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COMPUTATIONAL APPROACH FOR AUTOPHAGY AND APOPTOSIS SPECIFC 

KNOWLEDGEBASES-GUIDED SYSTEM PHARMACOLOGY DRUG RESEARCH 

Nanyi Wang, MS 

University of Pittsburgh, 2017 

 

Autophagy and Apoptosis are the basic physiological processes in cells to clean up aged 

and mutant cellular components or even the entire cells. However, both autophagy and 

apoptosis are disrupted in most of the major diseases like cancer and neurological disorder. 

Increasing attention is also paid recently in academia to understand the crosstalk between 

autophagy and apoptosis due to their tight synergetic or opposite functions in several 

pathological processes. To assist autophagy and apoptosis related drug research, we 

established two chemical-genomic databases which are specifically designed for autophagy 

and apoptosis, by collecting protein targets, chemicals, and pathways closely related to 

autophagy and apoptosis. This information, supported by our established system 

pharmacological analysis tools, such as HTDocking and TargetHunter, provided two 

comprehensive knowledgebases for the pharmacological study of autophagy and apoptosis. 

Additionally, to enhance the accuracy of the prediction by HTDocking in these two 

knowledgebases, we developed ProSeletion, a computational protein selection algorithm 

bases on the research purpose, is designed to generate the proper structure subset for 

molecular docking study. A suggested docking score threshold for active ligands (SDA) was 

then generated according to the receiver operating characteristic (ROC) curve and was used 

as an individual docking score criterion for the active ligands prediction. The performance of 
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prediction was further evaluated by FDA recently approved small molecule antineoplastic 

drugs. Overall, the Autophagy Knowledgebase and the Apoptosis Knowledgebase will 

accelerate our work in autophagy-apoptosis related research and can be a useful tool for 

information searching, target prediction, and new chemical discovery. 

 

Key words: Autophagy; Apoptosis; Cancer; Neurological disease. 
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1. INTRODUNCTION 

1.1  Autophagy 

Autophagy is a process by which cells capture intracellular lipids, proteins, and 

organelles, and transport them into lysosomes for degradation1. It is also known as a 

lysosomal degradative pathway with the character of the formation of double-membrane 

autophagic vesicles (AV), also named autophagosomes. When lysosome fuses with the outer 

membrane of the AV, a degradation will happen to the AV inner membrane as well as the 

contents inside2, 3. Three different autophagic pathways are reported: (1) macroautophagy, (2) 

mitophagy, and (3) chaperone-mediated autophagy (CMA)4. Among them, macroautophagy 

is the most common autophagic pathway in the eukaryotic cell in which lysosomes directly 

engulf part of the cytoplasm for further degradation (Figure 1).  

Autophagy occurs at low basal levels in almost all cells with the homeostatic functions 

such as protein and organelle turnover1. This prevents the gradual accumulation of proteins 

and organelles overtime. However, autophagy is dramatically upregulated when intracellular 

energy and nutrients are required by cells in certain conditions, for instance, during starvation, 

protein aggregation, organelles damage, growth factor withdrawal or in a high bioenergetics 

demand status. This allows the stability of synthetic pathways and energy homeostasis in 

cells. 
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Figure 1. Autophagy process and signaling through macroautophagy 

Macroautophagy is the most common subtype of autophagy. It starts from the phagophore 

induction to autophagolysosome formation then degradation. Autophagy related genes (ATGs) 

involved autophagy is majorly regulated through mTOR. Most of the autophagic-related 

genetics and kinase signaling are involved in this process before the formation of 

autophagosome while the stability of lysosome and autophagosome is the major determinant 

for this process after autophagosome formation. 

 

The capability of autophagy to capture, degrade, eliminate and recycle intracellular 

components affects metabolism, enables host defense, regulates trafficking, remodels the 

proteome, alters signaling and influences cellular interactions5. This makes the intracellular 

homeostasis possible and enables the normal cells functional in almost every cell. 

 

1.2  Autophagy and diseases 

1.2.1 Autophagy and cancer 

1.2.1.1 Autophagy inhibits cancer initiation 

Autophagy is believed to have an important role in cancer development. Over past 

decades, studies of how autophagy impacts cancer development indicate a link between 

carcinogenesis and decreased levels of autophagy6. 

Comparison of normal and autophagy-defective mice and cells has revealed the 

suppressive role of autophagy in cancer development. Mice with autophagy defects 

accumulate abnormal mitochondria, autophagy adaptor p62, and ubiquitinated keratin7-9. 
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Although the functional consequences on protein and organelle of this dysfunction are not 

completely clear, they are associated with reactive oxygen species (ROS) production, 

activation of the DNA damage response, cell damage, and death. This will further lead to a 

chronic inflammatory state due to the failure of autophagy-mediated cellular garbage 

disposal10, 11. Chronic tissue damage and inflammation are associated with DNA-damaging 

ROS production, contributing to mutations that can initiate cancer and promote tumor 

progression12. 

Although the mechanisms by which autophagy functions in cancer suppression remain 

unclear, in the field of cancer initialization, autophagy is more likely to be an inhibitor rather 

than a promoter of initial oncogenesis. 

1.2.1.2 Autophagy promotes cancer survival 

Although autophagy is suppressed during the early stage of cancer initiation, it 

apparently has a role in the enhancement of cancer cell survival within the cancer 

microenvironment and will be upregulated during the later stages of cancer progression as a 

cytoprotective mechanism against the stressful conditions. Autophagy maintains the survival 

of both normal cells and cancer cells and is stimulated in vivo by cellular stress, including 

nutrient, growth factor, and oxygen deprivation10, 13, 14. When in vitro models take stress into 

consideration, the contribution of autophagy to cell survival becomes clearer. For instance, 

autophagy-defective cancer cells undergoing metabolic stress showed impaired survival in 

comparison with autophagy-proficient cells15. Therefore, an upregulated autophagy in 

response to stress in cancer cells is still important for survival due to the high-stressed 

microenvironment around them. In a search based on NextBio to investigate the effects of 
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FDA approved oncology drugs on autophagy pathways (Aug 2016), most the anticancer 

drugs are accompanied by an upregulation on autophagy related signaling pathways (Table 1). 

Yasuko also raised a similar conclusion that autophagy is activated in cancer cells in response 

to various anticancer therapies16, including Tamoxifen treatment, Temozolomide treatment, 

Rapamycin treatment, sodium butyrate and SAHA treatment, andγ-irradiation. This further 

supports the notion that an increasing level of autophagy occurs as a response to intracellular 

stress.  

 

Table 1. Modulation of autophagy by 134 anticancer drugs 

 

 

Autophagy served as an energy recycler for cancer cells and is one of the mechanisms 

which promote the survival of the drug-resistant cancer cells17. Under harsh conditions, 

nutrients are recycled and provided again for the cancer cells and the cellular stress is reduced 

because of the autophagy17. In several preclinical studies, autophagy significantly reduces the 
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efficacy of different anticancer agents in various categories including vorinostat, imatinib and 

cyclophosphamide18.  

In general, autophagy has dual roles during tumorigenesis. It limits genomic damage and 

suppresses tumor initiation on one hand while helping cancer cells to survive during stress on 

the other hand. Because of the dual roles of autophagy, the single-agent using of inhibitor can 

results in different outcomes18 due to the functional existence of both damage cleaning and 

autophagic cell death (ACD). Therefore, further study is needed before autophagic 

modulators can be clinically used, based on its context-dependent nature. 

 

1.2.1.3 Target autophagy for therapy in cancer 

Since autophagy is a cancer survival pathway in most cases and the basal level of 

autophagy is significantly increased in several cancer cells, a great interest in inhibiting 

autophagy is raised in cancer therapy. By inhibiting autophagy, cancer cells may suffer from 

more serious stress caused by an increasing amount of cellular waste and energy crisis. The 

drug-resistant cancer cells can be sensitized again to anticancer therapy by autophagy 

inhibition19. For instance, hydroxychloroquine (HCQ), a lysosomotropic detergent, which 

blocks the degradation of autophagosome by inhibiting lysosome function, is recently being 

actively investigated in the clinic15. Although whether HCQ will be able to effectively block 

autophagy in human cancer is not yet resolved, a trend of developing autophagy inhibitors for 

cancer combination therapy is already underway. Either targeting on the latter stage like 

lysosome fusion with autophagosome or earlier signaling in phagophore and autophagosome 

formation is promising. Besides later autophagic stage drugs like HCQ, several small 
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molecule inhibitors of PI3K/AKT/MTOR pathway which target at the earlier stage are also 

under clinical investigations (Table 2). However, the signaling feedback of 

PI3K/AKT/MTOR inhibition, like FOXO-dependent feedback and ERK amplification, can 

cause several negative effects20. Thus, development of more potent and selective (cell 

selective and autophagic stage selective) autophagy inhibitors and drug combinations are in 

high demand both in academia and industry. 

 

Table 2. Summary of autophagy related small-molecule drugs in clinical research 

Target Drug Mechanism Autophagy 

modulation 

Phase Ref 

Autophagosome 

formation 

        

PI3K/AKT/mTOR 

pathway 

Sirolimus 

(Rapamycin) 

mTOR inhibitor Induce 4 21 

  Curcumin mTOR inhibitor Induce 3 22 

  Resveratrol mTOR inhibitor induce 3 23 

  AZD8055 mTOR inhibitor Induce 1 24 

  Dactolisib PI3K and mTOR inhibitor Induce 2 25 

  BGT226 PI3K and mTOR inhibitor Induce 2 26 

  Voxtalisib PI3K and mTOR inhibitor Induce 2 27 

  SF1126 PI3K and mTOR inhibitor Induce 1 28 

  Pilaralisib PI3K inhibitor Induce 2 29 

  Sonolisib PI3K inhibitor Induce 2 30 

  Pictilisib PI3K inhibitor Induce 1 31 

  Buparlisib PI3K inhibitor Induce 3 32 

  Idelalisib PI3K inhibitor Induce 4 33 

  Perifosine AKT inhibitor.  induce 3 34 

  GSK690693 AKT inhibitor Induce 1 35 

  Triciribine phosphate AKT inhibitor Induce 2 36 

  MK2206 AKT inhibitor Induce 2 37 

AMPK activation Metformin Cause AMPK activation, 

inhibition mTOR pathway 

Induce 4 38 

 Trehalose Chemical chaperone, Induce 

AMPK activation 

induce 2 39 
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 Rilmenidine Induce AMPK activation. induce 4 40 

Lysosomal function         

Lysosome 

membrane stability 

Chloroquine Endosomal Acidification 

Inhibitor, TLR signaling 

inhibitor, Lysosomal lumen 

alkalizer 

Inhibit 4 41 

 Hydroxychloroquine Lysosomal lumen alkalizer. 

Blocks the fusion of the 

autophagosome and 

lysosome 

Inhibit 4 42 

 Pantoprazole proton pump inhibitor (PPI) Inhibit 4 43 

Selective 

autophagy 

     

HDAC Vorinostat HDAC1, HDAC2 and HDAC3 

(Class I) and HDAC6 (Class II) 

inhibitor 

Induce 4 44 

Sirtuin-1 Resveratrol Activates sirtuin-1, inhibits 

P70 S6 kinase, induce AMPK 

activation 

Induce 3 45 

Other         

Hormonal Tamoxifen Antiestrogens. Target at 

oestrogen receptor and 

cause accumulation of 

Sterols 

Induce 4 46 

Ca2+–calpain–GSα 

pathways 

Verapamil L-type Ca2+ channel blocker, 

reduce intracytosolic Ca2+ 

levels. 

Induce 4 47 

Phosphoinositol 

signaling pathway 

Carbamazepine MIP synthase inhibitor. 

Reduce inositol and IP3 

Levels 

Induce 4 48 

 cAMP–Epac–

PLC-ε–IP3 pathway 

Clonidine Imidazoline-1 receptor 

agonists. Reduce cAMP 

levels. 

induce 4 49 
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1.2.1.3.1  Drugs targeting PI3K/AKT/MTOR pathway 

The PI3K-AKT signaling pathway is inappropriately activated in many cancers. Several 

genetic abnormalities are known to activate this signaling including the loss of PTEN tumor 

suppressor and the somatic mutations of class IA PI3K such as E542K, E545D, and E545K50. 

