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PRICING CREDIT DEFAULT SWAPS WITH COUNTERPARTY RISKS

Shuai Zhao, PhD

University of Pittsburgh, 2017

A credit default swap, or CDS, is a financial agreement between two parties about an ex-

change of cash flows that depend on the occurrence of a credit default or in general a credit

event. A CDS may terminate earlier than the expiration or the occurrence of the credit event

when one party of the contract defaults, this is called counterparty risk. This thesis studies

the price of CDS with counterparty risks. The credit default and counterparty risks are

modeled by the first arrival times of Poisson processes with stochastic intensities depending

on interest rates. The popular CIR and Vasicek models are used for interest rates in this

thesis. The prices of CDS are derived as solutions of different partial differential equations

with respect to the CIR and Vasicek models, respectively. For the CIR model, the volatility

for the interest rate vanishes as interest rate approaches zero. New techniques are introduced

here to deal with this degeneracy and cover the full parameter range, thereby allowing the

usability of any empirical calibrated CIR models. For the Vasicek model, the allowance of

negative interest rate can produce an arbitrarily large discount factor, instead of typically

smaller than one; this poses difficulties in mathematical analysis and financial predictions.

This thesis solves the mathematical well-posedness problem and more importantly, produces

accurate bounds of the CDS price. For the CDS with long time to expiry, the corresponding

infinite horizon problems are studied. As time to expiry goes to infinity, the price of CDS

being the asymptotic limit of the solution of the infinite horizon problem is verified.

Keywords: Counterparty risk, CIR, Vasicek, negative interest rate, infinite horizon prob-

lems.
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1.0 MATHEMATICAL FORMULATION FOR THE PRICE OF CDS

1.1 INTRODUCTION

A swap is a derivative in which two parties exchange cash flows, where the cash flows depend

on underlying securities or financial events. Swaps can be used to hedge financial risks such

as credit risk, interest rate risk and various kinds of risks due to financial events. In 1981,

swaps were first introduced to the public when the world Bank and IBM entered into a swap

agreement ( [1], 2010). Today, swaps are one of the most heavily and importantly traded

contracts in financial market.

There are variety of swaps. Here in this thesis, we study credit default swaps. A credit

default swap, or CDS, is a bilateral contract between two parties, buyer and seller, with

respect to a credit event. More precisely, the buyer of the CDS pays a periodic fee to the

seller of the CDS. If a certain specified credit event occurs, the seller is required to make a

compensation to the buyer by means of either physical settlement or cash settlement. For

example, Two Sigma Investments (TSI), one of the largest hedge funds in the world, wants

to make a profit through a speculative “bet” on stock price of Apple Inc.. In order to achieve

this goal, TSI signed a ten-year CDS contract with American International Group, Inc., also

known as AIG, one of largest American multinational insurance corporations. Under the

CDS contract, TSI makes an annual premium to AIG which is equal to $200,000. If stock

price of Apple is under $100 a share (currently $132 a share) during these ten years, AIG

need pay TSI $5 million compensation in return. In order to put the situation that AIG is

bankrupt (so is unable to pay) or TSI is bankrupt (so AIG cannot receive the premium),

additional amendment should be added.

In the example above, we perceive that a CDS contract is similar to an insurance because
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the buyer (TSI) pays a premium with protection against the occurrence of a credit event

(stock price of Apple under $100), which may have negative impact on the buyer’s other

financial activities; in return, receives a compensation from the seller (AIG) at the occurrence

of such an event. However, each characteristic of CDS compared to the characteristics of

insurance produces a gap leading to the conclusion that CDS indeed is not insurance. First,

insurance is designed to insure risk that only includes something bad happening or nothing

happening. It is unlikely that any measurable benefit will arise from insurance. However,

the risk taker may “gamble” on something good happening (make a profit) through CDS

contract. In the example above, TSI tries to make a profit through the bet on stock price

of Apple going down. From macroeconomics perspective, the CDS notional value was $47

trillion in total by the end of 2007, but the total amount of the assets on which CDSs are

based was less than $25 trillion ( [2], 2008). Therefore, there was at least $20 trillion in

speculative “bets” on the possibility of credit events. Secondly, CDS lacks the element of

a requirement of insurable interest which is an essential element of insurance. Specifically,

the buyer of CDS does not need to own the underlying security and does not have to suffer

any loss form the default event. This is known as a “naked short”. In our example, instead

of suffering any loss from the drop of Apple ’s stock price, TSI will make profit through

CDS contract when the stock price is under $100. Moreover, the obligation of payment is

triggered upon a credit event, regardless of any loss, which is also different from insurance.

Although CDS is different from insurance, nowadays CDS is one of the most widely used

type of credit derivatives and a powerful force in world market. Forms of CDS had been

existed since the early 1990s, with early trades carried out by Bankers Trust in 1991 ( [3],

2009). The modern CDS was first introduced from J.P. Morgan in 1994, and was widely used

after 2003. From International Swaps and Derivatives Association, the amount of CDS was

$ 26.3 trillion by the middle of 2010, and was reportedly $25.5 trillion in early 2012. CDS

data can be used by financial regulators and the media to monitor how the market views

credit risk of any credit event on which a CDS is available; CDS data can also be compared

to that provided by the Credit Rating Agencies.

A CDS depends on the underlying credit event, but the credit event is not necessarily

related to any party of the CDS contract. Since CDS is a credit derivative contract between
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two parties, before the expiration or the occurrence of the credit event, the buyer or the

seller may default; e.g., the buyer of the CDS is unable to pay the premium or the seller of

the CDS is unable to pay the compensation. In this thesis, we take both buyer’s and seller’s

default risks into our consideration. These risks are called counterparty risks.

So far, we have two default risks: reference risk and counterparty risk. Naturally, we use

default time to measure default risks, so it is important to calculate default time properly.

In general, there are two types of models attempt to describe default time: the structural

model and the intensity model. Structural models determine default times by evaluating

firms structural data, such as debt and asset values. Merton introduced the first structural

model that a firm defaults if its asset is below its outstanding debt ( [4], 1974). Then Black

and Cox ( [5], 1976) used a structural model to describe default time as the moment that

firms asset value hits a lower barrier. Thus, structural models link the credit of a firm with

its value and debt. Intensity models describe default times by means of exogenous jump

processes. Therefore, default is not triggered by firms value but an exogenous component

that governed by the parameters inferred from macroeconomic data. In general, a default

time is modeled as the first arrival of a Poisson process with variable intensity which depends

on macroeconomic data; see, for example, Jarrow and Turnbell ( [6], 1995). We shall take

the macroeconomic data as the instantaneous interest rate (short rate). That is, the variable

intensity of Poisson process is a function of short rate. The two models are connected first

by Hu, Jiang, Liang, and Wei ( [13], 2012).

A short rate model describes the change of the instantaneous interest rate as a stochastic

process. We shall pay attention on two tractable Gaussian models: the Vasicek ( [9], 1977)

model and the CIR model ( [8], 1985). They are regarded as very important equilibrium

models. They have the features of mean-reverting ( [12], 2008) and affine term structure,

essential characteristics that distinguish these two models from other models. Therefore, we

formulate CDS under these two widely used short rate models in this thesis.

Vasicek and CIR models are very different, although they are both equilibrium short

rate models. The biggest difference is that the Vasicek model allows negative interest rate,

whereas the CIR model does not. In the past, Vasicek model was criticized for allowing

negative interest rate, but nowadays these opinions should be dropped. In 2014, the Euro-
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pean Central Bank, which oversees monetary policy for those countries that use the euro,

introduced negative interest rates; Sweden and Switzerland, who do not use the euro also

have negative interest rates; Janpan’s central bank also allow negative interest rates in 2016.

The disadvantage of allowing negative interest rate in the Vasicek model becomes an advan-

tage. Thus, it is meaningful to use Vasicek model to price CDS. After taking both CIR and

Vasicek models into our consideration, the study in this thesis becomes more complete and

in-depth.

In this thesis, we introduce a pricing model for CDS with counterparty risks. We model

default times by intensity model and model the intensity of the corresponding Poisson process

by known functions of short rates, respectively. We model interest rates by the CIR and

the Vasicek models. As a result, the prices of CDS are derived as the solutions of two

different partial differential equations (PDE). For the resulting PDEs, we shall investigate

the existence, uniqueness and properties of their solutions. It is important to point out

that Hu, Jiang, Liang, and Wei ( [13], 2012) have already used the CIR model to price the

CDS. However, for the CIR model, they need a restriction on the range of the parameters,

which does not fall into the empirical calibration in certain cases; see, for example, Peng

( [18], 2016). To mend this deficiency, we provide a theory that covers the full parameter

range. In order to remove the restriction on the range of the parameters, we need introduce

brand new techniques. For the Vasicek model, large negative interest rate causes technical

difficulties for mathematical analysis, although it does not happen in reality. Therefore, our

analysis under Vasicek model becomes more of a mathematical interest. Moreover, we study

the corresponding infinite horizon problems and connect their solutions with the asymptotic

behavior of the price of CDS as time to expiry tends to infinity.

This thesis is divided into 6 chapters: In the remaining of this chapter, we derive mathe-

matical formulations for the price of CDS. In chapters 2 and 3, we study the pricing problem

under the CIR model. In chapters 4 and 5, we study the pricing problem under the Vasicek

model. Chapter 6 is our conclusion. It is important for me to attest here that most results

of chapters 2 and 3 are joint work with Peng He. As a result, chapters 2 and 3 contain a

large portion that is similar to that of Peng’s thesis ( [18], 2016).
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1.2 A STANDARD CDS

A swap is a derivative in which two counterparties exchange cash flows of one party’s financial

instrument for those of the other party’s financial instrument. There are variety of swaps.

Here in this thesis, we study credit default swaps. A credit default swap, or CDS, is a

financial agreement between two parties, A and B, about an exchange of cash flows that

depend on the occurrence of a credit default or in general a credit event. More precisely, the

cash flows could be follows:

• the party A makes a series of payments at a predetermined rate to party B before

the occurrence of the credit event or before the expiration date, whichever is earlier.

• the party B pays the party A a fixed compensation at the occurrence of the credit

event, if the occurrence is on or before the expiry.

The credit events in our consideration are indeed credit defaults, such as an overdue

mortgage payment. Thus, the underlying swap is called CDS. We call A the buyer of the

CDS and B the seller of the CDS. Hence, A buys an “insurance” from B for the occurrence

of a credit default or event. The following example illustrates a typical CDS in our study.

On 2017/01/01, the following is signed between two parties:

(1) Agree on a certain indubious definition of the occurrence of the credit event, e.g.,

the exchange rate of Chinese Yuan to US Dollar is at or above 6.6 (CNY/USD).

(2) A pays B $1 daily up to 2018/01/01 or up to the time when the event occurs,

whenever is earlier.

(3) B pays A a compensation $200 at the time when the event occurs, provided that the

time is on or before 2018/01/01.

Suppose today is 2017/09/07, the exchange rate is 6.55 (CNY/USD). It is reasonable to

believe that the contract favors the buyer. How to quantify this favor? More specifically, we

want to know the price of CDS. To do this, we first introduce the following notation:

K: the agreed CDS compensation (strike);

q: the agreed CDS premium (spread= q
K

);
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T : expiration date;

τ : a stoppping time to designate the occurrence of the underlying credit event.

Also, we denote min{x, y} by x∧ y. With these mathematical notation, we can describe

a CDS contract in a more precise manner as follows. The contract bonds the buyer and the

seller by the following provisions:

1. The contract terminates after τ ∧ T .

2. Before τ ∧ T , the buyer pays the seller the insurance premium being a cash flow of

continuous rate q ($/year).

3. If τ 6 T , the seller pays the buyer at time τ the insurance compensation being a lump

sum of K ($).

1.3 CDS WITH COUNTERPARTY RISKS

Due to financial difficulties, either the buyer or the seller may default on certain circum-

stance, i.e, unable to fulfill the obligation. For example, A is unable to pay the premium

or is bankrupt due to some other financial activities; B is unable to pay the compensation.

Therefore, the contract may terminate before the regular termination of the CDS. The CDS

contract should include this kind of risk, which is called a counterparty risk. To take the

counterparty risk into consideration, we need to specify how to settle down the contract at

time when one of the parties is unable to comply with the contract. For this reason and also

for simplicity, we add the following amendment to the above CDS contract.

4 (a). Agree on a precise definition of what is called A or B default.

(b). If A or B defaults before the regular termination of the CDS, the contract termi-

nates at the default time with no further rights and obligations from each other.

Other amendments can also be considered. For example, 4(b) can be replaced by a

provision that allows the default party to sell the contract in auction at its default time to
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a third party. Different provisions lead to different CDS models. For definiteness here in

this thesis, we consider the above amendment 4(a)(b). To be more precise, we introduce

stopping times τ1 and τ2 as follows:

τ1: default time of the seller;

τ2: default time of the buyer.

Now the CDS with counterparty risk that is considered in this study can be described

in a mathematical manner as follows:

The CDS Contract

Let τ , τ1, and τ2 be certain precisely defined stopping times that agreed by both parties.

1. This contract terminates after τ ∧ τ1 ∧ τ2 ∧ T .

2. Before τ ∧ τ1 ∧ τ2 ∧ T , the buyer pays the seller a cash flow of continuous rate q.

3. If τ 6 T ∧ τ1 ∧ τ2, the seller pays the buyer at time τ a lump sum of K.

4. If τ1∧τ2 < τ ∧T , the contract terminates at τ1∧τ2, with no further rights and obligations

between the buyer and the seller.

