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Solar energy is inexhaustible. It’s effective and widespread utilization is the way to prevent the 

Earth from being further polluted. Solar cell has been demonstrated to be the most promising 

technology to produce electricity by absorbing sunlight, with crystal silicon (c-Si) solar cell 

leading the market. However, significant amount of energy is required for manufacturing of crystal 

silicon solar cells because of vacuum-based fabrication process and high consumption of raw 

materials.  

        Solution processed thin film solar cells have been considered as promising alternatives to c-

Si solar cells because of the low-cost process and low consumption of raw materials. In this work, 

two types of thin film solar cells (TFSCs), namely Cu2ZnSnS4 (CZTS) and CH3NH3PbI3 

(MAPbI3) have been explored with a focus on the fabrication and characterization. In the case of 

FUNDAMENTAL STUDY OF SOLUTION PROCESSED INORGANIC AND 

HYBRID THIN FILM SOLAR CELLS 

Minlin Jiang, PhD 

University of Pittsburgh, 2017
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CZTS TFSCs, a promising efficiency of 6.2% has been obtained by modifying a water-based 

process previously developed. In the case of MAPbI3 TFSCs, an efficiency of 15.39% has been 

achieved from a spin-coating process. By incorporating with Cl into MAPbI3 thin film, the 

efficiency was significantly increased to 18.60%. To improve the stability of MAPbI3 TFSCs, a 

device structure incorporating inorganic metal oxides as charge transport layers (CTLs) has been 

developed. A promising result with a highly stable and a highly efficient perovskite solar cell was 

obtained. 

        The mechanisms behind the improvement were revealed by open-circuit voltage decay 

(OCVD) measurement, admittance spectroscopy (AS), temperature-dependent open-circuit 

voltage (VOC), and Kelvin probe force microscopy (KPFM). By comparing the device properties 

of CZTS solar cells and MAPbI3 solar cells, it was found that the interfaces of these two types of 

solar cells were crucial in improving their efficiencies. Therefore, interface engineering should be 

prioritized to further improve the efficiencies of these two PV technologies. 
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INTRODUCTION 

Pollution of the earth and shortage of energy sources have been the bottleneck of survival and 

development for human being since the start of the 21st century. Therefore, lowering energy 

consumption and protecting the environment have gradually gained attention from all over the 

world. To keep sustainable development, governments, research institutes, and industries have 

been fighting for the problems caused by the shortage of available energy sources. It is well known 

that the best way is to exploit renewable energy resources. Solar energy is considered as the most 

economic and effective among all available renewable energy resources. Solar energy is 

inexhaustible and it has already been theoretically and experimentally proved that the earth would 

not be polluted at all if solar energy was utilized effectively. To encourage and to promote the 

direct utilization of solar energy, developed countries have been legislating and deploying solar 

initiatives. 

        Joint Research Centre (Europe) predicted that energy directly harvested from sunlight would 

be 20% of total energy consumption in 2050, and this value could be over 50% in 2100. Solar 

energy will be widely utilized in industries, agriculture and daily life. Photovoltaic (PV) systems 

have gained tremendous development due to intrinsic advantages as follows: 

• Directly translate sunlight into electrical energy;

• Movable parts are dispensable when constructing PV systems;

• Lifetime is over 20 years without any maintenance.
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        It was reported by Solarbuzz that 16.3 GW PV modules had been shipped to customers in 

2010 with the lion’s share going to crystalline silicon (c-Si) technology (71%). However, market 

share of thin film PV technologies has been increasing rapidly due to high cost and energy 

consumption input in manufacturing c-Si PV of modules. There are three main thin film PV 

technologies, CdTe, CuInxGa1-xS(Se)2 (CIGS), and thin film Si, which has gained 14%, 9%, and 

6% of PV market share in 2010, respectively (Fig.1.1) [1].  Nevertheless, thin film Si solar cell has 

been relatively underdeveloped due to low efficiency and instability from the Staebler–Wronski 

effect. For the other two thin film technologies, there are restriction on usage of heavy metals such 

as cadmium, limitations in supply for indium and tellurium, and resultant wide fluctuation in prices 

of indium and tellurium. These render the combined production capacity of the existing CdTe and 

CIGS technologies to lower than 100 GW per year, a small fraction of energy consumption, which 

is expected to be 27 TW by 2050 [1, 2]. 
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Figure 1.1 Market share of different PV technology. 

        Recently, quarternary compound Cu2ZnSnS4 (CZTS) and methylammonium lead iodide 

(CH3NH3PbI3) (MAPbI3) have been intensively examined as alternative PV materials due to their 

excellence in material properties and the relative easiness of fabrication process. Both CZTS and 

MAPbI3 are excellent light absorbers with a high absorption coefficient (> 104 cm-1) and a 

desirable bandgap (~1.50 eV). Most importantly, the highest efficiencies obtained from these two 

materials were achieved using solution-based processes, indicating low-cost, high-efficiency PV 

technologies could be realized using these two PV technologies [3] [4].  
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1.1 SOLUTION-PROCESSED THIN FILM SOLAR CELLS 

1.1.1 Cu2ZnSnS4 (CZTS) 

The first (I)2(II)(IV)(VI)4 solar cell was developed in 1977 by Wagner and Bridenbaugh [5]. A n-

type CdS thin film was evaporation-coated on vapor transportation-grown Cu2CdSnS4 single 

crystal substrate to form the p-n junction. This device showed a short-circuit current density of 7.9 

mA/cm2, an open-circuit voltage of 0.5 V, and a conversion efficiency of 1.6%. The authors 

pointed out that a large series resistance limited the performance. In 1988, a heterojunction solar 

cell with an open circuit voltage of 165 mV was achieved by depositing cadmium tin oxide on 

CZTS thin film [6]. In 1997, the first CZTS TFSC with efficiency of 0.66% was realized by 

Katagiri using electron beam deposition followed by sulfurization [7].  

        Most of the reported CZTS solar cells adopt a p-n junction consisting of two different 

materials with different bandgap energies, which is defined as heterojunction. In the band diagram 

of a heterojunction, there is a discontinuity in the conduction and valence band edges due to the 

difference of band gap. As shown in Fig. 1.2, the conduction band offset between CdS and CZTS 

is a spike where the conduction band edge of CdS lies above that of CZTS [8]. Photogenerated 

electrons crossing the junction need to tunnel through the spike before they can be collected at the 

front contact. The efficiency of collection is reduced, leading to increasing of recombination 

current from tunneling of electrons to interface defects in the CdS. For CZTS solar cell, n-type 

CdS and p-type CZTS are used to form p-n junction, where external dopants are not needed to 

make n-type or p-type semiconductors for CZTS solar cell. The above-mentioned CdS and CZTS 

show n-type conductivity and p-type conductivity, respectively, due to a process called self-

doping. For CdS thin film, n-type conductivity was caused by a donor level of 21 meV, which was 
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assigned to excess Cd [78]. Similarly, the commonly observed p-type conductivity in CZTS thin 

films comes mainly from the CuZn antisite defect [9]. 

Figure 1.2 (a) Schematic structure of CZTS solar cell and (b) band diagram of the CdS/CZTS 

heterojunction (adopted from [8]). 

        The highest efficiency obtained from CZTS is 12.6%, with a Jsc of 35.2 mA/cm2, a Voc of 

0.51V, and a FF of 69.8% [3].  Compared to the record 21.7% CIGS solar cell with similar 

bandgap, the biggest difference is the Voc [10]. The deficit of Voc, which is defined as the 

difference between Eg/q and Voc, of the record CZTS solar cell is 0.62V, while that of the record 
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CIGS solar cell is 0.38V. Finding a way to improve the Voc of CZTS solar cells would 

significantly increase the efficiency of CZTS solar cells.  

        The deficit of Voc is mainly affected by the recombination at interfaces of CdS/CZTS, 

CZTS/Mo, and in the CZTS absorber layer. Polycrystalline CZTS thin film contains a large density 

of intrinsic defects which is 1.0×1016 cm-3, while that of CIGS is 1.3×1014 cm-3 [11]. The large 

defect density increases the density of trap states and recombination centers, resulting in the 

following consequence: 

• Diffusion lengths are much shorter than that of silicon wafer-based solar cells. To

increase absorption, either a strong optical absorber or multiple junctions must be used.

In the case of amorphous silicon solar cell where diffusion lengths are extremely short, p-

i-n structure is employed to extend the built-in electric field to aid carrier collection. In

the case of organic solar cell where diffusion lengths are even shorter, nanostructure and

bulk junction are employed to facilitate carrier collection.

• The presence of defect states in the band gap can limit the built-in voltage due to Fermi

level pinning. Also, the presence of defect states will lead to high dependence of minority

carrier lifetime and diffusion constant on carrier density.

• The presence of grain boundaries and other intrinsic defects increases the resistivity of

CZTS thin films, making the conductivity highly dependent on carrier density.

1.1.2 CH3NH3PbI3 (MAPbI3) 

The first MAPbI3 solar cell with an efficiency of 3.81% was reported by T. Miyaska in 2009 [12]. 

Due to the dissolution of MAPbI3 in acetonitrile, the performance degraded quickly under 

irradiation. Another nonpolar solvent, ethyl acetate, was adopted to prevent the dissolution in 2011 



7 

[13]. The performance of MAPbI3 solar cell was improved to 6.54%. It was mentioned that the 

stability of the MAPbI3 solar cell under continued irradiation was approximately 10 min (about 

80% degradation) because MAPbI3 quantum dots tends to be dissolved gradually into the redox 

electrolyte. A solid hole transporting material (HTM), 2,2’,7,7’-tetrakis(N,N-di-

pmethoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD) was used to replace liquid 

electrolyte in 2012 [14]. An efficiency of 9.7% was obtained. Furthermore, compared to the liquid 

cell, the stability was remarkably improved. A sequential deposition method was developed to 

deposit MAPbI3 in 2013 and a remarkable efficiency of 15.0% was achieved [15]. In the same 

year, an evaporation deposition method was applied to fabricate MAPbI3 thin film [16]. The 

efficiency was further improved to 15.4%. Since then, numerous groups have shifted their research 

focuses to investigate MAPbI3 solar cells. The efficiency of perovskite solar cells has been 

surprisingly rapidly improved from 3.8 % in 2009 [12] to 20.1% in 2015 [4]. This great advance 

is mainly attributed to the rigorous efforts that worldwide research groups have been taking to 

deposit high quality perovskite thin films [17-19]. The tremendous improvement can also be 

attributed to the two device structures developed for almost 20 years. One structure is based on 

TiO2 as electron transport layer (ETL) and spiro-OMeTAD as hole transport layer (HTL) (Fig. 1.3 

(a) and (b)) [20]. The other structure is based on organic ETL such as PCBM and organic HTL

such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(3-

hexylthiophene-2,5-diyl) (P3HT) (Fig. 1.3 (c) and (d)) [21]. The perovskite thin film is deposited 

in between as absorber layer to fabricate perovskite solar cells. Due to the high sensitivity of these 

organic materials to moisture and oxygen, a nitrogen glove box with strict control on the 

concentration of moisture and oxygen was usually used to fabricate perovskite solar cells [17, 22-
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25]. However, the perovskite solar cells reportedly degraded quickly once they were removed from 

the nitrogen glove box and stored in ambient environment [26-28]. 

Figure 1.3 (a,c) Schematic structure and (b,d) band diagram of the perovskite solar cells with different 

structures (adopted from [20] [21]). 
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        Although MAPbI3 TFSCs have evolved from the dye sensitized solar cell (DSSC) and 

adopted a device structure similar to bi-layer organic solar cells, it has been found recently that 

they work differently from organic solar cells [29]. The strong and abroad absorption spectrum, 

the long diffusion length of minority carriers, the large two-carrier recombination rate, and the 

polycrystalline structure observed in MAPbI3 thin films indicate that MAPbI3 TFSCs function 

more like inorganic polycrystalline solar cells such as Cu(In,Ga)Se2 (CIGS) solar cells. The 

diffusion length of CIGS thin film was estimated to be around 1μm [30]. Passivation of grain 

boundaries (GBs) by sodium incorporation in polycrystalline CIGS thin film is recognized to be 

one of the mechanisms for increasing the diffusion length. Similarly, it was observed that the 

diffusion length of MAPbI3 solar cell was significantly increased by doping MAPbI3 thin films 

with negligible amount of Cl. However, the mechanisms behind this improvement are unclear. 

Admittance spectroscopy (AS) has been successfully employed to study the defect density of CIGS 

and CZTS thin films [31, 32]. As mentioned earlier, polycrystalline CZTS thin film contains a 

large density of intrinsic defects which is 1.0×1016 cm-3, while that of CIGS is 1.3×1014 cm-3 [11]. 

Similar fundamental studies should be conducted on MAPbI3 solar cells.  

1.2 MOTIVATION 

Most of the reported CZTS TFSCs were fabricated either by highly expensive vacuum-based 

methods, or by highly toxic and flammable solvent-based methods. Fabrication process based on 

low-cost nonvacuum-based methods and environmentally friendly chemicals such water is needed. 

For MAPbI3 TFSCs, due to the high sensitivity of the organic charge transport layers to moisture 

and oxygen, the ultimate advancement in the device stability of perovskite solar cells has yet to be 
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realized. Device structure with inorganic charge transport layers should be developed to improve 

the stability of MAPbI3 TFSCs. 

        In addition, the research focus of CZTS and MAPbI3 TFSCs has been on development of new 

fabrication methods. The working mechanisms of the devices have been rarely addressed in 

literatures. Considering the solution-based method used to achieve more than 20% MAPbI3 solar 

cells [4], it would be interesting to investigate the device properties of MAPbI3, such as carrier 

lifetime and defect density. Not only fundamental studies on these fields are necessary to advance 

the perovskite PV technologies, but also the results can be utilized as a guidance to improve the 

performance of solution-processed CZTS solar cells. 

1.3 CHARACTERIZATION METHODS 

1.3.1 Open-Circuit Voltage Decay (OCVD) 

The open-circuit voltage decay (OCVD) method was developed to measure the minority carrier 

lifetime in solar cells [33]. This technique has certain advantages over frequency or steady-state-

based methods [33].  First, the lifetime as a function of VOC at high-voltage resolution can be 

obtained continuously. Second, this technique does not require special treatment on samples, 

which are kept undamaged during the measurement. Finally, the data processing is relatively 

simple. To obtain minority carrier lifetime, only one first derivative is required.  

        The solar cell is initially under a constant illumination generated from a sunlight simulator 

(Fig. 1.4). The VOC is continuously measured. Minority carriers are injected into the base region 

during the illumination. Upon the blockage of the illumination, the VOC starts to decay due to the 
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recombination of minority carriers. To theoretically explain the mechanism, a p+-n junction, where 

the conductivity of the p+-region is much greater than that of the n-region, is considered [34]. Let 

pn be the hole density present in the n-region under thermal equilibrium conditions, and Δp be the 

excess hole density injected due to the illumination in the n-region at the boundary of the junction 

transition region. The total hole density at the junction boundary will be 

𝑝 = 𝑝𝑛 + 𝛥𝑝.                                                                 (2.1) 

From the theory of the p-n junction, the hole density in the n-region at the junction boundary is 

given by  

𝑝 = 𝑝𝑛𝑒𝑞𝑉/𝑘𝑇,   (2.2) 

where V is the junction voltage. Combing 2.1 and 2.2, the junction voltage V can be obtained: 

𝑉 = (
𝑘𝑇

𝑞
)𝑙𝑛(1 + (

𝛥𝑝

𝑝𝑛
)).      (2.3) 

Assuming the excess carrier concentration, Δp, decays exponentially according to a single 

effective lifetime, τe, namely, 

𝛥𝑝 = 𝛥𝑝0𝑒−𝑡/𝜏𝑒, (2.4) 

where 𝛥𝑝0 is the excess carrier density at the specific time when the illumination is blocked. 

The junction voltage at t=0 (at the specific time when the illumination is blocked), V0, is 

𝑉0 = (
𝑘𝑇

𝑞
)𝑙𝑛(1 + (

𝛥𝑝0

𝑝𝑛
)). (2.5) 

Combing 2.3 and 2.2, and 2.5, the junction voltage, or the VOC, as a function of time, t, can 

be obtained from: 

𝑉𝑜𝑐 = (
𝑘𝑇

𝑞
)𝑙𝑛(1 + (𝑒𝑞𝑉0/𝑘𝑇 − 1)𝑒−𝑡/𝜏𝑒).   (2.6) 

Usually 𝑞𝑉0 ≫ 𝑘𝑇 Eq. 2.6 can be simplified to 

𝑉𝑜𝑐 = (
𝑘𝑇

𝑞
)𝑙𝑛(1 + 𝑒

𝑞𝑉0
𝑘𝑇

−𝑡/𝜏𝑒).    (2.7) 
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Assuming −𝑡/𝜏𝑒 is small, Eq. 2.7 can be further simplified to

𝑉𝑜𝑐 = (
𝑘𝑇

𝑞
)(

𝑞𝑉0

𝑘𝑇
− 𝑡/𝜏𝑒). (2.8) 

Therefore, the effective carrier lifetime can be obtained as 

𝜏𝑒 = −
𝑘𝑇

𝑞
×

1
𝑑𝑉𝑜𝑐

𝑑𝑡

.    (2.8) 

Figure 1.4 Illumination from a sunlight simulator and measured values of Voc at different time (adopted 

from [35]). 
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1.3.2 Admittance Spectroscopy (AS) 

Admittance Spectroscopy is a technique which measures the sample capacitance, C, as a function 

of applied AC frequency, f, and temperature, T. This technique can yield the thickness of the film, 

the position of the Fermi energy in the bulk, the energetic position of dominant defect bands that 

occur between the Fermi energy and mid-gap, and an estimate of the density of those states [36].  

        The diode capacitance is traditionally analyzed using the depletion approximation, which 

assumes that that the depletion region is precisely defined, ends abruptly, and is fully depleted of 

free carriers. In the depletion approximation, the depletion width will vary with applied bias, but 

the charge density ρ(x) within the depleted region remains constant (where x is measured through 

the depth of the film, with x=0 at the interface), while the bulk region remains neutral. Then, as 

long as the free carrier relaxation time is short compared with the applied ac frequency, the 

capacitance response originates from the depletion edge, giving  

𝐶 = 𝜀𝜀0𝐴/𝑊 ,                                                          (2.9) 

where W is the width of the depletion region, A is the area of the device, and ε is the semiconductor 

dielectric constant. 
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Figure 1.5 (a) Schematic of band bending with one deep trap state, (b) charge density variation through the 

depletion region due to the trap state, and (c) in response to a changing bias, dV/dt, changes in space charge density 

dρ/dt can occur at both xT and W, as indicated (adopted from [37]). 

        When energy level, ET, with a density of NT is present deeper in the band gap in the bulk, xT 

as shown in Fig. 1.5, the depletion approximation no longer necessarily holds true, and carrier 

capture and emission from these states must also be considered [37]. However, when the 
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temperature of the sample is too low, or the frequency applied is too high, there is no time for 

carriers in the bulk to drift in and out of the depletion edge in response to the applied AC voltage. 

