
 i 
 

COMPUTER AIDED DESIGN AND INITIAL TESTING OF A NOVEL STEM 
CELL BASED THERAPY FOR ABDOMINAL AORTIC ANEURYSMS  

 
 
 
 
 
 

by 

Kory J. Blose  

Bachelor of Science, Pennsylvania State University, 2007 

 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

The Swanson School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2017 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Kory J. Blose 
 
 
 

It was defended on 

March 14th, 2017 

and approved by 

Sanjeev G. Shroff, Ph.D., Professor, Departments of Bioengineering and Medicine 

Anne Robertson, Ph.D., Professor, Departments of Mechanical and Bioengineering 

John A. Curci, MD, Professor, Departments Surgery, Vanderbilt University 

Justin S. Weinbaum, Ph.D., Research Assistant Professor, Department of Bioengineering 

Dissertation Director: David A. Vorp, Ph.D., Professor, Departments of Bioengineering, 

Cardiothoracic Surgery, and Surgery 

 

 



 iii 

Copyright © by Kory Blose 

2017 



 iv 

 

Exsanguination from abdominal aortic aneurysm (AAA) rupture is frequently fatal and is 

currently the 13th leading cause of death in the United States of America. AAAs can take years 

to progress to the point where surgical intervention is recommended (> 5.5 cm diameter). 

Surgical intervention does not benefit small AAAs, and management of these patients is limited 

to “watchful waiting” (i.e., serial imaging of the AAA progression until the threshold for surgical 

treatment is met). 

The goal of this dissertation is to develop a novel stem cell therapy for small AAAs. 

Approximately 90% of patients with AAA do not meet the size criterion for intervention and 

could benefit from this alternative therapy.  

In short, our proposed strategy is delivery of adipose-derived mesenchymal stem cells to 

the external surface of the AAA. In this way autologous cells can be isolated from a patient, 

culture-expanded if necessary, mixed in a hydrogel, and injected around that same patient’s aorta 

in a minimally invasive procedure. The work of this dissertation represents four foundational 

steps towards design and initial evaluation of the proposed therapy: evaluation of the potential of 

SMCs to produce elastin in vitro, assessment of the effects of elastin production in silico, 

demonstration of efficacy in a small animal model, and fabrication of a new self-mixing injector 

device for human use. 
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1.0  INTRODUCTION 

The goal of this dissertation is to develop a computationally-guided, novel therapy for 

abdominal aortic aneurysms (AAAs). This novel therapy is being designed to service a 

population of AAA patients that have a clinically defined AAA but do not meet the surgical 

criterion for intervention. This population, which makes up 90% of those identified with a AAA, 

currently has no effective treatment options, and it has been hypothesized that an effective 

treatment must be one the replaces lost elastin2. In order to develop an effective AAA treatment 

for subcritical AAAs that addresses current barriers, one must first understand the disease, its 

current treatments, and methods of studying potential treatments while considering the clinical 

barriers to translation for the said treatment.  

The AAA treatment being investigated within this study is an adipose derived 

mesenchymal stem cell (ADMSC) based treatment designed to be injected and entrapped around 

the AAA. In this way cells can be isolated from a patient, cultured expanded, mixed in a fibrin 

hydrogel, and injected around that same patient’s aorta in a minimally invasive procedure. The 

current scope of this work is to apply this therapy to those AAA patients who have a subcritical 

sized AAAs. The work of this dissertation is specifically meant to lay the groundwork for the 

development of this novel AAA treatment within the laboratory of Dr. David Vorp working 

towards clinical translation by evaluating the potential of smooth muscle cells (SMCs) to 
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produce elastin in-vitro, assessing the effects of elastin production in-silico, showing efficacy in 

a small animal model, and creating a new cell delivery device for human use. 

The introductory chapter of this dissertation will first provide a broad overview of 

aneurysm types and the anatomical differences in normal and aneurysmal arteries (Section 1.1). 

Next, an overview of current clinical treatments will be discussed in detail (Section 1.2). 

Following this, an overview of current preclinical models of the disease and treatment will be 

discussed (Section 1.3). Then, an introduction and discussion of preclinical AAA treatment 

approaches will be provided (Section 1.4). Next, previous AAA studies performed in the Vorp 

lab are reviewed (Section 1.5). Finally, the specific aims of this dissertation are provided 

(Section 1.6). 

1.1 ABDOMINAL AORTIC ANEURYSM ANATOMY (AAA) AND ETIOLOGY 

1.1.1 Aneurysm Types and Etiology 

An aneurysm is defined as a 50% increase in the diameter of an artery3. Aneurysms are 

commonly found in the aorta, and are classified according to the section where it is contained4. 

These include thoracic aortic aneurysms which are subdivided into ascending and descending, 

and abdominal aortic aneurysms which are divided into suprarenal and infrarenal5. Aneurysms 

can also occur in other parts of the arterial tree, most notably in the brain, called cerebral 

aneurysms, and in peripheral arteries such as the brachial, femoral, popliteal, and carotid 

arteries4. Regardless of the aneurysm location, all are noted by their disrupted and diminished 

elastic fibers5,6.  
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Though the exact etiology of the disease is unknown, ultimately it is the force caused by 

blood pressure pushing against the walls of a mechanically compromised artery that leads to 

dilatation7. There are many factors that can cause an artery to become compromised including 

aging, smoking, high blood pressure, and atherosclerosis. Sex and race are also risk factors for 

AAA8,9.  

A family history of aneurysm and certain genetic backgrounds are also risk factors for 

aortic aneurysms. Genetic conditions such as Marfan’s syndrome10, Loeys-Dietz syndrome11, 

Ehlers-Danlos syndrome12, Turner syndrome13, and having a bicuspid aortic valve14 are 

associated with a relatively high incidence with thoracic aortic aneurysms. These genetic 

conditions weaken the body’s connective tissues ultimately compromising the aorta. People who 

have these genetic conditions tend to develop aneurysms at a younger age and are at a higher risk 

for rupture and dissection. 

Infections may cause aortic aneurysms15. Additionally, aortic aneurysms also can occur 

as a result of diseases that inflammatory conditions such as vasculitis16,17. Lastly, trauma can 

also damage the walls of the aorta and lead to aneurysms18. 

