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widely used for atomic scale predictions of properties of atoms, molecules, and materials. This 

thesis will report studies using DFT modeling to 1) understand how to improve the quality of 

continuum solvation models for predicting solvation free energies and the coordination of metal 

ions, 2) how to accurately model adjacent lanthanide metal separations, and 3) provide insight 

into the atomic scale isobutylene polymerization mechanism. This thesis will show current 

performance and existing challenges when using DFT modeling for these applications. 

QUANTUM CHEMICAL STUDIES OF METAL ION SOLVATION AND 

COORDINATION AND ELUCIDATION OF THE ISOBUTYLENE 

POLYMERIZATION MECHANISM 

Minh Nguyen Vo, M.S. 

University of Pittsburgh, 2017

 



 v 

TABLE OF CONTENTS 

PREFACE ..................................................................................................................................... X 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 PREDICTING HYDRATION FREE ENERGIES OF METAL IONS .................. 3 

2.1 INTRODUCTION ............................................................................................... 3 

2.2 COMPUTATIONAL DETAILS AND METHODOLOGY............................. 4 

2.2.1 Metal and water clusters generation .............................................................. 4 

2.2.2 Thermodynamic cycle for computing ∆G*solv(Mk±) ...................................... 5 

2.3 RESULTS AND DISCUSSION .......................................................................... 6 

2.3.1 Solvation free energy of Cu2+ ion ................................................................... 6 

2.3.2 Solvation free energies of other metal ions .................................................... 9 

2.3.3 Coordination of chelating agents with metal ions....................................... 10 

2.4 CONCLUSION .................................................................................................. 11 

3.0 ADJACENT LANTHANIDES SEPARATION ...................................................... 12 

3.1 INTRODUCTION ............................................................................................. 12 

3.2 COMPUTATIONAL DETAILS ...................................................................... 13 

3.3 RESULTS AND DISCUSSION ........................................................................ 16 

3.3.1 Aqueous binding energies and selectivity with 1:1 ligand/metal complex 16 

3.3.2 Aqueous binding energies and selectivity with 3:1 ligand/metal complex 19 



 vi 

3.4 CONCLUSION .................................................................................................. 21 

4.0 POLYMERIZATION MECHANISM OF ISOBUTYLENE ................................. 23 

4.1 INTRODUCTION ............................................................................................. 23 

4.2 COMPUTATIONAL DETAILS ...................................................................... 25 

4.3 RESULTS AND DISCUSSION ........................................................................ 26 

4.3.1 Reaction Thermodynamics ........................................................................... 26 

4.3.2 Predicting reaction pathway with GSM ...................................................... 30 

4.3.2.1 Initiation reaction pathway ................................................................ 32 

4.3.2.2 Propagation reaction pathway ........................................................... 35 

4.3.2.3 Alternative reaction pathways ........................................................... 38 

4.4 CONCLUSION .................................................................................................. 44 

BIBLIOGRAPHY ....................................................................................................................... 46 



 vii 

LIST OF TABLES 

Table 1. Summary of 1:1 ligand/metal complex with La3+, Gd3+, and Lu3+ at different levels of 
theory. ........................................................................................................................................... 17 

 
Table 2. Summary of selectivity trends calculated with the 1:1 ligand/metal complex with different 
levels of theory. Negative selectivity, ΔΔGaq(La3+/Ln3+), indicates the ligand preference to bind 
with the lighter La3+ ion. ............................................................................................................... 18 

 
Table 3. Summary of 3:1 ligand/metal complex with La3+, Gd3+, and Lu3+ at different levels of 
theory. ........................................................................................................................................... 20 

 
Table 4. Summary of 3:1 ligand/metal complex with La3+, Gd3+, and Lu3+ at different levels of 
theory. Negative selectivity, ΔΔGaq(La3+/Ln3+), indicates the ligand preference to bind with the 
lighter La3+ ion. ............................................................................................................................. 21 

 
Table 5. Summary of gas phase reaction free energies, ∆Gg, for reactions in Figure 12 with 
different AlCl3 cluster size ............................................................................................................ 30 

 
Table 6. Activation energies (Ea) and relative reaction energies (∆Erxn) for the formation of 
[AnOH]-IBH+ complex .................................................................................................................. 35 



 viii 

LIST OF FIGURES 

Figure 1. Thermodynamic cycle for the calculation of solvation free energies of ions. ................. 5 
 

Figure 2. Solvation free energy of Cu2+ as a function of the number of water molecules. ............ 7 
 

Figure 3. a-d) most stable structures of [Cu(H2O)n]2+ after re-optimization at B3LYP/Def2-SVP 
level. e) six-coordinated structure of [Cu(H2O)6]2+ complex. ........................................................ 8 

 
Figure 4. Solvation free energies of a) Li+ b) Na+ and c) Mg2+ as the function of the number of 
water molecules. Experimental data are taken from 28. .................................................................. 9 

 
Figure 5. a) Five-coordinated and b) six-coordinated complexes of Zn2+ with 2 CQ ligands and 
water molecule generated with ABCluster. .................................................................................. 11 

 
Figure 6. Ligands examined in this work...................................................................................... 13 

 
Figure 7. Thermodynamic cycle for calculating solvation free energies ...................................... 14 

 
Figure 8. Thermodynamic cycle for calculating La3+/Ln3+ Selectivity ........................................ 16 

 
Figure 9. Terminal group of a) conventional and b) highly reactive PIBs ................................... 24 

 
Figure 10. a) Proposed formation of co-initiator complex b) initiation step and c) propagation step 
for cationic polymerization of isobutylene ................................................................................... 26 

 
Figure 11. Most stable structure of (AlCl3)n cluster a) dimer b) trimer and c) tetramer .............. 27 

 
Figure 12. Gas phase Gibb free energies for various reactions. Energies are reported in kcal/mol
....................................................................................................................................................... 29 

 
Figure 13. a) Initial configuration and b) final configuration for the formation of AlCl3OH2 
complex generated with single-ended GSM at BP86/6-31G** level. c) Initial starting configuration 
and d) final configuration for the reaction of IB+IBH+. ............................................................... 31 

 
Figure 14. a) Potential energy surfaces for the formation of AlCl3OH2 complex and b) for the 
reaction of IB+IBH+ calculated at B3LYP/def2-TZVP level ....................................................... 32 

 



 ix 

Figure 15. a) Initial configuration, b) transition state, c) local minimum configuration and d) final 
configuration for the initiation step............................................................................................... 33 

 
Figure 16. Potential energy surface for initiation step (AlCl3)nOH2+IB→[(AlCl3)nOH]-IBH+ 
calculated at B3LYP/def2-TZVP level. a) monomer (n=1) b) dimer (n=2) c) trimer (n=3) d) 
tetramer (n=4). .............................................................................................................................. 34 

 
Figure 17. a) Initial configuration, b) transition state, c) local minimum configuration and d) final 
configuration for the propagation step .......................................................................................... 35 

 
Figure 18. Potential energy surface for the propagation step, [(AlCl3)2OH]-

IBH+IB→[(AlCl3)2OH]-IBIBH+, calculated at B3LYP/def2-TZVP ............................................ 36 
 

Figure 19. Initiation reaction intermediates with complex III in Figure 12. a) Initial state b) local 
minimum state c) transition state and d) product state. ................................................................ 37 

 
Figure 20. Potential energy surface for the initiation step with complex III, 
AlCl3AlCl2OH+IB→[AlCl3AlCl2OH]-IBH+, calculated at B3LYP/def2-TZVP ......................... 38 

 
Figure 21. The reaction mechanism for forming the alternate (AlCl3)2H2O complex. a) Initial state 
b) local minimum state c) transition state and d) product state .................................................... 39 

 
Figure 22. Potential energy surface for the formation of the alternate (AlCl3)2H2O complex 
calculated at B3LYP/def2-TZVP .................................................................................................. 40 

 
Figure 23. Initiation mechanism with alternate (AlCl3)2H2O complex. a) Local minimum state b) 
transition state and c) product state ............................................................................................... 41 

 
Figure 24. Potential energy surface for the initiation step with alternate (AlCl3)2H2O complex 
calculated at B3LYP/def2-TZVP .................................................................................................. 42 

 
Figure 25. a) Initial configuration, b) transition state, c) local minimum configuration and d) final 
configuration for alternate the propagation step ........................................................................... 43 

 
Figure 26. Potential energy surface for the initiation step with alternate (AlCl3)2H2O complex 
calculated at B3LYP/def2-TZVP .................................................................................................. 44 



 x 

PREFACE 

First, I would like to thank my thesis advisor, Dr. John Keith, for this patience and guidance. I 

would also like to thank Dr. J Karl Johnson for his guidance, motivation, and insight. In addition, 

I would like to acknowledge my committee member, Dr. Peng Liu, for his insightful comments 

and feedbacks. My sincere thanks also go to Dr. Vyacheslav Bryantsev for the opportunity to intern 

at the Oak Ridge National Laboratory under his mentorship. I have gained valuable experience 

working with him. 

