing changes in the characteristics of new

occupants of pre- and post-1978 houses, before and after the disclosure. However, the new

occupant sample only contains occupants’ information as of the year they moved in. If fami-

lies are planning to have kids in the near future, they may take lead-based paint hazard into

consideration when buying or renting a house. For the aforementioned reasons - and also

to control for potential unobserved heterogeneity from individual house - I also use the full

study sample to examine the effects of information disclosure on demographic compositions,

controlling for house fixed effects following equation (2.8).

2.4.3 Impacts on Risk Mitigation Behaviors

One of the goals of information disclosure is to make homeowners and landlords better

maintain their houses rather than changing their buying choices. Here, I look at whether

16



information disclosure has an effect on buyer’s lead inspection behavior. A paint inspection

will tell you the lead content of every different type of painted surface in a home. According to

the EPA, this is most appropriate when you are buying a home, and to help you determine

how to maintain your home for lead safety. In addition, I also examine whether there

are any spillover effects of information disclosure. I explore whether disclosure on lead-

based paint also raises awareness of lead hazard in general by looking at lead pipe and lead

solder inspections. Since lead hazard inspections are usually conducted when purchasing a

house, I use the new occupant sample in the analysis. The estimation strategy is identical

to equation (2.7), except using different dependent variables. yit is equal to one if the

homeowner conducted a lead inspection when he or she bought the house, and zero otherwise.

In addition, I also explore whether information disclosure has changed the probability

that peeling paint is present in a house. Lead paint is still present in millions of homes,

sometimes under layers of newer paint. If the paint is well maintained, the lead paint is

usually not a problem. However, deteriorating paint is a hazard that needs immediate

attention. To estimate the effects of information disclosure on the existence of peeling paint,

I use the new occupant sample to explore the effects when the houses change hands. It is

also important to understand how people maintain paint once they move into a property.

Therefore, I also use the study sample controlling for house fixed effects. As a dependent

variable, yit is equal to one if there is peeling paint in the house.14

Lead-contaminated dust is one of the most common causes of lead poisoning, and is

a more direct measure of lead hazard than the presence of peeling paint. Using the lead

dust measures in the NHANES, I use the changes in lead dust levels in houses as another

measure of risk mitigation behavior. Different from the AHS, the NHANES has a relatively

coarse measure for a house’s year built. Therefore I use children who live in houses built

between 1960 and 1977, and houses built between 1978 and 1989 as my study sample. In

addition, I restrict my attention to children under six years old when they moved to the

current residence. The econometric analysis takes the same form as equation (2.7), with yit

representing lead dust levels in a house. Riskyi is defined similarly. Disclosedit is equal to

14A peeling paint condition is determined by the existence of an area of peeling paint larger than 8 by 11
inches, as measured by the AHS.
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one if the child moved the house after 1996 and zero otherwise.

2.4.4 Impacts on Health

The last empirical question is to examine whether market and mitigation responses can trans-

late into health effects. For health effects, I use the NHANES information about children’s

BLLs, and characteristics of the houses they occupied. The empirical approach adopted in

this part is identical to equation (2.7), except the dependent variable is the BLL of the child.

The econometric model takes the form as following:

yit = β1Riskyi + β2Disclosedit + β3Riskyi ×Disclosedit + αXit + Tt + εit, (2.9)

where yit is the BLL of a child who moved in their current residence when he/she was under

six years old. Xit include age fixed effects, gender, race, parental education and family

income. Tt controls for year fixed effects, controlling for the time trend which shows a steady

decrease in BLLs as a result of environmental regulation and public health efforts.

2.5 RESULTS

In this section, I show the effects of information disclosure on sale and rental markets sepa-

rately. There are many reasons to expect differential effects between the two groups. One of

them is the different capitalization patterns between the owner and rental markets (Glaeser

and Gyourko, 2007). Although the high turnover rates and low financial costs of moving

should allow rental prices to adjust quickly, rental market rigidity may not be able to capture

the rental change. For example, tenants in rent-controlled apartments tend to move less,

and typically landlords can only modestly (if at all) adjust prices unless there is turnover.

There are also disparities between rental and owner units in term of geography and unit

characteristics.
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In addition to the owner and rental market having a different structure, they also attract

two different sets of individuals. Owners may be more attentive to lead-based paint given

their financial stake in the property as well as the fact that they are more likely to have

kids and have a longer anticipated tenure in one location than renters. These disparities

in characteristics between owners and renters and their housing units may lead to different

responses from information disclosure.

2.5.1 Owner Market

2.5.1.1 Visual Evidence In order for my difference-in-differences estimates to represent

the causal effects of information disclosure on housing outcomes (price or the probability

that a house is occupied by a certain family type), I need assume the average change in

housing outcomes of pre-1978 houses would have been proportional to the average change in

housing outcomes of post-1978 houses, in the absence of information disclosure. I assess the

validity of this assumption by comparing the prior trends in housing outcomes of pre-1978

houses leading up to information disclosure with the prior trends in post-1978 houses prior

to disclosure. I also need information disclosure to not coincide with any unobserved shocks

which differentially affected each group. Since I am using nationally representative data,

unless the unobserved shocks occurred nationally or in a majority of states, this issue should

not be a concern.

I limit my analysis to houses with year built between 1975 and 1982, and year that

occupants move in between 1992 and 2001. Then I regress log-price and an indicator which

equals one if a house is occupied by a certain type of family on MSA fixed effects, year

trend, and structural control variables. I then fit the group-specific local polynomials on the

residuals of these regressions. This approach allows me to illustrate the temporal variation in

the data that is explained by the variables of interest to my analysis controlling for differences

in outcome variables due to housing characteristics.

Trend analysis for owner and rental markets are presented in Figures (3) and (4), respec-

tively. These plots provide an opportunity to judge the validity of the difference-in-differences

assumption of similar trends in advance of information disclosure. Panel (1) in Figure (3)
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presents the residual plot for log sale prices. The trend in risky houses is only slightly - if at

all - different from the trend in non-risky houses. This may be because some home buyers

responded to Title X when it was passed in 1992. However, there is no clear evidence of

price changes in owner market. Panels (2) - (4) in Figure (3) present the residual plots for

the probability that lead risky houses are occupied by certain types of families.15 The figures

support the validity of the design as there is little evidence of differential trends between

risky and non-risky properties prior to information disclosure. Furthermore, they suggest

that there is a decrease in the probability of lead risky houses being occupied by homeowners

with children, white children and children with educated parents. Figure (4) presents the

trend analysis for rental markets. The parallel pre-trend assumption is satisfied, however,

there are no clear price or sorting patterns.

2.5.1.2 Sale Price If market participants are unaware of lead hazards prior to disclosure,

then pre-1996 housing market clears without fully accounting for lead risks. Information

disclosure of lead-based paint will lower some consumers’ willingness to pay for houses with

lead paint risk relative to lead free houses. As such, the relative prices of lead risky houses

may decrease after information disclosure as my theoretical model predicted. However, if the

changes in willingness to pay are small or the percentage of individuals who consider lead as

a nuisance is small, I may not be able to find measurable price effects.

To examine the effects of information disclosure on housing prices, I limit transactions

to arm length sales of owner occupied, residential single family residences. I dropped houses

without year built, sale year, or sale price from the sample. Finally, I drop observations with

zero rooms (such as efficiencies and lofts), because these properties are not covered by the

information disclosure rule. The seven surveys from 1993 to 2005 were merged, using only

those newly purchased houses, which composes an unbalanced sales-panel during the period

from 1993 to 2005.

Table (3) reports estimates for the causal effect of information disclosure on sale prices.

This table shows the coefficients and the standard errors associated with Riskyi, Disclosedit,

15In order for the difference-in-differences to work, pre-trends need to be satisfied for any and all outcome
variables. In consideration of space, I presented only the most important sorting patterns. Evidence on
other sorting patterns is available upon request.
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and their interaction for five separate regressions, each varying by sample restrictions and

each based on equation (2.7). Other variables in regressions include: number of bedrooms;

number of bathrooms; lot size and its square; square footage and its square; sale year inter-

acted with MSA fixed effects; and region dummies. Coefficients from other housing charac-

teristics are as expected and not reported due to space limitation.

Focusing on the years sold immediately before and after disclosure helps to measure

shifts in the demand for non-risky housing along an inelastic short-run housing supply curve,

since longer run estimates will reflect shifts in both supply and demand. The coefficient of

the interaction term is 3%, but it is insignificant.16 Although still insignificant, when I

increased the year sold symmetrically, restricting my attention to houses sold between 1993

and 2000, the point estimation of the interaction term becomes negative. The effects still

stay insignificant, and the magnitudes are similar when I increase the time window of year

sold from 1999 to 2001, while keeping the year built window the same.17 To summarize, I do

not find measurable sale effects following information disclosure. Bae (2016) finds a similar

result using a different model.18

As suggested in my theoretical model, trading between heterogeneous buyers and sellers

will drive a wedge between price effects and buyers willingness to pay for a lead free house.

As such, the price effect will be an underestimate of changes in willingness to pay. As

Kuminoff and Pope (2014) points out, the bias can be serious. In addition, when the share

of individuals who do not care about lead risk is large, the small effect on sale price should

be expected. As such, if heterogeneous households sort themselves into post-1978 houses,

then these capitalization effects do not reflect buyers’ willingness to pay. In the next section,

I show evidence that such sorting did happen.

16The positive coefficient may be the result of measurement error, since the sale year information is based
on the retrospective memory of residents. Together with the fact that the gap between making an offer on
and closing on a house usually takes a few weeks - sometimes even months - it is even more likely that “pre-”
and “post-” were mistakenly assigned.

17Due to data limitations, I keep the year built of the houses the same across regressions. As mentioned
earlier, the AHS does not provide any detailed year built information until 1980.

18In this paper, Bae (2016) examines the same question using the AHS, but approaches the question using
a repeated sale model. She focused on the pre-1978 houses only, and compared prices of repeated sales of
the same house. The assumption that the house characteristics are constant over time , which allows the
model to attribute the changes between two time points (pre-policy and post-policy) to the policy. Based
on this analytic frame, this study estimated the changes in sale prices because of the policy. She found that
the policy did not lower prices of old homes.
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2.5.1.3 Demographic Composition The goal of Title X is to protect children from

lead paint poisoning. Therefore, I now look at whether disclosure has reduced the probability

of a lead risky house being occupied by a family with children under six years old. Among

homeowners, parents are most likely to prefer properties without lead, since children are most

vulnerable to lead hazard. Table (4) shows how disclosure changed the incidence of lead risky

houses being occupied by families with children. Columns (1) - (3) use the new occupant

sample to confirm that parents are more likely to move out from lead risky properties to

avoid potential lead hazard. Column (3) shows that disclosure decreases the probability of

children occupying lead risky houses by 0.045, or about 15%.19 Results are robust to different

sample restrictions.

As mentioned earlier, the new occupant sample includes families without children, but

who plan to have children in the near future. Although such families are categorized as not

having children in the new occupant sample, they may take lead risks into consideration

when purchasing a house families with children. To address this issue - and the unobserved

heterogeneity of each house - I analyze the data using the “study sample” controlling for

house fixed effects. Using the study sample, I am able to track the same families over survey

years, allowing me to see if they had children after moving into the house. Column (4) and

(5) in Table (4) show that coefficients are quantitatively similar when using either the new

occupant or study sample.

Thus far, I have focused on the average effect of Title X on housing markets. One concern

with information based regulation is that it can heterogeneously impact different groups, and

actually end up hurting minority and lower socioeconomic status (SES) groups. This focus

obscures a tremendous amount of heterogeneity across racial and SES groups. I test for

heterogeneous effects by grouping households based on race, education, and the presence of

children. Table (5) presents the effects of disclosure on the probability that a certain type

of family occupies a lead risky home, with results for 16 different demographic groups. Each

regression uses the study sample, houses built between 1975 and 1982, and sold between

1992 and 2001. Results using the new occupant sample are quantitatively similar and are

19The percentage change is calculated by dividing the coefficient of interaction term, 0.0453, by 0.302,
which is the incidence of kids under six living in the lead risky houses before 1996.
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reported in the Appendix.

Columns (1a) - (1d) in Table (5) show the effects across racial groups. Although white

families tend to move out from lead risky properties and minority families tend to move in,

the estimates are not statistically significant. Hispanic families are actually more likely to

move into lead risky houses after disclosure.

Column (2a) shows the probability that lead risky houses are occupied by white families

with children decreased by 0.04 or 16%. Together with (1a), the coefficient indicates that

white families without kids are more likely to move into lead risky properties. In contrast,

minority families with children are more likely to move into lead risky houses, especially

black families, which indicates that the probability that minority children is exposed to lead

hazard has increased. This may result from the fact that even after disclosure minority

parents are still unaware of lead hazard, or that they have higher willingness to pay for those

lead risky houses compared with other parents who are looking for family-friendly houses.

Although on average there is no evidence of sorting patterns across families with different

education backgrounds (Columns (3a) and (3b)), it seems that parents with no more than a

high school degree are more likely to move into lead risky houses following disclosure. The

coefficients for educated minority parents are insignificant and not presented in this table.

The insignificance may result from that fact that educated minority parents do not respond

to information disclosure or from a small sample size. As a quick robustness check, I also

examine how information disclosure affects families with each member older than 60. Since

lead is a major threat to children and has minimal effects on the elderly, no effect should be

found. The result in Column (4d) confirms this.

I now look at how disclosure affects different income groups. Figure (5) shows that the

highest reduction in the share of families with children living in lead risky houses occurs

amongst households in the third quintile of income distribution. Prior to disclosure, the

share of lead risky houses occupied by families with children was between 39% and 47%

across the quintiles. Following disclosure, the point estimation of the share of families with

children living in the lead risky houses decreased for all but the fourth quintile income group.

However, only for the third quintile group, the reduction is significant. It suggests that the

middle-income families are those at the margin: they both have resources to move and may
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have to move. As suggested by Currie (2011) and Currie et al. (2011), poor families may be

less able to move to a newer and safer homes to avoid lead hazard. Considering the fact that

children of wealthier families have lower BLLs, rich families may have already acted toward

lead-based paint hazard: richer families have more resources to acquire information; at the

same time, richer families are more likely to be educated and people with high educational

attainment might have more information searching capabilities. In addition, they have more

resources to abate the lead hazards in their houses. In a research project that focused on

awareness of lead poisoning, Rajaram (2007) finds that there is a higher level of residents’

awareness on residential lead paint among higher-income groups compared to lower-income

groups. Prior empirical studies have also confirmed the fact that better educated and higher

income consumers tend to have more extensive seeking behaviors and thus possess more

knowledge about products. In contrast, families without children tend to move into lead

risky houses, as presented in Figure (6).

2.5.1.4 Risk Mitigation Behaviors Complete avoidance of the pre-1978 homes is not

an optimal response to information disclosure, since the effects of lead hazard can be neg-

ligible so long as occupants maintain their home’s paint in good condition. In addition,

permanent abatement is inefficient and sometimes it may be ineffective.20

As of 1996, roughly 75% of houses built before 1978 are likely to contain some lead-based

paint. The first step to avoiding lead hazard is home inspection. Table (6) shows the effects

of information disclosure on buyers’ lead inspection. Results show that disclosure increased

the probability that homeowners tested for lead-based paint when purchasing a house by

about 35%. In addition, I also find that families with high income and education respond

to disclosure more in terms of lead inspection as presented in Table (8). This is also in line

with the fact that families with high income and education have more resources to acquire

information and to take actions to avoid lead hazards. Interestingly, information on lead-

based paint also has increased homeowners’ awareness of lead hazard elsewhere. Columns

(4) and (5) in Table (6) indicate this positive spillover: more homeowners tested for lead

20Improper work may leave behind paint dust on lead-tainted soil. The cost of improper removal of lead-
based paint can be as high as $186,481 for a single house as estimated by Jacobs et al. (2003), where they
present a case study and calculated the cost of decontamination after uncontrolled use of power sanders.
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pipes and solders when purchasing properties post disclosure.

In order to induce occupants to manage existing lead-based paint risks, Title X mandates

the provision of the informative pamphlet that contains low-cost maintenance tips to identify

and minimize lead hazard. Although lead is a threat to children’s health, lead hazard will be

minimal if households maintain their paint carefully. Table (7) presents whether information

disclosure changed the presence of peeling paint in owner occupied properties. Columns (1)

- (3) show the effects on the presence of peeling paint when a transaction occurred. The

absence of any effects is expected; many brokers suggest painting a house before sale as one

of the best and easiest things to increase the sale price. Columns (4) and (5) show the effects

using the study sample to understand how homeowners maintain paint after moving into

new homes. In general, results from Table (7) suggest that information disclosure does not

affect risk mitigation behavior in terms of the presence of peeling paint in the house. Peeling

paint in the AHS is determined by the existence of an area larger than 8 by 11 inches. This

is a crude measure, and effects may be occurring at a finer level.

Lead dust is most often the result of old, peeling, or chipped lead paint. Between 1999

and 2003, the NHANES collected dust samples from the homes of children under six years

old to be tested for the presence of lead. This provides an opportunity to examine risk

mitigation behavior at a finer level. Table (9) reports the effects of disclosure on lead dust

levels. Consistent with the result for peeling paint, disclosure does not decrease the lead

dust levels in owner occupied houses, not even for any ethnic group. This may reflect that

homeowners tend to take better care of houses as a result of their longer tenure. It also

could be that homeowners with children shun lead hazard by sorting into lead safe houses,

instead of working to mitigate pre-existing lead hazard.

2.5.1.5 Health Here I look at how Title X affects health outcomes. Lead paint and lead

dust are the most hazardous sources of lead for children in the US. Prior to being banned from

residential use in 1978, lead paint was commonly in homes. Table (10) shows the positive

and significant correlation between the lead dust levels in a house and the BLLs of children

living in the house. Column (5) in Table (10) uses blood mercury levels as a robustness

check assuring that the regression does not pick up other unobserved characteristics that
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affect both housing qualities and BLLs. Like lead, mercury is also a toxic element, children

are exposed to mercury through environment or fish consumption. As such, the lead dust

levels in a house should not affect blood mercury levels, as confirmed by the insignificant

coefficients. Blood mercury level is the only other laboratory measure collected through the

NHANES surveys.

The ultimate goal of Title X is to reduce children BLLs. Columns (1) to (6) in Table

(11) indicate that disclosure does not affect the BLLs of children in owner occupied houses.

This may be due to the fact that disclosure does not change the probability of peeling paint

or the lead dust level in a house.

Results so far have shown that homeowners mitigate the lead hazard by changing their

home purchasing behaviors and increasing lead inspections. Given the fact that even prior to

disclosure, children of homeowners have lower BLLs as well as a lower risk of being exposed

to lead hazard, it is not surprising that there are no health effects on children’s health in

owner occupied properties.

2.5.2 Rental Market

2.5.2.1 Rental Price Conventional wisdom suggests that the rental market is better

suited for valuation studies than the owner market, as higher turnover rates and the lower

financial costs of moving should allow prices to adjust more quickly. Interestingly, there is

no effect on rental prices. Table (12) shows estimates of the effects of disclosure on rental

prices. Similar to owner market, the coefficients are all negative - as expected - and also

insignificant. Results are robust to different sample restrictions and model specifications:

Columns (1) - (3) show results using the new occupants sample; columns (4) and (5) use the

study sample. While capitalization effects are similar between owner and rental markets, this

does not necessarily mean that owner and rental markets respond to information disclosure

in the same manner.

2.5.2.2 Demographic Composition One reason that rental prices are unaffected by

disclosure might be the absence of changes in renters’ willingness to pay for a lead free house.
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As such, according to the model predictions, we should also expect no measurable changes

in demographic composition of rental properties. Table (13) shows the effects of disclosure

on the incidence of pre-1978 properties occupied by families with children under six. There

is no evidence that disclosure has changed the occupancy sorting patterns of parents in the

rental market. Table (14) presents demographic composition in rental markets controlling

for house fixed effects. I find that the probability that lead risky houses are occupied by

white parents with a college degree has decreased by 0.01, while it increased by 0.02 for

minority parents with no more than high school degrees. Except for these two groups, I find

no evidence of sorting in renter occupied units, not even for the high income renters. Figure

(7) shows that the probability of a lead risky house that being occupied by families with

children stays roughly the same across income quintile groups.

Compared to owners, renters tend to be younger, have lower income and fewer years of

education, are less likely to have kids, and have a shorter tenure in one property. Together

with the fact that families with high income and education have more resources and capa-

bilities to become aware of and respond to lead hazard, it is unsurprising that renters have

not changed their occupancy choices due to disclosure. In addition, for parents, avoidance

of lead risky houses is one option to avoid lead hazard. I now look at if renters are choosing

another avoidance option, namely, by keeping paint in good condition.

2.5.2.3 Risk Mitigation Behaviors For renter occupied units, the AHS does not con-

tain lead inspection information. Table (15) shows the effects of disclosure on presence of

peeling paint in renter occupied units. Columns (1) - (3) show that disclosure has no ef-

fects on the presence of peeling paint when new tenants moved in. Usually not required,

many landlords choose to paint their houses between tenants for marketing and aesthetics

purpose. In terms of lead hazard, it is crucial whether the paint is well maintained when

tenants live in the house. Therefore, I also show the effects of disclosure using the study

sample in Columns (4) and (5). By controlling for house fixed effects, I find some evidence

that disclosure has decreased the probability of peeling paint in a rental house. I further

show the effects on peeling paint by controlling for house fixed effects in Table (16) using

various sample restrictions. Results confirm the weak evidence of the decrease in probability
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of peeling paint.

Similar to procedures used in owner market analysis, I then restrict my attention to lead

dust levels in renter occupied houses, with Table (17) presents the results. Consistent with

the results from the AHS sample, lead dust levels fell following the information disclosure, in

both houses occupied by white and Hispanic parents. The coefficient for houses occupied by

black parents is also negative, but insignificant. These results provide evidence that, unlike

owners who mitigate lead hazards by moving to houses with less lead hazards, renters seem

to take efforts to maintain their paint in a better condition.

2.5.2.4 Health Table (18) shows the effects of information disclosure on the BLLs of

children in renter occupied units. Following disclosure, BLLs of children in renter occupied

houses decreased roughly 0.9 µg/dL or 43%.21 Interestingly, BLLs of white children decreased

the most, in both level and percentage change. Column (7) provides a robustness check and

shows that disclosure had no effect on blood mercury levels.

Regression results of the effect of disclosure on incidence of lead poisoning show evidence

Title X has reduced lead poisoning. Owing to the recent environmental and pubic health

effort, the incidence rate for lead poisoning in my study sample is about 3.4%. However,

recent research has indicated that significant neurological damage to children occurs even at

very low levels of lead exposure: a one unit increase in BLL when BLL is below 10 µg/dL

is associated with a 0.51 IQ point decrement; the decrement reduces to 0.19 IQ point when

BLL is between 10 and 20 µg/dL. Of the 27.97 million children under six in the US in

2006, 24.7%, or 6.9 million, have BLLs between 2 and 10 µg/dL (Gould, 2009). Drawing on

recent public health literature (Gould, 2009), each IQ point loss represents a loss of $15,120

in present discounted value of lifetime earnings (in 2000 USD). That means that a 0.9 µg/dL

BLLs decrease for children living in rental properties corresponds to approximately a $7000

increase in present discounted value lifetime earnings. Notice that this benefit estimate does

not include savings in costs related to healthcare, special education, and criminal activity.

According to Schwartz (1994), the total social benefit tends to be about three times as

21I divide the interaction term by the average BLLs of children in pre-1978 houses who moved prior to
information disclosure. Blood lead levels of all race, white, black and Hispanic children in pre-1978 houses
who moved prior to information disclosure are 2.05, 2.74, 2.50 and 1.80 respectively.
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large as the benefit in lifetime earnings, in which lead-linked crimes are not included. Based

on an estimate from Nevin (2007), a oneµg/dL reduction in the average preschool BLL is

associated with about a $1.5 billion reduction in direct cost of lead-linked crimes.22

2.6 CONCLUSION

With the recent findings of high levels of lead in the drinking water in Flint, Michigan,

attention has once again focused on lead poisoning. While drinking lead tainted water is

certainly dangerous, the main cause of lead poisoning in American children comes from

lead paint. In this paper, I have studied the efficacy of Title X, an information disclosure

policy aimed at reducing lead paint hazards. Using a difference-in-differences approach

and a natural experiment, I’ve obtained estimates for the effects of Title X on housing

prices, demographic composition, lead mitigation behavior and health. In doing so, my

paper not only details the effects of Title X, but also provides evidence of the possibilities

and limitations of information disclosure more broadly. This is of particular interest, as

information disclosure has become a popular way to regulate environmental risks.