The activation of PI3K-AKT signaling will induce the formation of mammalian target of 

rapamycin complex 1 (mTORC1) and further enhance the phagophore formation in the 

autophagy initiation (Figure 1). Numerous drugs are designed for this pathway and some of 

them are already in the clinical trials (Table 2). Among these inhibitors for 

PI3K/AKT/MTOR pathway, Sirolimus (rapamycin) is recognized as the first-in-class 

mTORC1 inhibitor which binds to the mTORC1 allosteric site51. However, further studies 

have observed that mTOR catalytic-site inhibitors were more potent than Sirolimus. 

Catalytic-site inhibitors, like AZD8055 (IC50 = 0.8 nM against mTOR), have minimal effect 

on the phosphorylation site of several AKT substrates despite a strong effect on AKT S473 

phosphorylation (mTORC2 inhibition)52. This effect is more closely related to the complete 

mTORC1 inhibition rather than the phosphorylation of AKT. 

1.2.1.3.2  Drugs targeting AMPK activity 

As a metabolic sensor, AMP-activated protein kinase (AMPK) regulates glucose, lipid 

and cholesterol metabolism and is closely related with cell metabolism17. Activation of the 

AMPK pathway by an increasing ratio of AMP/ATP inhibits the mTOR signaling on 

serine/threonine kinase ULK1 (ULK1) complex and would then induce the autophagy 

initiation (Figure 1). This happens through the stimulation of cAMP-inositol 

1,4,5-trisphosphate (IP3) or calpain-G-stimulatory protein α (Gsα) pathways47. AMPK is 



 

10 

 

believed to have a major upstream regulator serine/threonine kinase LKB1 (STK11). 

However, other regulators are still available such as calcium, calmodulin-dependent protein 

kinase kinase 2 (CAMKK2) and transforming growth factor-β-activating kinase 1 (TAK1)17. 

Several drugs like metformin and rilmenidine can regulate the phagophore formation via this 

pathway (Table 2). 

1.2.1.3.3  Drugs targeting lysosome membrane 

Stability of the lysosome membrane is critical for lysosomal function and its ability to 

fuse with the autophagosome (Figure 1). Elevated lysosomal pH has been linked to 

autophagy failure and neurological disorders53. Several drugs such as chloroquine (CQ) and 

hydroxychloroquine (CQ) can disrupt the lysosome membrane and therefore inhibit the 

autolysosome formation (Table 2). An impairment of autophagic vesicle clearance can also 

be observed due to the CQ accumulation. Based on the data from clinical trials acquired from 

clinicaltrials.gov, CQ and HCQ have been used in more than half of the autophagy-related 

clinical research. This may due to their relatively powerful inhibition of autophagy because of 

the mechanism of the late-stage autophagy inhibition. Compared to CQ, HCQ was found 

having fewer side effects partly because of its hydrophilic property and disability to cross the 

blood brain barrier (BBB)54. 

1.2.1.3.4  Drugs targeting on other autophagy related pathways 

Several other pathways can also regulate the autophagy process (Table 2). By inhibiting 

the members of histone deacetylases (HDAC) or activating the sirtuin-1, drugs are able to 

induce the signaling for selective autophagy. Hormonal, Ca2+–calpain–GSα, Phosphoinositol, 

and cAMP–Epac–PLC-ε–IP3 pathways are also been demonstrated to influence the 
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autophagy process. 

 

1.2.2 Autophagy and neurological diseases 

1.2.2.1 Autophagy in neurological diseases 

Autophagy is essential in maintaining the brain homeostasis55. With aging process, 

neuronal cells will accumulate abnormal intracellular proteins and damaged organelles just 

like other cells. However, as a post-mitosis cell type, neurons cannot dilute cellular waste by 

mitosis. Thus, autophagy is more necessary for neurons to get rid of toxic aggregate-prone 

proteins56. This reliance was also demonstrated by the severe functional affection in primary 

lysosomal disorders or lysosomal-related gene mutations. One of the shared pathological 

features of most adult-onset human neurodegenerative diseases is the formation of 

intracytoplasmic aggregates within neurons and other cell types4. This is observed by many 

researchers in the field of Alzheimer’s disease (where tau and Aβ accumulate in cytoplasm) 

and Parkinson disease (where α-synuclein aggregates in Lewy Bodies). A common approach 

of studying these neurological diseases is to investigate whether autophagy is involved in the 

accumulation of aggregate-prone and mutant proteins. Hara and Komatsu reported that 

instead of being relatively inactive, basal autophagy is relatively active in neurons for the 

clearance of abnormal proteins in cytoplasm11, 57. This is crucial for inhibiting the 

pathological protein aggregation in the cytoplasm, even in the absence of disease-related 

mutations. However, both macroautophagy and chaperone-mediated autophagy (CMA) are 

significantly less efficient during aging process58. Therefore, autophagy failure is one of the 

most popular concepts in explaining the disease mechanism. When we consider when and 
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where the autophagy halts, the autophagy induction, cargo sequestration, selective autophagy 

and autophagosome clearance (lysosome digestion) are the major steps where the 

dysfunctions may occur59. Collectively, these studies implicate a normal, relatively active 

autophagy is needed in brain and any disruption in physiological autophagy may lead to 

abnormal protein behavior, for instance, aggregation or oligomerization. 

Increased function of autophagy is relatively common in neurodegenerative disease as a 

response to mutant, damaged proteins or defective autophagy itself59. A search among 148 

central nervous system agents based on NextBio database shows 82% of these agents are 

associated with an increased autophagy (Table 3). Although induction of autophagy is 

generally regarded as neuroprotective, this induction in some acute injuries like hypoxic 

ischemic brain injury may be overexuberant60, in which the cellular stress for autophagy is 

excessively induced. Therapeutic plans in such situation are complex. However, in certain 

disease in which the function of autophagy is not known being substantially compromised, 

for instance, Huntington’s disease, an induction in autophagy might be a beneficial strategy. 

 

Table 3. Modulation of autophagy by 148 central nervous system (CNS) agents 

Category Direction Ratio Percentage 

CNS Agents up 122/148 82% 

down 26/148 18% 
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1.2.2.2 Deficient autophagy in Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive 

dementia and brain morphological changes such as atrophy, senile plaques with fibrillogenic 

beta amyloid (Aβ), and intraneuronal neurofibrillary tangles (NFT) with hyperphosphorylated 

tau4. In AD, macroautophagy (referred as autophagy in most cases), the major subtype of 

autophagy, is considered to be most relevant to AD61. In 2005, Nixon’s group identified 

immature autophagic vacuoles (AVs) accumulation in dystrophic neuritis in AD brains using 

immunogold labeling and electron microscopy62. However, proper formation and degradation 

of autophagosome are important for maintaining a normal autophagic function. In 

hippocampus neurons of AD mice, abnormal accumulation of immature AVs in axon has also 

been reported even before the neuronal and synaptic loss63. This indicates a malfunctioned 

autophagy is accompanied with AD. As reported by Wolfe, AD is associated with an awry 

lysosomal digestion and a possible PSEN1 or ApoE4 mutation which may lead to a 

deficiency in vATPase, Rab5 or Rab7 activation, and substrate overload in lysosomes64. 

Other factors contributing to AD include but not limit to ApoE465, reactive oxygen species 

(ROS), accumulated Aβ peptides, tau oligomers, oxidized lipids and lipoproteins that disrupt 

lysosomal proteolysis. However, dysfunction of autophagy is whether the cause or the result 

of AD is still in debate. The difference in many factors including animal models and cellular 

models may lead to controversies. For β-amyloid, autophagy plays a critical role in the 

clearance of Aβ by facilitating the degradation of amyloid precursor protein (APP) as well as 

APP cleavage products including Aβ66, 67. However, Yu reported that Aβ can also be 

produced in immature autophagic vacuoles in AD brains68. In the case of tau protein, 
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autophagy-lysosome system dysfunction will lead to the formation of insoluble aggregates 

and tau oligomers, while enhancing of autophagy can restrict this aggregation69. As a 

conclusion, deficient autophagy is likely to be a player in the AD progression brain with an 

inhibited lysosomal proteolysis function. 

1.2.2.3 Autophagy dysfunction in Parkinson disease 

In Parkinson disease (PD), accumulation of α-synuclein within Lewy bodies (LBs) in the 

aubstantia nigra is sufficient to cause death of dopaminergic neurons and PD70. Autophagic 

vacuoles accumulate when α-synuclein is overexpressed in mutant or even wild-type 

transgenic mice71. Although α-synuclein can be degraded by the proteasome, α-synuclein 

itself is a substrate for autophagy72 and is preferentially degraded by autophagy system. 

Moreover, α-synuclein was demonstrated to inhibit autophagy at a very early stage when 

over-expressed73. Besides α-synuclein, PD-related gene products such as parkin, DJ-1, 

PINK1, and LRRK2 are also found in LBs which number far exceeds their normal presence 

in brain74. Among these, Leucine-rich repeat kinase 2 (LRRK2) mutation involves in the 

most common autosomal-dominant form of PD. Change in LRRK2 activity as a result of 

PD-related mutations was associated with defected endosomal-lysosomal trafficking, 

lysosomal pH, chaperone-mediate autophagy, and calcium regulation59. Finding of the 

specific inhibitors for LRRK2 encoded kinase has been a potential therapeutic direction of 

research. Generally, autophagy dysfunction, including several autophagy-related mutations, 

mislocations or duplications of important PD-related genes and proteins contribute to the 

Parkinson’s disease. 

1.2.2.4 Target autophagy for therapy in neurodegeneration 
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Autophagy is a promising but challenging target for neurological therapies due to its 

powerful but delicate nature. Identification of specific autophagic stage(s) interrupted in 

different neurological diseases is crucial for future stage-targeted drug development. 

Available evidence prefers autophagy inducing strategies that specifically targeting the 

autophagic stages that are significantly disrupted in each disease. For enhancing autophagy 

induction and sequestration (beginning stage), administration of rapamycin, a relatively 

selective inhibitor of mTORC1, restricts the degeneration of neurons in transgenic mouse 

models of Huntington’s disease75, Alzheimer’s disease76, Parkinson’s disease72 and Prion 

disease21. Trehalose, possibly through AMPK activation, promotes the clearance of mutant 

huntingtin, tau, and α-synuclein while showing neuroprotective effects both in cell and 

transgenic mouse model77. A combination of compounds with AMPK and mTOR activity 

may also have additive benefits78. For selective autophagy enhancement, histone deacetylase 

inhibitors may increase the mutant huntingtin acetylation and selectively targets it to 

autophagosomes which is known to be beneficial in Huntington’s disease models79. 

Enhancing lysosome efficiency and stability are also possible strategies for autophagy 

targeting therapy in neurodegeneration. However, most of the approaches in this field are at a 

genetic level while few drugs are available. 

Although the autophagy enhancement is more preferred, activation of autophagy can 

cause damage in the neurodegenerative diseases where a massive accumulation of 

undegraded immature autophagic vacuoles (AVs) was present. In this situation, treatments 

that inhibit autophagosome formation shows an improvement, at least temporarily, in 

neuronal viability80. Although no compounds are yet available, the optimal treatment in these 
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cases should enhance the autophagosome clearance instead of inducing more which remains 

undegraded. 

 

1.3  Apoptosis 

Apoptosis is also known as programmed cell death. Morphological changes during 

apoptosis include both the cytoplasm and nucleus alterations which are interestingly similar 

across species and cell types. In the nucleus, the chromatin condenses and breaks while the 

ribosomes and mitochondria in cytoplasm aggregates. The fragments of dead apoptotic cells 

form a structure named “apoptotic bodies”. Generally, three major changes take place during 

apoptosis: 1) caspases activation 2) protein and DNA breakdown 3) membrane changes and 

being recognized by phagocytic cells81. Among them, caspases are crucial in the apoptotic 

signaling since they are both the initiators and executioners. Three pathways are known to 

activate caspases in which two are frequently described, intrinsic and extrinsic pathways of 

apoptosis. In the extrinsic pathway, binding of death ligands (FAS ligands, TNFα or TRAIL) 

to death receptors coupled with FADD will consequently activate caspase-8 and finally the 

apoptosis. While in the intrinsic pathway where the mitochondria have an important role, 

cytotoxic damages will deliver signals to mitochondria and initiates the apoptosis (Figure 2). 