Last, but not least, I would like to express my profound gratitude to my friends and family for 

providing me with unfailing support and continuous encouragement.  



 1 

1.0  INTRODUCTION 

Significant progress has been made to the development of advanced molecular theories in 

recent decades1,2. This has promoted the use of quantum chemistry in many different fields 

including chemistry, biochemistry, and material science. Kohn-Sham density function theory 

(DFT) methods are widely used for atomic scale prediction of properties of atoms, molecules, and 

materials3. DFT, using functional, allows many-body systems to be conveniently modeled with an 

electron density. Furthermore, chemical properties in the solvent phase can be predicted using DFT 

in conjunction with continuum solvation models (CSM). The CSM treats solvent phase as a 

continuous medium, which drastically reduces the computational expense by omitting the use of 

explicit solvent molecules.  

For many systems, GSMs4-8 can provide fast and reliable solvation energies for atoms and 

molecules, but they are known to break down for some systems, specifically for small charged 

systems.  In these systems, CSMs tend to improperly model the strong interaction between the 

solute molecule and local solvent molecules9,10. It has been shown in the literature that adding 

explicit solvent molecules can improve the accuracy of the CSMs11,12. Deciding where and how 

many solvent molecules should be used can be challenging13,14. In Chapter 2, we propose a 

systematic and automatable computational approach to predict solvation free energies of ionic 

species. 
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 In 2011, the Department of Energy published a list of critical materials, which are 

essential for the clean energy economy15. Many listed critical and near critical materials are rare 

earth metals are members of the lanthanide series. Current processes for separating adjacent 

lanthanides, however, are expensive and inefficient. DFT modeling can facilitate the discovery of 

new extractants for lanthanide separation, but modeling complexation of heavy elements can be a 

challenging task as adequate treatment of relativistic effects, and sometimes spin-orbit coupling, 

is needed16. In Chapter 3, we will report the effect of different basis set and levels of theory on 

selectivity trend across the lanthanide series. 

 Elucidating catalytic reaction mechanism with quantum modeling is becoming 

increasing popular in recent years1. One of the most important precursors for many commercial 

polymer products is polyisobutylene. Industrial production of polyisobutylene has existed for over 

50 years, but the knowledge of the mechanism reaction is limited. Chapter 4 will discuss the use 

of DFT to understand the reaction mechanism of polyisobutylene at the molecular level. 
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2.0  PREDICTING HYDRATION FREE ENERGIES OF METAL IONS 

2.1 INTRODUCTION 

Accurate solvation energies are essential for calculating condensed phase properties such 

as redox potentials and pKas17, and they play an importance role in the fields of chemistry and 

biochemistry. Solvation energies are usually computed using an appropriate thermodynamic cycle. 

One can predict the solvation energies by extensively sample configurations of solvent molecules 

clustering the solute, but such approaches can be computationally expensive and sometimes 

difficult to execute without a robust and reliable force field. Alternatively, one can quickly estimate 

the solvation energy of a solute by using the continuum solvation models4-8. These models, 

however, often yield inaccurate solvation energies for solutes with concentrated charge density. 

This effect is prominently observed for small ions, where there is strong interaction between the 

local solvent molecules and the solute molecule9,10.  

The common practice to improve the solvation energy calculations is to introduce explicit 

solvent molecules in charged systems. Bryantsev and co-workers proposed the mixed 

cluster/continuum models, which accurately predicted the solvation energies of H+ and Cu2+ with 

an absolute mean error of 2.0 kcal/mol18,19. The approaching is promising, but the approach is 

hardly reproducible as there is no consensus on how to effectively construct a mixed cluster13,14. 
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 In this study, we propose a systematic and automatable computational approach to predict the 

solvation free energies of ionic species. Our approach uses a black box global optimization code, 

ABCluster20, to generate micro solvated clusters that are then used in the mixed cluster/continuum 

models. We progressively increase the number of solvent molecules in the cluster until we observe 

a convergence in the solvation energies. In addition, our approach is also effective in predicting 

the complexation coordination of metal ions with chelating agents. In the next section, we will go 

over the technical approach of our approach. 

2.2 COMPUTATIONAL DETAILS AND METHODOLOGY 

2.2.1 Metal and water clusters generation 

Molecular clusters containing a metal ion with specified number of water molecules were 

generated using the rigid molecular cluster module in the ABCluster code20. We describe water 

with classical CHARMM forcefield21 that uses the TIP4P model22 for water and metal ions treated 

with a Lennard-Jones potential. ABCluster generated 10,000 structures, and the 100 lowest energy 

structures were then optimized at the B3LYP23/def2-SVP24  level of theory with the RI-J 

approximation25 in Turbomole version 6.626. All calculations were performed with Grimme’s D3 

dispersion27. Frequency calculations were performed at B3LYP/def2-SVP basis set to verify that 

geometries were the minima and to compute zero point energies and thermal corrections. Single-

point energy calculations were performed with def2-TZVP basis set24. Solvation effects were 

approximated with COSMO continuum solvation model7.  
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2.2.2 Thermodynamic cycle for computing ∆G*solv(Mk±)   

The Boltzmann weighted average energy of the 100 optimized clusters in gas and solvation 

phases were used to calculate the solvation energies of metal ion using the thermodynamic cycle 

in Figure 1. 

 

 

Figure 1. Thermodynamic cycle for the calculation of solvation free energies of ions.  

 

The solvation free energy of an ion, ∆G*
solv(Am±)  is given as 

Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ (𝑀𝑀𝑘𝑘±) = Δ𝐺𝐺𝑔𝑔,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑜𝑜 − Δ𝐺𝐺𝑜𝑜→∗ + Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ ([𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛]𝑘𝑘±) − Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ ((𝐻𝐻2𝑂𝑂)𝑛𝑛) −

𝑅𝑅𝑅𝑅 ln([𝐻𝐻2𝑂𝑂]/𝑛𝑛)   (1)                                                                                                                                                                                                                                                

Solvating a solute molecule involves transferring it from the standard state of 1 atm (24.46 L/mol) 

to the standard state of 1 mol/L (1 M). As the result, an energy correction term is necessary. The 

standard state correction, ∆G◦→*, represents the change in the free energy of transfer of 1 mol of 

solute from the gas phase at the standard state of 1 atm to the aqueous phase at a standard state of 

1 M. 

  Δ𝐺𝐺o→∗ = −𝑇𝑇Δ𝑆𝑆o→∗ = 𝑅𝑅𝑅𝑅 ln(𝑉𝑉∘/𝑉𝑉∗) = 𝑅𝑅𝑅𝑅 ln(24.46) = 1.89 kcal/mol (𝑇𝑇 = 298.15 K) (2) 
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Equation 2 is applied to each gas-phase reactant and product results in the correction given in the 

upper leg of the thermodynamic cycle shown in Figure 1. With water clusters, an additional 

correction, RT ln([H2O]/n) is needed because the pure solvent H2O(l) is adopted as the reference 

state for the solvent in the lower leg of the thermodynamic cycle. This correction represents a free 

energy change associated with moving a solvent from a standard state solution phase concentration 

of 1 M to standard state of the pure liquid of 55.34M. Discussion of these free energy corrections 

can be found in 18. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Solvation free energy of Cu2+ ion 

 The solvation free energies of Cu2+ ion clustered with 6, 10, 18, and 30 explicit water 

molecules are -409.6, -498.3, -511.8, and -513.8 kcal/mol, respectively. The solvation energy of 

Cu2+ ion clearly improves systematically with increasing numbers of explicit water molecules. 