I find that owner and rental markets have different responses to Title X. In the owner

market, sale prices do not change after Title X. Estimates of these price effects should be

thought of as a lower bound of Title X’s effect on buyers’ willingness to pay, as sorting among

heterogeneous buyers leads to an underestimate of willingness to pay. I find that parents,

especially white parents, are more likely to move away from lead risky properties following

disclosure; while minority parents are more likely to move into houses with lead risk. I

also find that homeowners respond to information disclosure by increasing lead inspection,

especially high-income and educated homeowners. By contrast, in the renter occupied units,

there is no response in terms of price or demographic composition. However, in the rental

market, there is evidence of effects on risk mitigation behavior, and strong evidence that the

BLLs of children in lead risky rental properties have decreased as a result of Title X. I also

22Direct victim costs are costs related to the criminal justice system through legal proceedings and incar-
ceration, and lost earnings to both criminal and victim.
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find suggestive evidence that the decrease in BLLs can be partly attributed to the reduction

in lead dust.

Conventional wisdom and stylized facts suggest several possibilities for the disparities

between owner and rental markets. First, there are significant housing and occupant charac-

teristic differences between owners and renters. If these differences are somehow correlated

with perceptions of lead hazard then this could drive different responses to disclosure. Own-

ers may be more attentive of lead-based paint in their properties given their anticipated

tenure and financial stake in the properties. The disparities in health effects between owners

and renters may also arise from different mitigation behaviors. Owners may have already

taken care of lead paint hazard before Title X was enacted. Another possibility is that

children in owner occupied units have much lower BLLs than those in renter occupied units

before disclosure, and therefore disclosure has little effect in the owner market, but relatively

large effects in the rental market.

Disadvantaged groups may have a higher willingness to pay for cheaper houses that are

lead risky. This brings up the question of whether information disclosure contributes to the

disparities in childhood lead poisoning across racial and socioeconomic groups. Fortunately,

although minority children are more likely to move to houses with lead risk, BLLs of mi-

nority children living in owner occupied houses did not increase following disclosure. In the

rental market, disclosure resulted in increased mitigation behavior. This had the effect of

sharply reducing the BLLs of all children, with white children benefiting the most. On the

whole, my results suggest that regulation by information can be an effective approach to

managing environmental risk, although benefits may not be shared equally across racial and

socioeconomic groups.
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2.7 FIGURES AND TABLES

Figure 1: Percentage of Children under Six with BLLs above 5 µg/dL

Data source: National Health and Nutrition Examination Survey, various years
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Figure 2: Percentage of Children under Six with Lead Poisoning

Data source: National Health and Nutrition Examination Survey, various years
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Figure 3: Residual Plots with 90% Confidence Interval, Owner Market
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Figure 4: Residual Plots with 90% Confidence Interval, Rental Market
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Figure 5: Family with Children Sorting into Lead Risky Owner Occupied Houses, by

Income Quintile
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Figure 6: Family without Children Sorting into Lead Risky Owner Occupied Houses, by

Income Quintile
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Figure 7: Family with Children Srting into Lead Risky Rental Homes, by Income Quintile
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Table 1: Summary Statistics from the AHS

(1) (2) (3) (4) (5) (6) (7) (8)

Sample Restriction Owner Owner Owner Owner Renter Renter Renter Renter

Year Built All 75-82 75-78 79-82 All 75-82 75-78 79-82

Year Moved in All 92-01 92-01 92-01 All 92-01 92-01 92-01

Number of Bedrooms 3.037 3.008 3.060 2.973 1.922 1.895 1.913 1.883

Number of Bathrooms 1.638 1.809 1.787 1.824 1.167 1.251 1.197 1.288

Lot Size 124,168 128,703 123,769 132,171 146,439 192,989 192,309 193,510

Square Footage 2,087 1,950 1,978 1,930 1,191 1,104 1,139 1,081

Garage 0.753 0.758 0.774 0.747 0.310 0.321 0.322 0.321

Porch 0.884 0.913 0.913 0.913 0.641 0.707 0.663 0.737

Peeling Paint 
1

0.0200 0.0102 0.0110 0.00969 0.0486 0.0242 0.0248 0.0239

Lead Test Before Purchase 
2

0.198 0.343 0.343 0.344 - - - -

White Family 
3

0.822 0.823 0.835 0.815 0.601 0.655 0.650 0.658

Black Family 0.0803 0.0520 0.0484 0.0545 0.181 0.150 0.151 0.149

Hispanic Family 0.0648 0.0801 0.0750 0.0835 0.156 0.135 0.141 0.131

Kids in the House 
4

0.171 0.254 0.256 0.252 0.218 0.242 0.232 0.248

White Parents 0.128 0.193 0.206 0.184 0.0967 0.124 0.120 0.127

Black Parents 0.0144 0.0142 0.00898 0.0177 0.0482 0.0435 0.0415 0.0448

Hispanic Parents 0.0197 0.0317 0.0265 0.0352 0.0597 0.0569 0.0539 0.0589

Head with College Degree 0.286 0.328 0.336 0.322 0.208 0.218 0.198 0.231

Head with No More than HS Degree 0.171 0.254 0.256 0.252 0.218 0.242 0.232 0.248

Rent 
5 - - - - 587.0 574.7 573.2 575.7

Sale Price 133,225 124,838 127,717 122,883 - - - -

Number of Residents Moved in 1.437 1.482 1.519 1.462 3.118 3.222 3.168 3.258

Number of Obs 
6 234,156 10,552 4,255 6,297 100,879 6,739 2,837 3,902

Note: Each column is a different subsection of the American Housing Survey.  1. A peeling paint condition is determined by the existence of an area of peeling paint larger than 8 by 11 inches.  2. This 

question is prepared for those who live in owner occupied houses only. 3. The race of a family is defined by the race of the family head.  4. Kids are defined as number of occupants less than 6 years old.  5. 

Rent and sale price are adjusted using year 2000 dollars. 6. Some variables have fewer observations than the number denoted here due to missing information. 
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Table 2: Summary Statistics from the NHANES

(1) (2) (3) (4) (5) (6) (7) (8)

Sample Restriction Owner Owner Owner Owner Renter Renter Renter Renter

 Year Built All 60-89 60-78 79-89 All 60-89 60-78 79-89

Unweighted
1

7.132 7.849 7.612 8.067 4.631 4.499 4.628 4.352

Weighted 7.300 8.152 7.924 8.319 4.988 4.901 4.867 4.939

Unweighted 2.671 2.610 2.490 2.722 1.394 1.413 1.429 1.394

Weighted 3.007 2.977 2.768 3.132 1.682 1.707 1.740 1.672

Unweighted 1.684 1.557 1.571 1.545 2.356 1.979 2.063 1.883

Weighted 1.473 1.375 1.436 1.330 2.052 1.795 1.941 1.631

Unweighted 3.137 2.915 2.652 3.199 2.948 2.595 2.453 2.757

Weighted 3.201 2.719 2.436 2.949 2.931 2.491 2.181 2.821

Unweighted 0.662 0.634 0.745 0.512 0.835 0.635 0.715 0.559

Weighted 0.575 0.565 0.674 0.475 0.728 0.532 0.604 0.462

Unweighted 0.442 0.406 0.329 0.478 0.247 0.225 0.224 0.225

Weighted 0.743 0.721 0.666 0.761 0.486 0.424 0.430 0.417

Unweighted 0.191 0.200 0.248 0.157 0.330 0.334 0.285 0.389

Weighted 0.069 0.074 0.101 0.055 0.183 0.190 0.166 0.217

Unweighted 0.313 0.349 0.371 0.329 0.354 0.363 0.412 0.307

Weighted 0.133 0.153 0.176 0.135 0.239 0.256 0.290 0.219

Unweighted 0.264 0.233 0.193 0.271 0.0849 0.0963 0.0974 0.0950

Weighted 0.333 0.316 0.278 0.344 0.121 0.106 0.090 0.125

Unweighted 0.463 0.494 0.515 0.475 0.615 0.583 0.562 0.607

Weighted 0.383 0.405 0.439 0.380 0.553 0.551 0.562 0.539

Number of Obs
4 Unweighted 3190 1203 577 626 1120 521 277 244

Note: Each column is a different subsection of the NHANES. 1. I show both weighted and unweighted summary of statistics. The weight is constructed according to the NHANES procedure. 2. This variable is 

a ratio of family income to the poverty threshold  3. HH Ref is the person in the household who answered the questions on behalf of the children.  4.Some variables have fewer observations than the number 

denoted here due to missing information.

Age

Poverty Income Ratio
2

Blood Lead Levels 

(µg/dL)

Lead Dust Levels

White

Black

Hispanic

HH Ref with College 

Degree
3

Blood Mercury Levels 

(µmol/L)

HH Ref with No More 

than HS Degree
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Table 3: Price Effects: The Effect of Information Disclosure on Sale Prices

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-99 92-00 92-01

Disclosed -0.0213 0.0590 -0.00934 0.0663 0.0910

(0.649) (0.251) (0.910) (0.241) (0.155)

Risky -0.0982*** -0.0479** -0.0194 -0.0171 -0.0177

(0.00218) (0.0253) (0.209) (0.278) (0.249)

Disclosed x Risky 0.0357 -0.0184 -0.0274 -0.0484 -0.0352

(0.490) (0.707) (0.364) (0.146) (0.199)

Observations 2,078 2,770 2,886 3,161 3,475

R-squared 0.551 0.543 0.560 0.552 0.558

Sample Restriction
DV: ln(price)

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from five 

separate regressions. The regression sample changes as one moves across the columns, indicated by the column headings. 

For example, the estimated coefficients in columns (1) correspond to the effect of the Title X on properties built between 1975 

and 1982 and sold between 1994 and 1999. Year 2000 dollars are used. Other variables in regression but omitted inlcude: 

number of bedrooms; number of bathrooms; lot size and its square; square footage and its square; sale year interacted with 

MSA; and region dummies. 
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Table 4: Demographic Composition: Children under Six in Owner Market

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-01 92-01 92-01

Disclosed 0.00387 0.0286 0.0132 -0.0262 -0.121

(0.889) (0.521) (0.743) (0.651) (0.243)

Risky 0.0248 0.0450*** 0.0251** 0.0151**

(0.298) (0.000556) (0.0220) (0.0297)

Disclosed x Risky -0.0453* -0.0921*** -0.0497*** -0.0660*** -0.0469**

(0.0540) (1.45e-09) (0.00111) (1.40e-05) (0.0473)

Housing Characteristics Yes Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes Yes

House Fixed Effects No No No No Yes

Observations 2,064 2,751 3,450 10,093 10,093

R-squared 0.226 0.229 0.233 0.183 0.681

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from five 

separate regressions. The regression sample changes as one moves across the columns, indicated by the column headings.  

For example, the estimated coefficients in columns (1) correspond to the effect of the Title X on properties built between 1975 

and 1982 and sold between 1994 and 1999. Please see Table (2) for a list of the control variables used in each specification.

Sample Restriction
DV: Whether child under 6 presence in the house
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Table 5: Demographic Composition: Different Family Types in Owner Market

(1a) (1b) (1c) (1d)

Family Type White Family Minority Family Black Family Hispanic Family

Disclosed x Risky 0.01000 0.0219 -0.00291 0.0248*

(0.643) (0.252) (0.816) (0.0951)

Observations 10,382 10,382 10,382 10,382

(2a) (2b) (2c) (2d)

Family Type White Parents Minority Parents Black Parents Hispanic Parents

Disclosed x Risky -0.0399** 0.0230* 0.0118*** 0.0112

(0.0466) (0.0643) (0.000749) (0.330)

Observations 10,382 10,382 10,382 10,382

(3a) (3b) (3c) (3d)

Family Type

Family Head with 

College Degree

Family Head with 

No More than HS 

Degree

White Parents with 

College Degree

White Parents with 

No More than HS 

Degree

Disclosed x Risky 0.0245 0.0103 -0.0116 0.0282**

(0.119) (0.674) (0.187) (0.0234)

Observations 10,382 10,382 10,382 10,382

(4a) (4b) (4c) (4d)

Family Type

Minority Parents 

with No More than 

HS Degree

Black Parents with 

No More than HS 

Degree

Hispanic Parents 

with No More than 

HS Degree

Seniors with Each 

Family Member 

Older than 60 

Disclosed x Risky 0.0107 0.00723*** 0.00348 0.000551

(0.127) (0) (0.634) (0.963)

Observations 10,382 10,382 10,382 10,382

Housing Characteristics Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes

MSA Fixed Effect Yes Yes Yes Yes

House Fixed Effect Yes Yes Yes Yes

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports effects of Title X from 16 separate 

regressions using same sample restriction but different dependent variables. Sample restriction: houses built between 1975 and 

1982, and sold between 1992 and 2001. The type of a family is categorized by the family head. All these regressions include 

other independent variables, and coefficient of those variables are not reported. Please see Table (2) for a list of the control 

variables used in each specification. 
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Table 6: Risk Mitigation Behaviors: Purchaser Lead Test in Owner Market

Lead Pipe Test Lead Solder Test

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-01 92-01 92-01

Disclosed 0.0338 0.0863 0.127*** 0.142* 0.188***

(0.491) (0.470) (0) (0.0749) (0.000745)

Risky -0.0976*** -0.131*** -0.0863** -0.0737*** -0.0662***

(0.00130) (8.62e-05) (0.0261) (0.000113) (0.000856)

Disclosed x Risky 0.0873*** 0.101*** 0.0972*** 0.105*** 0.0903***

(0.00812) (0.00789) (0.00693) (0.000401) (0.00241)

Observations 854 1,135 1,432 1,403 1,387

R-squared 0.296 0.300 0.298 0.303 0.313

Sample Restriction
DV: Purchaser Lead Paint Test

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard errors at MSA 

and whether the house is built before and after 1978.  This table reports regression coefficients from five separate regressions. The 

regression sample changes as one moves across the columns, indicated by the column headings. For example, the estimated coefficients 

in columns (1) correspond to the effect of the Title X on properties built between 1975 and 1982 and sold between 1994 and 1999. 

Dependent variable for Columb (1)-(4) is whether the homeowner conducted lead paint test before purchasing the house.  Dependent 

variables for Columb (5) and (6) are whether the homeowner conducted lead pipe and solder test before purchasing the house 

respectively.
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Table 7: Risk Mitigation Behaviors: The Presence of Peeling Paint in Owner Market

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-01 92-01 92-01

Disclosed -0.00358 -0.00359 0.00499 -0.00147 -0.00980

(0.628) (0.721) (0.692) (0.784) (0.308)

Risky 0.00969 0.0111 0.00496 0.00229

(0.274) (0.146) (0.466) (0.451)

Disclosed x Risky -0.00314 -0.00802 -0.00529 -0.00141 -0.000170

(0.770) (0.401) (0.550) (0.736) (0.983)

Housing Characteristics Yes Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes Yes

House Fixed Effects No No No No Yes

Observations 2,078 2,770 3,475 10,382 10,382

R-squared 0.112 0.071 0.042 0.015 0.426

Sample Restriction

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from five 

separate regressions. The regression sample changes as one moves across the columns, indicated by the column headings. 

For example, the estimated coefficients in columns (1) correspond to the effect of the Title X on properties built between 1975 

and 1982 and sold between 1994 and 1999.

DV: Presence of Peeling Paint
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Table 8: Risk Mitigation Behaviors: Subsample Analysis

(1) (2) (3) (4)

Sample Restriction
High Income 

Families

Low Income 

Families
Educated Families

Less Educated 

Familes

Disclosed x Risky 0.115** 0.0470* 0.180*** 0.0786***

(0.0151) (0.0742) (0.000140) (0.00446)

Observations 779 652 457 974

R-squared 0.421 0.332 0.422 0.332

(5) (6) (7) (8)

Sample Restriction
High Income 

Families

Low Income 

Families
Educated Families

Less Educated 

Familes

Disclosed x Risky 0.00801 -0.0160 0.00440 -0.00379

(0.556) (0.144) (0.712) (0.745)

Observations 1,909 1,563 1,124 2,348

R-squared 0.074 0.104 0.163 0.063

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from 8 separate 

regressions. High income  families are defined as families with income above median in each SMSA-Year cell. Educated families 

are defined as family head with at least college degree.

 
DV: Purchaser Lead Paint Test

DV: Presence of Peeling Paint
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Table 9: Risk Mitigation Behaviors: Lead Dust in Owner Market

(1) (2) (3) (4) (5)

Sample All White Non White Black Hispanic

Risky 0.252*** 0.228** 0.234* 0.176 0.0841

(0.00293) (0.0430) (0.0729) (0.558) (0.510)

Disclosed 0.0584 0.0993 0.147 1.327*** -0.234

(0.666) (0.550) (0.501) (0.00744) (0.300)

Disclosed x Risky -0.154 -0.0657 -0.276 -0.714 0.00190

(0.147) (0.647) (0.114) (0.156) (0.992)

Observations 500 195 305 91 176

R-squared 0.095 0.186 0.126 0.415 0.082

 
DV: Lead Dust Levels( µ g/sq.ft.)

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust cluster standard errors at 

MSA and whether the house is built before and after 1978.  This table reports regression coefficients from 6 separate regressions. 

The regression sample changes as one moves across the columns, indicated by the column headings. For example, the estimated 

coefficients in columns (1) correspond to the effect of the Title X on properties built between 1975 and 1982 and sold between 1994 

and 1999.
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Table 10: Blood Lead Levels and Lead Dust, Owner and Rental Market

(1) (2) (3) (4) (5)

Dependent Var BLL BLL BLL BLL Mecury

Lead Dust Level 0.680*** 0.629*** 0.640*** 0.284* -0.105

(0.211) (0.215) (0.233) (0.158) (0.427)

Observations 903 903 903 342 337

R-squared 0.109 0.149 0.144 0.162 0.100

(1) (2) (3) (4) (5)

Dependent Var BLL BLL BLL BLL Mecury

Lead Dust Level 0.642*** 0.599*** 0.569*** 0.787*** 0.359

(0.125) (0.123) (0.120) (0.264) (0.320)

Observations 486 486 486 246 241

R-squared 0.232 0.291 0.297 0.315 0.160

Parental Education No Yes Yes Yes Yes

Family Income No No Yes Yes Yes

Race No No Yes Yes Yes

Sample Restriction No No No Yes Yes

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are reported in the  parenthesis.  This table reports regression 

coefficients from 10 separate regressions. Column (1) - (4) show the correlation between lead dust level and blood lead level. 

Column (5) shows the correlation between lead dust levels and blood mercury. Column (1) - (3) use all available data in NHANES,  

and column (4) and (5) use children who live in houses built between 1960 and 1989, and those were under 6 years old, when they 

moved into the property.

Panel B: Renter Occupied Properties

Panel A: Owner Occupied Properties
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Table 11: Health Effects: Blood Lead Levels in Owner Market

(1) (2) (3) (4) (5) (6)

Sample All All White Non White Black Hispanic

Risky 0.0665 -0.0196 0.0253 -0.127 0.207 -0.205

(0.365) (0.801) (0.783) (0.349) (0.342) (0.118)

Disclosed -0.0954 -0.170 -0.239 0.0853 -0.0504 0.371

(0.486) (0.201) (0.157) (0.730) (0.887) (0.354)

Disclosed x Risky 0.0954 0.194 0.238 -0.0431 -0.0217 -0.0697

(0.556) (0.229) (0.236) (0.874) (0.959) (0.858)

Parental Education No Yes Yes Yes Yes Yes

Family Income No Yes Yes Yes Yes Yes

Race No Yes No No No No

Observations 1,203 1,203 489 714 241 420

R-squared 0.131 0.188 0.209 0.170 0.357 0.183

 
DV: Blood Lead Level (µg/dL)

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust standard errors. This table reports 

regression coefficients from 6 separate regressions. I restrict my attention to children living in owner-occupied houses built between 1960 

and 1989, and those who were under six years old when they moved into the property. The regression sample changes as one moves across 

the columns, indicated by the column headings. Other variables in regression but omitted inlcude: year fixed effects, age fixed effects,  and 

gender. 
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Table 12: Price Effects: The Effect of Information Disclosure on Rental Prices

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-01 92-01 92-01

Disclosed 0.104 0.000513 0.0957 0.101** 0.107***

(0.187) (0.995) (0.121) (0.0468) (3.47e-05)

Risky -0.0174 -0.00460 -0.0117 0.0276**

(0.386) (0.747) (0.478) (0.0478)

Disclosed x Risky -0.0156 -0.0330 -0.0287 -0.0289 -0.0229

(0.545) (0.122) (0.169) (0.224) (0.456)

Housing Characteristics Yes Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes Yes

House Fixed Effects No No No No Yes

Observations 4,504 5,960 7,417 10,815 10,815

R-squared 0.244 0.227 0.233 0.249 0.667

Sample Restriction

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from five 

separate regressions.Year 2000 dollars are used.  Please see Table (2) for a list of the control variables used in each 

specification.

DV: ln(rent)
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Table 13: Demographic Composition: Children under Six in Rental Market

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-01 92-01 92-01

Disclosed -0.0171 -0.00144 0.00485 0.0332 0.0290

(0.447) (0.964) (0.921) (0.487) (0.359)

Risky -0.0497*** -0.0228* -0.0216* -0.0282***

(5.50e-05) (0.0557) (0.0556) (0.00474)

Disclosed x Risky 0.00798 -0.00632 0.00109 0.0153 -0.0247

(0.510) (0.599) (0.930) (0.274) (0.205)

Housing Characteristics Yes Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes Yes

House Fixed Effects No No No No Yes

Observations 4,477 5,929 7,379 10,649 10,649

R-squared 0.145 0.141 0.143 0.212 0.632

Sample Restriction
DV: Whether child under 6 presence in the house

Note: *** p<0.01, ** p<0.05, * p<0.1.  Robust clustered standard errors at MSA and whether the house is built before and after 

1978,  are reported in parenthesis.  This table reports regression coefficients from five separate regressions. The regression 

sample changes as one moves across the columns, indicated by the column headings. Please see Table (2) for a list of the 

control variables used in each specification.
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Table 14: Demographic Composition: Different Family Types in Rental Market

(1a) (1b) (1c) (1d)

Family Type White Family Minority Family Black Family Hispanic Family

Disclosed x Risky 0.006 -0.015 -0.0145 -0.0008

(0.846) (0.631) (0.523) (0.969)

Observations 10,026 10,026 10,026 10,026

(2a) (2b) (2c) (2d)

Family Type White Parents Minority Parents Black Parents Hispanic Parents

Disclosed x Risky -0.00442 -0.00160 -0.00234 0.000741

(0.853) (0.919) (0.823) (0.947)

Observations 10,026 10,026 10,026 10,026

(3a) (3b) (3c) (3d)

Family Type

Family Head with 

College Degree

Family Head with 

No More than HS 

Degree

White Parents with 

College Degree

White Parents with 

No More than HS 

Degree

Disclosed x Risky -0.0186 -0.00217 -0.0109* -0.00724

(0.302) (0.921) (0.0915) (0.666)

Observations 10,026 10,026 10,026 10,026

(4a) (4b) (4c) (4d)

Family Type

Minority Parents 

with No More than 

HS Degree

Black Parents with 

No More than HS 

Degree

Hispanic Parents 

with No More than 

HS Degree

Seniors with Each 

Family Member 

Older than 60 

Disclosed x Risky 0.0189* 0.0119 0.00408 0.000551

(0.0641) (0.209) (0.632) (0.963)

Observations 10,026 10,026 10,026 10,026

Housing Characteristics Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports effects of Title X from 16 separate 

regressions using same sample restriction but different dependent variables. Sample restriction: houses built between 1975 and 

1982, and sold between 1992 and 2001. The type of a family is categorized by the family head. All these regressions include 

other independent variables, and coefficient of those variables are not reported. Please see Table (2) for a list of the control 

variables used in each specification. 
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Table 15: Risk Mitigation Behaviors: The Presence of Peeling Paint in Rental Market

(1) (2) (3) (4) (5)

 Year Built 75-82 75-82 75-82 75-82 75-82

 Year Sold 94-99 93-00 92-01 92-01 92-01

Disclosed 0.0104** -0.00774* 0.00673*** -0.00189 0.00814

(0.0240) (0.0613) (0.00153) (0.793) (0.397)

Risky -0.00407 0.00709 0.00171 0.00550

(0.405) (0.112) (0.581) (0.240)

Disclosed x Risky 0.00618 -0.00646 -0.000734 -0.00638 -0.0177**

(0.409) (0.222) (0.858) (0.290) (0.0470)

Housing Characteristics Yes Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes Yes

House Fixed Effects No No No No Yes

Observations 4,504 5,960 7,417 10,815 10,815

R-squared 0.105 0.108 0.100 0.015 0.397

Sample Restriction

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from five 

separate regressions. The regression sample changes as one moves across the columns, indicated by the column headings. 

For example, the estimated coefficients in columns (1) correspond to the effect of the Title X on properties built between 1975 

and 1982 and sold between 1994 and 1999.

