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Despite the increasing understanding of long-term behaviors of pGFRP (pultruded Glass Fiber 

Reinforced Polymer) material, investigation of long-term stability of pGFRP columns is still 

lacking. In this thesis, the time-dependent axial buckling behavior of pGFRP is investigated – this 

is termed creep buckling. An equation describing the relationship between mid-height lateral 

deflection of a section under axial load and time was proposed; this was a modification of 

traditional viscoelastic models using an empirical model, the Findley power law. Prediction of 

critical time of creep buckling was determined with the expression and compared to experimental 

results. For reference, a viscoelastic model utilizing string and dashpot – the Kelvin standard solid 

model – was also used to obtain theoretical predictions. Model parameters and long-term moduli 

were determined using flexural creep tests. With comparison between theoretical and experimental 

results, the equation proposed in this work was observed to offer more conservative and reliable 

prediction of critical time to creep buckling compared to the analytical equation derived from 

viscoelastic theory.
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1.0 INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Over the past few decades, the application of Fiber Reinforced Polymer (FRP) has grown from the 

aerospace and automotive industries to be widely used in the construction industry. This 

transformation largely resulted from manufacturing efficiencies realized using pultrusion which 

reduced the cost and increased the speed of manufacture. Pultrusion is a continuous forming 

process in which continuous fibers are saturated with a liquid polymer resin and pulled through a 

heated die to form a desired shape. The shape is rapidly cured at elevated temperature and the 

resulting rigid section is pulled and cut by a saw to the desired length. With increasing 

understanding of the material’s structural capacity, the role that pultruded glass fiber reinforced 

polymer (pGFRP) materials play in construction has gone beyond non-structural components to 

structural elements, particularly when these are located in corrosive environments. With 

advantages such as light weight and versatility of the shapes that may be formed, pGFRP materials 

have also been widely used for strengthening existing structures using less labor and time cost. 

Another competitive property of FRP materials is their resistance to corrosion, which is significant 

especially for marine structures or other structures exposed to corrosive environments such as 

cooling towers and agricultural facilities. Benefits of FRP materials also include their anisotropic 

behaviors which allow specific requirements of high strength or stiffness to be designed into the 
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product. However, the anisotropic nature of pGFRP is generally seen as a disadvantage in 

structural applications which would otherwise use isotropic materials such as steel. The anisotropy 

adversely affects connection design (e.g., Cunningham et al. 2015)  and buckling behavior (e.g., 

Vieira et al. 2017). Additionally, FRP materials are considered brittle, behaving in an essentially 

linear elastic manner until catastrophic failure. As a result, material utilization (efficiency) is often 

lower than with isotropic materials, Nonetheless, FRP materials are considered as being 

competitive in civil engineering industries particularly in applications where corrosion resistance 

is critical.  

Nonetheless, popularization of pGFRP materials is impeded by the lack of complete 

understanding of their structural behaviors, which leads to restricted specification for design and 

construction. One of the most significant aspects for which there is little data is the long term 

performance of pGFRP materials. Understanding mechanical degradation such as fatigue and 

creep are critical for designers to decide the lifetime of structures, which influences the cost for 

structural maintenance. Due to limited knowledge about long-term pGFRP material behavior, 

many applications in civil engineering are limited due to the conservative consideration of creep. 

More precise predictions of creep behavior are needed to improve the economy of pGFRP 

structural design in the future.  

Creep and buckling have been investigated by researchers since the 1950s. On one hand, 

different descriptive models were proposed such as the Schapery single integral procedure (R. A. 

Schapery, 1969) and the Findley power law (Findley,1956). Most of the models were based on 

viscoelastic theory since creep of pGFRP composites was considered to result from creep of the 

viscoelastic resin material. On the other hand, experimental studies have been conducted for 

pGFRP composites in various forms such as full-scale beams, columns and coupons from those 
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structural members. Both flexural and compressive creep tests were conducted and the latter 

included both short-term and long-term tests on slender columns and short stubs. Nonetheless, 

there was little work about prediction of critical buckling time of pGFRP slender columns. 

1.2 RESEARCH SCOPE AND OBJECTIVE 

This study will focus on the creep behaviors of pGFRP (pultruded Glass Fiber Reinforced 

Polymer), especially the global buckling of slender pGFRP columns caused by creep. The goal is 

to verify a theoretical prediction of critical time for creep buckling of pultruded GFRP columns. 

The prediction is based on the Findley power law, an empirical model describing FRP creep 

behaviors (Findley 1956). Besides the Findley power law, the Kelvin standard solid model 

(Bazant, 2010) is applied and compared with experimental results. 

Experimental work including flexural creep tests and creep buckling tests is presented. For 

the flexural creep tests, six pultruded GFRP prismatic beams were loaded at three stress levels for 

1,000 hours. From the flexural test results, long-term moduli required for the predictive creep 

equations based on the Kelvin model and Findley power law can be obtained. The long-term 

modulus is used in turn predict the critical buckling time for slender specimens subject to 

concentric compressive loads at 92% of the static (or short term) buckling load. Evaluation of the 

predictive capacity of the proposed equations through comparison with experimentally-determined 

critical buckling time is made.
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2.0 LITERATURE REVIEW 

In this chapter, the two descriptive models, the Findley power law and Kelvin standard solid model 

are reviewed. Then, previous research about creep behavior of pGFRP composites including 

experimental and analytical work is discussed. Finally the relationship between stability of pGFRP 

columns and their susceptibility to material creep is described. Since creep of pGFRP composites 

results from their viscoelastic properties, it is normally influenced by several environmental factors 

such as temperature. This thesis focuses only on the creep process in an ambient laboratory 

environment.  

2.1 FUNDAMENTALS OF CREEP BEHAVIOR 

Creep is time-dependent deformation under constant applied stress. The mechanism for creep is 

different for different materials such as metals, polymers or concrete. But generally, the creep 

process is considered to include three stages: primary creep, secondary creep and tertiary creep 

(Figure 2.1). ε0 is the elastic (initial) strain associated with a constant applied stress. The primary 

stage begins immediately after loading, during which deformation increases initially rapidly and 

slows down with time. In the secondary creep phase, deformation is almost uniform. In the tertiary 

stage, deformation will increase quickly again till the material fails. The length of each stage 
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depends on the level of applied load. At lower applied loads (relative to the long-term buckling 

capacity), the tertiary stage will not develop. 

For pGFRP materials, the physical mechanisms of creep at relatively low loads depends 

primarily on the polymer matrix, which is usually viscoelastic material. Physical models 

describing such materials include linear viscoelastic models such as the Kelvin standard solid 

model and other rheological models such as Kelvin chains (Bazant, 2010) as well as non-linear 

viscoelastic models such as the Schapery single integral process (Schapery, 1969). The glass 

reinforcement of a pGFRP is also a viscoelastic material and affects creep behavior, typically at 

greater loads. Since both primary components of a pGFRP material are viscoelastic, a measure of 

their relative proportion, typically the fiber volume ratio, will also be required to fully describe 

creep behavior. In practice, creep behavior of pGFRP is most often considered empirically, with 

the composite material being treated a single viscoelastic bulk material.  

 

Figure 2.1 The three stages in creep process 
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2.2 GFRP CREEP CHARACTERIZATION 

There are generally three types of models for the characterization of pGFRP creep behaviors. 

Empirical models such as the Findley power law (Findley 1956) have no physical or mechanical 

significance but fit well with test results. The second type, of which the Kelvin standard model 

Bazant, 2010) is an example, is usually composed of mechanical elements which have physical 

significance but are not specific to a certain material. The springs and dashpots in such models 

represent elasticity and viscosity respectively, and multiple elements are combined to describe the 

viscoelasticity exhibited by pGFRP composites or any other viscoelastic material. The third model 

type is normally more detailed in terms of representing modulus and will typically be limited in 

application range (Horvath 1998). The constitutive equations of creep in all models take the basic 

form:  

 ε = 𝜀0 + 𝜀𝑐 (2.1) 

where 𝜀0 is the instantaneous time-independent strain, 𝜀𝑐 is the time-dependent (creep) strain and 

ε is the total strain as shown schematically in Figure 2.1. 

2.2.1 Findley power law 

Before the Findley power law, there had been several mathematical expressions proposed to 

describe creep behavior; each adopted a different non-linear relationship between strain and time 

(Table 2.1).  
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Table 2.1 Early mathematical expressions for creep behavior  

Reference Expression 

Leaderman (1939) ε = 𝜀0 + A log 𝑡 + 𝐵𝑡 + C 

Cottrel and Aytekin (1947) ε = 𝜀0 + 𝐴𝑡1/3 + 𝐵𝑡 

Pao and Marin (1952) ε = 𝜀0 + 𝐴(1 − 𝑒−𝐶𝑡) + 𝐵𝑡 + 𝐷 

In 1956, Findley put forward a power law expression and proved its ability to characterize 

creep in unfilled thermoplastic materials by testing three types of plastics for 500 hours (Findley, 

1956). The model was widely adopted and considered to be a reliable empirical expression. It is 

recommended by the ASCE Structural Plastic Design Manual (ASCE 1984). Based on the basic 

creep constitutive form shown as Equation 2.1, the assumption was made by Findley and Khosla 

(1956) that  

 𝜀𝑐 = 𝑚 (
𝑡

𝑡𝑜
)

𝑛

 (2.2) 

In Equation 2.2, which is a power law function, 𝑡𝑜 is a time unit that has usually been omitted in 

subsequent research; 𝑚 is a dimensionless material-specific parameter; and 𝑛 is a dimensionless 

Findley material parameter. Equation 2.1, therefore becomes: 

 ε = 𝜀0 + 𝑚𝑡𝑛 (2.3) 

In most of the previous work utilizing the Findley power law for creep prediction, Equation 2.3 

was usually written in the form of a logarithm: 

 log(ε − 𝜀0) = 𝑛 log 𝑡 + log 𝑚 (2.4) 

Equation 2.4 is a linear function of log(ε − 𝜀0) and log 𝑡 in which constants 𝑛 and 𝑚 become the 

slope and intersection of the function, respectively, which makes it easier to estimate model 

parameters. Equation 2.3 is not the complete expression of the Findley power law but only a 
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general power law model. The complete Findley equation consists of the assumption for  𝜀0 and 

𝑚 that 

 𝜀0 = 𝜀𝑜
′

𝐹
sinh (

𝜎

𝜎𝜀𝐹

) (2.5) 

 𝑚 = 𝑚𝐹
′ sinh (

𝜎

𝜎𝑚𝐹

) (2.6) 

which has five model parameters:  𝜀𝑜
′

𝐹
, 𝑚𝐹

′ , 𝜎𝜀𝐹
, 𝜎𝑚𝐹

 and 𝜎. The first four are Findley material 

parameters and 𝜎 is the applied stress. The resulting hyperbolic relationship is based on activation 

energy theory, which is in the realm of micromechanics. It also represents the assumption about 

the rheological behavior of polymeric material under tensile stress (Findley et al. 1956). 