This trend is consistent with the trend reported by Bryantsev and co-workers19, Figure 1. Those 

clustered Cu2+ complexes used to compute ΔGsolv(Cu2+) in Bryantsev’s work were the lowest-

energy structures from their extensive study of the geometric structures of hydrated Cu2+ 

complexes19. While these clusters were built through trial and error and with chemical intuition, 

our structures were generated through an automated process without a priori knowledge. Our 

calculated ΔGsolv(Cu2+) appears to converge at an absolute solvation energy of -513.8 kcal/mol as 

the calculated ΔGsolv(Cu2+) with 30 explicit water molecules is only 2.0 kcal/mol more negative 
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than the ΔGsolv(Cu2+) with 18 explicit water molecules. This leads to a relatively small error of 

1.3% compared to the experimental value of 507.0 kcal/mol28. 

 

 

Figure 2. Solvation free energy of Cu2+ as a function of the number of water molecules.  

 

The most stable structure of [Cu(H2O)n]2+ after DFT optimization for n=6, 10, 18, and 30 

are shown in Figure 3a-d, respectively. For n = 6, waters molecules form 5-coordinated complex 

around the Cu2+ ion in the elongated square pyramidal configuration. Meanwhile, larger size water 

clusters form 6-coordinated complexes. ABCluster did generate some six-coordinated complexes 

for n = 6, shown in Figure 3e. The absolute free energy difference between the most stable five-

coordinated and six-coordinated complexes for n = 6 is 0.23 kcal/mol. These results are in 

agreement with the combined EXAFS and XANES studies of the hydration of Cu2+ by Chaboy 

and co-workers, which concluded five-coordinated and six-coordinated structures are 

indistinguishable and are likely to coexist in aqueous solution29.  
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Figure 3. a-d) most stable structures of [Cu(H2O)n]2+ after re-optimization at B3LYP/Def2-SVP level. 
e) six-coordinated structure of [Cu(H2O)6]2+ complex. 
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2.3.2 Solvation free energies of other metal ions 

This approach was also used to model absolute solvation energies for other metal cations. 

The general trends as seen for Cu2+ still hold for other metal cations (Figure 4). A benefit to this 

approach is the clusters are obtained automatically using ABCluster.   

 

 

Figure 4. Solvation free energies of a) Li+ b) Na+ and c) Mg2+ as the function of the number of water 
molecules. Experimental data are taken from 28. 
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2.3.3 Coordination of chelating agents with metal ions 

Our automated cluster-continuum modeling approach can also be used to determine 

realistic coordination environments of chelating agent binding to metal ions. Clioquinol (5-chloro-

7-iodo-8-hydroxyquinoline) is a potential chelator for therapeutic treatment of Alzheimer’s 

disease. In aqueous solution, the phenolic group of clioquinol is deprotonated and bind to Zn(II) 

to form a neutral binary metal-ligand complex (ZnCQ2), and additional water molecules may 

coordinate to the complex. Rodriguez-Santiago’s work30 suggested that minimal cluster based 

DFT calculation with solvation correction yield incorrect tetrahedral coordination for 

complexation of Zn(II) with clioquinol, and that in ab initio molecular dynamics simulations, five-

coordinated Zn(CQ)2(H2O) and six-coordinated Zn(CQ)2(H2O)2 coordinated complexes are quasi-

degenerated structure and likely to exist in aqueous solution.  

We generated clusters containing two clioquinol molecules, a Zn(II) atom, and either 2, 5, 

or 10 water molecules to investigate the coordination environment of Zn(II). For the coordination 

study, we used the lego module in the ABCluster code to generate the clustered complexes. This 

method allowed us to use an external quantum chemistry package to optimize and calculate the 

energy instead of relying on the CHARMM force field for ranking configurations. Structures 

generated with ABCluster code were relaxed using PM6 with Grimme’s D3 dispersion as 

implemented in MOPAC31,32. The lowest 10 structures were re-optimized using the method 

described in the method section. Figure 5a shows the most stable five-coordinated Zn(CQ)2(H2O) 

complex and Figure 5b shows the most six-coordinated Zn(CQ)2(H2O)2 complex generated with 

our procedure. The Zn(CQ)2(H2O)2 complex generated with our procedure is consistent with the 

Zn(CQ)2(H2O)2 complex from the ab initio molecular dynamic simulation (AIMD) in Rodriguez-

Santiago’s work. This demonstrated that our method can capture similar micro solvation effect as 



 11 

AIMD simulation. Given that AIMD simulation is computationally expensive, our method 

provides an alternative cost-effective and robust method to generate metal-ligand complexes.  

 

 

Figure 5. a) Five-coordinated and b) six-coordinated complexes of Zn2+ with 2 CQ ligands and water 

molecule generated with ABCluster. 

2.4 CONCLUSION 

 In this chapter, we presented an automatable procedure to predict solvation free energies 

for ionic species. Our method used ABCluster code to generate hydrated cluster generation and 

mixed cluster continuum model to predict the solvation free energies. In addition, we also 

demonstrated that our method is capable of identifying stable metal-ligand complexes that are 

consistent with configurations generated with more computational expensive AIMD simulations.

 



 12 

3.0  ADJACENT LANTHANIDES SEPARATION 

3.1 INTRODUCTION 

Metals from the lanthanide series (La-Lu) are important ingredients in catalysts, hard 

magnets, phosphors, and lighting33. The separation of trivalent lanthanides ions (Ln3+) is 

challenging because they possess similar ionic radii (the difference is only 16% across the series34). 

Current industrial processes use liquid-liquid extraction methods that rely on small differences in 

the ionic radii to separate adjacent lanthanides35. Lanthanides are then complexed with extractants 

(lipophilic ligands) and then separated based on their different propensities to partition between 

aqueous and organic phase36. The process requires multiple iteration steps to obtain satisfactory 

lanthanides purity, which consumes excessive amount of acids and bases and generates a vast 

quantity of secondary wastes. As the result, there is a need for new extractants that are effective 

and economical in separating adjacent lanthanides.  

Computational-aid screening method can facilitate the discovery of new extractants. 

However, modeling complex systems that contain f-block electrons is particularly challenging16,37. 

Only a handful of studies in the literature was successful in predicting experimental binding 

energies and stability trend for lanthanide complexes37,38. In addition, most DFT studies focus on 

the separation of actinide-lanthanide and very few studies were conducted on adjacent lanthanide 

separation. Ivanov and Bryansev developed a computational approach that can accurately predict 
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the selectivity trend across the lanthanide series39. Their work uses 1:1 ligand/metal complex to 

predict the selectivity trends. In this work, we examine the effect of levels of theory and basis set 

sizes on the aqueous-phase binding energies and selectivity trends for 1:1 and 3:1 ligand/lanthanide 

complex systems. Extractants used in this study are shown in Figure 6. 

 

 

 Figure 6. Ligands examined in this work. 

3.2 COMPUTATIONAL DETAILS 

Electronic structure calculations were performed with the Gaussian 09, revision D.01 

program packages40. All DFT calculations were performed with B3LYP23 functional. Trivalent 

lanthanides ions (La3+, Gd3+, and Lu3+) were modeled using large-core (LC) relativistic effective 

core potential (RECP) and the related (7s6p5d)/[5s4p3d]41 basis sets. The standard 6-31+G* basis 

set was employed for light atoms and hydrogen. Frequency calculations were performed at the 
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B3LYP/LC/6-31+G* basis set to compute zero point energies and thermal correction using rigid 

rotor-harmonic oscillator approximation. Vibrational frequencies lower than 60cm-1 were raised 

to 60 cm-1. This approximation was proposed by Truhlar42 to correct the well-known breakdown 

of the harmonic oscillator model for the free energies of low-frequency vibration modes. Solvent 

effects beyond the first coordination shell were treated using IEF-PCM implicit solvation models43. 