DV: Presence of Peeling Paint
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Table 16: Risk Mitigation Behaviors: The Presence of Peeling Paint in Rental Market,

Using Study Sample Only

(1) (2) (3)

 Year Built 75-82 75-82 75-82

 Year Sold 94-99 93-01 92-01

Disclosed -0.0226 -0.00519 0.00797

(0.152) (0.580) (0.403)

Disclosed x Risky -0.00270 -0.0213** -0.0177**

(0.851) (0.0348) (0.0480)

Observations 6,722 9,838 10,815

R-squared 0.474 0.385 0.397

Sample Restriction

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust 

cluster standard errors at MSA and whether the house is built before and after 1978.  This table 

reports regression coefficients from three separate regressions. The regression sample changes as one 

moves across the columns, indicated by the column headings. For example, the estimated coefficients 

in columns (1) correspond to the effect of the Title X on properties built between 1975 and 1982 and 

sold between 1994 and 1999. 

DV: Presence of Peeling Paint

Table 17: Risk Mitigation Behaviors: Lead Dust in Rental Market

(1) (2) (3) (4) (5)

Sample All White Non White Black Hispanic

Risky 0.528*** 0.483*** 0.644*** 0.242** 0.488**

(0.00178) (3.30e-06) (0.00526) (0.0339) (0.0197)

Disclosed 0.280 0.388 0.538** 0.212 0.408

(0.115) (0.104) (0.0487) (0.618) (0.241)

Disclosed x Risky -0.438** -0.424*** -0.549** -0.184 -0.400*

(0.0148) (0.00159) (0.0235) (0.402) (0.0772)

Observations 317 87 230 103 108

R-squared 0.150 0.362 0.146 0.125 0.308

 
DV: Lead Dust Levels( µ g/sq.ft.)

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust cluster standard errors 

at MSA and whether the house is built before and after 1978.  This table reports regression coefficients from 6 separate 

regressions. The regression sample changes as one moves across the columns, indicated by the column headings. For 

example, the estimated coefficients in columns (1) correspond to the effect of the Title X on properties built between 1975 and 

1982 and sold between 1994 and 1999.
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Table 18: Health Effects: Blood Lead Levels in Rental Market

Mercury

(1) (2) (3) (4) (5) (6) (7)

Sample All All White Non White Black Hispanic All

Risky 0.939*** 0.976*** 1.568** 0.849*** 1.121*** 1.154*** -1.132

(0.00157) (0.000342) (0.0270) (0.000317) (0.00640) (0.000764) (0.414)

Disclosed 0.0793 0.0921 0.391 0.186 -0.624 0.212 -1.297

(0.757) (0.688) (0.481) (0.460) (0.263) (0.541) (0.231)

Disclosed x Risky -0.868*** -0.905*** -1.621** -0.798*** -0.824* -0.781** 0.672

(0.00708) (0.00190) (0.0378) (0.00387) (0.0892) (0.0472) (0.636)

Parental Education No Yes Yes Yes Yes Yes Yes

Family Income No Yes Yes Yes Yes Yes Yes

Race No Yes No No No No Yes

Observations 521 521 117 404 174 189 420

R-squared 0.140 0.249 0.427 0.256 0.330 0.294 0.218

 
DV: Blood Lead Level (µg/dL)

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust standard errors.  This table reports regression 

coefficients from 6 separate regressions. I restrict my attention to children living in renter-occupied houses built between 1960 and 1989, and  those 

were under 6 years old when they moved into the property. The regression sample changes as one moves across the columns, indicated by the 

column headings. Other variables in regression but omitted inlcude: year fixed effects, age fixed effects, and gender. The dependent variable for 

column (7) is the blood mercry level (µmol/L). 
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3.0 WILDFIRE AND INFANT HEALTH

(with Shawn McCoy)

Wildfires have increased in intensity and frequency. Relative to the 1980s, they are six times

more likely to occur and once they ignite, they grow four times as large (Westerling et al.,

2006). Roughly 100,000 wildland forest fires occur in the United States each year.1 Part of

this trend may be due to changes in global climates (Westerling et al., 2006; Gillett et al.,

2004). Recent expansion of residential housing into forested lands may be another factor.

As a result of population de-concentration, urban areas are increasingly interdigitating with

wild and rural lands creating what has been called the Wildland-Urban Interface (WUI). As

of 2005, the WUI contained 39% of the stock of residential housing units across the United

States (Radeloff et al., 2005). It has been argued that the sprawling configurations of WUI

developments have modified the interactions between environmental and socio-economic dy-

namics leading to an increase in the likelihood of severe wildfires in inhabited spaces (Radeloff

et al., 2005; Spyratos et al., 2007).

Elevated concentrations of fine particulate matter (PM2.5) is often considered to be the

principal threat of wildfire to public health (Jaffe et al. 2008). While PM2.5 is a term used to

refer to fine particulates suspended in the air less than 2.5 micrometers in diameter, the size

of particles found in wildfire smoke are on the lower end of this spectrum typically between

.4 and .7 micrometers in diameter; the same as the spectral range of visible light and small

enough to penetrate the lungs and the heart (Lipsett and Materna, 2008; Hueglin et al.,

1997).

In the United States, wildfire accounts for a notable proportion of total annual PM2.5

1Wildfires: Dry, hot, and windy. National Geographic, (2013). http://environment.national geo-
graphic.com/environment/naturaldisasters/wildfires/.
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emissions. To illustrate this, in Figure (8) we plot PM2.5 emissions trends expressed as

a percentage of total annual emissions using the EPAs 1970-2014 Air Pollutant Emissions

Trends Data2. This graph shows that wildfire has accounted for approximately 20% of total

annual PM2.5 emissions in the United States between the years 2002 and 20133. In recent

years, PM2.5 emissions in the U.S. due to wildfire surpassed emissions due to highway and off-

highway vehicles as well as emissions due to fuel combustion from electric utility, industrial,

commercial, institutional sectors and residential use.

Collectively, these observations motivate us to ask, “What are the public health implica-

tions of wildfire?” Another question equally important to the design of economically efficient

fire management policies is, “On what spatial scales do the health impacts of wildfire mat-

ter?” In this paper, we investigate the public health implications of wildfire by estimating

the spatio-temporal dynamics between wildfire and infant birthweight. While birthweight is

only one of the many relevant health outcomes potentially influenced by fire, it is a useful

metric to consider since it has been shown to be linked to short-term health outcomes, such

as one-year mortality rates, as well as longer-term outcomes such as educational attainment

and earnings (Almond and Currie, 2011; Black et al., 2007). While the physiological pathway

between fine particulate exposure and birthweight remains unclear, researchers hypothesize

that after inhalation, the particles and toxicants contained in wildfire smoke cross through

the placenta disrupting fetal nutrition and oxygen flow resulting in fetal growth retardation

(Jayachandran, 2009; Berkowitz et al., 2003; Dejmek et al., 1999; Wang et al., 1997).

The existing literature points towards air pollution as one channel through which wildfire

may impact public health; however, the stress placed on mothers living in close proximity

to a wildfire may also play a role. As indicated by Dunkel Schetter (2011), there is a

growing body of work linking maternal depressive symptoms as well as general distress

during pregnancy to reduced birthweight. Motivated by this literature, we formulate our

empirical strategy with the goal of quantifying the relative importance in-utero stress plays

in explaining reductions in birthweight following a fire. Teasing out health effects due to

stress from health effects due to ambient air pollution is a unique empirical challenge since

2http://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.
3Estimates of the percent of total annual PM2.5 emissions due to wildfire in the United States reported

by Urbanski et al. (2011), Mallia et al. (2015), and Zhang et al. (2006) range from 20% to 40%.
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both effects are presumably increasing with respect to proximity to a fire. We approach this

problem by utilizing a spatial, difference-in-differences estimation framework. To implement

this method, we assembled spatial data for every fire in Colorado between 2002 and 2013.

We then constructed a fine-scaled dataset delineating wildfire smoke plumes as well as the

prevailing wind direction near each fire. Each wildfire smoke plume was re-constructed

in GIS using a series of daily satellite images taken around the ignition date of each fire.

These datasets were subsequently linked to a confidential database detailing the birthweights

of every infant born in Colorado since 2002 using the latitude and longitude co-ordinates

corresponding to the home address of each infant’s mother.

Together, the data and our empirical framework allow us to explore how wildfires influ-

ence infant birthweight across multiple geo-spatial dimensions of treatment. In our baseline

empirical specifications, we present models of the overall effects of fire by comparing the

birhweights of infants in close proximity to a wildfire (treatment group) to the birthweights

of infants in less proximate areas (control group) letting the data drive the spatial cutoff

delineating the treatment and the control groups. In subsequent specifications, we partition

infants in the treatment group into two sub-groups based on each infant’s location relative

to the presence of wildfire smoke: The set of infants located inside of a wildfire smoke plume

and the set of infants located outside of a wildfire smoke plume. Estimating changes in

birthweight in each of these sub-groups allows us to draw inferences regarding the signifi-

cance of the roles that in-utero stress (as captured by proximity to a wildfire) and ambient

air pollution play in explaining reductions in birthweight.

To preview our empirical results, model estimates show that wildfire smoke leads to sta-

tistically significant, 4% to 6% reduction in birthweight. These effects are most pronounced

among mothers exposed to smoke during their second and third trimesters of pregnancy and

attenuate with respect to distance to a fire. Drawing on estimates reported by Black et al.

(2007), these effects translate into: a .34 to .45 centimeter reduction in height at age 18; a

.54 to .72 percent decrease in full-time earnings; and a statistically significant decrease in

the probability of high school completion. We find no statistically significant relationships

between proximity to wildfire and the birthweights of infants located outside the path of

wildfire smoke; as such, our models fail to validate in-utero stress (as captured by proximity
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to a fire) as a mechanism through which wildfire impacts infant health.

We proceed as follows. We begin by providing a background of the related literature in

Section (4.1). We characterize our study area and the construction of our geo-spatial data

in Section (4.2). We present our empirical methodology in Section (4.3) and our findings in

Section (4.4).

3.1 BACKGROUND

This study contributes to three distinct literatures: An emerging literature focused on the

public health implications of wildfire; a larger literature dedicated to understanding the

health consequences of ambient air pollution; and a branch of the literature dealing with the

links between in-utero stress and fetal health.

3.1.1 Health Impacts of Wildfire

Jayachandran (2009) explores the effects of the 1997 forest fires in Indonesia on early-life

mortality. Using daily data on airborne smoke, the author estimates that fire-driven increases

in air pollution leads to a significant increase in child mortality evidenced by a rise in the

number of children missing in the 2000 Indonesian Census. Moeltner et al. (2013) study the

effects of wildfire in the Reno/Sparks area of Northern Nevada utilizing data on daily hospital

admissions. A unique feature of these authors’ study is their use of data on prevailing wind

direction near wildfires. Moeltner et al. (2013) estimate a significant increase in hospital

patient counts downwind and as far as 300 miles away of a burn site.

Most closely related to our work, Holstius et al. (2012) study the effects of the 2003

Southern California wildfires on infant birthweight. Using information identifying the Census

tract of each mother, these authors restrict attention to infants born in the South Coast

Air Basin4 for which wildfire smoke due to the 2003 wildfires was presumed to be heavily

concentrated. They subsequently compare the birthweights from pregnancies before, during,

4This area includes Orange County and portions of Los Angeles, San Bernadino, and Riverside Counties.
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and after the 2003 event. Compared to pre-fire births, Holstius et al. (2012) estimate a

significant reduction in the birthweights of infants that were exposed to wildfire in their third

and second trimesters of gestation. Khawand (2015) also explores the links between wildfire-

fueled changes in air pollution and perinatal health. This author relates county-level health

outcomes on observed concentrations of PM2.5 at pollution monitoring stations instrumented

by simulated PM2.5 from recent wildfires. He finds that a 10µg/m3 increase in monthly PM2.5

concentrations leads to one additional pre-mature death per 100,000 individuals; an effect

which appears to be driven by deaths from cardiovascular and respiratory diseases among

individuals over 65. Khawand (2015) also estimates a negative, but statistically insignificant

reduction in birthweight. The health impacts of wildfire have been considered in other

notable works using data on eye and respiratory symptoms, medication use, and physician

visits (Kunzli et al., 2006), cardiorespiratory-related deaths (Kochi et al., 2012), and asthma

(Johnston et al., 2002).

One dimension this paper helps to improve our understanding of the health impacts

of fire is the advance we make with the dataset we construct. As detailed more carefully

in the sections that follow, we use GIS to re-construct a series of wildfire smoke plumes

that occurred across our study area; a dataset which we can fully utilize by incorporating

geographic information for each individual in our sample. These data allow us to formulate

an empirical strategy capable of delivering a more nuanced analysis of the spatio-temporal

dynamics between fire and infant health than was previously possible in the extant literature.

3.1.2 Physiological Effects of Ambient Air Pollution.

There is a large literature focused on estimating the physiological effects of ambient air pol-

lution from sources not including fire. Within this literature, epidemiological investigations

are the most abundant. As of the year 2000, Pope III (2000) identified over 150 published

epidemiological studies on the health effects of particulate air pollution. The majority of

these studies focus on mortality, daily hospital admissions, respiratory symptoms, and lung

function. Pope III (2000) identifies a general consensus in this literature that particulate

air pollution – primarily due to combustion-source pollutants – is a leading risk factor for
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cardiopulmonary diseases and mortality. More recent studies have turned their attention to

the effects of air pollution on fetal health outcomes. As summarized by Currie and Walker

(2011), these include: Gilbert et al. (2003); Glinianaia et al. (2004); Currie et al. (2009);

Huynh et al. (2006); Lee et al. (2008); Leem et al. (2006); Liu et al. (2007); Parker et al.

(2008); Salam et al. (2005); Ritz et al. (2006); Woodruff et al. (2008); Wilhelm and Ritz

(2003); Ponce et al. (2005); Brauer et al. (2003); Slama et al. (2007); Beatty and Shimshack

(2011); Karr et al. (2009). The majority of these papers find strong correlations between

ambient air pollution and fetal health. However, it has been argued that many of these stud-

ies are limited by the identification strategies they employ (Goodwin, 2015; Pope III, 2000).

Even in light of these arguments, these papers set the foundation for our understanding of

the spectrum of potential health effects due to air pollution. Focused more closely on the

problem of identification, newer studies have emerged using quasi-experimental techniques

more commonly found in the economics literature. These include: Chay and Greenstone

(2003); Currie and Neidell (2005); Parker et al. (2008); Currie et al. (2009); Currie and

Walker (2011); Hill (2013); Severnini (2014); Goodwin (2015), and Currie et al. (2015). The

identification strategy we employ in our paper is inspired by the work of Currie et al. (2009),

Currie and Walker (2011), and Currie et al. (2015).

Currie et al. (2009) estimate the effects of ambient air pollution on fetal health outcomes

by linking pollutant levels from air monitoring stations to mothers using the latitude and

longitude coordinates associated with each mother’s home address. Restricting attention to

mothers living in close proximity to monitoring stations, they find significant negative effects

of exposure to CO on birth outcomes, but fail to find any significant effects due to PM10.

Using the introduction of the electronic toll collection (E-ZPass) – which reduced vehicle

emissions near highway toll plazas – Currie and Walker (2011) estimate an 11.8% reduction

in the incidence of low birthweight among infants located within 2km of a toll plaza relative

to the birth outcomes of infants between 2km and 10km. Also using micro-data on infants,

Currie et al. (2015) compare birth outcomes within 1 mile of a toxic plant to birth outcomes

between 1 and 2 miles, before and after the opening or closure of 1600 plants. These authors

report a 3% increase in the probability of low birthweight within 1 mile of a plant.

Each of these studies utilize micro-data on the location of infants; information not incor-
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porated by previous works. One way that we contribute to this literature is by introducing

a new measure of ambient air pollution. Currie et al. (2009) measure air pollution using

pollutant levels from air monitoring stations. Currie and Walker (2011) and Currie et al.

(2015) use proximity to the pollutant source as a proxy for exposure.

In our study, we digitally re-construct wildfire smoke plumes captured by satellite im-

agery. Each metric has its own advantages and dis-advantages. One advantage of our ap-

proach is that it allows us to estimate the dynamics between wildfire and infant birthweight

across multiple geo-spatial scales based on each infant’s proximity to a fire and location

relative to wildfire smoke. One dis-advantage to our approach is that while we can proxy for

the density of fine-particulate matter within wildfire smoke plumes with distance to fire, we

cannot assign specific PM2.5 levels to each infant within these plumes.

While much of the extant literature utilizes highly sophisticated methodological tools

applied to novel and relevant data, Currie and Walker (2011) highlights the importance of

accounting for the possibility that changes in air pollution may induce geographical sorting

on the basis of household characteristics. This consideration is motivated by the earlier

work of Banzhaf and Walsh (2008). Using data from the Toxics Release Inventory of the US

Environmental Protection Agency (EPA), Banzhaf and Walsh (2008) identify a link between

changes in environmental quality and changes in local demographics which may ultimately

be correlated with health; effects that are driven by increases in the demand for lands in

improving neighborhoods.

These authors’ theoretical and empirical work clarifies a potential threat to identification

strategy faced by researchers seeking to identify the causal effects of ambient air pollution.

Namely, changes in the environmental quality of a particular region may attract new residents

with poorer health outcomes. The magnitude of this potential bias is closely related to the

rate of migration. In our application, the timing of a wildfire and the timing of particle

emissions fueled by a wildfire coincide. Additionally, both the timing of wildfire ignitions

as well as the spatial variation in wildfire smoke are plausibly random processes. These

properties of wildfire – which we can effectively leverage with our data – allow us to draw

new inferences regarding the health impacts of ambient air pollution with less concern of

bias due to sorting.
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3.1.3 Natural Disasters & Physiological Stress

Lastly, our study contributes to a small literature dealing with the effects of natural disasters

on public health. For instance, Simeonova (2011) investigates the effects of natural disasters

on pregnancy outcomes by relating county-level data on birth outcomes to the incidence of

disasters by disaster type. Using data for the period of 1968-1988, the author shows that

experience with an extreme weather event raises the chances of premature birth and lowers

the gestational length of pregnancies. Utilizing birth record data in Chile, Torche (2011)

finds a significant decline in the birthweight of infants located in counties that were exposed

to a high-intensity earthquake. Finally, Currie and Rossin-Slater (2013) use geo-coded vital

statistics records to examine the effects of hurricanes on birth outcomes. These authors

compare the birth outcomes of infants living within 30km of the path of a hurricane to

the outcomes of infants in the immediately adjacent area, but fail to detect any significant

relationships between hurricane exposure during pregnancy and birthweight. These papers

are part of a broad medical literature which considers the effects of in-utero stress on fetal

health. Most notably, Aizer et al. (2009) utilize longitudinal data to study the effects of

elevated levels of key stress-hormones in pregnant mothers but fail to detect any significant

effects on birthweight. Even in light of these findings, Dunkel Schetter (2011) notes there

still exists a general consensus among scholars that maternal depressive symptoms as well

as general distress during pregnancy are strong predictors of reduced birthweight. We con-

tribute to this literature by quantifying the relative importance in-utero stress (as captured

by proximity to a fire) plays in explaining reductions in birthweight following a wildfire.

3.2 DATA

This paper studies the effects of wildfires in the State of Colorado between the years 2002 and

2013. Spatial data delineating wildfire burn scars were obtained from the Geospatial Multi-

Agency Coordination Group (GeoMAC)5 and Monitoring Trends in Burn Severity (MTBS)6.

5http://www.geomac.gov/index.shtml.
6http://www.mtbs.gov/.
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The data provided by GeoMAC and MTBS were linked to information contained in each

fire’s Incident Status Summary report (ICS-209) which were obtained from the National

Fire and Aviation Management Web Application7 maintained by the National Inter-agency

Fire Center8. These reports were used to determine the date each fire ignited as well as

the prevailing wind direction near each burn site. Where applicable, fire ignition dates were

cross-checked with dates reported by FEMA. In a small handful of cases, we identify a one

to five day discrepancy in ignition dates; to control for this, we drop observations from our

sample that occurred within five days of the ignition dates reported in each fire’s ICS-209

report. We identify a total of 161 fires. The extent of our study area and the location of

each fire in our sample are shown in Figure (9).

We re-construct wildfire smoke plumes in GIS using a series of daily satellite images of

our study area taken by the MODIS9 instrument on board the Terra and Aqua spacecrafts.

These data, which have a temporal coverage of 2007 - 2015, were provided courtesy of the

University of Wisconsin-Madison Space Science and Engineering Center10. We overlay eight

satellite images for each fire. These include four images from the Terra satellite and four

images from the Aqua satellite taken on each of the first four days following the ignition

date of each fire. We then we trace out the extent of visible smoke in each image and store

this information in GIS. We re-construct each fire’s smoke plume by dissolving each smoke

polygon from each satellite image into a single polygon. We illustrate a sample fire and

smoke plume in Figure (11). At a resolution of 250m, we were unable to re-construct smoke

polygons for many of the smaller fires in our sample. Also, while we are able to identify

prevailing wind directions for all fires dating back to 2002, the set of satellite images we use

only dates back to 2007. In a small handful of cases, we were unable to detect wildfire smoke

due to excessive cloud cover. We successfully constructed wildfire smoke polygons for 28

wildfires. We illustrate the final set of smoke plumes associated these fires in Figure (12).

A confidential database detailing the vital statistics and natality records for every infant

born in the state of Colorado between 2002 and 2013 was obtained under a confidential data

7http://fam.nwcg.gov/fam-web/.
8http://www.nifc.gov/.
9http://modis.gsfc.nasa.gov/data/.

10http://www.ssec.wisc.edu/.
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agreement with the Center for Health and Environment Data at the Colorado Department

of Public Health and Environment. These data include: information on the birthweight and

gestational age of each infant as well as demographic information for each infant’s mother

including: Race (white, black, hispanic, or other); education level (graduate or professional

degree, bachelor’s degree, associate degree, some college (but no degree), high school graduate

or GED, 9th to 12th grade (but no diploma)); marital status; and age. These data also

include the latitude and longitude coordinates associated with each mother’s home address.

We restrict attention to full term pregnancies (39 to 42 weeks gestation) and exclude infants

with missing information regarding their birthweight, gestational age, or the demographic

characteristics of their mothers.

3.3 METHODS

Our empirical analysis compares the birthweights of infants before and after wildfires across

various dimensions of treatment using a difference-in-differences estimation strategy. To

implement this procedure, we assign each infant, i, to its nearest fire m ∈ M that occurred

within plus or minus nine months of each infant’s birth date11 restricting attention to infants

less than five miles of a fire. To minimize any confounding effects of exposure to other fires,

we drop any observation from our sample that lies within five miles of more than one fire.

We report the descriptive statistics of our data in Table (13). Column (1) shows sample

means for our complete sample which consists of 7,398 births; standard deviations are shown

in parenthesis. Each infant included in Column (1) is located near a fire with data regarding

prevailing wind direction; we refer to this sample as our wind sample. Column (2) is a sub-

sample of Column (1). We construct the sub-sample in Column (2) by restricting attention

11To implement this procedure, we compute the nearest distance to the nearest point of every fire, m, for
every infant, i, recording both the ignition date of the fire and the birth date of the infant. For each infant i,
we rank each fire in ascending order with respect to the distance between each fire and said infant; for infant
i, let {mi1, mi2, . . . ,min} denote the rank ordering of fires. We then assign infant i to fire mi1 conditional
on mi1 igniting within plus or minus nine months of the infant’s birth date. If fire mi1 failed to ignite within
plus or minus nine months of the infant’s birth date, we assign infant i to mi2. We continue iterating using
this procedure until each infant is assigned to its nearest fire that occurred within plus or minus nine months
of each infant’s birth date.
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to the set of infants located near a fire with spatial data delineating said fire’s smoke plume;

we refer to this sample as our smoke sample.

For each treatment group, our baseline empirical specification takes the form:

yitm = α · Postitm + β · Treatim × Postitm + γm · Treatim

+Z ′iω1 +G′itω2 + τit + εitm, (3.1)

where Postitm is a post-fire dummy and Treatim is a treatment group indicator. For each

treatment definition, we are interested in the estimate on the coefficient of the treatment-

group by post-fire interaction term, β. To control for composition effects, we allow our

main effect to vary by fire by including a full set of treatment group by fire fixed effects,

γm · Treatim. Z ′i is a vector of controls which includes: an indicator variable for mothers’

marital status; indicator variables for mothers’ race (white, black, hispanic, or other) and

education level (graduate or professional degree, bachelor’s degree, associate degree, some

college (but no degree), high school graduate or GED, 9th to 12th grade (but no diploma));

each mother’s age; and the gestational age of each mother’s infant. G′i is a vector of fire-

specific geographic controls which includes the elevation at each infant’s home, the distance

between each infant’s home and wildfire, and the interaction between elevation and distance.

Finally, τit is a set of year-quarter fixed effects.