1.1.2 Smooth Muscle Cells in Normal vs. Aneurysmal Aortas 

SMCs are, by far, the predominant cell type present within the medial layer of the normal 

vessel wall, and are responsible for the production of the structural proteins of the extracellular 

matrix (ECM) – mainly collagen and elastin19. The SMC also provides active stress giving the 

wall the ability to contract and dilate in response to blood flow demands and to regulate blood 

pressure19-21. 
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In the non-pathological condition, SMCs remain in a mostly quiescent, contractile 

phenotype, having produced most of it elastic fibers in early childhood and only being tasked 

with collagen maintenance22-25. However, SMCs are highly plastic, having the ability to switch 

phenotypes from contractile to synthetic, allowing the SMC to proliferate, migrate, and 

synthesize ECM in response to injury21. SMC plasticity has been implicated not only in aortic 

aneurysms26-29 but also other vascular diseases such as hypertension21, atherosclerosis19,30-32 and 

intimal hyperplasia30,33,34. A number of conditions exist within the aneurysmal state that can 

promote SMCs to switch from a contractile to a synthetic phenotype such as increased 

mechanical stress35,36, increased substrate stiffness37, and increased inflammation36.  

An additional phenomena characteristic of AAAs compared to normal aortas is an 

increase in SMC apoptosis. Most of the human studies of SMC in aneurysm disease describe a 

decrease in the concentration of the cells within the media. In-vitro studies of SMC lines derived 

from aneurysmal tissue reveal increased SMC apoptosis and poor in vitro propagation38-41. It has 

therefore been hypothesized that the matrix reduction seen in AAA results in part from a 

reduction in the quantity or activity of SMC28,38,39,41,42. 

SMCs in the diseased AAA also produce a plethora of factors that sustain the “cycle of 

destruction” which exacerbates the disease (Figure 1). For example, one study showed that 

matrix metalloproteinase-13 (MMP-13; other MMP activity is more fully discussed in Section 

1.1.6 Other Differences in Normal vs. Aneurysmal Aortas) is localized to medial SMCs in AAA 

tissue and to human vascular SMC in culture, which also expressed MMP-13 mRNA thus 

contributing to the pathophysiologic progression of AAA43. Additionally, studies show that 

SMCs from AAA patients tend to secrete elastase44. Clearly, SMC contributes to the cycle of 

destruction in AAA.  
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Figure 1. AAA “cycle of destruction”. AAAs present an active inflammatory environment with multiple 
positive feedback loops. Figure adapted from Boddy et al.1  
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1.1.3 Elastin in Normal vs. Aneurysmal Aortas 

One of the main extracellular structural proteins within the vascular wall is elastin which 

largely occurs in the form of elastic fibers/lamellae. While elastin can provide cellular signals 

such as maintaining SMC cell senescence45, its primary role is to impart the biomechanical 

property of elasticity to the vascular wall46-48. This provides a direct contrast to collagen as its 

tensile strength is insignificant comparatively, but its elasticity is essential for arteries to recoil 

and recover the deformation they experience under the cyclic loading46,48,49. Additionally, the 

amount of elastic fibers present in a vessel are linearly proportional to the pressure they 

experience47.  

Creation of new elastic fibers is an involved, complex process that rarely happens in 

adulthood due to downregulation of the genes coding for elastin and elastin-related proteins 

postnatally47,50 and an inherently complex elastic fiber synthesis process51. The down regulation 

of elastin-related genes in adulthood is a conserved process occurring across a variety of 

species47,50. 

Since adults do not normally produce elastin fibers, the loss of normal medial structure 

and, in particular, the near complete absence of a normal lamellar elastin is a striking feature of 

AAA histology compared to the non-aneurysmal aorta. The defatted dry weight of elastin is 

significantly lower in AAA compared to non-aneurysmal aortas52,53.  

Aortic elastin is thought to be extremely durable, with a half-life approximating the 

lifetime of the individual54, thus the elastin loss characteristic of AAA is particularly remarkable. 

Studies of human AAA tissue demonstrate increased expression and/or activity of a variety of 

elastolytic matrix proteases, including MMPs55-66, cysteine proteases67,68 and serine proteases69-

71. These studies back up the inverse correlation of elastin content with the elastolytic activity in 
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the aorta53. Importantly, corresponding findings in murine models of AAA have also been 

seen72-77. Additionally, elastase has been shown to come from not only the resident SMCs as 

discussed above, but also from leukocytes53. 

Once elastic fibers are broken down by the aforementioned proteases, a bevy of pro-

inflammatory signals present in the elastin degradation products (or sometimes called elastin 

derived peptides) are released which recruit inflammatory cells and propagate the vicious cycle 

of AAA destruction78. Additionally, during the process of elastin fragmentation soluble elastin 

products can result and act as cell signaling molecules inducing negative effects such as SMC 

hyper-proliferation45, inflammation1, and calcification79.  

1.1.4 Collagen in Normal vs. Aneurysmal Aortas 

Collagen is the most abundant class of proteins within the body80 and is one of two main 

ECM components of the vascular wall along with elastin47. The primary function of collagen in 

the vascular wall is providing mechanical tensile strength47,48. The most important collagen 

types for the vasculature are collagens I, III, and IV47. Collagen types I and III are most 

abundant, residing in the medial and adventitial layers19,47. Collagen type IV is present in the 

basement membrane adjacent to endothelial cells and consists of a network-like structure rather 

than an elongated fiber like the other types19,47. 

Most of the tensile strength in the wall is provided by the fibrillar collagen network 

consisting principally of types I and III collagen with the extensile, or stretching,  characteristics 

being attributed to type III collagen81. Ultimately, it is the progressive aneurysmal dilatation 

along with progressive weakening of tensile strength that causes an aneurysm to rupture.  
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This progressive weakening is due to the degradation of collagen. Normally, structural 

collagens are highly resistant to proteolytic degradation, only able to be cleaved by collagenases 

of the MMP family (i.e., MMP-1, -8, and -13) and selected members of the cysteine protease 

family82. However, in the aneurysmal aorta, studies in human patients have shown reduced 

levels of cystatin C protein expression along with increased collagen degradation products 

suggesting that protease inhibitor deficiency may contribute to AAA rupture83. 

While the late stages of AAA are characterized by an increase in collagen degradation, 

the earlier stages of the disease are quite different. There is an increase in the proportion of 

collagen in the aneurysmal aorta compared to non-diseased tissue (84% and 62%, respectively). 

In the aneurysms, collagen was increased and elastin was decreased84,85. Interestingly, while the 

ratio of type I to type III collagen remains the same in AAA and non-aneurysmal aortas81, the 

turnover of type III collagen is increased in in AAA compared to non-aneurysmal aortas.86 

Additionally, there is an increase of collagen cross-links in AAA which may be attributed to old 

collagen accumulating cross-links while the biosynthesis of new collagen somehow defective87. 