Addition single-point energies were computed with the larger ma-def2-TZVP24,44 basis set (diffuse 

basis sets were needed to accurately model the anion systems) and with M06L45 and ωB97X-D346 

functionals are calculated in ORCA47. The all-electron, zeroth-order regular approximation48 

(ZORA) (a scalar relativistic method) was also investigated. 

 

 

Figure 7. Thermodynamic cycle for calculating solvation free energies 

 

Complexation free energies in aqueous solution, ΔGaq, with ligands were calculated using 

the thermodynamic cycle shown in Figure 7. It was found that the computed hydration free 

energies of trivalent metal ions complexes with the total charge 3+ are sensitive to small changes 

in the models and complex geometry, which could potentially introduce large uncertainties in the 

computed ΔGaq. For single ligand complexes (ML), these issues can be greatly alleviated by 

introducing weakly coordinated nitrate anions. Nitrate was chosen as a counter ion in this study 
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because it is only weakly coordinated to Ln3+ ions (log K1 = -0.1, 0.0, and 0.2 for La3+, Gd3+, and 

Lu3+, respectively)49. Ln3+ ions in a tri-ligand complex (ML3) are fully coordinated, and so no 

additional nitrate anions are necessary. From Figure 7, ΔGaq is given by 

Δ𝐺𝐺𝑎𝑎𝑎𝑎 = Δ𝐺𝐺𝑔𝑔o + ΔΔ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ + (3 + 𝑦𝑦 − 𝑧𝑧)Δ𝐺𝐺o→∗ + 3𝑅𝑅𝑅𝑅 ln([H2O])                   (1) 

Here, z = 1 for ML system and z = 3 for ML3 system, and y = z(z – 1)/2. ∆Gg° is the free 

energy of complexation in the gas phase and ∆∆G*
solv is the difference in the solvation free energies 

for a given reaction is 

ΔΔ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ =  Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ ([Ln(L)3]3+) + 3Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ (H2O) + 𝑦𝑦Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ (NO3) − 𝑧𝑧Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ ([Ln(L)3]3+) −

Δ𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ (L3)                                                       (2) 

The standard state correction, ∆G◦→*, represents the change in the free energy of transfer of 1 mol 

of solute from the gas phase at the standard state of 1 atm to the aqueous phase at a standard state 

of 1 M.  

Δ𝐺𝐺o→∗ = −𝑇𝑇Δ𝑆𝑆o→∗ = 𝑅𝑅𝑅𝑅 ln(𝑉𝑉∘/𝑉𝑉∗) = 𝑅𝑅𝑅𝑅 ln(24.46) = 1.89 kcal/mol (𝑇𝑇 = 298.15 K) (3) 

Equation 3 is applied to each gas-phase reactant and product results in the correction given 

in the upper leg of the thermodynamic cycle shown in Figure 7. With water, an additional 

correction, RT ln([H2O]) = 2.38 kcal/mol per molecule of water, is needed so that the pure solvent 

H2O(l) is adopted as the reference state for the solvent in the lower leg of the thermodynamic cycle. 

This correction represents a free energy change associated with moving a solvent from a standard-

state solution phase concentration of 1 M to standard state of the pure liquid, 55.34M. 

Selectivity for two Ln3+ ions in aqueous solution is the difference between their 

complexation free energies. The thermodynamic cycle in Figure 8 was used to compute the 

selectivity trend across the lanthanide series. ΔΔGaq(La3+/Ln3+) corresponds to the selectivity for 

La3+ over Ln3+ for each ligand, L.  
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Figure 8. Thermodynamic cycle for calculating La3+/Ln3+ Selectivity 

3.3 RESULTS AND DISCUSSION 

3.3.1 Aqueous binding energies and selectivity with 1:1 ligand/metal complex 

Table 1 summarizes the binding energies in aqueous solution (ΔGaq), calculated using the 

thermodynamic cycle in Figure 6, for 1:1 ligand/metal complexes of La3+, Gd3+, and Lu3+ with 

ligands in Figure 6. The ΔGaq values of lanthanides bound to TMDGA, MIDMA, and DMPOP 

calculated at the B3LYP/6-31+G*/LC in ORCA are the same as those calculated in GAUSSIAN 

09. The ΔGaq values are about 3 kcal/mol more negative when using the larger ma-def2-TZVP 

basis set.  The RI approximation improves the computation efficiency but only negligibly affects 

the calculated ΔGaq (0.1 kcal/mol difference between B3LYP/ma-def2-TZVP and B3LYP/ma-

def2-TZVP/RI). For example, ORCA took approximately 69 minutes to complete a single-point 

energy calculation with B3LYP/ma-def2TZVP/LC method on the TMDGA and Gd3+ complex, 

but the same calculation with RI approximation turned on completed in just 6 minutes. The ΔGaq 

value calculated with ωB97x-d3 are more negative compared to values obtained using the B3LYP 

and M06-L functionals. The all-electron ZORA method yields similar ΔGaq as using large-core 
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RECP. We conclude that different levels of theory and basis sets can affect relative binding 

energies for 1:1 complexes on the order of ~5 kcal/mol. Notably, there is almost no difference in 

binding energies using the RECP and the all electrons basis set. 

 

Table 1. Summary of 1:1 ligand/metal complex with La3+, Gd3+, and Lu3+ at different levels of theory. 
1:1 Complexes Binding energies (ΔGaq) 
Ligands TMDGA MOPA 
Level of theory La3+ Gd3+ Lu3+ La3+ Gd3+ Lu3+ 
B3LYP/6-31+G*/LC/G09 -9.1 -11.4 -12.8 -4.6 -5.3 -7.6 
B3LYP/6-31+G*/LC -9.1 -11.7 -13.0 -4.6 -5.5 -7.6 
B3LYP/ma-def2-TZVP/LC -13.2 -15.8 -17.7 -8.4 -9.2 -11.7 

B3LYP/ma-def2-TZVP/LC/RI -13.2 -15.7 -17.6 -8.3 -9.1 -11.7 
M06L/ma-def2-TZVP/LC/RI -13.7 -14.6 -15.8 -12.4 -12.0 -14.4 
ωB97x-d3/ma-def2-TZVP/LC/RI -14.3 -15.1 -17.5 -14.1 -14.1 -16.9 
B3LYP/ma-zora-def2-TZVP/Z/RI -13.0 -15.6 -17.4 -7.8 -8.6 -11.1 

Ligands MIDMA DMPOP 
Level of theory La3+ Gd3+ Lu3+ La3+ Gd3+ Lu3+ 
B3LYP/6-31+G*/LC/G09 -8.6 -10.7 -11.5 -9.0 -10.9 -11.6 
B3LYP/6-31+G*/LC -8.6 -10.9 -11.5 -9.0 -11.2 -11.6 
B3LYP/ma-def2-TZVP/LC -12.8 -15.1 -16.2 -12.0 -14.2 -15.3 
B3LYP/ma-def2-TZVP/LC/RI -12.8 -15.1 -16.2 -11.9 -14.1 -15.2 
M06L/ma-def2-TZVP/LC/RI -14.2 -15.1 -15.9 -12.8 -13.7 -12.2 
ωB97x-d3/ma-def2-TZVP/LC/RI -15.0 -16.2 -17.7 -16.9 -18.0 -18.6 
B3LYP/ma-zora-def2-TZVP/Z/RI -12.3 -14.7 -15.7 -11.6 -13.8 -15.2 

G09 are energies calculated using Gaussian 09. Other energies are computed using ORCA. LC denotes the use of 
large core RECP for lanthanide ions, and Z denotes the use of all electron basis sets with ZORA. 