1.4 MODELING DEFAULT TIMES BY INTENSITIES

Recall that τ , τ1 and τ2 are stoppping times of the designated occurrence of the underlying

credit event, default time of the seller, and default time of the buyer, respectively. In

this thesis, we model them by an intensity framework. To be more precise, we model τ ,

τ1 and τ2 as the first arrival times of Poisson processes with intensities {λt}t≥0, {λ1t}t≥0

and {λ2t}t≥0, respectively. Mathematically, τ , τ1 and τ2 are stoppping times on a probability

space
{

Ω, {Ft×Gt}t≥0,P
}

, where {Ft}t≥0 and {Gt}t≥0 are filtrations, and P is the probability

measure. Here {λt}, {λ1t} and {λ2t} are adapted to {Ft}, and the conditional probabilities

of relevant events are
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P(τ ∈ (t− dt, t]
∣∣ Ft, τ > s) = λte

−
∫ t
s λθ dθ dt ∀ t > s > 0, (1.4.1)

P(τi ∈ (t− dt, t]
∣∣ Ft, τi > s) = λite

−
∫ t
s λiθ dθ dt ∀ t > s > 0, i = 1, 2. (1.4.2)

After integrating both sides of (1.4.1) and (1.4.2), we have:

P(τ > t | Ft, τ > s) = e−
∫ t
s λθdθ ∀ t > s > 0, (1.4.3)

P(τi > t | Ft, τi > s) = e−
∫ t
s λiθdθ ∀ t > s > 0, i = 1, 2. (1.4.4)

For simplicity, we assume that τ , τ1 and τ2 are independent in the sense that

P(τ > t, τ1 > t, τ2 > t
∣∣τ ∧ τ1 ∧ τ2 > s) = P(τ > t

∣∣τ > s)P(τ1 > t
∣∣τ1 > s)P(τ2 > t

∣∣τ2 > s)

= e−
∫ t
0 (λθ+λ1θ+λ2θ)dθ. (1.4.5)

Let {rt}t≥0 be the short interest rate and assume that the discount factor is e−
∫ t
0 rθdθ.

Further assume that {rt} is adapted to {Ft}. From buyer’s point of view, the present value

of all payments received from the seller is:

p = Ke−
∫ τ
0 rθdθ1{τ<τ1∧τ2∧T} − q

∫ τ∧τ1∧τ2∧T

0

e−
∫ t
0 rθdθ dt. (1.4.6)

Naturally, we define buyer’s value of the CDS as the expection of the present value of

payments received from the seller. Setting Ω0 = {τ ∧ τ1 ∧ τ2 > 0}, we then define the value

of CDS by

u := E
[
p
∣∣ Ω0

]
=KE

[∫ T

0

P
(
τ ∈ [s, s+ ds), τ1 ∧ τ2 > s

∣∣∣ Fs, Ω0

)
e−

∫ s
0 rθdθds

∣∣∣ Ω0

]
− qE

[∫ ∞
0

P
(
τ ∧ τ1 ∧ τ2 ∈ [s, s+ ds)

∣∣∣ Fs, Ω0

)(∫ s∧T

0

e−
∫ t
0 rθdθdt

)
ds
∣∣∣ Ω0

]
=E

[∫ T

0

e−
∫ s
0 (rθ+λθ+λ1θ+λ2θ)dθ

{
Kλs − q

}
ds
∣∣∣ Ω0

]
, (1.4.7)

where the last equation is obtained from (1.4.1)-(1.4.5) and an integration by parts.
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In this thesis, we study the case that the intensites depend only on the short interest

rate {rt}. That is, we assume that there exist functions Λ(·), Λ1(·),and Λ2(·) such that

λt = Λ(rt), λ1t = Λ1(rt), λ2t = Λ2(rt). (1.4.8)

To evaluate u, we need to model the interest rate. We shall focus on two interest rate

models, as discussed in the next section.

1.5 STOCHASTIC MODELS FOR INTEREST RATE

There are many mathematical models for interest rate, e.g., the Vasicek ( [9], 1977) model,

the Ho-Lee model ( [14], 1986), the Hull-White model ( [15], 1996), the CIR model ( [8],

1985), the Heath-Jarrow-Morton model ( [10], 1990), etc. Among many interest interest rate

models, we shall use CIR and Vasicek models because they are important and widely used

short rate models. The first advantage is that the value functions of these two models are

solutions of some certain partial differential equations, which can be numerically computed.

Another advantage of Vasicek model and CIR model is that they are mean-reverting process

( [12], 2008), an essential characteristic of the interest rate that sets these two models apart

from other models. Furthermore, both CIR and Vasicek models are canonical examples

of the affine term structure model that has closed formulas for many important quantites.

Therefore, we formulate our CDS model under these two interest rate models in this thesis.

1.5.1 The CIR Model

The CIR [Cox-Ingersoll-Ross, 1985] model specifies that the instantaneous interest rate rt

at time t follows the stochastic differential equation:

drt =
(
κ− β rt

)
dt+ σ

√
rt dWt,

9



where {Wt}t≥0 is the standard Brownian motion and κ, β, σ are positive constants. The

constant β, κ
β
, and σ are referred to as the speed of adjustment, the mean and volatility,

respectively.

The drift term (κ − β rt) represents the expected instantaneous change in the interest

rate at time t. Since the standard deviation factor is σ
√
rt, the interest rate is always

non-negative. More generally, when the interest rate is close to zero, σ
√
rt becomes very

small, which makes the stochastic process be dominated by
(
κ − β rt

)
dt. In other words,

the interest rate will move towards κ
β
.

The interest rate will never touch zero when 2κ ≥ σ2. However, when 0 < κ < σ2

2
, there

is a positive probability that the interest rate becomes zero. To continue the process after

interest rate becomes zero, we modify the CIR model by the following:

drt = (κ− βrt)dt+ σ
√

max{rt, 0}dWt, r0 ≥ 0. (1.5.1)

Then (1.5.1) is well-defined in the full parameter range, i.e, κ > 0, β > 0, and σ > 0. If

r0 > 0, one can show that the process satisfies the following: for each t > 0,

P(rt > 0) = 1 and


P( min

0≤s≤t
rs = 0) = 0 if 2κ ≥ σ2,

P( min
0≤s≤t

rs = 0) > 0 if 0 < 2κ < σ2.

1.5.2 The Vasicek Model

The Vasicek [Oldrich Vasicek, 1977] model specifies that the instantaneous interest rate rt

at time t follows the stochastic differential equation:

drt = (κ− β rt) dt+ σ dWt (1.5.2)

where {Wt}t≥0 is the standard Brownian motion and κ, β, σ are positive constants. The

drift term, (κ− β rt) dt is the same as in the CIR model, which ensures to generate a mean-

reverting process.
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By multiplying rt by the integrating factor eβ t and applying the Itô product rule on rte
β t,

we can solve the stochastic differential equation (1.5.2) and obtain the explicit formula:

rt = r0e
−βt +

κ

β
(1− e−βt) + σ

∫ t

0

e−β(t−s)dWs. (1.5.3)

Therefore, the interest rate rt follows a Normal distribution:

rt ∼ N
(
r0e
−βt +

κ

β
(1− e−βt), σ2

2β
(1− e−2βt)

)
.

Since normally distributed random variable can become negative with positive probabil-

ity, rt can be negative, which is considered as a weakness of the Vasicek model. However,

nowadays many countries like Sweden, Switzerland, and Japan have already introduced neg-

ative interest rates, so it is meaningful to take the Vasicek model into our consideration.

Mathematically, the existence of negativity of interest rate makes all analysis remarkably

different from the analysis under CIR model.

1.6 MATHEMATICAL FORMULATIONS OF CDS

Under the intensity model for the default times, the CIR or Vasicek short rate model, and

the connection (1.4.8) between intensity and interest rate, the value in (1.4.7) is a function

of r0 and T . Hence, we define the value of CDS of time-to-expiry T and interest rate r0 = r

by

u(r, T ) := E
[∫ T

0
e−

∫ s
0

(
rθ+Λ(rθ)+Λ1(rθ)+Λ2(rθ)

)
dθ
{
Kλs − q

}
ds
∣∣∣ r0 = r, Ω0

]
. (1.6.1)
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1.6.1 Under CIR Model

Under the CIR model, from (1.5.1), (1.6.1) and the famous Feynman-Kac formula [17] we

can deduce that u is the solution of the following PDE problem:

( ∂

∂T
+ Lc + λ(r)

)
u = KΛ(r)− q in (0,∞)2,

where

Lc = −σ
2r

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r, λ(r) = Λ(r) + Λ1(r) + Λ2(r).

When κ > σ2

2
, β > 0, σ > 0, the problem was solved by Bei Hu, Lishang Jiang, Jin

Liang and Wei Wei in [13] under the following “boundary condition”:

u ∈ L∞((0,∞)2). (1.6.2)

In this thesis, we extend the theory of Hu-Jiang-Liang-Wei in [13] to general parameter

range: κ > 0, β > 0, σ > 0. Instead of using (1.6.2), we impose the following “boundary

condition”:

∂u

∂r
∈ L∞((0,∞)2). (1.6.3)

Thus, we study the following problem: Find u such that



(
∂
∂T

+ Lc + λ(r)
)
u = KΛ(r)− q in (0,∞)2,

u(·, 0) = 0 in (0,∞),

∂u
∂r
∈ L∞((0,∞)2).

(1.6.4)

We shall show the well-posedness of this problem in Chapter 2.
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1.6.2 Under Vasicek Model

Under the Vasicek model, from (1.5.2), (1.6.1) and the famous Feynman-Kac formula [17]

we can deduce that u is the solution of the following:
(

∂
∂T

+ Lv + λ(r)
)
u = KΛ(r)− q in R× (0,∞),

u(·, 0) = 0 in R,
(1.6.5)

where

Lv = −σ
2

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r, λ(r) = Λ(r) + Λ1(r) + Λ2(r).

Under Vasicek model, the operator L = −σ2

2
∂2

∂r2
− (κ − βr) ∂

∂r
+ r, which is different

from the operator under CIR model. Another difference is that the domain of r becomes

(−∞,∞) instead of (0,∞). To study CDS under Vasicek model, we mainly have the following

difficulty:

• Due to allowing the negativity and unboundedness of r in the elliptic operator

L = −σ
2

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r ,

how to impose the ”boundary condition”, i.e., the asymptotic behavior of the solution

as |r| → ∞ ?

For the well-posedness of the PDE problem we impose the following standard boundary

condition for heat equation:

|u(r, T )| ≤ eA(N)(r2+1) ∀r ∈ R, T ∈ [0, N ], N > 0, (1.6.6)

where A(·) is any increasing function defined on [0,∞).

We shall show the well-posedness of (1.6.5) supplemented with (1.6.6) in Chapter 4.
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1.6.3 The Fair Spread

Notice that the solution of problem (1.6.4) or (1.6.5) can be decomposed as u = Ku1 − qu2,

i = 1, 2, where ui is the solution of


(
∂
∂T

+ L+ λ
)
ui = fi

ui(·, 0) = 0

(1.6.7)

with f1 = Λ and f2 = 1, and L is the corresponding partial differential operator for the CIR

model and Vasicek model, respectively.

Suppose the contract is signed at time t = 0. As a fair contract, its value should be zero.

Assume that this is the case. Then for fixed date of expiry, spread at t = 0 is

S0 :=
q

K
: =

u1(r0, T )

u2(r0, T )
.

Therefore, at time t ∈ (0, T ), the value of the contract is

u(rt, T − t) = K
[
u1(rt, T − t)− S0 u2(rt, T − t)

]
.
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2.0 WELL-POSEDNESS OF THE PDE PROBLEM UNDER CIR MODEL

In this chapter, we study the price of CDS under an intensity model for the credit event

where the intensity depends only on short interest rate modeled by the CIR model. We use

one theorem to establishes the existence and uniqueness of the solution of problem (1.6.4).

In section one we present the main result. In section two we present the existence of the

solution. In section three we present the uniqueness of the solution.

2.1 MAIN RESULT

The main result can be stated as follows.

Theorem 2.1.1. (Existence and Uniqueness) Let σ, κ and β be positive constans and

L be the CIR differential operator defined by

Lu =
(
− σ2r

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r
)
u.

Assume that

Λ(r) = ar + b, Λ1(r) = hH(r −B), Λ(r) = cr + d, (2.1.1)

where a, b, c, d, h and B are positive constants. Let λ(·) and f(·) be functions on (0,∞)

that satisfy

λ(r) := Λ(r) + Λ1(r) + Λ2(r), f(r) = KΛ(r)− q. (2.1.2)
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Then the following problem



(
∂
∂T

+ L+ λ
)
u = f in (0,∞)2,

u(·, 0) = 0 on (0,∞),

∂u
∂r
∈ L∞((0,∞)2),

(2.1.3)

admits an unique solution in

X = C1, 1
2 ((0,∞)× [0,∞)) ∩ C∞((0, B]× [0,∞)) ∩ C∞([B,∞)× [0,∞)). (2.1.4)

Remark: The problem (2.1.3) is essentially different from the problem solved by Bei Hu,

Lishang Jiang, Jin Liang and Wei Wei in [13], although the basic formulations are similar.

In [13], it is assumed that Λ2(·) ≡ 0 so the buyer never default. Another difference is in [13]

it is assumed that 2κ > σ2, but here we remove this condition. Our theory covers the full

parameter range. We actually extend the theory of Hu-Jiang-Liang-Wei in [13] to general

parameter range: κ > 0, β > 0, σ > 0.

In this chapter and next chapter, we assume κ, β and σ are positive constants.