Under this circumstance, the capacitance response will be that of the bulk dielectric,  

𝐶 = 𝜀𝜀0𝐴/ℎ ,                                                          (2.10) 

where h is the distance between the top and back contacts. Increasing the temperature, T, or 

decreasing the frequency, f, the capacitance will be changed to that shown in Eq. 2.9. A step will 

be observed in the C-f curves as shown in Fig. 1.6 (a). For electron traps, the electron emission 

rate, en is given by 

𝑒𝑛 = 𝛾𝜎𝑛𝑎𝑇2exp (−
𝐸𝑛𝑎

𝑘𝑇
) ,                                              (2.11)

where 𝜎𝑛𝑎 is the capture cross section for electrons, 𝐸𝑛𝑎 is the activation energy of the trap state 

referenced to the conduction band edge. The characteristic time of the capacitance measurement 

is defined by the angular frequency of the applied ac voltage, ω, such that states with emission 

rates 𝑒𝑛 > 𝜔 respond to the applied ac voltage. The cut-off energy, 𝐸𝑒 , can be derived from 

𝜔 = 𝛾𝜎𝑛𝑎𝑇2exp (−
𝐸𝑒

𝑘𝑇
) .                                               (2.12)

Only trap states with activation energy 𝐸𝑛𝑎 up to the cut-off energy 𝐸𝑒 will respond dynamically 

to the applied ac voltage. For a specific defect energy level with activation energy 𝐸𝑛𝑎, only 𝜔 and 

T are changeable in Eq. 2.12 which can be transformed into 

𝑙𝑛
𝜔

𝑇2 = ln (𝛾𝜎𝑛) − 𝐸𝑒
1

𝑘𝑇
 .                                                   (2.13)

By taking first derivative of Eq. 2.13, we can get 

𝑑𝜔

𝑑𝐸𝑒
= −

𝜔

𝑘𝑇
,   (2.14) 

𝑑𝐶

𝑑𝐸𝑒
=

𝑑𝜔

𝑑𝐸𝑒
×

𝑑𝐶

𝑑𝜔
.   (2.15) 

Combining Eqs. 2.14 and 2.15, we get 
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𝑑𝐶

𝑑𝐸𝑒
= −

𝜔

𝑘𝑇

𝑑𝐶

𝑑𝜔
 .   (2.16) 

Figure 1.6 (a) Raw data of Admittance Spectroscopy for a CIGS device, (b) The Admittance Spectroscopy 

data after applying Eq. (2.11), showing the characteristic (peak) frequencies at each temperature, (c) Arrhenius plot 

of each peak (circles) and the linear fitting (line), (d) DLCP data (circles) in comparison of admittance spectroscopy 

data (-fdC/df) data (solid line) (adopted from [37]). 
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        By applying Eq. 2.16 to the admittance spectroscopy data shown in Fig. 2.3 (a), the 

characteristic frequencies at each temperature can be obtained as shown in Fig. 1.6 (b). The (𝑙𝑛
𝜔

𝑇2,

1

kT
) data points from each peak can then be plotted on an Arrhenius plot as shown in Fig. 1.6 (c). 

Using Eq. 2.13 to linearly fit the data, the slope then yields the activation energy Ena, while the 

intercept can be used to derive the capture cross section σna. The trap density, Nt, versus Ee can 

be obtained by rescaling the ω axis to Ee by the following equation: 

𝑁𝑡 = −
𝑉𝑏𝑖

𝑞𝑊

𝑑𝐶

𝑑𝜔

𝜔

𝑘𝑇
 , (2.17) 

where Vbi is the built-in voltage, W is the thickness of the intrinsic layer. 

1.3.3 Temperature-Dependent Open-Circuit Voltage 

As introduced earlier, both CZTS and MAPbI3 thin films are polycrystalline. The corresponding 

PV devices are considered heterojuction solar cells since the p-n junctions in these devices form 

between two different semiconductors. One diode model has been developed to describe and 

analyze the J-V behaviors of these thin film solar cells [38, 39].  

        The forward current density of the heterojunction under illumination, J, is described by 

𝐽 = 𝐽0 exp (
𝑞𝑉

𝐴𝑘𝑇
) − 𝐽𝑝ℎ ,                                                  (2.18)

where 𝐽0 is the saturation current density of the diode, 𝐽𝑝ℎ is the photocurrent, 𝑉 is the applied 

voltage, 𝐴 is the ideality factor, and 
𝑘𝑇

𝑞
 is the thermal voltage, a constant of 26 meV. 𝐽0 is caused

by the recombination process, which is highly temperature dependent. Therefore, 𝐽0  can be 

described by 

𝐽0 = 𝐽00exp (
−𝐸𝑎

𝐴𝑘𝑇
) ,  (2.19) 
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where 𝐽00  is the temperature dependent prefactor, while 𝐸𝑎  is the activation energy of the

recombination. 

        By combining Eq. 2.18 and 2.19, we get 

𝐽 = 𝐽00exp (
−𝐸𝑎

𝐴𝑘𝑇
) exp (

𝑞𝑉

𝐴𝑘𝑇
) − 𝐽𝑝ℎ .                                      (2.20)

When the illuminated solar cell is short-circuited, the forward current density 𝐽 is named as short-

circuit current density, 𝐽𝑠𝑐, which is approximately equal to 𝐽𝑝ℎ: 

𝐽𝑠𝑐 ≈ 𝐽𝑝ℎ .                                                          (2.21) 

When the illuminated solar cell is open-circuited, the forward current density 𝐽 is zero, while the 

voltage 𝑉 is named as open-circuit voltage, 𝑉𝑜𝑐, which can be expressed as: 

𝑉𝑜𝑐 =
𝐴𝑘𝑇

𝑞
ln (

𝐽𝑝ℎ

𝐽0
) .                                                    (2.22)

        By combining Eq. 2.21 and 2.22, we get 

𝑉𝑜𝑐 ≈
𝐴𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐

𝐽0
) .                                                     (2.23)

        By combining Eq. 2.19 and 2.23, we get 

𝑉𝑜𝑐 ≈
𝐸𝑎

𝑞
−

𝐴𝑘𝑇

𝑞
ln (

𝐽00

𝐽𝑠𝑐
) .                                                  (2.24)

Assuming A, 𝐽𝑠𝑐, and 𝐽00 are independent of the temperature T, a plot of  𝑉𝑜𝑐 versus T should yield 

a straight line and the extrapolation to T=0 K gives the activation energy Ea [40]. By comparing 

the value of Ea with the bandgap energy of the absorber layer in the solar cell, Eg, the dominant 

recombination process can be figured out. If the value of Ea equals to Eg, the recombination in the 

bulk dominates. If the value of Ea is less than Eg, the recombination in the interface dominates 

[40]. 
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Figure 1.7 Temperature dependence of the open circuit voltage (VOC) and its linear extrapolation line to 0 

K for the 15.2% efficient CIGS device (dashed line) and the 10.1% efficient CZTS device (solid line), which helps 

to elucidate the dominant recombination process in the two types of devices [40]. 

1.3.4 Kelvin Probe Force Microscopy (KPFM) 

KPFM is an advanced mode of atomic force microscopy (AFM) that can simultaneously measure 

the local topography and SP distribution of samples with a lateral resolution in nano scales. Its 

applications are widely found in semiconductor devices especially in solar cells [41-44]. In the 

characterization of cross-sectional surfaces of solar cells, one of the most commonly used 

techniques is to bias the solar cell with different DC voltages [44, 45]. As pointed out by Chen et 

al., SP distribution within a cell under illumination in an open-circuit condition is equivalent to 



20 

the SP distribution within the cell when it is measured in dark while being forward biased at its 

open circuit voltage [45]. This indicates that, by biasing a solar cell with different voltages in dark, 

we can study the SP distribution of the cell at its operating condition. In this work, a single-path 

scan KFPM, Agilent SPM 5500, was used in the characterization of planar perovskite solar cells. 

All KPFM measurements were carried out in dark ambient condition with different DC biases 

provide by a power supply. Shown in Figure 1 is the experimental set up and the working principle 

of KPFM. Cathodes of planar perovskite solar cells were connected to the common ground of 

KPFM and power supply while various DC bias voltages were applied to the anodes of perovskite 

solar cells. In operation, KPFM system records the DC voltages biased to its conductive probe at 

the point when the electrostatic force between probe and sample is nullified at the electrical 

frequency. The corresponding DC values can then be further processed to acquire SP distribution 

of the sample [46]. 

Figure 1.8 Experimental set up and working principle of KPFM (amplitude modulation).
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EFFECTS OF SELENIUM VAPOR ANNEALING ON CZTS SOLAR CELLS 

Kesterite Cu2ZnSn(S,Se)4, or CZTSSe, is one of the most promising materials for high-efficiency, 

low-cost thin film solar cells. Efficiency of more than 12% has been reported for CZTSSe solar 

cell using a hydrazine-based solution process [47]. Efficiency greater than 9% was also achieved 

with CZTSSe solar cells using a coevaporation method [48]. Among various deposition techniques 

for CZTSSe thin films, solution-based processes have attracted more attention than vacuum-based 

methods because of their potential low cost. Significant progress has been achieved on CZTSSe 

thin film solar cells using solution-based methods [49-53]. 

        Yang et al. reported a CZTSSe solar cell, fabricated from a spin-coated hydrazine-based sol 

gel, with an efficiency of 8.08% [53]. Here, a sol gel containing Cu2S, SnS2, Zn, and S was 

prepared by mixing each constituent dissolved in hydrazine into final ratios of Zn/Sn = 1.2 and 

Cu/(Zn + Sn) = 0.8. Additionally, Cao et al. reported a CZTSSe solar cell fabricated from a spin-

coated CZTSSe precursor ink, containing nanoparticles of Cu7S4, ZnS, and SnS dispersed in 

hexanethiol [54]. The device showed an efficiency of 8.5%. Ki et al. reported an efficiency of 4.1% 

from a CZTSSe solar cell fabricated using CZTSSe precursor solution [55]. The clear, light yellow 

CZTSSe precursor solution contained Cu(CH3COO)2·H2O, ZnCl2, SnCl2·2H2O, and thiourea 

dissolved in dimethyl sulfoxide. Most of the reported solution-based methods rely on non-aqueous 

solvents such as hydrazine and organic solvents. In the case of hydrazine, toxicity and flammability 
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necessitates careful handling and extreme caution. For organic solvents, carbon is often left in the 

CZTSSe thin film after annealing, a problem that degrades the solar cell’s performance. 

We have recently developed a novel water-based, solution-processed method for Cu2ZnSnS4 

(CZTS) thin film solar cells [56-58]. In this method, commercially available metal chlorides and 

thiourea are dissolved in water to create a CZTS precursor solution which can be easily deposited 

on substrates by spin-coating. The efficiency of the water-based, solution-processed CZTS solar 

cell was low but promising, considering its environmental safety and potential low cost. The 

performance of the water-based, solution-processed CZTS solar cell has been significantly 

improved by introducing Se vapor into the annealing chamber [59]. 

        To investigate the mechanisms behind the significant improvement brought by the 

introduction of Se vapor, CZTSSe thin films and solar cells were obtained from CZTS precursor 

thin films. These were deposited by a water-based method and annealed with Se vapor for varied 

durations. The morphological, structural, compositional, and optical properties of CZTSSe thin 

films were examined. The correlation of CZTSSe solar cell performance with different processing 

conditions was also investigated. 

2.1 EXPERIMENTAL PROCEDURES 

2.1.1 Materials 

Copper(II) chloride dihydrate (99.99%), zinc chloride (99.99%), tin(II) chloride dihydrate 

(99.99%), thiourea (99.0%), selenium powder (99.99%), and ethanol (99.5%) were purchased 
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from Sigma Aldrich and used directly without further purification. Deionized water (DI-water) (16 

MΩ) was produced in an in-house system. 

2.1.2 CZTS Precursor Solution Preparation 

The coating solution was prepared by dissolving copper(II) chloride dihydrate (1.12 mmol), zinc 

chloride (0.75 mmol), tin(II) chloride dihydrate (0.75 mmol), and thiourea (6 mmol) into a mixture 

solution containing DI-water (2 ml) and ethanol (1ml) at room temperature. A clear solution was 

obtained after stirring at room temperature for 20 min.  

2.1.3 CZTS Precursor Thin Film Preparation 

The CZTS precursor solution was spin-coated on low alkaline glass substrates and Mo-coated low 

alkaline glass substrates. The scanning electron microscopy (SEM) images, optical properties, and 

Raman spectra of CZTS thin films were obtained from the samples deposited on low alkaline glass 

substrates. X-ray diffraction (XRD) patterns and device fabrication were conducted using the 

samples deposited on Mo-coated low alkaline glass substrates. Drying at 110 ℃ in air evaporated 

the solvents in the as-coated films. Pre-annealing at 250 ℃ in a N2-filled tube furnace decomposed 

CZTS precursors for generating metal sulfides (copper sulfide, zinc sulfide, and tin sulfide) 

nanocrystals. The spin-coating and drying processes as well as pre-annealing were repeated several 

times to deposit CZTS thin films with designated thickness. 
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2.1.4 CZTS Thin Film Preparation 

The pre-annealed CZTS precursor thin films were placed in a tube furnace. A ceramic box 

containing Se powder was placed in a separate tube furnace to generate Se vapor; this vapor was 

simultaneously transported by N2 flow to the annealing tube furnace (Fig. 2.1(a)). The temperature 

of the tube furnace was raised to 550 ℃ to grow CZTS polycrystalline thin films (Fig. 2.1(b)). The 

growth was allowed for 30 min as determined by our optimization tests. The amounts of Se 

incorporated into the CZTS thin films were controlled by changing the time of introducing Se 

vapor (Sample-0: no Se vapor was applied, Sample-10: Se vapor was applied for 10 min, Sample-

20: Se vapor was applied for 20 min, Sample-30: Se vapor was applied for 30 min) (Fig. 2.1(c)). 

After cooling under the protection of N2, CZTS samples were immediately transferred to a 

vacuum-connected dessicator for later use. 



25 

Figure 2.1 Experimental setup and temperature profile of annealing. 



26 

2.1.5 Device Fabrication 

The CZTS devices were completed using a similar structure as conventional CIGS solar cells [60]. 

CdS, intrinsic ZnO (i-ZnO), indium-doped tin oxide (ITO), and Ag electrodes were sequentially 

deposited on CZTS thin films. CdS was coated on the CZTS thin film by chemical bath deposition 

(CBD). The CZTS samples were vertically inserted into a beaker containing aqueous solution of 

CdI2 (1.4 mM), CS(NH2)2 (0.14 M), and NH4OH (1 M). The solution was heated to 60 ℃, and the 

reaction was kept for 12 min. Samples were taken out and cleaned in DI-water. The coating 

procedures needed to be repeated once to grow CdS thin film with a total thickness of 50 nm. RF 

sputtering was then used to deposit 60 nm of i-ZnO and 200 nm of ITO. Electron beam evaporation 

was applied to deposit the Ag electrode with a thickness of 200 nm through a shadow mask. Four 

CZTS solar cells on each sample were fabricated after mechanical scribing. 

2.2 RESULTS AND ANALYSIS 

The growth mechanisms of CZTS thin films by the water-based, solution-processed method 

employed in this paper are illustrated in Fig. 2.2 and summarized below. As demonstrated in Fig. 

2.2 (a), ions of Cu2+ are reduced to Cu+ in the solution of thiourea (tu) dissolved in water [61]. Ions 

of Cu+ then react with thiourea to form [Cu2(tu)6]Cl2·2H2O complex [62]. Similarly, ions of Zn2+ 

and Sn2+ react with thiourea to form ZnCl2(tu)2 complex and Sn2(Cl)4(tu)5·2H2O complex, 

respectively [63]. These complexes are heated to 250 ℃ under the protection of N2 and decompose 
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into volatile products such as COS, CS2, NH2CN, HNCS, NH3, HCN, HCl, SO2, and metal sulfide 

nanoparticles. These volatile products are discharged from the samples with the flow of N2. Lastly, 

samples mainly containing copper sulfide, zinc sulfide, and tin sulfide nanoparticles are annealed 

at 550 ℃ in N2. These metal sulfide nanoparticles react to grow polycrystalline CZTS thin films 

in the presence of Se vapor [64]. 

Figure 2.2 Growth mechanisms of CZTS thin films. 
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Table 2.1 Chemical composition of the final CZTS thin film. 

Sample Cu/(Zn+Sn) Zn/Sn Se/(S+Se) 

Pre-annealed 0.83 1.12 0 

Sample-0 0.88 1.24 0 

Sample-10 0.84 1.30 0.08 

Sample-20 0.90 1.27 0.19 

Sample-30 0.81 1.28 0.25 

        For the study on the influence of Se vapor feeding, four CZTS precursor thin film samples 

(pre-annealed) were prepared. The compositions of the pre-annealed and annealed samples were 

analyzed using EDX and summarized in Table 2.1. The elemental ratios in the pre-annealed sample 

were carefully controlled by changing the concentrations of raw materials in the CZTS precursor 

solution. Subsequently, the ratios of Cu/(Zn+Sn) and Zn/Sn were comparable to those reported in 

highly performed CZTS solar cells [47, 48]. All annealed samples were copper-poor, zinc-rich, 

which is beneficial to compress the formation of binary phases such as Cu2S, and to generate self-

doped p-type conductivity in CZTS thin films [65]. The ratios of Cu/(Zn+Sn) and Zn/Sn were 

slightly increased compared to those of pre-annealed sample due to the loss of Sn. The depletion 

of Sn was not severe because the annealing process was conducted in atmospheric pressure, which 

helps to minimize the loss of Sn as suggested in literatures [66, 67]. The ratio of Se/(Se+S) was 

increased by prolonging the Se vapor time during annealing, indicating more atoms of S were 

replaced by those of Se in CZTS crystals grown with longer Se vapor introducing time. A generally 

increasing trend in the loss of Sn was observed when the Se vapor introducing duration was 

increased. This can be attributed to the increase of Se concentration as suggested by P. Salomé et 

al. who reported that more Se incorporation into CZTS thin films promotes formation of Se 

compounds and therefore promotes the evaporation of Sn over Zn [66].  
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Figure 2.3 Surface (a~e) and cross section (f~j) SEM images of pre-annealed and annealed CZTS thin 

films (a & f, Pre-annealed; b & g, Sample-0; c & h, Sample-10; d & i, Sample-20; and e & j, Sample-30) (the scale 

bar is 1 μm). 
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        To suppress the loss of Sn, it was suggested that the deposition of CZTS thin films should be 

conducted at temperatures below 550 °C and a following annealing step should be applied in an 

inert gas atmosphere to improve crystal quality [68]. Also, introducing vapor of SnS2 into the 

annealing chamber was proven to be effective to reduce the loss of Sn [69]. However, it remains 

unresolved to what extent the loss of Sn could be endured without detrimental effects on the 

performance of CZTS solar cells, since CZTS solar cells with promising efficiency have been 

successfully fabricated with a large variation of composition [70]. 

        The SEM surface and cross section images of pre-annealed CZTS films are shown in Fig. 2.3 

(a) and (f). The pre-annealed sample consisted of a mixture of nanoparticles of metal sulfides

(CuxS, ZnxS, and SnxS), which makes it extremely difficult to delineate the grain boundaries 

because of the relatively low resolution of the SEM system. As seen in Fig. 2.3 (b) and (g), larger 

CZTS crystals were produced after annealing at high temperatures. Cracks and voids are observed 

in the pure CZTS thin films, common features in solution-based CZTS thin films due to volume 

contraction caused by evaporation of raw materials [71, 72]. The thickness of the Sample-0 is less 

than 1µm, while the pre-annealed sample has a thickness greater than 1µm, indicating a significant 

amount of material was evaporated during annealing. Fewer cracks and voids were formed in the 

samples annealed with Se vapor as observed in the SEM surface and cross section images of Se-

incorporated CZTS films which are shown in Fig. 2.3 (c)~(e) and Fig. 2.3 (h)~(j), respectively. 