While degradation of elastin is a hallmark of AAA and contributes to the cycle of 

destruction present within the disease, it is ultimately the degradation of collagen that produces 

the ever greater dilatation and eventual vessel rupture at the end stage of the disease88. To this 

end, collagen based interventions represent a treatment modality that may be better suited to 

preventing rupture of a large, critically-sized AAA, a contrast to elastin based interventions that 

may be more suitable for preventing the enlargement of the AAA.  
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1.1.5 Mechanical Environment in Normal vs. Aneurysmal Aortas 

A direct consequence of the loss of elastin and temporal changes in collagen is a 

corresponding temporal change in the mechanical properties and stresses in the AAA compared 

to the non-aneurysmal aorta. One may surmise that the loss of the protein that is responsible for 

the elastic recoil of an artery will lead to a stiffer, less distensible tissue in AAAs compared to 

non-aneurysmal aortas. This is exactly the case84,89,90.  

While changes in general mechanical descriptors such as stiffness and distensibility are 

intuitive when one understands the function and properties of the main structural proteins, elastin 

and collagen, there is much more to be learned about the mechanics of AAA and the role they 

play in the disease. Groundbreaking studies in the Vascular Bioengineering Laboratory, headed 

by Dr. David Vorp, using patient specific geometries for finite element analyses (FEA) showed 

wall stress to be dependent on aneurysm shape and maximum diameter91. Subsequent studies 

initially built isotropic, uniaxially derived constitutive relations to perform FEA90 before 

building more complex biaxial constitutive relations92. 

Determining the stress on the AAA wall is only half of the equation when understanding 

the effects of the disease. Understanding the strength of the tissue is also required.  Again, this 

research was pioneered by the Vascular Bioengineering Laboratory who determined that AAA 

rupture is associated with aortic wall weakening, but not with wall stiffening. This wall strength 

(which is weaker than non-aneurysmal aortic tissue) in large aneurysms is not related to the 

maximum transverse diameter93. Further research created a regression model for estimating a 

patient specific strength based on the patient’s age, sex, smoking status, family history, and AAA 

size as well as significant local predictor variables such as intraluminal thrombus (ILT) thickness 

and local normalized transverse diameter94. Importantly, the presence of ILT can alter the wall 
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stress distribution and reduces the peak wall stress in AAA providing a cushioning effect for the 

wall95; however, ILT has also been implicated with providing a hypoxic environment in the wall 

which could speed degradation of the wall96-98.  

The culmination of the Vascular Bioengineering Laboratory’s work in patient specific 

stress and strength analysis was the creation of a way to non-invasively assess a patient’s 

susceptibility to rupture, the rupture potential index (RPI). RPI is defined at the stress divided by 

the strength at each point in the finite element model of a patient’s AAA. The Vascular 

Bioengineering Laboratory has shown that RPI could more reliably show differences in rupture 

vs. non-ruptured AAA when compared to maximum diameter and peak wall stress 

measurements99. 

While RPI may ultimately guide surgeons when determining a patient’s need for 

interventional therapy, there is more that can be learned from the mechanics of AAA with 

respects to the mechanobiology of the disease. For example, mechanical and chemical cues 

influence the turnover rates of arterial constituents100-103. This is observation agrees with the 

theory of Y.C. Fung104 who stated that the rate of volumetric growth is a function of a scalar 

measure of stress. Importantly, the ideas behind Fung’s hypothesis can be traced back to at least 

the late 19th century105.  

Not only does the magnitude of stress seem to alter the production of ECM, but the 

direction of principal stress seems to influence the direction at which the ECM deposited. 

Research suggests that synthetic cells, such as SMCs, seem to have favorable biological 

functions or behaviors by affecting local anisotropy106,107. These mechanobiology concepts have 

motivated the creation of in-silico growth and remodeling models to test hypotheses. Utilizing 
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these models may help researchers understand such phenomena as MMP activity co-localizing 

with peak stresses within the AAA wall56 and ultimately guide interventional therapies for AAA. 

1.1.6 Other Differences in Normal vs. Aneurysmal Aortas 

While the above sections cover the differences in the main constituents of the AAA and 

non-aneurysmal aortic walls, a few other differences are important enough to spell out explicitly. 

A particular noteworthy difference in all human abdominal aortas occurs in the number of 

lamellar units and the presence of vasa vasorum when compared to other mammals. The human 

abdominal aortic media has relatively fewer lamellar units with respect to its diameter than 

abdominal or thoracic aortas of other species. This elevates the mean tension per lamellar unit. 

Additionally, vasa vasorum are not as prevalent in human abdominal aortic media leading to 

avascular zones in the media108. 

Though the vasa vasorum density is sparse in humans compared to other mammals, there 

are also differences in the vasa vasorum of AAAs and non-aneurysmal aortas.  Both tissue 

inhibitor of metalloproteinases (TIMPs) and gelatinases are localized to the vasa vasorum 

suggesting an involvement of the vasa vasorum in the maintenance and possibly the genesis of 

AAAs64,65,109-111. AAAs also have a higher density of medial neovascularization compared to 

non-aneurysmal aortas localizing to areas of disruption and degradation of elastin and chronic 

inflammation in the outer aortic wall112. 

This increase in medial neovascularization could be partially explained by the presence of 

the ILT which occurs in 75% of AAAs113. The ILT creates a physical barrier between the 

circulating blood and the wall, and an increase in the vasa vasorum would allow access to the 

wall from circulating cytokines and macrophages which are present in AAAs83. It’s no wonder 
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that the process of aneurysmal enlargement is so complex, involving inflammatory cells, elastin 

and collagen degradation, smooth muscle apoptosis, and hypoxia mediated weakening114, all 

mentioned above. Additionally, studies of human AAA tissue demonstrate increased expression 

and/or activity of a variety of elastolytic matrix proteases, including MMPs55-66, cysteine 

proteases67,68 and serine proteases69-71 while lower or steady levels of TIMPs115 when compared 

to non-aneurysmal aortas. 

1.2 CURRENT CLINICAL TREATMENT OF AAA 

The impact of AAA on the health of the nation is staggering. 7-10% of all males over the 

age of 55 are affected by this disease, resulting in about 1% of the annual deaths in this 

population116. Available treatments for AAA currently rely on the placement of a synthetic graft 

to physically exclude the aneurysmal segment of the aorta. A patient may need repair if the 

maximum diameter of the aneurysm surpasses 5 cm or if the growth rate of the aneurysm is 

greater than 0.5 cm per year, criterions that suggest the risk of rupture is greater than the risk 

associated with surgery. A patient may also need repair to relieve symptoms of the disease, 

restore blood flow, or to address emergency, life-threatening bleeding that is not due to rupture. 

Currently, repair is performed via two different methods, open and endovascular aneurysm repair 

(EVAR). 
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1.2.1 Surgical Options: Open Repair and EVAR 

During open repair, surgeons make a large incision in the abdomen to expose the aorta. 

