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Seasonal influenza virus is a threat for human being. Understanding dynamical change of 

immune response induced by influenza infection could benefit diagnosis and drug development, 

using transcriptome analysis. But transcriptomic data is often complicated by the changing cell 

makeup of the tissue during disease. It’s difficult to distinguish between gene regulations and 

cell proliferation or migration. Therefore inference of the change in cell counts is necessary, and 

computational models for cell count inference are introduced in this thesis. Besides, in most 

models related to prediction of cell quantities, gene marker selection is used as the first step. 

Thus computational methodology concerning gene marker selection for cell count inference is 

also reviewed.  

Different gene marker selection methods are applied to a common dataset to evaluate their 

behaviors. The uniqueness and expression intensity are the key properties for evaluation of 

obtained markers. As for predicting cell enrichment, principles of three kinds of schemes are 

explained. Computational algorithms named CTen and CIBERSORT are introduced as examples 

of them. Estimation behaviors of these tools are tested by a microarray dataset. Analysis of the 

estimations shows that they may provide good estimation but are not suitable for careful study of 

complex problems, e.g. dynamical samples. 
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1.0  INTRODUCTION 

Seasonal influenza infection is a threat for human beings. Induced by Influenza A (H1N1) 

viruses, the most recent global pandemic happened in 2009. Yearly influenza viruses could be 

lethal for people at high risk: people of 65 years old or older, people with chronic diseases, 

pregnant women or young children [1]. According to Centers for Disease Control and Prevention, 

H3N2 viruses and H1N1 viruses circulated in the United States during the 2015-2016 influenza 

season, which caused an estimated 25 million influenza illnesses, and 12,000 pneumonia & 

influenza (P&I) deaths (Suggested by past data, the total number of influenza-associated 

respiratory and circulatory (R&C) deaths may be 2-4 times greater than estimates using only P&I 

deaths) [2]. Though the numbers vary, influenza viruses result in millions of sicknesses, 

hundreds of thousands of hospitalizations, and thousands or tens of thousands of deaths every 

year in the United States [3]. Infection with influenza raises challenges in clinical diagnosis and 

treatment. It is very difficult to distinguish the influenza-viral infection from respiratory illnesses 

induced by other viral or bacterial causes merely on the basis of symptoms [4]. Although a 

number of rapid tests are available to detect influenza virus induced illnesses, their accuracy of 

detection is nevertheless not guaranteed [4] [5]. There are several antiviral drugs available which 

benefit people at high risk. But they usually work only if treatment starts within the first 2 days 

of illness [5] [6]. Part of these drugs are not available for young children [5] [7]. 
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Clinical diagnosis and drug development for influenza resulted illnesses are limited 

because of the lack of characterization of the immune response during influenza infection. 

Researchers have understood the general procedure of viral-induced immune response, including 

recognition of virus, activation of lymphocytes and elimination of virus and host cells [8]. 

However, we are not aware of the precise regulatory pathways and signaling mechanisms 

happening within and among the associated immune cells. The effects of cellular composition 

change in the process of immune response are not well explained. We also don’t fully understand 

how the system controls the balance between restrained and excessive immunity [9].  

Transcriptome analysis may help to characterize regulations and dynamics of the immune 

response, and associated influence in infection pathology. DNA microarray and high throughput 

sequencing technology have been well developed. Their generated data quantify gene 

expressions of samples in a genome wide. In addition time-series experiments of transcriptome 

analysis can characterize global dynamical change of a system, biological functions of genes and 

might indicate the concerning regulation pathways. Plenty of bioinformatics tools have been 

developed to analyze these transcriptomic data. These tools are not only meaningful in 

understanding of regulations of immune response, but also could lead to clinical improvements 

in the future. Potential applications of computational algorithms comprise of faster and more 

accurate diagnosis of influenza infection, suggestion of personal and highly-targeting treatment, 

and monitoring of trend in immunopathology (Figure 1). Although these tools are designed for 

immune response after influenza infection, similar mechanisms may also be applicable in other 

cases of disease.  
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Figure 1. An example of clinical application of computational tools using transcriptomic data in diagnosis and 

treatment of influenza infection 

 

But dynamical gene expression data of complex samples by transcriptome techniques 

also bring several confounding factors. One significant confusion is the understanding of gene 

regulation. Expression signals of genes from virus-infected samples might increase or decrease 

during a period of time. But this might not be an indication that the genes have been activated or 

suppressed during the immune response, since changes of cellular composition in the biological 

sample might also induce the fluctuations of gene expressions. Possible composition change of 

immune cells induced by influenza infection includes migration, proliferation, and differentiation 

of lymphocytes [8] [10].  

Researchers have been trying to clarify causes of differential expression and identify 

cellular composition by bioinformatics tools and developing cell count inference algorithms. 
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Fisher’s exact test has been used in comparison of a sample with biological signatures of 

potential cell types to figure out existing immune cells responsible for differential gene 

expressions [11] [12] [13]. Clustering analysis of time-course transcriptomic data helps to 

distinguish different groups of genes with separate expression patterns. Study of each group and 

associated leukocyte cell types benefits understanding of regulations of immune response [14].  

Expression deconvolution algorithms attempt to estimate cell counts or cell-specific gene 

expression from transcriptomic data. Computational tools using this concept have been utilized 

to predict cell abundances in different stages of a cell cycle [15], and fractions of distinguished 

tissues or cells [16] [17] [10] [18]. In recent years they are further developed for more complex 

situations. Subdivisions of one kind of cell [19] [10] [20], or a cell at different states [19] [20], as 

well as cell lines in different circumstances [19] could be predicted by deconvolution tools. If 

applying time-series transcriptomic data, dynamics of immune cells during influenza infection 

can be de-convoluted as well [10]. The concept of deconvolution is also applicable to analysis of 

differential expressions, when aware of cell proportions [21] [18]. The general principle of 

expression deconvolution is to assume the expression profile of a cell mixture is linear to the 

expression profile of pure cells, and the coefficients are cell fractions based on the whole sample, 

as shown by the equation below [15].  

𝐵 = 𝐴 ∙ 𝑋  

The vector of B represents expressions of the cell mixture, with the number of genes as 

its length. While the matrix of A refers to expressions of pure cells, with the number of genes as 

the number of rows, and the number of cell candidates as the number of columns. As per the 

vector of X, it is solved by a linear regression model. The linear regression models that have 
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been used for expression deconvolution include: linear least squares regression [19], elastic net 

regularization [10], support vector regression in CIBERSORT [20] and so on [18] [15] [17].  

But deconvolution tools also face challenges in construction of the matrix A and 

application of linear regression method. To construct the matrix A (expression profiles of pure 

cells) is equal to designating the standard expression behaviors of each cell type. It assumes 

expression intensities are constant and unified in all cells of the same type/state, which seems 

inaccurate. And the matrix A can’t include unknown cell populations or populations without 

published transcriptomic data. As per the challenge of linear regression, it often provides 

negative estimations of cell proportions, or estimations more than 1. This is not realistic, thus for 

most tools there is an additive step for removal of negative values [19] [21] [20], and sometimes 

an additional step to normalize estimations to sum to one [20]. Furthermore, common linear 

regression is reported to work well for samples comprised of 3-4 cell populations or 

distinguished tissues [17] [18] [19]. But estimations are less perfect for samples of complex 

compositions [10] [18] [19]. And it provides bad predictions for correlated samples, because it 

doesn’t take connections between the samples into account. This will be proved in the example 

of CIBERSORT, applying temporal microarray data of lung tissue. 