To identify trimester-specific effects we replace Postitm with three post-fire indicator

variables, {Trik,itm}3k=1, indicating the trimester of pregnancy each mother was exposed to

fire. This transforms the baseline specification into:

yitm =
3∑

k=1

(
αk · Trik,itm + βk · Treatim × Trik,itm

)
+ γm · Treatim

+Z ′iω1 +G′itω2 + τit + εitm. (3.2)

For each treatment definition, we are interested in coefficient estimates for {βk}3k=1. These

coefficients correspond to the difference-in-differences estimates of fire on the birthweight of

infants exposed to a fire during their kth trimester of pregnancy.
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3.3.1 Treatment Definitions

Our starting point for estimating the effects of wildfire on birthweight is a proximity analysis

that compares the birth outcomes of infants located within a certain radius of a wildfire to

the birth outcomes of infants located in the immediately adjacent (less proximate) area.

We operationalize these tests by estimating variants of equation (3.2) with the treatment

variable 1Mileim which equals one for any infant located within one mile of a wildfire and

zero otherwise. This approach – which might be thought of identifying the net-effect of living

in close proximity to a wildfire – is motivated by its prevalence in the literature. Currie and

Walker (2011), for instance, compare birth outcomes of infants within 2km of a toll plaza

to the birth outcomes of infants between 2km and 10km. Currie et al. (2015) investigate

the health outcomes of infants located within 1 mile of a toxic plant to health outcomes of

infants located in the immediately adjacent area. As we discuss in more detail in the sections

that follow, while we present our empirical models using a one-mile treatment/control cutoff,

we graph estimates of each coefficient of interest in each of our models for a complete range

of treatment/control cutoff values, in effect, allowing us to quantify how the impacts of fire

vary across space.

As we allude to above, one empirical challenge we face is the task of estimating the extent

to which changes in health outcomes identified from our proximity analysis are driven by

ambient air pollution and by stress. We approach this problem by identifying the portions of

the landscape surrounding each wildfire that were polluted and relatively less-polluted using

information on prevailing wind direction as well as our spatial data on wildfire smoke. This

requires us to determine whether each birth in our data is located upwind or downwind of a

fire. We operationalize this determination in GIS by computing the angle between each birth

and each fire. To identify the set of births upwind of a fire, we flag observations located ±450

of the prevailing wind direction near a fire. Using this information, we decompose infants

included in the treatment group 1Mileim into two sub-groups, Stressedim and Pollutedim,

such that Stressedim+Pollutedim = 1Mileim. We perform this de-composition two different

ways. For our wind sample, Stressedim is a dummy set equal to one for any infant located

upwind of a wildfire. This variable captures the effects of living in regions in close proximity
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to a disaster, but that were relatively less polluted. In contrast, Pollutedim is a dummy

variable set equal to one for any infant located downwind and within one mile of wildfire. For

our smoke sample, Pollutedim is an indicator set equal to one for any infant located inside a

smoke plume and within one mile of a wildfire. Likewise, Stressedim is an indicator set equal

to one for any infant located within one mile, but outside of a wildfire smoke plume. The

de-composition of the indicator variable 1Mileim into Stressedim and Pollutedim transforms

the empirical specification in (3.2) into:

yitm =
3∑

k=1

(
αk · Trik,itm + βStressed

k · Stressedim × Trik,itm

+βPolluted
k · Pollutedim × Trik,itm

)
+ γm · Stressedim

+γm · Pollutedim + Z ′iω1 +G′itω2 + τit + εitm. (3.3)

Of interest to our analysis are coefficient estimates of {βStressed
k }3k=1 and {βPolluted

k }3k=1

which identify changes in the health outcomes of infants located in each treatment group

exposed to fire during their kth trimester of pregnancy relative to changes in the health

outcomes of infants in each respective control group. In our empirical work, we compare

and contrast estimates of βStresssed
k and βPolluted

k obtained using our wind metrics and smoke

metrics to assess wildfire smoke exposure.

3.4 RESULTS

We begin our formal analysis by estimating equations (3.2) and (3.3) separately for our wind

sample and our smoke sample. Columns (1) and (3) of Table (3.2) present difference-in-

differences estimates of these regressions with p-values in parenthesis. Columns (1) and (3)

compare the birthweights of infants within one mile of a wildfire to the birthweights of infants

located between one and five miles. Difference-in-differences estimates of 1Mile × Tri 3 in

Columns (1) and (3) show that, on average, infants within one mile of a fire incur a 2.5% to

3.9% reduction in birthweight when fires ignite during mothers’ third trimesters of pregnancy;
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however, these effects are statistically insignificant with p-values of .17 and .16, respectively.

Estimates of 1Mile× Tri 2 and 1Mile× Tri 1 are also statistically insignificant.

Figures (11) and (12) suggest that the concentration of wildfire smoke at any given lo-

cation may be dependent upon the direction of prevailing wind. Leveraging this feature of

the data to our advantage, in Column (2) we report estimates of (Polluted × Tri k) and

(Stressed× Tri k). These estimates are obtained by applying estimating equation (3.3) to

our wind sample. Model estimates of (Polluted×Tri 3) show that infants located within one

mile, but downwind of a wildfire, incur a statistically significant, 5.69% reduction in birth-

weight conditional on each infant’s mother being exposed in her third trimester of pregnancy.

Estimates of (Polluted×Tri 2) also show a statistically significant, 4.5% reduction in birth-

weight in proximate, downwind regions of a fire as well. In contrast, referring to estimates

of (Polluted × Tri 1), we fail to detect any statistically significant effects of fire on infants

exposed during their first trimester of pregnancy, even among infants located in a downwind

region of a fire. Likewise, coefficient estimates of (Stressed×Tri 3), (Stressed×Tri 2), and

(Stressed × Tri 1) indicate no statistically significant effects of wildfire on the birthweight

of infants upwind of a fire irrespective of the trimester in which they were exposed. Model

results in Table (19) are based on the most robust version of estimating equation (3.3) which

includes the complete set of demographic controls, geographic controls, and time fixed ef-

fects specified in Section (4.3)12. In Table (A3) in Appendix we show how the estimates in

Column (2) of Table (19) change without and without the inclusion of each of these controls

and fixed effects.

Next, we turn our attention to Column (4) of Table (19)13. Column (4) compares the

outcomes of infants in polluted and non-polluted regions of a fire based on each infant’s

location with respect to a wildfire smoke plume. These estimates are obtained by applying

estimating equation (3.3) to our smoke sample. Coefficient estimates of (Polluted× Tri 3)

indicate that infants inside a smoke plume incur a statistically significant, 4.8% reduction

in birthweight conditional on each infant’s mother being exposed in her third trimester.

Estimates of (Polluted× Tri 2) indicate a statistically significant, 3.8% reduction in birth-

12Please refer to the notes of Table (19) for a description of each variable included in these regressions.
13In Table (A4) in Supplementary Appendix we show how estimates in Column (2) of Table (A3) change

without and without the set of of demographic controls, geographic controls, and time fixed effects.
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weight. These estimates are qualitatively similar to estimates obtained from segmenting

polluted regions near a wildfire on the basis of prevailing wind. Also similar to our analysis

of birthweight and air pollution using prevailing wind, model estimates of (Stressed×Tri 3),

(Stressed× Tri 2), and (Stressed× Tri 1), are statistically insignificant.

These results show that wildfire smoke has a detrimental impact on infant birthweight.

Our findings also show that the effects of fire captured exclusively by proximity to a fire are

not powerful enough to induce changes in fetal health. This finding is consistent with the

earlier work of Currie and Rossin-Slater (2013) who find no statistically significant relation-

ships between proximity to a recent hurricane and birthweight. We proceed by subjecting

our model estimates to various robustness checks. We then characterize the spatial decay

process between wildfire and birthweight.

3.4.1 Robustness Checks

Our empirical models based on equation (3.2) and the set of infants in our wind sample

compare the outcomes of infants within one mile of a wildfire to the outcomes of infants in

the immediately adjacent area, partitioning the set of infants within one mile of a fire into

a polluted (downwind) group and a non-polluted (upwind) group. This approach implicitly

compares the outcomes infants in each of these sub-groups to the outcomes of infants in a

control group who may have resided in downwind regions of a wildfire. In Column (1) of

Table (20) we replicate the baseline model reported in Column (2) of Table (19). Column

(2) of Table (20) tests the sensitivity of the results shown in Column (1) to a full set of group

by fire and group by trimester indicator variables for the set of infants located downwind

of a fire, but further than one mile. We refer to observations that fall into these groups as

“contaminated controls”. The inclusion of these indicator variables changes the reference

category for Polluted× Tri k and Stressed× Tri k from the set of infants located between

one and five miles of a wildfire to the set of infants located between one and five miles

and upwind of a fire without changing the sample of births across each model. We find no

qualitative differences between the estimates in Column (2) and our baseline estimates in

Column (1).
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Prevailing wind direction is a useful proxy for identifying regions of the landscape near

fires that experienced relatively higher concentrations of wildfire smoke and its usage is

motivated by its prevalence in the extant literature. However, one might argue that the

precision of this metric may be diminished if the wind patterns surrounding each fire change

frequently over the course of each fire’s burn. We test for this potential bias using detailed

information from each fire’s ICS-209 report. In addition to indicating the prevailing wind

direction near each fire, these reports include a separate note indicating if the wind patterns

were “erratic” or not. Column (3) re-estimates the baseline model restricting attention to

fires that did not receive an erratic wind flag; coefficient estimates are also qualitatively

similar to those reported in Column (1).

Our baseline models that apply equation (3.3) to our smoke sample compare the outcomes

of infants within one mile of a wildfire to the outcomes of infants in the immediately adjacent

area, partitioning the set of infants within one mile of a fire based on their location with

respect to wildfire smoke plumes. This approach implicitly compares outcomes in each

treatment group to the outcomes of infants in a control group that may have resided within

a smoke plume, but located more than one mile of a fire. Column (1) of Table (21) replicates

our baseline smoke model. Column (2) tests the sensitivity of Column (1) to a full set of

group by fire and group by trimester indicator variables for the set of infants located inside

the smoke plume of a fire, but more than one mile away. Coefficient estimates in Column

(2) of Table (21) are similar in magnitude to each corresponding estimate in Column (1). In

addition, the estimate of Polluted× Tri 3 is only marginally insignificant with a p-value of

.108.

One advantage of the wildfire smoke plumes that we construct in GIS is that they allow

us to identify portions of the landscape that were polluted in a relatively precise way with

a high degree of confidence. One limitation of these data is that the path of smoke that we

identify in GIS may represent the location of polluted areas only on a given day and time

for which a fire burned. As a result, there may exist births in the control group partially

exposed to wildfire smoke, even if they were located outside of a wildfire smoke plume.

We attempt to mitigate this bias by re-constructing each plume using several images taken

at different times of the day. We take an additional measure to control for this bias by
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incorporating information on prevailing wind into our smoke analysis. Specifically, Column

(3) of Table (21) tests the sensitivity of the baseline model in Column (1) to a set of group

by fire and group by trimester indicator variables for the set of infants located more than

a mile away from a fire and that were located either inside the smoke plume of a fire or

downwind of fire. As shown in Table (21), by including these variables, coefficient estimates

for Polluted× Tri 3 and Polluted× Tri 2 change from -4.8% (p=.095) and -3.8% (p=.094)

to -6.7% (p<.05) and -3.8% (p=.125), respectively.

3.4.2 Testing for Pre-Existing Trends

In order for our difference-in-differences estimates to represent the causal effects of wildfire

on birthweight, we must assume that the average change in birthweight in each treatment

group would have been proportional to the average change in birthweight in each control

group, in the absence of a wildfire. We must also assume that wildfires do not coincide with

any unobserved shocks differentially affecting each group. Our empirical design mitigates

concerns regarding the second of these assumptions by considering the effects of multiple

wildfires occurring at different points in time and that vary over a large geographic scale. We

assess the validity of the first assumption by comparing the prior trends in the birthweight of

infants in each treatment group leading up to the fire to the prior trends in each corresponding

control.

For each sample of births in our wind and smoke analysis, we regress the natural log

of birthweight on a set of year by quarter fixed effects, fire fixed effects, and demographic

controls. In Figure (15), we fit treatment group-specific local polynomials on the residuals

of these regressions. This approach allows us to illustrate the temporal variation in our

data that is explained by the variables of interest to our analysis – the set of treatment

group by trimester indicator variables – controlling for time fixed effects and differences in

birthweight due to mothers’ characteristics. The figure at the top of panel (a) plots the

trend in the birthweight of infants located downwind and within one mile of a wildfire. This

trend line shows the evolution of birthweight among infants included in the treatment group

Polluted constructed on the basis of prevailing wind. The bottom figure of panel (a) plots
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the birthweight trend for the set of infants located more than a mile away of a fire. In a

similar fashion, the figure at the top of panel (b) plots the birthweight of infants located

inside a smoke plume and within one mile of a fire. This trend line shows the evolution of

birthweight among infants included in the treatment group Polluted constructed on the basis

of wildfire smoke plumes. The figure at the bottom on panel (b) shows the pre-fire trend in

the birthweight of infants located between one and five miles. These figures show that the

birthweight of infants in the treated and control groups exhibit similar trends leading up to

a fire.

Next, we turn our attention to proximate upwind / out-of-the-smoke regions of fires. At

the top of panel (a) in Figure (??), we plot birthweight trends for infants located upwind and

within one mile of a wildfire, together with a 90% confidence interval. Infants in this group

are included in the treatment definition Stressed constructed on the basis of prevailing wind.

The trend in the birthweight of infants in the control group is illustrated in the bottom of

panel (a). Likewise, the figure at the top of panel (b) shows the evolution of the birthweight

of infants located outside a smoke plume, but within one mile of a wildfire; the trend in the

birthweight of infants located in the control group is illustrated in the bottom of panel (b).

These figures also show that the birthweight of infants in the treated and control groups

exhibit similar trends leading up to a fire; however, in contrast to our previous findings, we

find no systematic changes in birthweight in any treatment group following an event.

3.4.3 Model Sensitivity to Treatment Cutoff

Our baseline empirical models compare the outcomes of infants in proximate upwind / out-

of-the-smoke regions of wildfires as well as proximate downwind / in-the-smoke regions of

wildfires using a one mile treatment cutoff. We proceed by testing the robustness of these

models to the treatment cutoff definition. To do this, we re-estimate our baseline models

reported in Columns (2) and (4) of Table (19) increasing the size of the treatment cutoff in

quarter mile increments. Figures (16) and (17) plot coefficient estimates for Polluted×Tri 3

and Polluted × Tri 2 obtained from each iteration, respectively14. Coefficient estimates

14Sensitivity analysis for estimates of Polluted×Tri 1, Stressed×Tri 3, Stressed×Tri 2, and Stressed×
Tri 1 are shown in Figures (B1), (B2), (B3), and (B4) in Appendix, respectively.
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together with their 90% confidence intervals are shown on the y-axis with the treatment

cutoff (in miles) shown on the x-axis. In each figure, model estimates obtained using the

wind sample are shown in panel (a) with model estimates obtained using the smoke sample

in panel (b).

Referring to Figure (16), model estimates of Polluted × Tri 3 are larger (in absolute

value) when we consider infants located closer to fires. As we consider the set of infants

in polluted, but less proximate regions, model estimates decay. Estimates shown in panel

(a) decay towards zero after a distance of approximately 2 miles. Referring to panel (b),

model estimates of Polluted×Tri 3 decay at relatively slower rate when we identify polluted

regions using wildfire smoke plumes; these coefficients converge to zero after a distance of

approximately 3.5 miles. Figure (17) shows that estimates of Polluted × Tri 2 decay more

quickly than each corresponding estimate in Figure (16). Specifically, estimates based on

both our wind sample (panel (a)) and our smoke sample (panel (b)) converge to zero after

approximately 1.25 to 1.5 miles. We recall that estimates of Polluted × Tri 3 constructed

using wildfire smoke polygons were statistically significant (or were only marginally insignif-

icant) up to a distance of 3 miles. This suggests that infants located between 1.5 and 3

miles of a fire, but in their second trimester of pregnancy at the time of a fire, were likely

exposed to levels of fine particulate matter similar to infants in the same regions, but in their

third trimester of pregnancy; the fact that we find no statistically significant reductions in

birthweight among infants in the former category re-inforces the general finding in the ex-

tant literature that the health risks of ambient air pollution to infants (at least in terms of

birthweight) are elevated as infants approach later stages of the pregnancy.

3.4.4 Model Sensitivity to Control Cutoff

We turn our attention to testing the sensitivity of each of our models to the control cutoff

delineating treated and non-treated areas. To do this, we first replicate the baseline wind

and smoke models shown in Columns (2) and (4) of Table (19). We then obtain sequential

estimates of each coefficient in each model after reducing the control cutoff in quarter mile

increments from an initial distance of five miles to a distance of two miles. Figure (18) plots
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coefficient estimates of Polluted × Tri 3. Panel (a) reports estimates obtained under our

wind specification. Panel (b) reports estimates obtained under our smoke specification. In

each figure, coefficient estimates are plotted on the y-axis. The control cutoff (in miles) is

shown on the x-axis. Figure (18) shows that model estimates of Polluted×Tri 3 are robust

and stable to control definitions between two and five miles. As shown in Figures (B5) to

(B9) in Appendix, model estimates for {Polluted × Tri k}3k=2 and {Stressed × Tri k}3k=1

are also robust and stable to control cutoffs between two and five miles.

3.4.5 Testing for Changes in Demographic Composition

As we explain previously, in order for our empirical methodology to identify the causal effects

of wildfire on birthweight, we must assume that the average change in birthweight among

infants in each treatment group would have been proportional to the average change in

outcomes in each control group, in the absence of a wildfire. Our pre-existing trend analysis

in Section (3.4.2) provides evidence to suggest this requirement is met. However, while the

data for infants in each treatment group exhibit trends similar to the data for infants in each

corresponding control, our estimates may fail to identify the causal impacts of fire if the

relative demographic composition of households in the treatment and control systematically

changes following a fire on the basis of a household characteristic correlated with birthweight.

In our empirical application, the timing of wildfire and the timing of particle emissions fueled

by wildfire coincide. Additionally, the timing of wildfire ignitions as well as the spatial

variation in wildfire smoke are plausibly random. While these properties help mitigate

concerns of post-disaster demographic re-composition, we test for these potential changes

explicitly by examining how demographic characteristics in each treatment and control group

change following a fire.

To operationalize these tests, we re-estimate our baseline wind model and our baseline

smoke model replacing the left-hand side variables with mothers’ demographic character-

istics. Estimates based on equation (3.3) and our wind sample are shown in Table (22).

Estimates based on equation (23) and our smoke sample are shown in Table (23). Of the 60

coefficients we estimate, only five are statistically significant. Of these, only one coefficient
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is significant in both the wind and smoke specifications. These results provide a more direct

form of evidence that the composition of infants does not systematically change after a fire.

3.4.6 Returns to Birthweight

We find that infants exposed to wildfire smoke incur a 4% to 6% reduction in birthweight;

this effect translates into a 135-202 gram reduction in birthweight for the average infant

in our sample. To understand the significance of our point estimates expressed in terms of

longer-term health outcomes, we draw on work by Black et al. (2007) dedicated to estimating

the economic returns to birthweight. Black et al. (2007) compile data on the birthweights

of infants born in Norway between 1967 and 1997. The authors link each birth record to

an administrative dataset covering the population of Norwegians between the ages of 16

and 74 as well as a dataset of Norwegian military records from 1984 to 2005. The authors’

data include information on: educational attainment; labor market status; earnings; gender;

height; weight; and IQ.

Black et al. (2007) use these data to associate differences in the birthweight of monozy-

gotic twins to differences in their adult outcomes. On the basis of their point estimates15, a

6 percent decrease in birthweight translates into: a .34 to .45 centimeter reduction in height

at age 18; a .03 to .04 decrease in IQ (measured on a scale from one to nine); a .42 to .54

percentage point decrease in the probability of high school completion; a .54 to .72 percent

decrease in full-time earnings; and a .03 to .07 decrease in BMI. Black et al. (2007) also use

Center for Disease Control cutoffs for classifying an individual as overweight (BMI≥25) or

underweight (BMI≤18.5). Using these classifications, the authors also find that decreased

birthweight leads to a statistically significant increase in the probability of being underweight

in adulthood.

3.4.7 Pregnancy Characteristics

The primary objective of this paper is to quantify the effects of wildfire on birthweight.

However, as we allude to above, our study is limited in terms of the inferences we can draw

15We are referencing estimates reported by Black et al. (2007) in Columns (3) - (4) of Table III, page 422.
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regarding the physiological pathways between wildfire smoke exposure and infant health.

While these pathways are not well established, some researchers believe that wildfire smoke

and fetal growth retardation are linked by the effects that the particles and toxicants in

wildfire smoke have on fetal nutrition and oxygen flow (Jayachandran, 2009; Berkowitz et

al., 2003; Dejmek et al., 1999; Wang et al., 1997). While we leave the task of determining

the physiological pathways between wildfire smoke and birthweight the subject of future

research, we proceed by studying the impacts of wildfire on the health characteristics of

each pregnancy with the goal of shedding light on what these pathways might be. These

characteristics include: The gestational length of pregnancies; the number of prenatal visits

scheduled by the mother; whether the infant was in a breech position; whether the mother

was diagnosed with gestational hypertension or pregnancy induced hypertension; whether

the infant was presented with rupture of membranes prior to the onset of labor; whether the

infant had a seizure; and whether the infant incurred an injury at birth.

We first test if wildfire has the propensity to change the gestational length of pregnan-

cies. We do this by estimating equations (2) and (3)16 using a single post-fire time period

indicator variable (Post) and the log of the gestational length of pregnancies (ln(gest)) as

the dependent variable applied to the wind and smoke samples expanded to include preterm

(less than thirty-seven weeks) and early term (greater than thirty-seven weeks, less than

thirty-nine weeks) pregnancies. The results of these regressions are shown in Table (24).

Referring to coefficient estimates of (Polluted) × (Post) and (Stressed) × (Post), model

results suggest a .38% to .74% reduction in the gestational length of pregnancies among

mothers in proximate downwind / in-the-smoke regions of fires and a .27% to .52% reduc-

tion among mothers located in proximate upwind / out-of-the-smoke regions; however, in

each case we fail to reject the null hypothesis that each coefficient equals zero.

We turn our attention to the other characteristics of pregnancies in Tables (25) and (26).

In each table, we report coefficient estimates of the treatment group by post-fire interaction

terms specified in equation (3). Of the 72 coefficients we estimate, only two are statistically

significant at conventional levels. First, referring to the estimate for Polluted × Tri 3 in

16Each regression includes the full-suite of demographic and geographic controls used in our analysis of
birthweight. Please refer to note in Table (24) for a list of the control variables used in these regressions.
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Column (1) of Table (26), we find a small and significant increase in the number of prenatal

visits attended by mothers. In contrast, estimates for Stressed×Tri 2 show a small decrease

in the number of prenatal visits.; however, neither of these coefficients are significant in our

wind sample.

Turning attention to Column (6) of Table (25), estimates for Polluted×Tri 3 indicate a

small increase in the probability infants incur injuries at birth; this effect is only marginally

insignificant with a p-value of .10. The coefficient estimate for Polluted×Tri 3 is also positive

and only marginally insignificant with a p-value of .119 when we apply this estimation routine

to our smoke sample in Table (25). Abnormal birth injuries may include skeletal fractures,

peripheral nerve injury, and/or soft tissue/solid organ hemorrhage that requires a medical

intervention. Due to the fact that each estimate is only marginally insignificant, it is difficult

to conclude whether or not wildfire has a causal impact on abnormal birth injuries or not.

To improve our confidence in these estimates, Tables (A5) and (A6) in Appendix test the

sensitivity of the estimates reported in Column (6) of Tables (25) and (26) to the set of

robustness checks we presented in Section (3.4.1). While the point estimates in Columns (2)

- (3) in Tables (A5) and (A6) are qualitatively similar to point estimates reported in Column

(6) of Tables (25) and (26), each estimate remains statistically insignificant.

3.5 CONCLUSION

To estimate the impacts that wildfire has on infant birthweight, we construct a spatial

dataset delineating wildfires in Colorado, the prevailing wind direction near each fire, and

the path of wildfire smoke linked to a confidential database detailing the birthweights of

infants in the study area. The extant literature identifies two plausible mechanisms through

which fire may impact fetal health: Changes in ambient air pollution and stress. To gain

insight into the role each mechanism plays in explaining changes in infant birthweight, we

utilize a difference-in-differences estimation framework estimated across multiple, geo-spatial

dimensions of treatment based on each infant’s location with respect to wildfire smoke. Model

estimates show that wildfire smoke leads to statistically significant, 4% to 6% reduction in

77



birthweight; effects that are most pronounced among mothers exposed during their second

and third trimesters of pregnancy and decay with respect to distance to fire. In contrast,

we find no statistically significant effects of wildfire on the birthweights of infants located

outside the path of wildfire smoke. These findings point to ambient air pollution as the

principal mechanism by which fire impacts birthweight. While it is plausible that wildfires

place undue stress on nearby residents, our models fail to validate in-utero stress (as captured

by proximity to a fire) as a mechanism through which wildfire impacts infant health.