Larger crystals and more compact CZTS thin films were obtained when the duration of Se feeding 

process was extended. Two mechanisms contribute to this improvement of morphology. First, the 

volume contraction caused by the loss of raw materials during annealing is possibly alleviated by 

the incorporation of Se into the CZTS thin film. Some S atoms were substituted by larger Se atoms. 

The unit cell of the crystal was expanded after selenization, which helps shrink the voids 
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commonly encountered in solution-based deposition methods. Another explanation is that Se is a 

better vapor-transport agent than S for this material system, which might have a more dramatic 

effect on grain growth than the expansion of the unit cell. This hypothesis is supported by the 

results reported by S. Riha et al. who deposited CZTS thin films by annealing pure CZTS 

nanocrystals and Se-rich CZTS nanocrystals coated on substrates [73]. It was found that no 

transport was observed during annealing for pure CZTS nanocrystal films; however, in some cases 

of Se-rich CZTS films, material was completely transported off the substrate into the quartz tube. 

These results indicate that introducing Se vapor into the annealing chamber helps enhance the 

grain growth of CZTS thin films. 
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Figure 2.4 XRD patterns of CZTS thin films. The standard XRD patterns for CZTSSe and CZTS are 

shown above. 

        The XRD patterns of the samples together with the standard pattern of CZTSe (JCPDS 52-

0868) and CZTS (JCPDS 26-0575) are presented in Fig. 2.4. For sample-0, the diffraction peaks 

can be indexed to those of kesterite CZTS which has a tetragonal structure with three major peaks 

of (112), (204), and (312). The diffraction peaks of the samples annealed with Se vapor present 

shift to lower values of 2θ and move closer to those of CZTSe. As the Se vapor introducing 

duration was extended, more S atoms (1.84 Å) were replaced by larger Se atoms (1.98 Å), leading 

to an increase in the lattice constant.  
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Figure 2.5 Raman spectra of pre-annealed and annealed CZTSSe thin films. 

        The Raman scattering spectra of pre-annealed samples and samples annealed with Se vapor 

are plotted in Fig. 2.5. Pre-annealed samples exhibited a prominent peak at 318cm-1 that was 

assigned to SnS2. This pattern is highly similar to what was observed for a multilayer of 

Cu2S/SnS2/ZnS deposited using atomic layer deposition, indicating that the pre-annealed sample 

mainly consists of a mixture of nanoparticles of metal sulfides as observed in the SEM images 

[74]. After annealing in N2 at 550 °C for 30 min without Se vapor, the main peak shifted to 337 

cm-1, and another peak at 287 cm-1 was also observed. However, peaks of some secondary phases
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such as SnxS and CuxS were also observed as shown in Fig. 4.4 [75, 76]. A peak at 470 cm-1 in 

Sample-20 can be assigned to CuxS [77]. This is associated with the fact that Sample-20 had the 

highest ratio of Cu/(Zn+Sn); a high concentration of Cu resulted in phase precipitation in the form 

of CuxS. For the annealed samples with Se vapor, two main peaks originated from CZTS, shifted 

towards each other and following the same trend as reported for CZTS with an intermediate S/Se 

ratio [78]. 

Secondary phases in CZTS thin films are detrimental to the performance of CZTS solar cells. 

Firstly, secondary phases such as ZnS have a much larger band gap than CZTS. The large 

difference in band gap will lead to a mismatch in energy levels of the valence band and conduction 

band. Internal barriers between secondary phases and CZTS will be formed, which is expected to 

degrade the performance of the PV device. Secondly, the density of grain boundaries will be 

increased due to the segregation of secondary phases from the CZTS phase in the polycrystalline 

thin film absorber layer. The recombination occurring at the grain boundaries is consequently 

intensified, leading to degraded PV device parameters, such as short-circuit current density (JSC) 

and fill factor (FF). Lastly, the presence of CuxS in CZTS thin films will facilitate the formation 

of shorting paths in the absorber layer between the front contact and the back contact due to the 

commonly observed high conductivity of CuxS [79]. As a result, the JSC will be significantly 

decreased. Strategies have been proposed to eliminate secondary phases in CZTS thin films. The 

first proposal is to strictly control the CZTS thin film composition. One study conducted on the 

phase diagram of the Cu2S–ZnS–SnS2 system by I. Olekseyuk et al. revealed that CZTS only 

existed in this system as a single phase over a very narrow range of composition varying no more 

than ±1.5 % absolute from the stoichiometric values for each element [80]. Any large deviation 

from the stoichiometric values will result in formation of secondary phases. This gives an 
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explanation to why the secondary phases were widely detected in CZTS thin films grown by 

different methods. Since the elimination of secondary phases during growth of CZTS thin film is 

extremely difficult, chemical routes have been developed to remove secondary phases after the 

deposition of CZTS thin films. M. Bar et al. reported that the surface composition of CZTS thin 

films was significantly altered after KCN etching was applied [79]. This alteration in composition 

mainly comes from a preferred etching of Cu and, to a lesser degree, Sn. A less toxic chemical 

approach based on HCl was developed to selectively etch Zn-rich secondary phases on the surface 

of CZTS thin films [81]. This etching process demonstrated a significant impact on the 

performance of the solar cells by increasing the JSC and decreasing the series resistance, RS. Similar 

approaches are being explored for the CZTS thin films deposited using the same process as 

reported in this work. Results will be reported elsewhere. 
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Figure 2.6 (ahν)2 of the annealed CZTS thin films as a function of hν. 

The bandgaps were determined by linearly extrapolating (ahν)2 versus photon energy (hν) 

(Fig. 2.6). Sample-0 had a bandgap of 1.47 eV, a value close to those reported in literatures 

concerning pure CZTS thin films [82]. For three Se-included CZTS samples, the band gaps were 

1.42, 1.34, and 1.28eV, respectively, showing a decreasing trend as the Se vapor introducing time 

was lengthened. The narrowing of the bandgap partly originated from the enhancement of crystal 

size when more Se atoms were incorporated into the CZTS thin film to facilitate the growth of 

crystal. Nevertheless, to a large extent, the decrease of the bandgap was a result of the unit cell 

expansion due to the substitution of S atoms in CZTS by Se atoms. Although no definite conclusion 
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has been made in literature about the effects of Se inclusion on the optical bandgap of CZTS thin 

films and nanoparticles as presented earlier, further increasing the concentration of Se is expected 

to reduce the bandgap of CZTS thin film. A value of ~1.5 eV has been reported on the bandgap of 

pure CZTS thin films deposited by different methods. While discrepancies on the bandgap of pure 

CZTSe thin films exist in literature, a value of ~1.0 eV has been widely recognized on the bandgap 

of pure CZTSe thin films deposited by different methods [82, 83]. It was suggested that the 

existence of some secondary phases such as ZnSe were the possible reason for the difference in 

overall bandgap of CZTSe thin films. A simple model to determine the relationship between the 

ratio of Se/(Se+S) and the bandgap of CZTS nanoparticle was adopted by H. Wei et al. from the 

model developed by M. Bär et al. to derive the optical bandgap for penternary 

Cu(In1−xGax)(SySe1−y)2 (CIGSSe) alloys from its Ga/(Ga+In) ratio as well as from its S/(S+S) ratio 

[84, 85]. The model is extended to determine the optical bandgaps for penternary CZTSSe alloys, 

𝐸𝑔
𝐶𝑍𝑇𝑆𝑆𝑒, from its Se/(Se+S) ratio using the linear approximation between the bandgap of the pure

CZTS, 𝐸𝑔
𝐶𝑍𝑇𝑆, and the bandgap of the pure CZTSe, 𝐸𝑔

𝐶𝑍𝑇𝑆𝑒:

𝐸𝑔
𝐶𝑍𝑇𝑆𝑆𝑒(𝑥) = (1 − 𝑥)𝐸𝑔

𝐶𝑍𝑇𝑆 + 𝑥𝐸𝑔
𝐶𝑍𝑇𝑆𝑒 − 𝑏𝑥(1 − 𝑥),                                  (4.1)

which is corrected by the alloy specific “optical bowing constant” b. Assumption of a band gap 

value of 1.5eV for CZTS and 1.0eV for CZTSe was applied in the calculation. The bandgaps 

derived from the transmittance data were used to calculate the constant b which varied from 0.4 to 

0.5. Therefore, different values of b (0.4 and 0.5) were applied in the calculation of the bandgaps 

for CZTS with a Se/(Se+S) ratio changing from 0 to 1. 
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Figure 2.7 Experimental and calculated band gap energy versus Se/(S + Se) ratio. 

        As shown in Fig. 2.7, the bandgap of CZTS thin films decreases with the increasing of Se 

concentration nonlinearly. High efficiencies have been obtained from solution-based CZTS thin 

film absorber layers where the bandgap was determined to be around 1.1 eV from the external 

quantum efficiency (EQE) data [86]. This value indicates a high level of substitution of S by Se 

during annealing. The authors reported that around 90% of S atoms were replaced by Se atoms, 

while a substitution level of 60% was derived from the model based on our results. Regardless of 

which is more accurate, compared to the highest substitution level of 25% obtained in Sample-30, 

the ratio of Se/(Se+S) in the reported solution-based high-performance CZTS solar cells was 
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undoubtedly higher, indicating that further incorporation of Se can be achieved by adjusting the 

annealing process. The bandgap of CZTS thin films can be conveniently tuned, and the growth of 

CZTS crystals will be enhanced, which is expected to improve the performance of CZTS thin film 

solar cells. 

Figure 2.8 I-V parameters of CZTSSe solar cells. 
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Table 2.2 Averaged I-V parameters of CZTSSe solar cells. 

Sample VOC (V) JSC (mA/cm2) FF (%) η (%) 

Sample-0 0.53±0.03 6.58±1.80 50.51±6.56 1.75±0.51 

Sample-10 0.53±0.02 10.13±1.69 49.30±9.79 2.64±0.72 

Sample-20 0.52±0.02 15.46±0.16 54.23±3.80 4.37±0.41 

Sample-30 0.52±0.01 20.07±0.59 53.99±4.98 5.57±0.44 

        Fig. 2.8 displays the variation of the PV parameters of completed devices, corresponding to 

CZTS absorber layers grown under Se vapor with varied durations. The averaged PV parameters 

of CZTS solar cells are also summarized in Table 2.2. While general nonuniformity of open-circuit 

voltages (VOC) existed in all samples, the highest VOC of each sample decreased as the Se vapor 

feeding time was increased, which can be attributed to the decreasing trend in the bandgap. The 

deficits in VOC (defined as difference between the optical band gap and the highest VOC for each 

sample) for the four samples are 0.91, 0.88, 0.80, and 0.76 V, respectively.  These values are much 

higher than the 0.5 V commonly observed for CIGS solar cells, indicating the recombination at 

the interfaces such as CZTS/CdS and Mo/CZTS is possibly dominant [77]. Modification of the 

interfaces between the active layer with the buffer layer and the back metal electrode is expected 

to increase the VOC. The VOC obtained from the four samples were higher than those reported on 

CZTS thin film solar cells. This can be mainly attributed to the comparably lower S substitution 

levels obtained in the Se vapor feeding process, leading to a higher bandgap, a major impact factor 

for VOC in inorganic solar cells. Further extending the Se vapor feeding duration is expected to 

decrease the Voc. 

        Significant enhancement was achieved on JSC of CZTS solar cells with longer Se vapor 

feeding duration. The JSC was increased from around 8 mA/cm2 in CZTS solar cells fabricated 

without Se vapor present to more than 20 mA/cm2 in Sample-30, which was annealed under Se 
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vapor for 30 min. Although the red shift of the onset wavelength and the higher absorption 

coefficients seen in the absorbance of Sample-30 contributed to the increase of JSC, the 

improvement on the optical properties alone is not likely to significantly boost the JSC. The 

enhancement in crystal size and the passivation of the grain boundaries by Se-rich surfaces are 

most likely the two critical driving forces for JSC.  The former helps improve JSC in a way that the 

recombination is reduced due to lower the density of grain boundaries associated with large grain 

domains. The latter leads to a lower bandgap surface layer where the potential barriers are removed 

for grain-grain carrier transport. Similar to the nonuniformity in VOC, the FF was also widely 

distributed. This was partly caused by the nonuniformity of CdS deposited on CZTS thin film. The 

size of the samples used in this work was 1''×1'', while the volume of the solution where CdS was 

deposited was 150 ml. Upgrading of the CBD setup is expected to fabricate CZTS solar cells with 

more uniform PV parameters. The highest FF of each sample increased with greater Se introducing 

times. This is partly related to the series and shunting resistances since the electrical properties of 

the CZTS thin films are highly dependent on the ratio of Se/(Se+S). Mainly due to the significant 

improvement of JSC, the CZTS solar cells obtained from the CZTS thin films annealed with Se 

vapor showed remarkably improved efficiencies.  
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Figure 2.9 J-V curves of the solar cells with the highest efficiency in each sample. 

        The J-V curves of the highest efficiency obtained from each sample are shown in Fig. 2.9. 

The best CZTS solar cell, Sample-30, exhibited an efficiency (η) of 6.16% with a VOC of 0.50V, a 

JSC of 20.06mA/cm2, and a FF of 61.37%. Compared to the pure CZTS solar cells without Se 

inclusion, the performance of the CZTS thin film solar cell is impressive, signifying that the 

selenization step is necessary to achieve high performance for solution-based CZTS solar cells. 

However, compared to other solution-based CZTS solar cells such as IBM's hybrid slurry method 

(11.1%) and Dupont's nanocrystal dispersion (8.5%), there is much room to improve the efficiency 
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[54, 86]. Three more issues could be readily addressed to further improve the efficiency of the 

water-based, solution-processed CZTS solar cell. Firstly, diffusion of sodium from soda lime glass 

was also found to profoundly affect grain size, crystal texture, and conductivity of CZTS thin films. 

Replacing the low alkaline glass substrates used in this work with soda lime glass substrates may 

further improve the performance of CZTS solar cells [87]. Secondly, the layers of CdS and ZnO  

were prepared using process parameters optimized for CIGS solar cells [60]. Optimization of these 

layers will possibly further improve the performance of CZTS solar cells. Lastly, while further 

extending the Se vapor feeding duration could enhance the incorporation of Se into CZTS thin 

films and presumably lead to higher efficiency, it is difficult to be realized at this stage because 

the total annealing time of 30 min is the presently optimized. This must be done in conjunction 

with the modification of other process parameters, such as lowering the annealing temperature and 

increasing the Se vapor pressure. Corresponding experiments are under way and expected to 

fabricate CZTS thin film solar cells with higher efficiencies.
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EFFECTS OF CHLORINE DOPING ON MAPBI3 SOLAR CELL 

Methylammonium lead halide perovskites have emerged as promising photovoltaic (PV) materials 

because of their excellent optical properties such as high absorption coefficients for a broad range 

of sunlight absorption. Also, the abundance of raw materials and the ability of being solution 

processed make methylammonium lead halide perovskites more suitable for low cost PV 

technologies. High power conversion efficiencies of more than 15% have been reported from both 

mesoporous structure devices and planar structure devices. The planar structure devices are more 

advantageous than the mesoporous structure devices because high temperature annealing 

necessary for mesorporous structure is not required for planar structure devices. Thus, low 

temperature processing, which is suitable for plastic solar cells, can be applied to fabricate 

methylammonium lead halide perovskite solar cells. Conversion efficiency over10% has been 

reported for methylammonium lead halide perovskite solar cell fabricated on plastic substrates. 

So far, two processes have been developed to fabricate planar perovskite solar cells. The 

first process is called one-step process where metal halide is mixed with methylammonium iodide 

and the as-synthesized methylammonium lead halide perovskite is spin-coated on substrates. The 

other process is called two-step process where metal halide is spin-coated on substrates and 

methylammonium lead halide perovskite is formed by inserting the substrates into 

methylammonium iodide solution. In one-step process, two metal halides, lead iodide (PbI2) and 

lead chloride (PbCl2), have been commonly used to synthesize methylammonium lead halide 
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perovskites which are denoted as MAPbI3 and MAPb(I,Cl)3, respectively, with MAPb(I,Cl)3 solar 

cells leading the performance due to its long diffusion length of carriers. Nevertheless, it is 

extremely difficult to control the morphology of perovskite thin films because it is significantly 

affected by the environment of one-step process. In two-step process, the morphology of 

perovskite thin film is very uniform. However, PbI2 has been exclusively used because the 

solubility of PbCl2 is extremely low. Therefore, the advantages associated with Cl incorporation 

cannot be taken. 

3.1 EXPERIMENTAL PROCEDURES 

3.1.1 Synthesis of CH3NH3I (MAI) and CH3NH3Cl (MACl) 

MAI and MACl were synthesized according to a reported procedure [88]. MAI was synthesized 

by reacting 30 mL of methylamine (40 % in methanol, TCI) and 32.3 mL of hydroiodic acid (57 

wt% in water, Aldrich) in an ice bath for 2 h with stirring. The precipitate was collected through 

removing the solvents by a rotary evaporator. The as-obtained product was washed three times 

with diethyl ether, and then recrystallized from a mixed solvent of diethyl ether and ethanol. After 

filtration, the final MAI was collected and dried at 60 °C in a vacuum oven for 24 h. MACl was 

synthesized by reacting 30 mL of methylamine (40 % in methanol, TCI) and 20.4 mL of 

hydrochloric acid (37 wt% in water, Aldrich) in an ice bath for 2 h with stirring. The precipitation 

and collection of MACl was carried out using as same procedures as used for MAI.  
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3.1.2 Fabrication of MAPbI3 Solar Cells 

Planar perovskite solar cells were fabricated in air with a structure of FTO/TiO2/perovskite/spiro-

MeOTAD/Au. A modified one-step process capable of incorporating Cl is used to grow the 

perovskite thin films [89]. The experimental procedures for this process are briefly shown in Fig. 

3.2. First, MAI (159mg), PbI2(461mg), DMSO(78mg), and DMF(600mg) were mixed at room 

temperature and stirred for 1h.  The completely dissolved solution was spin-coated on the TiO2 

layer at 4000 rpm for 30 s. 8 s after the start of the rotation, 0.5 ml of diethyl ether was quickly 

dropped on the rotating substrate in 1 sec before the surface changed to be turbid caused by rapid 

vaporization of DMF. The transparent film was heated at 100°C on hotplate in air for 10 min to 

obtain a dense MAPbI3 film. These samples were denoted as MAPbI3. To deposit Cl-doped 

MAPbI3 film, 8mg of MACl was added to the precursor solution. These samples were named as 

MAPb(I,Cl)3. A layer of electron blocking material based on spiro-OMeTAD (80 mg spiro-

OMeTAD, 29 μL tBP and 18 μL Li-TFSI solution (520 mg Li-TFSI in 1 mL acetonitrile) all 

dissolved in 1 mL chlorobenzene) was deposited on perovskite thin film by spin-coating at 4000 

RPM for 30 s. Please note all the processes mentioned above were carried out in air. Finally, a 

gold layer with a thickness of 100 nm was deposited by electron beam evaporation. A mask was 

used during the gold deposition to define the active area of perovskite solar cells. The active area 

of each cell was 4 mm2. 
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Figure 3.1 Schematic growth process for perovskite thin films using mixed halide sources and method 

adopted from [89]. 