In the present thesis, I evaluate currently existing cell count inference techniques using 

gene expression data derived from several collections of tissue-derived or artificially mixed cell 

populations. Principles, procedures and estimation behaviors of two computational algorithms, 

CTen and CIBERSORT, are carefully analyzed. The temporal microarray data of infected lung 

tissue [14] are used to evaluate predictions of these tools.  
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2.0  GENE MARKER SELECTION METHODS 

Since gene marker selection is always included as the first step of cell count inference, different 

gene marker selection methods are also reviewed. Gene markers are genes that could help to 

identify and distinguish between different tissue/cell types using transcriptomic data. They are 

essential because they represent expression signatures of different cell types. Gene markers are 

utilized as reference in comparison with differentially expressed genes in samples to identify 

existence of cell populations [11] [12] [13]. Or expression intensities of gene markers are used as 

cell signatures to quantify cell proportions [19] [10] [18] [15] [20] [16] [17]. Gene markers could 

also give a clue of the core biological functions. Genes are chosen as markers because of their 

properties of expression intensities. Those generally expressed in all cell types, e.g. 

housekeeping genes, are beyond our interest for cell identification. Ideally, a good marker is 

unique for a certain cell type, and with a strong signal. It is highly expressed in one kind of cell 

and lowly expressed in all other cells. While in reality, this perfect marker is not abundant, 

especially in comparison of cell lines connected with each other. As a compromise, researchers 

often use a group of genes as markers to represent a cell type. The combination of their 

expression intensities forms the signatures of this specific type of cell.  

To test performances of different gene marker selection methods, I searched in public 

microarray data and constructed a dataset associated with 15 immune cells and lung tissue (see 

Methods). It integrates data of subtypes of lymphocytes, or immune cells in different states. 
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Formerly reported gene marker selection methods are rebuilt and are applied to the dataset. 

Uniqueness and intensity level of obtained markers are quantified and compared among different 

selection methods. To address concerns about how many gene markers to be selected, the 

connection between threshold value and inference of cell quantities is also examined. 

2.1 GENE MARKERS OBTAINED FROM SURFACE MARKERS 

Cell surface markers are proteins expressed on the surface of cells and could be used for 

recognition of cell subtypes [22]. They pioneered study of cell type identification and separation, 

e.g. FACS, and are still widely used. A cell surface marker’s gene could be used as a marker for 

expression analysis too. Altboum et al [10] developed a tool, DCQ, that uses the gene expression 

of well-established cell surface markers of immune cells to infer changes in the numbers of 

immune cells in a sample. Relative cell quantities are estimated by expression profiles of both 

pure and admixed cells for these markers. In total, 60 surface markers are gathered for DCQ and 

41 of them are mapped to genes in our library of pure cells (listed in Appendix A).  

Expression profiles of these 41 markers are shown in Figure 1. Several markers are of 

high intensities in a plenty of cell types, like Cd48, also known as BLAST-1. It is a cell surface 

marker for T cells, B cells, NK cells, stem cells, macrophage and monocyte [23]. This is not 

surprising since related cell subtypes, or cells at variant states are often closely related in 

function. Correlation coefficients of macrophage in two states and DC subtypes are near to 1, 

and the same situation for stimulated B cells and non-stimulated ones (Figure 2). In conclusion, 

surface markers are not suitable for separation of dependent or relevant cell subtypes, the same 

as cells in variant states. 
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Reversely some markers are of low values in nearly all cell types. A part of them are 

surface markers of cell types included in DCQ but not in the library of pure cells, such as Cd28, 

a cell surface marker for pre T cells [10]. Then it wouldn’t be strange to find Cd28’s expression 

value is small. But other part of markers, e.g. Cr2, is a marker for both B cells and dendritic cells, 

but is lowly expressed in all cells. A protein may be an excellent surface markers for experiments, 

but its coding gene can be a bad gene marker for expression analysis. This weakens further cell 

quantity estimation by DCQ, because DCQ counts on variation of expressions for different cell 

types.  

In a word, the limited cell surface markers are far from satisfactory in cell identification 

and count inference. 
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Figure 2. Log-scaled gene expression intensities of 41 cell surface markers for immune cells and lung tissue. 41 cell 

surface markers are obtained from surface markers used in a tool named DCQ [10]. They are mapped to genes in our 

library of pure cells and referring log-scaled expression intensities are plotted. 
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Figure 3. Correlation coefficients of expression intensities of 41 surface markers for 16 cell types. 41 cell surface 

markers are obtained from surface markers used in a tool named DCQ [10]. They are mapped to genes in our library 

of pure cells for their intensities. Correlation coefficients of these intensity values are calculated for each pair of cell 

types. 

2.2 INTENSITY-BASED GENE MARKER SELECTION 

It is straightforward to obtain gene markers by this approach. It assumes that highly expressed 

genes indicate information of cell functions, which therefore indicate cell types. For example, it’s 

reported that genes of expression values 15 times or 10 times greater than the median are 
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selected as gene markers for each cell population [13]. This is equal to sorting expressions of a 

cell type and then applying a threshold.  

Unfortunately its disadvantages are: first, deviations of replicates are intensity-dependent 

for microarray data (less of a problem for RNA-Seq [24]), which could make an effect on further 

analysis, like deconvolution; besides, similar cell types, e.g. immune cells, might share a large 

number of genes that are highly expressed, since related or the same cell functions and pathways 

are involved in these cell types.  

To evaluate performance of intensity-based gene marker selection, expression intensities 

of 15 immune cells and lung tissue are gathered together from separate public datasets, as our 

library of pure cells. These intensities are sorted from the largest to the smallest for each 

cell/tissue type. At a threshold of 100, top 100 genes are selected as gene markers for their 

referring cell type. With the dataset of gene markers for all cell populations, the uniqueness of 

gene markers for each cell population is analyzed. Since some of the markers show in more than 

one cell types, gene markers of one cell type is compared with markers of all other cell types. 

The number of gene markers unique in one specific cell type is computed (unique genes obtained 

at other thresholds in Appendix A). As displayed in Figure 3, most gene markers are overlapped 

among different cell types. For 9 cell types out of 16, ratios of unique gene markers out of total 

100 markers for each cell type are under 10 percent. The most extreme example is resting 

memory CD8 T cell, which only have 1 unique gene marker among 100 markers in total. These 

results agree with our expectations. Some cell types have rare unique markers because they are 

functionally-related, e.g. subtypes of CD4 and CD8 T cells. While functions of T cells, 

macrophage, NK cells are less similar, thus easier for separation. 
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Figure 4. The number of unique gene markers by sorting expression intensities (threshold = 100). Expression 

intensities of genes are obtained from the library of pure cells. Each cell type’s intensities are sorted in a decreasing 

manner. Top 100 genes are selected as markers for each cell type, and are compared to markers of other cells to 

compute unique gene markers, indicated as orange bars. Duplicated markers are indicated as blue bars. 

2.3 HIGHEST RATIOS 

In the intensity-based gene marker selection, intensity values of genes for the same cell type are 

compared with each other to filter out genes of highest intensities for this specific cell type. But 

for approaches in this section, intensities of one cell type is compared with intensities of other 

cell types to find differential expression values. It’s reported that ratios of a gene’s intensity in 

one cell population to its intensity in another population are utilized to describe expression 

variability of this gene among different cell populations [12]. The use of fold change is in the 

same manner [19]. These methods aim at finding gene markers uniquely highly-expressed in one 

or two [19] specific kinds of cells. The resulted markers are believed to be more typical and 
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“personal” for a certain cell type. Although well accepted, these approaches couldn’t guarantee 

intensity level of selected markers, if without limits on expressions. This hurts when performing 

quantitative analysis based on expressions of gene markers, e.g. deconvolution. 