Although extrinsic apoptosis is efficient enough to activate caspase-3 and kill the cells, 

intrinsic apoptosis can be activated by caspase-8 in the extrinsic pathway which will amplify 

the death signal. 

Apoptosis is understood as a stress induced process of cellular communication82. It is 

more likely to occur under the conditions of cellular stress like genetic damage or severe 
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oxidative stress which are relatively common in several diseases (like cancer) and their 

therapies. Therefore, apoptosis is always taken into consideration in disease and drug 

research as one of the disease mechanisms or therapeutic targets. 
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Figure 2. Apoptosis signaling 

Apoptotic pathways are generally categorized into three types. In the extrinsic pathway, 

different types of death receptors can be activated by either FAS ligand, TNFα or TRAIL 

followed by a formation of DISC complex (TRAIL and FAS ligand) or signaling complex 1 

(TNFα). Consequently, the procaspase-8 and -10 cleavages will occur which results in 

caspase-8 and -10 activation. Caspase-8 and -10 will then amplify the death signal either by 

directly activating effector caspases or enhancing Bid binding to BAX and BAK which will 

lead to intrinsic pathway activation. In the intrinsic pathway, cellular stress can either directly 

activate BAX and BAK or transcriptionally upregulate BAX and BAK through p53. 

 

1.4  Apoptosis and diseases 

1.4.1 Apoptosis and cancer 

The ability to evade apoptosis is one of the hallmarks of cancer. Evasion of apoptosis 

may benefit the tumor development, progression and even resistance to treatment. Cancer 

cells utilize a variety of mechanisms to evade apoptosis, and some are specific to certain 

cancer types while others are not. Generally, this evasion is supported by: 1) either increased 

level of antiapoptotic molecules or decreased level of proapoptotic molecules83; 2) reduced 

signaling of death receptor; and 3) impaired caspase function. For the pro-apoptotic and 

anti-apoptotic proteins balance disruption, Bcl-2 family of proteins, p53 and inhibitor of 

apoptosis proteins (IAPS) are popularly discussed as the major contributors81. For death 

receptors, receptors downregulation, functional impairment or level changes in death receptor 

ligands are believed to impact apoptotic extrinsic pathway. For reduced caspase function, 
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downregulation in caspase proteins is always considered as a major issue. As a conclusion, 

any of these changes listed above in cancer cells can altering the apoptotic function. However, 

the major contributor in each case is still largely dependent on the situation and the type of 

cancer. 

1.4.2 Target apoptosis pathways in cancer therapy 

Targeting apoptosis pathways in cancer therapeutic has been a promising direction 

during the past few decades. Based on a recent search (May 2016) on the NexiBio database, 

most of the anticancer drugs now in the market can induce apoptosis (Table 4). While most of 

these molecules enhance the autophagic function indirectly, few of them are designed to 

induce autophagy directly. In the recent few years, increasing number of drugs which directly 

target apoptosis pathways have entered clinical trials. The importance of several drug targets 

has also been demonstrated. This includes but not limited to the Bcl-2 family of proteins, p53, 

surviving, IAP and caspases. One drug (Venetocalx), which targets on Bcl2, has already been 

approved by the FDA in April 2016 (Table 5). 
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Table 4. Modulation of apoptosis by 149 anticancer drugs. 

 

 

1.4.2.1 Drugs targeting Bcl-2 family proteins 

Bcl-2 family proteins are in tight balance in cells, either decreased expression of 

pro-apoptotic Bcl-2 members or overexpression of anti-apoptotic Bcl-2 members can inhibit 

capase-9 activation, which is the major pathway for intrinsic apoptosis activation. Bcl-2 

family overactivation has been observed in several tumors including lymphocytic leukemia 

(CLL) where the application of Bcl-2 agents may be more promising. Drugs like ABT-263 

(Table 5) targeting at Bcl-2/Bcl-w/Bcl-xl may lead to thrombocytopenia. This is due to the 

inhibition of Bcl-xl which is important in platelet survival84. Drugs which are more Bcl-2 

selective, such as Venetocalx, are much preferable for apoptotic Bcl-2 targeting. Particularly, 

MAO-B inhibitors, like Rasagiline, regulate the autophagy via the downstream bcl-2 

pathway. 
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Table 5. Summary of apoptosis related small-molecule drugs in clinical research 

Target Drug Mechanism Direction Phase Ref 

Bcl-2 family of proteins      

BH3 mimetics Venetoclax 

(ABT-199) 

Bcl-2 selective inhibitor Induce 4 85 

 Navitoclax 

(ABT-263) 

Bcl-2, Bcl-xL, Bcl-w inhibitor Induce 2 86 

 Obatoclax Pan Bcl-2 inhibitor that binds 

to Bcl-2, Bcl-xL, Bcl-w, Bcl-B, 

BFL-1 and Mcl-1 

Induce 3 87 

 (-)-Gossypol Pan Bcl-2 inhibitor. Affinity for 

Bcl-2, Bcl-xL and Mcl-1 at 

submicromolar concentrations. 

Induce 2 88 

MAO-B inhibitors Rasagiline Selective and irreversible 

inhibitor of MAO-B. Activate 

protein kinase C and down 

regulating FAS and Bax family 

of proteins 

Inhibit 4 89 

 Selegiline Selective inhibitor of MAO-B. 

Up-regulating Bcl-2 protein 

Inhibit 4 89 

SMAC mimetics      

Targeting both XIAP and 

cIAPs 

GDC-0152 IIAPs antagonist. Binds to the 

BIR3 domain of XIAP, cIAP1 and 

cIAP2 

Induce 1 90 

 CUDC-427 IAPs antagonist Induce 1 91 

 Birinapant IAPs antagonist Induce 2 92 

 LCL161 IAPs antagonist Induce 2 93 

 AT-406 IAPs antagonist.  Induce 1 94 

Targeting p53-MDM2 RG7112 Inhibit MDM2-p53 interaction Induce 1 95 

 CGM-097 Inhibit MDM2-p53 interaction Induce 1 96 

Other Minocycline Prevents release of 

cytochrome c. Increase Bcl-2 

expression and inhibit the 

activity of caspase-1 and -2 

Inhibit 4 97 
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1.4.2.2 Drugs targeting IAPS 

Inhibitor of apoptosis proteins (IAPs) are attractive molecular targets for cancer therapy, 

which also has various abilities in blocking apoptosis. So far, one member in the IAPs, XIAP, 

has drawn much attention due to its directly binding with caspase-3, -7 and -9 and the 

inhibition of the caspase activity. Both the intrinsic and extrinsic pathways (Figure 2) can be 

effectively inhibited by XIAP. Although several second mitochondria-derived activator of 

caspases (SMAC) mimetics such as IAPs antagonists GDC-0152 and Birinapant have entered 

clinical trials, none of them has yet been approved. Almost all the SMAC mimetics may 

induce a TNFα-mediated toxicity. This makes the development of IAPS targeting cancer 

therapy more challenging. 

1.4.2.3 Drugs targeting p53 

P53 is important in transcriptional regulation and signaling. Several small-molecule 

inhibitors of MDM2-p53 interaction, such as Nutlins and MI-21984 have been developed as 

the lead compounds which show some inhibition of tumor growth in vivo. More MDM2 

targeting chemicals are then synthesized while some enter the clinical trials (Table 5). Other 

potential therapies based on p53 can be grouped into gene therapy and immunotherapy. 

However, in p53 gene therapy, although a few studies once went into Phase III, none was 

finally approved. 

1.4.3 Apoptosis and Neurological Disease 

1.4.3.1 Apoptosis in Neurological Diseases 

Apoptosis is important in neuron development. It controls the type and number of 

different neuron cells in the developing brain and spinal cord98. However, under certain 
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pathologic conditions like the aged brain, apoptosis is also co-responsible for neuron loss. 

The individual neuron may die rapidly when the apoptosis is fully activated and this further 

accelerates the progression of neurodegeneration. 

1.4.3.2 Apoptosis in Alzheimer’s disease 

Although the exact mechanisms of neuronal degeneration in AD are still unknown, 

available data supports that the accumulation of Aβ peptide will lead to ROS generation and 

induce apoptosis99, especially when an unfunctional autophagy is present where the Aβ 

cannot be cleared properly. In another experiment, when exposed to Aβ, apoptosis in cultured 

neurons was induced directly which made cells more vulnerable to death-induced conditions 

like increased oxidative stress and reduced energy100. Death receptor 4 (DR4) and 5 (DR5) 

were shown to mediate the Aβ induced apoptosis in cerebral microvascular endothelial cells 

and primary culture of astrocytes98. Aggregation of APP in mitochondria due to the 

overexpression of Aβ will activate caspase-3 and then initiate the apoptosis process. Beside 

Aβ peptide, other factors like RanBP9, presenilin-1/-2 and ER calcium release have also 

shown contributions in the apoptosis under AD. 

1.4.3.3 Apoptosis in Parkinson’s disease 

Apoptosis is thought to be the dominant mechanism for neurodegeneration in PD101. 

Several proteins that signal for apoptosis are changed during PD. This includes the increasing 

of proapoptotic effector BAX, decreasing of Beclin-1 and the mutation of DJ-1 and Parkin 

encoded by PARK2 gene. However, generally, the exact mechanism of apoptosis in PD 

pathogenesis is still not clear. 

1.4.3.4 Target apoptosis for therapy in neurodegeneration 
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Most of the drug developing strategy for neurodegeneration diseases is focusing on 

drugs that inhibit neuronal dysfunction or early death in the disease progression. In the aspect 

of molecular signaling, the strategy for treating neurodegeneration is completely the opposite 

compared to strategies in cancer treatment. Here, blocking the apoptotic triggers or inducing 

the anti-apoptotic proteins is clearly a better option, although the protein targets, like Bcl-2, 

BAX or caspase, remain the same compared to apoptotic cancer therapy. Minocycline, an 

antibiotic which inhibits apoptosis by disrupting caspase-3 activation and preventing ROS, 

also increases the Bcl-2 expression, is demonstrated to prevent the aggravation of several 

neurodegeneration diseases in animal models98. The similar beneficial effect was also 

observed on other apoptosis related drugs like CEP-1347 (inhibitor of MLK) and Rasagiline 

(MAO-B inhibitor). 

 

1.5  Crosstalk between autophagy and apoptosis 

1.5.1 Functional level 

The relationship between autophagy and apoptosis at functional level can be divided into 

three categories (Figure 3). Both autophagy and apoptosis can induce cell death directly. 

However, autophagy can also either inhibit or induce apoptosis under different cellular 

conditions.  
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Figure 3. Autophagy and apoptosis relationship at functional level. 

(A) Both autophagy and apoptosis is sufficient to induce cell death. (B) Autophagy can 

promote apoptosis induced cell death by promoting death-inducing signaling complexes 

(iDISC) or enhancing the apoptosis negative regulators degradation. (C) Autophagy can also 

inhibit apoptosis induced cell death by degradation of apoptosis positive regulators such as 

PUMA or by removal of damaged organelles and protein aggregates. 

 

1.5.2 Signaling level 

Apoptosis is interacted with autophagy in both its intrinsic and extrinsic pathway. 

Mitochondrial outer membrane permeabilization (MOMP) is important in apoptosis intrinsic 

pathway since it controls the release of mitochondrial intermembrane proteins including the 

cytochrome c which will lead to caspase-9 activation. Bcl-2 family proteins control MOMP. 

Anti-apoptotic proteins Bcl-2, Bcl-X and Mcl-1 prevent the activation of pro-apoptotic 

proteins Bax and Bak under basal cellular conditions102. In the aspect of autophagy, BCL 
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family proteins also participate in the phagophore formation (Figure 1). The crosstalk 

between autophagy and intrinsic apoptosis pathway happens tightly around BCL-2 family 

proteins (Figure 4). In extrinsic pathway, death ligands such as TRAIL have a significant role. 

However, autophagy deficient cells are highly sensitive to TRAIL induced apoptosis102. This 

is due to the regulatory effect of autophagy on PUMA, a protein which regulate the MOMP. 