This paper provides new insight into the spatio-temporal dynamics between wildfire

and infant health, but is limited in terms of identifying the physiological pathways between

wildfire smoke and birthweight. We attempt to gain insight into what these pathways might

be by exploring the effects of fire on pregnancy characteristics. The results of these tests

further point to birthweight as the primary fetal health outcome impacted by severe fires.

These findings appear to be consistent with the hypothesis advanced in previous works that

wildfire smoke and fetal growth retardation are linked by the effects that the particles and

toxicants in wildfire smoke have on fetal nutrition and oxygen flow; however, our study

cannot validate this claim directly. We leave this determination to the subject of future

research.

One advantage to studying birthweight is that many researchers agree it is a metric

linked to short-term as well as longer-term health outcomes17. Another advantage is that

infant birthweight databases are widely available and maintained at geographic scales fine

enough to implement the empirical methodology we set forth in this paper. Still, efficient

policy design ultimately requires an understanding of the impacts of fire across a broader

spectrum of health outcomes. Avenues for fruitful work unexplored in this study are the

links between wildfire, longer-term health outcomes, and cognitive impairments.

17See, for example, Almond and Currie (2011) and Black et al. (2007).
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3.6 FIGURES AND TABLES

Figure 8: EPA Air Pollutant Emissions Trends Data: Average Annual PM2.5 Emissions

Trends (2002 - 2013)
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Notes:  This table is produced from the EPAs 1970-2014 Air Pollutant Emissions Trends Data.  Link: http://www.epa.gov/air-

emissions-inventories/air-pollutant-emissions-trends-data.  Fuel Combustion category includes emissions from: electric utility, 

industrial, commercial, institutional sectors and residential use. Highway Vehicles category includes emissions from: light-

duty gas vehicles, motor cycles, light-duty gas trucks, heavy gas vehicles and diesel vehicles. Off-Highway category includes 

emissions from: non-road gas and diesel use, aircraft, marine vessels, railroads, and others.  Waste Disposal category includes 

emissions from: incineration, open burning, publicly owned treatment works, industrial waste water, treatment storage and 

disposal facility, landfills, and other. Finally, the Miscellaneous category includes emissions from chemical and allied product

manufactures, metals processing, petroleum and related industries, other industrial processes, solvent utilization, storage and 

transport, natural sources,  agriculture and forestry, catastrophic/accidental releases, repair shops, health services, cooling 

towers, and fugitive dust.
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Figure 9: Study Area: Wildfires are depicted in red and black. Black is used to designate

the set of wildfires with satellite images of wildfire smoke plumes.

National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC,
USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, iPC
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Figure 10: Study Area: Wildfires are depicted in red and black. Black is used to designate

the set of wildfires with satellite images of wildfire smoke plumes.

National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC,
USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, iPC

Figure 11: Sample Fire and Smoke Plume

0 40 8020 Miles±

(1) Input: Aerial Imagery

(2) Output: Wildfire Smoke Plume
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Figure 12: Wildfire Smoke Plumes: Wildfires are depicted in black. Smoke plumes are

depicted in dark grey.

National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC,
USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, iPC
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Figure 13: Descriptive Statistics.

(1) (2)

Birth Weight (Grams) 3,381.92 3,382.61

(413.44) (413.86)

Gestational Age (Weeks) 39.65 39.60

(0.76) (0.71)

Mother's Age (Years) 29.36 29.13

(5.77) (5.84)

I(Married) 0.82 0.80

(0.39) (0.40)

I(White) 0.77 0.76

(0.42) (0.43)

I(Black) 0.02 0.03

(0.13) (0.16)

I(Hispanic) 0.15 0.14

(0.35) (0.35)

I(Race - Other) 0.06 0.07

(0.24) (0.26)

I(Doctorate or professional degree) 0.01 0.00

(0.12) (0.06)

I(Master's degree) 0.07 0.04

(0.26) (0.20)

I(Bachelor's degree) 0.20 0.14

(0.40) (0.34)

I(Some college, or associate degree) 0.30 0.36

(0.46) (0.48)

I(High school graduate or GED) 0.34 0.38

(0.47) (0.49)

Observations 7,398 4,736

Wind Sample Smoke SampleVariable

Notes:  Columns (1) and (2)  report sample means and standard deviations (in parenthesis).
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Table 19: Difference-in-Differences Estimates: Birthweight

(1) (2) (3) (4)

Fire Sample: Wind Wind Smoke Smoke

Dependent Variable: ln(bw) ln(bw) ln(bw) ln(bw)

(1 Mile) x (Tri 3) -0.0254 - -0.0389 -

(0.170) - (0.163) -

(1 Mile) x (Tri 2) -0.0164 - -0.0183 -

(0.286) - (0.337) -

(1 Mile) x (Tri 1) -0.00178 - -0.0248 -

(0.909) - (0.262) -

(Polluted) x (Tri 3) - -0.0569** - -0.0481*

- (0.0298) - (0.0955)

(Polluted) x (Tri 2) - -0.0450* - -0.0379*

- (0.0975) - (0.0940)

(Polluted) x (Tri 1) - -0.0281 - -0.0129

- (0.488) - (0.643)

(Stressed) x (Tri 3) - -0.0115 - -0.0281

- (0.615) - (0.604)

(Stressed) x (Tri 2) - -0.00206 - 0.0302

- (0.908) - (0.359)

(Stressed) x (Tri 1) - 0.0119 - -0.0482

- (0.486) - (0.194)

Observations 7,398 7,398 4,736 4,736

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust

(Huber-White) standard errors. Columns (1) and (3) report coefficient estimates of the treatment group by

post-fire interaction terms specified in equation (2) based on the data described in columns (1) and (2) of

Table (1), respectively. Columns (2) and (4) report coefficient estimates of the treatment group by post-fire

interaction terms specified in equation (3) based on the data described in columns (1) and (2) of Table (1),

respectively. Each model includes: indicators for mothers' marital status, race (white, black, hispanic, or

other), and education level (doctorate or professional degree, master's degree, bachelor's degree, associate

degree and some college (but no degree), high school graduate or GED, 9th to 12th grade (but no diploma));

each mother's age; the gestational age of each infant; a vector of fire-specific geographic controls including

the elevation at each infant's home, the distance between each infant's home and wildfire, and the interaction

between elevation and distance; year by quarter fixed effects; and treatment group by fire fixed effects.
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Table 20: Robustness Checks: Wind Model

(1) (2) (3)

Fire Sample: Wind Wind Wind

Baseline Contaminated Erratic

Model Controls Wind

Dependent Variable: ln(bw) ln(bw) ln(bw)

(Polluted) x (Tri 3) -0.0569** -0.0622** -0.0637**

(0.0298) (0.0198) (0.0264)

(Polluted) x (Tri 2) -0.0450* -0.0428 -0.0375

(0.0975) (0.119) (0.180)

(Polluted) x (Tri 1) -0.0281 -0.0216 -0.0130

(0.488) (0.596) (0.736)

(Stressed) x (Tri 3) -0.0115 -0.0166 -0.0123

(0.615) (0.474) (0.647)

(Stressed) x (Tri 2) -0.00206 -0.000299 -0.0154

(0.908) (0.987) (0.459)

(Stressed) x (Tri 1) 0.0119 0.0163 0.0174

(0.486) (0.349) (0.348)

Observations 7,398 7,398 5,377

Robustness Check:

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust

(Huber-White) standard errors. The baseline model in Column (1) replicates Column (2) of Table (2).

Column (2) tests the sensitivity of Column (1) to group by fire and group by trimester indicator variables

for the set of infants located downwind of a fire, but further than one mile. Column (3) tests the

sensitivity of Column (1) to excluding fires with an erratic wind pattern flag as described in Section

5.1.2.  Please see Table (2) for a list of the control variables used in each specification.
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Table 21: Robustness Checks: Smoke Model

(1) (2) (3)

Fire Sample: Smoke Smoke Smoke

Dependent Variable: ln(bw) ln(bw) ln(bw)

(Polluted) x (Tri 3) -0.0481* -0.0474 -0.0665**

(0.0955) (0.108) (0.0288)

(Polluted) x (Tri 2) -0.0379* -0.0335 -0.0378

(0.0940) (0.149) (0.125)

(Polluted) x (Tri 1) -0.0129 -0.00812 -0.000180

(0.643) (0.775) (0.995)

(Stressed) x (Tri 3) -0.0281 -0.0265 -0.0367

(0.604) (0.629) (0.502)

(Stressed) x (Tri 2) 0.0302 0.0327 0.0319

(0.359) (0.326) (0.345)

(Stressed) x (Tri 1) -0.0482 -0.0455 -0.0384

(0.194) (0.229) (0.319)

Observations 4,736 4,736 4,736

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on

robust (Huber-White) standard errors. The baseline model in Column (1) replicates Column (4) of

Table (2). As described in Section 5.1.3, Column (2) tests the sensitivity of Column (1) to group by

fire and group by trimester indicator variables for the set of infants within the smoke plume of a fire,

but located further than one mile. Column (3) tests the sensitivity of Column (1) to group by fire and

group by trimester indicator variables for the set of infants either within the smoke plume of a fire or

downwind of a fire, but located further than one mile. Please see Table (2) for a list of the control

variables used in each specification.

Robustness Check: Baseline Model
Contaminated 

Controls (Smoke)

Contaminated Controls 

(Smoke + Wind)
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Figure 14: Trend Analysis: Stress - Proximate Upwind / Out of Smoke and Birthweight

Figure 15: Trend Analysis: Air Pollution and Birthweight.
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Figure 16: Sensitivity to Treatment Cutoff: Air Pollution & Birthweight (Trimester 3

Effects)
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Figure 17: Sensitivity to Treatment Cutoff: Air Pollution & Birthweight (Trimester 2

Effects)
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Figure 18: Sensitivity to Control Cutoff: Air Pollution & Birthweight (Trimester 3 Effects)
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Table 22: Testing for Changes in Demographic Composition: Wind Sample

(1) (2) (3) (4) (5)

Fire Sample: Wind Wind Wind Wind Wind

Dependent Variable: Married White Black Hispanic Age

(Polluted) x (Tri 3) 0.117 -0.0630 -0.0273 0.0731 0.0842

(0.148) (0.576) (0.118) (0.387) (0.945)

(Polluted) x (Tri 2) 0.0185 -0.109 -0.0185 0.0908 -0.401

(0.810) (0.326) (0.458) (0.305) (0.771)

(Polluted) x (Tri 1) 0.00666 0.106 -0.0118 -0.0152 0.902

(0.927) (0.277) (0.488) (0.862) (0.555)

(Stressed) x (Tri 3) 0.0379 -0.00411 -0.00347 0.0113 1.115

(0.517) (0.948) (0.750) (0.829) (0.176)

(Stressed) x (Tri 2) 0.0434 0.0131 -0.00182 0.0173 1.169*

(0.410) (0.826) (0.821) (0.732) (0.0970)

(Stressed) x (Tri 1) 0.0123 6.34e-05 0.00274 0.0108 -0.349

(0.844) (0.999) (0.885) (0.826) (0.654)

Observations 7,398 7,398 7,398 7,398 7,398

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust

(Huber-White) standard errors. Columns (1) - (5) report coefficient estimates of the treatment group by

post-fire interaction terms specified in equation (3) and are based on the data described in Column (1) of

Table (1). Each model includes: Year-quarter fixed effects; treatment group by fire fixed effects;

geographic controls; and the birthweight and gestational age of each mother's infant.
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Table 23: Testing for Changes in Demographic Composition: Smoke Sample

(1) (2) (3) (4) (5)

Fire Sample: Smoke Smoke Smoke Smoke Smoke

Dependent Variable: Married White Black Hispanic Age

(Polluted) x (Tri 3) 0.0953 0.0145 -0.000753 0.0338 0.418

(0.277) (0.871) (0.973) (0.581) (0.688)

(Polluted) x (Tri 2) 0.00150 -0.0484 -0.00423 0.0227 0.0562

(0.981) (0.556) (0.778) (0.623) (0.957)

(Polluted) x (Tri 1) -0.00112 -0.0527 0.0342 0.0121 -0.874

(0.989) (0.587) (0.437) (0.843) (0.430)

(Stressed) x (Tri 3) -0.0245 0.0276 -0.0269 -0.0199 2.584

(0.817) (0.754) (0.355) (0.684) (0.137)

(Stressed) x (Tri 2) 0.128** -0.0432 -0.0208 0.105 2.156*

(0.0305) (0.656) (0.441) (0.223) (0.0699)

(Stressed) x (Tri 1) -0.0665 0.136** -0.0464* -0.0549 0.507

(0.585) (0.0177) (0.0817) (0.123) (0.774)

Observations 4,736 4,736 4,736 4,736 4,736

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust

(Huber-White) standard errors. Columns (1) - (5) report coefficient estimates of the treatment group by post-

fire interaction terms specified in equation (3) and are based on the data described in Column (2) of Table (1).

Each model includes: Year-quarter fixed effects; treatment group by fire fixed effects; geographic controls;

and the birthweight and gestational age of each mother's infant.
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Table 24: Difference-in-Differences Estimates: Gestational Length of Pregnancies

(1) (2) (3) (4)

Fire Sample: Wind Wind Smoke Smoke

Dependent Variable: ln(gest) ln(gest) ln(gest) ln(gest)

(1 Mile) x (Post) -0.00339 - -0.00731 -

(0.411) - (0.200) -

(Polluted) x (Post) - -0.00383 - -0.00735

- (0.574) - (0.291)

(Stressed) x (Post) - -0.00272 - -0.00522

- (0.580) - (0.612)

Observations 11,836 11,836 7,240 7,240

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on

robust (Huber-White) standard errors. Columns (1) and (3) report coefficient estimates of the

treatment group by post-fire interaction terms specified in equation (2) with only one post-fire time

period indicator variable using the data described in Columns (1) and (2) of Table (1), respectively.

Likewise, Columns (2) and (4) report coefficient estimates of the treatment group by post-fire

interaction terms specified in equation (3) with only one post-fire time period indicator variable also

using the data described in Columns (1) and (2) of Table (1). Please see Table (2) for a list of the

control variables used in each specification.
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Table 25: Difference-in-Differences Estimates: Pregnancy Outcomes (Smoke Sample)

(1) (2) (3) (4) (5) (6)

Fire Sample: Wind Wind Wind Wind Wind Wind

Number Fetal Gestational Premature

Prenatal Presentation Hypertension Rupture of Seizure

Visits Breech Membranes

(Polluted) x (Tri 3) 0.0554 -0.0189 0.0440 0.00384 -0.000205 0.00162

(0.973) (0.275) (0.448) (0.581) (0.508) (0.100)

(Polluted) x (Tri 2) -0.508 -0.00612 -0.0281 0.00298 -0.00123 -0.000165

(0.712) (0.594) (0.201) (0.746) (0.420) (0.924)

(Polluted) x (Tri 1) -1.659 0.0747 0.0573 -0.00290 -1.38e-07 -0.000904

(0.480) (0.200) (0.422) (0.726) (1.000) (0.483)

(Stressed) x (Tri 3) 0.612 0.0101 -0.0137 0.00222 0.000295 0.000707

(0.367) (0.269) (0.299) (0.929) (0.525) (0.350)

(Stressed) x (Tri 2) 3.490 0.0173 -0.000864 0.0181 -0.000706 -0.000206

(0.131) (0.346) (0.963) (0.505) (0.572) (0.878)

(Stressed) x (Tri 1) 0.400 0.0157 0.00379 -0.00463 0.000562 -0.000876

(0.565) (0.399) (0.895) (0.856) (0.239) (0.486)

Observations 7,336 7,398 7,398 7,398 7,398 7,398

Birth InjuryDependent Variable:

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust (Huber-White)

standard errors. Columns (1) - (6) report coefficient estimates of the treatment group by post-fire interaction terms

specified in equation (3) and are based on the data described in Column (1) of Table (1). Each model includes: Year-

quarter fixed effects; treatment group by fire fixed effects; geographic controls; and the birthweight and gestational age of

each mother's infant.
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Table 26: Difference-in-Differences Estimates: Pregnancy Outcomes (Wind Sample)

(1) (2) (3) (4) (5) (6)

Fire Sample: Smoke Smoke Smoke Smoke Smoke Smoke

Number Fetal Gestational Premature

Prenatal Presentation Hypertension Rupture of Seizure

Visits Breech Membranes

(Polluted) x (Tri 3) 0.995* -0.0206 0.0673 0.0199 0.000485 0.00274

(0.0901) (0.305) (0.185) (0.707) (0.547) (0.119)

(Polluted) x (Tri 2) -0.148 -0.0203 0.0349 -0.0287 -0.00135 0.000435

(0.818) (0.275) (0.238) (0.185) (0.601) (0.878)

(Polluted) x (Tri 1) 0.0312 -0.0122 0.127* -0.0282 0.000845 0.00130

(0.967) (0.478) (0.0566) (0.200) (0.459) (0.444)

(Stressed) x (Tri 3) 0.335 0.000353 -0.0301 -0.00301 -0.000200 -0.00124

(0.693) (0.979) (0.398) (0.787) (0.794) (0.570)

(Stressed) x (Tri 2) -1.646* 0.0689 -0.0398 -0.00880 -0.00123 -0.00192

(0.0725) (0.348) (0.229) (0.349) (0.335) (0.316)

(Stressed) x (Tri 1) -1.701 0.0587 -0.0588 2.88e-05 0.000808 -0.00146

(0.119) (0.378) (0.113) (0.998) (0.270) (0.448)

Observations 4,679 4,736 4,736 4,736 4,736 4,736

Notes:  ***p<.01, **p<.05, and *p<.1.  P-values, which are reported in parenthesis, are based on robust (Huber-White) 

standard errors.   Columns (1) - (6) report coefficient estimates of the treatment group by post-fire interaction terms specified 

in equation (3) and are based on the data described in Column (2) of Table (1).  Each model includes: Year-quarter fixed 

effects; treatment group by fire fixed effects;  geographic controls; and the birthweight and gestational age of each mother's 

infant.

Birth InjuryDependent Variable:
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4.0 A CITY UNDER WATER

(with Shawn McCoy)

Both the frequency and severity of natural disasters are increasing. This trend is evidenced,

in part, by the fact that half of the ten most costly disasters in history occurred within

just the last decade1. Wildfires, relative to the 1980s, are now four times more likely to

occur and once they start, their burn scars are six times as large (Westerling et al., 2006).

Between the 1960s and 1990s, the average number of floods rose seven-fold from 344 per year

to 2,444 per year and cause roughly $6 billion in property damage annually (Brody et al.,

2007; USGS, USGS). Many attribute the increasing trend in disaster frequency to changes

in global climates and the rapid increase in their economic costs to changes in the number of

households living in risk-prone areas. (Kunreuther and Michel-Kerjan, 2007). In the case of

flood risk – which is the focus of this paper – it is generally considered that the most at risk

properties are those located in special flood hazard areas (SFHAs) for which there exists a

1% chance of flooding in any given year and a 26% chance of flooding at least once over the

course of 30-years. Approximately 6 million properties are located in SFHAs throughout the

United States.(Burby, 2001).

Together, an increasingly larger population living in risk-prone regions and an increas-

ingly higher rate of catastrophic events motivate us to ask, “To what degree do homeowners

invest in buildings damaged by a disaster?” To answer this question, we investigate house-

holds’ decisions to invest in residential homes damaged by Hurricane Sandy in affected areas

of New York City. We utilize a micro-level data set which details both the location of each

building in our study area as well as the timing of housing investment projects. We sub-

1Natural disasters: Counting the cost of calamities. The Economist, (2012).
http://www.economist.com/node/21542755. Last accessed on September 28, 2016.
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sequently link this data to information provided by FEMA which allows us to identify the

locations of properties damaged by the storm.

Properties located in the SFHA differ from properties in non-SFHAs in terms of their

latent flood-risk, but they also differ in terms of the policies and regulations they are sub-

ject to; most notably, regulations pertaining to flood insurance. Damage due to flooding is

exempt from standard homeowner insurance policies. Instead, households must choose to

purchase separate, flood insurance policies through the National Flood Insurance Program

(NFIP). These policies are typically marketed to homeowners located in statutorily desig-

nated flood zones. Under the 1973 Flood Disaster Protection Act, homeowners located in

SFHAs holding mortgages from federally insured or regulated lenders are required to pur-

chase flood insurance. As a result, nationwide, roughly 51% of residents in SFHAs hold a

flood insurance policy (Dixon et al., 2006). In contrast, less than 1% of households in non-

SFHAs obtain flood insurance; a surprising statistic given that properties in non-SFHAs

account for over half of all losses due to floods in the U.S. (Burby, 2001; Dixon et al., 2006).

These observations motivate us to explore how investment decisions of owners of damaged

homes located in the SFHA differ from the decisions made by owners of damaged homes

outside of the SFHA.

To preview our empirical results, we estimate a statistically significant increase in the

probability households living in the SFHA invest after experiencing damage to their property.

In contrast, we find no change in the rate at which owners of damaged buildings outside of

the SFHA invest. As we discuss in more depth below, the contrast between these empirical

findings may be partially driven by differences in flood insurance take up rates between

residents in and out of SFHAs.

In addition to considering determinants of post-disaster, remedial investment, we also

consider factors influencing new investment in the face of risk. In particular, we ask, “Do

natural disasters have the propensity to elevate households’ perceptions of risk?” Home-

owners’ perceptions of risk are inextricably linked to their willingness to privately mitigate

against risk. This may include, for instance, insuring against potential losses and deciding

whether or not to develop housing in disaster-prone areas. For these reasons, risk-salience

has been the focal point of many natural and man-made hazard disclosure policies including

97



California’s 1998 Natural Hazards Disclosure Act2 and the 1996 Lead Residential Lead-Based

Paint Disclosure Program3. The ultimate goal of these types of regulations is to promote

efficient behavioral outcomes by reducing the amount of asymmetry between perceived risks

and underlying or latent risk levels. Henceforth, whether homeowners act on the informa-

tion conveyed by a storm, or not, may speak to the potential for households to act on the

information conveyed by information-based regulations.

Housing investment provides a unique context for discerning saliency dynamics since

the decision to invest resembles a real-option (Downing and Wallace, 2000). Homeowners

hold the option to delay an investment project into the future contingent on the arrival of

new information, but once their decisions are made, they cannot easily be reversed. Thus,

changes in market uncertainty will likely be reflected by changes in investment behaviors.

We use Hurricane Sandy as an exogenous shock to agents’ beliefs over the relative risk of

living in a disaster prone area and formulate an empirical methodology that allows us to

draw inferences regarding the mechanisms influencing households’ evaluations of property-

specific risks. More specifically, we investigate the drivers of risk-saliency by modeling relative

investment decisions before and after Hurricane Sandy between properties in and out of

SFHAs omitting any property that experienced physical damage from the storm from our

analysis.

The empirical strategy we employ here is motivated by a growing body of work dedicated

to estimating changes in risk-saliency due to natural disasters by analyzing housing price

dynamics across designated disaster risk areas. The argument that housing price dynamics

can reflect changes in perceived risks due to new sources of risk information attributable

to a recent disaster is formalized by Hallstrom and Smith (2005) and Carbone, Hallstrom

and Smith (2006). As argued by Hallstrom and Smith (2005), we posit that homeowners in

designated high flood-risk zones, as well as proximate homeowners outside of these zones, are

exposed to the information conveyed by a recent disaster; however, “households outside of

2Information regarding this policy is available at California’s Department of Conversation webpage:
http://www.conservation.ca.gov/cgs/shzp/Pages/shmprealdis.aspx. Last accessed on September 28, 2016.
A summary of this policy is also provided by Troy and Romm (2004).

3Information regarding this policy is available at the US Environmental Protection Agency’s web-
page: http://www2.epa.gov/lead/lead-residential-lead-based-paint-disclosure-program-section-1018-title-x.
Last accessed on September 28, 2016.
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the high risk area are assumed to consider the information as relevant only to the designated

flood zone”. (542-543). Henceforth, if a natural disaster conveys new information to residents

regarding the relative risk of living in a disaster-prone area, this information will ultimately

be reflected by changes in the price discount homeowners place on high-risk properties.

With this conceptual framework in place, Hallstrom and Smith (2005) assess the extent

to which one of the strongest hurricanes to hit the United States conveyed risk information

to homeowners by estimating changes in property values in SFHAs (relative to changes

in property values outside of SFHAs) using a difference-in-differences estimation strategy.