3.1.3 Characterization 

A UV-visible spectrometer (Agilent 8453) was used to obtain the transmittance (T) of CZTS and 

MAPbI3 thin films. SEM surface and cross section images of CZTS and MAPbI3 samples were 

taken from a scanning electron microscope (Philips XL30-FEG). An electron beam with high 

energy (10 keV~15 keV) was used on the CZTS samples and MAPbI3 thin films. The compositions 

of the films were analyzed by an energy-dispersive X-ray (EDX) spectroscope (eumex 

Instrumentebau GmbH SphinX 130), which attached to the SEM system. The energy of the 

electron beam was raised to 30keV when recording EDX data captured by a Si(Li) detector. X-ray 
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diffraction (XRD) spectra were taken from an XRD system (PANalytical X’Pert Pro MRD) 

equipped with a CuKα1 X-ray generator. The Raman spectra were recorded by a self-assembled 

Raman spectrometer with a laser power of 150 mW at 532 nm. The monochromator (Acton 

SP2500) had a 0.5nm single-pass spectrometer. The photon counter (Princeton Instruments Spec-

10) had a N2-cooled CCD array. Current−voltage responses were measured using an Agilent

4155C semiconductor parameter analyzer under airmass 1.5 global (AM1.5G) 1 sun (100 

mW/cm2.) illumination which was calibrated using a light intensity meter. The voltage was swept 

from -0.1 V to 1.1 V at a rate of 10 mV/s with a step of 10 mV/step. For the hysteresis investigation, 

the voltage was swept from either from -0.1 V to 1.1 V (forward bias) or from 1.1 V to -0.1 V 

(reverse bias) at a rate of 10 mV/s with a step of 10 mV/step. KPFM measurement was carried out 

using Agilent 5500 AFM with MAC III mode. The conductive AFM tip (Veeco SCM-PIT, k=2.8 

N/m, coated with Pt/Ir) was simultaneously excited by mechanical drive at its resonant frequency 

(75 kHz), and by electrical drive around 10 kHz. 

3.2 RESULTS AND ANALYSIS 

The content of Cl has been checked by energy-dispersive X-ray spectroscopy (EDS). The EDS 

spectra of MAPb(I,Cl)3 and MAPbI3 thin films are shown in Fig. 3.2. The weight ratios of Pb, I, 

and Cl derived from the EDS spectra are summarized in Table 3.1. The weight ratios of Cl in 

MAPb(I,Cl)3 and MAPbI3 thin films are same. This indicates that the concentration of Cl in 

MAPb(I,Cl)3 should be lower than the detection limit of the EDS system because no Cl has been 

intentionally added to the so-called MAPbI3 thin film. 
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Figure 3.2 EDS spectra of the perovskite thin films. 
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Table 3.1 Elemental ratios of the perovskite solar cells. 

Pb (wt%) I (wt%) Cl (wt%) 
MAPbI3 38.95 60.06 0.99 

MAPb(I,Cl)3 38.36 60.65 0.99 

        The SEM images of the surfaces of MAPbI3 and MAPb(I,Cl)3 thin films are shown in Fig. 

3.3. the deposited perovskite thin films are homogeneous and densely packed. This demonstrates 

the advantage of the modified one-step process for preparing perovskite thin films, comparing to 

other one-step processes which usually lead to incomplete coverage of substrate [90]. In the case 

of MAPb(I,Cl)3 thin film that was prepared using mixed halide source, no difference is observed 

in the morphology, indicating the addition of MACl does not affect the growth of perovskite thin 

film and the interaction between the substrate and the perovskite thin film. 
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Figure 3.3 Top-view SEM images of MAPbI3 and MAPb(I,Cl)3 thin films. 
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        The typical XRD patterns of the MAPbI3 and MAPb(I,Cl)3 thin films deposited in this work 

are shown in Fig. 3.4 (a). No obvious difference is observed. The three major peaks at 14.09°, 

28.44° and 31.87° can be indexed to the MAPbI3 phase, corresponding to the lattice planes of 

(110), (220), and (310) [91]. No MAPbCl3 peaks are found in MAPb(I,Cl)3 thin film because of 

the small quantity of Cl source added. The peak located at 12.06, which can be ascribed to PbI2 

phase, is observed with both the MAPbI3 and MAPb(I,Cl)3 thin films [89]. It is due to the excess 

PbI2 in perovskite precursor solution, which is reported to boost the performance of perovskite 

solar cells [92]. The magnified XRD patterns peaking at 14.09° from lattice plane (110) of both 

samples are shown in Fig. 3.4 (b). Full width at half maximum (FWHM) of this peak is used to 

calculate the crystal size of perovskite thin films according to Scherrer equation. The average 

crystal sizes of MAPbI3 and MAPb(I,Cl)3 thin films are 102 nm and 106 nm, respectively. This 

confirms what has been observed in SEM images of MAPbI3 and MAPb(I,Cl)3 thin films. The 

effects caused by difference in morphologies crystal structures can be excluded. The results 

obtained from other characterization methods would be more reliable. 
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Figure 3.4 XRD patterns of MAPbI3 and MAPb(I,Cl)3 solar cells: (a) full range, (b) major peak at (110) to 

calculate the crystal size.        

        The typical I-V characteristics of MAPbI3 and MAPb(I,Cl)3 solar cells are shown in Fig. 3.5. 

A general trend of enhancement of efficiency in MAPb(I,Cl)3 solar cells can be observed from the 

comparison with MAPbI3 solar cells as shown in the inset of Fig. 3.5.  Not only has the 

enhancement in efficiency been observed but also in short-circuit current density (JSC), fill factor 

(FF) (not shown), and open circuit voltage (VOC) (not shown). The best MAPbI3 solar cell 

produced a JSC of 22.47 mA/cm2, a VOC of 1.04 V and a FF of 65.90%, while the most efficient 

MAPb(I,Cl)3 solar cell had a JSC of 24.10 mA/cm2, a VOC of 1.08 V and a FF of 71.50%. As a 



54 

result, the efficiency of MAPb(I,Cl)3 solar cell was significantly improved from 15.39% to 

18.60%. The reasons of the enhancement of photovoltaic parameters were investigated and 

discussed below. The best I-V parameters are summarized in Table 3.2.  

Figure 3.5 I-V curves and parameters of MAPbI3 and MAPb(I,Cl)3 solar cells (the inset is the efficiency 

distributions of 16 devices for each sample) measured at around 25℃under simulated sunlight of 100 mW/cm2 

(AM1.5G). 
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Table 3.2 I-V parameters of the best perovskite solar cells. 

VOC (V) JSC(mA/cm2) FF(%) η(%) 

MAPbI3 1.04 22.47 65.90 15.39 

MAPb(I,Cl)3 1.08 24.10 71.50 18.60 

        To investigate the mechanisms behind the significant improvement in the performance of 

MAPb(I,Cl)3 solar cells, the surface potential (SP) distributions of both materials were mapped 

using KPFM [42]. As shown in Fig. 3.6, the dark regions around grain boundaries indicate the 

band bending that favour electron accumulation.  KPFM measurement of MAPbI3 shows a uniform 

distribution of SP among grain bodies and grain boundaries indicating a narrower and smaller band 

bending, while KPFM measurement of MAPb(I,Cl)3 shows a large variation of SP among grain 

bodies and grain boundaries indicating a deeper and wider band bending at the grain boundaries .  



56 

Figure 3.6 Topography AFM images (a and b), SP (c and d), and profiles of SP (e and f) of MAPbI3 (a, c, 

and e) and MAPb(I,Cl)3 (b, d, and f) thin films on ITO. 
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        MAPbI3 was found to be a p-type material [93], thus a single p-n heterojunction should be 

formed at the cathode side of the device (Fig. 3.7 (a)). For this single p-n heterojunction, an 

electron blocking layer is needed on the anode side. The charge collection efficiency is higher on 

the junction side (cathode) but lower on the anode side because only diffusion contributes to the 

charger transport on the anode side.  The observation of wider and deeper band bending at the 

grain boundaries of MAPb(I,Cl)3 from KPFM measurements indicates that electron accumulation 

is enhanced at the grain boundaries thus bring the Fermi level closer to the center band to make 

MAPb(I,Cl)3 less p-type. Such Fermi level shift results in a p-i-n heterojunction in the device (Fig. 

3.7 (b)), first speculated in mesoporous MAPb(I,Cl)3 solar cells [94] and later observed in planar 

MAPb(I,Cl)3 solar cells by electron beam-induced current study [95]. The p-i-n heterojunction 

facilitates the charge collection on both sides because both drift and diffusion contribute to the 

charge transport. In addition, the junction on the anode side provides a blocking barrier to prevent 

electrons reaching the anode, thus to reduce recombination loss.  

Figure 3.7 Band alignment of devices for (a) MAPbI3 and (b)MAPb(I,Cl)3.
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        KPFM was employed to study the GBs of MAPbI3 and MAPb(I,Cl)3 thin films. Fig. 3.8 shows 

the surface morphology images and the surface potential (SP) images of MAPbI3 and MAPb(I,Cl)3 

thin films. The topography images were used to identify the location of GBs and the SP images 

were used to derive the difference of work functions of the GBs and the bulk crystals. In KPFM 

measurement, two separate oscillation frequencies are applied to AFM cantilever to detect the 

topography and the SP simultaneously, cross-talk of signals from topography and SP cannot be 

completely eliminated. The line profiles were then used to check the existence of cross-talk. The 

line profiles in Fig. 3.8 indicate the SP does not follow the topography. By checking the line 

profiles in Fig. 3.8 (a), it was revealed most of the GBs (G1, G2, G3, G6, G7) in MAPbI3 thin film 

demonstrated a higher potential than the center of the grain surface. Conversely, it was shown in 

Fig. 3.8 (b), most of the GBs (G1, G2, G3, G5, G8, G9) in MAPb(I,Cl)3 demonstrated a lower 

potential than the center of the grain surface. This indicates that upward band bending around the 

GB dominates in the MAPbI3 thin film and downward band bending around the GB dominates in 

the MAPb(I,Cl)3  thin film. Upward band bending around the GB in the MAPbI3 thin film has 

been reported [95]. To our knowledge, this is the first time that downward band bending around 

the GB in the MAPb(I,Cl)3 thin film is reported. 
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Figure 3.8 AFM images, KPFM images, and the profiles along the lines in (a) MAPbI3 and (b) 

MAPb(I,Cl)3 thin films. 
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        The band diagrams around the GB in MAPbI3 and MAPb(I,Cl)3 thin films are plotted in Fig. 

3.9 with an assumption that the GB and the grain have same bandgap values. It has been reported 

MAPbI3 thin film shows p-type conductivity [96]. The incorporation of a small amount of Cl atoms 

into MAPbI3 thin film does not likely reverse the conductivity type because Cl and I belong to the 

same halogen group. Therefore, the transport behavior of electrons (minority carriers) in MAPbI3 

and MAPb(I,Cl)3 thin films significantly affects the performance of perovskite solar cells. The 

potential barrier due to the upward band bending at GB in MAPbI3 thin film repels electrons and 

attracts holes. The electrons will have to be transported to the cathode through the grain bulk where 

majority holes (majority carriers) have a high concentration, resulting in higher recombination 

rate. On the contrary, the potential barrier due to the downward band bending at GB in 

MAPb(I,Cl)3 thin film repels holes and attracts electrons. The electrons will be transported to the 

cathode through both the grain bulk and GB where majority holes (majority carriers) are depleted, 

resulting in a higher collection area and a lower recombination rate. This will again benefit the 

diffusion length and the performance of solar cells such as VOC and FF. Considering the low 

concentration of Cl allowed to be incorporated into MAPbI3 thin film, the properties of bulk grains 

should not change significantly. As observed in the KPFM measurement, the properties of the GBs 

in MAPbI3 thin film have been significantly affected, which could be attributed to the 

accumulation of Cl atoms in the GBs as sodium atoms do in CIGS thin films[97]. This would be 

verified by high definition element mapping technique such as TEM, which is ongoing in our 

research. 
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Figure 3.9 Band diagrams around the GB in MAPbI3 and MAPb(I,Cl)3 thin films. 

        The measurement of electron lifetime can be applied to quantify the extent of electron 

recombination in perovskite solar cells [33]. The dependence of electron lifetime on the VOC for 

planar perovskite solar cells fabricated with single and mixed halide source is shown in Fig. 3.10. 

It clearly demonstrates that the electron lifetime of the MAPb(I,Cl)3 solar cells is longer than that 

of the MAPbI3 solar cell. This suggests that the electrons in MAPb(I,Cl)3 thin film can survive 

longer and demonstrate a longer diffusion length as reported in literatures [98, 99]. 
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Figure 3.10 The electron lifetime as a function of VOC.

        The longer electron lifetime in MAPb(I,Cl)3 solar cells, indicating a reduced recombination, 

can also be explained by the KPFM observation. The lack of SP difference at grain boundaries and 

grain bulk of MAPbI3 may render free carriers generated during illumination to easily recombine, 

thus shorten carrier lifetime. On the contrary, the large variation of SP between grain boundary 

and grain bulk means abundant potential wells are formed at the grain boundaries to accommodate 

electrons, which physically separate electrons from holes preventing the carrier recombination. In 

addition, the locally formed junctions between the grain bodies and grain boundaries enhance the 
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dissociation of excitons and further suppress recombination. As a result, carrier life time is greatly 

improved in MAPb(I,Cl)3 solar cells.  

The AS technique has been well established to investigate the defect levels of thin film 

solar cells such as CIGS and CdTe [100-102]. It has been rarely applied to perovskite solar cells. 

So far, only two groups have addressed the defect density of MAPbI3 solar cells using AS 

technique. In 2014, Dalal et al. found two defect levels in MAPbI3 solar cell. One is 0.24 eV and 

the other is 0.65 eV above the valence band with a peak density value of 3×1016/(cm3·eV) [103]. 

In the same year, Yang et al. revealed a deep defect state of 0.17 eV above the valence band with 

a peak density value of 2×1017/(cm3·eV) [104]. The cause of the difference in defect levels and 

densities is not clear. They might be attributed to the difference in MAPbI3 thin films because the 

deposition method for MAPbI3 thin film used by one group is different from the method used by 

the other group. To investigate the mechanisms behind the significant improvement in the 

MAPb(I,Cl)3 solar cell, we applied the AS method to MAPbI3 and MAPb(I,Cl)3 solar cells 

fabricated by the exactly same procedures. As discussed earlier, the resultant MAPbI3 and 

MAPb(I,Cl)3 thin films were highly similar in morphology and crystal structure. The results 

obtained from AS method, as shown in Fig. 3.11, should be more reliable to reveal the origin of 

the significant performance improvement observed in MAPb(I,Cl)3 solar cells. The defect levels 

of MAPbI3 and MAPb(I,Cl)3 solar cells derived from Arrhenius plot, as shown in Fig. 3.11 (a), are 

0.214 eV and 0.208 eV, respectively. The difference of 6 meV could come from the measurement 

error. The energy distributions of the defects are shown in Fig. 3.11 (b). For MAPbI3 solar cell, 

the defect density peaks at 7.2×1017/(cm3·eV), while the peak defect density of MAPb(I,Cl)3 solar 

cell is reduced to 3.8×1017/(cm3·eV). The spans of defect states can be fitted as a Gaussian 

distribution (the solid lines). The integrated defect density of MAPbI3 solar cell is 4.68×1016 cm-3 
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and that of MAPb(I,Cl)3 solar cell is reduced to 2.34×1016 cm-3. A reduced defect density has been 

experimentally observed in MAPb(I,Cl)3 solar cells. The result is in good agreement with what has 

been proposed in the electron lifetime measurement: Cl helps to passivate the defects in 

MAPb(I,Cl)3 solar cells, leading to a lower defect density and higher electron lifetime. Thus, 

OCVD and AS jointly demonstrate that Cl plays an extremely important role in suppressing the 

defect in perovskite devices. Further investigation is required and under way to understand the 

origin of this defect and why Cl is able to suppress the formation of defect when depositing 

perovskite thin films. 
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Figure 3.11 Admittance spectroscopy of MAPbI3 and MAPb(I,Cl)3 solar cells: (a) Arrhenius plot of the transition 

frequencies to derive the defect energy levels, (b) the distributions of the density of the defects.
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CHLORINE-ASSISTED RECOVERY OF PERFORMANCE LOSS IN MAPBI3 

PEROVSKITE SOLAR CELL MADE FROM LOW PURITY PBI2 

High purity (9~11N) silicon has been required to manufacture integrated circuits and was 

traditionally used to fabricate photovoltaic (PV) devices [105, 106]. Due to the nature of low 

density of sunlight, large area of PV devices is needed to generate applicable electricity [107]. The 

high cost and shortage of high purity silicon, however, limit the deployment of PV devices. 

Comparatively low purity silicon such as solar-grade (5~6N) silicon has been developed and 

currently widely used in the PV industry [108]. Nevertheless, the impurities in low purity silicon 

are known to reduce minority carrier diffusion length in silicon-based PV devices [109, 110], 

leading to degraded solar-to-electricity conversion efficiency [111-113]. Several methods, such as 

external and internal gettering, have been approved to be capable of improving the quality of low 

purity silicon, especially for minority carrier lifetime [105, 114, 115]. 

        Organic-inorganic hybrid perovskite solar cell has recently become an intensively explored 

topic in PV field because of its high performance and potentially low manufacturing cost. 

Significant efforts have been focused on developing high quality perovskite thin films and 

improving the stability of perovskite solar cells. To this date, lead sources such PbI2 and PbCl2 

with a purity of 99.999% (5N), have been widely in fabricating highly efficient perovskite solar 

cells [116], which is the major concern regarding the mass deployment of perovskite solar cells, 

not to mention the high cost and the adverse impact on the environment associated with the 
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purifying process [117]. Recently, the purity of raw materials, which is known to significantly 

affect the performance of both organic [118] and inorganic [119] solar cells, as well as silicon-

based solar cells, has been investigated for perovskite solar cells [120]. It was found that perovskite 

solar cells using highly pure (5N) PbI2 showed an efficiency of 16.4%, which was higher than that 

of perovskite solar cells with low purity (2N) PbI2 by 30–40%, indicating highly pure PbI2 is 

indispensable for highly efficient perovskite solar cells. 

4.1 EXPERIMENTAL PROCEDURES 

4.1.1 Fabrication of MAPbI3 Solar Cells using PbI2 with different purtities 

Planar perovskite solar cells were fabricated in air with a structure of FTO/TiO2/perovskite/spiro-

MeOTAD/Au. A modified one-step process capable of incorporating Cl is used to grow the 

perovskite thin films [89]. PbI2 with different purities (99% and 99.999%) were purchased from 

Sigma Aldrich and were used without further processing. The experimental procedures described 

in 3.1.2 were employed to deposit MAPbI3 thin films and fabricate MAPbI3 solar cells. 

4.2 RESULTS AND ANALYSIS 

In this work, the effects of Cl on perovskite solar cells fabricated using high and low purity PbI2 

were investigated. The averaged I–V curves of these devices fabricated using the same 

experimental procedures are shown in Fig. 4.1. As shown in the inserted table in Fig. 4.1, the 
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averaged performance parameters, including VOC, JSC, FF, and efficiency (Eff.), are significantly 

affected by the purity of PbI2. The perovskite solar cell with high purity PbI2 exhibited a high 

efficiency of 16.39 % with a JSC of 23.46 mA/cm2, VOC of 1.07 V, and FF of 65.31%, while that 

with low purity PbI2 had a comparatively low efficiency of 14.16% with a JSC of 21.94 mA/cm2, 

VOC of 1.04 V, and FF of 62.07 %. This agrees well with what has been reported in literature [120]. 

Excitingly, the efficiency of perovskite solar cell with low purity PbI2 was significantly boosted to 

16.58% after a small amount of Cl source was added. The lost efficiency in low purity perovskite 

solar cells is fully recovered when Cl is added. The resulted efficiency is even slightly higher than 

that obtained from high purity perovskite solar cells. This indicates that, besides the costly way of 

increasing the purity of raw materials, Cl doping could provide a cost-effective way to further 

improve the performance of perovskite solar cells. 