Substituting Equations 2.5 and 2.6 into 2.4 yields: 

 ε = 𝜀𝑜
′

𝐹
sinh (

𝜎

𝜎𝜀𝐹

) + 𝑚𝐹
′ sinh (

𝜎

𝜎𝑚𝐹

) 𝑡𝑛 (2.7) 

Following the introduction of the original Findley model, modifications were proposed. 

Chambers (1984) proposed simplification of Equation 2.6. According to Equation 2.4, it is 

necessary that initial strain be proportional to applied stress. However the relationship should be 

close to linear when 𝜎 𝜎𝜀𝐹
⁄  is sufficiently small, indicating that the applied load is small compared 

to failure load of the material. Chambers utilized this concept, omitted the hyperbolic function, 

and proposed the following simplified Findley equation. 

 ε = 𝜀𝑜
′

𝐹
(

𝜎

𝜎𝜀𝐹

) + 𝑚𝐹
′ (

𝜎

𝜎𝑚𝐹

) 𝑡𝑛 (2.8) 

On the basis of Equation 2.7, Chambers made further modifications noting that: 

 𝐸0 =
𝜎𝜀𝐹

𝜀𝑜
′

𝐹

 (2.9) 
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 𝐸𝑡 =
𝜎𝑚𝐹

𝑚𝐹
′  (2.10) 

Chamber defined 𝐸𝑜𝐹
 as a constant linear-elastic modulus or Young’s modulus for initial loading 

and 𝐸𝑡 as a constant modulus for creep behaviors. Thus Equation 2.7 became: 

 ε =
𝜎

𝐸0
+

𝜎

𝐸𝑡
𝑡𝑛 = 𝜎 (

1

𝐸0
+

𝑡𝑛

𝐸𝑡
) =

𝜎

𝐸(𝑡)
 (2.11) 

In which 𝐸(𝑡) is a time-dependent Young’s modulus.  

2.2.2 Kelvin standard solid model 

Before discussion of the Kelvin standard solid model, it is necessary to introduce two basic 

viscoelastic models, the Kelvin-Voigt and Maxwell models shown in Figure 2.2 (Bazant, 2010). 

 

Figure 2.2 Schematic representations of the Kelvin-Voigt (left) and Maxwell models (right) 

Both models contain a spring and a dashpot as a unit. The spring represents elastic stress which 

depends on strain, and the dashpot represents viscous stress which depends on strain rate. The 

connection between mechanical elements is similar to the concept of an electric circuit. Stress is 

analogous to electric current and strain to voltage. That is to say, all of the stress is the same for 
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elements in series and strain is the same for elements in parallel. In the Kelvin-Voigt model, the 

spring and dashpot are parallel, which resembles the mechanism of creep. And in the Maxwell 

model, the spring and dashpot are in series, which represent the mechanism of stress relaxation. 

Although the Kelvin-Voigt model is able to describe creep, it cannot define the behavior of pGFRP 

composites since there is an elastic period during the loading. Thus more elements are needed for 

a better prediction of creep in pGFRP composites. 

The Kelvin standard solid model is a three-parameter rheological model based on linear 

viscoelasticity theory. It is composed of one spring in series with a Kelvin unit. (Figure 2.3) The 

spring 𝐸0  captures the instantaneous behavior of pGFRP composites during loading and the 

subsequent creep depends on the Kelvin unit. 

 

Figure 2.3 Schematic representations of the Kelvin standard solid model. 

According to Figure 2.3, the relationship of stress, stain and strain rates can be expressed 

as Equations 2.12-2.14. 

 𝜎 = 𝐸0𝜀0 = 𝐸1𝜀1 + 𝜂𝜀1̇ (2.12) 

𝐸0 

𝐸1 



  11  

 

 ε = 𝜀0 + 𝜀1 (2.13) 

 𝜀̇ = 𝜀0̇ + 𝜀1̇ (2.14) 

After rearranging, the differential equation for strain is obtained: 

 (𝐸0 + 𝐸1)𝜎 + 𝜂𝜎̇ = 𝐸0𝐸1ε + 𝐸0𝜂𝜀̇ (2.15) 

Solving Equation 2.15 yields the time-dependent constitutive equation: 

 ε(t) =
𝜎

𝐸0
(

𝐸0 + 𝐸1

𝜂

(1 − 𝑒−𝜆𝑡)

𝜆
+ 𝑒−𝜆𝑡) (2.16) 

In Equation 2.17, 𝜆 =
𝐸1

𝜂
=

1

𝜏𝑟
. 𝜏𝑟 is the retardation time, which measures the time for creep strain 

to accumulate. The shorter the retardation time, the more rapid the creep strain development. There 

are two parameters 𝐸1 and 𝜂 in the expression which can be determined through curve fitting of 

experimental strain data. 𝐸0 is the initial elastic modulus. When time approaches infinity, the strain 

at infinity becomes: 

 𝜀∞ = 𝜎
𝐸0 + 𝐸1

𝐸0𝐸1
=

𝜎

𝐸∞
 (2.17) 

in which 𝐸∞ is the infinite longitudinal modulus. Substituting 𝜆 into Equation 2.16 could modify 

the expression of time-dependent strain into a function with two unknown parameters, 𝜏𝑟 and 𝐸∞. 

 
ε(t)

σ
=

1

E(t)
= [

1

𝐸∞
− (

1

𝐸∞
−

1

𝐸0
) ∗ 𝑒

−
𝑡

𝜏𝑟] (2.18) 

2.3 GFRP CREEP BEHAVIORS 

Holmes and Rahman (1980) presented 15,000-hour flexural creep tests on three pGFRP box 

beams. The size of the beams was 150 x 300 x 6000 mm and diaphragms with a spacing of 500 

mm were included to increase stiffness. Four-point loading was applied. Two beams were loaded 



  12  

 

with 500 kg at each loading point which was approximately 1/3 the ultimate failure load; the third 

beam only supported its own weight as a reference specimen. For the two beams under the same 

load, beam 1 bore constant load while beam 2 experienced alternating loads (cyclic loading and 

unloading in the first 2000 hours then permanent loads in the remainder of the test. Tensile, 

compressive and shear strains were tracked with time and mid-span deflection was measured 

constantly. Through the curve of creep deflection, 74.2% of the total 15,000 hour creep was 

observed to occur in the first 1,000 hours. When tests were done, the authors utilized several 

mathematical equations including the Findley power law and verified the agreement between 

prediction and experimental results of beam 1. Good correlation was observed between tensile 

strain and Findley power law predictions although none of the equations fitted the compressive 

strain data. It was hypothesized that the inconsistent compression data might result from the 

occurrence of local buckling and creep recovery during tests. 

Daniali (1991) explored flexural creep of pGFRP T-shape beams experimentally based 

only on deflection change. Several factors affecting pGFRP creep were taken into account in the 

tests including web shape (solid web and cavity web), binder type (polyester and vinylester) and 

temperature (ambient condition and elevated temperature at 54oC). Through multiple creep tests 

up to 10,000 hours, Daniali reports better resistance to strength reduction for vinylester resin 

during creep. At elevated temperature, beams made from both resin materials exhibited greater 

creep rates, Polyester beams exhibited greater creep rates at higher temperature. All types of beams 

failed due to buckling: lateral torsional buckling in solid-web beams and web buckling in cavity-

web beams. Solid-web beams showed lower critical load than cavity-web beams in destructive 

tests. 
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Bank and Mosallam (1993) investigated creep and failure of a full-size pGFRP frame 

experimentally and made comparison between test results and theoretical predictions using the 

Findley power law. One-quarter of the frame failure load was applied. Readings of both flange and 

web strain allowed consideration of shear deformations and Timoshenko beam theory to be 

included in the long-term behavior analysis of frame. 10,000-hour strain and deflection data was 

recorded (Mosallam, 1990; Mosallam and Bank, 1991) and significant creep occurred in 

approximately the first 2000 hours. A conclusion was made that viscoelastic axial modulus 

decreased by 35% and shear modulus by 45% in ten years, which suggested the great influence of 

creep to pGFRP properties as well as the significance of the shear contribution to pGFRP frame 

behavior. 

Mottram (1993) came up with an innovative fabrication method of pGFRP close-sectioned 

beams and investigated the long-term properties of members assembled with the method. In his 

method, the pultruded beams were fabricated as an assembly of simple standard sections such as 

flat sheet and I-shape sections. These sections could be bonded by adhesive to compose a complex 

beam or column section, which improved the universality of the basic members. In a 24-hour creep 

test, a 22.8 kN mid-point load was applied to a 76 x 90 beam spanning 700 mm. The load 

represented the design load for the beam. Since the creep deflection was 10% of the initial 

deflection, the 24-hour tests were considered as an accelerated test and sufficient to predict the 

following creep behaviors. The Findley power law combined with Timoshenko beam theory was 

used for deflection prediction of one week, one year and ten years, which were estimated as 25%, 

60% and 100% greater than initial deflection, respectively. 

McClure and Mohammadi (1995) tested pGFRP angle stubs and corresponding coupons 

simultaneously under 2500-hour compressive load and proved the ability to predict long-term 
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behaviors of angle stubs through creep test results of corresponding coupons utilizing the Findley 

power law. In the creep test, both angles and coupons were loaded to 45% of their failure load. 

After 2500 hours, the average ratio of creep strain to initial strain was 14.4% for angle stubs and 

13.8% for coupons. Although model parameters (𝐸𝑡 and 𝑛) determined from stubs and coupons 

were different, the authors reported good agreement between theoretical prediction and 

experimental results when attempting to predict strain-time curves of angle stubs based on coupon 

test results. For the parameter 𝑛, a difference was observed between angle stubs and coupons. An 

average value of 0.254 and 0.170 was obtained for angles and coupons, respectively, and no clear 

explanation for this difference was given in the article.  

Scott and Zureick (1998) conducted compression creep tests on coupons from pGFRP I- 

beams for up to 10,000 hours. The results correlated well with predictions based on the Findley 

power law. Three stress levels were considered: 20%, 40% and 60% of the average compressive 

strength obtained from short-term tests. Specimens were loaded in a lever-arm creep fixture with 

concrete dead load and strain readings obtained over time. Using the test results, the first 1,000 

hours were used to find the parameters of the Findley power law. The initial modulus was 

determined and the parameter 𝑛 = 0.23 (𝐶𝑂𝑉 = 0.046)was determined. Scott and Zureick found 

that the modulus parameter 𝑚 varies considerably between specimens in each research program 

but the value of 𝑛 for pGFRP is more consistent and almost the same as that reported by Mottram 

(1993). The scatter of parameter 𝑚 could be explain by Equation 2.10 which showed that 𝑚 varied 

with stress. Table 2.2 summarizes previous work based on the Findley power law and the 

parameters obtained from linear regression. The parameter 𝑚 was converted into 𝐸𝑡 to exhibit a 

unified parameter for each research work. 
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Table 2.2 Summary of previous work based on Findley power law 

Authors Creep Test Specimen Type 𝐸𝑡 (GPa) 𝑛 

Mosallam and Bank 

(1991) 
Flexural 2000 h pGFRP frame 130 0.3 

Mottram (1993) 
Flexural 24 h pGFRP beam flat sheet 590 0.22 

Flexural 24 h pGFRP beam I-shape 500 0.21 

McClure and 

Mohammadi (1995) 

Compression 2500 h pGFRP angle stub 520 0.17 

Compression 2500 h  pGFRP coupon 1150 0.25 

Scott and Zureick (1998)  Compression 10,000 h pGFRP column 1490 0.23 

Kang (2001) Flexural 8700 h  pGFRP beam 604 0.15 

The variation of modulus should not be surprising. This value will reflect a large number 

of pGFRP geometric and material properties including a) fiber volume ratio; b) fiber architecture 

and pGFRP element thickness; and c) nature of the applied stress. The parameter n, on the other 

hand, is a measure of the viscoelastic response primarily of the resin. The resin properties of 

structural pGFRP do not vary nearly as much as the fibre volume and architecture. 