Other notable works which have implemented a similar empirical strategy include: Atreya

and Ferreira (2014), McCoy and Walsh (2014), Atreya et al. (2013), Bin and Landry (2013),

Kousky (2010), Champ et al. (2009), Donovan et al. (2007), and Bin and Polasky (2004).

As indicated by Atreya and Ferreira (2014), there is a general consensus in the literature

that recent floods increase perceived risks as evidenced by changes in the discount homeown-

ers place on properties located in designated, flood-risk areas. From a policy perspective,

it is equally important to consider whether or not saliency shocks due to disasters have the

potential to promote behavioral responses across dimensions other than housing prices. The

importance of this point is underscored by Gallagher (2014) who indicates that there exists

a consensus in the literature that flood insurance take-up rates, for instance, appear low

relative to socially optimal levels (Kunreuther et al., 2013; Kunreuther and Michel-Kerjan,

2007; Kunreuther, 1996).

By investigating the drivers of risk-saliency through the lens of a homeowner’s decision

to invest in a capital improvement in their home, this paper provides new insight into the

propensity for information-based regulation to induce market responses across a broader set

of domains that may have important implications in terms of improving the resilience of

communities to natural hazards. However, one may argue that if the information conveyed

through policy fails to mimic the information conveyed by a storm, a pure, information-

based regulation may ultimately fall short of its intended goals. This argument motivates

us to think more carefully about the channels through which homeowners may acquire new

information regarding the risks they face following a catastrophic event.

Changes in local media coverage (which we might regard as a relatively indirect channel)
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may be one mechanism linking hurricanes to heightened risk-saliency. However, a home-

owner’s physical relationship to the spatial distribution of storm damage (which we might

regard as a relatively direct channel) is another plausible mechanism. With the exception

of Gallagher (2014), and largely due to data limitations, the distinction between saliency

changes due to direct and indirect experience has received little attention in previous works.

In this paper, we address the roles that direct and indirect experience play by estimating how

investment decisions between SFHA and non-SFHA properties vary with respect to proxim-

ity to storm damage and by the severity of storm damage. To the best of our knowledge,

our paper is the first to investigate how the spatial path of disaster damage may influence

disaster risk-saliency.

To preview our empirical findings, when restricting attention to the effect of the storm

on non-damaged buildings in the SFHA, we estimate a statistically significant decrease in

the probability of housing investment relative to the set of non-damaged homes outside of

the SFHA. Consistent with the findings in the extant literature, this result suggests that

a recent disaster may heighten households’ perceptions of disaster risk. Leveraging our

data delineating the locations of buildings damaged by Hurricane Sandy, we also find that

estimates of this effect attenuate with respect to distance to the spatial path of storm damage

as well as the severity of storm damage. These results suggest that both the extent and the

severity of storm damage are important mechanisms by which a recent disaster may drive

changes in perceived risks.

To highlight the economic significance of this finding, we first acknowledge that, following

a disaster, there exists changes in the information made available to households regarding the

relative risk of living in a disaster-prone area that are arguably less correlated with homeown-

ers’ proximity to storm damage; most notably, changes in the information made available to

residents through heightened media coverage. Not only do our model estimates decay with

respect to homeowners’ proximity to storm damage, but they become statistically insignif-

icant as well. We find no statistical evidence that owners of properties in SFHAs located

less proximately to storm damage reduce the rate at which they invest. This finding sug-

gests that while there may exist changes in risk-saliency attributable to indirect experiences

with the storm, it is unlikely that these saliency shocks are strong enough to be reflected in

100



changes in market outcomes. In light of these findings, one could argue that information-

based regulations which seek to align risk-perceptions with risk-actualities may ultimately

be ineffective policy instruments in terms of their ability to induce socially-optimal, risk-

mitigation behaviors if they fail to mimic the information conveyed by the direct impact of

a disaster.

We begin by providing an overview of related work in Section (4.1). We characterize our

study area and the details behind the construction of our data in Section (4.2). We present

our empirical methodology in Section (4.3) and our findings in Section (4.4). We summarize

and conclude in Section (4.5).

4.1 BACKGROUND

Residential housing investment in existing homes is often considered a relatively efficient

means to improving housing standards and the primary alternative to increasing housing

supply next to new construction (Plaut and Plaut, 2010; Boehm and Ihlanfeldt, 1986). The

average value of home improvements expressed as a percentage of the value of new residen-

tial construction peaked in 1983 at 74% and is currently 45% (Boehm and Ihlanfeldt, 1986;

Haughwout et al., 2013). Despite playing an important role in determining the size and

quality of the housing stock, little research exists which considers the factors that influence

housing investment decisions. Mainly due to a scarcity of data, the existing literature typi-

cally focuses on determinants of aggregate investment that vary over large, macroeconomic

scales (Downing and Wallace, 2000; Poterba, 1984; Kearl, 1979).

Our paper is the first to analyze to the mechanisms linking natural disasters to changes in

perceived risks through the lens of a homeowner’s decision to invest in a capital improvement

in their home. However, as we explain previously, there is a growing body of work that

studies changes in risk-perceptions due to natural disasters using hedonic methods. For

instance, Bin and Landry (2013) compare residential housing prices for properties located in

SFHAs to properties located outside of these zones before and after two major hurricanes in

Pitt County, North Carolina. The authors report a 5.7% to 8.8% hurricane-induced SFHA
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discount which lasts for 5 to 6 years. Atreya et al. (2013) perform a similar analysis after

a major flood in Dougherty County, Georgia and report a post-hurricane SFHA discount

of 32% which lasts for 7 to 9 years. Finally, Kousky (2010) examines pre and post-disaster

housing values following the 1993 flood on the Missouri and Mississippi rivers, but fails to

detect any relative price change between SFHA and non-SFHA structures.

These papers provide evidence that natural disasters may heighten households’ percep-

tions of risk. However, without being able to distinguish between damaged and non-damaged

homes, these papers may be limited in their ability to dis-entangle saliency dynamics from

price effects caused by structural damage. McCoy and Walsh (2014) circumvent this dif-

ficulty using data delineating the extent of disaster damage. The authors also develop a

model of preference-based sorting and underlying changes in location-specific risk percep-

tions which allows them to draw inferences on post-disaster saliency dynamics from changes

in housing price and housing transaction rates.

Using wildfire as a natural experiment, McCoy and Walsh (2014) compare price and

quantity dynamics between properties delineated by their underlying latent risk of fire, re-

stricting their empirical analysis to properties located more than 5km from a fire and that

did not have a wildfire in their viewshed. Their results suggest that natural disasters may

heighten perceived risks, albeit, only temporarily. Hallstrom and Smith (2005) compare

price differentials between homes in and out of the 100-year flood plain following Hurricane

Andrew in 1992 using price data from Lee County, Florida which did not experienceany

damage from the storm. These authors find a 19% decline in housing prices in special flood

hazard areas; a finding also suggesting that home buyers and sellers act on the information

conveyed by a natural disaster.

Building off the work of Atreya et al. (2013) and Bin and Landry (2013),Atreya and

Ferreira (2014) analyze home price dynamics across FEMA designated flood plains following

the 1994 “flood of the century” caused by tropical storm Alberto in Albany Georgia using

data delineating inundated portions of the landscape. This work is an advance over previous

works in that the authors utilize flood inundation maps. These authors detect a significant,

48% housing price discount among inundated properties in SFHAs relative to non-inundated

properties outside of the floodplain. However, these authors find no statistical change in the

102



price of non-inundated homes in SFHAs. Other notable works which have considered the

effects of natural and man-made hazards on perceived risks include Hansen et al. (2006),

Gayer et al. (2002), McCluskey and Rausser (2001), Gayer et al. (2000), Tobin and Montz

(1997), Bernknopf et al. (1990), Tobin and Montz (1988), and Brookshire et al. (1985).

With the exception of McCoy and Walsh (2014), the aforementioned studies focus ex-

clusively on home price dynamics. Moving beyond the hedonic literature, Gallagher (2014)

analyzes the learning process that agents use to update their beliefs over uncertain events

by investigating flood insurance take-up following large regional floods. The author finds a

significant spike in take-up in the year after a flood which is less pronounced, but still pos-

itive and significant, in non-flooded communities. In both flooded and non-flooded regions,

take-up rates quickly decline to baseline levels after approximately one year; a finding consis-

tent with the results presented by McCoy and Walsh (2014). Kelly et al. (2012) investigate

changes in subjective hurricane risk perceptions following the provision of information from

official and non-official hurricane track forecast information. A unique feature of this study

is that the authors consider how agents react to new information regarding hurricane risk

through an analysis of the Hurricane Futures Market prediction market. In a recent work,

Anderson et al. (2014) investigate the extent to which heightened saliency due to recent dis-

asters may influence political support for expenditures on public mitigation programs, with

a particular emphasis on public spending on wildfire fuel treatment projects.

4.2 STUDY AREA AND DATA

Hurricane Sandy was the second largest Atlantic hurricane in US history. It was also the

second most costliest resulting in roughly $50 billion in damage to coastal areas across the

Eastern Seaboard (Blake et al., 2013). New York City – the area we study in this paper –

experienced the highest storm surge with a 12.65 foot rise in water levels above normal tide

levels and a 7.9 foot rise above ground level (Blake et al., 2013). About 16.6 percent of the
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city was under water resulting in a total loss of approximately $19 billion4 (Furman Center

for Real Estate and Urban Policy, 2013).

We identify the set of properties in NYC in and out of the SFHA by overlaying a map of

the SFHA5 with polygons delineating the lots6 of residential structures. We utilize the most

recent flood hazard maps that became effective September 5, 2007. We illustrate the study

area and the extent of the SFHA in Figure (19).

Information detailing the structural characteristics of each home were acquired from

NYCs Department of Finance Final Assessment Rolls7. These data include information

on the year each structure was built, the dimensions of each property’s lot, gross square

footage, number of stories, and number of units. There were observations in our data with

unreasonably low values with respect to year built likely reflecting transcription errors; we

drop any observation lying below the first percentile with respect to year built. Finally, we

limit attention to residential, 1-3 family residences8. Figure (20) provides an illustration of

the buildings in our sample.

The extant literature has been constrained by a lack of spatial information on hurricane

related damages which increased the difficulty of investigating market outcomes between

damaged and non-damaged properties. In October of 2012, FEMA worked in conjunction

with a team of modeling and risk analyst experts from the National Hurricane Center (NHC)

and the U.S. Geological Survey to identify homes damaged by Hurricane Sandy. Referred to

as FEMAs modeling task force (MOTF), these agencies utilized 157,000 images collected by

the Civil Air Patrol and the National Oceanic and Atmospheric Administration in addition

to 147,000 individual structural assessments to produce ground-truthed determinations of

structures damaged by the Hurricane. This data, provided to us by FEMA, records the

latitude and longitude coordinates of each structure damaged by Hurricane Sandy. As shown

4NYC Press Release PR-443-12. (November 26, 2012). Last accessed from http://www1.nyc.gov/office-
of-the-mayor/news.page on September 28, 2016.

5Digital maps of the SFHA were obtained from the National Flood Hazard Layer:
https://www.fema.gov/national-flood-hazard-layer-nfhl. Last accessed on September 28, 2016. Struc-
tures located in the 500-year floodplain were omitted.

6These data were obtained from NYC’s Department of Planning:
http://www1.nyc.gov/site/planning/index.page. Last accessed on September 28, 2016.

7NYC Department of Finance: http://www1.nyc.gov/site/finance/taxes/property-
assessments.page#roll. Last accessed on September 28, 2016.

8Property Tax Class - 1.
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in Figure (21), we adjoined FEMAs MOTF data to the footprints9 of buildings in our sample

in order to determine the set of properties that were and that were not damaged by the

hurricane. The locations as well as the spatial density of damaged buildings are shown in

panels (a) and (b) of Figure (22). These illustrations show that the locations of damaged

structures tend to cluster near the SFHA. In fact, 81% of buildings in the SFHA incurred

storm damage. In contrast, only 3.5% of buildings out of the SFHA incurred storm damage.

While the proportion of damaged buildings out of the SFHA is small, the scale of this effect

is not; of the 34,130 buildings in our sample that were damaged by Hurricane Sandy, 18,315

were not located in the SFHA.

In this paper, we are interested in homeowners decisions to invest in capital improvements

in their homes. To this effect, we construct a micro-level dataset of housing investment

projects from applications for permits to perform work on residential housing units. These

data are sourced from monthly job reports provided to us by NYCs Department of Buildings10

which contain logs of housing investment projects filed by property owners residing in NYC11.

Among others, these projects include kitchen remodeling, removal, and or installation of non

bearing partitions, installation of outdoor awnings or patios, and structural or mechanical

repairs to the the interior or exterior of homes, and roof repairs and replacements12. Over our

sampled time frame (two years before and after the Hurricane13), we record 17,572 housing

investment projects. The locations and density of these investments are illustrated in panels

(a) and (b) of Figure (23).

4.3 METHODS

Our basic empirical approach entails logistic regressions that compare housing investment

outcomes before and after the hurricane estimated along various geo-spatial dimensions of

9These data were also obtained from NYC OpenData.
10NYC Department of Buildings: http://www.nyc.gov/html/dob/html/home/home.shtml.
11These are formally classified as Alteration Type-II investments.
12While each of these projects are classified as Alteration Type-II, our data does not provide a distinct

indicator for each project type.
13Our dataset only includes residential property investments through the 2nd quarter of 2014. Therefore,

while we have the complete history of investment projects for each of the 8 quarters preceding Hurricane
Sandy, our data only includes investment projects for the seven quarters following the Hurricane.
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treatment. Each treatment dimension is based on the extent of hurricane damage to each

property and the location of each property relative to the SFHA. Contemporaneous shifts in

local market conditions complicate the task of identifying the causal effect of the Hurricane

on investment outcomes. As such, we compare outcomes before and after the hurricane for

treated properties to the outcomes of properties in control groups that do not receive said

treatment, but that are otherwise influenced by the same contemporaneous factors.

To implement our empirical models, we construct a balanced panel for each property in

our assessment records using a year-quarter time increment. For each treatment definition,

our logistic models take the form,

qit = Λ (α1 · Postit + α2 · Treati + α3 · Treati × Postit + Z ′itω + εit) , (4.1)

where qit = 1 if household i invests in their property at time t and zero otherwise. Λ denotes

the standard logistic cumulative probability distribution function. Postit is an indicator set

equal to one for post-hurricane time periods and Treati is an indicator set equal to one

for properties belonging to the treatment group of interest. Zit is a vector of structural

controls including square footage and its square, age and its square, number of stories,

neighborhood fixed effects, number of units, the dimensions of each parcels lot, a set of year-

quarter fixed effects, and (in our more robust specifications) lagged dependent variables. Of

interest to us are the marginal effects of the post-hurricane by treatment interaction terms

(Treati × Postit). The functional form for these estimates is:

τ (Treat× Post) = Λ (Postit = 1, T reati = 1, Z ′itω)

−Λ (Postit = 0, T reati = 1, Z ′itω)

−Λ (Postit = 1, T reati = 0, Z ′itω)

+Λ (Postit = 0, T reati = 0, Z ′itω) , (4.2)

which is equivalent to,

τ (Treat× Post) = [Λ (α1 + α2 + α3 + Z ′itω)− Λ (α2 + Z ′itω)]

− [Λ (α1 + Z ′itω)− Λ (Z ′itω)] . (4.3)
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4.3.1 Treatment Definitions

4.3.1.1 Storm Damage We investigate the degree to which homeowners invest in dam-

aged buildings by comparing investment outcomes between properties damaged by the hur-

ricane to properties that were not. To understand how investment patterns differ between

households in and out of SFHAs, we partition the set of damaged properties based on their

location relative to the SFHA using the set of non-damaged properties outside of the SFHA

as controls. Thus, for our analysis of storm damage, we estimate equation (4.1) with two

treatment definitions, DamagedNonSFHA,i and DamagedSFHA,i. DamagedNonSFHA,i is an

indicator variable set equal to one for properties located outside of the SFHA that were dam-

aged by the storm. Likewise, DamagedSFHA,i is an indicator set equal to one for damaged

properties located inside of the SFHA. In each treatment definition, we use non-damaged,

non-SFHA structures as the set of controls.

Our motivation for contrasting differences in the rates that homeowners in and out the

SFHA invest stems from differences in flood insurance regulations that apply to homeowners

in the floodplain. Most notably, homeowners located in the SFHA holding mortgages from

federally regulated lenders are required to purchase insurance through the National Flood

Insurance Program (NFIP). It has been estimated that approximately $1.23 trillion of assets

are covered by the NFIP (Michel-Kerjan et al., 2012). Nationally, it has been estimated

that approximately half of all residents in SFHAs hold a flood insurance policy (Dixon et

al., 2006). In contrast, less than one percent of households in non-SFHAS purchase flood

insurance (Dixon et al., 2006). According to Kousky and Michel-Kerjan (2012), as of 2012,

roughly 169,000 NFIP policies were in force in the state of New York. With respect to our

study area, Dixon et al. (2013) estimate that 55% of the residences in New York City located

in SFHAs had a flood insurance policy on the eve of Hurricane Sandy. Dixon et al. (2013)

indicate that 75% of all homes in New York City located in the SFHA were subject to the

mandatory insurance requirement; 66% of which held a flood insurance policy14.

4.3.1.2 Risk Salience As we discuss previously, properties located within and proximate

to SFHAs are both vulnerable to hurricane damage; albeit, conditional on a storm, property

14Overall, 55% of homeowners in the SFHA held flood insurance policies.Dixon et al. (2013)
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owners in designated SFHAs are more likely to incur storm damage than households outside

of these zones. State and Federal laws require sellers to disclose whether their property is

located in an SFHA. For instance, location with respect to the floodplain is required to be

disclosed to residents under New York’s Property Condition Disclosure Act15. Community

flood maps are also available online and required to be displayed publicly. Even in light

of these information sources, there are reasons to suspect that homeowners do not fully

acknowledge all of the risks associated with living in a floodplain. For example, using a

survey of residents in Boulder County, Colorado, Chivers and Flores (2002) find evidence

that homeowners living in SFHAs often fail to fully understand both the flood risks associated

with their homes as well as the costs of insuring their homes when negotiating the purchase

of their properties.

In the spirit of Hallstrom and Smith (2005), we use Hurricane Sandy as an exogenous

shock to agents’ beliefs over the likelihood of a disaster and draw inferences regarding which

features of a storm influence disaster risk-saliency by comparing investment rates between

properties in and out of SFHAs, before and after the storm. In order to isolate saliency

effects net of the effects of storm damage, our analysis omits any property that experienced

physical damage from the Hurricane. This approach helps to insure that our estimates

will not reflect the direct impact of storm damage on property investment; however, as

emphasized by McCoy and Walsh (2014), this specification does not necessarily rule out

the possibility that homeowners may act on the dis-amenity effects of a disaster. McCoy

and Walsh (2014) account for this bias by omitting properties less than 5km of a wildfire

or that had a view of a wildfire burn scar. While appealing, this approach is infeasible in

our application; the extent of storm damage from Hurricane Sandy was so severe, every

property located in the SFHA in our sample is located within 5km of a damaged structure.

This requires us to implement an alternative approach to control for dis-amenity confounds.

Specifically, we restrict our salience models to the set of non-damaged properties that lie

within 250 feet of a damaged structure. To the extent that properties in both the treatment

and control group are similarly situated with respect to proximity to storm damage, our

15This information is required to be disclosed by sellers of residential real property to buyers through a
property condition disclosure statement. Link to form: http://www.dos.ny.gov/forms/licensing/1614-a.pdf.
Last accessed November 29, 2016.
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difference-in-differences estimation strategy mitigates concerns of potential bias due to dis-

amenity16 effects.

To this effect, to model the salience effects of the hurricane, we first construct the treat-

ment variable SFHAi which is an indicator variable set equal to one for non-damaged

properties located in the SFHA and zero for non-damaged properties located outside of the

SFHA and then estimate equation (4.1) restricting attention to properties located between

0ft - 250ft of a damaged structure.

4.4 RESULTS

4.4.1 Visual Evidence

In order for the difference-in-differences estimates obtained from equation (4.1) to represent

the causal effects of the Hurricane, we must assume that the average rate of investment in

each treatment group would have been proportional to the average rate in each corresponding

control group, in the absence of the Hurricane. We assess the validity of this assumption by

analyzing relative investment trends before the Hurricane for each treatment and control.

To do this, we aggregate property investments to the treatment group by city block level

using a quarterly time increment centered around the start date of Hurricane Sandy. For

each treatment definition outlined in Section (4.3.1), Figures (24), (25), and (26) show

group-specific, kernel-weighted local polynomial trends in housing investment before and

after the Hurricane controlling for quarter and block fixed effects. Quarters elapsed since

the Hurricane are shown on the x-axis. Trend lines for each treatment group are shown in

dark black together with their 90% confidence intervals. Trend lines for each corresponding

control are indicated by dashed lines.

Figure (24) shows that the trend in average property investment by households in the

SFHA leading up to the hurricane is similar to the trend from households located outside of

the SFHA. After the hurricane, we observe a systematic increase in property investment in

16In sections 5.3.2 and 5.3.3 we discuss in more detail instances where these assumptions may not hold
and implement tests to asses their validity.
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damaged, SFHA homes. We observe a small initial down-turn in investments in non-damaged

homes outside of the SFHA which subsequently rebounds to its pre-hurricane level. Figure

(25) provides graphical evidence that the trend in investment in damaged homes located

outside of the SFHA is also similar to the trend in investment in similar homes that failed

to experience any damage from the storm. However, we find no evidence of a relative

increase in investment in these properties. Finally, turning our attention to Figure (26),

before the hurricane, the trend in property investment in non-damaged homes in the SFHA

is similar to the trend in investment in homes within the same vicinity of a damaged building,

but located outside of the SFHA; this observation is reinforced by the fact that the trend

line for treated observations leading up to Hurricane Sandy lies completely within the 90%

confidence interval of the trend line for the control group. The difference in the size of the

confidence intervals between the treatment and control reflects the difference in the number

of non-damaged homes in the SFHA relative to the number of non-damaged homes out of

the SFHA. After the storm, we observe an immediate and persistent decrease in investment

in non-damaged, SFHA structures relative to non-damaged, non-SFHA structures; the fact

that the upper confidence bound for the treated group lies strictly below the lower confidence

bound for the control for all post-hurricane time periods underscores this finding.

We begin our formal analysis by estimating equation (4.1) for each treatment definition,

DamagedNonSFHA and DamagedSFHA. This allows us to quantify the effects of storm dam-

age on housing investment in damaged properties both in and out of the SFHA. We then

study the drivers of risk-saliency by estimating variants of equation (4.1) with the treatment

definition SFHA.

4.4.2 Storm Damage

Table (27) presents estimates of the marginal effects of equation (4.1) comparing the out-

comes of treated properties located in the SFHA that were damaged by the storm to control

properties outside of the SFHA that did not experience any damage. To ensure that the con-

trol and treatment are as similar as possible, we limit the control group to properties located

within 500ft of a damaged structure. Estimates of the the marginal effect corresponding to
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the interaction term in equation (4.1) are scaled by the baseline proportion of households

that invest. To account for the possibility that previous period investment influences current

period decisions, we include a lagged dependent variable in Columns (2) and (3). Finally,

we report estimates obtained from a linear probability model in Column (3). Columns (1)

and (2) indicate a 93% to 97% increase in the probability that a homeowner in the SFHA

invests in their property after experiencing storm damage.

Turning our attention to investment in properties outside of the floodplain, we report

estimates of the marginal effects of DamagedNonSFHA×Post corresponding to equation (4.1)

in Table (28). In contrast to our previous findings, we find no evidence of any change in

the likelihood of property investment from homeowners outside of the SFHA. Specifically,

referring to Columns (1) and (2), we detect a statistically insignificant -.2% to -.4% decrease

in the the probability owners of damaged homes invests.

4.4.2.1 Differences in Building Characteristics & Deferred Investment The pre-

ceding analysis shows that after sustaining damages, property owners in the SFHA invest at

a significantly higher rate than similarly situated households outside of the SFHA. Recalling

that flood insurance take-up rates of residents inside the floodplain are higher than take-up

rates of residents outside of the floodplain, our empirical results may reflect the role that in-

surance plays in facilitating post-disaster housing re-investment. However, the post-disaster

property investment differential that we find between SFHA and non-SFHA properties may

also be partially due to differences in the structural characteristics of damaged properties in

and out the SFHA. We test for these differences in Table (29).

Column (1) of Table (29) indicates the structural characteristic of interest. Column (2)

indicates the difference in the average level of each structural characteristic in Column (1)

between damaged properties in the SFHA17 and damaged properties out of the SFHA18.

Column (3) shows the 95% confidence interval for each difference of means reported in

Column (2).