2.3.1 Highest ratios 

The first algorithm to introduce is the most elementary one. Ratios of one cell type’s expression 

to the average of all other cell types are calculated and then sorted, based on the library of pure 

cells (Methods). Gene markers are defined by picking up the highest ratio values.  

 As shown by Figure 4, there still exist overlapped gene markers among different cell 

types (results at other cut-offs in Appendix A). Lung is the only cell type to have 100% of 

uniqueness, and 4 cell types, B cell, Kdo(12hr) stimulated B cell, naïve CD4 T cell and natural 

CD4 regulatory T cell, show uniqueness of less than 50%. This is because most cell types come 

from immune system, which share common molecular pathways and biological functions. Lung 

cells vary a lot with immune cells, so do their expression profiles. Thus it is more obvious to 

distinguish between lung cells and immune cells. On the contrary, immune cells share similar 

expression behaviors. There could be a gene that is highly expressed in more than one cell types 

but lowly expressed in others. But in general, the uniqueness of markers is largely improved. 
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Figure 5. The number of unique gene markers by calculating expression ratios (threshold = 100). For each gene and 

each cell type included in our library of pure cells, the ratio of a certain cell type’s expression intensity to the 

average of all other cell types are calculated, and then sorted in a decreasing manner. Top 100 genes are selected as 

markers for each cell type, and are compared to markers of other cells to compute unique gene markers, indicated as 

orange bars. Duplicated markers are indicated as blue bars.  

  

The actual problem is markers’ intensities. As discussed before, gene marker selection 

method is often the first step of cell count inference tools. As inference of cell counts linearly 

depend on behaviors of expression intensities, the higher the intensities, the more sensitive the 

inference tool could be. However for the approach of highest ratios, it doesn’t give a hint of 

expression level of these markers. The log-scaled expression values for selected markers vary in 

a wide range (Figure 5, results of other thresholds in Appendix A). Most are at a reasonable level 

but a part of their intensities are too low and useless for cell count inference tools. 
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Figure 6. Distribution of expression intensities of all gene markers obtained by calculating expression ratios 

(threshold = 100). For each gene and each cell type included in our library of pure cells, the ratio of a certain cell 

type’s expression intensity to the average of all other cell types are calculated, and then sorted in a decreasing 

manner. Top 100 genes are selected as markers for each cell type, and their log-scaled intensities are plotted.  

2.3.2 Fold change 

In the algorithm of the highest ratios, expressions of one cell type are compared with all others. 

While for the algorithm of the fold change, merely the top expressed cell type is compared with 

the second cell type. Finally fold change values are sorted, and genes of largest folds are adopted. 

In this manner, any genes with fold change values are unique markers. Because among 

expressions of all cell types for a gene, there’s solely one highest expressed cell type. And only 

this cell type is given a fold value to characterize how the gene is differentially expressed in all 

cell types.  

But out of the gain comes its loss. The numbers of resulted gene markers at a threshold of 

1 are plotted (Figure 6). The NK cell could have up to 1514 markers in total but the B cell and 
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the naïve CD4 T cell have as low as 7 markers. If to further estimate cell counts by these markers, 

different cell types have to be weighed to the same degree, which means no more than 7 gene 

markers are available for each cell type (112 for all 16 cell types). 

What’s more, the highest expressed cell population for a gene may not show a high 

expression intensity value. The log-scaled expression values of obtained markers are aggregated 

in a lower level, comparing to results of highest ratios. The quality of these markers are 

questionable. 

 

 

Figure 7. The number of gene markers obtained by sorting fold changes (threshold = 1). Each gene’s highest 

expressed cell population is compared with the next highest expressed population, and referring fold change is 

calculated. Fold change values under 1 are removed, and remained genes are selected as markers. The numbers of 

obtained markers for each cell type are as the yellow bars. 
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Figure 8. The distribution of expression intensities of gene markers obtained by sorting fold changes (threshold = 1). 

Each gene’s highest expressed cell population is compared with the next highest expressed population, and referring 

fold change is calculated. Fold change values under 1 are removed, and remained genes are selected as markers. The 

distribution of their log-scaled intensities are plotted. 

2.4 COMBINATORIAL METHOD 

To remove genes of low expression values and better serve examples of deconvolution in Section 

3, a simple improvement of “highest ratios” is: to filter out genes of expressions beneath a lower 

bound. In this thesis, genes of log2-scaled expression intensities below 8 are removed. Resulted 

markers show that most unique markers are saved (Figure 8), while successfully improves the 

general expression intensity level (Figure 9). The generated gene markers of 16 cell lines in the 

library are implemented in the example of CIBERSORT in Section 3. 
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Figure 9. The number of unique gene markers and duplicated markers obtained by combinatorial method (threshold 

= 100). First step of combinatorial method is the same with the approach of highest ratio. For each gene and each 

cell type included in our library of pure cells, the ratio of a certain cell type’s expression intensity to the average of 

all other cell types are calculated. Then genes of log2-scaled expression intensities below 8 are removed. Finally the 

ratios of remained genes are sorted in a decreasing manner. Top 100 genes are selected as markers for each cell type, 

and are compared to markers of other cells to compute unique gene markers, indicated as orange bars. Duplicated 

markers are indicated as blue bars.  
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Figure 10. The distribution of expression intensities of gene markers obtained by combinatorial method (threshold = 

100). First step of combinatorial method is the same with the approach of highest ratio. For each gene and each cell 

type included in our library of pure cells, the ratio of a certain cell type’s expression intensity to the average of all 

other cell types are calculated. Then genes of log2-scaled expression intensities below 8 are removed. Finally the 

ratios of remained genes are sorted in a decreasing manner. Top 100 genes are selected as markers for each cell type, 

and distribution of their log-scaled intensities are plotted. 

2.5 STATISTICAL METHODS 

Lastly, statistical tests have are widely used to obtain differentially expressed genes. These 

resulted genes could also be regarded as markers of associated samples. When applying samples 

of single cell types, statistical tests could help define gene markers too. Wang et al reported to 

use two-tailed student t-test as part of criterion for marker selection [16]. Commonly used 

statistical tools in analysis of expressions are student t-test, FDR, Welch t-test and so on. They 

are so well known that details will not be discussed in this thesis. 



 20 

2.6 THRESHOLD SELECTION 

A significant question is ignored for convenience when explaining the gene marker selection 

methods above: how many gene markers should be selected? For cell surface markers, the 

amount of well accepted markers are limited thus all markers are favored. But in other 

algorithms, intensity-based gene marker selection, highest ratio and statistical method, the 

number of gene markers is set manually. This might strongly influence markers’ quality. 

The maximum number of markers that fold change offers is illustrated in Figure 10. 