2.4 SLENDER PGFRP COLUMN STABILITY 

Hewson (1978) studied failure modes of channel-shaped pGFRP columns under axial 

compression. Nine types of specimens with different cross section size whose length ranged from 

155 mm to 466 mm were tested and the results compared with predicted failure loads. The fixed-

ended columns had slenderness ratios, KL/r (where K is the effective length factor, L is length and 

r is radius of gyration) ranging from 11.3 to 32.0 and were loaded to failure. The buckling load 

was obtained using Southwell’s (1932) method. Southwell’s method is a graphical method for non-

destructive critical load determination of columns. Mid-height lateral deflection (δ) is plotted 

against the ratio of mid-height lateral deflection to applied load (δ/P). The slope (δ/(δ/P)) of the 
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resulting curve is an estimation of critical buckling load, Pcr. Failure modes considered were global 

(Euler) buckling, torsional buckling and local (flange) buckling. In the prediction, the author 

derived a non-dimensional graph which combined solutions of different failure modes to predict 

buckling loads of channel columns. The derivation was based on the assumption that isotropic 

theory using modified material properties could be used. The authors observed no local failure 

modes and reported that the experiments and predictions did not correlate well in terms of global 

buckling. The reason for the poor correlation was hypothesized to be imperfect load application 

and boundary conditions.  

Barbero and Tomblin (1992) experimentally investigated global buckling of pGFRP I-

shaped columns and validated the predictive capacity of Euler’s equation: 

 𝑃𝐸 =
𝜋2𝐸𝐿𝐼𝑚𝑖𝑛

(𝐾𝐿)2
 (2.19) 

In which 𝐸𝐿 is the longitudinal elastic modulus, 𝐼𝑚𝑖𝑛 is the weak-axis moment of inertia and 𝐾𝐿 is 

the column effective length. To address torsional buckling, an approximate analysis was conducted 

and the torsional buckling load was shown to be twice the Euler buckling load. Specimen 

slenderness, KL/r exceeded 95 and steel shoes were utilized at both ends to restrain torsion. The 

experimental buckling load was determined using Southwell’s method, which required sufficient 

data and performed well for the single global buckling mode investigated. Pinned-pinned boundary 

conditions were used and loading progressed until midspan lateral deflection was L/100; this 

permitted sufficient data to be collected while maintaining the response in the linear range. The 

predicted Euler buckling load and experimentally observed buckling load differed by no more than 

6% and predicted loads were generally higher than experimental loads. This variation is attributed 

to imperfections in specimens which are not considered in Equation 2.19. 
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Scott and Zureick (1997) performed a short-term buckling test of slender pGFRP columns 

with box and I-shaped cross sections and compared the experimental results with predictions based 

on Hewson’s equations (Hewson 1978, Hewson and Lee 1979). Twenty-four specimens with 

lengths ranging from 1189 mm to 2444 mm and effective slenderness ratio, 𝐾𝐿/𝑟, ranging from 

36 to 103 were included. Before testing, initial out-of-straightness was measured and checked 

against maximum tolerance limits of ASTM D3917-94 and material properties were determined. 

Longitudinal modulus and in-plane shear modulus was determined with tension tests, compression 

tests and asymmetric four-point bending tests on coupons which were cut from flanges and webs 

of the two types of columns. The modulus was observed to differ between web and flange coupons. 

In the buckling test, the load was applied at a constant rate until the deflection increased 

significantly. Deflection in both axial and lateral directions was measured during loading and  the 

experimental buckling load was estimated using Southwell’s method. 

Critical load prediction was performed using buckling equations proposed by Hewson 

(Equation 2.20) which is a modification of the Euler buckling equation (Equation 2.19) accounting 

for the effects of shear. 

 𝑃𝑒 =
𝑃𝐸

1 + (𝑛𝑠𝑃𝐸/𝐴𝑔𝐺𝐿𝑇)
 (2.20) 

In Equation 2.20, PE is the Euler buckling load given by Eq. 2.19, 𝐴𝑔 is the gross cross section 

area, 𝑛𝑠 is the shape factor of shear, and 𝐺𝐿𝑇 is the in-plane shear modulus. The predicted loads 

based on Equation 2.20 were generally higher than corresponding experimental loads but still 

correlated reasonably well. The ratio of predicted load to experimental load ranged from 0.85 to 

0.97 using Equation 2.19 and improved marginally to 0.88 to 1.01 using the correction for shear 

in Equation 2.20. 
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Due to the occurrence of several failure modes for columns of different size while under 

compressive load, Hashem and Yuan (2001) developed a criterion for pGFRP columns 

differentiating between short and long columns based on observed failure modes in experimental 

studies. Twenty-four pGFRP columns were tested to failure including “universal”-section columns 

with slenderness ratios (KL/r) ranging from 3.8 to 75.4 and box-section columns with slenderness 

ratios ranging from 9.4 to 78.9. Pinned-pinned boundary conditions were used and initial column 

position was adjusted using surveying levels – minimizing initial imperfections. In the 

accompanying analytical study, both Euler’s formula (Equation 2.19) and classical Orthotropic 

Plate Theory (OPT) were utilized in failure load prediction. Experimentally, the division between 

short and long columns was determined at KL/r = 50. Analytically, equating the Euler equation to 

OPT, KL/r is found to be 46.6. The authors considered the difference to result from specimen and 

experimental setup imperfections. The conclusion was made that columns with slenderness ratios 

larger than 50 will fail in global elastic buckling. For such long columns, Euler’s equation results 

in good predictions which were generally high but within 5% of the experimental results. 

Bennett (2005) studied compressive creep behaviors of slender pGFRP square tube 

columns and proposed a semi-empirical expression to predict mid-height lateral deflection. In the 

experimental study, two environmental temperatures (23oC and 65.5oC) and three levels of 

concentric axial load (33%, 67% and 90% of short-term critical load, which was determined using 

Southwell’s method) were included in the 1,000-hour tests. All columns were 1905 mm in length, 

101.6 mm in width and 6.35 mm in wall thickness (KL/r = 49.0). Dial gages were utilized to 

measure lateral deflection, axial deflection and end rotation. The axial deflection was used for load 

lost estimation, which was about 3.8% of applied load during the test. Within the six specimens in 

different conditions, the one tested under 90% load and elevated temperature exhibited the largest 
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lateral creep deflection, 3.1 mm (L/614). In general, the lateral deflection increased with load and 

temperature. With the test results, the author modified the eccentric compressive creep buckling 

equation (Equation 2.21) proposed by Kang (2001) in terms of creep behavior and concentric 

loading and assumed a power law expression. 

 δ = sec (
𝜋

2
√𝜆 − 1) 𝑒 + 𝐴𝑖

𝜆

1 − 𝜆
 (2.21) 

 𝛿(t) = 𝐴𝑖

𝜆[1 + 𝜓(𝑡)]

1 − 𝜆[1 + 𝜓(𝑡)]
 (2.22) 

 𝜓(𝑡) =
𝑡𝑛

𝛽
 (2.23) 

In Equation 2.21, 𝜆 is the ratio of applied load to buckling load, 𝑒 is eccentricity of applied load, 

𝐴𝑖 is the initial imperfection of the column which was determined from out-of-straightness tests 

based on ASTM D3917 Standard Specification for Dimensional Tolerance of Thermosetting Glass-

Reinforced Plastic Pultruded Shapes. In Equation 2.23, 𝛽 and 𝑛 were determined from the long-

term deflection data. In the comparison between prediction and experimental results, parameters 

could be found that resulted in good agreement for most specimens although the parameters 

obtained for columns under different test conditions (load levels and temperature) were not 

consistent, suggesting that these parameters are functions of both load and temperature.  

Besides Equation 2.21 proposed by Bennett (2005), there is another expression based on 

viscoelasticity theory to describe time-dependent lateral deflection during creep buckling of 

viscoelastic columns, which was described by Bazant (2010). For slender elastic columns, the 

differential equation describing short-term stability is 

 (𝑣′′ − 𝑣0
′′) +

𝑃

𝐸𝐼
𝑣 =

𝑀0

𝐸𝐼
 (2.24) 
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where 𝑣0(𝑥) is the initial curvature which is inevitable in practice and 𝑀0 is the moment caused 

by lateral force. For typical column behavior, no lateral load is present, therefore Equation 2.24 

may be written as: 

 𝐸𝐼(𝑣′′ − 𝑣0
′′) + 𝑃𝑣 = 0 (2.25) 

When it comes to time-dependent buckling of pGFRP columns, the viscoelasticity of the 

material must be considered. Based on the Kelvin standard solid model, Bazant proposed the 

partial differential equation (Equation 2.26) in space and time governing creep buckling of a 

pinned-pinned viscoelastic column can be derived by replacing 𝐸  with differential operator 𝐸 

(Equation 2.27). The differential operator was defined in Equation 2.28, which relates long-term 

strain and stress in differential form. 

 
𝑣′′ − 𝑣0

′′ + 𝜏𝑟𝑣̇′′ +
𝑃

𝐸∞𝐼
𝑣 +

𝑃

𝐸0𝐼
𝜏𝑟𝑣̇ = 0 (2.26) 

 𝐸 =
1 + 𝜏𝑟(

𝜕
𝜕𝑡

)

(
1

𝐸∞
) + (

𝜏𝑟

𝐸0
)(

𝜕
𝜕𝑡

)
 (2.27) 

 σ = 𝐸𝜀   or   𝜀 = 𝐸−1σ (2.28) 

 Equation 2.26 can be solved in the simplified form of Equation 2.29 in which 𝑓𝐾(𝑡) is the 

deflection ratio satisfying the boundary conditions of pinned-end columns and initial imperfection 

when 𝑓𝐾 = 1. The sine function in Equation 2.29 made it possible to obtain lateral deflection at 

any height, x, of the column. Equation 2.30 is the initial condition (𝑡 = 0) of function 𝑓𝐾(𝑡), which 

was obtained by multiplying with magnification factor μ (Equation 2.31). 