Therefore, autophagy and apoptosis are not exclusive processes. They act either 

synergistically or antagonistically to maintain the homeostasis in cells. However, this balance 

is always disrupted during disease progression. Generally, autophagy is considered as one of 

the cell survival mechanisms during cancer chemotherapeutics due to its attempt of removing 

damaged cellular components18. It may further lead to the inhibition of apoptosis induced cell 

death. While apoptosis is a cell death mechanisms when comparing to autophagy. 

 

Figure 4. Bcl-2 family proteins in the cross talk 

Anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL and Mcl-1) inhibit both the autophagy 

and apoptosis initiation. 
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2. METHOD AND MATERIAL 

2.1  Autophagy and apoptosis knowledgebases construction 

2.1.1 Knowledgebases infrastructure and web interface 

The autophagy (http://www.cbligand.org/autophagy) and apoptosis 

((http://www.cbligand.org/apoptosis) knowledgebases were established based on the 

chemogenomics database AlzPlatform (www.CBLIgand.org/AD) which was previously 

constructed by Dr. Xiang-Qun Xie’s group103, with an apache (http://www.apache.org/) web 

server and a MySQL (http://www.mysql.com) database. Openbabel (http://openbabel.org/) 

was integrated in the knowledgebases as the search engine for chemical structures. Autodock 

(http://autodock.scripps.edu/) was used as the docking engine for target-prediction with 

several our in house chemoinformatics tools, for instance, BBB Predictor and HTDocking104, 

implemented. The web interface is written in PHP language (http://www.php.net/). 

 

2.1.2 Data sources 

2.1.2.1 Proteins and compounds library 

Autophagy and apoptosis related proteins and compounds were collected from 

literatures and public databases, including PubMed (www.ncbi.nlm.nih.gov/pubmed), 

PubChem (pubchem.ncbi.nlm.nih.gov/), Metacore (https://portal.genego.com/), DrugBank 

(http://www.drugbank.ca), SciFinder (https://scifinder.cas.org/), UniProt 

(http://www.uniprot.org/) and CHEMBL (https://www.ebi.ac.uk/chembl/). Totally, 201 and 

456 candidate protein targets were collected for autophagy and apoptosis respectively. The 

targets corresponding X-ray crystallographic structures were acquired directly from RSCB 
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Protein Data Bank (www.rcsb.org/pdb) to construct the protein library for autophagy and 

apoptosis. 

2.1.2.2 Pathways and Bioassays 

Signaling pathways for autophagy and apoptosis are acquired from public databases 

including Metacore (https://portal.genego.com/), KEGG (http://www.genome.jp/kegg/), and 

DrugBank (https://www.drugbank.ca/) and was revised based on published literatures. The 

associated bioassays for the target proteins, which were used to statistically validate our 

prediction, were collected from literatures and the public databases mentioned above. 

2.1.2.3 System pharmacological analysis tools 

HTDocking. High-throughput docking (HTDocking) is an internet-based computing tool 

that automatically conducts docking procedure to explore the compound-protein interactions 

(http://www.cbligand.org/AD/docking_search.php). In the autophagy and apoptosis 

knowledgebases, crystal structures of proteins related to autophagy or apoptosis are collected 

from the RSCB Protein Data Bank (PDB) to build two domain-specific subsets: autophagy 

specific and apoptosis specific. AutoDock Vina is set as the docking engine at the 

backstage105. Co-crystallized ligands and water molecules were removed from the original 

PDB structure and hydrogen atoms were added. The active binding pocket of individual 

proteins was defined by the residues near the cocrystallized ligands (generally known 

inhibitors) or generated by the AutoDock utility scripts. Three to five predicted binding 

affinity values (ΔG values) of different docking poses for each compound in a binding pocket 

of a protein can be provided by AutoDock Vina. Docking scores in the HTDocking program 

were generated based on the best binding affinity value. The docking score is calculated as 
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pKi, where pKi = -log(predicted Ki) and the predicted Ki = 

exp(ΔG×1000/(1.9871917×298.15). The docking score of a queried compound from each 

protein structure is used to assess and rank the potential protein partners or targets.  

TargetHunter. TargetHunter is a ligand-based chemical genomics tool 

(http://www.cbligand.org/TargetHunter) which was designed based on the concept that 

compounds which are structurally similar have great possibility sharing similar targets and 

biological profiles106. By using the TAMOSIC Algorithm and the MCM Algorithm, 

TargetHunter can provide not only the targets information but also structures of the similar 

compounds and their associated bioassays for any input compounds.  

Blood−Brain Barrier (BBB) Predictor. Blood−brain barrier (BBB) is the single most 

critical factor restricting the neurotherapeutic agents. Since both autophagy and apoptosis 

have important roles in neurodegeneration diseases, the BBB predictor 

(http://www.cbligand.org/BBB/) was particularly designed to distinguishing whether a 

drug-like molecule can cross the BBB or not. This predictor was established by a 

combination of LiCABEDS107 algorithms and support vector machine (SVM)108 and on four 

types of fingerprints of 1593 reported compounds109.  

 

2.2  Protein structure subset generation 

For each of the individual protein target in autophagy and apoptosis databases, more 

than one crystal structures are usually available on RSCB Protein Data Bank (Table 6). By 

using the ProSelection, a computational protein selection algorithm designed to generate the 

structure subset in which protein structures of “weak selector” were filtered out while 
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structures of “strong selector” were kept base on the docking protocol and research purpose. 

Either two independent samples t-test or nonparametric Mann-Whitney U test with 

Bonferroni correction was applied in this research to select the protein structure subsets for 

the protein targets in the autophagy and apoptosis knowledgebases. Choosing of the statistical 

method was determined by the normality of docking score distribution. Specifically, two 

independent samples t-test110 will be used only if the docking scores are normally distributed 

in both active and inactive ligands set. Otherwise, the Mann-Whitney U test111 will be used to 

calculate the p value due to the required normality assumption of t-test. All statistical tests in 

this research are one-tailed. A widely used open source python package Scipy112 

(https://www.scipy.org/) is used to conduct the statistical analysis in this research. 

In the statistical selection of PDB structures in autophagy and apoptosis knowledgebases, 

active and inactive ligands for each protein targets are collected from CHEMBL database and 

stored into two independent groups. Active ligands are defined as molecules with an IC50 

lower than 500 nM while the inactive ligands have an IC50 higher than 50 μM. Molecular 

weight for active and inactive ligands are set between 200 – 800 Da to get proper docking 

results in Molecular Docking113. Active and inactive ligands were docked to their associated 

protein targets and the docking scores were returned. Statistical tests were then applied to the 

docking scores to investigate the mean difference of docking scores between active ligands 

and inactive ligands against each protein targets, respectively. 
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Table 6. Number of available crystal structures for the 19 protein targets 

(data collected from RSCB Protein Data Bank in Aug 2016) 

Protein name Method Number of crystal structures 

ABL1_HUMAN X-ray 53 

PIM2_HUMAN X-ray 2 

MTOR_HUMAN X-ray 16 

AKT3_HUMAN X-ray 1 

AKT2_HUMAN X-ray 16 

AKT1_HUMAN X-ray 22 

PK3CA_HUMAN X-ray 19 

SIR2_HUMAN X-ray 20 

SIR1_HUMAN X-ray 8 

LRRK2_HUMAN X-ray 2 

INSR_HUMAN X-ray 29 

HDAC6_HUMAN X-ray 8 

CATM_HUMAN X-ray 3 

CATD_HUMAN X-ray 6 

CATB_HUMAN X-ray 11 

CASP1_HUMAN X-ray 29 

B2CL1_HUMAN X-ray 48 

BCL2_HUMAN X-ray 11 

PDPK1_HUMAN X-ray 67 
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Abbreviations: PDPK1, 3-phosphoinositide-dependent protein kinase 1; B2CL1, 

Bcl-2-like protein 1; CASP1, Caspase-1; CATB, Cathepsin B; CATD, Cathepsin D; HDAC6, 

Histone deacetylase 6; INSR, Insulin receptor; SIR1, NAD-dependent protein deacetylase 

sirtuin-1; SIR2, NAD-dependent protein deacetylase sirtuin-2; PK3CA, Phosphatidylinositol 

4,5-bisphosphate 3-kinase catalytic subunit alpha isoform; AKT1, RAC-alpha 

serine/threonine-protein kinase; AKT2, RAC-beta serine/threonine-protein kinase; MTOR, 

Serine/threonine-protein kinase mTOR; ABL1, Tyrosine-protein kinase ABL1. 

 

2.2.1 Test of Normality 

The normality of docking score distributions is determined based on D’Agostino and 

Pearson’s test which combines skew and kurtosis to produce an omnibus test of normality114, 

115 (function name in Python: scipy.stats.mstats.normaltest). Protein structures which have 

normal-distributed docking scores in both its own active and inactive ligand sets will be 

selected to run the two independent sample t-test with unequal variance at 95% significance 

level. Structures which have non-normal distributed docking scores against either of the 

ligand sets will be chosen for Mann-Whitney U test at 95% significance level. 

 

2.2.2 Two independent samples t-test 

The t-Test for two independent samples110 is a statistical test used to measure the mean 

difference between two groups of data. Data in both groups need to be normally distributed. 

The general equation of the t-Test for two independent samples is shown below: 
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𝑡 =
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√
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If t ≤ 0, then 𝑝 = 2×(𝑎𝑟𝑒𝑎 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡 𝑢𝑛𝑑𝑒𝑟 𝑎 𝑡𝑑′′  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 

If t ≥ 0, then 𝑝 = 2×(𝑎𝑟𝑒𝑎 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡 𝑢𝑛𝑑𝑒𝑟 𝑎 𝑡𝑑′′  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 

Where 𝑑′′ is the nearest integer to the approximate degrees of freedom, �̅�1 and �̅�2 are the 

averages of docking scores for active ligands and inactive ligands, respectively. Ligand 

numbers in each ligand set are represented by 𝑛1 and 𝑛2. Variance of the two input samples 

is referred as 𝑠1
2 and 𝑠2

2. 

Then the exact p-value can be computed by 

𝑝 = 2×[1 − (𝑇)] 

 

2.2.3 Mann-Whitney U test 

The Mann-Whitney U test111 (also named Wilconxon Rank-Sum Test) is a 

nonparametric analog to the t test for two independent samples. This test can be used only 

when each of the two independent samples has a sample size larger than 10. This equals to 

the minimum number of valid active/inactive ligands required for running the statistical 

selection. The general equation in Mann-Whitney U test is shown below: 

If R1 ≠ n1(n1 + n2 + 1)/2 and there are no ties, then 

𝑇 = [|𝑅1 −
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] √(
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If R1 ≠ n1(n1 + n2 + 1)/2 and there are ties, then 

𝑇 = [|𝑅1 −
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If R1 = n1(n1 + n2 + 1)/2, then T = 0. 

Where 𝑅1  refers to the rank sum in the first sample, 𝑡𝑖  refers to the number of 

observations with the same value in the ith tied group, and g is the number of tied groups. 

Then the exact p-value can be computed by 

𝑝 = 2×[1 − (𝑇)] 

 

2.2.4 Bonferroni correction 

Correction for multiple comparison needs to be applied to the Mann-Whitney U test 

above because of the existence of multiple PDB structures for each protein target. Bonferroni 

correction116 was chosen due to its commonly usage, in which the significance level α is 

adjusted to 
𝛼

𝑚
 , where m is the number of hypothesis tests. The equation used for converting 

Mann-Whitney U test or two independent samples t-test p value to Bonferroni corrected p 

value is shown below: 

(1 − 𝑝)𝑘 = 1 − 𝑝0 

Where 𝑝 refers to the original p value, 𝑝0 is the Bonferroni corrected p value, k is the 

number of PDB structures for certain target. 

Crystal structures with a Bonferroni corrected p value larger than 0.05 will be 

considered as “weak selector” due to their incapability of distinguishing its active ligands 

from inactive ligands base on the selected docking protocol. In the opposite, structures which 

can significantly distinguish active ligands from inactive ligands (p < 0.05) will be labeled as 

“strong selector”. 

Particularly, most of the structures for kinases in this research are labeled based on their 



 

36 

 

ability of distinguishing ATP competitive inhibitors due to the docking pocket we used. This 

indicates that the “weak selector” may not be a bad crystal structure if taking other docking 

pockets or other research purpose into consideration. 