2.2 EXISTENCE

In the sequel, we always assume that conditions and notations of Theorem 2.1.1 hold. In

this section, we establish the existence of a solution of problem (2.1.3). Since L degenerates

at r = 0 and both λ and f are unbounded as r →∞, we begin with approximating problem

(2.1.3) by the following truncation:
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

(
∂
∂T

+ L+ λ
)
un = f in ( 1

n
, n)× (0, n2],

un(·, 0) = 0 on ( 1
n
, n),

∂un
∂r

= 0 on { 1
n
, n} × (0, n2].

(2.2.1)

Lemma 2.2.1. For every n > B and α ∈ (0, 1), problem (2.2.1) admits a unique solution

in

W 2,1
p

(
(
1

n
, n)× (0, n2]

)
∩ C2+α,1+α

2

(
(
1

n
,B]× (0, n2]

)
∩ C2+α,1+α

2

(
[B, n)× (0, n2]

)
.

Problem (2.2.1) is a standard Cauchy boundary value problem. The assertion of the

Lemma 2.2.1 follows from a standard theory of parabolic equations; see, for example, Fried-

man [19]. We omit the proof here.

Next we provide some a priori estimates, which will allow us to obtain a limit when we

send n to infinity.

Lemma 2.2.2. (L∞-estimate of un) There exists a positive constant C, which does not

depend on n, such that

|un| ≤ C. (2.2.2)

Proof. Recall that K in (2.1.2) is the agreed CDS compensation. Since K > 0 and( ∂

∂T
+ L+ λ

)
K ≥ λK ≥ KΛ ≥ KΛ− q = f,

K is a super-solution of problem (2.2.1).

Set Λ0(r) = r and α = ‖ f
Λ0+λ
‖L∞((0,∞)). Since −α < 0 and( ∂

∂T
+ L+ λ

)
(−α) = (Λ0 + λ)(−α) ≤ (Λ0 + λ)

f

Λ0 + λ
= f,

−α is a sub-solution of problem (2.2.1).

By comparison principle, un ≤ K and un ≥ −α. Therefore, |un| ≤ C := max{K,α}.
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Lemma 2.2.3. (L∞-estimate of ∂un
∂T

) There exist positive constants c1 and c2, which do

not depend on n, such that ∣∣∣∂un
∂T

∣∣∣ ≤ c1 + c2r. (2.2.3)

Proof. Denote vn = ∂un
∂T

. Then vn satisfies the following:

(
∂
∂T

+ L+ λ
)
vn = 0 in ( 1

n
, n)× (0, n2],

vn(·, 0) = f on ( 1
n
, n),

∂vn
∂r

= 0 on { 1
n
, n} × (0, n2].

(2.2.4)

Set

w(r) =

√
A2 +

(
r − 1

n

)2

∀r > 0, where A =

√
κ+

σ2

2
.

Let

v̄(r) :=

∥∥∥∥ fw
∥∥∥∥
L∞((0,∞))

w(r).

Then one can varify v̄ satisfies the following:

(
∂
∂T

+ L+ λ
)
v̄ ≥ 0 in ( 1

n
, n)× (0, n2],

v̄(·, 0) ≥ f on ( 1
n
, n),

∂v̄
∂n
≥ 0 on { 1

n
, n} × (0, n2].

Hence, v̄ is a super-solution of problem (2.2.4). Similarly, −v̄ is a sub-solution. By compar-

ison principle, vn ≤ v̄ and vn ≥ −v̄, i.e., |vn| ≤ v̄.

Since

√
A2 +

(
r − 1

n

)2

≤ A + (r − 1
n
), we can easily find positive constants c1 and c2

such that ∣∣∣∂un
∂T

∣∣∣ ≤ v̄ ≤ c1 + c2r.
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Lemma 2.2.4. (L∞-estimate of ∂un
∂r

) There exists a positive constant c3, which does not

depend on n, such that ∣∣∣∂un
∂r

∣∣∣ ≤ c3. (2.2.5)

Proof. By definition of L, we can obtain the following equation:

−σ
2r

2

∂2un
∂r2

− (κ− βr)∂un
∂r

= f − ∂un
∂T
−
[
r + λ(r)

]
un. (2.2.6)

Set µ := 2κ
σ2 , ν := 2β

σ2 and multiply the integrating factor rµ−1e−νr on both sides of (2.2.6)

to obtain

−
(
rµe−νr

∂un
∂r

)
r

= rµ−1e−νrF, (2.2.7)

where F (r, T ) = 2
σ2

[
f(r)− ∂un(r,T )

∂T
−
(
r + λ(r)

)
un(r, T )

]
.

To estimate the bound of ∂un
∂r
, we note from Lemma 2.2.2 and Lemma 2.2.3 that there

exists a positive C1 such that

|F (r, T )| ≤ 2

σ2

[
|f(r)|+

∣∣∣∂un(r, T )

∂T

∣∣∣+
(
r + λ(r)

)
|un(r, T )|

]
≤ C1(1 + r) ∀(r, T ) ∈

[ 1

n
, n
]
× [0, n2].

To continue estimating ∂un
∂r
, we consider the following two cases:

(1) The case r ∈ ( 1
n
, 1 + 2µ

ν
].

Integrating both sides of (2.2.7) over [ 1
n
, r], we obtain

|rµe−νr ∂un
∂r
| ≤

∫ r
1
n
ρµ−1e−νρ|F | dρ ≤ C1

∫ r
1
n
(ρµ−1 + ρµ)dρ ≤ C1

∫ r
0

(ρµ−1 + ρµ)dρ = C1( r
µ

µ
+ rµ+1

µ+1
).

Thus,∣∣∣∂un
∂r

∣∣∣ ≤ C1r
−µeνr

(rµ
µ

+
rµ+1

µ+ 1

)
≤ C1e

ν(1+ 2µ
ν

)
( 1

µ
+

1 + 2µ
ν

µ+ 1

)
∀r ∈

( 1

n
, 1 +

2µ

ν

]
.

(2) The case r ∈ (1 + 2µ
ν
, n).

Integrating both sides of (2.2.7) over [r, n] gives∣∣∣rµe−νr ∂un
∂r

∣∣∣ ≤ ∫ n

r

ρµ−1e−νρ|F | dρ ≤ 2C1

∫ ∞
r

e−νρρµdρ. (2.2.8)
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Applying integrate by parts to
∫∞
r
e−νρρµdρ, we obtain∫ ∞

r

e−νρρµdρ =
1

ν
e−νrrµ +

µ

ν

∫ ∞
r

e−νρρµ−1dρ ≤ 1

ν
e−νrrµ +

µ

νr

∫ ∞
r

e−νρρµdρ.

Thus,
∫∞
r
e−νρρµdρ ≤ rµe−νr

ν−µ
r

.

From (2.2.8), we obtain∣∣∣rµe−νr ∂un
∂r

∣∣∣ ≤ 2C1

∫ ∞
r

e−νρρµdρ ≤ 2C1
rµe−νr

ν − µ
r

.

Thus, ∣∣∣∂un
∂r

∣∣∣ ≤ 2C1

ν − µ
r

≤ 4C1

ν
∀r ∈

(
1 +

2µ

ν
, n
)
.

Combining these two cases, we complete the proof.

Lemma 2.2.5. Problem (2.1.3) admits at least one solution in X.

Proof. Fix p > 1. For each δ ∈ (0, 1) and n > 2
δ
, by interior estimate for parabolic equations

[22], the solution un of problem (2.2.1) satisfies

‖un‖W 2,1
p ([δ, 1

δ
]×[0, 1

δ2
]) ≤ C(δ, p)

{
‖f‖Lp([ δ

2
, 2
δ

]) + ‖un‖L∞([ δ
2
, 2
δ

]×[0, 1
δ2

])

}
≤ C̃(δ, p),

where C̃(δ, p) is a positive constant depends on δ and p.

Since

W 2,1
p is compactly embedded in C1, 1

2 ,

by using a diagonal process, we can find a function u and a subsequence {nk}∞k=1 such that

lim
k→∞

nk =∞ and

lim
k→∞
‖unk − u‖C1, 12 ([δ, 1

δ
]×[0, 1

δ2
])

= 0 ∀ δ ∈ (0, 1).

From the equation of unk , we find that u satisfies (2.1.3). In addition, from Lemma 2.2.4,

we can obtain ur ∈ L∞((0,∞)2).

Therefore, u is a solution of problem (2.1.3).
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2.3 UNIQUENESS

In this section, we establish the uniqueness of a solution of problem (2.1.3). The uniqueness

of the solution is proven by using a comparison principle and constructing an auxiliary

function. We begin with introducing an auxiliary function by Laplace transform.

Lemma 2.3.1. For i = 1, 2, the following are linearly independent solutions of (L+ Λ)ϕ =

0 in (0,∞) :

ϕi(r) =
Γ(2− α1 − α2)

2πi

∫
Ci

(s− λ1)α1−1(s− λ2)α2−1esr ds ∀r > 0, (2.3.1)

where Ci is a contour on a complex plane starts from −∞ − i, goes horizontally right to

(λi + λ2−λ1
2

) − i, then goes vertically up to (λi + λ2−λ1
2

) + i, then goes horizontally left to

−∞+ i. Γ(z) stands for the Gamma function and (α1, α2, λ1, λ2) are

λ1 =
β−
√
β2+2(a+1)σ2

σ2 ,

λ2 =
β+
√
β2+2(a+1)σ2

σ2 ,

α1 = 1
λ2−λ1 [ 2b

σ2 − 2κ
σ2λ1],

α2 = 1
λ1−λ2 [ 2b

σ2 − 2κ
σ2λ2].

(2.3.2)

Proof. Here for simplicity of presentation, we assume that 1 − α1 − α2 is not a negative

integer.

Note that λ1 and λ2 are roots of σ2

2
λ2 − βλ− (a+ 1) = 0. Hence

σ2

2
λ2 − βλ− (a+ 1) =

σ2

2
(λ− λ1)(λ− λ2).

Denote µ := α1 + α2 = 2κ
σ2 . Then

2πi

Γ(2− µ)
(L+ λ)ϕi(r) = −σ

2

2
r

∫
Ci

s2(s− λ1)α1−1(s− λ2)α2−1esr ds+ (κ− βr)
∫
Ci

s(s− λ1)α1−1

(s− λ2)α2−1esr ds− [(a+ 1)r + b]

∫
Ci

(s− λ1)α1−1(s− λ2)α2−1esr ds.
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After the simplification of above expression and integration by parts,we obtain :

2πi

Γ(2− µ)
(L+ λ)ϕi(r) = −

∫
Ci

[
(
σ2

2
s2 − βs− (a+ 1))r + (κs− b)

]
(s− λ1)α1−1(s− λ2)α2−1esr ds

=

∫
Ci

σ2

2
(s− λ1)α1(s− λ2)α2 d esr +

∫
Ci

(κs− b)(s− λ1)α1−1(s− λ2)α2−1

esr ds

=

∫
Ci

(s− λ1)α1−1(s− λ2)α2−1esr
{
− σ2

2
[(α1 + α2)s− (α1λ2 + α2λ1)] +

κs− b
}
ds

= 0.

Since the definition of (α1, α2) implies that
−σ2

2
(α1 + α2) + κ = 0,

σ2

2
(α1λ2 + α2λ1)− b = 0,

ϕi in (2.3.1) are two independent solutions of homogeneous ODE problem (L+Λ)ϕ = 0.

Remark: In (2.3.1), we assume assume that 1 − α1 − α2 is not a negative integer. Indeed

we can show that ϕi in (2.3.1) are analytic functions of α1 ∈ Z and α2 ∈ Z.

Then we shall use the kernel of (L+ Λ)ϕ = 0 to complete the proof of uniqueness of the

solution of problem (2.1.3).

Lemma 2.3.2. Problem (2.1.3) admits at most one solution in X.

Proof. Let

ψ(r) =

∫ λ2

−∞
|λ1 − s|α1−1(λ2 − s)α2−1esr ds ∀ r > 0, (2.3.3)

where 

λ1 =
β−
√
β2+2(a+c+1)σ2

σ2 ,

λ2 =
β+
√
β2+2(a+c+1)σ2

σ2 ,

α1 = κ
σ2

(
1− β√

β2+2σ2(a+c+1)

)
,

α2 = κ
σ2

(
1 + β√

β2+2σ2(a+c+1)

)
.

(2.3.4)
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By Lemma 2.3.1, one can easily show that ψ satisfies

[
L+ (a+ c)r

]
ψ = 0 in (0,∞),

ψ > 0 in (0,∞),

lim
r→∞

ψ′(r) =∞, lim
r→0+

ψ′(r) = −∞.

(2.3.5)

Suppose problem (2.1.3) has two solutions u1 and u2. Set

w := (u1 − u2)e−T

Then w satisfies 

(
∂
∂T

+ L+ λ+ 1
)
w = 0 in (0,∞)2,

w(·, 0) = 0 in (0,∞),

wr ∈ L∞((0,∞)2)

(2.3.6)

It suffices to show w ≡ 0 in (0,∞)2. Fix ε > 0. Let

vε(r, T ) := εψ(r)± w(r, T ) for all (r, T ) ∈ (0,∞)2.

We shall show that vε ≥ 0. If vε ≥ 0 is not true, then there exists (r0, t0) ∈ (0,∞)2 such

that vε(r0, t0) < 0.