69 

Figure 4.1 Averaged I-V curves and parameters of perovskite solar cells (10 devices for each sample). 

        To investigate the mechanisms behind the significantly improved performance of low purity 

perovskite solar cells brought by Cl, the morphology of the perovskite thin films was checked by 

SEM. The SEM images are shown in Fig. 4.2. The average crystal size of the high purity thin film 

is slightly smaller compared to the low purity thin film. This is contrary to what has been reported 

by J. Chang et al. who found that the average crystal size of the high purity perovskite thin film 

was 20 nm larger compared to the low purity thin film [120]. The contradiction in this aspect could 

be caused by the different solvents used for perovskite precursors, which are known to significantly 
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affect the morphology of perovskite thin films. No obvious difference can be observed once Cl is 

added. 

Figure 4.2 SEM images of perovskite thin films deposited utilizing different purities of PbI2. (a) 99.999%, 

(b) 99%, and (c) 99%+Cl. (The scale bar is 1μm).

        This result is consistent with the XRD results (Fig. 4.3 (a-b)). Further investigation of the 

transmittance spectra (Fig. 4.3 (c)) and optical bandgap (Fig. 4.3 (d)) of these films is not able to 

reveal the mechanisms behind the recovery of performance loss by Cl because no distinct 

difference can be observed. Most of the studies regarding the effects of Cl on perovskite solar cells 

found that the morphology is improved and crystallinity is enhanced, which is caused by the 

relatively high concentration of Cl source in perovskite precursor solution, even though the amount 

of Cl in the final perovskite thin film is negligible [121-123]. The concentration of the Cl source 

used in this work was deliberately controlled to be extremely low so that the addition of Cl would 

not obviously affect the morphology and structure of perovskite thin films, which is able to exclude 
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the effects of morphology and structure when investigating the mechanisms behind the Cl-assisted 

recovery of performance loss in low purity MAPbI3 solar cells. 
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Figure 4.3 (a) XRD patterns, (b) major peak at (110), (c) transmittance, and (d) optical bandgap energies of 

perovskite thin films utilizing different purities of PbI2. 
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        The measurement of electron lifetime using OCVD method can be applied to quantify the 

extent of electron recombination in perovskite solar cells [116]. The dependence of the electron 

lifetime on the VOC for perovskite solar cells fabricated with different purities of PbI2 is shown in 

Fig. 4.4. It clearly demonstrates that the electron lifetime of the low purity perovskite solar cells is 

the lowest and it is significantly improved once Cl is added. 

Figure 4.4 The electron lifetime derived from OCVD method as a function of VOC.
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        It is well known that low purity absorber materials in solar cells usually demonstrate high 

defect density caused by the high impurity concentration, leading to a decreased carrier lifetime, 

and therefore reduced conversion efficiency [124-127]. Admittance spectroscopy (AS) is widely 

applied to derive the distribution of defect density and the energy levels of the defects in the 

bandgap by measuring the capacitance of the solar cell at different temperatures [103, 128, 129]. 

Fig. 4.5 (a) shows the capacitance spectra of perovskite solar cell fabricated using low purity PbI2 

with Cl (99%+Cl) obtained at different temperatures (T=150 K to 296 K) in the dark with the 

frequency ranging from 102 to 106 Hz. Steps are observed in each capacitance spectrum at different 

temperatures. The transition frequency, where the capacitance step lies, can be found by taking the 

derivative of the capacitance spectra as shown in Fig. 4.5 (b). The energy levels of the defects can 

be obtained by linearly fitting the Arrhenius plot of the transition frequencies as illustrated in Fig. 

4.5 (c). The energy level of the defect in perovskite solar cell fabricated using low purity PbI2 with 

Cl is fitted to be 208.48 meV above the valence band, which is close to the energy levels of the 

defects in other samples (Fig. 4.6). The defect levels revealed in this work are different from the 

defect level of 167 meV found by Duan et al., which can be ascribed to the iodine interstitials [104, 

130]. Samiee et al. found a defect level of 240 meV [103]. The origin of these two defects is not 

clear, which could be the impurities of the raw materials of perovskite thin films. The defect 

densities as a function of energy at different temperatures can be deduced from the differentiated 

capacitance spectra as shown in Fig. 4.5 (d). 
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Figure 4.5 Admittance spectroscopy of perovskite solar cell fabricated using low purity PbI2 with Cl. (a) 

Capacitance spectra at different temperatures. (b) The derivative of the capacitance spectra which show the 

transition frequency at each temperature. (c) Arrhenius plot of the transition frequencies to derive the defect energy 

level. (d) The distribution of the density of the defect. 

        The obtained defect energy distributions of perovskite solar cells are shown in Fig. 4.7. The 

defect states can be fitted as Gaussian distributions (solid lines). The integrated defect density of 

high purity perovskite solar cell is 2.79×1016 cm-3. As expected, the defect density of low purity 
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sample is higher (4.68×1016 cm-3). Surprisingly, the defect density is reduced to 2.34×1016 cm-3 

once Cl is added to low purity sample. Besides the effects of Cl on morphology and crystal 

structure as mentioned above, another reported effect is the longer carrier lifetime in Cl-

incorporated perovskite thin film revealed by photoluminescence (PL) spectroscopy [121, 131]. It 

is often assumed that this longer carrier lifetime is attributed to reduced defect density [132], which 

has never been experimentally approved for perovskite solar cells. This is the first time that 

reduced defect density is experimentally observed in Cl-incorporated perovskite solar cells. The 

result is in good agreement with what has been observed in the electron lifetime measurement: Cl 

helps to passivate the defects in low purity perovskite solar cells, leading to a lower defect density 

and higher electron lifetime. 
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Figure 4.6 Arrhenius plots of the transition frequencies to derive the defect energy levels in perovskite 

solar cells utilizing different purities of PbI2. 
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Figure 4.7 Defect density distributions of perovskite solar cell fabricated using different purities of PbI2.
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IMPROVED STABILITY OF MAPBI3 SOLAR CELLS USING ALL INORGANIC 

CHARGE TRANSPORT LAYERS (CTLS) 

Methylammonium lead halide perovskites (abbreviated as perovskite) have been proved as 

promising photovoltaic (PV) materials due to their excellent photoelectric properties [93]. 

Moreover, the abundant raw materials and the solution process capability make perovskite suitable 

for low cost PV technologies similarly as Cu(In,Ga)(S,Se)2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTS) 

for low cost PV technologies [57, 59, 87, 133]. The efficiency of perovskite solar cells has been 

rapidly improved from 3.8 % in 2009 [12] to 20.1% in 2015 [1]. This great advancement is mainly 

attributed to the numerous efforts that have been taken to deposit high quality perovskite thin films 

by many research groups [17-19]. The tremendous improvement can also be attributed to the two 

photovoltaic (PV) device structures developed for almost 20 years. One structure is based on TiO2 

as an electron transport layer (ETL) and 2,20,7,70-tetrakis(N,N-di-4-methoxyphenylamino)-9,90-

spirobifluorene (spiro-OMeTAD) as a hole transport layer (HTL). The other structure is based on 

the organic ETL such as PCBM and organic HTL such as poly(3,4-ethylenedioxythiophene) 

polystyrene sulfonate (PEDOT:PSS) and poly(3-hexylthiophene-2,5-diyl) (P3HT). The perovskite 

thin film is deposited as an absorber layer to fabricate perovskite solar cells. Due to the high 

sensitivity of these organic materials to moisture and oxygen, a nitrogen glove box with a strict 

control of the moisture and oxygen levels was usually used to fabricate perovskite solar cells [17, 
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22-25]. However, the perovskite solar cells degrade rapidly once they are removed from the

nitrogen glove box and stored in ambient environment [26-28]. 

It was reported that perovskite thin films were comparatively stable in ambient 

environment with low humidity [134]. The rapid degradation of perovskite solar cells was mainly 

caused by the instability of the organic charge transport layers (CTLs) [135, 136]. Encapsulation 

of perovskite solar cells was reported to be able to improve the stability of perovskite solar cells 

[137]. However, encapsulation is usually a final process step for fabrication of perovskite solar 

cells. The perovskite solar cell could have already degraded before being encapsulated. Another 

reported approach to improve the stability of perovskite solar cells was to use NiOx thin film as 

HTL to replace those organic ones [138, 139]. Nevertheless, the remained organic ETL such as 

PCBM still significantly affect the stability of perovskite solar cells [135, 136]. The ultimate 

advancement in the device stability of perovskite solar cells has yet to be realized. 

Here, solution-processed inorganic thin films, lithium (Li)-doped NiOx (Li:NiOx) and ZnO 

nanoparticles (NPs), were deposited as the HTL and ETL, respectively, to fabricate highly stable, 

highly performed planar perovskite solar cells. The devices were intentionally kept and tested in 

ambient environment without encapsulation to focus on the efficiency and stability. The 

employment of all inorganic thin films as CTLs has significantly improved the stability of 

perovskite solar cells compared to that of conventional perovskite solar cell structure with TiO2 as 

the ETL and spiro-MeOTAD as the HTL. This study provides an excellent device structure for 

making highly stable and efficient perovskite solar cells. 
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5.1 EXPERIMENTAL PROCEDURES 

5.1.1 Synthesis of ZnO Nanoparticles (NPs) 

ZnO NPs were synthesized according to a reported procedure [140]. Zinc acetate dihydrate 

(molecular weight: 219.51) (2.95 g, 13.4 mmol) was dissolved in 125 ml methanol with stirring at 

65 ℃. A solution of potassium hydroxide (molecular weight: 56.11) (1.48 g, 23 mmol) in 65 ml 

methanol was then added dropwise over a period of 15 min to the zinc acetate dehydrate solution. 

The reaction mixture was stirred for 2.5h at 65 ℃ . After cooling to room temperature, the 

supernatant was decanted and the precipitate was washed twice with methanol (20 ml). n-butanol 

(70 ml), methanol (5 ml) and chloroform (5 ml) were added to disperse the precipitate and produce 

a ZnO NPs solution with a concentration of 6 mg/ml. Before use, the ZnO NPs solution was filtered 

through a 0.45 µm PVDF syringe filter. 

5.1.2 Preparation of Li-doped NiOx (Li:NiOx) sol-gel 

Li:NiOx sol-gel solution was prepared according to a reported procedure [141]. Nickel acetate 

tetrahydrate (Ni(COOCH3)2·4H2O, 746.52mg) was dissolved in 2-methoxyethanol (2ME) (10 ml), 

and 0.1 ml hydrochloric acid (HCl) was added as catalyst. Lithium acetate monohydrate 

(LiCH3COO·H2O, 29.94 mg) was used as the dopant. The solution was stirred in water bath at 60 

℃for 1 h and then aged for 24 h at room temperature.  
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5.1.3 Fabrication of MAPbI3 solar cell with all inorganic CTLs 

The perovskite solar cell device structures studied in this work include: conventional structure, 

fluorine doped tin oxide (FTO) glass/TiO2/perovskite/spiro-OMeTAD/Ag (Fig. 5.1 (a)), and the 

structure with all inorganic CTLs, FTO glass/Li:NiOx/perovskite/ZnO NPs/Ag (Fig. 5.1 (b)). The 

perovskite thin films were deposited using the solvent-solvent extraction (SSE) method developed 

by Zhou et al. [142]. Li:NiOx thin film was spin-coated using modified procedures reported in 

literature [143]. ZnO NPs were synthesized as reported and the coating procedures were optimized 

[144]. 

Figure 5.1 Schematic device structures of (a) conventional, and (b) all inorganic CTLs perovskite solar 

cells. 
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5.2 RESULTS AND ANALYSIS 

The morphologies of the Li:NiOx thin film, perovskite thin film, and ZnO NPs were investigated 

by atomic force microscopy (AFM). To avoid the effects of the roughness of substrates, polished 

silicon wafers were used as substrates for AFM measurement. As shown in Fig. 5.2, no obvious 

voids can be observed in these films. The roughness of the Li:NiOx, the ZnO NPs, the perovskite 

thin film is 0.49 nm, 2.32 nm, and 8.54 nm, respectively, indicating all films are smooth. These 

films are suitable for planar perovskite solar cells where the underlying layer is conveniently and 

fully covered by the upper layer. Direct shorting pathways are avoided. 

Figure 5.2 AFM images of the surface of (a) Li:NiOx thin film, (b) ZnO NPs, and (c)perovskite thin film. 

        Based on these results, perovskite solar cells were fabricated using the Li:NiOx thin film as 

HTL, and ZnO NPs as ETL. The thickness of Li:NiOx thin film was controlled to be around 25 nm 

(Fig. 5.3 (a) and (b)), while the thickness of ZnO NPs was approximately 10 nm (Fig. 5.3 (c) and 



84 

(d)) because its comparatively low conductivity [145]. The thickness of perovskite thin film was 

kept at 350 nm which has been widely adopted in literatures [146, 147]. As an effort to improve 

the quality of the interface between the ZnO NPs and the perovskite thin film, half of the devices 

were annealed at 90 °C for 10 min before Ag contact was deposited.  

Figure 5.3 Thickness of (a) and (b) Li:NiOx thin film, (c) and (d) ZnO NPs deposited with 10 times 

coating. 

        The J-V characteristics of these perovskite solar cells under illumination were obtained. For 

comparison, perovskite solar cells with conventional structure of FTO/TiO2/perovskite/spiro-
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OMeTAD/Ag were also fabricated and characterized. It is worth nothing that all devices were 

fabricated and characterized in ambient environment. Ag was deposited using a high vacuum 

electron beam (EB) evaporation system. The J-V curves of the champion solar cell of each sample 

are shown in Fig. 5.4 and the J-V parameters are summarized in Table 5.1. The highest power 

conversion efficiency obtained from device with conventional structure of TiO2/perovskite/spiro-

OMeTAD was 14.8% with a JSC of 22.3 mA/cm2, a VOC of 1.07 V, and a FF of 61.9 %. These 

parameters are comparable to those of the high-performance planar perovskite solar cells reported 

so far [17-19]. This is attributed to the high quality compact and smooth perovskite thin films 

which were deposited using SSE method [142]. 

Figure 5.4 J-V curves of the champion perovskite solar cell with different device structures. 
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Table 5.1 I-V parameters the champion perovskite solar cell with different device structures. 

TiO2/spiro-

OMeTAD 

Li:NiOx/Unanneal

ed ZnO NPs 

Li:NiOx/Anneale

d ZnO NPs 

Eff. (%) 14.8 4.8 12.0 

JSC (mA/cm2) 22.3 22.4 21.8 

VOC (V) 1.07 0.89 0.80 

FF (%) 61.9 24.3 68.8 

An efficiency of 12.0 % was achieved from the device with a structure of 

Li:NiOx/perovskite/annealed ZnO NPs. Compared with the conventional perovskite solar cell, the 

efficiency is still low mainly due to the comparatively low VOC. However, the efficiency of the 

device with structure of Li:NiOx/perovskite/unannealed ZnO NPs is unexpectedly low. The main 

reason for low efficiency is its extremely low FF. The FF was significantly improved after an 

annealing step was applied before Ag was deposited. This annealing step probably improved the 

quality of the interface between the perovskite thin film and the ZnO NPs. The VOC of the 

perovskite solar cell with annealed ZnO NPs is slightly lower than the unannealed one. To reveal 

the mechanism, the energy band diagrams of the three samples are shown in Fig. 5.5. All the values 

of the energy levels are obtained from literatures [148, 149]. The band gap of ZnO NPs with size 

of 5 nm is found to be 3.63 eV [150] and the band gap of annealed ZnO NPs is 3.54 eV [151]. 

Assuming the valence band keeps constant, the conduction band of the annealed ZnO NPs is 

lowered by 0.11 eV. This will bring two effects. First, the potential between the perovskite thin 

film and the ZnO NPs is increased, which will facilitate the transport of electrons from perovskite 

thin film to ZnO NPs, leading to higher FF and efficiency. Second, to a large extent, the VOC in 

organic solar cell depends on the difference between the highest occupied molecular orbital 
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(HOMO) of HTL and the lowest unoccupied molecular orbital (LUMO) of ETL [152]. This could 

also be true for perovskite solar cells. When the conduction band of ZnO NPs is lowered, it will 

be closer to the valence band of Li:NiOx. The difference between the HOMO of HTL and the 

LUMO of ETL is reduced, leading to a lower VOC. 

Figure 5.5 Energy band diagrams of perovskite solar cells with different device structures of (a) 

TiO2/spiro-OMeTAD, (b) Li:NiOx/unannealed ZnO NPs, (c) Li:NiOx/annealed ZnO NPs. 

        To demonstrate the robustness and repeatability of the process for fabricating perovskite solar 

cells with all inorganic CTLs developed in this work, 28 perovskite solar cells with device structure 

of Li:NiOx/perovskite/annealed ZnO NPs were fabricated and tested. The distributions of J–V 

parameters are plotted in Fig. 5.6. An average efficiency of 7.7 % was achieved. Higher average 

efficiency is expected with further optimization of process. [153].  
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Figure 5.6 Distributions of I–V parameters obtained from 28 perovskite solar cells with device structure of 

Li:NiOx/annealed ZnO NPs. 

        Spiro-OMeTAD was initially developed as a HTL in solid-state dye-sensitized solar cells 

(SSDSSCs) [154]. It has been widely used in highly efficient planar and mesoporous perovskite 

solar cells [15, 155]. The stability of perovskite solar cells with spiro-OMeTAD as the HTL has 

been much improved and is superior to that of perovskite solar cells that use other organic materials 

as HTLs [156]. So far, the device structure of TiO2/perovskite/spiro-OMeTAD has been 

demonstrated to be one of the most stable perovskite solar cells. In order to demonstrate the 
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advantages of the all inorganic CTL perovskite solar cells developed in this work, the perovskite 

solar cells with the conventional device structure of TiO2/perovskite/spiro-OMeTAD and the 

device structure of Li:NiOx/perovskite/ZnO NP were stored without encapsulation and tested in 

ambient environment at 22 ℃ with a relative humidity of 48.5 %. Fig. 5.7 shows the evolution of 

J-V parameters for typical devices from each device structure, which were stored in dark for 300

h. For each device structure, the J-V parameters were obtained from 8 solar cells with efficiencies

ranging from 10 % to 5%. As shown in Fig. 4.32 (a), the efficiency of Li:NiOx/ZnO NP structure 

was preserved 95 % of the initial performance, while the efficiency of TiO2/spiro-OMeTAD 

structure rapidly decreased to 33 % after 100 h storage in dark. Remarkably, the JSC of the 

Li:NiOx/ZnO NP device improved during the first 50 h, while the VOC and FF relatively 

unchanged. For devices with the TiO2/spiro-OMeTAD structure, the JSC and VOC decreased 

rapidly, while the FF fluctuated. Unexpectedly, the efficiency of TiO2/spiro-OMeTAD device was 

degraded to less than 1 % of its initial efficiency after 170 h. This was mainly caused by the severe 

degradation of VOC which only preserved 3 % of its initial value. At this point, the efficiency of 

Li:NiOx/ZnO NP device preserved 92 % mainly caused by the slight degradation of JSC. The 

stability test of Li:NiOx/ZnO NP device was continued to 300 h, while that of TiO2/spiro-

OMeTAD device was stopped at 170 h. At the end of the test, the values of VOC and FF were 

comparable to their initial values. The JSC slowly degraded to 62 %. As a result, the efficiency of 

Li:NiOx/ZnO NP device was preserved 61 % of the initial value. 
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Figure 5.7 Variation of the normalized I-V parameters of the perovskite solar cells with time stored in air at 

room temperature without encapsulation. 