 

2.3  Individual docking score criteria 

Interpreting the docking results is an important issue when molecular docking is 

conducted on a bunch of protein targets and their associate chemical ligands. We raised a 

hypothesis that the docking score distributions are different among different protein 

structures of protein targets. This indicates that the docking score criterion for active ligands 

may be specific for each individual target. A Suggested docking score threshold for active 

ligands (SDA) is used in this research as an individual docking score criterion. 

SDA is generated based on the receiver operating characteristic (ROC) curves117. The 

ROC curve is established by stepping sequentially through the ranked list of test-set 

compounds arranged in order of increasing docking scores for each target. True positive rate 

(TPR) and false positive rate (FPR) are calculated at each ranking score. Plotting the TPR 

versus FPR for all positions in the ranked list will generate the ROC plot. One interesting 

feature of the ROC curve is the capability of generating the optimized cutoff point. In this 

work, cutoff point is calculated for each ROC curve to guarantee at least one correct 

prediction in the top 3 predictions (also means not all of the top 3 predictions are wrong, 

quantitatively, FPR3 ≤ 0.0001) before minimizing the distance between top-left point in the 

ROC plot and selected points on the ROC. The final optimized cutoff points were reported 

and their associated docking scores are recorded as SDA. Any ligand that has a docking score 
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higher than corresponding SDA will be considered as an “active” ligand against its associated 

crystal structure. 

 

2.4  Validation Compound Set Establishment. 

Compound set for testing the performance of the “strong selector” structures is 

generated from the FDA-approved small molecule antineoplastic drugs since 2005 

(www.fda.gov). The molecular weight is set as from 200 Da to 800 Da and 43 qualified 

compounds were included in the validation compound set. 

 

3. RESULTS 

3.1  Autophagy related protein targets and drugs 

Autophagy knowledgebase (www.cbligand.org/autophagy) archived 102 autophagy 

related protein targets, 32 autophagy related FDA-approved and clinical trial drugs, 10,971 

target-associated chemicals, 137 related signaling pathways, 16,209 bioactivity records, and 

13,326 references. 

 

3.2  Apoptosis related protein targets and drugs 

Apoptosis knowledgebase (www.cbligand.org/apoptosis) archived 455 autophagy 

related protein targets, 14 autophagy related FDA-approved and clinical trial drugs, 24,357 

target-associated chemicals, 96 related signaling pathways, 12,756 bioactivity records, and 

89,039 references. 
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3.3  Targets overlap between autophagy and apoptosis 

Totally 455 and 102 protein targets are summarized in the Apoptosis Knowledgebase 

and Autophagy Knowledgebase, respectively. Among these targets, 37 targets are overlapped 

(Figure 5). 
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Figure 5. Targets overlap between autophagy and apoptosis. 

Totally 37 targets are overlapped between autophagy and apoptosis which are ABL1, AGER, 

AKT1, AKT2, AKT3, ATG5, BCL2, B2CL1, BECN1, CASP1, DAPK1, DAPK2, DAPK3, 

FBXO7, FOXO1, GABARAP, GABARAPL2, HTR2B, HTRA2, IFI16, LRRK2, 

MAP1LC3B, NRDP1, P53, PARK2, PK3CA, PIK3R1, PIK3R2, PIM2, PTEN, RHEB, 

S100A9, SIR1, SIR2, STK11, TICAM11, TLR2 and TNFAIP3. Abbreviations: ABL1, 

Tyrosine-protein kinase ABL1; AGER, Advanced glycosylation end product-specific 

receptor; AKT1, RAC-alpha serine/threonine-protein kinase; AKT2, RAC-beta 

serine/threonine-protein kinase; AKT3, RAC-gamma serine/threonine-protein kinase; ATG5, 

Autophagy protein 5; BCL2, Apoptosis regulator Bcl-2; B2CL1, Bcl-2-like protein 1; 

BECN1, Beclin-1; CASP1, Caspase-1; DAPK1, Death-associated protein kinase 1; DAPK2, 

Death-associated protein kinase 2; DAPK3, Death-associated protein kinase 3; FBXO7, 

F-box only protein 7. FOXO1, Forkhead box protein O1; GABARAP, Gamma-aminobutyric 

acid receptor-associated protein; GABARAPL2, Gamma-aminobutyric acid 

receptor-associated protein-like 2; HTR2B, 5-hydroxytryptamine receptor 2B; HTRA2, 

Serine protease HTRA2, mitochondrial; IFI16, Gamma-interferon-inducible protein 16; 

LRRK2, Leucine-rich repeat serine/threonine-protein kinase 2; MAP1LC3B, 

Microtubule-associated proteins 1A/1B light chain 3B; NRDP1, E3 ubiquitin-protein ligase 

NRDP1; P53, Cellular tumor antigen p53; PARK2, E3 ubiquitin-protein ligase parkin; 

PK3CA, Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform; 

PIK3R1, Phosphatidylinositol 3-kinase regulatory subunit alpha; PIK3R2, 

Phosphatidylinositol 3-kinase regulatory subunit beta; PIM2, Serine/threonine-protein kinase 
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pim-2; PTEN, Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity 

protein phosphatase PTEN; RHEB, GTP-binding protein Rheb; S100A9, Protein S100-A9; 

SIR1, NAD-dependent protein deacetylase sirtuin-1; SIR2, NAD-dependent protein 

deacetylase sirtuin-2; STK11, Serine/threonine-protein kinase STK11; TICAM1, TIR 

domain-containing adapter molecule 1; TLR2, Toll-like receptor 2; TNFAIP3, Tumor 

necrosis factor alpha-induced protein 3. 

 

3.4  Protein structure subsets and SDA calculation 

3.4.1 Protein structure subsets 

In order to achieve better performance of the target prediction function by HTDocking 

in the knowledgebases, ProSelection was used to generate the protein structure subsets. 

Among the targets concluded in our autophagy knowledgebases, 14 are found having enough 

active and inactive ligands (n≥20) in ChEMBL database (Figure 6). Related ligands are 

downloaded then the ProSelection was applied for these 14 targets (details were described in 

the method section). Eventually, 13 targets are found to have at least one PDB structure with 

a p value lower than 0.05. This indicates that the molecular docking process for these 13 

targets is efficient enough to distinguish active ligands from inactive ones. Structures with a p 

value lower than 0.05 are categorized as “strong selector” structures while other structures are 

categorized as “weak selector” for the specific docking protocol we selected. Percentages of 

two categories of structures for each target in the test-set are shown in Figure 7.  
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Figure 6. Ligand information for the targets in the Autophagy Knowledgebase. 

Most of the targets in this protein test set have more known active ligands than inactive 

ligands reported in the ChEMBL database. Abbreviations: PDPK1, 

3-phosphoinositide-dependent protein kinase 1; B2CL1, Bcl-2-like protein 1; CASP1, 

Caspase-1; CATB, Cathepsin B; CATD, Cathepsin D; HDAC6, Histone deacetylase 6; INSR, 

Insulin receptor; SIR1, NAD-dependent protein deacetylase sirtuin-1; SIR2, NAD-dependent 

protein deacetylase sirtuin-2; PK3CA, Phosphatidylinositol 4,5-bisphosphate 3-kinase 

catalytic subunit alpha isoform; AKT1, RAC-alpha serine/threonine-protein kinase; AKT2, 

RAC-beta serine/threonine-protein kinase; MTOR, Serine/threonine-protein kinase mTOR; 

ABL1, Tyrosine-protein kinase ABL1. 
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Figure 7. “Strong selector” structures in the Autophagy Knowledgebase. 

Percentage of the “strong selector” structures in the Autophagy Knowledgebase. Number on 

the bar represents the quantity of “strong selector” or “weak selector” structures for each 

target. 

 

Crystal structures which have a good performance in distinguishing active ligands from 

inactive ligands are labeled as “strong selector”. Totally 249 PDB structures in structure test 

set are examined while 142 structures are “strong selector” and 107 structures are “weak 

selector”. Among all the 14 targets in this test, thirteen targets have at least one “strong 

selector” structure according to ProSelection. Abbreviations: PDPK1, 

3-phosphoinositide-dependent protein kinase 1; B2CL1, Bcl-2-like protein 1; CASP1, 

Caspase-1; CATB, Cathepsin B; CATD, Cathepsin D; HDAC6, Histone deacetylase 6; INSR, 

Insulin receptor; SIR1, NAD-dependent protein deacetylase sirtuin-1; SIR2, NAD-dependent 

protein deacetylase sirtuin-2; PK3CA, Phosphatidylinositol 4,5-bisphosphate 3-kinase 
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catalytic subunit alpha isoform; AKT1, RAC-alpha serine/threonine-protein kinase; AKT2, 

RAC-beta serine/threonine-protein kinase; MTOR, Serine/threonine-protein kinase mTOR; 

ABL1, Tyrosine-protein kinase ABL1. 

 

This result suggests that for the molecular docking protocol we choose, a significant 

portion of PDB structures may be “weak selector” (Figure 7). These “weak selector” 

structures may result in unseparated docking scores against active ligands and inactive 

ligands during docking process. If no modifications are made either for these structures or the 

docking protocol, high score decoys can be expected which can be misleading for further 

research approaches. However, these results of the statistical selection, specifically which 

structure is a “strong selector” and which is a “weak selector”, are docking protocol sensitive. 

Both the docking parameters setting and pockets definition can contribute to the selection 

results independently besides the protein structure itself. If other binding pockets, such as 

allosteric binding pockets, are used, different results of selection can be expected. For a 

closer look into the “weak selector” structures, several examples are used below to show why 

these structures are “weak selector”. 

 

Structure 3NAY and 3NAX. PDB records 3NAY and 3NAX are X-ray structures of 

protein PDPK1 binding to compound 2 and compound 7, which are PDPK1 inhibitors used 

by Jannik’s group118, respectively. In our structure selection, most of the known active 

ligands for this target are ATP competitive inhibitors and the typical active ATP binding site 

is used as the docking pocket. As a result, 3NAY is a “strong selector” structure (p = 3.9×
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10−3) while 3NAX is labeled as “weak selector” (p = 0.12). Compound 2 in 3NAY binds to 

the active, DFG-in conformation of PDPK1 ATP binding site, like most typical ATP 

competitive inhibitors (type I). Compound 7 in 3NAX binds in the ATP pocket and induces 

substantial conformational changes, causing the DFG loop to exist in an “out” conformation 

(DFG-out) that typifies inactive form kinase inhibitors (type II)118. Compound 7 also disrupts 

the αC helix which is a unique feature to this compound among inactive form kinase 

inhibitors. The conformational change in the αC helix results in catalytic residue Glu-130 

being displaced from the active site. This can be concluded that Compound 7 binds to the 

inactive kinase conformation of PDPK1 and induces conformational changes. Therefore, 

compared to the structure of active ATP binding site (Figure 8A), the PDPK1 protein 

structure co-crystalized with compound 7 is an inactive kinase conformation with some 

additional conformational changes which will unsurprisingly be a “weak selector” structure 

for active typical ATP competitive inhibitors (type I) binding (Figure 8B). 
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Figure 8. Compound CHEMBL3640476 binds to the PDPK1 ATP binding site 

Structures of the compound CHEMBL3640476 binds to the PDPK1 ATP binding site in the 

kinase domain. (A) CHEMBL3640476 binds to the PDPK1 crystal structure 3NAY (Docking 

score 8.49). (B) CHEMBL3640476 binds to the PDPK1 crystal structure 3NAX (Docking 

score 5.35). (C) Original structure of 3NAX (PDPK1 co-crystalized with compound 7). Blue 

sticks represent the inhibitor compound CHEMBL3640476. Yellow sticks represent the 

important residues which are also labeled. H-bonds to the important residues are displayed as 

dashed red lines. In 3NAY, CHEMBL3640476 has H-bond to Ala162, Glu166, and Thr222 
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within the ATP-site of PDPK1. Glu130 is also in the active binding site. However, in 3NAX, 

only on H-bond to Glu166 is formed while Glu130 is out of the active site. 

 

Structure 4L2Y and 4L23. PDB records 4L2Y and 4L23 are derived from the X-ray 

structure of PI3Kα. Structure 4L2Y is co-crystallized with compound 9d, a PI103 derivatives 

and known inhibitor of PI3Kα, while 4L23 is the native complex of PI103 to PI3Kα. 