Since lim
r→∞

ψ′(r) =∞ and lim
r→0+

ψ′(r) = −∞, there exist positive constants δ1 and δ2 such

that r0 ∈ [δ2, δ1] and

∂vε
∂r

> 1 in [δ1,∞)× [0,∞);
∂vε
∂r

< −1 in (0, δ2]× [0,∞). (2.3.7)

Therefore, there exists (x∗, t∗) ∈ [δ2, δ1]× [0, t0] such that

vε(r
∗, t∗) = min

[δ2,δ1]×[0,t0]
vε ≤ vε(r0, t0) < 0.

To continue proving the uniqueness of a solution of problem (2.1.3), we consider the

following two cases:

(1) The case r∗ 6= B.
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Note t∗ > 0 since vε(r, 0) = εψ(r)± w(r, 0) > 0. Thus

∂vε
∂T

(r∗, t∗) ≤ 0,
∂vε
∂r

(r∗, t∗) = 0,
∂2vε
∂r2

(r∗, t∗) ≥ 0.

Therefore,

( ∂

∂T
+ L+ λ+ 1

)
vε

∣∣∣∣
(r∗,t∗)

≤ 0. (2.3.8)

However,

( ∂

∂T
+ L+ λ+ 1

)
vε

∣∣∣∣
(r∗,t∗)

=
( ∂

∂T
+ L+ λ+ 1

)
(εψ ± w)

∣∣∣∣
(r∗,t∗)

= ε
( ∂

∂T
+ L+ λ+ 1

)
ψ

∣∣∣∣
(r∗,t∗)

= ε
( ∂

∂T
+ L+ (a+ c)r

)
ψ

∣∣∣∣
(r∗,t∗)

+ ε
(
λ− (a+ c)r + 1

)
ψ

∣∣∣∣
(r∗,t∗)

≥ εψ
∣∣
(r∗,t∗)

> 0,

which contradicts (2.3.8).

(2) The case r∗ = B.

Since vε = εψ ± w and w ∈ X, vε ∈ X. Then we can find the left and right limit in a

small neighborhood of (B, t∗) such that

∂vε
∂T

(B±, t
∗) ≤ 0;

∂2vε
∂r2

(B±, t
∗) ≥ 0.

Since ∂vε
∂r

(B, t∗) = 0 and vε ∈ X., we can obtain

∂vε
∂r

(B±, t
∗) = 0

Therefore,

( ∂
∂T

+ L+ λ+ 1
)
vε

∣∣∣∣
(B±,t∗)

≤ 0. (2.3.9)
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However,( ∂

∂T
+ L+ λ+ 1

)
vε

∣∣∣∣
(B±,t∗)

=
( ∂

∂T
+ L+ λ+ 1

)
(εψ ± w)

∣∣∣∣
(B±,t∗)

= ε
( ∂

∂T
+ L+ λ+ 1

)
ψ

∣∣∣∣
(B±,t∗)

= ε
( ∂

∂T
+ L+ (a+ c)r

)
ψ

∣∣∣∣
(B±,t∗)

+ ε
(
λ− (a+ c)r + 1

)
ψ

∣∣∣∣
(B±,t∗)

≥ εψ
∣∣
(B±,t∗)

> 0,

which contradicts with (2.3.9).

Combining these two cases, vε(r, T ) ≥ 0 for all (r, T ) ∈ (0,∞)2, which implies

|w| ≤ εψ.

Sending ε→ 0, we obtain w ≡ 0 in (0,∞)2. This completes the proof.

Proof of Theorem 2.1.1

Theorem 2.1.1 then follows from Lemmas 2.2.5 and 2.3.2.
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3.0 INFINITE HORIZON PROBLEM AND ASYMPTOTIC BEHAVIOR OF

SOLUTION UNDER CIR MODEL

In this chapter, we study the behavior of the price, u(r, T ), of CDS as the time to expiration,

T , approaches infinity, under the CIR model. Since the CIR model is an affine term structure

model, the bond price P , being the solution of


(

∂
∂T
− σ2r

2
∂2

∂r2
− (κ− βr) ∂

∂r
+ r
)
P = 0 in (0,∞)× [0,∞),

P (·, 0) = 1 on (0,∞),

(3.0.1)

admits an explict formula

P (r, T ) = A(T )e−B(T )r, (3.0.2)

where



A(T ) =
(

2h exp
(

(β+h)T
2

)
2h+(β+h)[exp(hT )−1]

) 2κ
σ2

,

B(T ) = 2[exp(hT )−1]
2h+(β+h)[exp(hT )−1]

,

h =
√
β2 + 2σ2.

(3.0.3)

From (3.0.2) and (3.0.3), we know that as T → ∞, the bond price approaches zero. Thus

it is reasonable to expect that the price of CDS approaches, T → ∞, the solution of the

corresponding infinite horizon problem which is derived from PDE problem (2.1.3).
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3.1 MAIN RESULTS

We shall establish two theorems. The first theorem establishes the existence and uniqueness

of the solution of the infinite horizon problem. The asymptotic behavior of the CDS price

follows closely to that of the bond price given in (3.0.2)-(3.0.3). Since the bond price admits

a limit, we show the same behavior happen to the CDS price in the second theorem.

Theorem 3.1.1. Let σ, κ and β be positive constans and L be the CIR differential operator

defined by

Lu =
(
− σ2r

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r
)
u.

Assume that

Λ(r) = ar + b, Λ1(r) = hH(r −B), Λ(r) = cr + d, (3.1.1)

where a, b, c, d, p and B are positive constants. Let λ(·) and f(·) be functions on (0,∞)

that satisfy

λ(r) := Λ(r) + Λ1(r) + Λ2(r), f(r) = KΛ(r)− q ∀r ∈ (0,∞). (3.1.2)

Then the infinite horizon problem, for u∗,


(
L+ λ

)
u∗ = f in (0,∞),

u′∗ ∈ L∞(0,∞),

(3.1.3)

admits an unique solution.

Theorem 3.1.2. Assume the conditions of Theorem 3.1.1. Let u(r, T ) be the unique solution

of problem (2.1.3) given by Theorem 2.1.1 and u∗(r) be the unique solution of problem (3.1.3)

given by Theorem 3.1.1. There exist positive constants M and ν such that∣∣u(r, T )− u∗(r)
∣∣ ≤Me−νT ∀ T > 0, r ∈ (0,∞).

Consequently,

lim
T→∞

u(r, T ) = u∗(r) ∀ r ∈ (0,∞).
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3.2 WELL-POSEDNESS OF INFINITE PROBLEM

The infinite horizon problem is obtained by removing the ∂
∂T

operator in (2.1.3). Thus, the

infinite horizon problem is to find u∗ such that

(
L+ λ

)
u∗ = f in (0,∞).

In this section, we show that this problem is well-posed under the following boundary

condition:

u′∗ ∈ L∞(0,∞).

For this we begin with considering the corresponding homogeneous equation:

(
L+ λ

)
u∗ = 0 in (0,∞).

3.2.1 Asymptotic Behavior of Solutions of the Homogeneous Equation

We use the next lemma to illustrate the solution and its properties.

Lemma 3.2.1. Let L = −σ2r
2

∂2

∂r2
− (κ − βr) ∂

∂r
+ r, σ > 0, κ > 0, and β > 0. Then the

homogeneous ODE problem

(
L+ λ

)
φ = 0 in (0,∞), (3.2.1)

admits two linear independent solutions φ1 and φ2 satisfying:

φ′1 < 0, φ′2 > 0, φ1 > 0, φ2 > 0 in (0,∞), (3.2.2)

lim
r→∞

φ1(r) = 0, (3.2.3)

lim
r→0

r
2κ
σ2 φ′1(r) = −1, (3.2.4)

lim
r→∞

φ′1(r) = 0, (3.2.5)
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lim
r→0

φ′2(r) ≤ D for some constant D > 0, (3.2.6)

lim inf
r→∞

φ′2(r)

φ2(r)
>

2β

σ2
. (3.2.7)

Proof. Dividing σ2

2
r on both sides of equation(3.2.1), we obtain the following:

−φ′′ + p φ′ + q φ = 0 in (0,∞), (3.2.8)

where p = 2
σ2

(
β − κ

r

)
, q = 2

σ2

(
1 + λ(r)

r

)
.

Denote W (r) as the Wronskian of φ1 and φ2. Since W (r) satisies W ′ = pW, there exists

a nonzero constant D1 such that

W (r) = φ1(r)φ′2(r)− φ′1(r)φ2(r) = D1e
νrr−µ, (3.2.9)

where ν = 2β
σ2 and µ = 2κ

σ2 .

WLOG set D1 = 1. Consider the solution φ2 with initial conditions

φ2(0) = 1, φ′2(0) = 0.

Multiplying the integrating factor e−A(r) := rµe−νr, we obtain the following:

(e−Aφ′2)′ = e−A(−pφ′2 + φ′′2) = e−Aqφ2. (3.2.10)

Integrating both sides of (3.2.10) over [0, r], we obtain

e−A(r)φ′2(r) =

∫ r

0

e−A(ρ)q φ2(ρ) dρ

=
2

σ2

∫ r

0

ρµe−νρ
[
1 +

λ(ρ)

ρ

]
φ2(ρ) dρ.

By Picard’s method, we know that

φ2(r) = 1 +

∫ r

0

φ2(ρ)K(r, ρ) dρ > 0, 0 < ρ < r,
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where

K(r, ρ) =
2

σ2
ρµe−νρ

[
1 +

λ(ρ)

ρ

] ∫ r

ρ

s−µeνs ds.

Thus

φ′2(r) =

∫ r

0

φ2(ρ)
∂K(r, ρ)

∂r
dρ

=
2

σ2
r−µeνr

∫ r

0

φ2(ρ)ρµe−νρ
[
1 +

λ(ρ)

ρ

]
dρ > 0 ∀r ∈ (0,∞).

Note that lim
r→0

φ2(r) = φ2(0) = 1. By L’Hospital’s Rule, we have

lim
r→0

φ′2(r) =
2

σ2
lim
r→0

φ2(r)rµe−νr[1 + λ(r)
r

]

µrµ−1e−νr − νrµe−νr
=

2

σ2
lim
r→0

φ2(r)[r + λ(r)]

µ− νr
=

1

κ
lim
r→0

λ(r) ≤ D,

where D := 1
κ
‖λ(r)‖L∞([0,1]) is a positive constant.

Next we study the asymptotic behaviour of φ′2(r) as r → ∞. Since φ′2(r) > 0, for some

positive function k(r), we can write φ2(r) = e
∫ r
0 k(ρ) dρ. Then we have


φ′2(r) = φ2(r) k(r),

φ′′2(r) = k′(r)φ2(r) + k2(r)φ2(r).

Plugging φ′′2(r) and φ′2(r) into equation (3.2.1), we obtain

k′(r) = −k2(r) + p k(r) + q ≥ −k2(r) +
(
ν − µ

r

)
k(r) +

2

σ2
.

Fix ε > 0. Then for all r > µ
ε
, we have

k′(r) ≥ −k2(r) + (ν − ε) k(r) +
2

σ2
.

Therefore,

k(r) ≥
(ν − ε) +

√
(ν − ε)2 + 8

σ2

2
,
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i.e., lim inf
r→∞

k(r) ≥
(ν−ε)+

√
(ν−ε)2+ 8

σ2

2
. Sending ε→ 0, we obtain

lim inf
r→∞

φ′2(r)

φ2(r)
= lim inf

r→∞
k(r) ≥

ν +
√
ν2 + 8

σ2

2
> ν.

Thus

φ2(r) > eνr and φ′2(r) > νeνr for r large enough. (3.2.11)

Now we use the Wronkian to find another solution φ1(r). Since

W (r) = φ1(r)φ′2(r)− φ′1(r)φ2(r) = −φ2
2(r)

(φ1(r)

φ2(r)

)′
= eνrr−µ,

we have

φ1(r) = φ2(r)

∫ ∞
r

eνρρ−µ

φ2
2(ρ)

dρ, ∀r ∈ (0,∞). (3.2.12)

Note that φ1 > 0 since φ2 > 0. By (3.2.11) and L’Hospital Rule, we have

lim
r→∞

φ1(r) = lim
r→∞

− eνrr−µ

φ22(r)

−φ′2(r)

φ22(r)

= lim
r→∞

eνrr−µ

φ′2(r)
= 0.

By the Mean Value Theorem, there exists ρn such that
lim
n→∞

[φ1(n+ 1)− φ1(n)] = lim
n→∞

φ′1(ρn) = 0,

lim
n→∞

ρn =∞.

Since φ1 > 0, we have ∫ ρn

r

e−A(s)qφ1(s) ds > 0.

By (3.2.10), we similarly have

e−Aqφ1 = (e−Aφ′1)′.

Thus,∫ ρn

r

e−A(s)qφ1(s) ds =

∫ ρn

r

(e−A(s)φ(s)′1)′ ds = e−A(ρn)φ′1(ρn)− e−A(r)φ′1(r) > 0.
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Sending n→∞, we have e−A(ρn)φ′1(ρn)→ 0, which implies φ′1(r) < 0 for all r ∈ (0,∞).

By (3.2.11), φ′2 > 0 and φ2(0) = 1, we have

0 ≤ lim
r→0

rµ
∫ ∞
r

eνρρ−µ

φ2
2(ρ)

dρ ≤ lim
r→0

{
rµ

eν

φ2
2(r)

∫ 1

r

ρ−µdρ+ rµ
∫ ∞

1

eνρρ−µ

φ2
2(ρ)

dρ

}

=


lim
r→0

{
(rµ−r)eν

(1−µ)φ22(r)
+ rµ

∫∞
1

eνρρ−µ

φ22(ρ)
dρ
}

= 0 if µ 6= 1,

lim
r→0

{
−eνr ln(r)

φ22(r)
+ r

∫∞
1

eνρρ−1

φ22(ρ)
dρ
}

= 0 if µ = 1.