        For the TiO2/spiro-OMeTAD device, both the spiro-OMeTAD and the perovskite thin film 

could degrade due to moisture. The junction between the spiro-OMeTAD and the perovskite was 

possibly damaged after exposure to high humidity, leading to rapid degradation of the device. For 

the Li:NiOx/ZnO NP device, all other materials are stable on exposure to moisture except for the 

perovskite thin film which decomposes into MAI and PbI2. The decomposed perovskite will no 
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longer contribute to the photocurrent, resulting to lower JSC. Nevertheless, moisture is more likely 

to damage the bulk perovskite through grain boundaries, leaving a large part of the surface of the 

perovskite thin film intact. Therefore, the junction between the perovskite thin film and the ZnO 

NP thin film has a chance to preserve its quality, resulting in a negligible degradation of VOC and 

FF even if the devices were kept in air with a relative humidity of 48.5 % for 300 h. There are two 

possible solutions to improve the stability of perovskite solar cells. First, a process capable of 

depositing perovskite thin film with larger crystal size needs to be developed to reduce the number 

of paths through which the moisture gets to the bulk perovskite. Second, the metal oxides with 

decent ambient stability have obvious advantages over those organic CTLs. Their properties 

should be further investigated and developed for perovskite solar cells. 

        As mentioned earlier, the conventional perovskite solar cell adopted a device structure which 

have been developed for almost 20 years, while the device structure with all inorganic CTLs 

proposed in this work is new. It is reasonable to expect that its performance would be significantly 

improved with further optimization. As a hint, spiro-OMeTAD used in this work was doped with 

a lithium salt, which is a common procedure to increase the conductivity of spiro-OMeTAD, 

leading to higher performance of solid-state dye-sensitized solar cells (SSDSSCs) and perovskite 

solar cells [157]. Doping of ZnO NPs, which will increase the conductivity of ZnO NPs [158], 

could be a strategy to improve the efficiency of perovskite solar cells with the device structure 

developed in this work.
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FUTURE WORK AND CONCLUSION 

6.1 FUTURE WORK 

6.1.1 Interface Engineering of CZTS Solar Cells 

As discussed earlier, while the defect density in perovskite solar cell is as high as 2.79×1016 cm-3, 

more than 18% efficiency can still be obtained. Conversely, while the defect density in CZTS solar 

cell is lower than what is observed in perovskite solar cell (1×1016 cm-3), the highest efficiency 

obtained is less than 13%. This indicates that the quality of the CZTS absorber layer is not the 

major factor which limits the performance of CZTS solar cell. The low quality of the interfaces, 

including the interface between CdS and CZTS and the interface between CZTS and Mo, could be 

the origins of the poor performance in CZTS solar cells.  

        The employment of CdS in CZTS solar cells was based on the experiences in developing 

CIGS solar cells. Although CdS is reportedly to be the best n-type semiconductor to form p-n 

junction in CZTS solar cells, it has yet to be optimized. Recently, it has been found that the built-

in homogeneous p-n junction observed in CIGS solar cell due to the diffusion of Cd into CIGS 

thin film does not exist in CZTS solar cell [159, 160]. This indicates that the photo-excited 

electrons and holes in CZTS must be separated by the heterogeneous p-n junction formed by CdS 

and CZTS, leading to higher possibility to be recombined. The quality of the interface of 
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CdS/CZTS should be improved by using alternative n-type semiconductors or by developing 

alternative coating processes for CdS thin films. 

        Similarly, the employment of Mo back contact in CZTS solar cells was also based on the 

experiences in developing CIGS solar cells. However, it has been found that the coating procedures 

which have worked pretty well with CIGS solar cell would resulted into formation of extremely 

thick MoSe2 thin film, leading to high series resistance and deteriorated the device efficiency 

[161]. Materials such as TiN and TiB2 have been deposited between the Mo and the CZTS to partly 

or completely suppress the formation of MoSe2 thin film [162-164]. Other materials which will 

sufficiently suppress the formation of MoSe2 and effectively facilitate the transport of charges 

need to be explored. 

6.1.2 Interface Engineering of MAPbI3 Solar Cells 

Li doping has been applied to enhance the conductivity of organic HTLs such as spiro-OMeTAD 

and P3HT, which greatly enhances the device efficiency of perovskite solar cells [157, 165]. For 

inorganic HTL such as NiOx, Cu doping was reported to enhance its conductivity, leading to higher 

efficiency of perovskite solar cells [166]. Al doping is well known to improve the conductivity of 

ZnO thin films, ZnO nanorods, and ZnO nanoparticles [167-169]. The efficiency of solar cells was 

improved by using these doped materials [168]. As addressed in 4.3, the application of ZnO NPs 

as ETL has greatly improved the stability of perovskite solar cells. However, the efficiency lags 

behind. This is probably caused by the extremely low conductivity of ZnO NPs. Therefore, 

application of Al-doped ZnO NPs as ETL in perovskite solar cell can possibly improve both the 

efficiency and the stability of perovskite solar cells. 
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        The J-V curves of the champion solar cell of each sample are shown in Fig. 6.1 and 

corresponding I-V parameters, namely, the conversion efficiency (Eff.), short-circuit current 

density (JSC), fill factor (FF), and open circuit voltage (VOC), which are derived from Fig. 4.38, are 

summarized in the table inserted in Fig. 4.38. The best perovskite solar cell without Al-doped ZnO 

NPs produced a JSC of 18.37 mA/cm2, a VOC of 0.81 V and a FF of 63.2 %, while the most efficient 

perovskite solar cell with Al-doped ZnO solar cell had a JSC of 21.52 mA/cm2, a VOC of 0.91 V and 

a FF of 55.99 %. As a result, the efficiency of perovskite solar cell was improved from 9.41 % to 

10.95 %. The reasons of the enhancement of photovoltaic parameters were investigated and 

discussed below. 

Figure 6.1 J-V curves of the champion perovskite solar cells with and without Al-doped ZnO NPs. 
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        The noticeable improvement of the perovskite solar cell with Al-doped ZnO NPs is the 

increased Jsc and enhanced Voc, while the FF is slightly degraded. For FF, the affecting 

mechanisms are more complex than those of Jsc and Voc. For Jsc and Voc, the major factor is the 

recombination processes, either in the bulk, or at the interfaces. For the perovskite solar cells with 

and without Al-doped ZnO NPs, the only difference is the interface between ZnO NPs and the Ag 

contact. With a layer of Al-doped ZnO NPs, the interface between ZnO NPs and Ag contact could 

be improved, as what was observed in CIGS solar cells, leading to higher Jsc and Voc. As clearly 

demonstrated in Fig. 6.2, which shows the statistical distributions of the Voc of perovskite solar 

cells with and without Al-doped ZnO NPs, the inclusion of Al-doped ZnO NPs between the ZnO 

NPs and the Ag contact definitely improved the Voc of perovskite solar cells, indicating the 

recombination at the interface between the ZnO NPs and the Ag contact was suppressed. 
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Figure 6.2 The statistical distributions of the Voc of perovskite solar cells with and without Al-doped ZnO NPs. 

        The temperature dependence of Voc of perovskite solar cells with and without Al-doped ZnO 

NPs are shown in Fig. 6.3. The intercept of the Voc versus T plot at 0K for perovskite solar cells 

without Al-doped ZnO NPs yields the Ea of 1.31eV, which is significantly lower than the band 

gap of the absorber layer, while that of perovskite solar cells with Al-doped ZnO NPs is 1.57 eV, 

which is the same as the band gap of the absorber layer. This indicates that the dominant 

recombination process occurs in the charge transport layer-absorber interfaces for perovskite solar 

cells without Al-doped ZnO NPs, while the dominant recombination process occurs in the space 

charge region for perovskite solar cells with Al-doped ZnO NPs. The inclusion of Al-doped ZnO 
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NPs between the ZnO NPs and the Ag contact can improve the interface by suppressing the 

interfacial recombination, leading to higher performance.  

Figure 6.3 Temperature dependence of the Voc and its linear extrapolation line to 0 K for perovskite solar 

cells with and without Al-doped ZnO NPs, which helps to elucidate the dominant recombination process in the two 

types of devices. 

        While the utilization of Al-doped ZnO NPs can enhance the Voc of perovskite solar cells and 

therefore increase the performance of perovskite solar cells, the efficiency obtained so far is still 

lower than what has been obtained from perovskite solar cells with conventional structures. 
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Investigation on the cross section of the device using KPFM can possibly reveal how the charges 

are transported and where the improvement could be achieved. 

6.1.3 Effects of impurities in MAPbI3 Solar Cells 

Cl doping has been demonstrated to be capable of effectively improve the performance of 

perovskite solar cells. Furthermore, introduction of negligible amount of Cl into low purity 

MAPbI3 solar cell can significantly boost the performance. Therefore, the concentration of Cl in 

perovskite thin film will be investigated. Also, how and where Cl lies in perovskite thin film will 

also be studied. Furthermore, the impurities in PbI2 will be revealed and their effects on the 

performance of perovskite solar cells will be investigated. By combining theoretical calculations 

with experimental results, the mechanisms behind the Cl doping-associated improvement of 

performance of perovskite solar cells made from low purity PbI2 will be revealed. Doping of 

perovskite thin films with alternative materials with expectation to enhance device performance 

will be explored. The alternative doping procedures are expected to neutralize the impurities in 

PbI2, passivate the grain boundaries of perovskite thin film, and improve the lifetime of the carriers. 

6.2 CONCLUSION 

The properties of the CZTS thin films deposited by the water-based method are greatly affected 

by the Se feeding time. Varying the time from 0 to 30 min resulted in CZTS thin films with ratios 

of Se/(Se+S) varying from 0 to 25%. The extension of Se vapor feeding time increases the 

bandgap, slightly increases the lattice parameters, and significantly improves the morphologies of 
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the CZTS thin films. A remarkable enhancement of performance was achieved from the CZTS 

solar cells with longer Se vapor feeding times compared to those without Se vapor feeding. 

        The mixed halide source method proposed in this work can be applied to combine the 

advantages of a modified one-step process and Cl incorporation. A larger band bending at grain 

boundaries with Cl incorporation, revealed by KPFM measurement, suggest that a p-i-n type of 

heterojunction junction is formed in the devices with Cl incorporation. The p-i-n junction 

facilitates the charge carrier collection and reduces recombination. Planar perovskite solar cells 

with uniform morphology can be fabricated by the two-step solution process and the performance 

can be improved by the Cl incorporation. This technique can be easily combined with other highly 

efficient growth methods. Higher performance could be expected for solution-processed, planar 

perovskite solar cells. 

        Additionally, we have successfully prepared inorganic metal oxides which can be used as 

CTLs in highly performed perovskite solar cells. The stability of the perovskite solar cells has been 

significantly enhanced due to the stability of these inorganic metal oxides in ambient environment. 

The slow degradation observed in corresponding perovskite solar cells was suggested to be mainly 

caused by the moisture infiltrated into the perovskite thin film through grain boundaries, while the 

rapid loss of performance observed in the conventional perovskite solar cell with device structure 

of TiO2/spiro-OMeTAD resulted from the degradation of the perovskite thin film and the junction. 

This study provides an excellent device structure for making highly stable and efficient perovskite 

solar cells. 

        Finally, the defect density of CZTS solar cell is reported to be 1×1016 cm-3, while that of 

perovskite solar cell is found to be more than 2×1016 cm-3. Although the defect density in 

perovskite solar cell is higher than that in CZTS solar cell, the efficiency obtained so far from 
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perovskite solar cell is much higher than that obtained from CZTS solar cell. This indicates that 

the quality of the interfaces in CZTS solar cell is much worse than that of perovskite solar cell, 

and should be prioritized in the future work.



101 

BIBLIOGRAPHY 

[1] Available: http://www1.umn.edu/iree/e3/archive/archive_2010/E3_Aydil.pdf

[2] M. A. Green, "Estimates of Te and In Prices from Direct Mining of Known Ores," Progress

in Photovoltaics, vol. 17, pp. 347-359, Aug 2009.

[3] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, et al., "Device

Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Advanced

Energy Materials, vol. 4, May 2014.

[4] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, et al., "Compositional

engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, pp.

476-480, 01/22/print 2015.

[5] S. Wagner and P. M. Bridenbaugh, "Multicomponent tetrahedral compounds for solar

cells," Journal of Crystal Growth, vol. 39, pp. 151-159, 7// 1977.

[6] I. Kentaro and N. Tatsuo, "Electrical and Optical Properties of Stannite-Type Quaternary

Semiconductor Thin Films," Japanese Journal of Applied Physics, vol. 27, p. 2094, 1988.

[7] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, "Preparation

and evaluation of Cu2ZnSnS4 thin films by sulfurization of E B evaporated precursors,"

Solar Energy Materials and Solar Cells, vol. 49, pp. 407-414, 12// 1997.

[8] R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, et al., "Band

alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface," Applied Physics Letters, vol. 98, Jun

20 2011.

[9] S. Y. Chen, J. H. Yang, X. G. Gong, A. Walsh, and S. H. Wei, "Intrinsic point defects and

complexes in the quaternary kesterite semiconductor Cu2ZnSnS4," Physical Review B, vol.

81, Jun 8 2010.

[10] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, et al.,

"Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%," Physica

Status Solidi-Rapid Research Letters, vol. 9, pp. 28-31, Jan 2015.

http://www1.umn.edu/iree/e3/archive/archive_2010/E3_Aydil.pdf


102 

[11] L. Yin, G. M. Cheng, Y. Feng, Z. H. Li, C. L. Yang, and X. D. Xiao, "Limitation factors 
for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect 
characterization," Rsc Advances, vol. 5, pp. 40369-40374, 2015.

[12] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as 
Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical 
Society, vol. 131, pp. 6050-6051, 2009/05/06 2009.

[13] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite 
quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.

[14] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, et al., "Lead Iodide 
Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with 
Efficiency Exceeding 9%," Sci. Rep., vol. 2, 08/21/online 2012.

[15] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., 
"Sequential deposition as a route to high-performance perovskite-sensitized solar cells," 
Nature, vol. 499, pp. 316-319, 07/18/print 2013.

[16] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar 
cells by vapour deposition," Nature, vol. 501, pp. 395-398, 09/19/print 2013.

[17] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, et al., "A Fast Deposition-

Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar 
Cells," Angewandte Chemie International Edition, vol. 53, pp. 9898-9903, 2014.

[18] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, and H.-W. Lin, 
"Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum 
Deposition," Advanced Materials, vol. 26, pp. 6647-6652, 2014.

[19] J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, "High-Efficiency Perovskite Solar Cells 
Based on the Black Polymorph of HC(NH2)2PbI3," Advanced Materials, vol. 26, pp. 

4991-4998, 2014.

[20] A. Suzuki, H. Okada, and T. Oku, "Fabrication and Characterization of CH3NH3PbI3-x-

yBrxCly Perovskite Solar Cells," Energies, vol. 9, May 2016.

[21] C. C. Chen, Z. R. Hong, G. Li, Q. Chen, H. P. Zhou, and Y. Yang, "One-step, low-

temperature deposited perovskite solar cell utilizing small molecule additive," Journal of 
Photonics for Energy, vol. 5, Jan 16 2015.

[22] D. Vak, K. Hwang, A. Faulks, Y.-S. Jung, N. Clark, D.-Y. Kim, et al., "3D Printer Based 
Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells," 
Advanced Energy Materials, vol. 5, pp. n/a-n/a, 2015. 



103 

[23] M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, J. Ding, et al., "A promising alternative solvent 
of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices," RSC 
Advances, vol. 5, pp. 20521-20529, 2015.

[24] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, et al., "Additive 
Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-

Heterojunction Solar Cells," Advanced Materials, vol. 26, pp. 3748-3754, 2014.

[25] D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, and C. Li, "Alternating precursor layer 
deposition for highly stable perovskite films towards efficient solar cells using vacuum 
deposition," Journal of Materials Chemistry A, vol. 3, pp. 9401-9405, 2015.

[26] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, et al., "Interface engineering of 
highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, August 1, 2014 
2014.

[27] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. 
Snaith, "Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer 
in Perovskite Solar Cells," Nano Letters, vol. 14, pp. 5561-5568, 2014/10/08 2014.

[28] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical Management for 
Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells," 
Nano Letters, vol. 13, pp. 1764-1769, Apr 2013.

[29] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, "Photocarrier 
Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications," Journal 
of the American Chemical Society, vol. 136, pp. 11610-11613, 2014/08/20 2014.

[30] M. Powalla, M. Cemernjak, J. Eberhardt, F. Kessler, R. Kniese, H. D. Mohring, et al., 
"Large-area CIGS modules: Pilot line production and new developments," Solar Energy 
Materials and Solar Cells, vol. 90, pp. 3158-3164, Nov 23 2006.

[31] C. S. Jiang, R. Noufi, J. A. AbuShama, K. Ramanathan, H. R. Moutinho, J. Pankow, et al., 
"Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films," Applied Physics 
Letters, vol. 84, pp. 3477-3479, May 3 2004.

[32] I. Visoly-Fisher, S. R. Cohen, K. Gartsman, A. Ruzin, and D. Cahen, "Understanding the 
beneficial role of grain boundaries in polycrystalline solar cells from single-grain-boundary 
scanning probe microscopy," Advanced Functional Materials, vol. 16, pp. 649-660, Mar 
20 2006.

[33] A. Zaban, M. Greenshtein, and J. Bisquert, "Determination of the Electron Lifetime in 
Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements," 
ChemPhysChem, vol. 4, pp. 859-864, 2003. 



104 

[34] S. R. Lederhandler and L. J. Giacoletto, "Measurement of Minority Carrier Lifetime and 
Surface Effects in Junction Devices," Proceedings of the Institute of Radio Engineers, vol. 
43, pp. 477-483, 1955.

[35] T. Pisarkiewicz, "Photodecay method in investigation of materials and photovoltaic 
structures," Opto-Electronics Review, vol. 12, pp. 33-40, Mar 2004.

[36] G. P. Li and K. L. Wang, "Detection Sensitivity and Spatial-Resolution of Reverse-Bias 
Pulsed Deep-Level Transient Spectroscopy for Studying Electric Field-Enhanced Carrier 
Emission," Journal of Applied Physics, vol. 57, pp. 1016-1021, 1985.

[37] J. H. a. P. Zabierowski, Advanced Characterization Techniques for Thin Film Solar Cells: 
Wiley-VCH, 2011.

[38] A. Jasenek, U. Rau, V. Nadenau, and H. W. Schock, "Electronic properties of CuGaSe2-

based heterojunction solar cells. Part II. Defect spectroscopy," Journal of Applied Physics, 
vol. 87, pp. 594-602, 2000.

[39] M. Rusu, W. Eisele, R. Wurz, A. Ennaoui, M. C. Lux-Steiner, T. P. Niesen, et al., "Current 
transport in ZnO/ZnS/Cu(In,Ga)(S,Se)2 solar cell," Journal of Physics and Chemistry of 
Solids, vol. 64, pp. 2037-2040, Sep-Oct 2003.

[40] D. B. Mitzi, O. Gunawan, T. K. Todorov, and D. A. R. Barkhouse, Prospects and 
performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology vol. 371, 2013.

[41] A. Doukkali, S. Ledain, C. Guasch, and J. Bonnet, "Surface potential mapping of biased 
pn junction with kelvin probe force microscopy: application to cross-section devices," 
Applied surface science, vol. 235, pp. 507-512, 2004.