Column (3) shows that there exists differences in the structural characteristics of each

17Those for which DamagedSFHA = 1.
18Those for which DamagedNonSFHA = 1.
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property type in statistical terms, but Column (2) shows that these differences are small in

terms of economic significance. Column (2) shows that damaged properties in the SFHA

have, on average, .04 fewer stories than damaged properties out of the SFHA. They are also

slightly smaller properties (by about 146 square feet), and slightly older (by approximately

1 year). The average width of their lots is .4 feet smaller than undamaged properties out of

the floodplain and the average depth of their lots is 3.71 feet smaller.

Differences in post-disaster property investment between SFHA and non-SFHA proper-

ties may also be an artifact of differences in the timing, as opposed to the level, of remedial

investment across these zones. In effect, homeowners outside of the SFHA may find it op-

timal to defer their investment decisions into the future. However, our trend analysis in

Figure (25) shows that property investment fails to increase in any time period following

the hurricane which seems to rule out the possibility that agents outside of the floodplain

defer remedial investments, at least over the course of the seven quarters following Hurricane

Sandy.

4.4.2.2 Severity of Hurricane Damage Our empirical results show that owners of

damaged homes in the SFHA invest at a higher rate than owners of damaged homes out of

the SFHA. In terms of understanding the policy implications of this result, it is important to

determine whether these differences are due to the SFHA designation itself (and the bundle

of policies and regulations that are implied by this designation), or to other, unobserved

differences in the way that Hurricanes differentially impact residents in and out of flood-

risk areas. One notable concern stems from the fact that the SFHA is a predictor of storm

damage. As such, there is no reason, ex-ante, to assume that the severity of damage sustained

by properties in the SFHA is similar to the severity of damage to properties out of the SFHA.

With this said, the fact that owners of damaged homes in the SFHA invest while owners of

damaged homes out of the SFHA do not might simply reflect differences in the degree to

which homes in and out the SFHA sustained damage from the storm.

To investigate the role that the severity of storm damage plays, we partition our dataset

of damaged structures into two sub-sets: (a) the sub-set of buildings that sustained se-

vere damages, and (b) the sub-set of buildings that sustained mild damages. We partition
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properties into these sets using data provided by FEMA that was produced by New Light

Technologies19 (NLT) and ImageCat20 from aerial imagery assessments of the landscape fol-

lowing Hurricane Sandy. Damaged homes that were classified as mild incurred superficial

damage missing less than 20% of their roof coverings or had a flood depth less than five feet.

Damaged homes that were classified as severe sustained major exterior damage missing more

than 20% of their roof coverings, had collapsed exterior walls, or had a flood depth greater

than five feet.

Using these classifications, we partition the treatment group DamagedSFHA into two sub-

groups: Damaged(severe)SFHA and Damaged(mild)SFHA. First, Damaged(severe)SFHA is

an indicator set equal to one for any damaged structure in the SFHA that incurred severe

damages. Second, Damaged(mild)SFHA is an indicator set equal to one for any damaged

structure in the SFHA that sustained only mild damages. In a similar fashion, we also parti-

tion the treatment group DamagedNonSFHA into two sub-groups: Damaged(severe)NonSFHA

and Damaged(mild)NonSFHA
21.

We present the marginal effects for each treatment-group by post-hurricane interaction

term in Tables (30) and (31). We first direct our attention to the effects of storm damage in

the SFHA shown in Table (30). Column (1) of Table (30) replicates Column (2) of Table (27).

In Columns (2) and (3), we de-compose the estimate shown in Column (1). Estimates of

τ (Damaged(severe)SFHA × Post) indicate a statistically significant, 75% to 86% increase in

the probability that households re-invest in homes that sustained severe damages. Likewise,

estimates of τ (Damaged(mild)SFHA × Post) indicate a statistically significant, 82% to 97%

increase in the likelihood that owners of homes that sustained mild damages invest. Finally,

we turn our attention to investment out of the SFHA in Table (31). Column (1) of Table (31)

replicates Column (2) of Table (28). Referring to Columns (2) and (3), we find no evidence

of a statistically significant increase in the probability of investment in damaged homes out

of the SFHA, irrespective of the severity of damage.

The results presented in Tables (30) and (31) fail to validate the hypothesis that owners

19NLT website: https://newlighttechnologies.com. Last accessed September 28, 2016.
20ImageCat website: http://www.imagecatinc.com/. Last accessed September 28, 2016.
21Specifically, Damaged(severe)NonSFHA is an indicator set equal to one for any damaged structure

outside of the SFHA that incurred severe damages and Damaged(mild)NonSFHA is an indicator set equal
to one for any damaged structure outside of the SFHA that incurred mild damages.
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of damaged homes in the SFHA invest at a more significant rate than owners of damaged

homes out of the SFHA because of differences in the severity in which their homes sustained

damage. Put another way, if the differences in the results presented in Tables (27) and (28)

were due exclusively to differences in the severity of damage sustained to the structures in

each treatment group, we would expect these differences to attenuate when we compare the

rates of investment between the set owners of damaged homes in and out of the SFHA,

restricting attention to homes that sustained qualitatively similar levels of damage; the

results presented in Tables (30) and (31) suggest this is not the case.

4.4.2.3 The Role of the Severity of Storm Damage: Looking within Flood-Risk

Zones The preceding analysis shows that differences in the severity of damage to homes

in and out of the SFHA do not explain differences in the rate at which owners of these

homes invest. Our motivation for this analysis was to explore the extent to which our main

empirical finding – again, which is that owners of damaged homes in the SFHA invest at

a higher rate that owners of damaged homes out of the SFHA – might be explained by

differences in the comparability of damaged structures in and out the SFHA. To further

address this concern relating to comparability, we proceed by testing for differences in the

rate of investment across damage types (severe vs. mild) within the SFHA and within the

non-SFHA. Our motivation for this analysis is that we have a high degree of confidence that

a “severely” damaged inside the SFHA sustained more damage than a “mildly” damaged

home also in the SFHA. Put another way, a severely damaged home in the SFHA certainly

is not comparable to a mildly damaged home also inside the SFHA. Likewise, a severely

damaged home out of the SFHA certainly is not not comparable to a mildly damaged home

also outside of the SFHA. Hence, if differences in the comparability of storm damage to

homes in and out the SFHA can rationalize our main empirical findings, we ought to detect

differences between the rate at which owners invest in severely and mildly damaged homes

when we restrict attention to homes lying completely within and completely outside of the

SFHA.

We operationalize these tests with a series of one-tailed tests for differences between es-

timates of τ(Damaged(severe)SFHA) and τ(Damaged(mild)SFHA) as well as tests for differ-
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ences between estimates of τ(Damaged(severe)NonSFHA) and τ(Damaged(mild)NonSFHA).

For each model, in Columns (2) and (3) of Tables (30) and (31), we report the p-values

associated with these tests. Referring to Columns (2) and (3) of Table (31), the p-values

associated with the one-tailed tests,

τ(Damaged(severe)NonSFHA) > τ(Damaged(mild)NonSFHA),

are .372 and .359, respectively which shows that owners of severely damaged homes out of

the SFHA do not invest at a statistically higher rate than owners of mildly damaged homes

out of the SFHA.

Turning attention to Columns (2) and (3) of Table (30), the p-values associated with the

one-tailed tests, τ(Damaged(severe)SFHA) > τ(Damaged(mild)SFHA), are .385 and .42,

respectively, which also shows that owners of severely damaged homes in the SFHA do not

invest at statistically different rates than owners of mildly damaged homes. It is important to

note that coefficient estimates in Columns (2) and (3) of Table (30) suggest, if anything, that

mild damages induce a marginally higher rate of investment. However, coefficient estimates

in Table (31) suggest the opposite. This inconsistency, coupled with the fact that we fail to

detect any statistical differences in the rates of investment across damage types within the

SFHA and within the non-SFHA is strong evidence that the discrepancy in the estimated

rate of post-disaster investment between SFHA and non-SFHA households is not driven by

differences in the comparability of these homes.

4.4.3 Risk Salience

Table (32) presents estimates of the marginal effects of equation (4.1) comparing the out-

comes of treated properties located in the SFHA that were not damaged by the storm to

control properties outside of the SFHA. Each model in panel (a) restricts attention to non-

damaged buildings located between 0ft to 250ft of a damaged structure. Each model in

panel (b) restricts attention to non-damaged buildings located between 250ft and 500ft of a

damaged structure. To make the treatment and control groups more comparable, we restrict

attention to properties that lie within a 1km buffer of the SFHA boundary.
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Referring to panel (a), estimates of τ(SFHA×Post) suggest a 40% to 41% decrease in the

probability a homeowner in the SFHA invests in their property following the storm relative

to households outside of the SFHA. In contrast, referring to panel (b), model estimates

of τ(SFHA × Post) become statistically insignificant when we restrict attention to non-

damaged buildings located more than 250ft away of a damaged building. In Figure (27),

we report sequential estimates of τ(SFHA × Post), together with their 90% confidence

intervals, obtained by increasing the lower and upper thresholds of our sampling window

in 50ft. increments. The results presented in Figure (27) suggest that homeowners in the

SFHA located between 0ft and 400ft of a damaged structure reduce the rate at which they

invest on the order of roughly 35% to 50%; however, this effect is statistically significant only

up to a distance of 300ft. We find no statistically significant changes in investment rates

among properties between 300ft and 500ft.

These findings provide evidence that a natural disaster may work to heighten perceived

risks. However, our finding that relative investment differentials decay with respect to dis-

tance to damaged buildings further shows that these changes in risk-saliency may be driven

largely, and perhaps exclusively, by exposure to storm damage. Two factors may render

this conclusion invalid. These include changes in investment induced by changes in flood-

insurance premiums as well as localized dis-amenity effects. We address each of these in

turn.

4.4.3.1 Flood-insurance Premiums One methodological concern that we don’t ex-

plicitly account for are potential increases in flood insurance premiums after the Hurricane

which may work to drive down a homeowner’s willingness to invest. However, any changes

in the cost of insurance would apply to any structure in the special flood hazard area. If

these changes were strong enough to completely rationalize our empirical findings, we ought

to detect falling investment in areas of the floodplain less proximate to storm damage, but

we don’t.

4.4.3.2 Dis-amenity Confounds Our empirical results indicate a decrease in property

investment in the SFHA; however, only when we restrict attention to parcels in the immediate

vicinity of a damaged structure. The presence of spatial decay may reflect localized spillover
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effects a la Campbell et al. (2011) due to the potential dis-amenities associated with proximity

to storm damage.

The approach we utilize to mitigate this concern involves comparing outcomes in each

treatment group to the outcomes of properties in each corresponding control group located

within the same 250ft bandwidth of damaged structures. By estimating relative investment

probabilities between each treatment and control, our estimation strategy mitigates bias due

to the presence of dis-amenity effects.

To improve our confidence that our saliency estimates do not completely reflect localized

spillover effects, we proceed by estimating the relationship between proximity to damaged

buildings and investment probabilities separately for properties in and out of the SFHA.

To do this, we construct two new treatment definitions, 1[x, x + 250]NonSFHA and 1[x, x +

250]SFHA, and estimate the marginal effects for each variable interacted with a post-hurricane

indicator. 1[x, x+250]NonSFHA is an indicator variable set equal to one for any non-damaged,

non-SFHA property located between xft. and x + 250ft. of a damaged building. We use

the set of non-damaged, non-SFHA properties located between 500ft and 1000ft as the set

of controls. As we explain in more depth below, we construct the set of control properties in

this way so that we can estimate how spillover effects captured by coefficient estimates on

1[x, x+250]NonSFHA vary with proximity to storm damage without changing the composition

of the control group in each iteration.

Likewise, 1[x, x+250]SFHA is an indicator variable set equal to one for any SFHA property

located between xft. and x+ 250ft. of a damaged building. We construct this variable using

the same set of control properties used in the construction of 1[x, x + 250]NonSFHA. Thus,

marginal effects corresponding to the interaction terms, 1[x, x + 250]SFHA × Post, might

be thought of as including a component due to changes in risk-saliency and a component

due to spatial dis-amenities; in effect, capturing the cumulative effect of the Hurricane on

non-damaged, SFHA structures.

We present the marginal effects for each treatment group by post-hurricane interaction

term in Table (33). Table (33) shows estimates restricting attention to treated properties

between 0ft. and 250ft. of a damaged building. Estimates obtained under the logit spec-

ification are shown in Columns (1) and (2). Estimates obtained from a linear probability
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model are shown in Column (3).

Referring to model estimates of τ(1[0ft., 250ft.]NonSFHA × Post), we find no evidence

that proximity to a damaged building influences the probability of investment outside of the

SFHA; neither in terms of statistical significance or magnitude. In contrast, estimates of

τ(1[0ft., 250ft.]SFHA × Post) show a statistically significant decrease in the probability of

investment.

Next, we quantify how each estimate varies with proximity to damaged structures. Specif-

ically, we iterate the results shown in Table (33) increasing x in 50ft. increments. We report

the marginal effects of each estimate in Figures (28) and (29), respectively.

As shown in Figure (28) estimates of τ(1[x, x+250]SFHA×Post) decay at approximately

the same rate as estimates of τ(SFHA×Post). In addition, referring to Figure (29), we find

no relationship between proximity to storm damage and changes in the investment decisions

of homeowners outside of the SFHA. Together, these findings show that local dis-amenity

shocks associated with damaged buildings are insufficient in and of themselves to fully explain

our main findings regarding the saliency effects of Hurricane Sandy.

4.4.3.3 The Severity of Hurricane Damage as a Driver of Risk-Saliency The

preceding analysis shows that estimates of τ(SFHA×Post) attenuate with respect to prox-

imity to damaged structures. This result points to storm damage as key mechanism through

which hurricanes may induce changes in risk-saliency. To further highlight the significance

of direct experience with a storm on disaster risk-saliency, we explore how the magnitude of

the effects we estimate vary with respect to the severity of storm damage. To do this, we par-

tition the treatment group SFHA into two sub-groups: SFHA(severe) and SFHA(mild).

SFHA(severe) is an indicator set equal to one for any non-damaged structure in the SFHA

near a damaged structure classified as severe. Likewise, SFHA(mild) is an indicator set

equal to one for any non-damaged structure in the SFHA near a damaged structure classi-

fied as mild.

We present model estimates of each treatment group by post-hurricane interaction term

in Table (34). Columns (1) of panels (a) and (b) replicate Columns (2) of panels (a) and (b)

of Table (32). We recall that the estimate of τ(SFHA×Post) in Column (1) of panel (a) in-
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dicates a statistically significant decrease in the probability a homeowner in the SFHA invests

in their property following the storm. However, model estimates of τ(SFHA(severe)×Post)

and τ(SFHA(mild) × Post) in Columns (2) and (3) show that the overall effect captured

by estimates of τ(SFHA × Post) is driven primarily by severely damaged structures. Not

only are estimates of τ(SFHA(severe) × Post) and τ(SFHA(mild) × Post) different in

magnitude, but they are also statistically different as evidenced by the p-values associated

with the tests: τ(SFHA(severe)×Post) < τ(SFHA(mild)×Post). However, similar to our

previous findings – and as shown in Columns (2) and (3) of panel (b) – model estimates of

τ(SFHA(severe)× Post) and τ(SFHA(mild)× Post) attenuate towards zero and become

statistically insignificant when we consider buildings less proximate to storm damage.

4.4.3.4 Bias Due to Differences in Storm Damage Density The results we present

in the previous section further point to storm damage as an important mechanism through

which hurricanes may induce changes in risk-saliency. However, as we explain previously,

our empirical framework assumes that households in undamaged homes inside and outside

of the SFHA are exposed to qualitatively similar storm damage dis-amenities. Our empirical

methodology mitigates this bias by comparing outcomes in each treatment group to a set

of control properties located within the same bandwidth of damaged structure. However,

we might be concerned that undamaged homes in the SFHA near severely damaged struc-

tures (those for which SFHA(severe) = 1) are potentially exposed to a higher density of

storm damage than properties included in the control, even if each property in the sample

(treatment or control) is within the same [0ft., 250ft.] bandwidth of a damaged building. To

asses the degree of this bias, we proceed by testing for differences in storm damage density

between the treatment group and the control group.

We use two different approaches to quantify the spatial variation of storm damage density

in our study area. In our first approach, we generate a Kernel Density22 surface of damaged

buildings using ArcGIS. We implement this methodology due its prevalence in related works,

but there are a few important limitations to note. First, this methodology effectively divides

22Information for this tool is available here: http://help.arcgis.com/en/arcgisdesktop/10.0/
help/index.html#/How Kernel Density works/009z00000011000000/
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our study area into a rectangular array of grid cells and then calculates the density of

damaged buildings located within a neighborhood of each cell. In some ways this might be

ideal since the resultant output values for each cell represent a measure of storm damage

density based on the number of damaged buildings located completely within, but also

within a small neighborhood, of each cell. However, for this very reason, this approach

may lead us to underestimate the actual level of storm damage density for cells that have

a high number of damaged buildings within them, but that are proximate to other cells

with a relatively low number of damaged buildings. Second, we can control the output cell

size of the Kernel Density surface, but we cannot control the orientation of the cells. This is

problematic since this approach requires us to assign a density value from the Kernel Density

surface to properties in our sample by determining which grid cell each property lies within.

Henceforth, the density values we assign may be potentially misleading if the property of

interest does not lie near the center of the cell it is located within.

We advance an alternative approach that circumvents each of the limitations of the Kernel

Density analysis that we mention above. This latter approach involves computing the point

density of damaged buildings located within a given radius of each property in our sample. As

we explain in more depth below, this approach directly informs the validity of our empirical

strategy – in terms of quantifying the degree to which estimates of τ(SFHA(severe) ×

Post) are biased – since it allows us to compute the density of storm damage within 250ft.

neighborhoods centered around properties in our treatment and in our control groups. We

proceed by briefly discussing the details behind the computations of each spatial metric.

Kernel Density Analysis . We created a Kernel Density surface of damaged buildings

using the Kernel Density tool in ArcMap 10.4 choosing an output cell size of 250ft. and

setting the search radius to the default setting.23 The resultant map that we generated

delineates storm damage density – expressed in terms of the number of damaged buildings

per square mile – for a rectangular array of 250ft. by 250ft. grid cells completely spanning

our study area. We subsequently computed the density of storm damage that each property,

i, was exposed to by assigning a density value, KDi, to each property based on the cell said

property was located within.

23The default search radius is computed using a spatial variant of Silverman’s Rule of Thumb.
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Point Density Analysis . To alleviate the methodological concerns we highlight re-

garding the validity of the Kernel Density analysis, we compute a measure of the point

density of damaged buildings in 250ft. neighborhoods centered around each property in our

sample. We operationalized this in GIS by drawing 250ft. buffer zones around each property

in our study area. We then overlayed each buffer zone with our map of damaged buildings

to determine the number of damaged buildings located within 250ft. of each home. These

counts effectively represent the magnitude of storm damage per the unit area of a circle with

a radius of 250ft., which we denote by PDi. In order to make comparisons between our point

density metric and our kernel density metric, we normalized24 the units of PDi to represent

the number of damaged buildings per square mile.

These data allow us to asses the extent to which differences in storm damage density

bias estimates of τ(SFHA(severe) × Post) by testing for mean differences in the levels

of ln(KDi) and ln(PDi) between properties in the treatment group and in the control

group as delineated by the treatment definition SFHA(severe), µ[ln(KDi|i ∈ Treatment] -

µ[ln(KDi|i ∈ Control)] and µ[ln(PDi|i ∈ Treatment]− µ[ln(PDi|i ∈ Control)] restricting

attention to properties within 250ft. of a severely damaged structure; the results of these

tests are shown in equations (4) and (5).

µ[ln(KDi|i ∈ Treatment)]− µ[ln(KDi|i ∈ Control)] = 1.795 (p < .01)

Treatment Definition: SFHA(severe), Sample: [0ft, 250ft] (4.4)

µ[ln(PDi|i ∈ Treatment)]− µ[ln(PDi|i ∈ Control)] = 1.93 (p < .01)

Treatment Definition: SFHA(severe), Sample: [0ft, 250ft] (4.5)

Equation (4) indicates that the average level of storm damage density in the treatment

group exceeds the average level of storm damage density in the control group by approxi-

mately 180%; this effect is statistically significant at the 1% level. Equation (5) suggests

24The scale factor we used was the ratio of the area of a square mile in square feet and the area of a circle
with a radius of 250ft.
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a larger difference of approximately 193%. These estimates suggest that our model esti-

mates of τ(SFHA(severe)× Post) are likely biased due to the differences in storm damage

dis-amenities between the treatment and the control group.

One reason these findings are particularly problematic is that it becomes less clear what

component of τ(SFHA(severe) × Post) reflects heightened saliency. To identify the com-

ponent of τ(SFHA(severe) × Post) due to changes in risk-saliency net of relative changes

in storm damage dis-amenities, we refine the control group to a set of properties with sim-

ilar storm damage density levels. To do this, we first consider various threshold values for

ln(KDi) and ln(PDi): γKD and γPD. For each value of γKD and γPD, we omit any property

from the control group for which ln(KDi) < γKD or ln(PDi) < γPD. As shown in equations

(6) and (7), we then estimate differences in storm damage density between the treatment

group and the resultant control group:

µ[ln(KDi|i ∈ Treatment)]− µ[ln(KDi|i ∈ Control, ln(KDi) ≥ γKD)]

Treatment Definition: SFHA(severe), Sample: [0ft., 250ft.] (4.6)

µ[ln(PDi|i ∈ Treatment)]− µ[ln(PDi|i ∈ Control, ln(PDi) ≥ γPD)]

Treatment Definition: SFHA(severe), Sample: [0ft., 250ft.] (4.7)

In Figures (30) and (31), we plot estimates of the differences of means specified in equa-

tions (6) and (7) together with a 90% confidence interval for each estimate. The x-axis in

Figures (30) and (31) begin at .92 and 4.95, respectively; these points correspond to the

minimum values of ln(KDi) and ln(PDi) in the data. We also note that values of ln(KDi)

generated from the Kernel Density tool in ArcGIS are continuous. In contrast, values of

ln(PDi) are discrete, since they are derived from the count of damaged buildings within

250ft. of each property in our sample.

As shown in Figure (30), as we increase the threshold value of γKD, the difference in

storm damage density between the treatment group and the control group decreases. At

a threshold value of γKD = γ1KD = 6.78, we can no longer detect a statistically significant

difference in the level of storm damage density between the treatment group and the control

group. However, while this difference is not statistically significant, the level of storm damage
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density in the treatment group exceeds the level of storm damage density in the control by

6.16%. In contrast, at a threshold value of γ2KD = 6.91, the difference in storm damage

density between the treatment and the control is approximately zero.25 When, γ3KD = 7, the

sign of this difference flips; the level of storm damage density in the treatment group is 4.86%

lowerthan the level of storm damage density in the control. We identify three similar values

of γPD in Figure (31), γ1PD = 7.664, γ2PD = 7.728, and γ3PD = 7.789. When γ1PD = 7.664, we

can no longer detect a statistically significant difference in storm damage density between

the treatment and the control. When γ2PD = 7.728, the difference is approximately zero.26

Likewise,when γ3PD = 7.789, the sign of the difference flips to -4.4%.

We proceed by testing the sensitivity of our coefficient estimates of τ(SFHA (severe)×

Post) shown in Table (34) to storm damage density threshold values of γKD and γPD. We

report the results of these robustness checks in Table (35). Panel (a) of Table (35) tests

the sensitivity of the coefficient estimate we report in Column (2) of panel (a) of Table

(34). More specifically, Columns (1), (2), and (3) in sub-panel (a.1), test the robustness

of our results to the Kernel Density threshold values that we identify in Figure (30) by

dropping observations from the control group for which ln(KDi) < γ1KD, ln(KDi) < γ2KD,

and ln(KDi) < γ3KD, respectively. The resultant number of observations each regression

is based on is shown in brackets. In a similar fashion, Columns (1), (2), and (3) in sub-

panel (a.2) test the robustness of our estimate of τ(SFHA(severe) × Post) to the Point

Density threshold values that we identify in Figure (31). Finally, Columns (1), (2), and (3)

in sub-panel (a.3) test the robustness of our results to imposing both the Kernel Density

and the Point Density threshold values specified above each coefficient estimate. Coefficient

estimates obtained from a linear probability model are shown panel (b).27

Turning our attention to panel (a.1), we observe that for each value of γKD, coefficient

estimates of τ(SFHA(severe) × Post) are smaller in absolute value than the estimates we

25At a threshold value of γ2KD = 6.91, the actual difference between the treatment and the control is
-.0442%.