 𝑣 = 𝑓𝐾(𝑡)𝐴𝑖 sin
𝜋𝑥

𝑙
 (2.29) 

 𝑓𝐾 =
1

1 − 𝑃 𝑃𝐸0
⁄

 (2.30) 
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 μ =
1

1 − 𝑃 𝑃𝑐𝑟⁄
 (2.31) 

Substituting Equation 2.29 into Equation 2.26 and combining the initial condition of 

function 𝑓𝐾(𝑡), the expression of 𝑓𝐾(𝑡) can be derived as:  

 𝑓𝐾(𝑡) =
1

1 − 𝑃 𝑃𝐸∞
⁄

(1 − 𝑒
−

𝑡
𝜏𝑏) +

1

1 − 𝑃 𝑃𝐸0
⁄

𝑒
−

𝑡
𝜏𝑏 (2.32) 

in which 

 𝑃𝐸∞
= 𝜋2𝐸∞𝐼/𝐿2, 

 𝑃𝐸0
= 𝜋2𝐸𝐼/𝐿2, and 

 𝜏𝑏 = 𝜏𝑟
1−𝑃/𝑃𝐸0

1−𝑃/𝑃𝐸∞  
.   

Retardation time, τr, is defined in relation to Equation 2.17. Based Equation 2.32, Bazant also 

provides typical deflection ratio curves (Figure 2.4). The three types of function shape result from 

the load being less than, equal to or greater than 𝑃𝐸∞
. 

 

 

Figure 2.4 Deflection ratio curve in different conditions (Bazant 2010) 
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2.5 SUMMARY 

In this chapter, the Findley power law has been shown in many research works to be reliable to 

describe flexural creep behaviors and make long-term predictions of pGFRP composites although 

empirically derived parameters must be established. For short-term stability investigation, 

Southwell’s method has been widely and successfully used to determine critical buckling load of 

pGFRP columns. Only the research work of Bennett (2005), however, addressed creep buckling 

of slender pGFRP columns under concentric loading. Bennet’s work focused on the influence of 

elevated temperature and load levels on the time-dependent lateral deflection curve derived based 

on an eccentric creep buckling expression proposed by Kang (2001). The theoretical prediction 

based on the expression was observed to be less consistent with experimental results at higher load 

levels. Besides Bennett’s theoretical model, Bazant also proposed an equation to predict the time-

dependent lateral deflection curve based on an analytical derivation of viscoelastic theory. No 

experimental investigation has been conducted to investigate the critical time of creep buckling in 

slender pGFRP columns. Thus the predictive capacity of Bazant’s equation was not tested.
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3.0 FLEXURAL CREEP TESTS 

In this chapter, the experimental investigation of flexural creep behavior of pGFRP plate 

specimens is presented. Short-term tests were conducted to determine initial modulus and strength 

of the material. In the creep tests, six specimens under three levels of stress are loaded for more 

than 1,000 hours to obtain long-term flexural behaviors. Using strain history data, the modulus 

required for the Kelvin standard solid model and Findley power law are determined through curve 

fitting. The experimentally established parameters can be used to predict creep buckling behaviors 

of pGFRP as described in Chapter 4.  

3.1 SHORT-TERM MATERIAL PROPERTIES 

All specimens reported in this work are cut from pGFRP plate having nominal thickness of 6.4 

mm. Typical specimens, shown in Figure 3.1, were nominally 38 mm wide. The plate architecture 

contained three layers of unidirectional glass fiber separated by four layers of continuous strand 

mat and two surfacing veils in an isophthalic polyester resin matrix. Manufacturer reported and 

experimentally obtained material properties are given in Table 3.1. Longitudinal and transverse 

properties of the material were determined in an earlier study (Harries and Cunningham 2015).  
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Table 3.1 Material properties of 6.4 mm thick pGFRP plate 

Property 

Manufacturer reported 

(Bedford Reinforced Plastics 

2012) 

Experimentally determined 

(COV in brackets) 

Longitudinal modulus determined 

from tension test, ELt 
13.8 GPa 

19.9 GPaa 

(0.04) 

Longitudinal strength determined 

from tension test, FLt 
165 MPa 

425 MPaa 

(0.06) 

Tranverse modulus determined 

from tension test, ETt 
7600 MPa 

6400 MPaa 

(0.07) 

Transverse strength determined 

from tension test, FTt 
69 MPa 

94 MPaa 

(0.04) 

Longitudinal modulus determined 

from flexure test, ELf 
13.8 GPa 

19.9 GPa 

(0.02) 
a Harries and Cunningham 2015 

 

 

Figure 3.1 38 x 6.4 mm pGFRP flexural specimen 

In this work, short-term longitudinal modulus was determined in a flexural test. Three 38 

mm wide beams cut from the 6.4 mm pGFRP plate were loaded in the same flexural configuration 

as used for the creep tests (described below). Loads were incremented in 90 N steps up to about 
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one-half the flexural capacity of the beams. Both tensile and compressive strain were recorded for 

determining longitudinal modulus which, as shown in Table 3.1, was found to be the same as that 

determined previously using tension tests: 19,900 MPa. Figure 3.2 shows data from a 

representative specimen in which the strain-stress relationship for both tension and compression 

strains are essentially linear. A small apparent in shift in the neutral axis of about 1.6% the 

specimen depth toward the compression face is seen in Figure 3.2. This is believed to reflect 

variation in the fiber architecture in the specimen. 

 

Figure 3.2 Representative stress strain curve from flexural test 

3.1.1  Test setup 

A four-point bending test set-up is used as shown in Figure 3.3. Specimens are loaded with free 

weights (Figure 3.4) through a channel spanning the constant moment region. The loading 

channels have rounded edges with a radius of 2.5 mm (0.10 inch) so as to not damage the pGFRP. 

R² = 0.9997

R² = 0.9968

0.0

20.0

40.0

60.0

80.0

100.0

120.0

-8000 -6000 -4000 -2000 0 2000 4000 6000

S
tr

es
s 

(M
P

a)

Strain (µε)

Bottom Strain Top Strain



  26  

 

Each beam is supported over a 304.5 mm clear span on 12.7 mm diameter steel rollers. The support 

span-to-depth ratio is about 48 and shear span-to-depth ratio is about 18, which are consistent with 

requirements of ASTM D6272-10 Standard Test Method for Flexural Properties of Unreinforced 

and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending. This slender 

specimen geometry minimizes the effects of shear. The assembly weight including the loading 

channel and free-weight support assembly was 4.67 N which is added to all applied loads. The 

entire assembly is mounted on steel grid deck allowing steel wires to transfer loads from free 

weight below the grates.  

Stress in the extreme fibers of the specimen in four-point flexure was calculated as follows: 

 σ =
𝑀𝑦

𝐼
=

Pa

2
(

𝑑

2
) (

12

𝑏𝑑3
) (3.1) 

in which b is measured specimen width and d is the measured thickness; 𝑀 =
Pa

2
 is the applied 

moment; P is the total applied load and a is the shear span, which is 116.8 mm as shown in Figure 

3.3; 𝑦 is the position of specimen neutral axis determined from top and bottom surface strain data; 

and, 𝐼 =
𝑏𝑑3

12
 is moment of inertia of the specimen cross section. 

Strain gauges (seen in Figure 3.1) were attached on both top and bottom surfaces at the 

mid-span of the beam to measure the maximum of tensile and compressive strains (from which 

the neutral axis may be calculated). Strains were recorded at predetermined intervals using a P3 

strain indicator (Figure 3.5). Vertical deflection at mid-span was also tracked utilizing a digital 

micrometer depth gauge (Figure 3.5) with the steel grid deck functioning as reference.  
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Figure 3.3 Four-point flexure test configuration 

 

Figure 3.4 Creep test configuration showing four specimens under loads of 445 and 667 N 

      

Figure 3.5 P3 strain indicator and depth gauge 
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3.1.2  Test protocol 

Three stress levels were achieved in the creep test. Based on ASTM D2990-09 Standard Test 

Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics, the three 

stress levels were proposed to be 0.12, 0.24 and 0.37 of the failure load. Free weights used in each 

case were 50 lbs (222N) for specimens A/B, 100 lbs (445 N) for specimens C/D and 150 lbs (667 

N) for specimens E/F. Initial loading of specimens was rapid (less than 15 seconds to avoid creep 

before initial readings) and smooth to avoid vibration and impact. The stress levels were selected 

to keep the creep process in its primary stage (Figure 2.1) which exhibits linear viscoelasticity. 

Measured specimen dimensions, total applied creep load and neutral axis location based on initial 

strain data are provided in Table 3.2. Considering the slight difference in specimen dimension, the 

ratios of applied load to failure load were marginally different than targeted as shown in Table 3.2. 

The neutral axis location is defined as a portion of specimen depth measured from the extreme 

tension face. Thus a value greater than α = 0.50 indicates a shift of the axis toward the compression 

face. 

Table 3.2 Flexural specimen dimension and load 

Specimens 
Width 

b (mm) 

Thickness 

d (mm) 

Neutral 

Axis α1 

Applied 

Load P (N) 

Load to 

𝑃𝑢𝑙𝑡 ratio 

FLX_C_A 38.99 6.26 0.51 227 0.12 

FLX_C_B 39.05 6.17 0.48 227 0.13 

FLX_C_C 38.74 6.19 0.50 450 0.25 

FLX_C_D 38.83 6.21 0.50 450 0.25 

FLX_C_E 38.69 6.16 0.52 672 0.38 

FLX_C_F 38.83 6.15 0.51 672 0.38 
1 based on initial strains upon loading 
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Strain and deflection readings were taken at the following intervals: 

• immediately following loading (short-term properties); 

• 15 minute intervals for the first five hours; 

• 30 minute intervals from 5 to 11 hours; 

• 6 hour intervals for the following 96 hours; and 

• 24 hour intervals for the duration of the test (>1000h) 

During the creep test, the ambient environmental conditions were essentially constant as required 

by ASTM D2990-09. The temperature remained at 21±1 oC and average relative humidity was 

53±5%.  

3.2 EXPERIMENTAL RESULTS 

3.2.1 Deflection and strain 

The test results for mid-span strain and deflection are presented in Tables 3.3 and 3.4, respectively. 

Corresponding strain and deflection time histories are shown in Figures 3.6 and Figure 3.7, 

respectively. In Figure 3.6, only the creep strain is shown (strain following initial loading). 

Creepocity (the ratio of creep strain to initial strain) is expressed as: 

 creepocity =
𝜀(𝑡) − 𝜀0

𝜀0
 (3.2) 

where 𝜀(𝑡) is the strain reading at time t and 𝜀0 is the strain upon loading. In all six specimens, 

strain increased with time at both top and bottom surfaces. Bottom strain (tensile) generally 

increased more than top strain (compressive), resulting in a downward shift of neutral axis. 
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Although absolute strains were proportional to the load level (as expected), the creepocity after 

1000 h was similar for all specimens with no clear trend established based on load level.  

As described in Section 2.1, there are three stages in creep process of pGFRP materials. In 

the primary stage, creep begins rapidly and becomes slower with time. In the secondary, or steady 

state, stage, creep rate is almost zero. Finally in the tertiary stage, accelerating creep rates occur 

leading to material failure. The length of these stages is a function of the load level. In this test, 

specimens A/B, under the lowest load, showed the shortest primary stage (less than 24h), and 

appeared to enter the secondary phase in which creep rate becomes negligible. The more heavily 

loaded specimens remained in the primary stage longer and in proportion to their load level: the 

primary stage of specimens C/D was about 200h while that for E/F was a bit longer (Figure 3.6).  