 

A negative ΔΔGaq(La3+/Ln3+) indicates that the ligand binds more strongly to La3+
 than its 

counterpart. A more negative ΔΔGaq(La3+/Lu3+) value compared to ΔΔGaq(La3+/Gd3+) value means 

that the ligand binds more strongly toward the lighter lanthanide. Despite differences in the binding 

energies, different basis sets with the B3LYP functional give similar magnitudes and selectivity 

trends. No experimental selectivity is available for MIDA, but the calculated selectivity trends for 

TMDGA and DMPOP are consistent with experimental trends, as shown in Table 2. Our 
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calculation shows that ligand MOPA is more selective for heavier lanthanide ions, but this trend 

is directly opposite to the experimental trend50-54. Since members of the TMDGA extractant 

families were reported to form a tris-complexes with lanthanides ions51, we tentatively attribute 

the qualitative disagreement due to the 1:1 ligand/metal complex model as being inadequate for 

describing the selectivity trends. To better validate this hypothesis, we examined the binding 

energies for the full 3:1 ligand/metal complex.  

 
Table 2. Summary of selectivity trends calculated with the 1:1 ligand/metal complex with different 

levels of theory. Negative selectivity, ΔΔGaq(La3+/Ln3+), indicates the ligand preference to bind with the lighter 
La3+ ion. 

1:1 Complexes  Selectivity (ΔΔGaq(La3+/Ln3+)) 
Ligands   TMDGA MOPA 
Level of theory  La3+/Gd3+ La3+/Lu3+ La3+/Gd3+ La3+/Lu3+ 
B3LYP/6-31+G*/LC/G09 2.3 3.7 0.7 3.0 
B3LYP/6-31+G*/LC  2.3 3.8 0.7 3.1 
B3LYP/ma-def2-TZVP/LC 2.6 4.5 0.8 3.3 
B3LYP/ma-def2-TZVP/LC/RI 2.6 4.5 0.8 3.3 

M06L/ma-def2-TZVP/LC/RI 0.9 2.2 -0.4 2.0 
ωb97x-d3/ma-def2-TZVP/LC/RI 0.8 3.2 -0.1 2.8 
B3LYP/ma-zora-def2-TZVP/Z/RI 2.6 4.4 0.8 3.3 
Experimental trend  0 < La3+/Gd3+ < La3+/Lu3+ La3+/Lu3+ < La3+/Gd3+ < 0 

Ligands MIDMA DMPOP 
Level of theory La3+/Gd3+ La3+/Lu3+ La3+/Gd3+ La3+/Lu3+ 

B3LYP/6-31+G*/LC/G09 2.1 2.9 1.9 2.6 
B3LYP/6-31+G*/LC 2.1 2.9 2.0 2.6 
B3LYP/ma-def2-TZVP/LC 2.3 3.4 2.2 3.3 
B3LYP/ma-def2-TZVP/LC/RI 2.3 3.4 2.2 3.3 
M06L/ma-def2-TZVP/LC/RI 0.9 1.7 0.9 -0.6 
ωB97X-D3/ma-def2-TZVP/LC/RI 1.3 2.7 1.1 1.7 
B3LYP/ma-zora-def2-TZVP/Z/RI 2.6 4.4 0.8 3.3 
Experimental trend --------- 0 < La3+/Gd3+ < La3+/Lu3+ 

       G09 are energies calculated using Gaussian 09. Other energies are computed using ORCA. LC denotes the use 
of large core RECP for lanthanide ions, and Z denotes the use of all electron basis sets with ZORA. 
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3.3.2 Aqueous binding energies and selectivity with 3:1 ligand/metal complex 

From Table 3, similar to what was shown in Table 1, the ΔGaq values calculated with 

ORCA are similar to the ΔGaq value calculated with Gaussian 09. The ΔGaq value computed with 

smaller 6-31+G* basis set are comparable to the ΔGaq values calculated with the larger ma-def2-

TZVP basis set at the B3LYP level of theory for TMDGA and MIDMA. Binding energies 

calculated with the M06-L functional are more positive by ~15 kcal/mol compared than the 

energies calculated with the B3LYP functional for TMDGA, MIDMA, and DMPOP. In contrast, 

ωB97X-D3 energies are more negative than the B3LYP energies by up to ~25 kcal/mol. For 

MOPA, M06-L functional gives slightly more negative binding energies than the B3LYP 

functional. The ZORA method binding energies are about 2-3 kcal/mol more positive than the 

calculations using a large-core RECP in most cases. This contrasts with the data reported in 

Table 1 where there was no notable difference between data from the RECP and all electron 

ZORA calculations.  
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Table 3. Summary of 3:1 ligand/metal complex with La3+, Gd3+, and Lu3+ at different levels of theory. 

3:1 Complexes Binding energies (ΔGaq) 
Ligands TMDGA MOPA 
Level of theory La3+ Gd3+ Lu3+ La3+ Gd3+ Lu3+ 
B3LYP/6-31+G*/LC/G09 -27.9 -33.6 -35.8 -7.8 -5.8 -2.0 
B3LYP/6-31+G*/LC -28.0 -34.0 -35.9 -7.8 -6.1 -2.0 
B3LYP/ma-def2-TZVP/LC -28.5 -34.2 -36.4 -6.5 -4.6 -0.8 
B3LYP/ma-def2-TZVP/LC/RI -28.7 -34.3 -36.6 -6.6 -4.7 -0.5 
M06L/ma-def2-TZVP/LC/RI -8.3 -13.7 -16.6 -5.3 -6.3 -5.3 
ωB97X-D3/ma-def2-TZVP/LC/RI -28.9 -35.1 -38.6 -28.9 -30.6 -27.6 
B3LYP/ma-zora-def2-TZVP/Z/RI -26.2 -31.6 -34.0 -2.4 0.1 4.3 
Ligands MIDMA DMPOP 
Level of theory La3+ Gd3+ Lu3+ La3+ Gd3+ Lu3+ 
B3LYP/6-31+G*/LC/G09 -25.3 -28.2 -28.3 -26.7 -30.9 -33.9 
B3LYP/6-31+G*/LC -25.3 -28.4 -28.1 -26.9 -31.3 -34.0 
B3LYP/ma-def2-TZVP/LC -25.0 -27.8 -28.1 -22.2 -26.5 -29.9 
B3LYP/ma-def2-TZVP/LC/RI -25.1 -27.9 -28.0 -21.8 -26.0 -29.4 
M06L/ma-def2-TZVP/LC/RI -13.5 -16.7 -17.7 -6.2 -9.6 -14.1 
ωB97X-D3/ma-def2-TZVP/LC/RI -33.6 -38.8 -39.4 -37.9 -43.9 -48.8 
B3LYP/ma-zora-def2-TZVP/Z/RI -21.7 -24.6 -25.0 -20.6 -24.1 -27.9 

  G09 are energies calculated using Gaussian 09. Other energies are computed using ORCA. LC denotes the use of 
large core RECP for lanthanide ions, and Z denotes the use of all electron basis sets with ZORA. 

 

The selectivity trends estimated with the 3:1 ligand/metal complex are summarized in 

Table 4. The selectivity trends predicted with the 3:1 ligand/metal complexes are now consistent 

with available experimental trends including for the MOPA ligand, which the 1:1 ligand/metal 

model failed to predict. Selectivity magnitudes and trends are also consistent with each other for 

different basis sets at the B3LYP functional. In addition, the all electron ZORA method produces 

similar selectivity magnitudes and trend as the large-core RECP. The M06-L and ωB97X-D3 

functionals correctly predict the selectivity trends for TMDGA and DMPOP but failed to predict 

the trend for MOPA.  
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Table 4. Summary of 3:1 ligand/metal complex with La3+, Gd3+, and Lu3+ at different levels of theory. 
Negative selectivity, ΔΔGaq(La3+/Ln3+), indicates the ligand preference to bind with the lighter La3+ ion. 