The aorta is cross clamped, and the aneurysm is cut open. A graft is sewn inside the aneurysmal 

portion of the aorta after removal of the ILT if present. Then, the wall is sewn back in place 

around the graft. Open repair is associated with a number of risks including but not limited to: 

heart attack, irregular heart rhythms, bleeding during or after surgery, injury to the bowel, blood 

clot, and infection of the graft. The 30 day mortality risk is higher with open repair, but long 

term problems are lower when compared to EVAR117. 

EVAR is a minimally invasive option done without a large incision. Surgeons make a 

small incision in the groin where a catheter is feed through an artery to access the aneurysm. 

Once in the aneurysm is reached, a grafting stent is deployed that can stretch from above the 

renal arteries down through the iliac bifurcation. EVAR is associated with a number of risks 

including but not limited to: damage to surrounding blood vessels, organs, or other structures, 

kidney damage, groin wound infection and hematoma, and endoleaks – a continual leaking of 

blood out of the graft and into the aneurysm sac. 

While both procedures accomplish the goal of physically excluding the AAA from blood 

flow thus lowering the risk of a fatal rupture, neither approach has shown a benefit in the 

treatment of small AAA (<5.5 cm maximal diameter) which have a very low risk of rupture118. 

Currently, there are no effective treatments to offer these patients, and management is limited to 

“watchful waiting” (i.e., serial imaging of the AAA until the threshold for surgical treatment is 

met). There is also a huge healthcare cost burden associated with AAA repair which is estimated 

at $2.125 billion dollars per year (50,000 annual patients * $85,000 total 2 year costs119). 
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1.2.2 Systemic Anti-inflammatory Drugs 

Given the problems with current AAA treatments mentioned above, researchers have 

sought to find alternative, interventional therapies for the disease. There is substantial pre-

clinical work in aneurysm therapy which has been directed toward the inhibition of elastolytic 

processes with general or more specific anti-inflammatory or anti-protease agents76,120,121. Other 

studies utilizing anti-inflammatory molecules or MMP-inhibiting antibiotics (doxycycline and 

tetracycline) have been shown to prevent aneurysm formation or expansion in animal models of 

AAA122-125. 

The work cited above has, in part, led to patients currently being enrolled in a clinical 

trial titled “Non-Invasive Treatment of Abdominal Aortic Aneurysm Clinical Trial” (N-

TA(3)CT, NCT01756833). This study aims to determine whether doxycycline (100 mg bid) will 

inhibit (by at least 40%) the increase in greatest transverse diameter of small abdominal aortic 

aneurysms (3.5-5.0 cm in men, 3.5-4.5 cm in women) over a 2 year observation period in 

comparison to a placebo-treated control group.  

At the time of this writing, 200 patients − 179 (90%) male and 21 (10%) female – have 

been randomized in the clinical trial. The average age was 70.9 (SD = 7.6) for those randomized 

into the trial. Among these randomized patients, the average maximum transverse diameter for 

men was 4.3 cm (SD = 0.4) and for women 4.0 cm (SD = 0.3)126. 
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1.3 PRECLINICAL AAA MODELS 

Like many diseases, AAA has a number of different models that have been created in 

order to study disease. Large animal models are mainly used to develop novel methods to 

surgically treat AAAs. Small animal models are used to explore the mechanisms involved in 

AAA in an effort to develop new medical treatments. In-silico computational models are used to 

test our current understanding of the disease and also develop new hypotheses to test in the 

laboratory using in-vitro or in-vivo methods.  

1.3.1 Animal Models 

There are a number of different animals that have been used for AAA models. The most 

common large animal models include canine127,128, swine129-134, ovine135-137, and turkey138 

models. These models tend to be useful for surgical studies; however, the high cost makes these 

models impractical for mechanistic research. The most common small animal models include 

mouse76,139-141, rat121,123,142-144, and rabbit145-147 models. These models are cheaper and allow 

for mechanistic studies of the disease and potential treatments. The downside to small animal 

models is the difficulty in handling the small sized arteries.  

Animal models are created in number of different methods. Broadly speaking, the method 

of aneurysm induction is broken down into chemical induction, surgical induction, and genetic 

predisposition. The chemical induction method includes elastase perfusion140, calcium chloride 

application148, and angiotensin-II infusion149. Surgical induction methods include poststenotic 

dilatation models150, vein patches150, and xenografts151,152. Genetically predisposed models are 

currently limited to ApoE knockout mouse models153. All of the induction methods can be used 
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on all the animals mentioned expect the angiotensin-II infusion and the ApoE knockout models. 

These models are usually limited mice. These models are more thoroughly reviewed by Trollope 

et al.154. 

The elastase perfusion (EP) model of AAA, the chosen model for the work of this 

dissertation, was first described in the early 1960s155,156. The experimental AAA is created by 

transient intraluminal perfusion of the abdominal aorta with pancreatic elastase. Specifically, the 

EP murine model was chosen because of its lower cost compared to larger animal models and its 

similarities to the clinical disease including the extensive loss of elastic fibers, fusiform dilatation 

and its anatomic localization, as well as its reproducibility69,76,139,157. Additionally, the EP model 

is preferred over the ApoE knockout/angiotensin II infusion murine AAA model due to the 

latter’s unsustainable hallmarks of AAA158.  

1.3.2 Computational Models of Growth and Remodeling 

While the insights gained from the animal models discussed above are important to the 

field of AAA research, they do have drawbacks including high cost, extended time for results, 

and the inherent variability that exists in biological studies. Due to these limitations, researchers 

have been motivated to develop theories of arterial growth and remodeling (G&R) which has led 

to frameworks for modeling G&R of soft cardiovascular tissues159-163. These early models 

focused on the consequences of G&R rather than the mechanisms driving G&R. 

The first framework that was introduced to investigate G&R’s governing principles was 

the constrained mixture model put forth by Humphrey and Rajagopal in 2002164. This theoretical 

framework utilized computational studies to clarify the complex mechanisms of sophisticated 

experimental techniques by narrowing the parametric spaces. These models would in turn allow 
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researchers to focus their experimental studies allowing more detailed and complete empirical 

observations. Since mixture models were first introduced in 2002, this framework has tested 

hypotheses of arterial G&R computationally while guiding new experiments that may back up 

the computationally predicted trends22-25,96,165-181. 

Other frameworks of arterial G&R have been postulated. Their mechanisms are similar to 

constrained mixture models in the sense that they are built on observed behaviors and that their 

predictions can be tested by experimentation. Many different arterial G&R hypothesis exist (see 

Watton et al.182 for a detailed review); however, due to its particular strengths183, the constrained 

mixture model is used in the work of this dissertation to understand the effects of a pro-

elastogenic therapy on AAA. 