Table 3.3 Flexural creep test results of strain 

Specimens 
Stress 

(MPa) 

Strain upon Loading (µε) 1000-h Strain (µε) 1000-h Creepocity 

Bottom Top Bottom Top Bottom Top 

FLX_C_A 52 3036 -2958 3438 -3258 0.13 0.10 

FLX_C_B 54 2202 -2375 2531 -2724 0.15 0.15 

FLX_C_C 106 5308 -5242 6191 -6030 0.17 0.15 

FLX_C_D 105 5451 -5520 6446 -6556 0.18 0.19 

FLX_C_E 160 7786 -7195 8938 -8085 0.15 0.12 

FLX_C_F 160 8178 -7929 9305 -9038 0.14 0.14 
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Figure 3.6 Flexural strain-time curve after loading 

Table 3.4 Flexural creep test results of deflection 

Specimens 
Stress 

(MPa) 

Initial 

Deflection 

(mm) 

1000 h 

Deflection 

(mm) 

1000-h Deflection 

Increase (mm) 

FLX_C_A 52 8.32 9.87 1.55 18.6% 

FLX_C_B 54 8.60 10.29 1.69 19.7% 

FLX_C_C 106 14.68 17.05 2.37 16.1% 

FLX_C_D 105 14.01 16.99 2.98 21.3% 

FLX_C_E 160 22.34 25.57 3.23 14.5% 

FLX_C_F 160 24.05 27.62 3.57 14.8% 
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Figure 3.7 Flexural deflection-time curve after loading 

 

3.2.2 Young’s modulus 

Table 3.5 presents longitudinal moduli calculated from the initial loading and after 1000 h. The 

initial longitudinal modulus, E0 = 20.9 GPa, slightly greater than that determined from earlier 

material characterization tests (Section 3.1). The reason for this discrepancy is not clear although 

the variation in fiber architecture from specimen to specimen is known to affect this value 

significantly (a separate study is currently underway to quantify this effect for the materials tested; 

variation on the order of 10-15% has been observed). After 1000 h under load, the apparent 

modulus based on measured strains is 17.7 GPa, a decrease of about 16%. 
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Table 3.5 Initial and 1000-h longitudinal modulus 

Specimens 
Stress 

(MPa) 
𝐸0 

(GPa) 

𝐸0_𝑎𝑣𝑔 

(GPa) 
COV 

𝐸1000_𝑏𝑜𝑡𝑡𝑜𝑚 

(GPa) 

𝐸1000_𝑡𝑜𝑝 

(GPa) 

𝐸1000_𝑎𝑣𝑔 

(GPa) 
COV 

FLX_C_A 52 21.1 

20.9 

 

0.022 

 

15.2 16.0 

17.7 

 

0.096 

 

FLX_C_B 54 21.5 21.2 19.7 

FLX_C_C 106 21.1 17.2 17.6 

FLX_C_D 105 20.5 16.3 16.1 

FLX_C_E 160 21.2 17.9 19.8 

FLX_C_F 160 20.1 17.2 17.7 

 

3.2.3 Neutral axis shift 

As shown in Table 3.6, only a very slight shift of neutral axis was observed during the creep tests. 

Although there was no clear trend, the initial neutral axis was observed to be shifted toward the 

compression face (top) of the specimen in 4 of the 6 specimens, In each of these specimens, the 

neutral axis shifted very marginally further toward to the compressive face. This resulted in a 

subtle asymmetric behavior of the compressive and tensile zones. 

Because the load levels were relatively low, and the creep behavior remained in the primary and 

secondary phases, little shift in neutral axis is expected. The viscoelastic behavior of pGFRP in 

these phases of behavior is typically assumed to be linear; thus tension and compression behavior 

should be symmetric. 
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Table 3.6 Flexural test results of neutral axis location 

Specimens Stress (MPa) 

Initial 

Neutral 

Axis, α 

1000-h 

Neutral Axis, 

α 

Shift of 

Neutral Axis 

(mm) 

FLX_C_A 52 0.507 0.513 +0.04 

FLX_C_B 54 0.481 0.482 +0.00 

FLX_C_C 106 0.503 0.507 +0.02 

FLX_C_D 105 0.497 0.496 -0.01 

FLX_C_E 160 0.520 0.525 +0.03 

FLX_C_F 160 0.508 0.507 -0.00 

3.3 ANALYSIS AND DISCUSSION 

Experimental results are further discussed in this section. Modulus determination for both the 

Kelvin standard solid model and Findley power law is presented. A curve fitting program based 

on the concept of enumeration written in MATLAB was utilized to find the parameters, τ𝑟 and 𝐸∞ 

for the Kelvin Model and n and 𝐸𝑡 for Findley power law. The resulting predictive capacities of 

the two models is presented. 

3.3.1 Kelvin standard solid model 

In this work, the time-dependent constitutive equation derived from the Kelvin standard solid 

model was expressed as (see Section 2.1.2, Equation 2.19). 

 
ε(t)

σ
=

1

E(t)
= [

1

𝐸∞
− (

1

𝐸∞
−

1

𝐸0
) ∗ 𝑒

−
𝑡

𝜏𝑟] (3.3) 

where 𝐸0 is the initial longitudinal modulus, 𝐸∞ is the long term (infinite) longitudinal modulus, 

𝑡 is time under load and 𝜏𝑟 is the retardation time, which is a time describing the response of a 
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viscoelastic material to the instantaneous application of a constant stress. As is observed in 

Equation 3.3, ε(t) → σ/𝐸0  when 𝑡 → 0  and ε(t) → σ/𝐸∞  when 𝑡 → ∞ . 𝜏𝑟  and 𝐸∞  are the 

parameters in the Kelvin Model that need to be determined. 

 Using a MATLAB script (Appendix A.1), the approximate range of 𝜏𝑟 and 𝐸∞ was set as 

1-100 hours (1 hour increments) for 𝜏𝑟 and 15-21 GPa (0.1 GPa increments) for 𝐸∞. Then the 

moduli were assigned values from the lower bound of the range to the upper bound and combined 

to estimate the experimentally determined strain values. In order to find the best combination of 

parameters, the least square method was utilized to quantify the curve fitting effect. For every 

combination of 𝜏𝑟 and 𝐸∞, the square of the difference between predicted and experimental strain 

was summed and lowest least square result was selected as the best fit. Considering the reducing 

density of test data with time, the difference square in the first few days was given greater weight 

in the sum compared to the remainder of the test. Since approximately 40 strain readings were 

taken in the first day and subsequently reduced to once per day, a weight factor of 40 was included 

to balance the nonuniform data density. The resulting combination of parameters which led to the 

best fit for each test are summarized in Table 3.7. The sum of squares of difference was normalized 

by 1E+06 in both Kelvin model and Findley for clarity. 
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Table 3.7 Kelvin model modulus determination by enumeration (COV in brackets) 

Specimens 
Stress 

(MPa) 

1000-h E 

Experimental 

Goodness of fit 

(normalized sum 

of squares of 

difference) 

Predicted 

𝐸∞ 
(GPa) 

Average 

𝐸∞ 
(GPa) 

𝜏𝑟 
(hours) 

Average 

𝜏𝑟 (hours) 

FLX_C_A 52 

17.7 

(0.096) 

0.8 18.4 

18.0 

(0.048) 

54 

61 

(0.069) 

FLX_C_B 54 1.3 18.3 63 

FLX_C_C 106 3.5 17.9 63 

FLX_C_D 105 8.2 16.7 68 

FLX_C_E 160 3.0 19.5 60 

FLX_C_F 160 20.0 17.5 60 

 As shown in Table 3.7, the 1000-h longitudinal modulus determined through test results 

was 17.7 GPa and the predicted infinite modulus was 18.0 GPa with COV of 5%. The predicted 

long term modulus, 𝐸∞, was higher than the experimentally determined 1000-hour modulus due 

to the inadequate capacity of Kelvin model to fully capture the creep behavior of pGFRP materials. 

As observed in Figure 3.8, the curves obtained for the Kelvin model fail to capture the initial high 

rate of creep and became very flat (secondary creep phase) after the retardation time.  

3.3.2 Findley power law  

The constitutive equation of pGFRP and its derivation based on the Findley power law has been 

presented in Chapter 2.1.1. In this section, Equations 3.4-3.6 are utilized for curve fitting and 

modulus determination based on the experimentally obtained data. 

 ε = 𝜀0 + 𝑚𝑡𝑛 (3.4) 

 log(ε − 𝜀0) = 𝑛 log 𝑡 + log 𝑚 (3.5) 

 ε = 𝜎 (
1

𝐸0
+

𝑡𝑛

𝐸𝑡 
) =

𝜎

𝐸(𝑡)
 (3.6) 
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Equation 3.4 has been widely used by previous authors and is usually derived to the form 

of Equation 3.5. This derivation changes the power relationship to a linear relationship, which 

makes the modulus determination a more direct process (Appendix B). In this work, the moduli 𝑚 

and 𝑛 obtained using Equation 3.5 are given in Table 3.8. 

Table 3.8 Findley power law modulus determination with Equation 3.5 

Specimens 
Stress 

(MPa) 
𝑛 𝑚 

coefficient of 

determination, 

R2 

FLX_C_A 52 0.176 92 0.9977 

FLX_C_B 54 0.184 105 0.9935 

FLX_C_C 106 0.187 224 0.9836 

FLX_C_D 105 0.178 304 0.9927 

FLX_C_E 160 0.084 488 0.9840 

FLX_C_F 160 0.076 643 0.9889 

The values of 𝑛𝐹 were consistent for specimens A/B/C/D, resulting in an average 𝑛𝐹 of 

0.181 with COV of 0.026. But for specimens E/F, 𝑛 was smaller. This inconsistency could be 

explained by the range of applicability of the Findley power law. In the derivation of Findley 

power law in Section 2.2.1, Equation 3.4 is valid when the applied load is low compared to the 

failure load (Horvath, 1998). Since specimens E/F were subject to 38% of their failure load, 

Equation 3.4 may not be appropriate to characterize creep behaviors under this higher stress level. 

Modulus 𝑚 varied with the three different stress levels tested. The difference between 1000-hour 

strain and strain upon loading increased with stress levels. Thus, it is reasonable that 𝑚 also varied 

with load, considering the relationship of Equation 3.4. 

In addition to the analytical method derived from the power law, the enumeration method 

used for the Kelvin model was also used for the Findley power law (Equation 3.6 and Appendix 
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A.2) and the resulting moduli are presented in Table 3.9. 100-700 GPa was set as range of 𝐸𝑡 with 

an interval of 10 GPa and 0.01-0.30 was set for 𝑛 with an interval of 0.01.  