3:1 Ligand metal complexes Selectivity (ΔΔGaq(La3+/Ln3+)) 
Ligands TMDGA MOPA 
Level of theory La3+/Gd3+ La3+/Lu3+ La3+/Gd3+ La3+/Lu3+ 
B3LYP/6-31+G*/LC/G09 5.7 7.9 -2.0 -5.8 
B3LYP/6-31+G*/LC 6.0 7.9 -1.7 -5.8 
B3LYP/ma-def2-TZVP/LC 5.6 7.9 -1.9 -5.7 
B3LYP/ma-def2-TZVP/LC/RI 5.6 7.8 -1.9 -6.0 
m06L/ma-def2-TZVP/LC/RI 5.3 8.3 0.9 -0.1 
ωB97X-D3/ma-def2-TZVP/LC/RI 6.2 9.6 1.7 -1.3 
B3LYP/ma-zora-def2-TZVP/Z/RI 5.4 7.8 -2.5 -6.7 
Experimental trend 0 < La3+/Gd3+ < La3+/Lu3+ La3+/Lu3+ < La3+/Gd3+ < 0  

Ligands MIDMA DMPOP 
Level of theory La3+/Gd3+ La3+/Lu3+ La3+/Gd3+ La3+/Lu3+ 

B3LYP/6-31+G*/LC/G09 2.9 2.9 4.1 7.1 
B3LYP/6-31+G*/LC 3.1 2.7 4.4 7.2 
B3LYP/ma-def2-TZVP/LC 2.8 3.1 4.3 7.6 
B3LYP/ma-def2-TZVP/LC/RI 2.8 2.8 4.2 7.7 
m06L/ma-def2-TZVP/LC/RI 3.3 4.2 3.4 7.9 
ωB97X-D3/ma-def2-TZVP/LC/RI 5.2 5.8 6.0 10.9 
B3LYP/ma-zora-def2-TZVP/Z/RI 2.9 3.3 3.5 7.3 
Experimental trend --------- 0 < La3+/Gd3+ < La3+/Lu3+ 

           G09 are energies calculated using Gaussian 09. Other energies are computed using ORCA. LC denotes the 
use of large core RECP for lanthanide ions, and Z denotes the use of all electron basis sets with ZORA. 

3.4 CONCLUSION 

 In summary, our data indicates that the 3:1 ligand/metal model is better suited to 

predict the selectivity trends across the lanthanide series than the 1:1 ligand/metal model. Based 

on the extractants examined, the B3LYP functional appears to better predict the selectivity trends 

than M06-L and ωB97X-D3 functionals. We conclude that for a fast and efficient screening of 

lanthanide extractant selectivities, the B3LYP/6-31+G*/LC level of theory is adequate. For more 
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reliable binding energies, ZORA method should be used since these values are about 3 kcal/mol 

different than values obtained using the large-core RECP. 
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4.0  POLYMERIZATION MECHANISM OF ISOBUTYLENE 

4.1 INTRODUCTION 

Polyisobutylenes (PIBs) are essential for a vast range of applications due to their desired 

properties at different ranges of molecular weight (Mn). High Low molecular weight PIBs (Mn > 

105 g mol-1) have a high viscosity, and they are commonly used for the synthesis of rubber products 

such as chewing gum and car tires55,56. Medium molecular weight PIBs (5 x 103 < Mn < 3 x 104 g 

mol-1) vary from viscous liquid to tacky semisolids and can be found in sealant and caulking 

products. Low molecular weight PIBs (Mn < 5 x 103 g mol-1) are used as precursors for making 

adhesives and lubricants, and as additives for motor oils and fuels. Industrially, molecular weights 

of PIBs are temperature controlled. PIBs are produced through cationic polymerization, and the 

process is exothermic in nature. Thus, low molecular weight PIBs are polymerized between -40 to 

10°C, and high molecular weight PIBS are synthesized at even lower temperatures, -100 to -

90°C57. 

Cationic polymerization involves the use of a Lewis acid as the catalyst (e.g AlCl3, BF3, 

TiCl4)55 and a proton donor, such as water, hydrogen halide, and alcohol. A proton donor is crucial 

for the polymerization of isobutylene. In fact, no reaction is observed when BF3 is added directly 

to dry isobutylene (IB), but polymerization occurs almost instantaneously when trace quantities of 

water are added to the mixture58. The choice of catalysts also greatly affect the terminal groups on 
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PIBs. The AlCl3-catalyzed process produces conventional PIBs, which contains up to 90% of 

internal double bond end groups(trisubstituted, tetrasubstituted), shown in Figure 1a. Meanwhile, 

BF3-catalyzed PIBs have a high content of terminal vinylidene (exo) groups, shown in Figure 1b, 

which are also known as highly reactive (HR) PIBs. 

 

R R

R=H: trisubstituted;
R=CH3: tetrasubstituted

Conventional Highly Reactive

 

Figure 9. Terminal group of a) conventional and b) highly reactive PIBs 

 

The processes of making PIBs have been around for over 50 years, but the knowledge on 

polyisobutylene reaction mechanism is limited because the reaction is experimentally difficult to 

study. Some experimental studies on the reaction mechanism for PIB with different catalysts are 

available in the literature56,57,59,60, but there is no direct molecular-level information on the reaction 

mechanisms producing conventional and HR PIBs. In this study, quantum mechanical density 

functional theory is used to study the thermodynamics and reaction energetics of elementary 

reaction steps of PIB polymerization. This study focused on the reaction mechanism with 

AlCl3/H2O co-initiator. 
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4.2 COMPUTATIONAL DETAILS 

Electronic structure calculations were performed with the ORCA program packages47. 

Optimizations were performed at BP8661/def2-SVP level of theory with the RI-J approximation25 

and Grimme’s D3 dispersion. Frequency calculations were performed at the same level of theory 

and basis set to verify that geometries were at the minima and to compute zero point energies and 

thermal corrections. Vibrational frequencies lower than 60 cm-1 were raised to 60 cm-1. This 

approximation was proposed by Truhlar42 to correct the well-known breakdown of the harmonic 

oscillator model for free energies of low-frequency vibration modes. Single-point energy 

calculations were performed at B3LYP23/def2-TZVP24 basis set. 

The single-ended growing string method (GSM), a transition state locating technique, 

written by Zimmerman, was used to generate reaction coordinates along reaction pathways. A 

detailed discussion of the growing string method can be found in 62,63. The GSM invokes ORCA 

and utilizes the BP86 functional with the polarized 6-31G** basis set to provide the quantum 

mechanical gradients.  

The gas phase Gibbs free energy (Gg) for each species at T = 298 K is computed from 

𝐺𝐺𝑔𝑔 = 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑍𝑍𝑍𝑍𝑍𝑍 + 𝐻𝐻 − 𝑇𝑇𝑇𝑇 

where ESCF is the single-point electronic energy calculated from DFT, ZPE is the zero-point 

energy, H is the change in enthalpy from 0 to 298 K, and S is the entropy at 298 K. The 

polymerization reaction takes place in pure IBs or with the presence of other C4 olefins, which are 

non-polar organic solvents. The dielectric constants (ε = 1 for vacuum) for these solvents are very 
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small (butane ε = 1.4, vs water ε = 80.4 at room temperature). As a result, gas phase reaction free 

energies were used to approximate the thermodynamics inside the actual process. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Reaction Thermodynamics 

A proposed mechanism for cationic polymerization of PIBs, involves the formation of co-

initiator complex, as shown in Figure 10a57,64. The initiation step occurs when an IB approaches 

the AlCl3/H2O complex and extract a proton from the water molecule. This results in [AlCl3OH]- 

and IBH+ complexes. The reaction is propagated by successive insertions of the IB monomer 

between the carbocation and [AlCl3OH]-
 complex. 