However applying a threshold of 5 for fold changes removes all potential markers of 5 cell types 

(Figure 11). The numbers of gene markers at different cut-offs by sorting expression intensities 

are also calculated, as shown in Appendix A. If the cut-off is 10, the top 10 highest expressed 

genes will be selected as markers for the specific cell type. Comparing the amount of markers at 

cut-off of 20 with 10, the fraction of unique gene markers of most cell types seems to increase as 

the increment of cut-off value. However for several cell types, the fraction actually decreases. In 

comparison of 50 with 20, the fraction of unique markers decreases although for a small amount 

of cell lines the fraction increases. In general, when above 50, the proportion of unique gene 

markers decreases as the cut-off value grows. 
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Figure 11. The number of gene markers obtained by sorting fold changes (threshold = 0). Each gene’s highest 

expressed cell population is compared with the next highest expressed population, and referring fold change is 

calculated. The numbers of obtained markers for each cell type are as the yellow bars. 
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Figure 12. The number of gene markers obtained by sorting fold changes (threshold = 5). Each gene’s highest 

expressed cell population is compared with the next highest expressed population, and referring fold change is 

calculated. Fold change values under 5 are removed, and remained genes are selected as markers. The numbers of 

obtained markers for each cell type are as the yellow bars. 

 

As a result, there seems to exist an optimal threshold to obtain the largest fraction of 

unique markers, which might have the best behavior for further analysis. It’s reported that for 

deconvolution analysis, minimizing condition number gives the optimum. The matrices of gene 

markers’ expression values under different thresholds are generated. Then their condition 

numbers are sorted to find out the minimum one. The referring threshold and matrix will be 

adopted [19] [20]. Condition number is popular because in deconvolution, linear relation 

between expression intensities of cell mixtures (the vector B in the equation below) and pure 

cells (the matrix A) are assumed. Condition number is a property of matrix A. It’s calculated as 

the product of the 2-norm of the matrix and the 2-norm of its inverse (or pseudo-inverse), and is 
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equal to or greater than 1. It’s meaningful because it approximately tells how big the error of the 

estimated X (cell fractions in deconvolution problem) in comparison with error of vector B. If 

condition number is just a little larger than 1, then matrix A could be well inversed, and the error 

of X is not tremendously increased by the error of B. Otherwise, matrix A can’t be well inversed 

and the error of X might dramatically increases as the increase of B. But it’s hard to set a 

boundary of the value of condition number to define a bad condition number. 

𝐵 = 𝐴 ∙ 𝑋  

 In order to prove whether condition number helps to achieve the optimum, a small-scale 

of deconvolution is implemented. First, the expression profiles of pure liver, brain and lung 

tissues and their mixtures are obtained from the literature [21]. Next gene markers and associated 

condition numbers are computed at different thresholds. Expression profiles of these markers are 

then used for deconvolution. The resulted cell proportions are compared with cell abundances 

reported in the literature to calculate correlation coefficients. Condition numbers and correlation 

coefficients at threshold of 1 to 1000 are plotted in Figure 12 and Figure 13. The condition 

number decreases to the minimum, oscillate a little bit and then keeps increasing. In fact, the 

variation of condition number under different thresholds is very tiny in this instance. On the 

other hand, correlation coefficient rapidly increases, oscillates and then turns stable at a high 

level. The minimum condition number doesn’t give minimum correlation coefficient. A high 

condition number might not be significant for deconvolution. Although condition number gives 

guidance to threshold selection, deconvolution behavior is not entirely correlated to it.  

 To ensure stability of both matrix of expressions and deconvolution results, and 

considering efficiency of computation, a cut-off of 100 is applied in this thesis. 
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Figure 13. The condition number of the matrix of gene markers’ intensities (threshold = 1-1000). 

Combinatorial method is applied to expression profiles of pure liver, brain and lung tissues to obtain potential gene 

markers. Then markers for each tissue type are obtained at different thresholds, from 1 to 1000. The associated 

condition numbers of the matrix of gene markers’ intensities are calculated. 

 

 

 

Figure 14. The correlation coefficients of deconvolution results at different thresholds (threshold = 1-1000). 

Combinatorial method is applied to expression profiles of pure liver, brain and lung tissues to obtain potential gene 

markers. Then markers for each tissue type are obtained at different thresholds, from 1 to 1000. The expression 

profiles of 3 kinds of tissues are used for deconvolution. The referring results are compared with actual proportion of 

these tissues, and correlation coefficients are calculated. 
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2.7 SUMMARY OF APPROACHES ABOVE 

Table 1. Properties of gene markers obtained by different methods 

Gene marker selection 

method 

Behavior of obtained gene markers 

Intensity Uniqueness Number of obtained gene 

markers 

Cell surface markers In a wide range Low Small 

Intensity-based gene marker 

selection method 

High Low Depend on thresholds 

Highest ratio In a wide range High Depend on thresholds 

Fold change In a wide range High In a wide range 

Statistical method In a wide range High Depend on thresholds 
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3.0  EXAMPLES OF CELL COUNT INFERENCE TOOLS 

Cell count inference tool is a computational algorithm to predict existence and abundance of cell 

populations (including tissue types, and cells at different states). It is on the basis of 

transcriptome analysis, since microarray or RNA-Seq data of samples, or differentially expressed 

genes generated from these data are required as input. In this section, two cell count inference 

tools will be introduced: CTen [13] and CIBERSORT [20]. CTen compares differentially 

expressed genes, or clustered genes with its own database of gene markers for different 

cell/tissue types, indicating cell/tissue types associated with these genes and relative enrichments 

of the cells or tissues. CTen is especially valuable when lack of knowledge of samples although 

it can’t provide exact cell quantities. While CIBERSORT utilizes microarray or RNA-Seq data 

of samples and user-generated dataset of possibly existing cell types to quantify related cell 

proportions in the samples. Like many other deconvolution tools, CIBERSORT is applicable 

only when aware of potential cell composition and given enough data of pure cells. Its estimation 

depends on quality of the data.  

The time-series microarray data of infected mouse lung tissue are applied to both CTen 

and CIBERSORT. They both accurately predict existence of important immune cells. However, 

CIBERSORT can’t compute connections between samples at different time points, which gives 

rise to discontinuity and oscillation in its final estimations, which will be described in details in 

this section. 
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3.1 CTEN 

As mentioned in Introduction, CTen uses a Fisher’s exact test to associate a set of genes with a 

specific cell type [13]. It recommends dynamic clustering to identify the tested gene sets. Its 

database is comprised of 96 mouse and 84 human tissue/cell types. User’s list of differentially-

expressed genes, or preferentially dynamically clustered gene sets, is uploaded to the website for 

comparison with this database. Enrichment scores of each cell type are computed as –log10 of 

BH-adjusted p-values. 

CTen could be used in an elementary level and an advanced level.  

3.1.1 The elementary level 

The elementary case of application is to upload a sample’s differentially expressed genes, which 

are received by any statistical test, e.g. student T test and FDR. Enrichment scores of possibly 

existing cell populations will be returned.  

To simply test CTen’s performance, top 100 markers for B cells, generated by 

combinatorial method, are uploaded. The full table of results are listed in Appendix B. 

Enrichment scores above 2 are recommended as significant [13]. The most enriched cells 

predicted by CTen are B cells from different lineages or subtypes under different states, with the 

No.1 as “Follicular B cells”. Spleen and lymph nodes are also among the top 10 enriched 

tissue/cell types. CTen accurately predicts existence of B cells. 
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3.1.2 The advanced level 

CTen also suggests a workflow for advanced use-case [13](Figure 14). When studying dynamics 

of a complex biological process, e.g. dynamical changes of immune system after infection, this 

workflow helps to distinguish between regulations of genes and changes of cell populations. In 

an immune process, there could happen migration, proliferation, differentiation and activity 

transition. These dynamical changes in the cell level may enormously influence referring 

expression profiles.  