Table 3.9 Findley power law modulus determination with Equation 3.6 

Specimens 
Stress 

(MPa) 

Goodness of fit 

(normalized 

sum of squares 

of difference) 

𝐸𝑡 (GPa) 𝑛 

FLX_C_A 52 0.01 340 0.13 

FLX_C_B 54 0.03 330 0.15 

FLX_C_C 106 0.03 370 0.16 

FLX_C_D 105 0.07 250 0.15 

FLX_C_E 160 0.08 630 0.14 

FLX_C_F 160 0.08 230 0.08 

Assuming specimens E/F were not appropriate for the application of Findley power law 

and only considering the four specimens under lower loads, the average 𝐸𝑡 was 322 GPa (COV of 

0.138) and the average 𝑛 was 0.15 (COV of 0.078).  

3.3.3 Comparison and discussion 

Figure 3.8 – 3.14 showed the comparison between experimental results and three series of 

theoretical results provided by Kelvin model (enumeration method), Findley model (analytical 

method) and Findley model (enumeration method). Generally, the Findley power law provides a 

better curve shape compared with the Kelvin standard solid model. In the Kelvin model, the strain 

increased rapidly before the retardation time and became rather constant after that. This property 

made it hard to predict the short-term creep of pGFRP materials, in which most specimens were 

in their primary stage of creep and showed high creep rates. But when the creep strain grew slowly 
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and transitioned into the secondary stage, the prediction of the Kelvin Model would be more 

consistent with experimental results. As for Findley power law, it showed high level of fitting from 

the beginning to the end of the creep test. For the two methods based on the Findley model, the 

enumeration method provided better consistency with test results as compared to the logarithmic 

method. 

Figure 3.14 – 3.19 showed the modulus reduction in pGFRP creep behaviors, which 

corresponds to the creep deformation behaviors. Similar to Figure 3.8 – 3.13, experimental results 

and three series of theoretical prediction are shown. As indicated in Figure 3.14 – 3.19, the modulus 

predicted by the Kelvin model approached a constant value while the modulus predicted by the 

Findley model kept declining. 

 

Figure 3.8 Comparison of theoretical and predicted strain results of FLX_C_A 
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Figure 3.9 Comparison of theoretical and predicted strain results of FLX_C_B 

 

Figure 3.10 Comparison of theoretical and predicted strain results of FLX_C_C 
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Figure 3.11 Comparison of theoretical and predicted strain results of FLX_C_D 

 

Figure 3.12 Comparison of theoretical and predicted strain results of FLX_C_E 
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Figure 3.13 Comparison of theoretical and predicted strain results of FLX_C_F 

 

Figure 3.14 Comparison of theoretical and predicted modulus reduction of FLX_C_A 
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Figure 3.15 Comparison of theoretical and predicted modulus reduction of FLX_C_B 

 

Figure 3.16 Comparison of theoretical and predicted modulus reduction of FLX_C_C 
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Figure 3.17 Comparison of theoretical and predicted modulus reduction of FLX_C_D 

 

Figure 3.18 Comparison of theoretical and predicted modulus reduction of FLX_C_E 
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Figure 3.19 Comparison of theoretical and predicted modulus reduction of FLX_C_F 

3.4 SUMMARY 

In this chapter, flexural creep tests were presented and the results analyzed for theoretical modulus 

determination. Each model has two moduli to be determined. For the Kelvin standard solid model, 

an enumeration method written as a MATLAB program was utilized. And for the Findley power 

law, both an enumeration and analytical method was conducted; the enumeration method showed 

better predictive capacity. Considering the restriction of application of the Findley power law, the 

modulus determination process eliminated specimens E/F, which were under higher creep loads. 

With the average values shown in Table 3.10, further investigation and prediction can be made on 
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Table 3.10 Modulus summary from flexural creep tests 

  
Kelvin standard solid model Findley power law 

𝐸∞ (GPa) τ (hours) 𝐸𝑡 (GPa) 𝑛 
FLX_C_A 18.4 54 340 0.13 

FLX_C_B 18.3 63 330 0.15 

FLX_C_C 17.9 63 370 0.16 

FLX_C_D 16.7 68 250 0.15 

FLX_C_E 19.5 60 - - 

FLX_C_F 17.5 60 - - 

Average 18.05 61 322.5 0.15 

COV 0.048 0.069 0.138 0.074 
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4.0  AXIAL BUCKLING 

In this chapter, an experimental investigation of creep buckling of slender pGFRP columns is 

presented and compared to theoretical predictions. The critical short-term buckling load was 

determined using the graphical method of Southwell (1932). In the long-term experiment, 92% of 

the critical load was applied to the columns. Time-dependent lateral deflection was recorded and 

the critical time to creep buckling was obtained. For the theoretical predictions, both the Kelvin 

standard solid model and Findley power law were utilized, in which the moduli had been 

determined from the flexural creep tests as summarized in Table 3.10. 

4.1 BUCKLING TEST SET-UP 

All test specimens were the same GFRP material as described in Section 3.1. Nominal buckling 

specimen dimensions were 458 x 38.1 x 6.35 mm. Specimens are tested in a pin-ended condition, 

resulting in a weak axis slenderness ratio, KL/r = 250. Due to the unidirectional roller support 

conditions, the strong axis slenderness ratio would approach KL/r = 21. The high weak axis 

slenderness ratio ensures that the specimens will be dominated by global (Euler) buckling behavior 

and the significantly less slender strong axis should mitigate any bi-axial effects. 

Constant axial loading was applied using a lever arm system as shown in Figure 4.1a. As shown 

in Figure 4.1, the specimen was located 203.2 mm from the lever arm pivot, which was one quarter 
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of the steel lever arm length; thereby affecting a 4:1 mechanical advantage for the applied dead 

weights. The steel lever arm was welded from two angles weighing a total of 8.2 kg and its center 

of gravity was determined to be 415 mm from the pivot. Thus the relationship between the applied 

load, w and load on the column, P is (in units of N). 

 
𝑃 =

415 x (8.2 x 9.81) + 812.8 x 9.81 x (w + 𝑃𝑖)

203.2
+ (9.81)𝑃𝑓 

= 164.3 + 39.24 𝑥 (w + 𝑃𝑖) + (9.81 𝑥 𝑃𝑓) 

(4.1) 

in which Pf = 0.054 kg is the weight of top roller support and Pi = 0.387 kg is the load of free 

weight hanger. 

An overall view of the test setup is shown in Figure 4.1b. The pinned-pinned end support 

conditions was realised by utilizing steel roller and fixture as shown in Figure 4.1c. A dial gauge 

was used to measure mid-height lateral deflection. Load was applied using free weights (w in Eq. 

4.1). Multiple setups were used. Supports beneath the lever arms (Figure 4.1a) were provided to 

limit the vertical “drop” and therefore prevent the failure of one specimen from impacting an 

adjacent test. The concrete blocks seen Figure 4.1b were utilized to keep the steel lever arm square 

so that it did not bind on the pivot or impart a lateral load to the specimen. These were not in 

contact with the lever arm and thus did not affect loading.  
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a) schematic view 

 

 
b) photograph 

 

   
c) roller supports 

 

Figure 4.1 Test Configuration 
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4.2 SHORT-TERM BUCKLING EXPERIMENTAL PROGRAM 

Initially, six specimens were tested to determine their critical buckling load. Results are shown in 

Table 4.1. All specimens were measured using a digital caliper; measured and nominal dimensions 

are given in Table 4.1. Due the high weak axis slenderness, greater than KL/r = 50, the specimens 

were expected to demonstrate only global (Euler) buckling behavior about the weak axis (Hashem 

and Yuan 2001). Therefore, the theoretical critical buckling load may calculated using Euler’s 

formula: 

 𝑃𝐸 =
𝜋2𝐸𝐼

(𝐾𝐿)2
 (4.2) 

in which  𝐸 is elastic modulus (determined in Section 3.1), 𝐼 is the weak axis moment of inertia, 

𝐾 = 1 is the column effective length factor and 𝐿 is length of the column. The Euler load, PE, is 

the failure load for “perfect” (prismatic, initially straight, concentric load, and ideal (frictionless 

pins) support conditions) slender columns, for which no lateral deflection occurs before buckling. 

 The experimentally-determined critical load was determined using a Southwell plot 

(Southwell 1932), which is a widely-used graphical method (Hewson,1978; Barbero and Tomblin, 

1992; Scott and Zureick, 1997; Bennett, 2005) to obtain the critical load of a slender column 

without having to achieve (or specifically define) column failure. This method accounts for initial 

imperfection and load eccentricity. When the applied load, P, approaches the critical load, Pcr, it 

was observed by Southwell that 

 𝛿 =
𝑐

𝑃𝑐𝑟

𝑃 − 1
= 𝑃𝑐𝑟

𝛿

𝑃
− 𝑐 (4.3) 

in which 𝛿 is the measured mid-height lateral deflection and 𝑐 is a constant. According to Equation 

4.3, if 𝛿 is plotted against 𝛿 /P the resulting slope is the critical load, Pcr, of the column accounting 
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for all imperfections. c is a measure of the effect of all imperfections. In the short-term buckling 

tests, lateral deflection was recorded with load until load was close to the calculated Euler load. 

Figure 4.2 presents an example of the Southwell plot of specimen CB2. Because of the high 

slenderness, buckling is elastic; three repetitions were conducted for each specimen. Excellent 

repeatability and linearity was evident in all tests and can be seen for specimen CB2 in Figure 4.2. 

Additionally, the tests were controlled so that lateral displacements were limited to less than L/400; 

thereby limiting damage to the specimens allowing them to be subsequently tested for creep 

buckling as described in the next section. This is a significant advantage of using the Southwell 

method – specimens may be reused, thus actual buckling loads are known. 

Both predicted Euler load and experimental critical load are given in Table 4.1. As can be 

seen, the experimental buckling loads are marginally greater than the Euler loads. In these 

experiments, the specimens had no measurable imperfections and great care was taken to ensure 

concentric loading. The greater experimental loads are primarily attributed to the restraint provided 

by friction at the pinned connections; thus the actual value of the effective length factor, K is likely 

better give and 0.99 to 0.98. Since this is a comparative study, this distinction is not critical. 
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Table 4.1 Short-term critical buckling load 

  𝐿 (mm) b (mm) d (mm) 
slenderness 

ratio 
𝑃𝐸 (N) 𝑃𝑒𝑥𝑝 (N) 

𝑃𝑒𝑥𝑝

𝑃𝐸
% 

Nominal 457.20 38.10 6.35 249 802 - - 

CB1 452.12 38.84 6.44 243 871 865 99 

CB2 457.20 37.88 6.17 257 733 740 101 

CB3 452.12 38.86 6.19 253 774 803 104 

CB4 452.12 38.94 6.25 250 801 822 103 

CB5 457.20 37.93 6.08 260 702 792 113 

CB6 457.20 37.93 6.10 259 709 734 104 

 

 

Figure 4.2 Southwell plot of specimen CB2 

4.3  LONG-TERM BUCKLING EXPERIMENTAL PROGRAM 

For all six specimens described in Section 4.2, following determination of their critical buckling 

loads using the Southwell method, 92% of the critical load was applied and lateral deflections were 

recorded at the following intervals: 
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• Immediately after loading; 

• 5 min increments for the first three hours; 

• 30 min increments subsequently. 