According to the molecular modeling reported by Zhang’s group119, compound 9d would 

cause a decreased potency due to the electrostatic repulsion between the incoming NH2 

substitute and Lys802. However, in the in vitro experiment, compound 9d was as potent as 

PI103 against the PI3Kα. This is because the compounds 9d can give Lys802 more flexibility 

which can also induce additional space at the catalytic site (Figure 9B) when compared to the 

original protein structure like 4L23 (Figure 9A). In our structure selection, 4L2Y is the only 

structure for PI3Kα which is labeled as “weak selector” (p = 0.57) while 4L23 is labeled as 

“strong selector” structure (p = 3.6×10−5). High p value of 4L2Y may be due to the structural 

change of this protein because of the co-crystallized compound 9d, particularly, a more 

flexible Lys802, which is one of the most important residues inside the docking pocket. 

Consistent with the failure of molecular docking to predict the experimental potency of 4L2Y 

in Zhang’s group119, the disability of our selection procedure to label this structure as “strong 

selector” is not surprising. 
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Figure 9. Compound CHEMBL3112724 binds to the kinase domain of PI3Kα. 

Structures of the compound CHEMBL3112724 binds to the kinase domain in the PI3Kα. (A) 

CHEMBL3112724 binds to the PI3Kα crystal structure 4L23 (Docking score 9.64). (B) 

CHEMBL3112724 binds to the PI3Kα crystal structure 4L2Y (Docking score 5.87). Blue 

sticks represent the inhibitor compound CHEMBL3640476. Yellow sticks represent the 

important residues which are also labeled. H-bonds to the important residues are displayed as 

dashed red lines. In 4L23, CHEMBL3640476 has H-bond to Lys802, Val851 and Ser854 

(Two H-bond). However, in 4L2Y, only two H-bond is formed between CHEMBL3112724 

and PI3Kα. No H-bond for Lys802 results in the lower docking scores in molecular docking. 

However, this gives Lys802 more flexibility which surprisingly grants CHEMBL3112724 

stronger activity. 

 

Structure 2X39, 1MRY, and 1MRV. PDB records 2X39, 1MRY and 1MRV are 

structures of protein kinase B (PKB or AKT2) from X-ray. Structure 2X39 is co-crystallized 
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with the known inhibitor compounds 21120, while 1MRY and 1MRV are crystal structures of 

an inactive Akt2 kinase domain121. In the structure selection, 2X39 is a “strong selector” 

structure (p = 0.012) compared to the 1MRY (p = 1) and 1MRV (p = 1) which are “weak 

selector” structures. In the docking research of 2X39, known AKT2 chemical inhibitor has 

H-bonds to Ala232, Glu236, Glu279 and Asp293 (Figure 10A). However, in 1MRV, only 

two H-bonds are formed between the inhibitor and AKT2 (Figure 10B). No H-bond is formed 

in 1MRY (Figure 10C). Structure 1MRV even has higher docking scores for inactive ligands 

when compared to active ligands. Although the reason behind this “reversed” docking score 

distribution still remains unknown (which may simply due to some random accidents during 

docking process), ProSelection has proved once again to be able to distinguish active protein 

conformations from inactive conformations. 
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Figure 10. Compound CHEMBL2325730 binds to ATP binding site in AKT2. 

Structures of the compound CHEMBL2325730 binds to the ATP binding site within the 

kinase domain in AKT2. (A) CHEMBL2325730 binds to the AKT2 crystal structure 2X39 

(Docking score 9.11). (B) CHEMBL2325730 binds to the AKT2 crystal structure 1MRV 

(Docking score 3.53). (C) CHEMBL2325730 binds to the AKT2 crystal structure 1MRY 

(Docking score 2.66). Blue sticks represent the inhibitor compound CHEMBL2325730. 

Yellow sticks represent the important residues which are also labeled. H-bonds to the 
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important residues are displayed as dashed red lines. In 2X39, CHEMBL3640476 has H-bond 

to Ala232, Glu236, Glu279 and Asp293 (Two H-bond). However, in 1MRV, only two 

H-bond is formed between CHEMBL3112724 and AKT2. No H-bond is formed between 

CHEMBL3112724 and AKT2 in 1MRY. 

 

Structure 2YXJ and 4HNJ. PDB records 2YXJ and 4HNJ are structures of the Bcl-2-like 

protein 1 (also named Bcl-xL) from crystallography. Bcl-xL is a potent non-kinase protein 

inhibitor of cell death and caspases activation. Structure 2YXJ is the crystal structure of 

Bcl-xL in complex with ABT-737, a known Bcl-xL inhibitor which belongs to the class of 

BH3 mimics. While 4HNJ is the crystallographic structure of Bcl-xL domain-swapped dimer 

in complex with PUMA, which induced partial unfolding of two α-helix within Bcl-xL BH3 

binding pocket122. In our research, 2YXJ is a “strong selector” (p = 0.029) while 4HNJ is a 

“weak selector” (p = 0.49). This is demonstrated in the docking research where the known 

inhibitor of Bcl-xL forms two H-bonds to Phe150 in the BH3 binding pocket (Figure 11A). 

However, no H-bond is formed in the BH3 binding pocket in the 4HNJ (Figure 11B). 

Therefore, 4HNJ is unsurprisingly a “weak selector” for BH3 mimics because of its structural 

change in the BH3 binding domain induced by PUMA. 
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Figure 11. Compound CHEMBL2312484 binds to BH3 domain within Bcl-xL. 

Structures of the compound CHEMBL2312484 binds to the BH3 binding domain within the 

Bcl-xL. (A) CHEMBL2312484 binds to the Bcl-xL crystal structure 2YXJ (Docking score 

5.42). (B) CHEMBL2312484 binds to the Bcl-xL crystal structure 4HNJ (Docking score 

2.65). Blue sticks represent the inhibitor compound CHEMBL2312484. Yellow sticks 

represent the important residues which are also labeled. H-bonds to the important residues are 

displayed as dashed red lines. In 2YXJ, CHEMBL2312484 has two H-bond to Phe105 in the 

BH3 binding domain. However, no H-bond is formed within the BH3 binding domain 

between 4HNJ and CHEMBL2312484. The residue Tyr195 in 4HNJ is even “out” of the 

BH3 binding domain due to the protein structural change.  

 

Although only a small proportion of targets in our Knowledgebase have enough active 

and negative ligands to apply ProSelection (Figure 6), these targets, on the other hand, are 

commonly considered as “popular” targets. For instance, AKT, MTOR, and PK3CA (PI3K) 

are important targets in several pathways including the autophagy signaling (Figure 1), more 
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than three thousand papers are published for these targets respectively in the year of 2016. 

While B2CL1 (Bcl-xL), which belongs to the Bcl-2 family protein, is another important 

apoptosis-related target under dense research with around 600 publication in 2016 on 

PubMed. 

 

3.4.2  SDA calculation 

Before validating the target-predictions base on the protein structure subsets generated 

by ProSelection, we raise the hypothesis that each individual protein structure of a protein 

target may have its unique docking score distribution for even the same set of ligands. This is 

due to the existence of diverse protein/compound structures and docking protocols in real life. 

For instance, docking score of 6.0 may be high enough for those compounds against one 

structure to be considered as “active”. However, the same score 6.0 may not be sufficient 

enough for another structure to determine active ligands. This further indicates that if an 

individual docking score criterion can be established for each structure, a better 

understanding of docking score in the molecular docking can be expected to distinguish 

active ligands from inactive ligands. 

In this work, the suggested docking score threshold for active ligands (SDA) is used as 

score criterion for individual protein structures base on the ROC curve with both a restriction 

of FPR and an optimized TPR versus FPR (see more details in method section). Figure 12 

presents the ROC curves for 4 of the “strong selector” structures in our structure test set. 

SDA is then calculated by finding the optimal cutoff points in the ROC curves for each 

individual crystal structure. Particularly, SDA is a new concept raised in this work which is 
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designed for a better understanding of the docking scores in the molecular docking research. 

 

Figure 12. ROC curve of 4 “strong selector” structures. 

The receiver operating characteristic (ROC) curves of one of the crystal structures of (A) 

3-phosphoinositide-dependent protein kinase 1 (PDBid 1uvr, chain A, SDA = 6.27). (B) 

3-phosphoinositide-dependent protein kinase 1 (PDBid 1uu3, chain A, SDA = 6.57). (C) 

Cathepsin B (PDBid 1huc, chain B, SDA = 5.26). (D) RAC-alpha serine/threonine-protein 

kinase (PDBid 4gv1, chain A, SDA = 6.14). 

 



 

54 

 

 

Figure 13. SDA of 142 “strong selector” structures. 

(A) Suggested docking score threshold for active ligands (SDA) of 142 “strong selector” 

structures. (B) SDA distribution (n = 142). (C) Normality test for the SDA distribution (n = 

142). 

 

The SDAs for the 142 “strong selector” structures in the Autophagy Knowledgebase 

distribute from 4.0 to 10.0 (Figure 13A). It presents a non-normal distribution with a mean 

value of 7.37 and standard deviation of 1.265 (Figure 8B and 8C). Although most of the SDA 

falls in the range of 6 to 8, few reach an even higher score of 10.0 which is previously 

considered as “very high” in molecular docking. On the other hand, 4PPI, which belongs to 

the Bcl-2 family protein Bcl-xL, has a low SDA of 3.76. These results are particularly 

inspiring for active ligands prediction in the future. Previously, those compounds with a 

docking score lower than 4 will tend to be recognized as “inactive ligands” no matter which 

target the score is against. 
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3.5  Off-targets prediction using the “strong selector” structures 

Target identification of small molecules is important for unraveling the underlying 

mechanisms of their bioactivities or side effects. Both autophagy and apoptosis are key 

players in the cancer therapeutics. Autophagy is considered as one of the most critical drug 

resistance mechanisms due to its attempt of removing damaged cellular components in the 

drug administered cancer cells18. The ability of evading apoptosis is generally recognized as 

one of the hallmarks of cancer 84. As a validation procedure, we used the protein structures in 

the structure subsets of our Autophagy Knowledgebase to predict the potential 

autophagy-apoptosis related off-targets for 43 FDA-approved small molecule antineoplastic 

agents. Previously, 13 targets have at least one “strong selector” structure according to 

ProSelection. ChEMBL is then used as the source for searching the experimental IC50 data 

for the drug binding for these targets. Among these targets, insulin receptor (INSR) and 

histone deacetylase 6 (HDAC6), are selected for validation due to their relatively abundant 

data in ChEMBL database. 

INSR is generally considered as a drug target for anti-hyperglycemia and the treatment 

of diabetes. However, it also tightly relates the phagophore formation, which is one of the 

early stages in the macroautophagy. Enhanced insulin signaling will inhibit the autophagy in 

the initiation process by inducing the downstream PI3K/AKT/mTOR pathway123. A 

molecular docking study for 43 FDA-approved antineoplastic drugs against insulin receptor 

was conducted (Figure 14A). In this docking process, only the 18 “strong selector” structures 

of insulin receptor were used. Among these 43 drugs, 6 agents have binding IC50 data in the 

ChEMBL database (Table 7) and their associated docking scores were summarized in Figure 
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14B.  

A commonly used IC50 threshold for active compounds in binding assay is 10 μM124. 

Specifically, one compound can be considered as “active” once it has an IC50 lower than 10 

μM or 10000 nM. Osimertinib is an “active” compound for INSR in the experiment (Table 7) 

and it shows a docking score higher than SDA for 8 of total 18 INSR structures in the 

molecular docking after ProSelection. Similar result was also observed for the “active” drug 

Crizotinib, Ceritinib and Sunitinib. However, for “inactive” compounds like Lapatinib, scores 

against some structures are unexpectedly higher than SDA (Figure 14B). This is acceptable 

due to the fact that molecular docking has some extent of “randomness”125 and most of the 

inactive compounds in our test have a lower quantity of high scores (<
1

3
 all available 

structures) compared to active compounds (≥
1

3
 all available structures). On the functional 

level, drugs inhibit the INSR will further inhibit the downstream signaling of 

PI3K/AKT/mTOR pathway. An enhancement of autophagy function can be observed as the 

final result of this signaling, which is consistent to the autophagy-related drug resistant nature 

of many antineoplastic agents18.  
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Figure 14. Docking results for FDA-approved drugs against insulin receptor. 