Therefore,

lim
r→0

rµφ′1(r) = lim
r→0

(
rµφ′2(r)

∫ ∞
r

eνρρ−µ

φ2
2(ρ)

dρ− eνr

φ2(r)

)
= −1.

Since φ1φ
′
2 > 0 and W (r) = φ1(r)φ′2(r)− φ′1(r)φ2(r) = eνrr−µ, we know that

−e
νrr−µ

φ2(r)
≤ φ′1(r) ≤ 0.

By (3.2.11), we know that −r−µ ≤ φ′1(r) ≤ 0 for r large enough. Therefore, by Squeeze

Theorem,

lim
r→∞

φ′1(r) = 0.

This completes the proof of Lemma 3.2.1.
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3.2.2 Existence of Solution of Infinite Horizon Problem

Lemma 3.2.2. (Existence) Problem (3.1.3) admits at least one solution.

Proof. Let 
C1(r) :=

∫ r
0

φ2(ρ)f̄(ρ)
φ1φ′2−φ′1φ2

dρ,

C2(r) :=
∫∞
r

φ1(ρ)f̄(ρ)
φ1φ′2−φ′1φ2

dρ,

(3.2.13)

where f̄ = 2f
σ2r

; φ1(r) and φ2(r) are functions defined as in Lemma 3.2.1. Then we claim

ϕ(r) = C1(r)φ1(r) + C2(r)φ2(r) (3.2.14)

is a solution of inhomogeneous ODE problem (3.1.3).

In order to show this claim, first we shall show that C1(r) and C2(r) are well-defined.

Since φ2 is bounded as r → 0 and φ1 is bounded as r →∞, we have
∣∣ f̄φ2
φ1φ′2−φ′1φ2

∣∣ = O(1) rµ−1,

∣∣ f̄φ1
φ1φ′2−φ′1φ2

∣∣ = O(1)e−νrrµ.

(3.2.15)

Thus, the integrals defining C1(r) and C2(r) are convergent, i.e, C1(r) and C2(r) are well-

defined.

It is straightforward to verify that ϕ(r) satisfies

(
L+ λ

)
ϕ = 0 in (0,∞).

Lastly, we shall show that ϕ(r) defined as in (3.2.14) satisfies ϕ′ ∈ L∞(0,∞). By

differentiating (3.2.14), we have

ϕ′(r) = φ′1(r)C1(r) + φ′2(r)C2(r).

As r → 0, by (3.2.4) and (3.2.15), we have

φ′1(r)C1(r) = O(1). (3.2.16)
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As r → 0, by (3.2.3), we have

C2(r) =

∫ 1

r

f̄φ1

φ1φ′2 − φ′1φ2

dρ+

∫ ∞
1

f̄φ1

φ1φ′2 − φ′1φ2

dρ =

∫ 1

r

O(1)φ1(ρ) ρµ−1 dρ+O(1);

by (3.2.4), we have

φ1(r) =


O(1) r1−µ if µ 6= 1,

O(1) ln r if µ = 1.

Therefore,

C2(r) =


O(1)

∫ 1

r
ρ1−µ ρµ−1 dρ+O(1) = O(1) if µ 6= 1,

O(1)
∫ 1

r
ln ρ dρ+O(1) = O(1) if µ = 1.

By (3.2.6), we obtain

φ′2(r)C2(r) = O(1). (3.2.17)

Combining (3.2.16) and (3.2.17), we have

ϕ′(r) = φ′1(r)C1(r) + φ′2(r)C2(r) = O(1) as r → 0. (3.2.18)

As r →∞, since φ2(0) = 1, we obtain

C1(r) =

∫ r

0

f̄φ2

φ1φ′2 − φ′1φ2

dρ =

∫ 1

0

f̄φ2

φ1φ′2 − φ′1φ2

dρ+

∫ r

1

f̄φ2

φ1φ′2 − φ′1φ2

dρ

= O(1) +
φ2(r)

φ1(r)φ′2(r)− φ′1(r)φ2(r)

∫ r

1

f̄ r−µeνrφ2(ρ)

ρ−µeνρφ2(r)
dρ.

By (3.2.7), we have

k∗ := ln
φ2(ρ)

φ2(r)
< −ν(r − ρ);

by (3.2.5), we have

∣∣φ′1(r)C1(r)
∣∣ = O(1) +

∣∣φ′1(r)φ2(r)
∣∣

φ1(r)φ′2(r)− φ′1(r)φ2(r)

∫ r

1

(ρ
r

)µ
f̄ e

ν(r−ρ)+ln
φ2(ρ)
φ2(r) dρ

≤ O(1) +O(1)

∫ r

1

eν(r−ρ)+k∗ dρ.
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Therefore,

∣∣φ′1(r)C1(r)
∣∣ = O(1) as r →∞. (3.2.19)

Next we shall consider φ′2(r)C2(r) as r →∞. Since φ′1(r) < 0,

ln
φ1(ρ)

φ1(r)
< 0 ∀ρ > r.

Therefore,

∣∣φ′2(r)C2(r)
∣∣ = φ′2(r)

∫ ∞
r

f̄φ1

φ1φ′2 − φ′1φ2

dρ

=
φ′2(r)φ1(r)

φ1(r)φ′2(r)− φ′1(r)φ2(r)

∫ ∞
r

(ρ
r

)µ
f̄ e
−ν(ρ−r)+ln

φ1(ρ)
φ1(r) dρ

≤ O(1)

∫ ∞
r

(ρ
r

)µ
e−ν(ρ−r) dρ

Hence,

∣∣φ′2(r)C2(r)
∣∣ = O(1) as r →∞. (3.2.20)

Based on (3.2.19) and (3.2.20), we have

ϕ′(r) = φ′1(r)C1(r) + φ′2(r)C2(r) = O(1) as r →∞. (3.2.21)

Combining (3.2.18) and (3.2.21), we proved that ϕ′ ∈ L∞(0,∞). This completes the proof

of Lemma 3.2.2.
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3.2.3 Uniqueness of Solution of Infinite Horizon Problem

Lemma 3.2.3. (Uniqueness) Problem (3.1.3) admits at most one solution.

Proof. Suppose problem (3.1.3) has two solutions u1 and u2. Set φ := u1 − u2. Then φ

satisfies


(L+ λ)φ = 0 in (0,∞),

φ′ ∈ L∞(0,∞).

(3.2.22)

It suffices to show φ ≡ 0 in (0,∞).

The general solution of above ODE problem (3.2.22) is

φ(r) = C1φ1(r) + C2φ2(r) (3.2.23)

By Lemma 3.2.1, we know that φ′1(r) → −∞ and φ′2(r) is bounded as r → 0. Since

φ′(r) ∈ L∞(0,∞), we have C1 = 0. Since φ′1(r) → 0 and φ′2(r) → ∞ as r → ∞, we have

C2 = 0.

Therefore, φ ≡ 0 is the only solution of problem (3.2.22). This completes the proof.

Proof of Theorem 3.1.1

Theorem 3.1.1 then follows from Lemmas 3.2.2 and 3.2.3.
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3.3 ASYMPTOTIC BEHAVIOR

In this section, we shall prove Theorem 3.1.2. More precisely, we show the price of CDS, as

T →∞, approaches the solution of the infinite horizon problem (3.1.3).

Proof of Theorem 3.1.2

Proof. Let u(r, T ) be the only solution of problem (2.1.3) and u∗(r) be the only solution of

problem (3.1.3). Then v(r, T ) := u(r, T )− u∗(r) satisfies the following:

( ∂
∂T

+ L+ λ)v = 0 in (0,∞)2,

v(·, 0) = −u∗(·) on (0,∞),

vr ∈ L∞((0,∞)2).

(3.3.1)

Since
( ∂
∂T

+ L+ λ)‖u∗‖∞ e−(b+d)T =
[
(a+ c+ 1)r + pH(r −B)

]
||u∗||∞ e−(b+d)T ≥ 0,

||u∗||∞ e−(b+d)T
∣∣
T=0
≥ −u∗,

||u∗||∞e−(b+d)T is a super-solution of problem (3.3.1).

Similarly, we can show−||u∗||∞e−(b+d)T is a sub-solution of problem (3.3.1). Therefore, by

comparison principle, v ≤ ||u∗||∞e−(b+d)T and v ≥ −||u∗||∞e−(b+d)T , i.e., |v| ≤ ||u∗||∞e−(b+d)T .

This completes the proof of Theorem 3.1.2.

So far, we have done the proof of all main results under the CIR model. We shall use

the next two chapters to prove the main results under Vasicek model.
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4.0 WELL-POSEDNESS OF THE PDE PROBLEM UNDER VASICEK

MODEL

In this chapter, we study the price of CDS under an intensity model for the credit event where

the intensity depends only on short interest rate modeled by the Vasicek model. In section

one we present the main results. In section two we present the existence of the solution.

In section three we present the uniqueness of the solution. In section four we present an a

priori bound of the solution.

4.1 MAIN RESULTS

We shall state two theorems in this section. The first theorem establishes the existence and

uniqueness of the solution of problem (1.6.5) under the standard boundary condition (1.6.6).

The second theorem provides an a priori bound for the solution which is the price of CDS.

For convenience, we use λ(·) to denote Λ(·) + Λ1(·) + Λ2(·).

Theorem 4.1.1. (Existence and Uniqueness) Let σ, κ and β be positive constans and

L be the Vasicek differential operator defined by

Lu =
(
− σ2

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r
)
u.

Let λ(·) and f(·) be functions on R that satisfy, for some positive constant m,

λ(r) ≥ 0, λ(r) + |f(r)| ≤ m(1 + |r|) ∀r ∈ R. (4.1.1)
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Then there exists a unique solution u to the following problem:

(
∂
∂T

+ L+ λ
)
u = f in R× (0,∞),

u(·, 0) = 0 on R,

|u(r, T )| ≤ eA(N)(r2+1) for all r ∈ R, T ∈ [0, N ], N > 0,

(4.1.2)

where A(·) is any increasing function defined on [0,∞).

Theorem 4.1.2. (A Priori Bound) Assume the conditions of Theorem 4.1.1. There exists

a positive constant c depending only on κ, β, and σ such that the unique solution of problem

(4.1.2) in Theorem 4.1.1 has the following bound: for each (r, T ) ∈ R× (0,∞),

|u(r, T )| ≤ c



e−
r
β + µ if 2κβ > σ2,

β Te−
r
β + 1 if 2κβ = σ2,

e−
r
β

+2β|µ|T + |µ| if 2κβ < σ2,

(4.1.3)

where µ := 2κβ−σ2

2β3 .

Remark: Since the Vasicek model is an affine term structure model, the bond price P , being

the solution of 
(
∂
∂T
− σ2

2
∂2

∂r2
− (κ− βr) ∂

∂r
+ r
)
P = 0 in R× [0,∞),

P (·, 0) = 1 on R,
(4.1.4)

admits an explict formula

P (r, T ) = a(T )e−b(T )r, (4.1.5)

where 
b(T ) = 1

β
(1− e−β T ),

a(T ) = exp
[
βµ (b(T )− T )− σ2

4β
b2(T )

]
.

(4.1.6)
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Comparing the size of the bond price (4.1.5) and the upper bound of u in (4.1.3), we can see

that the a priori estimate in (4.1.3) is reasonably accurate.

In the rest of this chapter, we prove Theorem 4.1.1 and Theorem 4.1.2; we always assume

that the conditions of Theorem 4.1.1 hold.

4.2 EXISTENCE

In this section, we establish the existence of a solution of problem (4.1.2). We begin with

introducing an auxiliary function.

Lemma 4.2.1. There exist a positive constant M1 and a function ψ ∈ C∞(R) such that

Lψ ≥ −M1ψ in R,

ψ > 0 in R,

lim
|r|→∞

ψ(r) =∞.

(4.2.1)

Proof. We set

ψ := e
r
β + e−

3r
β and M1 := max

{ σ2

2β2
+
κ

β
,

9σ2

2β2
− 3κ

β

}
. (4.2.2)

Since 2r
(
e
r
β − e−

3r
β
)
≥ 0 for every r ∈ R, we have

Lψ = 2r
(
e
r
β − e−

3r
β
)
− e

r
β
( σ2

2β2
+
κ

β

)
− e−

3r
β
(9σ2

2β2
− 3κ

β

)
≥ −e

r
β
( σ2

2β2
+
κ

β

)
− e−

3r
β
(9σ2

2β2
− 3κ

β

)
≥ −max

{ σ2

2β2
+
κ

β
,

9σ2

2β2
− 3κ

β

}
ψ

= −M1ψ.

Obviously, ψ > 0 and lim
|r|→∞

ψ(r) =∞.
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We approximate problem (4.1.2) by the following truncation:

(
∂
∂T

+ L+ λ
)
un = f in (−n, n)× (0, n2],

un(·, 0) = 0 on (−n, n),

un = 0 on {−n, n} × (0, n2].

(4.2.3)

Lemma 4.2.2. For every n ∈ N, problem (4.2.3) admits a unique classical solution.

Problem (4.2.3) is a standard initial boundary value problem. The assertion of the

Lemma 4.2.2 follows from a standard theory of parabolic equations; see, for example, Fried-

man [19]. We omit the proof here.

Next we provide an a priori estimate, which will allow us to obtain a limit when we send

n to infinity.