Dial gage readings were logged digitally using timed photographs. The critical buckling time was 

determined as that when the specimen physically exhibited a large increase in lateral displacement 

and an inability to continue to resist the applied load (loss of equilibrium). In each case, buckling 

was clearly evident as is shown below. During the creep tests, the ambient environmental 

conditions were constant as required by ASTM D2990-09. The temperature remained at 21 ± 1oC 

and relative humidity was 53 ± 5%.  

Table 4.2 presents the applied loads and critical buckling time of the columns. Specimens CB1 

and CB3 buckled during loading, which likely resulted from a combination of specimen initial 

imperfection and some non-concentric load application while the system was being loaded. For 

the other four columns, the buckling time varies from 6.5 to 213.4 hours. 

Table 4.2 Critical buckling time in the test 

  𝑃𝑒𝑥𝑝 𝑃 𝑃/𝑃𝑒𝑥𝑝  Critical Buckling Time (h) 

CB1 865 796 92 - 

CB2 740 678 92 46.0 

CB3 803 741 92 - 

CB4 822 759 92 6.5 

CB5 792 732 92 213.4 

CB6 734 678 92 182.8 

 

Lateral deflection curves for specimen CB2, CB4, CB5 and CB6 are presented in Figures 4.3-4.6, 

respectively. The time-dependent lateral deflection exhibits the classic creep deformation behavior 

illustrated in Figure 2.1. Deformation increases quickly immediately following loading (primary 
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creep deformation). The deformation rate is reduced and relatively constant during the secondary 

deformation phase and increases rapidly (tertiary deformation) as the specimen approaches failure.   

 

Figure 4.3 Lateral Deflection of Specimen CB2 
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Figure 4.4 Lateral Deflection of Specimen CB4 

 

Figure 4.5 Lateral Deflection of Specimen CB5 
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Figure 4.6 Lateral Deflection of Specimen CB6 

4.4  ANALYSIS AND DISCUSSION 

In Section 2.4, an equation for theoretical prediction of time-dependent lateral deflection ratio of 

pGFRP columns was presented (Equation 2.32) that was derived based on Kelvin standard solid 

model in viscoelastic theory. Due to the good fitting effect of Findley power law in flexural creep 

tests reported in Chapter 3, this empirical model was utilized to derive another equation of 

deflection ratio f F(t) in this section.  

In the Kelvin standard solid model, the long-term stress-strain relationship can be expressed in 
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presented in Equation 2.12, replacing 𝐸 with 𝐸(𝑡) in Equation 2.25, the governing equation in 

both space and time could be derived as 

 𝑣′′ − 𝑣0
′′ + 𝜏𝑟𝑣̇′′ +

𝑃

𝐸0𝐼
𝑣 +

𝑃𝑡𝑛

𝐸𝑡𝐼
𝑣 = 0 (4.4) 

Assuming the form of 𝑣 given in Equation 2.29, function 𝑓𝐹(𝑡) is obtained as 

 𝑓𝐹(𝑡) =
1

1 − 𝑃 𝑃𝐸0
⁄ − 𝑃𝑡𝑛/𝑃𝐸𝑡

=
1

1 − P/𝑃𝐸(𝑡)  
 (4.5) 

in which 

 𝑃𝐸𝑡
= 𝜋2𝐸𝑡𝐼/𝐿2 and 

𝑃𝐸(𝑡) = 𝜋2𝐸(𝑡)𝐼/𝐿2.  

In Equation 4.5, the boundary conditions of f F(t) are both satisfied. For 𝑡 = 0, 𝑓𝐹(0) =

1

1−𝑃 𝑃𝐸0
⁄

= 𝑓𝐾(0) and for 𝑡 → ∞, 𝑓𝐹(∞) =
1

1−𝑃 𝑃𝐸∞⁄
= 𝑓𝐾(∞). With Equation 2.32, Equation 4.5 

and model parameters presented in Table 3.10, prediction based on Kelvin standard solid model 

and Findley power law for the lateral deflection ratio time history as well as critical time of creep 

buckling can be conducted. Figure 4.10 and Figure 4.11 are the theoretically predicted deflection 

ratio time histories calculated for the pGFRP tested here having nominal dimensions. As shown in 

Figure 4.7, the f(t) curve representing Kelvin model did not indicate obvious buckling (rapid 

transition from secondary to tertiary creep behavior (Figure 2.1)) but rather a gradual increase in 

f(t). This is due to the exponential form of Equation 2.32. In contrast, the f(t) curve representing 

the Findley model, shown in Figure 4.8, exhibits a sudden increase of deflection ratio f(t) and a 

fairly obvious critical time. Considering that it is hard to define buckling with the value f(t), the 

buckling time from the curve of Kelvin model was determined at which fK(t)= fF(t=6.5). fF(t=6.5) 

is approximately the initiation of buckling seen in the Findley curve (Figure 4.8) corresponding to 
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the transition from secondary to tertiary creep. The critical buckling time of the specimens was 

predicted to be about 269 and 6.5 hours, for the Kelvin and Findley predictions, respectively. The 

experimentally observed values varied from 6.5 to 214 hours (Table 4.2); thus the models appear 

top bound the observed behavior quite well with the Findley model falling on the conservative 

side.  

The reason for the large difference between predicted results of these two models could be 

explained by the predicted longitudinal modulus reduction in flexural creep tests (Figure 3.9). For 

all the six specimens, the longitudinal modulus E(t) predicted by the Findley model kept reducing 

while E(t) predicted by the Kelvin model approaches a constant value 𝐸∞. By comparison of the 

functions predicted by the two models (Equation 2.32 and Equation 4.5, respectively), the power 

term was the denominator in Findley model. When 𝑃𝐸(𝑡) approached P in the Findley model, the 

function f(t) would increase extremely. However in the Kelvin model, the exponential term was 

the numerator, since 𝜏𝑏 was negative when P> 𝑃𝐸∞
. Thus fK(t) grew slowly and predicted much 

longer critical time.  

 

Figure 4.7 Predicted curve of f(t) for nominal specimen with Kelvin Model 
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Figure 4.8 Predicted curve of f(t) for nominal specimen with Findley power law 

4.5  SUMMARY 

In this chapter, experimental investigation as well as theoretical prediction of six slender column 

specimens’ creep buckling behaviors was presented. In the experimental parts, short-term critical 

load for the six specimens were determined using Southwell’s method. Following this, creep 

buckling tests at 92% of experimental short-term critical load were conducted. During the test, 

lateral deflection readings were taken regularly and critical time of buckling was recorded. As for 

theoretical predictions, both the Kelvin standard solid model and Findley power law were utilized 

to derive the deflection ratio function 𝑓(𝑡). The expression derived based on the Findley power 
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5.0  CONCLUSION AND FUTURE STUDY 

5.1 CONCLUSION 

Based on experimental and theoretical results in this work, the following conclusions can be made: 

1) In both flexural and axial creep tests, the creep behaviors were consistent with the 

classic creep deformation behavior (Figure 2.1). While the creep buckling test results 

showed all three stages of creep, the flexural creep tests only exhibited the primary and 

secondary stages because the stress levels were not high enough to cause failure in the 

relatively short 1000 hour tests. 

2) In the flexural creep tests, strain and deflection readings kept increasing in the 1000-

hour test. And the increment of strain and deflection was larger as the stress level got 

higher. At the same time, longitudinal modulus reduced with time and approached 84% 

of the initial value following 1000 hours of loading.  

3) For 1000-hour flexural creep tests, the Findley power law provided very good 

descriptive results while the Kelvin standard solid model did not fit well with 

experimental results. For the Findley power law, enumeration method resulted in better 

predictive results than the analytical method. 
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4) Based on the summary data presented in table 3.10, it is felt that the 1000-hour test was 

adequate to estimate long term modeling parameters of the pGFRP, particularly for the 

Findley power law.  Such a test duration is considered practical. 

5) The modified creep buckling equation based on the Findley power law is able to predict 

the shape of time-dependent mid-height lateral deflection as well as critical buckling 

time of slender pGFRP columns under concentric load. 

6) According to moduli determined using the Findley model enumeration method, 

application of the Findley model should be limited to lower permanent (creep) loads. 

In this study, the model worked well for P/Pult = 0.25 but was inadequate for P/Pult = 

0.38. Further study is required to refine the limit of application of this model.   

7) For axial creep tests, critical time prediction made from the Kelvin and Findley models 

differed significantly. This difference could be explained by the different equation form 

of the two models. When load level was 92% of critical load, neither model offered 

consistent critical time prediction since the experimental results varied. But generally, 

the critical time predicted by the Findley power law was more conservative. 

5.2 RECOMMENDATION FOR FUTURE STUDY 

On the basis of investigation in this work, the following recommendations for future study are 

made: 

1) As mentioned in Section 2.4, the shape of function 𝑓(𝑡) predicted by the Kelvin model was 

different for 𝑃 < 𝑃𝐸∞
 and 𝑃 > 𝑃𝐸∞

. In this work, only one load level (92%) in condition 

𝑃 > 𝑃𝐸∞
 was investigated since the research object was to illustrate the critical buckling 



  62  

 

time. For more comprehensive investigation of the creep buckling behaviors of pGFRP 

columns as well as descriptive models’ validity, more load levels should be considered. 

2) This work focused on the prediction of critical time in creep buckling. At the same time, 

the lateral deflection increase over time is another important issue since typically the 

applied load in practice will be a significantly smaller proportion of critical load than was 

tested here. Based on the expression of function 𝑓(𝑡) , the function of lateral deflection 

𝑣(𝑡) could be derived according to Equation 2.29. 