(A) Docking scores for 43 FDA-approved antineoplastic drugs. (B) Docking scores for 6 

FDA-approved drugs with experimental binding data in ChEMBL. All docking scores are 

shown in folds compared to the corresponding suggested docking score threshold for active 

ligands (SDA) for each structure. 

 

Table 7. Experimental binding IC50 for 6 drugs against insulin receptor 

Drug Ceritinib Crizotinib Lapatinib Osimertinib Sunitinib Topotecan 

IC50 (nM) 7 102 17000 912 3200 Not Active 

Description Inhibition Inhibition Inhibition Inhibition Inhibition - 

Organism Home 

sapiens 

Home 

sapiens 

Home 

sapiens 

Home 

sapiens 

Home 

sapiens 

Home 

sapiens 

Ref 126 127 128 129 130 - 

 

HDAC6 is another target which closely related to autophagy. Autophagy acts as a 

compensatory degradation system when the ubiquitin-proteasome system (UPS) is impaired. 
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Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with 

polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction131. 

Although HDAC6 is not required for autophagy activation, it rather controls the fusion of 

autophagosomes to lysosomes132. Molecular docking results of 43 FDA-approved 

antineoplastic drugs against HDAC6 was presented in Figure 15A. Again, only the “strong 

selector” structures are used. Belinostat, Panobinostat, and Bendamustine are known to bind 

HDAC6 with IC50 of 15, 11 and 6 nM respectively (Table 8). Belinostat and Panobinostat are 

successfully predicted by “strong selector” structures while Bendamustine is accidentally 

predicted as “inactive” (Figure 15B). For known HDAC6 “inactive” drugs Lapatinib and 

Romidepsin, none of the “strong selector” structures show a docking score higher than SDA 

(Figure 15B). These results indicate that the protein structures selected by ProSelection work 

accurately during active ligands prediction. 
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Figure 15. Docking results for FDA-approved drugs against histone deacetylase 6 

(A) Docking scores for 43 FDA-approved antineoplastic drugs. (B) Docking scores for 5 

FDA-approved drugs with experimental binding data in ChEMBL. All docking scores are 

shown in folds compared to the corresponding SDA for each structure. Scores lower than 0 

are manipulated to 0 for figure generating. 

 

Table 8. Experimental binding IC50 for 5 drugs against Histone deacetylase 6 

Drug Belinostat Bendamustine Lapatinib Panobinostat Romidepsin 

IC50 (nM) 15 6 >10000 11 14000 

Description Inhibition - Inhibition Inhibition Inhibition 

Organism Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens 

Ref 133 BindingDB: 

7095 

128 134 135 
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4. DISCUSSION 

As is discussed in the introduction section, both autophagy and apoptosis are basic but 

critical in the maintenance of cellular homeostasis. The disruption of either the autophagy or 

the apoptosis is considered as one of the major contributors to cancer and neurological 

disorder. Most of the drugs now in the market are thought to interact with both autophagy and 

apoptosis either by a direct signaling cascade or an indirect functional regulation. However, 

this can be particularly challenging when the regulations of autophagy and apoptosis by a 

medication are in the opposite directions. Specifically, one drug may inhibit the growth of 

cancer in the aspect of apoptosis but facilitate the cancer survival at the same time in the 

aspect of autophagy. Therefore, specific knowledgebases for autophagy and apoptosis are 

expected to be beneficial for the research which are related to cancer and neurological 

disease. 

With the construction of the Autophagy-apoptosis specific knowledgebases in this work, 

one can have a specific overview of autophagy and apoptosis from molecular signaling level 

to the chemical level. These knowledgebases integrate several system pharmacological 

analysis tools including but not limit to HTDocking, BBB predictor, PAIN remover, and 

Toxicity predictor, which will further accelerate the autophagy-apoptosis related research by 

using the information collected in the knowledgebase. Several shared protein targets between 

autophagy and apoptosis are also revealed by the overlapping study between these two 

knowledgebases. These targets are significantly important due to their potential dual 

functions in the diseases and disease-related treatment. Researchers who plan to treat the 
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diseases by manipulating the autophagy or apoptosis function can take great benefits from 

these knowledgebases, either by the information searching or the target prediction. 

When combined with the ProSelection, a computational statistical selection for 

generating the proper protein structure subset based on the research purpose, the performance 

of target prediction of the Autophagy Knowledgebase and Apoptosis Knowledgebase has 

been measured by using targets associated active and inactive ligands. In this study 249 

crystal protein structures from 14 autophagy or apoptosis related targets were examined. 

Either two independent t-test or Mann-Whitney U test was used to distinguish “strong 

selector” structures from “weak selector” structures base on the normality of the docking 

score distribution for each individual protein structure. The receiver operating characteristic 

(ROC) curve has been made and suggested docking scores threshold for active ligands (SDA) 

were generated for each “strong selector” structure according to the ROC curve. The 

performance of target prediction base on the “strong selector” structures was validated by 

FDA recently approved small molecule antineoplastic drugs for predicting their off-targets 

among autophagy or apoptosis related proteins. 

Several autophagy or apoptosis related databases are now available online, popular ones 

including but not limited to the iLIR Autophagy Database (http://ilir.warwick.ac.uk/), the 

Autophagy DB, HADb (http://www.autophagy.lu/), Deathbase (http://www.deathbase.org/), 

and The Apoptosis Database136. All of these public databases serve as good information 

portals for searching autophagy-apoptosis related protein, pathway, and gene information. 

Compared to these databases, the knowledgebases reported in this thesis contain not only the 

autophagy-apoptosis related information but also some practical tools for chemoinformatics 



 

62 

 

research. This will grant the researchers a better convenience when conducting the 

autophagy-apoptosis related drug development. 

 

5. CONCLUSION AND FUTURE SPECULATION 

In this study, we established two knowledgebases which are specifically designed for 

autophagy or apoptosis by collecting the related gene, protein, and chemical data with several 

chemoinformatics tools integrated. We used our knowledgebase to review the important drug 

targets in autophagy and apoptosis research paired with their known chemical modulators in 

the clinical studies. Target overlap study was also conducted based on these knowledgebases 

to investigate the potential interaction between autophagy and apoptosis. Target prediction 

function was also implemented into these knowledgebases by using the open-source 

algorithm and the proper protein structure subsets. Overall, the Autophagy Knowledgebase 

and the Apoptosis Knowledgebase will accelerate our work in disease-specific information 

acquiring and could be a useful tool for predicting the potential targets for future medications. 

It is worth considering the weaknesses of this current study to explore the directions for 

further research. The generation of the proper protein structure subsets in these 

knowledgebases is highly dependent on the abundance of known active and inactive ligands. 

As shown in Figure 6, number of active ligands is usually much larger than inactive ligands 

in the public databases. This ratio can even approach 50 for some targets. One solution is to 

replace the inactive ligands with random ligands. This is expected to lower the performance 

of the structure selection because of the existence of active ligands in a random compound-set. 

However, this is still acceptable because a “strong selector” structure is also expected to 
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distinguish active ligands from random ligands. More importantly, the number of random 

compounds is not limited. More protein targets will be available for predicting if only active 

and random compound-set are used. Specifically, every target with the size of active ligand 

test-set larger than 20 is sufficient for ProSelection if random ligands set is used. However, 

for targets which do not have enough active ligands, statistical approaches like ProSelection 

will no longer be able to use. Therefore, machine learning algorithms can be an alternative 

solution to predict the proper protein structure subset base on the similar logic of designing 

ProSelection. This potential upgrade of ProSelection will bring the Autophagy 

Knowledgebase and Apoptosis Knowledgebase more accuracy when predicting the targets. 

A further consideration in these knowledgebases is the collaboration of ProSelection 

with ensemble docking. Because of the backstage usage of popular docking tools like Sybyl-x 

and Autodock Vina, statistical methods like ProSelection are still categorized as “rigid” 

docking but with flexible ligands. If ensemble docking (which has taken receptor flexibility 

into consideration) can be integrated into ProSelection, a much better performance is 

expected because of the consideration of the flexibility in both the protein target and the 

ligand. 
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APPENDIX. CORE CODES 

 

Following codes are principle codes for the ProSelection in the Linux system. 

The code for this section was written in extract_name_1.py using Python language: 

 

# this file will extract pdbIDs from original file from Autophagy Knowledgebase then create 4 new 

summary files: ids_names.csv, names_ids.csv, name_summary.csv, idsWITHchain.csv.  

 

#!/usr/bin/python 

from os import walk 

import sys, os, re, operator, requests 

 

# create list of file names in the input dictionary 

filenamelist = [] 

for (dirpath, dirnames, filenames) in walk('./ligands/'): 

filenamelist.extend(filenames) 

break 

 

# read files in the input dictionary 

pdbidlist= [] 

pdbid_chain = [] 

for filename in filenamelist: 

    regex1 = re.compile(r'(\S+?)_[A-Z]+?_') 

    result1 = regex1.findall(filename) 

    pdbidlist.append(result1) 

regex2 = re.compile(r'(\S+)_[AN]+?-results') 

   result2 = regex2.findall(filename) 
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    pdbid_chain.append(result2) 

pdbid_chain=sorted(pdbid_chain) 

 

# delete duplicates in pdbids 

def uniq(lst): 

    last = object() 

    for item in lst: 

        if item == last: 

            continue 

        yield item 

        last = item 

def sort_and_deduplicate(l): 

    return list(uniq(sorted(l, reverse=True))) 

pdbidlist1 = sort_and_deduplicate(pdbidlist) 

 

f = open('./reports/idsWITHchain.txt', 'w') 

for line in pdbid_chain: 

 f.write(line[0]+'\n') 

f.close() 

 

# print out the id with associated protein name 

comlist= [] 

i=1 

for id in pdbidlist1: 

 url=id[0] 

 contents = requests.get('http://www.rcsb.org/pdb/rest/describeMol?structureId='+url).text 

 regex1 = re.compile(r'<macroMolecule name=\"([\S\s]+?)\">') 

    result1 = regex1.findall(contents) 
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try: 

         tup = (url,result1[0]) 

    except: 

      tup = (url,'0') 

comlist.append(tup) 

    print str(i)+' pdbID finished! ' 

 i=i+1 

 

# sort results 

done=sorted(comlist, key=operator.itemgetter(0)) 

done1=sorted(comlist, key=operator.itemgetter(1)) 

print 'ids_names.csv length: '+str(len(done))+'\n','names_ids.csv length: '+str(len(done1)) 

 

# write to file 

f = open('./reports/ids_names.txt', 'w') 

for line in done: 

 f.write(line[0]+' '+line[1]+'\n') 

f.close() 

 

proteinlist = [] 

f = open('./reports/names_ids.txt', 'w') 

for line in done1: 

 proteinlist.append(line[1]) 

 f.write(line[1]+' '+line[0]+'\n') 

f.close() 

prolist_ndup = sort_and_deduplicate(proteinlist) 
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The code for this section was written in mod_scores_2.py using Python language: 

 

f = open('./reports/name_summary.txt', 'w') 

for target in prolist_ndup: 

 f.write(target) 

 for duptarget in comlist: 

        if duptarget[1]==target: 

            f.write(' '+duptarget[0]) 

    f.write('\n') 

f.close() 

print ' extract_name_1.py Done! ' 

# this file will modify raw docking score files in 'ligands' and save them to new files in 'ligands_mod' 

with a simpler name 

 

#!/usr/bin/python 

from os import walk 

import sys, urllib2, os, re, operator 

 

# create file name list 

filenamelist = [] 

for (dirpath, dirnames, filenames) in walk('./ligands/'): 

    filenamelist.extend(filenames) 

    break 

 



 

68 

 

 

 

 

# processing raw docking score files 

for name in filenamelist: 

  f = open('./ligands/'+name, 'r') 

  regex1 = re.compile(r'(\S+?)-results') 

  result1 = regex1.findall(name) 

  f1 = open('./ligands_mod/'+result1[0]+'.csv', 'w') 

  f1.write('compounds,score,activity\n') 

  for line in f: 

   if line.find('_000') != -1: 

     regex2 = re.compile(r'([\S\s]+?)_000') 

     result2 = regex2.findall(line) 

     regex3 = re.compile(r'_000 (\S+?) ') 

     result3 = regex3.findall(line) 

     regex4 = re.compile(r'_([A-Z]+?)-results') 

     result4 = regex4.findall(name) 

     if result4[0]=='A': 

       f1.write(result2[0]+','+result3[0]+','+'1'+'\n') 

     else: 

       f1.write(result2[0]+','+result3[0]+','+'0'+'\n') 

  f.close() 

  f1.close() 

print ' mod_scores_2.py Done! ' 
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The code for this section was written in spss_scores_3.py using Python language: 

 

# this file will further process dockingscore data in 'ligands_mod' and only extract the scores then save 

under 'spss_score' with simplist name 

 

#!/usr/bin/python 

from os import walk 

import re 

 

# create file name list 

filenamelist = [] 

for (dirpath, dirnames, filenames) in walk('./ligands_mod/'): 

  filenamelist.extend(filenames) 

  break 

 

for name in filenamelist: 

  f0 = open('./ligands_mod/'+name,'r') 

  header=f0.readline() 

  regex1 = re.compile(r'(\S+?).csv') 

  result1 = regex1.findall(name) 

  f1 = open('./spss_scores/'+result1[0],'w') 

  for line in f0: 

    sline=line.split(',') 

    f1.write(sline[1]+'\n') 

  f0.close() 

  f1.close() 

 

print ' spss_scores_3.py Done! ' 
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The code for this section was written in mann_whitney_4.py using Python language: 

 

# this file use the numeric data in 'spss_scores' to run Mann-Whitney test or t-test to see wether the 

mean of scores for active and inactive ligands are significantly different with each other. 