Lemma 4.2.3. (L∞-estimate of un) There exists a positive constant K, which does not

depend on n, such that the solution un of problem (4.2.3) satisfies

|un| ≤ Ke(M1+1)Tψ, (4.2.4)

where M1 and ψ are defined in (4.2.2).

Proof. From assumption (4.1.1), we have

|f(r)| ≤ m(1 + |r|) ∀r ∈ R.

Let v := Ke(M1+1)Tψ, where K = max{m, mβ}. Note that v > 0 in [−n, n]× [0, n2] and( ∂

∂T
+ L+ λ

)
v ≥

( ∂

∂T
+ L

)
v

=
[
L+ (M1 + 1)

]
v ≥ v

= Ke(M1+1)T
(
e
r
β + e−

3r
β

)
≥ K

[
1 +
|r|
β

]
≥ |f |.

Thus, v is a super-solution and −v is a sub-solution of problem (4.2.3). By comparison

principle, un ≤ v and un ≥ −v, i.e., |un| ≤ v.
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Lemma 4.2.4. Problem (4.1.2) admits at least one solution.

Proof. Fix α ∈ (0, 1). For each δ ∈ (0, 1) and n > 2
δ
, by interior estimate for parabolic

equations [22], the solution un of problem (4.2.3) satisfies

‖un‖C2+α,1+α2 ([− 1
δ
, 1
δ

]×[0, 1
δ2

])
≤ C(α, δ)

{
‖f‖Cα([− 2

δ
, 2
δ

]) + ‖un‖L∞([− 2
δ
, 2
δ

]×[0, 1
δ2

])

}
≤ C̃(α, δ),

where C̃(α, δ) is a positive constant depends on α and δ.

Since

C2+α,1+α
2 is compactly embedded in C2,1,

by using a diagonal process, we can find a function u and a subsequence {nk}∞k=1 such that

lim
k→∞

nk =∞ and

lim
k→∞
‖unk − u‖C2,1([− 1

δ
, 1
δ

]×[0, 1
δ2

]) = 0 ∀ δ ∈ (0, 1).

From the equation of unk , we find that u satisfies (4.1.2). In addition, from the a priori

estimate |unk | ≤ Ke(M1+1)Tψ estalish in Lemma 4.2.3, we can obtain |u| ≤ Ke(M1+1)Tψ.

Therefore, u is a solution of problem (4.1.2).

4.3 UNIQUENESS

In this section, we establish the uniqueness of a solution of problem (4.1.2). The uniqueness of

the solution is proven by constructing an auxiliary function and using a comparison principle.

We begin with introducing an auxiliary function.

Lemma 4.3.1. For each η > 0, let M(η) = max{σ2η
2β
, κ2

4βσ2η
} and

ϕ(η; r, T ) = (2η − T )−
1
2 exp

[ r2

2σ2(2η − T )
+M(η)T

]
∀ (r, T ) ∈ R× [0, η].

Then ( ∂

∂T
+ L+ λ

)
ϕ > 0 in R× [0, η].
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Proof. Since ϕ(η; ·, ·) is positive on R× [0, η], we have

( ∂
∂T

+ L+ λ
)
ϕ ≥

( ∂
∂T

+ L
)
ϕ

=
(
M(η) +

βr2

σ2(2η − T )
− κr

σ2(2η − T )
+ r
)
ϕ

≥
[
M(η)−

(
σ2(2η − T )− κ

)2

4βσ2(2η − T )

]
ϕ.

If 0 ≤ κ ≤ σ2(2η − T ), we have(
σ2(2η − T )− κ

)2

4βσ2(2η − T )
≤
(
σ2(2η − T )

)2

4βσ2(2η − T )
=
σ2(2η − T )

4β
≤ σ2η

2β
≤M(η).

If κ ≥ σ2(2η − T ), we have(
σ2(2η − T )− κ

)2

4βσ2(2η − T )
≤ κ2

4βσ2(2η − T )
≤ κ2

4βσ2η
≤M(η).

Therefore,
(
∂
∂T

+ L+ λ
)
ϕ > 0 in R× [0, η].

Lemma 4.3.2. Problem (4.1.2) admits at most one solution.

Proof. Suppose the problem (4.1.2) has two solutions u1 and u2. Set

w(r, T ) := e−A(r,T )[u1(r, T )− u2(r, T )],

where A(r, T ) = (β + σ2

2β2 )T + β
σ2 r

2 + ( 1
β
− 2κ

σ2 )r.

Then w satisfies



(
∂
∂T

+ L1 + λ
)
w = 0 in R× (0,∞),

w(·, 0) = 0 on R,

|w(r, T )| ≤ eB(N)(r2+1) for all r ∈ R, T ∈ [0, N ], N > 0,

where B(·) is some increasing function defined on [0,∞) and L1 is a second order elliptic

operator defined by

L1w = −σ
2

2
wrr + (κ− βr − σ2

β
)wr +

κ

β
w.
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We shall show w ≡ 0 in R × [0,∞) which is equivalent to show w ≡ 0 in R × [0, N ] for

every N > 0. Now fix N > 0. Set B = B(N). Then we have

|w(r, T )| ≤ eB(r2+1) for all r ∈ R, T ∈ [0, N ].

Let k = [4σ2BN ] + 1 ([x] is the greatest integer part of x), ς = N
k

, η = min{ς, 1
8β
}, and

ϕ(·; ·, ·) be the function defined in Lemma (4.3.1). Then

Ψ(r, T ) := e−A(r,T )ϕ(η; r, T )

satisfies

( ∂
∂T

+ L1 + λ
)
Ψ > 0 in R× [0, η].

Fix ε > 0. Let

φε(r, T ) := εΨ(r, T )± w(r, T ) for all (r, T ) ∈ R× [0, η].

We shall show that φε(r, T ) ≥ 0 for all (r, T ) ∈ R × [0, η]. If φε ≥ 0 is not true, then

there exists (r0, t0) ∈ R× [0, η] such that φε(r0, t0) < 0.

Since 1
4σ2η

> B, lim
|r|→∞

φε(r, T ) = ∞ uniformly in T ∈ [0, η]. Therefore, there exists

(r∗, t∗) ∈ R× [0, η] such that

φε(r
∗, t∗) = min

R×[0,η]
φε ≤ φε(r0, t0) < 0.

Note that t∗ > 0 since φε(r, 0) = εΨ(r, 0)± w(r, 0) > 0. Thus

∂φε
∂T

(r∗, t∗) ≤ 0,
φε
∂r

(r∗, t∗) = 0,
∂2φε
∂r2

(r∗, t∗) ≥ 0.

Therefore,

( ∂

∂T
+ L1 + λ

)
φε

∣∣∣∣
(r∗,t∗)

≤ 0. (4.3.1)
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However,

( ∂

∂T
+ L1 + λ

)
φε

∣∣∣∣
(r∗,t∗)

=
( ∂

∂T
+ L1 + λ

)
(εΨ± w)

∣∣∣∣
(r∗,t∗)

= ε
( ∂

∂T
+ L1 + λ

)
Ψ

∣∣∣∣
(r∗,t∗)

> 0,

which contradicts (4.3.1).

Therefore, φε(r, T ) ≥ 0 for all (r, T ) ∈ R× [0, η], which implies |w| ≤ εΨ. Sending ε→ 0,

we obtain w ≡ 0 in R× [0, η].

Similarly, we can inductively show that

w ≡ 0 in R× [η, 2η], R× [2η, 3η], · · · , R× [(k − 1)η, kη].

Thus w ≡ 0 in R× [0, N ].

Since N is arbitrary, w ≡ 0 in R× [0, ∞), i.e., u1 ≡ u2. This completes the proof.

Proof of Theorem 4.1.1

Theorem 4.1.1 follows from Lemmas 4.2.4 and 4.3.2.

4.4 A PRIORI ESTIMATES

Lemma 4.2.4 gives the bound |u| ≤ Ke(M1+1)T [e
r
β + e−

3r
β ]. We wish to improve the bound,

especially for the case r > 0. Thus, in this section we prove Theorem 4.1.2. To do this, we

consider three cases: (i) 2κβ > σ2, (ii) 2κβ = σ2, and (iii) 2κβ < σ2. For convenience, we

set µ := 2κβ−σ2

2β3 .
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4.4.1 The case 2κβ > σ2

Lemma 4.4.1. Assume 2κβ > σ2. There exists a positive constant c such that the solution

u of problem (4.1.2) satisfies

|u(r, T )| ≤ c(e−
r
β + µ) in R× (0,∞).

Proof. For a positive constant c to be determined later, define v̄ = c(e−
r
β + µ). Since λ ≥ 0,

we have

(
L+ λ

)
v̄ ≥ Lv̄ = cµ

(
βe−

r
β + r

)
.

Since min
r∈R

[βe−
r
β + r] = [βe−

r
β + r]

∣∣∣
r=0

= β, we have βe−
r
β + r ≥ β for each r ∈ R. Thus,

c := sup
r∈R

m(1 + |r|)
µ(βe−

r
β + r)

(4.4.1)

is well-defined positive constant.

Thus we have
(
L+ λ

)
v̄ ≥ |f | in R.

Since v̄ > 0, by comparison principle, we obtain |un| ≤ v̄, where un is the solution of

problem of (4.2.3). Letting n→∞, we obtain |u| ≤ v̄. This completes the proof.

4.4.2 The case 2κβ = σ2

Lemma 4.4.2. Assume 2κβ = σ2. There exists a positive constant c such that the solution

u of problem (4.1.2) satisfies

|u(r, T )| ≤ c(βTe−
r
β + 1) in R× (0,∞).
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Proof. Set

v̄ = c(βTe−
r
β + 1),

where c = sup
r∈R

m(1+|r|)
βe
− r
β +r

.

Since λ ≥ 0, we have

(
L+ λ

)
v̄ ≥ Lv̄ = c

(
βe−

r
β + r

)
≥ |f |.

Since v̄ > 0, by comparison principle, we obtain |un| ≤ v̄, where un is the solution of

problem of (4.2.3). Letting n→∞, we obtain |u| ≤ v̄. This completes the proof.

4.4.3 The case 2κβ < σ2

Lemma 4.4.3. Assume 2κβ < σ2. There exists a positive constant c such that the solution

u of problem (4.1.2) satisfies

|u(r, T )| ≤ c(e−
r
β

+2β|µ|T + |µ|) in R× (0,∞).

Proof. Set

v̄ = c(e−
r
β

+2β|µ|T + |µ|),

where c = sup
r∈R

m(1+|r|)
|µ|(βe−

r
β +r)

.

Since λ ≥ 0,we have

(
L+ λ

)
v̄ ≥ Lv̄ = c|µ|

(
βe−

r
β

+2β|µ|T + r
)
≥ c|µ|

(
βe−

r
β + r

)
≥ |f |.

Since v̄ > 0, by comparison principle, we obtain |un| ≤ v̄, where un is the solution of

problem of (4.2.3). Letting n→∞, we obtain |u| ≤ v̄. This completes the proof.

Proof of Theorem 4.1.2

Theorem 4.1.2 then follows from Lemmas 4.4.1, 4.4.2 and 4.4.3.
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5.0 LARGE EXPIRATION AND INFINITE HORIZON PROBLEM UNDER

VASICEK MODEL

In this chapter, we study the behavior of the price, u(r, T ), of CDS as the time to expiration,

T , approaches infinity, under the Vasicek model. From (4.1.5) and (4.1.6), we know that as

T →∞, the bond price approaches (i) zero when 2κβ > σ2 and (ii) infinity when 2κβ < σ2.

Thus it is reasonable to expect that the long-expiration behaviors of the CDS price depend

on parameter ranges. More precisely, when 2κβ > σ2, the price of CDS approaches, as

T → ∞, the solution of the corresponding infinite horizon problem; when 2κβ ≤ σ2, the

price may tend to infinity, and here we only consider a special case when the intensities are

constants, i.e., λ = Λ + Λ1 + Λ2 and f = KΛ− q are constants.

5.1 MAIN RESULTS

The asymptotic behavior of the CDS price follows closely to that of the bond price given in

(4.1.5)-(4.1.6), which depends on the sign of 2κβ − σ2. Hence, we consider two cases: (i)

2κβ − σ2 > 0, (ii) 2κβ − σ2 ≤ 0. When 2κβ − σ2 > 0, the bond price admits a limit. We

show the same behavior happen to the CDS price.

Theorem 5.1.1. Let σ, κ, and β be positive constans. Assume that 2κβ > σ2. Let L be the

differential operator defined by

Lu =
(
− σ2

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r
)
u.
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Let λ(·) and f(·) be functions on R that satisfy, for some positive constant m,

λ(r) ≥ 0, λ(r) + |f(r)| ≤ m(1 + |r|).

The following hold:

(1) The infinite horizon problem, for u∗,
(
L+ λ

)
u∗ = f in R,

u∗ = O(ear
2
) for some a ∈ (0, β

σ2 ) as |r| → ∞,
(5.1.1)

admits a unique solution.

(2) Let u(r, T ) be the unique solution of problem (4.1.2) given by Theorem 4.1.1 and

u∗(r) be the unique solution of problem (5.1.1). There exist positive constants p and k such

that ∣∣u(r, T )− u∗(r)
∣∣ ≤ k

[
e−

r
β + µ

]
e−pT ∀ T > 0, r ∈ R.

Consequently,

lim
T→∞

u(r, T ) = u∗(r) ∀ r ∈ R.