Reported by Shoemaker et al, murine lung tissues infected by different influenza strains 

are analyzed by microarray, at separate time points [14]. After normalization and quality control, 

differential expression is assessed by application of a linear model [14]. Probes of fold-change 

less than 2 for infected-to-control comparison are all removed before clustering analysis. 

Different settings are reported to be tested for robust clustering by WGCNA, resulting in 45 co-

expression modules. In these modules, a submodule of N2 is analyzed by CTen. The most 

enriched cell types are LPS-stimulated macrophages (details in Appendix B). This implies that 

genes in this submodule of N2 are associated with migration and activation of macrophages 

during immune response of infected lung tissue.  
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Figure 15. The workflow of CTen for advanced use-case [13] [14] 

 

CTen presumes that the whole picture of cellular composition is unknown, thus it is not 

able to predict quantitative cell abundances for careful study. But CTen is very helpful when 

tissue or cell types in the sample are beyond researcher’s knowledge. It could satisfy needs of 

understanding relative change of environment in the cell level. But in this advanced case, results 

of CTen depends on pre-analysis of differentially expressed genes implemented by WGCNA in 

the example.  
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3.2 CIBERSORT 

As discussed in the last section, CTen is not capable of providing cell quantities. CIBERSORT is 

a deconvolution tool developed by Newman et al [20]. Given expression profiles of pure cells 

and cell mixtures, CIBERSORT could predict cell proportions.  

First, files of gene markers’ expressions for pure cells, and cell mixtures are required as 

inputs. The former one is named Signature Matrix in CIBERSORT, and the latter one named 

Mixture. These two matrices are then normalized to zero mean and unit variance for 

preprocessing. Then nu-support vector regression (v-SVR), a machine learning tool is applied for 

optimization to compute regression coefficients. If there exist negative coefficients, they will be 

set to zero, while other coefficients will be normalized to sum to one. The resulted coefficients 

are provided as proportions of associated cell populations (Figure 15). 
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Figure 16. The algorithm of CIBERSORT [20] 

  

To promote efficiency of deconvolution analysis, merely a part of the entire expression 

profiles of pure and admixed cells are performed in CIBERSORT. In this thesis, temporal 

expression profiles of infected murine lung tissues are gathered from the research by Shoemaker 

et al [14]. Gene markers are defined by combinatorial method, using the library of pure cells. 

These markers’ expression intensities in the library of pure cells and lung samples are uploaded 

to CIBERSORT, serving as Signature Matrix and Mixture respectively. Computed cell fractions 

of replicates are averaged at each time point. 
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 As expected, the proportion of lung tissue keeps decreasing during the immune response 

to infection (Figure 16). Original lung tissue is damaged after infection. And at the same time, 

proliferation of existing lymphocytes and migration from other murine tissues increase the total 

number of cells in the samples. The abundance of macrophages grows rapidly (macrophage LPS-

6hr as Figure 17 and macrophage as Figure 27(a) in Appendix B). Macrophage LPS-6hr is 

predicted to be the most enriched cell type. This matches with prediction by CTen [14], as 

discussed in the example of advanced use-case. Thus the proportion of lung tissue in samples is 

reduced.  

But surprisingly, the enrichment of lung tissue turns to be 20% - 40% of total cells in 

samples of pH1N1 and H5N1, since 72 hours after infection. Simultaneously, macrophage LPS-

6hr turns to 40% - 60% of total cells. Such dramatic decrease of lung tissue and increase of 

macrophage LPS-6hr haven’t been reported before. This behavior doesn’t seem realistic since 

mice could hardly survive with strongly weakened lung tissues. 
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Figure 17. Proportions of lung tissue at 14 time points for different virus strains. Microarray data of murine lung 

tissues, infected by H1N1, pH1N1, H5N1 of low and high dose at different time points are obtained from literature 

[14]. The library of pure cells serves as Signature Matirx. Both datasets are applied to CIBERSORT to estimate cell 

proportions. Estimated proportions of 3 replicates at 14 time points, 0h, 3h, 6h, 9h, 12h, 18h, 24h, 30h, 36h, 48h, 

60h, 72h, 120h, 168h, are averaged respectively. 
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Figure 18. Proportions of macrophage LPS-6hr at 14 time points for different virus strains. Microarray data of 

murine lung tissues, infected by H1N1, pH1N1, H5N1 of low and high dose at different time points are obtained 

from literature [14]. The library of pure cells serves as Signature Matirx. Both datasets are applied to CIBERSORT 

to estimate cell proportions. Estimated proportions of 3 replicates at 14 time points, 0h, 3h, 6h, 9h, 12h, 18h, 24h, 

30h, 36h, 48h, 60h, 72h, 120h, 168h, are averaged respectively. 

 

As shown by Figure 18, the dynamical change of resting memory CD8 T cells is 

compatible with common understanding of memory T cells, which are largely proliferated at the 

last stage of immune reponse after infection. Enrichment of resting memory CD8 T cells at the 

beginning could be neglected. However it is driven to a high level especially after 120 hours, 

predicted as 5% - 12% by CIBERSORT. The amount of memory T cells has rarely been reported 

before. It’s questionable whether resting memory CD8 T cells could be as much as 12% of total 

cells.  

The NK cells are not abundant in samples of infected lung tissues. The largest estimation 

of NK cells is less than 1% of total cells for all virus strains. Figure 19 shows a peak and also the 
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maximum of enrichment for each strain within the first day after infection. Dynamics of NK cells 

in the first 24 hours haven’t been well studied before, thus prediction of the peak can’t be 

demonstrated. Most researches are based on level of days. According to Gazit et al [25], NK 

cells in the lung keep increasing in a period of 5 days after infection by influenza A PR8 virus. 

This is contradictory to estimation by CIBERSORT in the period from Day 1 to Day 7. 

 

 

Figure 19. Proportions of resting memory CD8 T cells at 14 time points for different virus strains. Microarray data 

of murine lung tissues, infected by H1N1, pH1N1, H5N1 of low and high dose at different time points are obtained 

from literature [14]. The library of pure cells serves as Signature Matirx. Both datasets are applied to CIBERSORT 

to estimate cell proportions. Estimated proportions of 3 replicates at 14 time points, 0h, 3h, 6h, 9h, 12h, 18h, 24h, 

30h, 36h, 48h, 60h, 72h, 120h, 168h, are averaged respectively. 
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Figure 20. Proportions of NK cells at 14 time points for different virus strains. Microarray data of murine lung 

tissues, infected by H1N1, pH1N1, H5N1 of low and high dose at different time points are obtained from literature 

[14]. The library of pure cells serves as Signature Matirx. Both datasets are applied to CIBERSORT to estimate cell 

proportions. Estimated proportions of 3 replicates at 14 time points, 0h, 3h, 6h, 9h, 12h, 18h, 24h, 30h, 36h, 48h, 

60h, 72h, 120h, 168h, are averaged respectively. 

 

Cell dynamics of other immune cells are listed in Appendix B. In all of these plots, 

fractions of dynamical cell abundances vibrate intensely. In reality, cells can’t be entirely 

eliminated and suddenly grow to the peak. Cell fractions at different time points are dependent 

on each other instead of being irrelevant. So CIBRSORT is not suitable for temporal estimation 

because it completely neglects the connections. 