26The actual difference is -.242%
27Although coefficient estimates for τ(SFHA(mild)× Post) were statistically insignificant in every spec-

ification in Table (34), we also tested the robustness of each estimate after refining the control group to
make the treated and control observations similar in terms of their exposure to storm damage density, again,
as captured by values of ln(KDi) and ln(PDi). In each case, estimates of τ(SFHA(mild) × Post) remain
statistically insignificant and attenuate towards zero.
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report in Table (34). As shown in panel (a.2), the coefficient estimates that we obtain

after imposing the point density thresholds are similar to the estimates that we obtain from

imposing the kernel density thresholds. Moreover, consistent with the concerns we advance

regarding the validity if the Kernel Density analysis, the reduction in the magnitude of

our estimates is slightly larger using the point density threshold values. Finally, as shown

in panel (a.3), we observe the largest reductions in the magnitude of our estimates after

restricting the treatment group and the control group to be similar in terms of both storm

damage density measures. While we observe reductions in the magnitude of our coefficient

estimates of τ(SFHA(severe) × Post), model estimates remain negative and statistically

significant.

4.5 CONCLUSION

We estimate a statistically significant increase in the probability that homeowners in statuto-

rily designated, special flood hazard areas invest in damaged structures. In contrast, we find

no corresponding increase in the probability that homeowners invest in damaged properties

located outside of the SFHA. Next to latent flood-risks, some of the most notable differences

between properties in and out of SFHAs are the policies and regulations regarding flood

insurance that apply exclusively to SFHA homeowners. Specifically, homeowners located

in SFHAs holding mortgages from federally regulated lenders are required to purchase in-

surance. Ostensibly due to these requirements, flood insurance take-up rates in the SFHA

significantly exceed take-up rates by residents outside of these zones.

With this said, our empirical findings may suggest that flood-insurance plays a significant

role in promoting post-disaster investment. In many ways, this finding might be regarded as

a positive result, but in other ways, this finding might be regarded as a negative result. We

recall that many of the insurance policies in force in the SFHA are mandated under the 1973

Flood Disaster Protection Act and are typically provided at subsidized rates. This raises

the question, “To what extent might these regulations lead to housing market distortions?”

More to the point, “Do these regulations have the potential to promote investment projects
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in damaged homes in SFHAs that would have otherwise not have taken place in the absence

of the regulatory framework currently in place?”

We cannot asses these questions directly, but our empirical results provide some evidence

that warrant future investigation of these issues. Specifically, we recall that we do not find

any change in the rate of investment in damaged homes outside of the SFHA nor do we find

evidence that homeowners in these regions defer remedial investments into the future. One

could advance the argument that if it were economically efficient to re-invest in damaged

non-SFHA properties, we would anticipate some degree of post-disaster investment in them,

but we do not. On this front, detailed parcel-level data on flood-insurance take-up could be

one avenue for obtaining a more precise description of the roles flood insurance plays.

Building on the growing literature dedicated to understanding the links between natu-

ral disasters and disaster risk-saliency, we also use Hurricane Sandy as an exogenous shock

to agents’ beliefs regarding the relative risk of living in a disaster prone area. We infer

changes in agents’ beliefs by tracking investment decisions following the hurricane between

non-damaged properties in SFHAs and non-damaged properties outside of these zones (but

similarly situated in terms of their exposure to storm damage). Our model results indicate

a statistically significant decrease in investment in homes in the SFHA. This finding, which

is consistent with the findings in the extant literature, suggests that a recent disaster may

heighten perceived risks. However, we show that this effect attenuates towards zero and be-

comes statistically insignificant with respect to distance to the spatial path of storm damage

as well as the severity of storm damage.

Together, these results suggest that the spatial path of storm damage may be an impor-

tant source of new information regarding the risks associated with living in a disaster-prone

area. Here is why we think this finding is economically relevant. Following a catastrophic

event, homeowners are bombarded with multiple sources of information which, on the one

hand, might plausibly heighten perceived risks, but, on the other hand, are less likely to be

correlated with proximity to storm damage. This includes, for instance, information garnered

from increased coverage of natural disasters in the media. These sources of information may

influence the degree to which households think about flood-risk, but our empirical results

suggest the saliency effects due to these information sources, if present, are not strong enough
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to be reflected in market outcomes. An important implication of this result is that policies

which seek to align households’ subjective risk assessments with underlying or latent risk

levels through information based regulation may induce changes in risk-saliency, but may

ultimately be ineffective at promoting socially-optimal behavioral modifications if they fail

to mimic the saliency effects attributable to the damage created by a storm.
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4.6 FIGURES AND TABLES

Figure 19: Illustration of the study area and the SFHA (in green).
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Figure 20: Illustration of the study area, building density, and the extent of the SFHA (in

crosshatch).
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Figure 21: Illustration of residential structures, the floodplain, and flood damage. The

footprints of damaged buildings are indicated by dark grey with black dots. Light grey

indicates the footprints of non-damaged buildings. The extent of the SFHA is shown in

crosshatch.
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Figure 22: Panel (a) indicates the locations of damaged structures (in black dots) and the

extent of the SFHA (in crosshatch). Panel (b) illustrates the density of damaged structures

and the extent of the SFHA.

(a)

(b)
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Figure 23: Panel (a) indicates the locations of property investments (in black dots) in our

sample and the extent of the SFHA (in crosshatch). Panel (b) illustrates the density of

property investments and the extent of the SFHA.

(a)

(b)
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Figure 24: Trend Analysis: Treatment Definition - DamagedSFHA.
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Figure 25: Trend Analysis: Treatment Definition - DamagedSFHA.
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Figure 26: Trend Analysis: Treatment Definition - DamagedSFHA.
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Table 27: Storm Damage and Investment: Damaged Properties in the SFHA

(1) (2) (3)

Logit Logit LPM

q q q

0.974*** 0.931*** 0.803***

(0.00) (0.00) (0.00)

Observations 1,242,025 1,242,025 1,242,025

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable n y y

Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in Columns (1), (2),

and (3) include year by quarter fixed effects, indicator variables for number of units,

neighborhood fixed effects, lot frontage, lot depth, and second order polynomials in

square footage and age. 

                   

Table 28: Storm Damage and Investment: Damaged Properties out of the SFHA

(1) (2) (3)

Logit Logit LPM

q q q

-0.002 -0.004 -0.052

(0.99) (0.97) (0.61)

Observations 1,279,556 1,279,556 1,279,556

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable n y y
Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in columns (1), (2),

and (3) include year by quarter fixed effects, indicator variables for number of units,

neighborhood fixed effects, lot frontage, lot depth, and second order polynomials in

square footage and age. 
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Table 29: Differences in the Structural Characteristics of Damaged Homes in the SFHA

and Damaged Homes out of the SFHA

(3)

Structural 95% Confidence

Characteristic: Interval

Number of Stories [-.02, .004]

Square Footage [-148.65, -103.75]

Lot Frontage (feet) [-.05, .99]

Lot Depth (feet) [-3.92, -2.70]

Year Built [-3.93, -2.72]

(1) (2)

Notes: Column (2) indicates the differences in the average levels of the structural characteristics

listed in Column (1) between damaged properties in the SFHA and damaged properties out of the

SFHA. Column (3) indicates the 95% confidence interval for each difference of means in Column

(2).

-126.20

0.47

-3.31

-3.32

-0.01
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Table 30: Storm Damage and Investment: Damaged Properties in the SFHA (Sensitivity

to the Severity of Hurricane Damage)

(1) (2) (3)

Logit Logit LPM

q q q

0.931*** - -

(0.00) - -

- 0.858*** 0.754***

- (0.01) (0.01)

- 0.972*** 0.821***

- (0.00) (0.00)

Observations 1,242,025 1,242,025 1,242,025

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable y y y
Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in columns (1), (2), and (3)

include year by quarter fixed effects, indicator variables for number of units, neighborhood fixed

effects, lot frontage, lot depth, and second order polynomials in square footage and age. 

- 0.385 0.420

                         

                           

                    

                            

                         ]

137



Table 31: Storm Damage and Investment: Damaged Properties out of the SFHA

(Sensitivity to the Severity of Hurricane Damage)

(1) (2) (3)

Logit Logit LPM

q q q

-0.004 - -

(0.97) - -

- 0.245 0.203

- (0.75) (0.78)

- -0.011 -0.057

- (0.93) (0.57)

Observations 1,279,556 1,279,556 1,279,556

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable y y y
Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in columns (1), (2), and (3)

include year by quarter fixed effects, indicator variables for number of units, neighborhood fixed

effects, lot frontage, lot depth, and second order polynomials in square footage and age. 

- 0.372 0.359

                            

                              

                       

                               

                            ]
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Table 32: Salience Analysis

(1) (2) (3)

Logit Logit LPM

q q q

-0.408** -0.397** -0.404**

(0.02) (0.02) (0.01)

Observations 347,839 347,839 347,839

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable n y y

(1) (2) (3)

Logit Logit LPM

q q q

0.183 0.165 0.164

(0.72) (0.74) (0.74)

Observations 370,507 370,507 370,507

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable n y y
Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in columns (1), (2),

and (3) include year by quarter fixed effects, indicator variables for number of units,

neighborhood fixed effects, lot frontage, lot depth, and second order polynomials in

square footage and age.

(a) Sample Definition:  [0ft,  250ft]

(b) Sample Definition:  [250ft,  500ft]
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Figure 27: Salience Analysis: Sensitivity to Sample Definition
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Table 33: Spillover Effects

(1) (2) (3)

Logit Logit LPM

q q q

0.04 0.039 -0.075

(0.76) (0.77) (0.52)

-0.395** -0.387** -0.404***

(0.02) (0.02) (0.01)

Observations 940,195 940,195 940,195

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable n y y
Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in columns (1), (2),

and (3) include year by quarter fixed effects, indicator variables for number of units,

neighborhood fixed effects, lot frontage, lot depth, and second order polynomials in

square footage and age. 
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Figure 28: Spillover Effects in the SFHA: Sensitivity to Sample Definition
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Figure 29: Spillover Effects out of the SFHA: Sensitivity to Sample Definition
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Table 34: Salience Analysis: Sensitivity to the Severity of Hurricane Damage

(1) (2) (3)

Logit Logit LPM

q q q

-0.397** - -

(0.02) - -

- -0.83*** -0.87***

- (0.00) (0.00)

- -0.177 -0.18

- (0.48) (0.43)

Observations 347,839 347,839 347,839

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable y y y

(1) (2) (3)

Logit Logit LPM

q q q

0.165 - -

(0.74) - -

- 0.039 0.095

- (0.97) (0.94)

- 0.192 0.15

- (0.74) (0.78)

Observations 370,507 370,507 370,507

Year-Quarter Fixed Effects y y y

Lagged Dependent Variable y y y

(a) Sample Definition:  [0ft,  250ft]

Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Models in columns (1), (2),

and (3) include year by quarter fixed effects, indicator variables for number of units,

neighborhood fixed effects, lot frontage, lot depth, and second order polynomials in

square footage and age. 

- 0.0060.011

0.480.45-

(b) Sample Definition:  [250ft,  500ft]

            

            

                  

                  

                

                

                      

                ]

                      

                ]
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Figure 30: Kernel Density Analysis
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3 = 7.
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Figure 31: Point Density Analysis
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Table 35: Salience Analysis: Sensitivity of Results to Storm Damage Density Thresholds

(1) (2) (3)

Logit Logit Logit

-0.764*** -0.748*** -0.737***

(0.00) (0.00) (0.00)

[157,018] [145,548] [136,713]

-0.755*** -0.74*** -0.722***

(0.00) (0.00) (0.00)

[93,435] [89,377] [85,437]

-0.674*** -0.653*** -0.633***

(0.00) (0.00) (0.00)

[83,610] [77,583] [73,268]

(1) (2) (3)

LPM LPM LPM

-0.812*** -0.789*** -0.773***

(0.00) (0.00) (0.00)

[157,018] [145,548] [136,713]

-0.79*** -0.777*** -0.761***

(0.00) (0.00) (0.00)

[93,435] [89,377] [85,437]

-0.724*** -0.701*** -0.682***

(0.00) (0.00) (0.00)

[83,610] [77,583] [73,268]

(a) Sample Definition:  [0ft., 250ft.]

Notes: P-values in parenthesis. *** p<.01, ** p<.05, * p<.1. Each model in each cell shows a coefficient estimate from a

separate regression. The number of observations of each regression are shown beneath the p-value for each coefficient

estimate in brackets. Models in panels (a) and (b) of columns (1), (2), and (3) include year by quarter fixed effects,

indicator variables for number of units, neighborhood fixed effects, lot frontage, lot depth, second order polynomials in

square footage and age, and a lagged dependent variable.  

(a.1)

(a.2)

(a.3)

(b.1)

(b.2)

(b.3)

(b) Sample Definition:  [0ft., 250ft.]
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Table A1: Demographic Composition: Different Family Types in Owner Market

(1a) (1b) (1c) (1d)

Family Type White Family Minority Family Black Family Hispanic Family

Disclosed x Risky -0.0308* 0.0311** 0.00709 0.0240**

(0.0643) (0.0329) (0.397) (0.0258)

Observations 3,475 3,475 3,475 3,475

(2a) (2b) (2c) (2d)

Family Type White Parents Minority Parents Black Parents Hispanic Parents

Disclosed x Risky -0.0609*** 0.0164* 0.0189*** -0.00257

(0.000199) (0.0568) (0.000372) (0.666)

Observations 3,475 3,475 3,475 3,475

(3a) (3b) (3c) (3d)

Family Type

Family Head with 

College Degree

Family Head with 

No More than HS 

Degree

White Parents with 

College Degree

White Parents with 

No More than HS 

Degree

Disclosed x Risky -0.00802 -0.00272 -0.0149 -0.0265***

(0.728) (0.867) (0.254) (0.00171)

Observations 3,475 3,475 3,475 3,475

(4a) (4b) (4c) (4d)

Family Type

Minority Parents 

with No More than 

HS Degree

Black Parents with 

No More than HS 

Degree

Hispanic Parents 

with No More than 

HS Degree

Seniors with Each 

Family Member 

Older than 60 

Disclosed x Risky 0.0162** 0.00851** 0.00769 0.000551

(0.0137) (0.0461) (0.116) (0.963)

Observations 3,475 3,475 3,475 3,475

Housing Characteristics Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports effects of Title X from 16 separate 

regressions using same sample restriction but different dependent variables. Sample restriction: houses built between 1975 and 

1982, and sold between 1992 and 2001. The type of a family is categorized by the family head. All these regressions include 

other independent variables, and coefficient of those variables are not reported. Please see Table (2) for a list of the control 

variables used in each specification. 
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Table A2: Demographic Composition: Different Family Type in Rental Market

(1a) (1b) (1c) (1d)

Family Type White Family Minority Family Black Family Hispanic Family

Disclosed x Risky -0.0469* 0.0293 -0.000927 0.0302*

(0.0936) (0.311) (0.953) (0.0789)

Observations 6,852 6,852 6,852 6,852

(2a) (2b) (2c) (2d)

Family Type White Parents Minority Parents Black Parents Hispanic Parents

Disclosed x Risky -0.0231 0.0183 -0.00148 0.0198**

(0.132) (0.256) (0.871) (0.0430)

Observations 6,852 6,852 6,852 6,852

(3a) (3b) (3c) (3d)

Family Type

Family Head with 

College Degree

Family Head with 

No More than HS 

Degree

White Parents with 

College Degree

White Parents with 

No More than HS 

Degree

Disclosed x Risky 0.00522 -0.0166 -0.00373 -0.0206*

(0.674) (0.246) (0.406) (0.0572)

Observations 6,852 6,852 6,852 6,852

(4a) (4b) (4c) (4d)

Family Type

Minority Parents 

with No More than 

HS Degree

Black Parents with 

No More than HS 

Degree

Hispanic Parents 

with No More than 

HS Degree

Seniors with Each 

Family Member 

Older than 60 

Disclosed x Risky 0.0192* 0.00300 0.0162** 0.00755

(0.0812) (0.648) (0.0248) (0.504)

Observations 6,852 6,852 6,852 6,852

Housing Characteristics Yes Yes Yes Yes

Sale Year Fixed Effect Yes Yes Yes Yes

MSA fixed effect Yes Yes Yes Yes

Note: *** p<0.01, ** p<0.05, * p<0.1. P-values, which are reported in parenthesis, are based on robust clustered standard 

errors at MSA and whether the house is built before and after 1978.  This table reports effects of Title X from 16 separate 

regressions using same sample restriction but different dependent variables. Sample restriction: houses built between 1975 and 

1982, and sold between 1992 and 2001. The type of a family is categorized by the family head. All these regressions include 

other independent variables, and coefficient of those variables are not reported. Please see Table (2) for a list of the control 

variables used in each specification. 
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Table A3: Difference-in-Differences Estimates: Birthweight (Wind Sample)

(1) (2) (3) (4) (5)

Fire Sample: Wind Wind Wind Wind Wind

Dependent Variable: ln(bw) ln(bw) ln(bw) ln(bw) ln(bw)

(Polluted) x (Tri 3) -0.0436 -0.0465* -0.0532** -0.0543** -0.0569**

(0.130) (0.0808) (0.0489) (0.0395) (0.0298)

(Polluted) x (Tri 2) -0.0343 -0.0397 -0.0544* -0.0450 -0.0450*

(0.276) (0.205) (0.0505) (0.105) (0.0975)

(Polluted) x (Tri 1) -0.00545 -0.0114 -0.0270 -0.0237 -0.0281

(0.888) (0.767) (0.492) (0.551) (0.488)

(Stressed) x (Tri 3) -0.0110 -0.00811 -0.0120 -0.0102 -0.0115

(0.619) (0.707) (0.593) (0.658) (0.615)

(Stressed) x (Tri 2) -0.00114 -0.00265 -0.00285 -0.000147 -0.00206

(0.946) (0.879) (0.873) (0.993) (0.908)

(Stressed) x (Tri 1) 0.00756 0.00630 0.00597 0.0113 0.0119

(0.643) (0.694) (0.714) (0.508) (0.486)

Gestational Age no yes yes yes yes

Geographic Controls no no yes yes yes

Year-Quarter Fixed Effects no no no yes yes

Demographic Controls no no no no yes

Observations 7,398 7,398 7,398 7,398 7,398

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust

(Huber-White) standard errors. Columns (1) - (5) report coefficient estimates of the treatment group by post-

fire interaction terms specified in equation (3) based on the data described in column (1) of Table (1); Column

(5) replicates Column (2) of Table (2). Please refer to Table (2) for a description of the geographic and

demographic controls included in these models.
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Table A4: Difference-in-Differences Estimates: Birthweight (Smoke Sample)

(1) (2) (3) (4) (5)

Fire Sample: Smoke Smoke Smoke Smoke Smoke

Dependent Variable: ln(bw) ln(bw) ln(bw) ln(bw) ln(bw)

(Polluted) x (Tri 3) -0.0171 -0.0343 -0.0448 -0.0476 -0.0481*

(0.561) (0.213) (0.129) (0.106) (0.0955)

(Polluted) x (Tri 2) -0.0351* -0.0371* -0.0382* -0.0408* -0.0379*

(0.0994) (0.0873) (0.0853) (0.0725) (0.0940)

(Polluted) x (Tri 1) -0.00146 -0.00913 -0.0115 -0.0156 -0.0129

(0.959) (0.739) (0.675) (0.574) (0.643)

(Stressed) x (Tri 3) -0.0217 -0.0255 -0.0279 -0.0232 -0.0281

(0.689) (0.631) (0.603) (0.668) (0.604)

(Stressed) x (Tri 2) 0.0306 0.0325 0.0326 0.0383 0.0302

(0.355) (0.312) (0.318) (0.236) (0.359)

(Stressed) x (Tri 1) -0.0443 -0.0460 -0.0486 -0.0492 -0.0482

(0.243) (0.226) (0.183) (0.198) (0.194)

Gestational Age no yes yes yes yes

Geographic Controls no no yes yes yes

Year-Quarter Fixed Effects no no no yes yes

Demographic Controls no no no no yes

Observations 4,736 4,736 4,736 4,736 4,736

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based on robust (Huber-

White) standard errors. Columns (1) - (5) report coefficient estimates of the treatment group by post-fire

interaction terms specified in equation (3) based on the data described in column (2) of Table (1); Column (5)

replicates Column (4) of Table (2). Please refer to Table (2) for a description of the geographic and demographic

controls included in these models.

170



Table A5: Robustness Checks (Birth Injuries): Smoke Sample

(1) (2) (3)

Fire Sample: Smoke Smoke Smoke

Dependent Variable: Birth Injury Birth Injury Birth Injury

(Polluted) x (Tri 3) 0.00274 0.00256 0.00394

(0.119) (0.165) (0.133)

(Polluted) x (Tri 2) 0.000435 0.00124 0.00164

(0.878) (0.313) (0.338)

(Polluted) x (Tri 1) 0.00130 0.00130 0.00218

(0.444) (0.202) (0.139)

(Stressed) x (Tri 3) -0.00124 -0.00164 -0.000927

(0.570) (0.388) (0.570)

(Stressed) x (Tri 2) -0.00192 -0.00133 -0.00126

(0.316) (0.382) (0.359)

(Stressed) x (Tri 1) -0.00146 -0.00171 -0.00113

(0.448) (0.231) (0.341)

Observations 4,736 4,736 4,736

Robustness Check: Baseline Model
Contaminated 

Controls (Smoke)

Contaminated Controls 

(Smoke + Wind)

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are based

on robust (Huber-White) standard errors. The baseline model in Column (1) replicates Column

(6) of Table (11). As described in Section 5.1.3, Column (2) tests the sensitivity of Column (1)

to group by fire and group by trimester indicator variables for the set of infants within the smoke

plume of a fire, but located further than one mile. Column (3) tests the sensitivity of Column (1)

to group by fire and group by trimester indicator variables for the set of infants either within the

smoke plume of a fire or downwind of a fire, but located further than one mile. Each model

includes: Year-quarter fixed effects; treatment group by fire fixed effects; geographic controls;

and the birthweight and gestational age of each mother's infant.
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Table A6: Robustness Checks (Birth Injuries): Wind Sample

Fire Sample Wind Wind Wind

Baseline Contaminated Erratic

Model Controls Wind

Dependent Variable: Birth Injury Birth Injury Birth Injury

(Polluted) x (Tri 3) 0.00162 0.00187 0.00145

(0.100) (0.127) (0.187)

(Polluted) x (Tri 2) -0.000165 -0.000590 -0.00103

(0.924) (0.816) (0.622)

(Polluted) x (Tri 1) -0.000904 -0.000128 -0.000511

(0.483) (0.949) (0.630)

(Stressed) x (Tri 3) 0.000707 0.000989 0.000841

(0.350) (0.241) (0.289)

(Stressed) x (Tri 2) -0.000206 -0.000550 -0.000817

(0.878) (0.792) (0.646)

(Stressed) x (Tri 1) -0.000876 -0.000181 -0.00114

(0.486) (0.922) (0.542)

Observations 7,398 7,398 5,377

Robustness Check:

Notes: ***p<.01, **p<.05, and *p<.1. P-values, which are reported in parenthesis, are

based on robust (Huber-White) standard errors. The baseline model in Column (1)

replicates Column (6) of Table (10). Column (2) tests the sensitivity of Column (1) to

group by fire and group by trimester indicator variables for the set of infants located

downwind of a fire, but further than one mile. Column (3) tests the sensitivity of Column

(1) to excluding fires with an erratic wind pattern flag as described in Section 5.1.2. Each

model includes: Year-quarter fixed effects; treatment group by fire fixed effects;

geographic controls; and the birthweight and gestational age of each mother's infant.
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Figure B1: Sensitivity to Treatment Cutoff: Air Pollution & Birthweight (Trimester 1

Effects)
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Figure B2: Sensitivity to Treatment Cutoff: Stress & Birthweight (Trimester 3 Effects)
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Figure B3: Sensitivity to Treatment Cutoff: Stress & Birthweight (Trimester 2 Effects)

-.1
5

-.1
-.0

5
0

.0
5

St
re

ss
 (W

in
d)

 x
 T

ri 
2

1 2 3 4
Treatment Cutoff (Miles)

Stress (Wind) x Tri 2 90% Confidence Interval

Wind Sample: Birthweight and Stress - Sensitivity to Treatment Cutoff

(a) Wind Model

-.1
5

-.1
-.0

5
0

.0
5

.1
St

re
ss

 (S
m

ok
e)

 x
 T

ri2

1 2 3 4
Treatment Cutoff (Miles)

Stress Effect 90% Confidence Interval

Smoke Sample: Birth Weight and Stress - Sensitivity to Treatment Cutoff

(b) Smoke Model

176



Figure B4: Sensitivity to Treatment Cutoff: Stress & Birthweight (Trimester 1 Effects)
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Figure B5: Sensitivity to Control Cutoff: Air Pollution & Birthweight (Trimester 2 Effects)
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Figure B6: Sensitivity to Control Cutoff: Air Pollution & Birthweight (Trimester 1 Effects)
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Figure B7: Sensitivity to Control Cutoff: Stress & Birthweight (Trimester 3 Effects)
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Figure B8: Sensitivity to Control Cutoff: Stress & Birthweight (Trimester 2 Effects)
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Figure B9: Sensitivity to Control Cutoff: Stress & Birthweight (Trimester 1 Effects)
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