When 2κβ ≤ σ2, without detailed information on f and λ, it is difficult to find an

asymptotic behavior of the solution of problem (4.1.2) as T →∞. Here we consider only a

specific case: λ and f are positive constant functions. For this we have the following:

Theorem 5.1.2. Let σ, κ, and β be positive constans. Assume that 2κβ ≤ σ2. Suppose that

f(·) ≡ 1 and λ(·) ≡ λ are constant functions. Set c := κ
β
− σ2

β2 and ν := σ2−2κβ
4β3 . Let u(r, T )

be the unique solution of problem (4.1.2) given by Theorem 4.1.1. Then for every r ∈ R,



lim
T→∞

u(r, T ) = 1
2β

exp
(
c−r
β

+ σ2

4β3

) ∫∞
1
sν−

λ
2β
−1 exp

(
r−c
β
√
s
− σ2

4β3 s

)
ds if λ > 2βν;

lim
T→∞

u(r,T )
T

= exp
(
c−r
β

+ σ2

4β3

)
if λ = 2βν;

lim
T→∞

u(r,T )

e(2βν−λ)T
= 1

2βν−λ exp
(
c−r
β

+ σ2

4β3

)
if λ < 2βν.

Remark: Theorem 5.1.2 implies that when σ2 − 2κβ ≥ 2β2λ, lim
T→∞

u(r, T ) → ∞. This

complements Theorem 5.1.1.
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5.2 THE INFINITE HORIZON PROBLEM AND ASYMPTOTIC

BEHAVIOR WHEN 2κβ > σ2

The infinite horizon problem is obtained by removing the ∂
∂T

operator in (4.1.2). Thus, the

infinite horizon problem is to find u∗ such that

(
L+ λ

)
u∗ = f in R.

In this section, we show that this problem is well-posed when 2κβ > σ2. For this we begin

with considering the corresponding homogeneous equation with λ = 0:

Lϕ = 0 in R.

Throughout this section, we always assume 2κβ > σ2.

5.2.1 Exact Solution of the Homogeneous Equation with λ = 0

We use the next two lemmas to illustrate the solution and its properties.

Lemma 5.2.1. Let L = −σ2

2
∂2

∂r2
−(κ−βr) ∂

∂r
+r, σ > 0, κ > 0, β > 0 and µ := 1

β2 (κ− σ2

2β
) > 0.

Then φ+ and φ− defined by

φ±(r) =

∫ ∞
0

tµ−1e
−σ

2

4β
t2±(σ

2

β2
−κ
β

+r)t− r
β dt (5.2.1)

are two linearly independent positive solutions of Lφ = 0 in R.

Proof. Let g±(r, t) = −σ2

4β
t2 ± (σ

2

β2 − κ
β

+ r)t− r
β
. Then for every r ∈ R,

Lφ±(r) =

∫ ∞
0

tµ−1eg±(r,t)
{
− σ2

2

(
± t− 1

β

)2

− (κ− βr)
(
± t− 1

β

)
+ r
}
dt

=

∫ ∞
0

tµ−1eg±(r,t)
{
− σ2

2
t2 ±

(σ2

β
− κ+ βr

)
t− σ2

2β2
+
κ

β

}
dt

= β

∫ ∞
0

d

dt
[tµeg±(r,t)]dt

= 0.
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Hence φ+ and φ− are positive solutions of Lφ = 0 in R. It remains to show that φ+ and

φ− are linearly independent. Indeed note that

±
[
e
r
βφ±(r)

]′
=

∫ ∞
0

tµeg±(r,t)+ r
β dt > 0 ∀r ∈ R.

We find that

W
[
φ−, φ+

]
= e−

2r
β

∣∣∣∣∣∣e
r
βφ−

(
e
r
βφ−

)′
e
r
βφ+

(
e
r
βφ+

)′
∣∣∣∣∣∣ > 0 ∀r ∈ R.

Thus, φ+(r) and φ−(r) are two linearly independent positive solutions of Lφ = 0 in

R.

Lemma 5.2.2. (Asymptotic behavior of φ±) Let φ±(·) be defined in Lemma 5.2.1. Then

φ∓(r) = (±r)−µ
{

Γ(µ) +
O(1)

r

}
e−

r
β as r → ±∞,

φ
′

∓(r) =
{
− 1

β
− µ

r
+
O(1)

r2

}
φ∓(r) as r → ±∞,

φ±(r) =
(2β

σ2

)µ− 1
2
(±r)µ−1e

β

σ2
(σ

2

β2
−κ
β

+r)2− r
β

{√
2π +

O(1)

r

}
as r → ±∞,

φ
′

±(r) =
{2β

σ2
r +O(1)

}
φ±(r) as r → ±∞.

Proof. As r → ±∞, using the change of variable s = ±rt for the integral in (5.2.1), we

obtain

e
r
βφ∓(r) =

∫ ∞
0

tµ−1e
−σ

2

4β
t2∓(σ

2

β2
−κ
β

+r)t
dt

=

∫ ∞
0

( s

±r

)µ−1

e
−σ

2s2

4βr2
−[ σ

2

β2r
− κ
βr

+1]s
d
s

±r

= (±r)−µ
∫ ∞

0

sµ−1e
−s−σ

2s2

4βr2
−(σ

2

β2
−κ
β

) s
r ds

= (±r)−µ
{

Γ(µ) +
O(1)

r

}
.

In addition, by differentiation, we obtain
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d

dr
(e

r
βφ∓(r)) = ∓

∫ ∞
0

tµe
−σ

2

4β
t2∓(σ

2

β2
−κ
β

+r)t
dt

= ∓(±r)−µ−1
{

Γ(µ+ 1) +
O(1)

r

}
= −1

r

(
µ+

O(1)

r

)[
e
r
βφ∓(r)

]
.

Thus, φ
′
∓(r) =

{
− 1

β
− µ

r
+ O(1)

r2

}
φ∓(r) as r → ±∞.

As r → ±∞, using the change of variable s = t∓ 2β
σ2 (r+ σ2

β2 − κ
β
) for the integral in (5.2.1),

we obtain

e
r
βφ±(r) =

∫ ∞
0

tµ−1e
−σ

2

4β
[t∓(σ

2

β2
−κ
β

+r) 2β

σ2
]2+ β

σ2
(σ

2

β2
−κ
β

+r)2
dt

= e
β

σ2
(σ

2

β2
−κ
β

+r)2
∫ ∞
∓ 2β

σ2
(r+σ2

β2
−κ
β

)

e−
σ2

4β
s2
{
s± 2β

σ2
(
σ2

β2
− κ

β
+ r)

}µ−1

ds

=
(±2βr

σ2

)µ−1

e
β

σ2
(σ

2

β2
−κ
β

+r)2
(∫ ∞
−∞

e
−σ2
4β

s2ds+
O(1)

r

)
=

(√2β

σ2

√
2π +

O(1)

r

)(±2βr

σ2

)µ−1

e
β

σ2
(σ

2

β2
−κ
β

+r)2

=
(±2β

σ2

)µ− 1
2
(√

2π +
O(1)

r

)
|r|µ−1e

β

σ2
(σ

2

β2
−κ
β

+r)2
.

Similarly,

d

dr
(e

r
βφ±(r)) =

∫ ∞
0

±tµe−
σ2

4β
[t∓(σ

2

β2
−κ
β

+r) 2β

σ2
]2+ β

σ2
(σ

2

β2
−κ
β

+r)2
dt

=
(±2β

σ2

)µ+ 1
2
(√

2π +
O(1)

r

)
|r|µe

β

σ2
(σ

2

β2
−κ
β

+r)2
.

Thus,

φ
′

±(r) =
{2β

σ2
r +O(1)

}
φ±(r) as r → ±∞.

This completes the proof of the lemma.
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5.2.2 Existence of Solution of Infinite Horizon Problem

We approximate problem (5.1.1) by the following truncation:


(
L+ λ

)
un = f in (−n, n),

un = 0 on {−n, n}.
(5.2.2)

Lemma 5.2.3. For each n ∈ N, problem (5.2.2) admits an unique solution.

Proof. From the proof of Lemma 5.2.1, actually we can also find the kernel of (L− ε)φε = 0

for ε ∈ (0, βµ). One can show that, for every ε ∈ (0, βµ),

φε±(r) =

∫ ∞
0

tµ−(1+ ε
β

)e
−σ

2

4β
t2±(σ

2

β2
−κ
β

+r)t− r
β dt (5.2.3)

are two linearly independent solutions of (L − ε)φε = 0 in R. The proof is very similar to

5.2.1, so we omit it here.

Since proving the well-posedness of the problem (5.2.2) is equivalent to showing the

uniqueness of the problem (5.2.2), it suffices to show vn ≡ 0 is the only solution of
(
L+ λ

)
vn = 0 in (−n, n)

vn = 0 on {−n, n}
(5.2.4)

We use a contradiction argument. Suppose vn 6= 0. WLOG, we can assume that the set

{r | vn(·) > 0} is non empty.

Now fix ε ∈ (0, βµ). Denote φ = φε+(r) + φε−(r), where φε±(r) are defined in (5.2.3).

Since vn = 0 on {−n, n}, there exists r∗ ∈ (−n, n) such that

C := max
[−n,n]

vn
φ

=
vn(r∗)

φ(r∗)
> 0.

It’s obvious that

(vn(r)

φ(r)

)′∣∣
r=r∗

= 0 and
(vn(r)

φ(r)

)′′∣∣
r=r∗
≤ 0.
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Set ψ = Cφ. Then ψ ≥ vn in R. Thus, by quotient rule, we obtain from
(
vn(r)
φ(r)

)′∣∣
r=r∗

= 0

that

v
′

n(r∗)φ(r∗)− φ
′
(r∗)vn(r∗) = 0.

Thus, ψ
′
(r∗) = Cφ

′
(r∗) = vn(r∗)

φ(r∗)
φ
′
(r∗) = v

′
n(r∗). Similarly, from

(
vn(r)
φ(r)

)′′∣∣
r=r∗

≤ 0, we

obtain v
′′
n(r∗) ≤ ψ

′′
(r∗).

Thus,

L(vn − ψ)
∣∣∣
r=r∗

= −σ
2

2
(v
′′

n − ψ
′′
)
∣∣∣
r=r∗
≥ 0.

Since

0 = (L+ λ)vn(r∗) > Lvn(r∗) ≥ Lψ(r∗) = CLφ(r∗) = Cεφ(r∗) > 0,

we get a contradiction. Thus, vn ≡ 0, i.e., problem (5.2.2) admits a unique solution.

Next we derive an a priori estimate for the solution of the approximation problem (5.2.2).

Since the coefficient of u in the Vasicek differential operator

Lu = −σ
2

2

∂2u

∂r2
− (κ− βr)∂u

∂r
+ ru,

is r which is not always positive, we cannot apply the standard comparison principle. Hence,

we introduce a new comparison principle in next Lemma.

Lemma 5.2.4. Let L u = −u′′ + pu′ + qu and u be the solution of
L u = f in (a, b),

u = 0 on {a, b}.

Suppose 
L v ≥ |f | in (a, b),

v > 0 in [a, b].

Then |u| ≤ v in [a, b].
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Proof. Set w = u
v
. Then w satisfies


−w′′ + Pw′ +Qw = F in [a, b],

w = 0 on {a, b},
(5.2.5)

where P = p− 2v′

v
, Q = −v′′+pv′+qv

v
and F = f

v
.

It’s obvious that 1 is a super-solution and −1 is a sub-solution of problem (5.2.5). Since

Q ≥ 0, we can show w ≤ 1 and w ≥ −1 by the standard comparison principle. Thus,

|u| ≤ v.

Lemma 5.2.5. (L∞-estimate of un) Let un be the solution of problem (5.2.2). Set µ =

2κβ−σ2

2β3 . Define c = sup
r∈R

m(1+|r|)
µ(βe

− r
β +r)

. Then

|un| ≤ c[e−
r
β + µ]. (5.2.6)

Proof. Set v̄ = c[e−
r
β + µ]. Comparing problem (5.2.2) and


(
L+ λ

)
v̄ ≥ |f | in (−n, n),

v̄ > 0 on [−n, n],

we obtain |un| ≤ v̄ by Lemma 5.2.4.

Lemma 5.2.6. (Existence) Assume 2κβ > σ2. Then problem (5.1.1) admits at least one

solution.
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Proof. For each n ∈ N, let un be the solution of problem (5.2.2). Extend un by un = 0 for

|r| > 1
n
. Now let’s consider the family

{
un
}∞
n=1

.

By Lemmas 5.2.3 and 5.2.5, we know that for each fixed M > 0,
{
un
}∞
n=1

is a compact

family in C2([−M,M ]). Thus, there exists subsequence of
{
un
}∞
n=1

, i.e.,
{
unk
}∞
k=1

converges

to u∗ ∈ C2([−M,M ]) for any M > 0.

Since

(L+ λ)u∗ = lim
k→∞

(L+ λ)unk = f and |u∗| ≤ lim
k→∞
|unk | ≤ v̄,

u∗ is a solution of problem (5.1.1).

5.2.3 Uniqueness of Solution of Infinite Horizon Problem

Lemma 5.2.7. (Uniqueness) Assume 2κβ > σ2. Then problem (5.1.1) admits at most

one solution.

Proof. The proof is very similarly to that of Lemma 5.2.3, we give a brief proof instead of

providing all details.

Suppose the problem (5.1.1) has two solutions u1 and u2. Set v = u1 − u2. Then there

exists a ∈ (0, β
σ2 ) such that


(L+ λ)v = 0 inR,

v = O(ear
2
) as |r| → ∞.

Suppose v 6= 0. WLOG, we can assume that the set {r | v(·) > 0} is non empty.