Different from Fisher’s exact test, CIBERSORT and other deconvolution tools provide 

quantitative predictions of cell enrichment. This is their strong suit. However to achieve this, 

detailed information of every possible cell type is required. First of all, this means cell lines not 

well studied are not applicable at all. Even a qualitative estimation is not available by 
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CIBERSORT. Except for unknown cell types, the expression profiles of well-known cell types 

might also be of good/bad quality. Since deconvolution results largely depend on these 

expression values, reproducibility of predicted cell enrichment might be low when changing 

expression profiles. 
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4.0  CONCLUSIONS AND FUTURE WORK 

4.1 CONCLUSIONS 

For the gene marker selection methods, quality of obtained markers are analyzed by applying a 

microarray dataset, in the aspects of uniqueness and intensity level. As a result, cell surface 

markers couldn’t guarantee neither intensity level nor uniqueness of markers. The intensity-

based selection approach provides markers of high intensities, while the number of unique 

markers is not satisfactory. The highest ratio approach seems to be much better than other 

approaches. The uniqueness of markers is ensured and the intensities are generally acceptable, 

although a part of the gene markers’ expression intensities are too low. Threshold selection 

might also significantly effects the quality of markers. There seems to exist an optimal threshold, 

and condition number is reported to achieve this optimum. While we demonstrate that condition 

number merely gives evidence for threshold selection, and is not directly related to 

deconvolution results. For most cell count inference tools, a gene marker selection is usually 

included or suggested as the first step [19] [10] [20] [13] [16]. Because gene markers provide a 

concise version of the information of pure cells, which removes noise and improves efficiency of 

study. 

As per any kind of cell count inference tools, the principle is to compare transcriptomic 

data of a sample with those of pure cells. Therefore information of pure cells is indispensable. 
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CTen is capable of analysis of both genes expressed in different conditions, and dynamic 

clustering of time-course transcriptomic data. It accurately predicts existence of cell populations. 

While it doesn’t provide quantitative predictions since it assumes cellular composition of a 

sample is not entirely known. Another scheme, deconvolution provides quantitative predictions. 

It performs great for simple combination of cell populations. However as the sample becomes 

complex, e.g. dynamical microarray data of a tissue, part of the predictions might be completely 

inaccurate.  

4.2 FUTURE WORK 

We see from the foregoing discussion that simple deconvolution tools neglect connections 

between time-series transcriptomic data, and give rise to discontinuity of their predictions of cell 

dynamics. But dynamical change of immune cell populations is one of our main concerns, and 

we want to understand their roles in infection pathology. Therefore, we are building a novel 

model to better predict cell dynamics of temporal samples.  

 Based on the original assumption of deconvolution concept, expression profiles of cell 

mixtures are linear to expression profiles of pure cells, with coefficients as the estimated cell 

proportions (see the equation below). For time-series transcriptomic data, B becomes a matrix of 

temporal transcriptomic data, whose rows relate to different genes and columns relate to different 

samples. X is also a matrix, which contains estimations of associated cell populations at different 

time points. We further postulate dynamics of a specific cell population is a function of time, e.g. 

𝑥 = 𝑘1𝑡
3 + 𝑘2𝑡

2 + 𝑘3𝑡
1 + 𝑘4𝑡

0 + 𝑘5𝑡
−1 + 𝑘6𝑡

−2 , and the matrix X could be described as the 

multiplication of a matrix K and a vector T (shown in the following equation), where T contains 
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variations of time (e.g. t3, t2, …) and K is a collection of parameters for each cell type and each 

element in T (e.g. k1, k2, …). With given A, B and T, as long as K is estimated, proportions of 

each cell type at each time point will be obtained.  

𝐵 = 𝐴 ∙ 𝑋  

𝑋 = 𝐾 ∙ 𝑇  

 If the model above is demonstrated effective, it can be helpful in discovering significant 

genes as well. In the analysis of the simple deconvolution example (deconvolution of liver, lung 

and brain mixtures) in Section 2.6 Threshold Selection, we note the estimation results might be 

stable when the number of gene markers is large enough (Figure 14). Applying our new model to 

temporal samples making use of different amount of gene markers, we might figure out which 

genes significantly deviate the estimations. 
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5.0  METHODS 

5.1 LIBRARY OF PURE CELLS 

Microarray data of 16 cell types are gathered in this library. These cell types are: B cell [26], 

Kdo(12hr) stimulated B cell [26], naïve CD4 T cell [27], natural CD4 regulatory T cell [27], 

resting naïve CD8 T cell [28], resting memory CD8 T cell [28], stimulated naïve CD8 T cell [28], 

stimulated memory CD8 T cell [28], imDC [29], maDC [29], sDC [29], lung [14], macrophage 

[30] [31], LPS(6hr) stimulated macrophage [31], monocyte [32], NK cell [33].  

To be compatible with infected lung tissue data [14] analyzed by deconvolution tools in 

this thesis, only microarray analyses implemented under procedures of Agilent-014868 Whole 

Mouse Genome Microarray 4x44K are considered candidates. When there are more than one 

datasets available for a cell type, cluster analysis of them is done to compare their quality. After 

datasets of different cell types are settled down, annotation is unified and data are non-log scaled. 

At last, replicates of each cell types are averaged to form the final library of pure cells. 
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Table 2 Sources of microarray data for library of pure cells 

Cell type GEO accession Platform for microarray 

B cell GSE23620 GPL7202 

Kdo(12hr) stimulated B cell GSE23620 GPL7202 

Naïve CD4 T cell GSE17166 GPL4134 

Natural CD4 regulatory T cell GSE17166 GPL4134 

Resting naïve CD8 T cell GSE16145 GPL4134 

Resting memory CD8 T cell GSE16145 GPL4134 

Stimulated naïve CD8 T cell GSE16145 GPL4134 

Stimulated memory CD8 T cell GSE16145 GPL4134 

imDC GSE31273 GPL7202 

maDC GSE31273 GPL7202 

sDC GSE31273 GPL7202 

Lung GSE63786 GPL7202 

Macrophage GSE16180, 

GSE20207 

GPL4134 

LPS(6hr) stimulated 

macrophage 

GSE20207 GPL4134 

Monocyte GSE14850 GPL7202 

NK cell GSE30629 GPL4134 
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5.2 GENE MARKER SELECTION METHODS 

5.2.1 Cell surface markers 

60 cell surface markers of immune cells are obtained from the dataset used in a deconvolution 

tool named DCQ, as reported by Altboum et al [10]. 41 of them are mapped to the library of pure 

cells and expression values of these markers are gathered for analysis (listed in Appendix A). 

5.2.2 Intensity-based gene marker selection method 

Expressions of each cell type are sorted in a decreasing manner. Then each probe is mapped to 

referring gene symbol (if available). With NAs and duplicates removed, final list of gene 

symbols for a cell type could be less than the number of original probes. Finally different 

thresholds, t = 10, 20, 50, 100, 200, 500, are set up manually to obtain lists of gene markers for 

every cell type. 

 Duplicated gene markers are obtained by comparing markers of one cell type with all 

other cell types. Thus unique genes are equal to the number of total gene markers subtracted by 

duplicated markers. These also apply to the following gene marker selection methods. 

5.2.3 Highest ratios 

In Section 2, ratios of one cell type’s expression to average of all other cell types are calculated 

under the equation below (where r refers to expression intensity, e is expression intensity of a 

probe for a cell type, i and m represent probes, and j and n represent cell types). Then they are 
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sorted in a decreasing manner and mapped to gene symbols.  Thresholds of 10, 20, 50, 100, 200, 

500, are also applied to generate lists of gene markers. 