1.4 PRECLINICAL AAA TREATMENT APPROACHES 

While the ongoing N-TA(3)CT clinical trial will help determine if systemic 

administration of oral antibiotics can slow the enlargement of AAAs in patients, researchers 

continue to seek out alternative therapies. Generally speaking, these therapies are designed to be 

interventional. The targets of these therapies are some of the highlighted differences AAA vs. 

non-aneurysmal aortas highlighted in the sections above. Importantly, the treatments tend to 

address the causes of the disease rather than solely prevent rupture which is the goal of current 

treatment methods. 
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1.4.1 Localized Treatments 

In clinical studies prior to the N-TA(3)CT clinical trial, doxycycline was found to be well 

tolerated by most patients with small AAAs; however, some patients developed dose-dependent 

side effects, such as cutaneous photosensitivity, dental discoloration, and gastrointestinal tract 

disturbances184. In response to these findings, researchers sought to localize (periaortic) 

administration of doxycycline in an attempt to inhibit the development of experimental AAAs as 

effectively as systemic treatment120. The results of this study by Bartoli et al. indicated that 

localized administration of doxycycline was a promising strategy to inhibit the progression of 

aortic aneurysms. The methods detailed in this study have also served as inspiration for the 

method of localizing the treatment described in this dissertation. 

At least one other group of researchers, the Vyavahare Laboratory, has examined the 

localized delivery of therapeutic agents to the periadventitial wall of the aorta in AAA models. 

This group delivered an elastin binding polyphenol, pentagalloyl glucose (PGG), to the 

periadventitial wall of the aorta and found that a one-time periadventitial delivery of PGG 

inhibited elastin degeneration, attenuated aneurysmal expansion, and hindered AAA 

development in rats185. Local, periadventitial delivery of therapeutics shows promise in 

attenuating AAA progression in animal models while avoiding side effects of systemic delivery 

and avoiding the physical barrier presented by the ILT.  

1.4.2 MircoRNAs 

MicroRNAs (miRNAs) are approximately 20-nucleotide, single-stranded RNA molecules 

that target mRNA through partial complement binding. These molecules regulate gene 
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expression by inhibiting translation or degrading the transcript186. There is emerging evidence 

that miRNAs play a role in AAA pathogenesis. Unsurprisingly, a number of different miRNAs 

that are associated with the function of integral features of AAA disease have recently been 

explored. 

miRNAs that affect SMC function have been explored as potential treatment options for 

AAA. Specifically, miRNA-21187 and miRNA-26a188 have been studied in the context of AAA 

disease because they are known to be key modulators of proliferation and apoptosis as well as 

differentiation, proliferation and migration, respectively. Given the deficiencies in aneurysmal 

SMCs noted in the sections above, it is not surprising that these miRNAs are being studied. 

Other miRNAs have been shown to modulate gene expression of ECM proteins as well as 

MMPs and TIMPs. For example, miRNA-29b is a known target of elastin and collagen, and 

studies show that miRNA-29b can modulate gene expression in AAA models189,190. 

Additionally, miRNA-205 can modulate TIMP levels191, and miRNAs  1, 21, 29a, and 133a have 

been shown to modulate MMP-2 and MMP-9 expression192. 

1.4.3 Mesenchymal Stem Cell (MSC) Treatment 

While the aforementioned preclinical AAA therapies all have their benefits including 

localized treatment and treating some of the causes of the disease, none have as much potential 

to treat the disease as mesenchymal stem cells (MSCs). The processes that initiate and expand a 

AAA are heavily based on cellular activity; therefore AAAs represent an optimal target for 

regenerative MSC based therapy. MSCs have the ability to secrete growth factors193,194 which 

suppress inflammation and MMP activity while stimulating elastin and collagen production. 

MSCs can also differentiate, thus providing a means to replace lost smooth muscle cells. 
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Furthermore, MSCs have already shown promise as a treatment for AAAs in animal models 

when delivered systemically which showed a reduction in the inflammatory response195 and 

decreased MMP levels196 suggesting a paracrine mechanism of action. MSCs have also shown 

promise when delivered by direct injection into the aortic wall which displayed MSC 

engraftment into the aneurysm wall allowing for the possibility of MSC differentiation133. 

Additionally, MSCs have also been delivered to the periadventitial of the experimental AAA 

using cell sheets197. 

In the MSC treatment studies mentioned above, the experiments delivered treatment 

concurrent with or prior to model initiation and demonstrated prevention of AAA development. 

Yet clinical therapy for AAA is unlikely to be initiated prior to measurable dilatation of the 

aorta. By the time an aneurysm can be clinically detected, severe matrix degradation – including 

near complete loss of medial elastin – has already occurred, and inhibition of further matrix 

degeneration alone may be insufficient. With that in mind, the delivery of MSCs to an 

experimental AAA should be done after the aneurysm is actively expanding. The work detailed 

in this dissertation which has led to published results140 was designed with this requirement in 

mind. 

1.5 AAA STUDIES IN THE VASCULAR BIOENGINEERING LABORATORY 

The Vascular Bioengineering Laboratory has been a pioneer in AAA research, studying 

many different aspects of AAA biology98,198-206, modeling89,92-95,114,168,207-240, stress 

analysis90,91,95,203,230,234,236,241-243, mechanobiology206,233,244-246, and index modeling94,99,247,248. 

The Vascular Bioengineering Laboratory has also performed studies on thoracic aneurysms 
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including stress analysis201,217-221,230,249 and microstructure analysis250-255. For most of the life 

of the laboratory, the Vascular Bioengineering Laboratory has sought out understanding of the 

disease. The work of this dissertation represents a step into the direction of an interventional 

therapy for AAA and has resulted in two peer reviewed publications140,256 as well as funding 

from the National Institutes of Health (HL129066) and the University of Pittsburgh Center for 

Medical Innovation (F_168-2016, PI: Blose). 

1.6 HYPOTHESES AND SPECIFIC AIMS 

The work of this dissertation will lay the groundwork for an interventional MSC based 

AAA therapy. The subsequent chapters will cover pre-clinical, experimental in-vitro, in-silico, 

and in-vivo work as well as pre-clinical, experimental product development work. This study 

includes the three following Specific Aims and Hypotheses:  

Specific Aim 1: Establish the ability of SMCs to produce elastin when co-cultured with 

ADMSCs in-vitro and determine the utility of elastin production in in-silico models of AAA. We 

seek to establish a method of inducing adult, human, SMCs to produce mature, mechanically 

functional elastic fibers. We hypothesize adult, human, SMCs grown in 3-D fibrin gels will 

produce elastic fibers when co-cultured with ADMSCs. We anticipate that co-culture of SMCs 

with ADMSCs will have positive impact on elastin production showing elastin that is formed 

into fibers.  