[42] F. Lan and G. Li, "Direct Observation of Hole Transfer from Semiconducting Polymer to 
Carbon Nanotubes," Nano Letters, vol. 13, pp. 2086-2091, 2013/05/08 2013.

[43] C.-S. Jiang, M. Yang, Y. Zhou, B. To, S. U. Nanayakkara, J. M. Luther, et al., "Carrier 
separation and transport in perovskite solar cells studied by nanometre-scale profiling of 
electrical potential," Nature communications, vol. 6, 2015.

[44] R. Saive, M. Scherer, C. Mueller, D. Daume, J. Schinke, M. Kroeger, et al., "Imaging the 
electric potential within organic solar cells," Advanced Functional Materials, vol. 23, pp. 
5854-5860, 2013.

[45] Q. Chen, L. Mao, Y. Li, T. Kong, N. Wu, C. Ma, et al., "Quantitative operando 
visualization of the energy band depth profile in solar cells," Nature communications, vol. 
6, 2015.

[46] G. Li, B. Mao, F. Lan, and L. Liu, "Practical aspects of single-pass scan Kelvin probe force 
microscopy," Review of Scientific Instruments, vol. 83, p. 113701, 2012. 



105 

[47] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, et al., "Device

Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Advanced

Energy Materials, vol. 4, pp. n/a-n/a, 2014.

[48] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, et al., "Co-evaporated

Cu2ZnSnSe4 films and devices," Solar Energy Materials and Solar Cells, vol. 101, pp.

154-159, 6// 2012.

[49] K. Woo, Y. Kim, and J. Moon, "A non-toxic, solution-processed, earth abundant absorbing

layer for thin-film solar cells," Energy & Environmental Science, vol. 5, pp. 5340-5345,

2012.

[50] Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, et al., "Novel non-hydrazine

solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells,"

Journal of Materials Chemistry A, vol. 1, pp. 6880-6887, 2013.

[51] Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, et al.,

"Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals," Journal of

the American Chemical Society, vol. 132, pp. 17384-17386, 2010/12/15 2010.

[52] W. Yang, H.-S. Duan, K. C. Cha, C.-J. Hsu, W.-C. Hsu, H. Zhou, et al., "Molecular

Solution Approach To Synthesize Electronic Quality Cu2ZnSnS4 Thin Films," Journal of

the American Chemical Society, vol. 135, pp. 6915-6920, 2013/05/08 2013.

[53] W. Yang, H.-S. Duan, B. Bob, H. Zhou, B. Lei, C.-H. Chung, et al., "Novel Solution

Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4 Solar Cells," Advanced

Materials, vol. 24, pp. 6323-6329, 2012.

[54] Y. Cao, M. S. Denny, J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, et al., "High-

Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from

Binary and Ternary Nanoparticles," Journal of the American Chemical Society, vol. 134,

pp. 15644-15647, 2012/09/26 2012.

[55] W. Ki and H. W. Hillhouse, "Earth-Abundant Element Photovoltaics Directly from Soluble

Precursors with High Yield Using a Non-Toxic Solvent," Advanced Energy Materials, vol.

1, pp. 732-735, 2011.

[56] J. Minlin, R. Dhakal, L. Yong, P. Thapaliya, and Y. Xingzhong, "Cu2ZnSnS4 (CZTS)

polycrystalline thin films prepared by sol-gel method," in Photovoltaic Specialists

Conference (PVSC), 2011 37th IEEE, 2011, pp. 001283-001286.

[57] M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J. D. Caldwell, et al., "Cu2ZnSnS4

polycrystalline thin films with large densely packed grains prepared by sol-gel method,"

Journal of Photonics for Energy, vol. 1, pp. 019501-019501-6, 2011.

[58] J. Minlin, W. Fanan, L. Fei, L. Guangyong, and Y. Xingzhong, "Bandgap tuning and

morphology amelioration of sol-gel derived Cu2ZnSnS4 (CZTS) thin films by selenium



106 

incorporation," in Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, 2013, pp. 

2602-2604. 

[59] M. Jiang, F. Lan, X. Yan, and G. Li, "Cu2ZnSn(S1–xSex)4 thin film solar cells prepared by

water-based solution process," physica status solidi (RRL) – Rapid Research Letters, vol.

8, pp. 223-227, 2014.

[60] M. Jiang, K. Tang, and X. Yan, "Characterization of intrinsic ZnO thin film deposited by 
sputtering and its effects on CuIn1−xGaxSe2 solar cells," Journal of Photonics for Energy,

vol. 2, pp. 028502-1-028502-11, 2012.

[61] C. J. Doona and D. M. Stanbury, "Equilibrium and Redox Kinetics of Copper(II)

−Thiourea Complexes," Inorganic Chemistry, vol. 35, pp. 3210-3216, 1996/01/01 1996.

[62] P. Bombicz, I. Mutikainen, M. Krunks, T. Leskelä, J. Madarász, and L. Niinistö,

"Synthesis, vibrational spectra and X-ray structures of copper(I) thiourea complexes,"

Inorganica Chimica Acta, vol. 357, pp. 513-525, 1/30/ 2004.

[63] J. Madarász, P. Bombicz, M. Okuya, and S. Kaneko, "Thermal decomposition of thiourea

complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis

deposition of sulfide thin films," Solid State Ionics, vol. 141–142, pp. 439-446, 5/1/ 2001.

[64] A. Weber, R. Mainz, T. Unold, S. Schorr, and H.-W. Schock, "In-situ XRD on formation

reactions of Cu2ZnSnS4 thin films," physica status solidi (c), vol. 6, pp. 1245-1248, 2009.

[65] S. Chen, J.-H. Yang, X. G. Gong, A. Walsh, and S.-H. Wei, "Intrinsic point defects and

complexes in the quaternary kesterite semiconductor CuZnSnS4," Physical Review B, vol.

81, p. 245204, 06/08/ 2010.

[66] P. M. P. Salomé, P. A. Fernandes, and A. F. d. Cunha, "Influence of selenization pressure

on the growth of Cu2ZnSnSe4 films from stacked metallic layers," physica status solidi (c),

vol. 7, pp. 913-916, 2010.

[67] P. M. P. Salomé, P. A. Fernandes, A. F. da Cunha, J. P. Leitão, J. Malaquias, A. Weber, et

al., "Growth pressure dependence of Cu2ZnSnSe4 properties," Solar Energy Materials and

Solar Cells, vol. 94, pp. 2176-2180, 12// 2010.

[68] A. Weber, R. Mainz, and H. W. Schock, "On the Sn loss from thin films of the material

system Cu–Zn–Sn–S in high vacuum," Journal of Applied Physics, vol. 107, pp. -, 2010.

[69] A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, "The Consequences of Kesterite

Equilibria for Efficient Solar Cells," Journal of the American Chemical Society, vol. 133,

pp. 3320-3323, 2011/03/16 2011.

[70] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, et al., "Thermally

evaporated Cu2ZnSnS4 solar cells," Applied Physics Letters, vol. 97, pp. -, 2010.



107 

[71] A. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, and S. F.

Bent, "Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers," Thin

Solid Films, vol. 519, pp. 2488-2492, 2/1/ 2011.

[72] R. J. Deokate, A. D. Adsool, N. S. Shinde, S. M. Pawar, and C. D. Lokhande, "Structural

and Optical Properties of Spray-deposited Cu2ZnSnS4 thin Films," Energy Procedia, vol.

54, pp. 627-633, // 2014.

[73] S. C. Riha, B. A. Parkinson, and A. L. Prieto, "Compositionally Tunable Cu2ZnSn(S1–

xSex)4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin

Films," Journal of the American Chemical Society, vol. 133, pp. 15272-15275, 2011/10/05

2011.

[74] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, et al., "Thermally

evaporated Cu2ZnSnS4 solar cells," Applied Physics Letters, vol. 97, pp. 143508-143508-

3, 2010.

[75] I. P. Parkin, L. S. Price, T. G. Hibbert, and K. C. Molloy, "The first single source deposition

of tin sulfide coatings on glass: aerosol-assisted chemical vapour deposition using

[Sn(SCHCHS)]," Journal of Materials Chemistry, vol. 11, pp. 1486-1490, 2001.

[76] L. A. Isac, A. Duta, A. Kriza, I. A. Enesca, and M. Nanu, "The growth of CuS thin films

by Spray Pyrolysis," Journal of Physics: Conference Series, vol. 61, p. 477, 2007.

[77] M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, et al., "Cliff-

like conduction band offset and KCN-induced recombination barrier enhancement at the

CdS/Cu2ZnSnS4 thin-film solar cell heterojunction," Applied Physics Letters, vol. 99, pp.

-, 2011.

[78] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, and T. Raadik,

"Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic

applications," Thin Solid Films, vol. 519, pp. 7403-7406, 8/31/ 2011.

[79] M. Bär, B.-A. Schubert, B. Marsen, S. Krause, S. Pookpanratana, T. Unold, et al., "Impact

of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin-film

solar cell absorbers," Applied Physics Letters, vol. 99, pp. -, 2011.

[80] N. B. Chaure, S. Bordas, A. P. Samantilleke, S. N. Chaure, J. Haigh, and I. M. Dharmadasa,

"Investigation of electronic quality of chemical bath deposited cadmium sulphide layers

used in thin film photovoltaic solar cells," Thin Solid Films, vol. 437, pp. 10-17, 8/1/ 2003.

[81] A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F. A. Pulgarín-Agudelo,

O. Vigil-Galán, et al., "Development of a Selective Chemical Etch To Improve the

Conversion Efficiency of Zn-Rich Cu2ZnSnS4 Solar Cells," Journal of the American

Chemical Society, vol. 134, pp. 8018-8021, 2012/05/16 2012.



108 

[82] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, "Cu2ZnSnSe4

thin film solar cells produced by selenisation of magnetron sputtered precursors," Progress

in Photovoltaics: Research and Applications, vol. 17, pp. 315-319, 2009.

[83] M. Bär, W. Bohne, J. Röhrich, E. Strub, S. Lindner, M. C. Lux-Steiner, et al.,

"Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2

chalcopyrite from its composition gradient," Journal of Applied Physics, vol. 96, pp. 3857-

3860, 2004.

[84] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-

x) nanocrystals: experimental and first-principles calculations," CrystEngComm, vol. 13,

pp. 2222-2226, 2011.

[85] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, "Device

characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell," Progress in

Photovoltaics: Research and Applications, vol. 20, pp. 6-11, 2012.

[86] T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, et al., "Beyond 11%

Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells," Advanced

Energy Materials, vol. 3, pp. 34-38, 2013.

[87] S. Ye, X. Tan, M. Jiang, B. Fan, K. Tang, and S. Zhuang, "Impact of different Na-

incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate,"

Applied Optics, vol. 49, pp. 1662-1665, 2010/03/20 2010.

[88] V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M.

Lee, et al., "Excitons versus free charges in organo-lead tri-halide perovskites," Nat

Commun, vol. 5, 04/08/online 2014.

[89] N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, "Highly Reproducible

Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7%

Fabricated via Lewis Base Adduct of Lead(II) Iodide," Journal of the American Chemical

Society, vol. 137, pp. 8696-8699, Jul 15 2015.

[90] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological

Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar

Cells," Advanced Functional Materials, vol. 24, pp. 151-157, 2014.

[91] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, et al.,

"CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm," Journal of Physical

Chemistry Letters, vol. 5, pp. 1004-1011, Mar 20 2014.

[92] D. Q. Bi, A. M. El-Zohry, A. Hagfeldt, and G. Boschloo, "Unraveling the Effect of PbI2

Concentration on Charge Recombination Kinetics in Perovskite Solar Cells," Acs

Photonics, vol. 2, pp. 589-594, May 2015.



109 

[93] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, et al., "Efficient, high yield

perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor

stacking layers," Energy & Environmental Science, vol. 7, pp. 2619-2623, 2014.

[94] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, "Low-temperature processed meso-

superstructured to thin-film perovskite solar cells," Energy & Environmental Science, vol.

6, pp. 1739-1743, 2013.

[95] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, et al.,

"Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a

Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor),"

Nano Letters, vol. 14, pp. 1000-1004, Feb 2014.

[96] Z. G. Xiao, C. Bi, Y. C. Shao, Q. F. Dong, Q. Wang, Y. B. Yuan, et al., "Efficient, high

yield perovskite photovoltaic devices grown by interdiffusion of solution-processed

precursor stacking layers," Energy & Environmental Science, vol. 7, pp. 2619-2623, Aug

2014.

[97] S. L. Ye, X. H. Tan, M. L. Jiang, B. Fan, K. Tang, and S. L. Zhuang, "Impact of different

Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate,"

Applied Optics, vol. 49, pp. 1662-1665, Mar 20 2010.

[98] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, et al.,

"Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide

Perovskite Absorber," Science, vol. 342, pp. 341-344, October 18, 2013 2013.

[99] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, et al., "Long-Range

Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,"

Science, vol. 342, pp. 344-347, October 18, 2013 2013.

[100] Z. Djebbour, A. Darga, A. M. Dubois, D. Mencaraglia, N. Naghavi, J. F. Guillemoles, et

al., "Admittance spectroscopy of cadmium free CIGS solar cells heterointerfaces," Thin

Solid Films, vol. 511, pp. 320-324, Jul 26 2006.

[101] Y. Y. Proskuryakov, K. Durose, B. M. Taele, G. P. Welch, and S. Oelting, "Admittance

spectroscopy of CdTe/CdS solar cells subjected to varied nitric-phosphoric etching

conditions," Journal of Applied Physics, vol. 101, Jan 1 2007.

[102] J. V. Li and D. H. Levi, "Determining the defect density of states by temperature derivative

admittance spectroscopy," Journal of Applied Physics, vol. 109, Apr 15 2011.

[103] M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H. A. Abbas, A. Kitahara, et al.,

"Defect density and dielectric constant in perovskite solar cells," Applied Physics Letters,

vol. 105, Oct 13 2014.



110 

[104] H. S. Duan, H. P. Zhou, Q. Chen, P. Y. Sun, S. Luo, T. B. Song, et al., "The identification

and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics,"

Physical Chemistry Chemical Physics, vol. 17, pp. 112-116, 2015.

[105] H. B. Xu, R. J. Hong, B. Ai, L. Zhuang, and H. Shen, "Application of phosphorus diffusion

gettering process on upgraded metallurgical grade Si wafers and solar cells," Applied

Energy, vol. 87, pp. 3425-3430, Nov 2010.

[106] M. T. Zarmai, N. N. Ekere, C. F. Oduoza, and E. H. Amalu, "A review of interconnection

technologies for improved crystalline silicon solar cell photovoltaic module assembly,"

Applied Energy, vol. 154, pp. 173-182, Sep 15 2015.

[107] S. G. Chen, "An efficient sizing method for a stand-alone PV system in terms of the

observed block extremes," Applied Energy, vol. 91, pp. 375-384, Mar 2012.

[108] G. F. Hou, H. H. Sun, Z. Y. Jiang, Z. Q. Pan, Y. B. Wang, X. D. Zhang, et al., "Life cycle

assessment of grid-connected photovoltaic power generation from crystalline silicon solar

modules in China," Applied Energy, vol. 164, pp. 882-890, Feb 15 2016.

[109] L. J. Geerligs and D. Macdonald, "Base doping and recombination activity of impurities in

crystalline silicon solar cells," Progress in Photovoltaics, vol. 12, pp. 309-316, Jun 2004.

[110] J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Raichoudhury, J. R. Mccormick, et

al., "Impurities in Silicon Solar-Cells," Ieee Transactions on Electron Devices, vol. 27, pp.

677-687, 1980.

[111] J. W. Bishop, "Microplasma Breakdown and Hot-Spots in Silicon Solar-Cells," Solar

Cells, vol. 26, pp. 335-349, Sep 1989.

[112] G. Buzanich, M. Radtke, U. Reinholz, H. Riesemeier, A. F. Thunemann, and C. Streli,

"Impurities in multicrystalline silicon wafers for solar cells detected by synchrotron micro-

beam X-ray fluorescence analysis," Journal of Analytical Atomic Spectrometry, vol. 27,

pp. 1875-1881, Nov 2012.

[113] A. M. Salama and L. J. Cheng, "The Effects of Titanium Impurities in N+-P Silicon Solar-

Cells," Journal of the Electrochemical Society, vol. 127, pp. 1164-1167, 1980.

[114] W. P. Lee, E. P. Teh, H. K. Yow, C. L. Choong, and T. Y. Tou, "Enhanced gettering of

iron impurities in bulk silicon by using external direct current electric field," Journal of

Electronic Materials, vol. 34, pp. L25-L29, Jul 2005.

[115] M. I. Asghar, M. Yli-Koski, H. Savin, A. Haarahiltunen, H. Talvitie, and J. Sinkkonen,

"Competitive iron gettering between internal gettering sites and boron implantation in CZ-

silicon," Materials Science and Engineering B-Advanced Functional Solid-State

Materials, vol. 159-60, pp. 224-227, Mar 15 2009.



111 

[116] M. L. Jiang, J. M. Wu, F. Lan, Q. Tao, D. Gao, and G. Y. Li, "Enhancing the performance

of planar organo-lead halide perovskite solar cells by using a mixed halide source," Journal

of Materials Chemistry A, vol. 3, pp. 963-967, 2015.

[117] A. Babayigit, D. D. Thanh, A. Ethirajan, J. Manca, M. Muller, H. G. Boyen, et al.,

"Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio

rerio," Scientific Reports, vol. 6, Jan 13 2016.

[118] L. Kaake, X. D. Dang, W. L. Leong, Y. Zhang, A. Heeger, and T. Q. Nguyen, "Effects of

Impurities on Operational Mechanism of Organic Bulk Heterojunction Solar Cells,"

Advanced Materials, vol. 25, pp. 1706-1712, Mar 25 2013.

[119] J. Y. Cho, K. H. Seo, B. H. Kang, and K. Y. Kim, "The Effect of the Purity of Raw

Materials on the Purity of Silicon Extracted by Solvent Refining and Centrifugation,"

Korean Journal of Metals and Materials, vol. 50, pp. 907-911, Dec 2012.

[120] J. J. Chang, H. Zhu, B. C. Li, F. H. Isikgor, Y. Hao, Q. H. Xu, et al., "Boosting the

performance of planar heterojunction perovskite solar cell by controlling the precursor

purity of perovskite materials," Journal of Materials Chemistry A, vol. 4, pp. 887-893,

2016.

[121] P. Docampo, F. C. Hanusch, S. D. Stranks, M. Doblinger, J. M. Feckl, M. Ehrensperger, et

al., "Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite

Solar Cells," Advanced Energy Materials, vol. 4, Oct 7 2014.

[122] N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L. Y. Han, and K. Miyano, "Hysteresis-

free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion

method," Journal of Materials Chemistry A, vol. 3, pp. 12081-12088, 2015.

[123] H. Yu, F. Wang, F. Y. Xie, W. W. Li, J. Chen, and N. Zhao, "The Role of Chlorine in the

Formation Process of "CH3NH3PbI3-xClx" Perovskite," Advanced Functional Materials,

vol. 24, pp. 7102-7108, Dec 3 2014.

[124] S. R. Cowan, W. L. Leong, N. Banerji, G. Dennler, and A. J. Heeger, "Identifying a

Threshold Impurity Level for Organic Solar Cells: Enhanced First-Order Recombination

Via Well-Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells," Advanced

Functional Materials, vol. 21, pp. 3083-3092, Aug 23 2011.

[125] M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, and P. W. M. Blom, "Effect

of traps on the performance of bulk heterojunction organic solar cells," Applied Physics

Letters, vol. 91, Dec 24 2007.