 

 

Figure 10. a) Proposed formation of co-initiator complex b) initiation step and c) propagation step 
for cationic polymerization of isobutylene 
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We examined each reaction step with (AlCl3)n cluster sizes, n = 1, 2, 3 and 4. Most stable 

structures of AlCl3 dimer, trimer, and tetramer were taken from Varga work and re-optimized with 

the levels of theory described in Section 4.2. Structures of these AlCl3 clusters are shown in Figure 

11. Figure 12 shows the reaction pathway investigated in this work with the AlCl3 dimer. In Figure 

10, the gas phase Gibbs free energy of formation (∆Gg) of the AlCl3/H2O co-initiator complex, I 

→ II, at room temperature is -17.4 kcal/mol. This suggests that the formation of co-initiator 

complex is thermodynamically favorable. AlCl3 dimer forms chlorine bridges to increase its 

structure stability. One of the chlorine bridge is broken off for the insertion of a water molecule on 

the aluminum to form the co-initiator complex, shown in Figure 12 (II). Although HCl can be used 

as a proton donor for PIB polymerization, the formation of HCl from the AlCl3/H2O complex, II 

→ III, is thermodynamically unfavorable (∆Gg = 5.1 kcal/mol). Given that the polymerization 

process occurs below room temperature, we believe that HCl is unlikely to form in the reactor, 

which primarily contains pure IBs. 

 

 

Figure 11. Most stable structure of (AlCl3)n cluster a) dimer b) trimer and c) tetramer 

 

The addition of an IB monomer to the AlCl3/H2O complex, Figure 12 II→ III, to form two 

infinitely separated charged species AlCl2OH- and IBH+ is extremely unfavorable, (∆Gg = 88.0 
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kcal/mol). This is reasonable as charged species are unstable in non-polar solvents. In contrast, the 

addition of IB monomer to form [AlCl3OH]-IBH+, II→ III, with the carbocation bound to the OH 

group is thermodynamically favorable (∆Gg = -20.4 kcal/mol). Furthermore, the addition of the 

second IB monomer to the complex, V→ VI, is also favorable (∆Gg = -20.4 kcal/mol). Reactions 

II→ III and V→ VI are the potential initiation and propagation steps, respectively. Table 5 

summarizes the gas phase reaction energies for different AlCl3 cluster sizes.  

From Table 5, ∆Gg for the formation of AlCl3/H2O complex, II → III, are all negatives 

indicating that the reaction is favorable at all AlCl3 cluster sizes examined. The ∆Gg is most 

negative for the monomer of AlCl3. In contrast, the ∆Gg value for forming HCl, II → III, is 

significantly more positive for the AlCl3 monomer case and decreases with the increase in AlCl3 

cluster size. ∆Gg values for II → III reaction are very large for all AlCl3 cluster sizes suggesting 

this reaction is unlikely to occur at room temperature. The first addition of IB to the AlCl3/H2O 

complex is more favorable for the AlCl3 dimer, but the ∆Gg values increase with the increase in 

AlCl3 cluster size, which might be attributed to the steric effect. The addition of the second IB to 

the complex is favorable for all cases.  

We have determined that the reactions I → II → V → VI are the most thermodynamically 

favorable steps to form IB-IBH+.  Next, we examine the reaction barriers for these reactions using 

the single-ended GSM.  
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Figure 12. Gas phase Gibb free energies for various reactions. Energies are reported in 
kcal/mol 
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Table 5. Summary of gas phase reaction free energies, ∆Gg, for reactions in Figure 12 with different 
AlCl3 cluster size 

Reactions ∆Gg (kcal/mol) 
(I) → (II)  

A+H2O → AOH2 -23.3 
AA+H2O → AAOH2 -17.4 

AAA+H2O → AAAOH2 -16.8 
AAAA+H2O → AAAAOH2 -16.9 

(II) → (III)  
AOH2 → BOH + HCl 26.2 

AAOH2 →ABOH + HCl 5.1 
AAAOH2 →AABOH + HCl 2.5 

AAAAOH2 → AAABOH + HCl -1.2 
(II) → (IV)  

AOH2 + IB → AOH- + IBH+ 102.3 
AAOH2 + IB → AAOH- + IBH+ 88.0 

AAAOH2 + IB → AAAOH- + IBH+ 89.4 
AAAAOH2 + IB → AAAAOH- + IBH+ 82.3 

(II) → (V)  
AOH2 → [AOH]-IBH+ -19.0 

AAOH2 → [AAOH]-IBH+ -20.4 
AAAOH2 → [AAAOH]-IBH+ -18.8 

AAAAOH2 → [AAAAOH]-IBH+ -16.4 
(V) → (VI)  

[AOH]-IBH++IB → [AOH]-IB-IBH+ -11.7 
[AAOH]-IBH++IB → [AAOH]-IB-IBH+ -13.3 

[AAAOH]-IBH++IB → [AAAOH]-IB-IBH+ -12.5 
[AAAAOH]-IBH++IB → [AAAAOH]-IB-IBH+ -14.2 

          A represents an AlCl3, and B represents an AlCl2 

4.3.2 Predicting reaction pathway with GSM 

Two simple reactions were first examined, the formation of AlCl3/H2O complex and IB-

IBH+. Figure 13a) and 13c) are the input configurations we used and Figure 13b) and 13d) are the 

final configurations generated with the single-ended growing string method. The potential energy 

surfaces, shown in Figure 14, indicates no reactions barriers for both reactions. This is plausible 
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as AlCl3 is extremely hydrophilic and carbocation on the IBH+
 is very reactive. In addition, no 

transition state was found for either reactions, which corroborates the barrierless reaction 

pathways. The ∆Erel value for the formation of AlCl3/H2O is -26 kcal/mol, and this consistent with 

the ∆Gg value of -23.3 kcal/mol calculated in the previous section. 

 

 

 

 

 

 

 

 

Figure 13. a) Initial configuration and b) final 
configuration for the formation of AlCl3OH2 complex generated 
with single-ended GSM at BP86/6-31G** level. c) Initial starting 
configuration and d) final configuration for the reaction of 
IB+IBH+. 
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Figure 14. a) Potential energy surfaces for the formation of AlCl3OH2 complex and b) for the reaction 
of IB+IBH+ calculated at B3LYP/def2-TZVP level 

 

4.3.2.1 Initiation reaction pathway 

Key configurations for the initiation step, addition of IB to the (AlCl3)2/H2O complex, are 

shown in Figure 15. At the initial configuration, shown in Figure 15a, hydrogen atoms on the water 

molecules are directed toward chlorine atoms. A local minimum intermediate, identified by GSM, 

shows a hydrogen atom rotated towards the alkene carbon on the approaching IB molecule. Figure 

15c) shows a late transition state, where a proton has already transferred to the IB but is still in a 

close proximity with the oxygen atom. The IB maintains planar structures after the proton but then 

collapses as the carbocation binds to the oxygen, Figure 15d).  

Potential energy surfaces for the initiation steps with different AlCl3 cluster sizes are shown 

in Figure 16. In each reaction pathway, GSM located a local minimum configuration just before 

the high-energy transition state. The activation energies, Ea, are approximated as the difference 

between the transition state and the local minimum state. The relative reaction energies, ∆Erxn, are 

computed as the difference between the product state and the local minimum state. These energies 

are summarized in Table 6. 
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Figure 15. a) Initial configuration, b) transition state, c) local minimum configuration and d) final 

configuration for the initiation step 
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As seen from Figure 16 and Table 6, the AlCl3 trimer system has the highest reaction barrier 

of 19.5 kcal/mol and AlCl3 dimer system has the lowest reaction barrier of 14.8 kcal/mol. The 

proton transfer is responsible for these high reaction barriers. The overall reaction, however, is 

exothermic as all ∆Erxn are negative, and the reaction with AlCl3 dimer is the most exothermic with 

∆Erxn = -13.1 kcal/mol. The ∆Erxn values are less negative for AlCl3 trimer (-6.2 kcal/mol) and 

AlCl3 tetramer (-1.4 kcal/mol). With very large Ea and relatively small ∆Erxn values, the reaction 

pathways generated for AlCl3 trimer and tetramer are unlikely to happen. Even for our lowest 

reaction barrier pathway, the AlCl3 dimer reaction, the reaction barrier of 14.8 kcal/mol is 

relatively high for a reaction that occurs rapidly below room temperature. Nevertheless, we 

proceed with examining the propagation step.   