Not stopping at just this elastogenic proof of concept, we will also try to understand any 

potential benefits of elastin production in the context of AAA. We hypothesize that elastin 

production within computational models of AAA G&R will alter the mechanical state of AAA to 
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the point where growth of the maximum diameter slows. We expect the results of the 

computational study to show that elastin production in the computational model with have an 

inverse relation to the enlargement rate of the AAA. 

Specific Aim 2: Demonstrate that a periadventitial cell therapy approach halts and/or 

reverses the progression of a AAA in a mouse model. We hypothesize that the periadventitial 

delivery of ADMSCs to an established, expanding murine AAA model will acutely halt the 

progression of the disease within the model. We will assess the effects of treatment on infrarenal 

aortic diameter, tensile properties, elastin architecture, and collagen architecture.  

We expect a significant reduction in aortic dilation, the primary measure of success for 

this aim. Should elastin be produced in our therapeutic model, we would expect our treatment to 

lower the tangent modulus of the vessel.  

Specific Aim 3: Development of a preclinical periadventitial cell therapy delivery 

system. Our proposed therapy for treating subcritical AAAs (<5.5 cm), is the localized delivery 

of therapeutic cells to the periadventitial wall encapsulated in a fibrin gel. The system for 

accomplishing the localized delivery consists of 4 parts: (1) iron nanoparticle loaded therapeutic 

cells; (2) a mixing and delivery apparatus that ensures proper mixing and dispensing of cells, 

fibrinogen, and thrombin; (3) ultrasonic needle guidance; and an (4) endoluminal magnetic 

catheter.  

We expect that when combined, the resulting therapy will be capable of delivering 

therapeutic cells to the periadventitial surface of the AAA with a fibrin gel holding the cells in 

place.  

This research project was designed to build an interventional, MSC based AAA therapy. 

Much of the preclinical work involved with this idea is contained in the following chapters. First, 
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a novel method for testing soft materials is described (Chapter 2). This work is used in the 

evaluation of the elastogenic potential of MSCs when co-cultured with ADMSCs. The 

elastogenic potential of these SMCs is evaluated mechanically, histologically, and biochemically 

(Chapter 3). This analysis is followed by in-silico experiment determining the effect of elastin 

production in computational models of AAA G&R (Chapter 4). After exploring elastin 

production in the context of AAA, our ADMSC therapy is tested in-vivo using a murine elastase 

perfusion model of AAA (Chapter 5). Next, the development of a cellular delivery system for 

use in patients in detailed (Chapter 6). Finally, a summary of results and thoughts on future 

directions is provided (Chapter 7).  
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2.0  DESIGN AND VALIDATION OF A VACUUM ASSISTED ANCHORAGE FOR 

THE UNIAXIAL TENSILE TESTING OF SOFT MATERIALS 

Due to the limitations of current uniaxial tensile testing methods, we sought to design an 

alternative gripping mechanism for soft materials such as the gels created in Section 3.2.3. 

Mechanically testing these gels will allow us to verify the production of mechanically functional 

elastin fibers and networks by SMCs within our 3D fibrin hydrogel culture system, an important 

step in showing proper elastogenesis. The gripping mechanism, a vacuum assisted anchor, is 

detailed and verified in this chapter and was published in Soft Materials256.   

2.1 INTRODUCTION 

Tensile testing systems are commonly used to impart mechanical load to materials in 

order to experimentally evaluate mechanical properties including stiffness and tensile strength. 

Current commercial tensile testing systems rely on spring-loaded or other compression-based 

grips to clamp tissues in place to avoid slipping during uniaxial extension.  For robust and 

mature tissues or materials, the clamping force is typically not a problem. However, when 

attempting to clamp soft materials (which we define as tissue or materials with a tangent 

modulus ~15 kPA), the clamping force can cause catastrophic damage to the sample. This also 

poses a problem when studying the mechanobiology of soft materials when loading is desired. 
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For instance, cell-seeded fibrin gels are used to create tissue engineered constructs, such as 

vascular grafts257-259 and heart valve leaflets260,261, and as three dimensional (3D) in-vitro 

culture systems262-264. Unless these gels are polymerized around a grippable post265 or integrated 

into a stronger material266, they cannot be secured in conventional uniaxial tensile loading 

systems until significant remodeling has occurred. Attempts to mechanically test or load purely 

gel-based tissue constructs have been limited to ring tests on sections of tubular cell-seeded 

constructs267-269. While ring tests represent a valuable tool for determining mechanical 

properties, the method has inherent deficiencies including non-constant strain rates, compression 

at the pulling posts, and convoluting edge effects270. Using either ring tests or custom molds 

restricts the geometry and possibly the material of samples that can be used for testing. 

Performing uniaxial tensile tests mitigates the problems surrounding ring tests and will allow 

researchers to gather meaningful tensile data that might reveal the role of the mechanical 

environment during the initiation of tissue remodeling in these experimental systems. 

Drawing inspiration from micro-aspiration techniques that are used for membrane 

mechanics studies271, we designed a vacuum-based anchorage system to grip a soft material 

subjected to uniaxial tensile loading. Here we present our solution: a novel vacuum-assisted 

anchor (VAA). Our design was validated by using the VAA to grip and mechanically test two 

soft materials (fibrin gels) that were previously unable to withstand uniaxial tensile testing using 

conventional methods. 
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2.2 METHODS 

2.2.1 Design and Functional Principles of the VAA 

The VAA design is shown in Figure 2. The prototype uses a typical house vacuum 

source (approximately 45 kPa gauge pressure) to secure a sample against an in-line filter via a 90 

degree plastic elbow.  The elbow (1/4” outer diameter) fits inside the pneumatic clamps of a 

commercial tensile testing system and can therefore be moved up and down.  The open end of 

the elbow is connected to a truncated, aerosol-resistant micropipette tip, allowing the sample to 

be secured without being pulled into the vacuum line.  

Our prototype was designed to be used within a specific commercial uniaxial tensile 

testing system (Instron, #5543a, Norwood, MA) although vacuum supply line sizes can also be 

altered to fit inside a wide variety of commercial testing systems. All components of the 

prototype VAA are readily available in most laboratory settings.  
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Figure 2. VAA Design Concept. Schematic of the VAA design is shown. A house vacuum source is directed to the 
testing sample and clamped by pneumatic grips 
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2.2.2 Fibrin Gels as Testing Materials  

Fibrin gel was used as a sample material to demonstrate proof-of-concept of the VAA for 

tensile testing. Two densities of fibrin gels were fabricated by mixing bovine fibrinogen type I at 

different concentrations (VAA Fib_5 [5 mg/mL] and VAA Fib_10 [10 mg/mL], Sigma-Aldrich, 

St. Louis MO) with bovine thrombin (1 NIHU/mL, Sigma-Aldrich, St. Louis, MO) within the 

troughs of Flexcell™ Tissue-Train™ plates (Flexcell Int., Hillsborough, NC). Gels were allowed 

to polymerize for at least 2 hours in incubator conditions (37o C, 5% CO2).  