𝑟𝑖∈𝑃,𝑗 ∈𝐶 =
𝑒𝑖∈𝑃,𝑗∈𝐶

𝑚𝑒𝑎𝑛 𝑜𝑓 {𝑒𝑚 ,𝑛 , 𝑚 ≠ 𝑖, 𝑛 ≠ 𝑗, 𝑚 ∈ 𝑃, 𝑛 ∈ 𝐶}
 

 

𝑃 =  𝑎𝑙𝑙 𝑝𝑟𝑜𝑏𝑒𝑠 ,𝐶 = {𝑎𝑙𝑙 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠}  

 As per fold change approach, it’s said that student T test with 95% confidence intervals 

are implemented [19]. Each probe’s highest expressed cell population is compared with the next 

highest expressed population to find good markers. And this step is repeated by comparing the 

top cell population with the thirdly highest expressed population. At last, the number of markers 

to be selected is determined by optimization of condition number.  

Considering there are no replicates for each cell type in the library of pure cells, student T 

test is not performed in this thesis. And merely top cell population and the second highest 

population are compared with each other by calculating fold changes. The equation of fold 

change is as follows. 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑇ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛− 𝑇ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑇ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 

 

  Finally, genes are sorted by their fold change values for each cell population. The largest 

genes for a cell population are determined as good markers for this population. Thresholds of 

fold change values, instead of the number of markers, are performed in this approach. They are: 

0.5, 1, 1.5, 2, 5, and 10. 
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5.2.4 Combinatorial method 

The algorithm of combinatorial method is comprised of three steps: (1) to compute ratios of 

expressions as explained before; (2) to filter out low expression values as per cell type; (3) to sort 

ratios and set the threshold. 

First, ratios of one cell type are equal to its expression values divided by the average of 

all other cell types, as described before. In order to make sure gene markers for certain cell types 

have expression levels in a reasonable range, a lower bound of log2-scaled expression is defined 

as 8. For each cell population, any probes with expressions under the lower bound will be 

removed from the list of potential markers for this cell population. But this removed gene might 

be qualified for other cell types. At last, remaining probes for every cell type are sorted in a 

decreasing manner and mapped to gene symbols.  Thresholds of 10, 20, 50, 100, 200, 500, are 

also applied to potential genes and then generate lists of markers for all cell types. 

5.3 CELL COUNT INFERENCE TOOLS 

5.3.1 Application of CIBERSORT to infected lung data 

Expression dynamics of murine lung tissues, infected by different virus strains are analyzed in 

this thesis [14], serving as matrix of Mixture. The virus strains are reported to be: 

A/Kawasaki/UTK-4/09 H1N1 virus (H1N1), A/California/04/09 H1N1 virus (pH1N1), and 

A/Vietnam/1203/04 H5N1 virus (H5N1). The library of pure cells serves as Signature Matirx. 

Quantile normalization of CIBERSORT is disabled for this analysis. Following suggestion given 
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by Zhong and Liu [34], both expressions of Mixture and Signature Matrix are in linear space, i.e. 

non-log-scaled. 

 Estimated cell enrichments of 3 replicates at 14 time points, 0h, 3h, 6h, 9h, 12h, 18h, 24h, 

30h, 36h, 48h, 60h, 72h, 120h, 168h, are averaged respectively. Ratios of a particular immune 

cell among total immune cells are calculated as follows. 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎𝑛 𝑖𝑚𝑚𝑢𝑛𝑒 𝑐𝑒𝑙𝑙 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑚𝑢𝑛𝑒 𝑐𝑒𝑙𝑙𝑠 =
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛 𝑖𝑚𝑚𝑢𝑛𝑒 𝑐𝑒𝑙𝑙

1 − 𝑃𝑟𝑜𝑝𝑟𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑢𝑛𝑔 𝑐𝑒𝑙𝑙𝑠 
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APPENDIX A 

GENE MARKER SELECTION METHODS 

A.1 CELL SURFACE MARKERS 

60 cell surface markers applied in DCQ are: Bcr, Ccr7, Cd14, Cd19, Cd1d1, Cd207, Cd24a, 

Cd27, Cd28, Cd34, Cd38, Cd3d, Cd4, Cd44, Cd48, Cd5, Cd69, Cd74, Cd86, Cd8a, Cd93, Cr2, 

Csf1r, Cxcr2, Emr1, Enpep, Entpd1, Epcam, Fcer1g, Fcgr3, Flt3, Foxp3, Icam1, Il2ra, Il2rb, Il7r, 

Itga2, Itgae, Itgam, Itgax, Kit, Klra3, Klra8, Klrb1c, Ly6a, Ly6c1, Ly86, Ncr1, Nt5e, Pdcd1lg2, 

Pdgfra, Pdpn, Pecam1, Ptprc,Sdc1, Sell, Siglec1, Siglec5, Slamf1, and Spn. 

The 41 markers mapped to genes in the library of pure cells are: Bcr, Ccr7, Cd14, Cd1d1, 

Cd24a, Cd28, Cd34, Cd38, Cd3d, Cd44, Cd48, Cd69, Cd86, Cd8a, Cd93, Cr2, Csf1r, Emr1, 

Entpd1, Fcgr3, Flt3, Icam1, Il2ra, Il2rb, Il7r, Itgae, Itgam, Itgax, Klra3, Klra8, Klrb1c, Ly6a, 

Ly86, Ncr1, Nt5e, Pdcd1lg2, Pecam1, Sell, Siglec1, Slamf1, and Spn. 
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A.2 INTENSITY-BASED GENE MARKER SELECTION METHOD 

The numbers of unique gene markers resulted from sorting expressions under thresholds of 10, 

20, 50, 200 and 500 are shown below. 

 

Figure 21. The number of unique gene markers and duplicated markers obtained by sorting expression intensities at 

different thresholds. Expression intensities of genes are obtained from the library of pure cells. Each cell type’s 

intensities are sorted in a decreasing manner. Selected gene markers for each cell type are compared to markers of 

other cells to compute unique gene markers, indicated as orange bars. Duplicated markers are indicated as blue bars. 

(a) Threshold = 10. (b) Threshold = 20. (c) Threshold = 50. (d) Threshold = 200. (e) Threshold = 500. 
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A.3 HIGHEST RATIO 

A.3.1 The number of unique gene markers at thresholds of 10, 20, 50, 200, 500 

 

Figure 22. The number of unique gene markers and duplicated markers obtained by calculating expression ratios at 

different thresholds. For each gene and each cell type included in our library of pure cells, the ratio of a certain cell 

type’s expression intensity to the average of all other cell types are calculated, and then sorted in a decreasing 

manner. Selected gene markers are compared to markers of other cells to compute unique gene markers, indicated as 

orange bars. Duplicated markers are indicated as blue bars. (a) Threshold = 10. (b) Threshold = 20. (c) Threshold = 

50. (d) Threshold = 200. (e) Threshold = 500. 
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A.3.2 Intensity level of selected markers at thresholds of 10, 20, 50, 200, 500 

 

Figure 23. Distribution of expression intensities of all gene markers obtained by calculating expression ratios at 

different thresholds. For each gene and each cell type included in our library of pure cells, the ratio of a certain cell 

type’s expression intensity to the average of all other cell types are calculated, and then sorted in a decreasing 

manner. The distribution of log-scaled intensities of selected markers are plotted. (a) Threshold = 10. (b) Threshold 

= 20. (c) Threshold = 50. (d) Threshold = 200. (e) Threshold = 500. 
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A.4 FOLD CHANGE 

A.4.1 The number of unique gene markers at thresholds of 0.5, 1.5, 2, 10 

 

Figure 24. The number of gene markers obtained by sorting fold changes at different thresholds. Each gene’s 

highest expressed cell population is compared with the next highest expressed population, and referring fold change 

is calculated. Fold change values under 1 are removed, and remained genes are selected as markers. The numbers of 

obtained markers for each cell type are as the yellow bars. (a) Threshold = 0.5. (b) Threshold = 1.5. (c) Threshold = 

2. (d) Threshold = 10. 
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A.4.2 The intensity level at thresholds of 0, 0.5, 1.5, 2, 5 and 10 

 

Figure 25. The distribution of expression intensities of gene markers obtained by sorting fold changes at different 

thresholds. Each gene’s highest expressed cell population is compared with the next highest expressed population, 

and referring fold change is calculated. Fold change values under the threshold are removed, and remained genes are 

selected as markers. The distribution of their log-scaled intensities are plotted. (a) Threshold = 0. (b) Threshold = 0.5. 