 

 
Figure 16. Potential energy surface for initiation step (AlCl3)nOH2+IB→[(AlCl3)nOH]-IBH+ 

calculated at B3LYP/def2-TZVP level. a) monomer (n=1) b) dimer (n=2) c) trimer (n=3) d) tetramer (n=4). 
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Table 6. Activation energies (Ea) and relative reaction energies (∆Erxn) for the formation of [AnOH]-

IBH+ complex 
Reactions Ea ∆Erxn 

AOH2 + IB → [AOH]-IBH+ 18.5 -11.5 
AAOH2 + IB → [AAOH]-IBH+ 14.8 -13.1 

AAAOH2 + IB → [AAAOH]-IBH+ 19.5 -6.2 
AAAAOH2 + IB → [AAAAOH]-IBH+ 15.1 -1.4 

 

4.3.2.2 Propagation reaction pathway 

The propagation step involves the breaking of the C-O bond and the formation of the C+-

C bond and the new C-O bond, Figure 17. As the second IB approaches the complex, the IBH+ is 

separated from the (AlCl3)2OH- complex. Carbocation forms a new bond with the alkene group on 

the second IB almost simultaneously as the OH- forms a bond with the tertiary carbon on the 

second IB. The potential surface for the propagation step is shown in Figure 18. 

 

 

Figure 17. a) Initial configuration, b) transition state, c) local minimum configuration and d) final 
configuration for the propagation step 
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Again, the reaction barrier is relatively high (Ea = 34.1 kcal/mol). In this case, the high 

energy barrier is attributed to the breaking of the C-O bond. The overall reaction, however, is 

downhill in energy, ∆Erxn = -9.3 kcal/mol. The propagation step is expected to have a low reaction 

barrier because polymerization reaction occurs very rapidly at low to moderate temperatures. 

Consequently, the high reaction barriers for the initiation and propagation steps lead us to believe 

that the pathway, II → V → VI, may not be consistent with experimental reaction conditions, 

indicating the existence of a more favorable pathway. Next, we examine the initiation step using 

intermediate III.  

 

 

Figure 18. Potential energy surface for the propagation step, [(AlCl3)2OH]-IBH+IB→[(AlCl3)2OH]-

IBIBH+, calculated at B3LYP/def2-TZVP 
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Figure 19. Initiation reaction intermediates with complex III in Figure 12. a) Initial state b) local 
minimum state c) transition state and d) product state. 
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4.3.2.3 Alternative reaction pathways 

Key configurations for the initiation reaction with the complex III are shown in Figure 19. 

Similarly, this pathway proceeds with the transfer of the proton to the IB and then the formation 

of the C-O bond. As seen in Figure 20, the Ea for this reaction is 24.0 kcal/mol and the ∆Erxn is -

8.8 kcal/mol. The Ea value for the initiation reaction with complex III is almost 10 kcal/mol more 

positive than the Ea value with complex II. As the result, we believe this reaction pathway is 

unlikely for the given the experimental reaction conditions. 

 
Figure 20. Potential energy surface for the initiation step with complex III, 

AlCl3AlCl2OH+IB→[AlCl3AlCl2OH]-IBH+, calculated at B3LYP/def2-TZVP 
 

Looking at the alternative AlCl3H2O complexes, we found a potential co-initiator complex 

for IB polymerization. The complex is formed by adding an AlCl3 to a complex of AlCl3H2O 

monomer, as shown in Figure 21a. The oxygen atom in a water molecule has two lone pairs. Even 

after forming a complex with an AlCl3 monomer, oxygen still has an extra lone pair, which is 

capable of forming a dative bond with another AlCl3. Figure 21b shows the local minimum state 

just before the formation of the Al-O bond.  
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Figure 21. The reaction mechanism for forming the alternate (AlCl3)2H2O complex. a) Initial state b) 
local minimum state c) transition state and d) product state 
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The Ea and ∆Erxn values for the formation of this complex are 9.2 kcal/mol and -14.5 

kcal/mol, respectively, shown in Figure 22. Again, the reaction barrier is attributed to the proton 

transfer from the water molecule to a chlorine atom. The final configuration appears to be highly 

symmetric (C2v), shown in Figure 21d, with the transferred proton positioned in the middle of two 

chlorine atoms. Even though the formation of this complex has an energy barrier, the Ea value is 

approximately a third lower in energy than the lowest Ea value calculated for the initiation step 

with complex II of 14.8 kcal/mol. In this configuration, there are two distinct hydrogens that can 

be attacked by the IB molecule. We expect the reaction pathway where the IB attacks the proton 

on the oxygen to be similar to the reaction pathway in Figure 19. Hence, we ran GSM for the 

reaction the IB attacks the hydrogen coordinated with the chlorine. Key configurations for this 

reaction are shown in Figure 23. 
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Figure 22. Potential energy surface for the formation of the alternate (AlCl3)2H2O complex calculated 
at B3LYP/def2-TZVP 

 

The transition state shown in Figure 23 is an early transition where the proton is still bound 

to the chlorine. The Ea and ∆Erxn for this reaction pathway are 2.4 kcal/mol and -9.2 kcal/mol, 
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respectively, shown in Figure 24. The activation energy for the proton transfer in this reaction is 

much lower compared to the barriers calculated previously. This appears to be a promising 

initiation pathway. The propagation step with this new co-initiator complex is shown in Figure 25. 

 

 
Figure 23. Initiation mechanism with alternate (AlCl3)2H2O complex. a) Local minimum state b) 

transition state and c) product state 
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Figure 24. Potential energy surface for the initiation step with alternate (AlCl3)2H2O complex 

calculated at B3LYP/def2-TZVP  
 

From Figure 25, the second IB molecule is inserted in between the IBH+ and its negative 

counterpart. After the IBH+ forms a bond with the second IB, the two hydrogen atoms on the IBH+ 

appears to be weakly coordinated with the chlorine groups. According to Figure 26, the 

propagation step for the newly identified co-initiator complex has a low activation barrier of 2.9 

kcal/mol. This reaction barrier is substantially lower compared to the propagation pathway with 

complex II and more consistent with the experimental reaction conditions. The ∆Erxn value of -

0.69 kcal/mol indicates that the reaction is still exothermic. This could be the potential reaction 

pathway for cationic polymerization reaction of IB.  
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Figure 25. a) Initial configuration, b) transition state, c) local minimum configuration and d) final 
configuration for alternate the propagation step 
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Figure 26. Potential energy surface for the initiation step with alternate (AlCl3)2H2O complex 
calculated at B3LYP/def2-TZVP 

4.4 CONCLUSION 

In summary, we found that the formation of AlCl3H2O, I → II, is thermodynamically 

favorable and the reaction appears to be barrierless. Although the initiation step, II → V, is 

thermodynamically favorable, the activation energy is relatively high (Ea = 14.8 kcal/mol for AlCl3 

dimer system). The high barrier is attributed to the proton transfer from the water molecule to the 

IB molecule. Similarly, the propagation step, V → VI, is thermodynamically favorable, but the 

activation energy is high (Ea = 34.1 kcal/mol). In this case, the high activation barrier is attributed 

to the breaking of the C-O bond, which was formed in the initiation step.  

We found a potential reaction pathway for the initiation step with a low Ea value of 2.4 

kcal/mol, but the Erxn value for the formation of the (AlCl3)2H2O complex is 9.2 kcal/mol. The Ea 

value for the propagation step is 2.9 kcal/mol, which is more consistent with the experimental 

reaction condition and could be the potential pathway for the polymerization of IBs. Future work 
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should further study the propagation step, the addition of the third and fourth IB molecules, as well 

as identify potential termination pathways.
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