Additional gels were fabricated using the same concentrations of fibrinogen (Ver. Fib_5 

[5 mg/mL] and Ver. Fib_10 [10 mg/mL]) and thrombin mentioned above, and these gels were 

formed between two strips of polyvinyl alcohol (PVA) sponge material that served as anchorage 

points for mechanical testing. These gels served to verify the VAA compared to alternative 

testing methods.  

2.2.3 Mechanical Testing 

The VAA was clamped into an Instron uniaxial tensile testing system (Instron, #5543a, 

Norwood, MA,) and fibrin gels were gently placed next to the open ends of the VAA while the 

vacuum was turned on. Samples were stretched to initial, unloaded lengths by moving the 

crosshead until force readings were present. A constant crosshead speed of 0.1 mm/sec was used 

to pull on the samples, and the applied load and resulting displacement (d) were recorded 

continuously using the Instron-packaged software (Bluehill, Version 2, Instron, Norwood, MA). 

The axial component of the First Piola Kirchhoff Stress (the P11 component of the full First Piola 

Kirchhoff Stress Tensor, P) was calculated using the force measurement (f) from a 25 N load cell 
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(MDB-25, Transducer Techniques, Temecula, CA) and the initial measured area (Ao, diameter 

measured from pictures of stress free samples held in VAA), as follows: 

 
 
 
   (2-1) 

 
 
 

The fibrin gels that were formed between the PVA-sponge strips were tested in the same 

manner as described above. The PVA-sponge served as the anchor point for clamping.  

2.2.4 Material Assumption and Mechanical Properties 

We assumed that all fibrin gels displayed transverse isotropy for a rod-like material. A 

Poisson’s Ratio (ν) of 0.25 was assumed which was consistent with previously reported values 

for fibrin268. The deformation gradient tensor, F, is described as: 
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The axial stretch (λa) is calculated from the initial length measurement (L0) and the 

displacement (d) measured during testing as follows: 
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  (2-3) 
 

 
 

The transverse stretch (λt) was calculated from the exact relation for finite stretch values 
as follows272:  
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The Cauchy stress is defined as: 
 
 
 

  (2-5) 

 
 
 

where the Jacobian, J, is defined as the determinant of F 
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For uniaxial loading, we will consider the axial component of the Cauchy stress (σ11): 
 
 
 

  (2-7) 

 
 

We defined the experimentally determined elastic limit as the stretch ratio where the 

second derivative of the axial component of Cauchy stress (σ11) with respect to λa is a maxima273 

(see Figure 3.) The “yield stress” was defined as the value of σ11 at the experimentally 

determined elastic limit; i.e. the “yield stretch.” The tangent modulus is defined as the slope of 

the linear portion of the σ11 vs. λa curve. The ultimate tensile strength (UTS) is defined as the 

maximum value of the σ11 vs. λa curve, and the ultimate stretch is the value of λa where the UTS 

is defined. The ultimate properties were only calculated for samples that had a confirmed tensile 

failure. Any samples that demonstrated slipping behavior were corrected by analyzing the 

tangent modulus of the sample.  
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Figure 3. Features of Stress-Strain Behavior Captured by the VAA. The black curve shows σ11 vs. λα from a 
sample test using 5 mg/mL fibrinogen. The gray curve is a scaled form of the second derivative of the σ11 with 
respect to λα. Points A and B indicate the yield stress and yield stretch, respectively. The ultimate tensile strength 
(UTS) and ultimate stretch are noted by points C and D, respectively. The linear portion of the black stress-strain 
curve is estimated by a dotted gray line. The slope of this line is the tangent modulus. 
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2.2.5 Statistics 

Student t-tests were used to compare mechanical properties (yield stretch, yield stress, 

tangent modulus, ultimate stretch, ultimate tensile strength) between material groups. Statistical 

significance was assigned to p-values < 0.05. Data given as mean ± SD. 

2.3 RESULTS 

2.3.1 Device Performance 

The VAA was able to successfully grip soft, delicate fibrin gels subjected to uniaxial 

tensile testing leading to tensile failures (confirmed with frames from slow-motion video in 

Figure 4). By using regulated vacuum, the VAA does not damage the sample at the gripped 

location and creates a highly tunable method of delivering anchoring force to soft materials. The 

use of the VAA yielded true tensile breaks in 47% of all tests (compared to a 0% success rate we 

experienced in our lab using conventional gripping methods). A total of 59% of samples 

provided useful yielding data (i.e. stress-strain data through stretch ratios up to the yield stretch, 

see Table 1). 
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Figure 4. Visual Confirmation of a Tensile Break. Three frames (captured at 30 frames per second) from a video 
of uniaxial tensile test are shown. The left frame shows the gel just before its tensile failure. The middle frame 
confirms a tensile break in the center of the fibrin gel (arrow) with the two halves of the fibrin gel recoiling back to 
their respective VAA grips (right frame). 
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Table 1. Breakdown of useful sample numbers by group. Successful tensile tests illustrate the gripping efficiency 
of the VAA. By utilizing the VAA during uniaxial tensile loading, we were able to collect meaningful tensile and 
ultimate data from samples. 

2.3.2 Device Validation and Verification 

The VAA was validated by determining the mechanical properties of fibrin gels made 

from two different concentrations of fibrinogen that were previously unable to be evaluated 

using conventional methods for uniaxial tensile testing.  A summary of the elastic mechanical 

properties of the fibrin gels made with two different concentrations of fibrinogen (VAA Fib_5 = 

5 mg/ml, or VAA Fib_10 = 10 mg/ml) is provided in  

Group Total Samples Useful Yield Data Useful Ultimate Data 

VAA 

Fib_5 
n=29 n=20 (69%) n=18 (62%) 

VAA 

Fib_10 
n=29 n=14 (48%) n=9 (31%) 

VAA 

Total 
n=58 n=34 (59%) n=27 (47%) 

Ver. 

Fib_5 
n=10 n=7 (70%) n=6 (60%) 

Ver. 

Fib_10 
n=10 n=7 (70%) n=5 (50%) 

Ver. 