Now fix ε ∈ (0, βµ). Denote φε = φε+(r) + φε−(r), where φε±(r) are defined in (5.2.3). Use

similar proof of Lemma 5.2.2, it’s easy to show that there exist positive constants c1 and c2

such that

φ(r)→ c1r
µ−(1+ ε

β
)e( β

σ2
r2+ r

β
− 2κ
σ2
r) as r →∞,
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φ(r)→ c2|r|µ−(1+ ε
β

)e( β
σ2
r2+ r

β
− 2κ
σ2
r) as r → −∞.

Thus, v
φ
→ 0 as |r| → ∞. Then there exists r1 ∈ R such that

v(r1)

φ(r1)
= max

R

v

φ
≥ v(r)

φ(r)
∀r ∈ R.

Then we can use the same trick as that in the proof of Lemma 5.2.3 to get a contradiction.

Thus, v ≡ 0, i.e., u1 ≡ u2.

The first part of Theorem 5.1.1 for the well-posedness of the infinite horizon problem

when 2κβ > σ2 then follows from Lemma 5.2.6 and Lemma 5.2.7.

5.2.4 Asymptotic Behavior When 2κβ > σ2

In this section, we shall prove the second part of Theorem 5.1.1. More precisely, we show

the price of CDS, as T →∞, approaches the solution of the infinite horizon problem (5.1.1).

Proof. Let un(r, T ) be the unique solution of problem (4.2.3) and u∗n(r) be the unique solu-

tion of problem (5.2.2). Then vn(r, T ) := un(r, T )−u∗n(r) satisfies the following truncation:



(
∂
∂T

+ L+ λ
)
vn = 0 in (−n, n)× (0, n2],

vn(·, 0) = −u∗n on (−n, n),

vn = 0 on {−n, n} × (0, n2].

(5.2.7)

Since min
r∈R

[βe−
r
β + r] = [βe−

r
β + r]

∣∣∣
r=0

= β, we have βe−
r
β + r > β for each r ∈ R. Thus,

k := sup
r∈R

m(1 + |r|)
µ(βe−

r
β + r)

and p := inf
r∈R

βe−
r
β + r

e−
r
β + µ

are both well-defined positive contants.

Let Φ = k(e−
r
β + µ)e−pT .
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Since λ ≥ 0, we have

( ∂
∂T

+ L+ λ
)
Φ ≥

( ∂
∂T

+ L
)
Φ = ke−pT

[
µ(βe−

r
β + r)− p(e−

r
β + µ)

]
> 0.

From Lemma 5.2.5, we know |u∗n| ≤ k(e−
r
β + µ) in R. Since Φ|T=0 = k(e−

r
β + µ), by

comparison principle, we obtain |vn| ≤ Φ. Letting n → ∞, we obtain |v| ≤ Φ. This

completes the proof.

5.3 ASYMPTOTIC BEHAVIOR WHEN 2κβ ≤ σ2 FOR THE CASE OF

CONSTANT INTENSITY

When 2κβ > σ2, we already discussed the asymptotic behavior of solution in previous

section. In this section, we study the asymptotic behavior of solution when 0 < 2κβ ≤ σ2.

Considering the case without detailed information on λ and f , we can do little. For this

reason, here we consider a special case that both λ and f are constant functions. Hence, we

assume the following in this section:

(1) L = −σ2

2
∂2

∂r2
− (κ− βr) ∂

∂r
+ r, σ > 0, κ > 0, β > 0, 2κβ ≤ σ2;

(2) λ(r) = λ is a constant function;

(3) f(r) = 1.

Recall that we model default time of the designated occurrence of the underlying credit

event by the first arrival time of Poisson process with intensity λ(r). One simple specification

is to let the intensity be a constant, that is, let λ(r) = λ. The jump process is then referred

to as a homogeneous Poisson process.

When λ(·) ≡ λ and f(·) ≡ 1 are constant functions, we can convert problem (4.1.2) into

a heat equation. The transformation is as follows. Let u be the solution of problem (4.1.2).

For simplicity, we use subscripts to denote partial derivatives.
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Step 1: Let v(r, T ) = e
−
(
− 1
β
r+σ2−2κβ

2β2
T−λT

)
u(r, T ) and F = e

(
1
β
r−σ

2−2κβ

2β2
T+λT

)
f . Then v

satisfies


vT − σ2

2
vrr + (βr + σ2

β
− κ)vr = F in R× (0,∞),

v(·, 0) = 0 in R.

Step 2: Let y = e−βT (r − κ
β

+ σ2

β2 ), τ = −σ2

4β
(e−2βT − 1), w(y, τ) = v(r, T ) and F ∗(y, τ) =

2e2βTF (r,T )
σ2 . Then w satisfies

wτ − wyy = F ∗ in R× (0, σ
2

4β
),

w(·, 0) = 0 in R.
(5.3.1)

It then follows from ( [23]) that for every (y, τ) ∈ R× (0, σ
2

4β
),

w(y, τ) =

∫ τ

0

∫ ∞
−∞

1√
4π(τ − s)

e−
(y−z)2
4(τ−s)F ∗(z, s)dzds.

Substituting back to the original variables, we then obtain follows:

u(r, T ) =e

(
− 1
β
r+σ2−2κβ

2β2
T−λT

)
w
[
e−βT (r − κ

β
+
σ2

β2
),−σ

2

4β
(e−2βT − 1)

]
=e

(
− 1
β
r+σ2−2κβ

2β2
T−λT

) ∫ −σ2
4β

(e−2βT−1)

0

∫ ∞
−∞

1√
πσ2

β
(1− e−2βT )− 4πs

e
−
β

[
e−βT (r−κ

β
+σ

2

β2
)−z
]2

σ2(1−e−2βT )−4βs F ∗(z, s)dzds, (5.3.2)

where F ∗(z, s) =
2
(

1− 4β

σ2
s
)σ2−2κβ

4β3
− λ

2β

σ2−4βs
exp

{
z

β
√

1− 4β

σ2
s

+ κ
β2 − σ2

β3

}
f
(

z√
1− 4β

σ2
s

+ κ
β
− σ2

β2

)
.

Let R = z√
1− 4β

σ2
s

+ κ
β
− σ2

β2 , t = e2βT (1 − 4β
σ2 s) − 1, c = κ

β
− σ2

β2 and ν = σ2−2κβ
4β3 . Then we

have

u(r, T ) =
e−

1
β
r

2
√
βπσ

∫ e2βT−1

0

∫ ∞
−∞

(t+ 1)ν−
λ
2β√

t(t+ 1)
f(R) exp

(R
β
− β[(R− c)

√
t+ 1− (r − c)]2

4tσ2

)
dRdt.

After a further substitution s = t+ 1, we summarize above calculations as following:
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Theorem 5.3.1. Assume that λ(·) ≡ λ is a constant function. Then the solution of problem

(4.1.2) is given by the explict formula

u(r, T ) =
e−

1
β
r

2
√
βπσ

∫ e2βT

1

∫ ∞
−∞

sν−
λ
2β√

s(s− 1)
f(R) exp

(R
β
− β[(R− c)

√
s− (r − c)]2

4(s− 1)σ2

)
dRds.

Now we focus our attention on the case f ≡ 1.

Proof of Theorem 5.1.2

Proof. Since f = 1, then we have

u(r, T ) =
e−

1
β
r

2
√
βπσ

∫ e2βT

1

∫ ∞
−∞

sν−
λ
2β√

s(s− 1)
exp

(R
β
− β[(R− c)

√
s− (r − c)]2

4(s− 1)σ2

)
dRds.

Completing the square for the exponent by

R

β
− β[(R− c)

√
s− (r − c)]2

4(s− 1)σ2
= −βs

4(s−1)σ2

[
R−

(
(s−1)σ2

2β2s
+ (
√
s−1) c+r√

s

)]2

+ (s−1)σ2

4β3s
+ c
√
s+(r−c)
β
√
s

.

Thus,

u(r, T ) =
1

2β
exp

(c− r
β

+
σ2

4β3

)∫ e2βT

1

sν−
λ
2β
−1 exp

(r − c
β
√
s
− σ2

4β3 s

)
ds.

To study the asymptotic behavior of u as T →∞, we consider three cases: (1) λ > 2βν,

(2) λ = 2βν, and (3) λ < 2βν.

(1) The case λ > 2βν.

In this case, sending T in (5.3.3) to ∞, we obtain

lim
T→∞

u(r, T ) =
1

2β
exp

(c− r
β

+
σ2

4β3

)∫ ∞
1

sν−
λ
2β
−1 exp

(r − c
β
√
s
− σ2

4β3 s

)
ds.

(2) The case λ = 2βν.

Using the L’Hopital’s Rule, we derive that, for each fixed r ∈ R,
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lim
T→∞

u(r, T )

T
= lim

T→∞

exp
(
c−r
β

+ σ2

4β3

)
exp

(
r−c
β eβT

− τ∗

β2 e2βT

)
1

= exp
(c− r

β
+

σ2

4β3

)
.

(3) The case λ < 2βν.

Using the L’Hopital’s Rule, we derive that, for each fixed r ∈ R,

lim
T→∞

u(r, T )

e(2βν−λ)T
= lim

T→∞

exp
(
c−r
β

+ σ2

4β3

)
exp

(
r−c
β eβT

− τ∗

β2 e2βT

)
2βν − λ

=
exp

(
c−r
β

+ σ2

4β3

)
2βν − λ

.

This completes the proof of the Theorem 5.1.2
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6.0 CONCLUSION

A credit default swap, or CDS, is a financial agreement between two parties about an ex-

change of cash flows that depend on the occurrence of a credit default or in general a credit

event. A CDS may terminate earlier than the expiration or the occurrence of the credit

event when one party of the contract defaults, this is called counterparty risk. In this thesis,

we price CDSs with counterparty risks. We model the credit default and counterparty risks

by the first arrival times of Poisson processes with intensities depending on short interest

rates. For short interest rates, we use the CIR and Vasicek models which are the most widely

used. As a result, the prices of CDS are derived as solutions of different partial differential

equations with respect to the CIR and Vasicek models, respectively.

The emphasis of this thesis is on the mathematical study of these resulting PDE prob-

lems. We investigate the existence, uniqueness and properties of their solutions. Moreover,

we study the corresponding infinite horizon problems and connect their solutions with the

asymptotic behavior of the price of CDS as time to expiry tends to infinity.

It is important to point out that Hu, Jiang, Liang, and Wei ( [13], 2012) have already used

the CIR model to price the CDS. They solved the problem under the following boundedness

“boundary condition”:

u ∈ L∞. (6.0.1)

However, intrinsic to the CIR model, they need a restriction on the range of the parameters,

which does not fall into the empirical calibration in certain cases; see, for example, the

empirical calibration of Peng ( [18], 2016). One purpose of this thesis is to remove the

restriction by introducing new techniques. As a result, we extend the theory of Hu-Jiang-

Liang-Wei in [13] to the full range of parameters. From financial perspective, this extension
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makes the application of our pricing model more practical and robust. Our idea is to replace

(6.0.1) by the following Lipschitz continuity “boundary condition”:

∂u

∂r
∈ L∞. (6.0.2)

Typically, for parabolic PDE on unbounded domain, the boundary condition (6.0.1) is

very standard. Nevertheless, since the diffusion, σ
√
r, of the CIR model degenerates at

r = 0, our work demonstrates that (6.0.2) is the right condition for the solution class,

whereas (6.0.1) may not be appropriate in certain parameter ranges. From this perspective,

our results can be regarded as a new development toward the theory of PDEs.

We also study the asymptotic behavior of the price of CDS as time to expiration ap-

proaches infinity. We show that the corresponding infinite horizon problem is the limit

problem of the pricing model, i.e., the price of CDS for long time to expiry is approximately

equal to the solution of the infinite horizon problem.

To make the study more complete and in-depth, we also consider the Vasicek model.

The Vasicek and the CIR models are very different, although they are both equilibrium

short rate models. The biggest difference is that the Vasicek model allows negative interest

rate, whereas the CIR model does not. In the past, Vasicek model was criticized for allowing

negative interest rate. Since nowadays many countries like Sweden, Switzerland, and Japan

have already introduced negative interest rates, the disadvantage of allowing negative interest

rate in the Vasicek model becomes an advantage. Thus, it is meaningful to use Vasicek model

to price CDS.

Nevertheless, under the Vasicek model, when the interest rate, r, approaches negative

infinity, the elliptic operator

L = −σ
2

2

∂2

∂r2
− (κ− βr) ∂

∂r
+ r

becomes very “stiff”, and the meaning of the discount factor becomes meaningless, causing

lots of technical difficulties. We show the well-posedness of the problem. In addition, we

provide accurate bounds for the CDS prices. We regard the upper bound of the CDS price

as an important contribution from both mathematical and financial point of view.
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Under the Vasicek model, we can obtain the well-posedness of the PDE problem in

full parameter range. In addition, we discover that the asymptotic behavior of the CDS

price depends on the sign of 2κβ − σ2. More precisely, when 2κβ > σ2, the price of CDS

approaches, as T → ∞, the finite solution of the corresponding infinite horizon problem.

When 2κβ ≤ σ2, the asymptotic behavior depends on the models of intensities; in particular,

under the assumption that the intensities are constants, the price of CDS tends to infinity as

T →∞. Moreover, we find the exact growth rate of the price. No matter from mathematical

perspective or from financial perspective, these results can be regarded as benchmarks for

the pricing model of CDS.

Since CDS becomes more and more popular, more sophisticated mathematical analysis is

needed. We can study the pricing problem by other models such as the structure model. We

can also perform the empirical work based on different models. These will be our guidance

of future work.
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