(c) Threshold = 1.5. (d) Threshold = 2. (e) Threshold = 5. (f) Threshold = 10. 
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A.5 COMBINATORIAL METHOD 

A.5.1 The number of unique gene markers at thresholds of 10, 20, 50, 200 & 500 

 

Figure 26. The number of unique gene markers and duplicated markers obtained by combinatorial method at 

different thresholds. First step of combinatorial method is the same with the approach of highest ratio. For each gene 

and each cell type included in our library of pure cells, the ratio of a certain cell type’s expression intensity to the 

average of all other cell types are calculated. Then genes of log2-scaled expression intensities below 8 are removed. 

Finally the ratios of remained genes are sorted in a decreasing manner. The selected genes are compared to markers 

of other cells to compute unique gene markers, indicated as orange bars. Duplicated markers are indicated as blue 

bars. (a) Threshold = 10. (b) Threshold = 20. (c) Threshold = 50. (d) Threshold = 200. (e) Threshold = 500. 
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A.5.2 The distribution of intensities at thresholds of 10, 20, 50, 200 & 500 

 

Figure 27. The distribution of expression intensities of gene markers obtained by combinatorial method at different 

thresholds. First step of combinatorial method is the same with the approach of highest ratio. For each gene and each 

cell type included in our library of pure cells, the ratio of a certain cell type’s expression intensity to the average of 

all other cell types are calculated. Then genes of log2-scaled expression intensities below 8 are removed. Finally the 

ratios of remained genes are sorted in a decreasing manner. The distribution of selected markers’ log-scaled 

intensities are plotted. (a) Threshold = 10. (b) Threshold = 20. (c) Threshold = 50. (d) Threshold = 200. (e) 

Threshold = 500. 
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APPENDIX B 

CELL COUNT INFERENCE TOOLS 

B.1 CTEN 

B.1.1 100 markers of B cells uploaded to CTen 

Kcnj1, Fcer2a, Spib, H2-Ab1, H2-Aa, Cecr2, Pla2g2d, LOC675694, Pou2af1, Pgls, Dtx1, 

Dnase1l3, Ms4a1, H2-Ob, Hip1r, Sfn, Chst3, Tnfrsf13c, Igh-6, 2010309G21Rik, Zfp318, Igk-V1, 

H2-Oa, Vpreb3, H2-Eb1, Ccr6, Bfsp2, Faim3, Cerk, Ell3, Igl-V1, Pck2, Slc23a1, Cxxc5, Igh-

VJ558, A530040E14Rik, Myo1c, Neil1, Fcrl1, Sbk1, Ighg, Blnk, Igk-V19-14, Mif4gd, 

LOC629915, Mapk11, Siglecg, Bmf, 1700021K19Rik, Igk-V21-12, LOC380824, Trib3, 

Tmem163, Eaf2, Bcl11a, Cd22, Ier5l, LOC434638, Lynx1, AI324046, 2010007H06Rik, Bank1, 

4930566A11Rik, C2ta, Cabc1, B3gnt5, Igkv1-133, Arid5a, Crip3, Vps13a, LOC544905, Bach2, 

Mical1, Ralgps2, Aars, Stk23, 1500001A10Rik, D6Ertd456e, Tubb2b, Pou2f2, LOC619916, 

LOC669091, Icosl, Eif2ak3, LOC619994, Amn, Slc4a1, Cnr2, Rasal1, 2310015N21Rik, Itpr3, 

Bcl3, 0610039H22Rik, Igk-V8-16, Vars2, Ero1lb, Igkv4-63, Igk-V38, Kcnb1, and LOC668544. 
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B.1.2 Enrichment scores resulted from CTen for gene markers of B cells obtained by 

combinatorial method 

Table 3. Cell types with enrichment scores more than two for gene markers of B cells obtained by combinatorial 

method 

Tissue/Cell type Enrichment score 

Follicular B Cells 36.46890902 

B Cells (GL7 pos; KLH) 32.85258623 

B Cells (GL7 pos; Alum) 31.89924 

B Cells (GL7 neg; KLH) 28.00279686 

Spleen 27.62642604 

B Cells (GL7 neg; Alum) 26.41449094 

B Cells Marginal Zone 22.96848378 

Lymph Nodes 22.3594034 

Foxp3+ Tcells 10.46394055 

Bone Marrow 9.132079099 

CD8a+ Dend. Cells Myeloid 9.008724547 

Bone 8.563331846 

B220+ Dend. Cells 7.018300587 

CD8a+ Dend. Cells Lymphoid 4.615836135 

CD8+ T cells 2.358491917 

Mast Cells IgE 2.060619809 
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B.1.3 Enrichment scores resulted from CTen for the submodule of N2 [14] 

Table 4. Enrichment scores of top 10 enriched cell types for the submodule of N2 [14] 

Cell Type Enrichment Score 

Macrophage Bone Marrow Lps 24 Hrs 103.9353717 

Macrophage Bone Marrow Lps 6Hrs 94.19054067 

Macrophage Bone Marrow Lps 2Hrs 84.48263487 

Macrophage Peri Lps 7Hrs 81.26686847 

Osteoclasts 79.83518315 

Microglia 78.39783479 

Macrophage Peri Lps 1Hrs 75.22997402 

Macrophage Bone Marrow 75.15725021 

Macrophage Peri 72.82573035 

CD8a+ Dend. Cells Myeloid 63.17519274 
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B.2 CIBERSORT 

B.2.1 Cell fractions of influenza infected lung tissues predicted by CIBERSORT 

 

Figure 28. Proportions of (a) macrophage; (b) stimulated memory CD8 T cells; (c) B cells; (d) stimulated B cells; (e) 

imDCs; (f) maDCs at 14 time points for different virus strains. Microarray data of murine lung tissues, infected by 

H1N1, pH1N1, H5N1 of low and high dose at different time points are obtained from literature [14]. The library of 

pure cells serves as Signature Matirx. Both datasets are applied to CIBERSORT to estimate cell proportions. 

Estimated proportions of 3 replicates at 14 time points, 0h, 3h, 6h, 9h, 12h, 18h, 24h, 30h, 36h, 48h, 60h, 72h, 120h, 

168h, are averaged respectively. 



 59 

 

Figure 29. Proportions of (a) sDCs; (b) monocyte; (c) naïve CD4 T cells; (d) natural CD4 Tregs; (e) resting naïve 

CD8 T cells; (f) stimulated naïve CD8 T cells at 14 time points for different virus strains. Microarray data of murine 

lung tissues, infected by H1N1, pH1N1, H5N1 of low and high dose at different time points are obtained from 

literature [14]. The library of pure cells serves as Signature Matirx. Both datasets are applied to CIBERSORT to 

estimate cell proportions. 
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