 

#!/usr/bin/python 

from os import walk 

import scipy 

from scipy.stats import * 

import re 

 

# create file name list 

filenamelist = [] 

for (dirpath, dirnames, filenames) in walk('./spss_scores/'): 

  filenamelist.extend(filenames) 

  break 

 

pdbidlist= [] 

for filename in filenamelist: 

  regex1 = re.compile(r'(\S+?_[A-Z]+?)_[AN]+?') 

  result1 = regex1.findall(filename) 

  pdbidlist.append(result1[0]) 

 

# create list of uniq pdbid with chains 

def uniq(lst): 

  last = object() 

  for item in lst: 

      if item == last: 

          continue 
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      yield item 

      last = item 

def sort_and_deduplicate(l): 

  return list(uniq(sorted(l))) 

pdbidlist1 = sort_and_deduplicate(pdbidlist) 

 

# mann-whitney test and t-test. need sample size for each sample is larger than 20 

f2 = open('./reports/mann-whitney_result.csv','w') 

f2.write('pdbID,normtest_A,normtest_N,p-value,test\n') 

for item in pdbidlist1: 

  f0 = open('./spss_scores/'+item+'_A','r') 

  f1 = open('./spss_scores/'+item+'_N','r') 

  actives=[] 

  negtives=[] 

  for score1 in f0: 

    score1=score1.split('\n') 

    actives.append(float(score1[0])) 

  for score2 in f1: 

    score2=score2.split('\n') 

    negtives.append(float(score2[0])) 

  if len(actives)>=20 and len(negtives)>=20: 

    k2a,pa =scipy.stats.normaltest(actives,axis=0) 

    k2n,pn =scipy.stats.normaltest(negtives,axis=0) 

    if pa >= 0.05 and pn >= 0.05: 

      mw_result=scipy.stats.ttest_ind(actives, negtives, equal_var=False) 

      p_value=(mw_result[1])/2 

      test='t' 

    else: 

      mw_result=scipy.stats.mannwhitneyu(actives, negtives, use_continuity=True, 

alternative='greater') 
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The code for this section was written in bonferroni_5.py using Python language: 

 

      p_value=mw_result[1] 

      test='m' 

f2.write(str(item)+','+str(pa)+','+str(pn)+','+str(p_value)+','+test+'\n') 

  else: 

    f2.write(str(item)+','+'Ligands not enough,Ligands not enough,Ligands not enough'+'\n') 

  f0.close() 

  f1.close() 

f2.close() 

print ' mann_whitney_4.py compeleted! ' 

# this file will apply Bonferroni correction on the original p value from statistical test  

 

#!/usr/bin/python 

from os import walk 

import sys, urllib2, os, re, operator 

 

f0 = open('reports/mann-whitney_result.csv','r') 

f0.readline() 

f1 = open('reports/name_summary.txt','r') 

f2 = open('reports/bonferroni.txt','w') 

f2.write('pdbID p_value bonferroni pOK structures\n') 

 

# Create guide for bonferroni divide 

guide={} 
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for line in f1: 

  line=line.rstrip('\n').split(' ') 

  i=1 

  while i<len(line): 

    guide[line[i]]=len(line)-1 

i=i+1 

 

# cal 

for line in f0: 

  line=line.rstrip('\n').split(',') 

  regex0 = re.compile(r'(\S+?)_') 

  result0 = regex0.findall(line[0]) 

  if line[1]=='Ligands not enough': 

f2.write(line[0]+' '+line[3]+' NA 0\n') 

 

  else: 

    p = float(line[3]) 

    k = float(guide[result0[0]]) 

    bon = 1-((1-p)**k) 

    if bon <= 0.05: 

      f2.write(line[0]+' '+line[3]+' '+str(bon)+' 1 '+str(k)+'\n') 

    else: 

      f2.write(line[0]+' '+line[3]+' '+str(bon)+' 0 '+str(k)+'\n') 

f0.close() 

f1.close() 

f2.close() 

print ' bonferroni_5.py Done! ' 
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The code for this section was written in roc_6.py using Python language: 

 

# this file will generate roc curve for the protein structures in the test 

 

#!/usr/bin/python 

from os import walk 

from sklearn.metrics import * 

from shutil import copyfile 

import matplotlib.pyplot as plt 

import sys, urllib2, os, re, operator 

import numpy as np 

 

# create list of idwithchain 

f0=open('./reports/idsWITHchain.txt','r') 

idchain0=[] 

for line in f0: 

  line=line.rstrip('\n') 

  idchain0.append(line) 

def uniq(lst): 

  last = object() 

  for item in lst: 

    if item == last: 

      continue 

    yield item 

    last = item 
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def sort_and_deduplicate(l): 

  return list(uniq(sorted(l))) 

idchain = sort_and_deduplicate(idchain0) 

f0.close() 

 

# create rawfile in roc folder 

for line in idchain: 

  f3=open('./roc/'+line+'.csv','w') 

  f1=open('./spss_scores/'+line+'_A','r') 

  f2=open('./spss_scores/'+line+'_N','r') 

  for line1 in f1: 

    line1=line1.rstrip('\n') 

    f3.write(line+','+line1+','+'1\n') 

  for line2 in f2: 

    line2=line2.rstrip('\n') 

    f3.write(line+','+line2+','+'0\n') 

  f1.close() 

  f2.close() 

  f3.close() 

 

filenamelist = [] 

for (dirpath, dirnames, filenames) in walk('./roc/'): 

  filenamelist.extend(filenames) 

  break 
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# create roc for all pdbIDs 

c=0 

for filename in filenamelist: 

  true=[] 

  score=[] 

  f4=open('./roc/'+filename,'r') 

  for line3 in f4: 

    line3=line3.rstrip('\n').split(',') 

    true.append(float(line3[2])) 

    score.append(float(line3[1])) 

    name=line3[0] 

  true=np.array(true) 

  score=np.array(score) 

  fpr, tpr, thresholds=roc_curve(true,score,pos_label=1) 

  plt.plot(fpr,tpr,linewidth=4,clip_on=False) 

  plt.plot([0,1],[0,1],linewidth=2,clip_on=False) 

  plt.xlabel("FPR"); plt.ylabel("TPR") 

  plt.ylim(0,1); plt.xlim(0,1) 

  plt.savefig('./reports/roc_fig/'+name+'.png') 

  plt.close() 

  c=c+1 

  f4.close() 

  print str(c)+' pdbID finished!' 

 



 

77 

 

 

 

The code for this section was written in check_mean_7.py using Python language:

 

#extract figure p<0.05 

f5=open('./reports/bonferroni.txt','r') 

f5.readline() 

for line4 in f5: 

  line4=line4.rstrip('\n').split(' ') 

  if float(line4[3])==1: 

    copyfile('./reports/roc_fig/'+line4[0]+'.png', './reports/roc_fig/rocp/'+line4[0]+'.png') 

f5.close 

print ' file copied!' 

 

# this file will check the mean of the docking scores to make sure the scores for active ligands are 

higher 

 

#!/usr/bin/python 

from os import walk 

from sklearn.metrics import * 

from shutil import copyfile 

import matplotlib.pyplot as plt 

import sys, urllib2, os, re, operator 

import numpy as np 

 



 

78 

 

 

f0=open('./reports/bonferroni.txt','r') 

f0.readline() 

f3=open('./reports/bonferroni_P.txt','w') 

f3.write('pdbID mann-whitney bonferroni mean_A mean_N p_mean\n') 

for line in f0: 

  line=line.rstrip('\n').split(' ') 

  if float(line[3])==1: 

    f1=open('./spss_scores/'+line[0]+'_A','r') 

    f2=open('./spss_scores/'+line[0]+'_N','r') 

    score_A=[] 

    score_N=[] 

    for line1 in f1: 

      line1=line1.rstrip('\n') 

      score_A.append(float(line1)) 

    for line2 in f2: 

      line2=line2.rstrip('\n') 

      score_N.append(float(line2)) 

    mean_A=np.mean(score_A) 

    mean_N=np.mean(score_N) 

    f1.close() 

    f2.close() 

    if mean_A>mean_N: 

      f3.write(line[0]+' '+line[1]+' '+line[2]+' '+str(mean_A)+' '+str(mean_N)+'

 1\n') 

f0.close() 

f3.close() 

print ' check_mean_7 done!' 
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The code for this section was written in oc_cutoff_8.py using Python language: 

 

# this file will generate the SDA for every strong selector 

 

#!/usr/bin/python 

from sklearn.metrics import * 

import sys, urllib2, os, re, operator, math 

import numpy as np 

 

# create list of pdb for cut off making 

f0=open('./reports/bonferroni_P.txt') 

f0.readline() 

filenamelist=[] 

for line in f0: 

  line=line.rstrip('\n').split(' ') 

  filenamelist.append(line[0]) 

f0.close() 

 

# calculate cut off based on the top-left point 

f2=open('./reports/roc_cutoff.csv','w') 

f2.write('pdbID,thresholds,tpr,fpr\n') 

for filename in filenamelist: 

  dislist=[] 

  compare=[] 

  true=[] 

  score=[] 

  f1=open('./roc/'+filename+'.csv','r') 
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  for line1 in f1: 

    line1=line1.rstrip('\n').split(',') 

    true.append(float(line1[2])) 

    score.append(float(line1[1])) 

    name=line1[0] 

  true=np.array(true) 

  score=np.array(score) 

  fpr, tpr, thresholds=roc_curve(true,score,pos_label=1) 

  i=0 

  while i<len(tpr): 

    if fpr[i]**3<=0.0001: 

      distance=math.sqrt((1-tpr[i])**2+(fpr[i])**2) 

      tup=(thresholds[i],distance,tpr[i],fpr[i]) 

      dislist.append(tup) 

      compare.append(distance) 

    i=i+1 

  f1.close() 

  mindis=min(compare) 

  for tup in dislist: 

    if tup[1]==mindis: 

      f2.write(filename+','+str(tup[0])+','+str(tup[2])+','+str(tup[3])+'\n') 

f2.close() 

print ' roc_cutoff_8 done!' 
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The code for this section was written in main.py using Python language: 

 

 

 

 

 

 

 

 

# this is an ensembled file to run all the previous code in one-step. 

 

#!/usr/bin/python 

import extract_name_1 

import mod_scores_2 

import spss_scores_3 

import mann_whitney_4 

import bonferroni_5 

import roc_6 

import check_mean_7 

import roc_cutoff_8 

import os 

os.system("find . -name '*.pyc' -delete"); print ' .pyc files deleted! ' 
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