[126] P. K. Johnson, J. T. Heath, J. D. Cohen, K. Ramanathan, and J. R. Sites, "A comparative

study of defect states in evaporated and selenized CIGS(S) solar cells," Progress in

Photovoltaics, vol. 13, pp. 579-586, Nov 2005.



112 

[127] P. T. Erslev, J. W. Lee, W. N. Shafarman, and J. D. Cohen, "The influence of Na on

metastable defect kinetics in CIGS materials," Thin Solid Films, vol. 517, pp. 2277-2281,

Feb 2 2009.

[128] J. Serhan, Z. Djebbour, D. Mencaraglia, F. Couzinie-Devy, N. Barreau, and J. Kessler,

"Influence of Ga content on defects in CuInxGa1-xSe2 based solar cell absorbers

investigated by sub gap modulated photocurrent and admittance spectroscopy," Thin Solid

Films, vol. 519, pp. 7312-7316, Aug 31 2011.

[129] A. S. Gudovskikh, J. P. Kleider, R. Chouffot, N. A. Kalyuzhnyy, S. A. Mintairov, and V.

M. Lantratov, "III-phosphides heterojunction solar cell interface properties from

admittance spectroscopy," Journal of Physics D-Applied Physics, vol. 42, Aug 21 2009.

[130] M. H. Du, "Efficient carrier transport in halide perovskites: theoretical perspectives,"

Journal of Materials Chemistry A, vol. 2, pp. 9091-9098, 2014.

[131] Y. Z. Xu, L. F. Zhu, J. J. Shi, S. T. Lv, X. Xu, J. Y. Xiao, et al., "Efficient Hybrid

Mesoscopic Solar Cells with Morphology-Controlled CH3NH3PbI3-xClx Derived from

Two-Step Spin Coating Method," Acs Applied Materials & Interfaces, vol. 7, pp.

2242-2248, Feb 4 2015.

[132] J. Qing, H. T. Chandran, Y. H. Cheng, X. K. Liu, H. W. Li, S. W. Tsang, et al., "Chlorine

Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead

Acetate Precursor," Acs Applied Materials & Interfaces, vol. 7, pp. 23110-23116, Oct 21

2015.

[133] M. Jiang, J. Wu, G. Di, and G. Li, "Nanostructured solar cell based on solution processed

Cu2ZnSnS4 nanoparticles and vertically aligned ZnO nanorod array," physica status solidi

(RRL) – Rapid Research Letters, vol. 8, pp. 971-975, 2014.

[134] Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, et al., "Degradation

observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high

temperatures and humidity," Journal of Materials Chemistry A, vol. 3, pp. 8139-8147,

2015.

[135] M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumbles, et al.,

"Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices," Solar

Energy Materials and Solar Cells, vol. 92, pp. 746-752, 7// 2008.

[136] E. Voroshazi, B. Verreet, T. Aernouts, and P. Heremans, "Long-term operational lifetime

and degradation analysis of P3HT:PCBM photovoltaic cells," Solar Energy Materials and

Solar Cells, vol. 95, pp. 1303-1307, 5// 2011.

[137] O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K.

Nazeeruddin, et al., "Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based

Solar Cells: the Influence of Organic Charge Transport Layers," Advanced Energy

Materials, vol. 4, pp. n/a-n/a, 2014.



113 

[138] J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, et al., "CH3NH3PbI3-Based Planar

Solar Cells with Magnetron-Sputtered Nickel Oxide," ACS Applied Materials & Interfaces,

vol. 6, pp. 22862-22870, 2014/12/24 2014.

[139] J. H. Kim, P.-W. Liang, S. T. Williams, N. Cho, C.-C. Chueh, M. S. Glaz, et al., "High-

Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells

Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer,"

Advanced Materials, vol. 27, pp. 695-701, 2015.

[140] C. Pacholski, A. Kornowski, and H. Weller, "Self-assembly of ZnO: From nanodots to

nanorods.," Abstracts of Papers of the American Chemical Society, vol. 224, pp. U351-

U351, Aug 18 2002.

[141] K. H. Kim, C. Takahashi, Y. Abe, and M. Kawamura, "Effects of Cu doping on nickel

oxide thin film prepared by sol-gel solution process," Optik, vol. 125, pp. 2899-2901, 2014.

[142] Y. Y. Zhou, M. J. Yang, W. W. Wu, A. L. Vasiliev, K. Zhu, and N. P. Padture, "Room-

temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction

for high-performance solar cells," Journal of Materials Chemistry A, vol. 3, pp. 8178-8184,

2015.

[143] I. Sta, M. Jlassi, M. Hajji, and H. Ezzaouia, "Structural, optical and electrical properties of

undoped and Li-doped NiO thin films prepared by sol–gel spin coating method," Thin Solid

Films, vol. 555, pp. 131-137, 3/31/ 2014.

[144] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, "Hybrid Zinc

Oxide Conjugated Polymer Bulk Heterojunction Solar Cells," The Journal of Physical

Chemistry B, vol. 109, pp. 9505-9516, 2005/05/01 2005.

[145] J. B. Baxter and C. A. Schmuttenmaer, "Conductivity of ZnO Nanowires, Nanoparticles,

and Thin Films Using Time-Resolved Terahertz Spectroscopy†," The Journal of Physical

Chemistry B, vol. 110, pp. 25229-25239, 2006/12/01 2006.

[146] S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, et al., "Voltage output of

efficient perovskite solar cells with high open-circuit voltage and fill factor," Energy &

Environmental Science, vol. 7, pp. 2614-2618, 2014.

[147] F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel, et al., "Vacuum-Assisted

Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar

Cells," ACS Nano, vol. 9, pp. 639-646, 2015/01/27 2015.

[148] I. A. Garduño, J. C. Alonso, M. Bizarro, R. Ortega, L. Rodríguez-Fernández, and A. Ortiz,

"Optical and electrical properties of lithium doped nickel oxide films deposited by spray

pyrolysis onto alumina substrates," Journal of Crystal Growth, vol. 312, pp. 3276-3281,

11/1/ 2010.



114 

[149] C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, et al.,

"Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell,"

ACS Applied Materials & Interfaces, vol. 7, pp. 4955-4961, 2015/03/04 2015.

[150] M. K. Debanath and S. Karmakar, "Study of blueshift of optical band gap in zinc oxide

(ZnO) nanoparticles prepared by low-temperature wet chemical method," Materials

Letters, vol. 111, pp. 116-119, 11/15/ 2013.

[151] S. Shayesteh and A. Dizgah, "Effect of doping and annealing on the physical properties of

ZnO:Mg nanoparticles," Pramana, vol. 81, pp. 319-330, 2013/08/01 2013.

[152] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, et al.,

"Origin of the Open Circuit Voltage of Plastic Solar Cells," Advanced Functional

Materials, vol. 11, pp. 374-380, 2001.

[153] M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao, and G. Li, "Enhancing the performance of planar

organo-lead halide perovskite solar cells by using a mixed halide source," Journal of

Materials Chemistry A, vol. 3, pp. 963-967, 2015.

[154] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, et al., "Solid-state dye-

sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion

efficiencies," Nature, vol. 395, pp. 583-585, 10/08/print 1998.

[155] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, et al., "A Fast Deposition-

Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar

Cells," Angewandte Chemie, vol. 126, pp. 10056-10061, 2014.

[156] L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, et al.,

"Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-

sensitized solar cells," Physical Chemistry Chemical Physics, vol. 14, pp. 779-789, 2012.

[157] W. H. Nguyen, C. D. Bailie, E. L. Unger, and M. D. McGehee, "Enhancing the Hole-

Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2

in Perovskite and Dye-Sensitized Solar Cells," Journal of the American Chemical Society,

vol. 136, pp. 10996-11001, 2014/08/06 2014.

[158] K. J. Chen, T. H. Fang, F. Y. Hung, L. W. Ji, S. J. Chang, S. J. Young, et al., "The

crystallization and physical properties of Al-doped ZnO nanoparticles," Applied Surface

Science, vol. 254, pp. 5791-5795, 7/15/ 2008.

[159] T. Nakada and A. Kunioka, "Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films

during chemical-bath deposition process of CdS films," Applied Physics Letters, vol. 74,

pp. 2444-2446, 1999.



115 

[160] C. X. Xiao, C. S. Jiang, H. Moutinho, D. Levi, Y. F. Yan, B. Gorman, et al., "Locating the

electrical junctions in Cu(In,Ga)Se2 and Cu2ZnSnSe4 solar cells by scanning capacitance

spectroscopy," Progress in Photovoltaics, vol. 25, pp. 33-40, Jan 2017.

[161] B. Shin, N. A. Bojarczuk, and S. Guha, "On the kinetics of MoSe2 interfacial layer

formation in chalcogen-based thin film solar cells with a molybdenum back contact,"

Applied Physics Letters, vol. 102, Mar 4 2013.

[162] J. J. Scragg, T. Kubart, J. T. Watjen, T. Ericson, M. K. Linnarsson, and C. Platzer-

Bjorkman, "Effects of Back Contact Instability on Cu2ZnSnS4 Devices and Processes,"

Chemistry of Materials, vol. 25, pp. 3162-3171, Aug 13 2013.

[163] B. Shin, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Control of an interfacial MoSe2

layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN

diffusion barrier," Applied Physics Letters, vol. 101, Jul 30 2012.

[164] F. Y. Liu, K. W. Sun, W. Li, C. Yan, H. T. Cui, L. X. Jiang, et al., "Enhancing the

Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2

intermediate layer at Cu2ZnSnS4/Mo interface," Applied Physics Letters, vol. 104, Feb 3

2014.

[165] J. H. Heo and S. H. Im, "CH3NH3PbI3/poly-3-hexylthiophen perovskite mesoscopic solar

cells: Performance enhancement by Li-assisted hole conduction," Physica Status Solidi-

Rapid Research Letters, vol. 8, pp. 816-821, Oct 2014.

[166] J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, et al., "High-

Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells

Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer,"

Advanced Materials, vol. 27, pp. 695-701, Jan 27 2015.

[167] H. K. Park and J. Heo, "Improved efficiency of aluminum doping in ZnO thin films grown

by atomic layer deposition," Applied Surface Science, vol. 309, pp. 133-137, Aug 1 2014.

[168] M. Eskandari, V. Ahmadi, S. Kohnehpoushi, and M. Y. Rad, "Improvement of ZnO

nanorod based quantum Dot (cadmium sulfide) sensitized solar cell efficiency by

aluminum doping," Physica E-Low-Dimensional Systems & Nanostructures, vol. 66, pp.

275-282, Feb 2015.

[169] G. Srinet, R. Kumar, and V. Sajal, "Effects of aluminium doping on structural and

photoluminescence properties of ZnO nanoparticles," Ceramics International, vol. 40, pp.

4025-4031, Apr 2014.


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1 Chemical composition of the final CZTS thin film
	2.2 Averaged I-V parameters of CZTSSe solar cells
	3.1 Elemental ratios of the perovskite solar cells
	3.2 I-V parameters of the best perovskite solar cells
	5.1 I-V parameters the champion perovskite solar cells with different structures

	LIST OF FIGURES
	1.1 Market share of different PV technology
	1.2 (a) Schematic structure of CZTS solar cell and (b) band diagram of the CdS/CZTS heterojunction (adopted from [8])
	1.3 (a,c) Schematic structure and (b,d) band diagram of the perovskite solar cells with different structures (adopted from [20] [21])
	1.4 Illumination from a sunlight simulator and measured values of Voc at different time (adopted from [35])
	1.5 (a) Schematic of band bending with one deep trap state, (b) charge density variation through the depletion region due to the trap state, and (c) in response to a changing bias, dV/dt, changes in space charge density dρ/dt can occur at both xT and W, as indicated (adopted from [37])
	1.6 (a) Raw data of Admittance Spectroscopy for a CIGS device, (b) The Admittance Spectroscopy data after applying Eq. (2.11), showing the characteristic (peak) frequencies at each temperature, (c) Arrhenius plot of each peak (circles) and the linear fitting (line), (d) DLCP data (circles) in comparison of admittance spectroscopy data (-fdC/df) data (solid line) (adopted from [37])
	1.7 Temperature dependence of the open circuit voltage (VOC) and its linear extrapolation line to 0 K for the 15.2% efficient CIGS device (dashed line) and the 10.1% efficient CZTS device (solid line), which helps to elucidate the dominant recombination process in the two types of devices [40]
	1.8 Experimental set up and working principle of KPFM (amplitude modulation)
	2.1 Experimental setup and temperature profile of annealing
	2.2 Growth mechanisms of CZTS thin films
	2.3 Surface (a~e) and cross section (f~j) SEM images of pre-annealed and annealed CZTS thin films (a & f, Pre-annealed; b & g, Sample-0; c & h, Sample-10; d & i, Sample-20; and e & j, Sample-30) (the scale bar is 1 μm)
	2.4 XRD patterns of CZTS thin films. The standard XRD patterns for CZTSSe and CZTS are shown above
	2.5 Raman spectra of pre-annealed and annealed CZTSSe thin films
	2.6 (ahν)2 of the annealed CZTS thin films as a function of hν
	2.7 Experimental and calculated band gap energy versus Se/(S + Se) ratio
	2.8 I-V parameters of CZTSSe solar cells
	2.9 J-V curves of the solar cells with the highest efficiency in each sample
	3.1 Schematic growth process for perovskite thin films using mixed halide sources and method adopted from [79]
	3.2 EDS spectra of the perovskite thin films
	3.3 Top-view SEM images of MAPbI3 and MAPb(I,Cl)3 thin films
	3.4 XRD patterns of MAPbI3 and MAPb(I,Cl)3 solar cells: (a) full range, (b) major peak at (110) to calculate the crystal size
	3.5 I-V curves and parameters of MAPbI3 and MAPb(I,Cl)3 solar cells (the inset is the efficiency distributions of 16 devices for each sample) measured at around 25℃ under simulated unlight of 100 mW/cm2 

(AM1.5G)
	3.6 Topography AFM images (a and b), SP (c and d), and profiles of SP (e and f) of MAPbI3 (a, c, and e) and MAPb(I,Cl)3 (b, d, and f) thin films on ITO
	3.7 Band alignment of devices for (a) MAPbI3 and (b)MAPb(I,Cl)3
	3.8 AFM images, KPFM images, and the profiles along the lines in (a) MAPbI3 and (b) MAPb(I,Cl)3 thin films
	3.9 Band diagrams around the GB in MAPbI3 and MAPb(I,Cl)3 thin films
	3.10 The electron lifetime as a function of VOC
	3.11 Admittance spectroscopy of MAPbI3 and MAPb(I,Cl)3 solar cells: (a) Arrhenius plot of the transition frequencies to deriv
	4.1 Averaged I-V curves and parameters of perovskite solar cells (10 devices for each sample)
	4.2 SEM images of perovskite thin films deposited utilizing different purities of PbI2. (a) 99.999%, (b) 99%, and (c) 99%+Cl. (The scale bar is 1μm)
	4.3 (a) XRD patterns, (b) major peak at (110), (c) transmittance, and (d) optical bandgap energies of perovskite thin films utilizing different purities of PbI2
	4.4 The electron lifetime derived from OCVD method as a function of VOC
	4.5 Admittance spectroscopy of perovskite solar cell fabricated using low purity PbI2 with Cl. (a) Capacitance spectra at different temperatures. (b) The derivative of the capacitance spectra which show the transition frequency at each temperature. (c) Arrhenius plot of the transition frequencies to derive the defect energy level. (d) The distribution of the density of the defect
	4.6 Arrhenius plots of the transition frequencies to derive the defect energy levels in perovskite solar cells utilizing different purities of PbI2
	4.7 Defect density distributions of perovskite solar cell fabricated using different purities of PbI2
	5.1 Schematic device structures of (a) conventional, and (b) all inorganic CTLs perovskite solar cells
	5.2 AFM images of the surface of (a) Li:NiOx thin film, (b) ZnO NPs, and (c)perovskite thin film
	5.3 Thickness of (a) and (b) Li:NiOx thin film, (c) and (d) ZnO NPs deposited with 10 times coating
	5.4 J-V curves of the champion perovskite solar cell with different device structures
	5.5 Energy band diagrams of perovskite solar cells with different device structures of (a) TiO2/spiro-OMeTAD, (b) Li:NiOx/unannealed ZnO NPs, (c) Li:NiOx/annealed ZnO NPs
	5.6 Distributions of I–V parameters obtained from 28 perovskite solar cells with device structure of Li:NiOx/annealed ZnO NPs
	5.7 Variation of the normalized I-V parameters of the perovskite solar cells with time stored in air at room temperature without encapsulation
	6.1 J-V curves of the champion perovskite solar cells with and without Al-doped ZnO NPs
	6.2 The statistical distributions of the Voc of perovskite solar cells with and without Al-doped ZnO NPs
	6.3 Temperature dependence of the Voc and its linear extrapolation line to 0 K for perovskite solar cells with and without Al-doped ZnO NPs, which helps to elucidate the dominant

	1.0 INTRODUCTIONS
	1.1 SOLUTION-PROCESSED THIN FILM SOLAR CELLS
	1.1.1 Cu2ZnSnS4 (CZTS)
	1.1.2 CH3NH3PbI3 (MAPbI3)

	1.2 MOTIVATION
	1.3 CHARACTERIZATION METHODS
	1.3.1 Open-Circuit Voltage Decay (OCVD)
	1.3.2 Admittance Spectroscopy (AS)
	1.3.3 Temperature-Dependent Open-Circuit Voltage
	1.3.4 Kelvin Probe Force Microscopy (KPFM)


	2.0 EFFECTS OF SELENIUM VAPOR ANNEALING ON CZTS SOLAR CELLS
	2.1 EXPERIMENTAL PROCEDURES
	2.1.1 Materials
	2.1.2 CZTS Precursor Solution Preparation
	2.1.3 CZTS Precursor Thin Film Preparation
	2.1.4 CZTS Thin Film Preparation
	2.1.5 Device Fabrication

	2.2 RESULTS AND ANALYSIS

	3.0 EFFECTS OF CHLORINE DOPING ON MAPBI3 SOLAR CELLS
	3.1 EXPERIMENTAL PROCEDURES
	3.1.1 Synthesis of CH3NH3I (MAI) and CH3NH3Cl (MACl)
	3.1.2 Fabrication of MAPbI3 Solar Cells
	3.1.3 Characterization

	3.2 RESULTS AND ANALYSIS

	4.0 CHLORINE-ASSISTED RECOVERY OF PERFORMANCE LOSS IN MAPBI3 PEROVSKITE SOLAR CELL MADE FROM LOW PURITY PBI2
	4.1 EXPERIMENTAL PROCEDURES
	4.1.1 Fabrication of MAPbI3 Solar Cells using PbI2 with different purtities

	4.2 RESULTS AND ANALYSIS

	5.0 IMPROVED STABILITY OF MAPBI3 SOLAR CELLS USING ALL INORGANIC CHARGE TRANSPORT LAYERS (CTLS)
	5.1 EXPERIMENTAL PROCEDURES
	5.1.1 Synthesis of ZnO Nanoparticles (NPs)
	5.1.2 Preparation of Li-doped NiOx (Li:NiOx) sol-gel
	5.1.3 Fabrication of MAPbI3 solar cell with all inorganic CTLs

	5.2 RESULTS AND ANALYSIS

	6.0 FUTURE WORK AND CONCLUSION
	6.1 FUTURE WORK
	6.1.1 Interface Engineering of CZTS Solar Cells
	6.1.2 Interface Engineering of MAPbI3 Solar Cells
	6.1.3 Effects of impurities in MAPbI3 Solar Cells

	6.2 CONCLUSION

	BIBLIOGRAPHY