  63  

 

APPENDIX A 

MATLAB PROGRAM FOR MODULI DETERMINATION 

 KELVIN MODEL ENUMERATION PROGRAM 

%Kelvin Model Prediction 

clear all 

  

L=304.8; 

a=116.84; 

g=9.81; 

load1=50; 

load2=100; 

load3=150; 

  

%A 

E0_A=21100; 

b_A=38.74; 

t_A=6.19; 

I_A=b_A*t_A^3/12;%mm^4 

Pmid_A=load2/2/2.2*g;%N 

Mmid_A=Pmid_A*a; 

stressmid_A=Mmid_A*(t_A/2)/I_A; 

  

%Adata 

hours_A=xlsread('flexural results.xlsx',4,'F5:F84'); 

strain_AT=xlsread('flexural results.xlsx',4,'G5:G84'); 

strain_AC=xlsread('flexural results.xlsx',4,'H5:H84'); 

stress_AC=xlsread('flexural results.xlsx',4,'I5:I84'); 

stress_AT=xlsread('flexural results.xlsx',4,'J5:J84'); 
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%B 

E0_B=20500; 

b_B=38.8; 

t_B=6.2; 

I_B=b_B*t_B^3/12;%mm^4 

Pmid_B=load2/2/2.2*g;%N 

Mmid_B=Pmid_B*a; 

stressmid_B=Mmid_B*(t_B/2)/I_B; 

%Bdata 

hours_B=xlsread('flexural results.xlsx',4,'N5:N85'); 

strain_BT=xlsread('flexural results.xlsx',4,'O5:O85'); 

strain_BC=xlsread('flexural results.xlsx',4,'P5:P85'); 

stress_BC=xlsread('flexural results.xlsx',4,'Q5:Q85'); 

stress_BT=xlsread('flexural results.xlsx',4,'R5:R85'); 

  

%C 

E0_C=21200; 

b_C=38.7; 

t_C=6.2; 

I_C=b_C*t_C^3/12;%mm^4 

Pmid_C=load3/2/2.2*g;%N 

Mmid_C=Pmid_C*a; 

stressmid_C=Mmid_C*(t_C/2)/I_C; 

%Cdata 

hours_C=xlsread('flexural results.xlsx',4,'V5:V86'); 

strain_CT=xlsread('flexural results.xlsx',4,'W5:W86'); 

strain_CC=xlsread('flexural results.xlsx',4,'X5:X86'); 

stress_CC=xlsread('flexural results.xlsx',4,'Y5:Y86'); 

stress_CT=xlsread('flexural results.xlsx',4,'Z5:Z86'); 

  

%D 

E0_D=20100; 

b_D=38.8; 

t_D=6.2; 

I_D=b_D*t_D^3/12;%mm^4 

Pmid_D=load3/2/2.2*g;%N 

Mmid_D=Pmid_D*a; 

stressmid_D=Mmid_D*(t_D/2)/I_D; 

%Ddata 

hours_D=xlsread('flexural results.xlsx',4,'AD5:AD87'); 

strain_DT=xlsread('flexural results.xlsx',4,'AE5:AE87'); 

strain_DC=xlsread('flexural results.xlsx',4,'AF5:AF87'); 

stress_DC=xlsread('flexural results.xlsx',4,'AG5:AG87'); 

stress_DT=xlsread('flexural results.xlsx',4,'AH5:AH87'); 

  

%E 

E0_E=21100; 
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b_E=39.0; 

t_E=6.3; 

I_E=b_E*t_E^3/12;%mm^4 

Pmid_E=load1/2/2.2*g;%N 

Mmid_E=Pmid_E*a; 

stressmid_E=Mmid_E*(t_E/2)/I_E; 

%Edata 

hours_E=xlsread('flexural results.xlsx',4,'AL5:AL83'); 

strain_ET=xlsread('flexural results.xlsx',4,'AM5:AM83'); 

strain_EC=xlsread('flexural results.xlsx',4,'AN5:AN83'); 

stress_EC=xlsread('flexural results.xlsx',4,'AO5:AO83'); 

stress_ET=xlsread('flexural results.xlsx',4,'AP5:AP83'); 

  

%F 

E0_F=21500; 

b_F=39.0; 

t_F=6.2; 

I_F=b_F*t_F^3/12;%mm^4 

Pmid_F=load1/2/2.2*g;%N 

Mmid_F=Pmid_F*a; 

stressmid_F=Mmid_F*(t_F/2)/I_F; 

%Fdata 

hours_F=xlsread('flexural results.xlsx',4,'AT5:AT83'); 

strain_FT=xlsread('flexural results.xlsx',4,'AU5:AU83'); 

strain_FC=xlsread('flexural results.xlsx',4,'AV5:AV83'); 

stress_FC=xlsread('flexural results.xlsx',4,'AW5:AW83'); 

stress_FT=xlsread('flexural results.xlsx',4,'AX5:AX83'); 

  

  

hours=hours_A; 

strain=strain_AC; 

stress=stress_AC; 

E0=E0_A; 

[No_of_data,column]=size(hours); 

  

ini_Einf=15000; 

int_Einf=100; 

final_Einf=20000; 

  

for Einf=ini_Einf:int_Einf:final_Einf 

    for tau=1:500 

        for i=1:No_of_data 

            strain_K(i,1)=(1/Einf-(1/Einf-1/E0)*exp(-

hours(i,1)/tau))*stress(i,1)*10^6; 

        end 
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        for i=1:No_of_data 

            if i<40 

                sq(i)=(strain_K(i,1)-strain(i,1))^2; 

            else if i<70 

                sq(i)=(strain_K(i,1)-strain(i,1))^2*1600; 

                else 

                    sq(i)=(strain_K(i,1)-strain(i,1))^2*16000; 

                end 

            end  

        end 

         

        sqsum_K((Einf-ini_Einf)/int_Einf+1,tau)=sum(sq); 

    end 

    lsqmin_K=min((sqsum_K),[],2); 

end 

lsqmin_K=min((lsqmin_K),[],1); 

sqsum_K=fix(sqsum_K.*1000); 

lsqmin_K=fix(lsqmin_K*1000); 

[Row,Col]=find(sqsum_K==lsqmin_K); 

Einf=(Row-1)*int_Einf+ini_Einf 

tau=Col 

 FINDLEY MODEL ENUMERATION PROGRAM 

%Findley Model Prediction 

clear all 

  

  

L=304.8; 

a=116.84; 

g=9.81; 

load1=50; 

load2=100; 

load3=150; 

  

%A 

E0_A=21061; 

b_A=38.74; 

t_A=6.19; 

I_A=b_A*t_A^3/12;%mm^4 

Pmid_A=load2/2/2.2*g;%N 

Mmid_A=Pmid_A*a; 
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stressmid_A=Mmid_A*(t_A/2)/I_A; 

  

%Adata 

hours_A=xlsread('flexural results.xlsx',4,'F5:F84'); 

strain_AT=xlsread('flexural results.xlsx',4,'G5:G84'); 

strain_AC=xlsread('flexural results.xlsx',4,'H5:H84'); 

stress_AC=xlsread('flexural results.xlsx',4,'I5:I84'); 

  

%B 

E0_B=20500; 

b_B=38.8; 

t_B=6.2; 

I_B=b_B*t_B^3/12;%mm^4 

Pmid_B=load2/2/2.2*g;%N 

Mmid_B=Pmid_B*a; 

stressmid_B=Mmid_B*(t_B/2)/I_B; 

%Bdata 

hours_B=xlsread('flexural results.xlsx',4,'N5:N85'); 

strain_BT=xlsread('flexural results.xlsx',4,'O5:O85'); 

strain_BC=xlsread('flexural results.xlsx',4,'P5:P85'); 

stress_BC=xlsread('flexural results.xlsx',4,'Q5:Q85'); 

  

%C 

E0_C=21200; 

b_C=38.7; 

t_C=6.2; 

I_C=b_C*t_C^3/12;%mm^4 

Pmid_C=load3/2/2.2*g;%N 

Mmid_C=Pmid_C*a; 

stressmid_C=Mmid_C*(t_C/2)/I_C; 

%Cdata 

hours_C=xlsread('flexural results.xlsx',4,'V5:V86'); 

strain_CT=xlsread('flexural results.xlsx',4,'W5:W86'); 

strain_CC=xlsread('flexural results.xlsx',4,'X5:X86'); 

stress_CC=xlsread('flexural results.xlsx',4,'Y5:Y86'); 

  

%D 

E0_D=20100; 

b_D=38.8; 

t_D=6.2; 

I_D=b_D*t_D^3/12;%mm^4 

Pmid_D=load3/2/2.2*g;%N 

Mmid_D=Pmid_D*a; 

stressmid_D=Mmid_D*(t_D/2)/I_D; 

%Ddata 

hours_D=xlsread('flexural results.xlsx',4,'AD5:AD87'); 

strain_DT=xlsread('flexural results.xlsx',4,'AE5:AE87'); 
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strain_DC=xlsread('flexural results.xlsx',4,'AF5:AF87'); 

stress_DC=xlsread('flexural results.xlsx',4,'AG5:AG87'); 

  

%E 

E0_E=21100; 

b_E=39.0; 

t_E=6.3; 

I_E=b_E*t_E^3/12;%mm^4 

Pmid_E=load1/2/2.2*g;%N 

Mmid_E=Pmid_E*a; 

stressmid_E=Mmid_E*(t_E/2)/I_E; 

%Edata 

hours_E=xlsread('flexural results.xlsx',4,'AL5:AL83'); 

strain_ET=xlsread('flexural results.xlsx',4,'AM5:AM83'); 

strain_EC=xlsread('flexural results.xlsx',4,'AN5:AN83'); 

stress_EC=xlsread('flexural results.xlsx',4,'AO5:AO83'); 

  

%F 

E0_F=21500; 

b_F=39.0; 

t_F=6.2; 

I_F=b_F*t_F^3/12;%mm^4 

Pmid_F=load1/2/2.2*g;%N 

Mmid_F=Pmid_F*a; 

stressmid_F=Mmid_F*(t_F/2)/I_F; 

%Fdata 

hours_F=xlsread('flexural results.xlsx',4,'AT5:AT83'); 

strain_FT=xlsread('flexural results.xlsx',4,'AU5:AU83'); 

strain_FC=xlsread('flexural results.xlsx',4,'AV5:AV83'); 

stress_FC=xlsread('flexural results.xlsx',4,'AW5:AW83'); 

  

  

  

hours=hours_F; 

strain=strain_FC; 

stress=stress_FC; 

E0=E0_F; 

[No_of_data,column]=size(hours); 

  

ini_Et=100000; 

int_Et=10000; 

final_Et=700000; 

  

for Et=ini_Et:int_Et:final_Et 

    for n=1:30 

        for i=1:No_of_data 
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strain_F(i,1)=(1/E0+(hours(i,1)^(n/100))/Et)*stress(i,1)*10^6; 

        end 

        

         

        for i=1:No_of_data 

            if i<40 

                sq(i)=(strain_F(i,1)-strain(i,1))^2; 

            else 

                sq(i)=(strain_F(i,1)-strain(i,1))^2*1600; 

            end  

        end 

         

        sqsum_F(((Et-ini_Et)/int_Et+1),n)=sum(sq); 

    end 

    lsqmin_F=min((sqsum_F),[],2); 

end 

lsqmin_F=min((lsqmin_F),[],1); 

sqsum_F=fix(sqsum_F.*1000); 

lsqmin_F=fix(lsqmin_F*1000); 

[Row,Col]=find(sqsum_F==lsqmin_F); 

Et=(Row-1)*int_Et+ini_Et 

n=Col/100
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APPENDIX B 

FINDLEY POWER LAW LOGARITHM PLOTS 

 

Figure A.1 Plot of log(ε−𝜀0) to log(t) of FLX_C_A 

 

 

 

 

y = 0.1763x + 4.5253

R² = 0.9977

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

lo
g
(ε

−
𝜀 0

)

log(t)

FLX_C_A



  71  

 

 

Figure A.2 Plot of log(ε−𝜀0) to log(t) of FLX_C_B 

 

Figure A.3 Plot of log(ε−𝜀0) to log(t) of FLX_C_C 
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Figure A.4 Plot of log(ε−𝜀0) to log(t) of FLX_C_D 

 

Figure A.5 Plot of log(ε−𝜀0) to log(t) of FLX_C_E 
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Figure A.6 Plot of log(ε−𝜀0) to log(t) of FLX_C_F
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