Total 
n=20 n=14 (70%) n=11 (55%) 
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Table 2. The VAA Fib_5 group had a higher yield stress (2.74±1.62 vs. 1.53±0.74 kPa; 

p=0.014) and tangent modulus (12.94±4.85 vs. 9.64±3.77 kPa; p=0.033). A summary of the 

ultimate mechanical properties is provided in  

Table 3. The VAA Fib_5 group also had a higher UTS (8.18±3.97 vs. 4.12±1.55 kPa; 
p=0.001) and ultimate stretch (2.00±0.23 vs. 1.76±0.25; p=0.031). 

 
 

 

Table 2. Fibrin gel elastic mechanical properties. Significant differences (*) in the elastic mechanical properties 
of the fibrin gel groups are revealed during tensile tests using the VAA. Yield stretch, yield stress, and tangent 
modulus values are reported as mean ± SD from each fibrin gel group. The VAA Fib_5 group had higher yield stress 
and tangent modulus values. 

 

Table 3. Fibrin gel ultimate mechanical properties. Significant differences (*) in the ultimate mechanical 
properties of the fibrin gel groups are revealed during tensile tests using the VAA. Ultimate stretch and ultimate 
tensile strength (UTS) are reported as mean ± SD from each fibrin gel group. The VAA Fib_5 group had higher 
ultimate stretch and UTS values. 

 

 

 

Group Yield Stretch Yield Stress (kPa) Tangent Modulus (kPa) 

VAA Fib_5 (n=20) 1.20 ± 0.11 2.74 ± 1.62 12.94 ± 4.85 

VAA Fib_10 (n=14) 1.24 ± 0.12 1.53 ± 0.74 9.64 ± 3.77 

p-value 0.322  0.014 * 0.033 * 

Group Ultimate Stretch UTS (kPa) 

VAA Fib_5 (n=18) 2.00 ± 0.23 8.18 ± 3.97 

VAA Fib_10 (n=9) 1.76 ± 0.25 4.12 ± 1.55 

p-value 0.031 * 0.001 * 
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The VAA Fib_5 group had a similar yield stress and tangent modulus when compared to 

the Ver. Fib_5 group [yield stress: (2.74±1.62 vs. 3.95±1.88 kPa, respectively; p=0.20), tangent 

modulus: (12.94±4.85 vs. 12.1±2.97 kPa, respectively; p=0.72)]. The VAA Fib_10 group also 

had a similar yield stress and tangent modulus when compared to the Ver. Fib_10 group [yield 

stress: (1.53±0.74 vs. 1.97±0.58 kPa; p=0.29), tangent modulus: (9.64±3.77 vs. 10.40±1.69 kPa; 

p=0.69)]. 

2.4 DISCUSSION 

In this study, we developed a device for uniaxial tensile loading of soft materials such as 

gels. Previous attempts to do so using conventional mechanical grips consistently resulted in 

failures at the gripped location. We designed our vacuum-based gripping mechanism to provide a 

means to adequately grip the sample during tensile loading – even to true tensile failures – while 

avoiding the edge effects associated with ring tests. Our novel grip described here could be used 

to evaluate the uniaxial mechanical properties of a wide array of soft, gelatinous-like tissues and 

materials, both biological and non-biological. Further, it could be used to impart uniaxial loading 

on materials, such as cell-seeded gels for mechanobiology studies. 

Analysis of our mechanical tests revealed differences in the mechanical properties 

between two groups of soft fibrin gel strips, which could not be achieved using other 

conventional testing systems. Our results are similar to a previously published study by 

Cummings et al.267, which performed ring tests of tubular fibrin constructs, and calculated a 

tangential modulus of 19 kPa for gels created with 4 mg/mL fibrinogen and 0.4 NIHU/mL 

thrombin. We calculated a mean tangent modulus of ~13 kPa for our VAA Fib_5 group, which 
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was a similar fibrinogen concentration (5 mg/mL) to the Cummings et al. study. The VAA was 

also verified through our own testing using alternative means. 

The VAA will allow for uniaxial tensile testing of soft materials that were previously 

limited to other mechanical testing methods such as compressive testing and atomic force 

microscopy (AFM) to determine mechanical properties.  For example, Kirchmajer et al.274 have 

developed a degradable genipin cross-linked gelatin hydrogel to be used as a scaffold for tissue 

engineering purposes. The mechanical characterization of this soft material was limited to 

compression and rheological studies - sufficient for researchers looking to use this hydrogel 

scaffold for creating tissue engineered cartilage or other compressive load bearing tissues. 

However, the same hydrogel might also be useful for tissues bearing tensile loads (e.g. tendon, 

blood vessels, skin). Evaluation of soft material tensile properties with a device such as the VAA 

will be a critical step towards engineering new tensile load bearing tissue equivalents275-278.  

AFM is a technique often used to investigate the mechanical properties of individual 

cells, fibers, or other materials that may be too delicate to undergo conventional uniaxial tensile 

testing where compressive grips are employed. Equipment cost considerations and availability 

can make using AFM impractical; however the desire to know tensile properties of cells, their 

substrates, and the effects of the substrate’s mechanical properties has left researchers with no 

other options for very soft materials. For example, Solon et al.279 used AFM to examine the 

functional effect of polyacrylamide gel stiffness on cultured fibroblasts, revealing important 

insights into how substrate stiffness can affect cell stiffness and f-actin organization. The VAA 

provides an alternative tool for performing uniaxial tensile tests on soft materials like 

polyacrylamide gels that is more affordable and readily available than AFM. 
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The VAA is inherently limited by the strength of the vacuum source, the normal area of 

the sample in contact with the device, and the integrity of the seal between the sample and the 

device. A quality seal will ultimately lead to higher success rates during mechanical testing. This 

is demonstrated in the differences in the success rates between the VAA Fib_5 and VAA Fib_10 

groups. The VAA Fib_10 group will have more dense fibers 280 and less water in the sample. As 

the sample is pulled, water will be squeezed out, thus eventually compromising the quality of the 

seal. This phenomenon would partially explain the differences in success rates between the two 

testing groups. The theoretical maximum gripping force is limited to the product of atmospheric 

pressure and the normal area of the sample in contact with the VAA. A practical limit to 

maximum gripping force is dependent upon the strength of vacuum source (house source or 

commonly available vacuum pumps). In order to extend this technology to hydrated samples, 

improvements in the quality and repeatability of the seal would need to be made.   

Our mechanical analysis has limitations inherent to the material fabrication and 

assumptions made regarding our test materials (fibrin gels). When fabricating our gels, we only 

varied the fibrinogen concentration. The amount of thrombin used was held constant. This meant 

that the ratio of fibrinogen to thrombin in each sample was also different and may have 

introduced convoluting effects such as changing relative fiber diameters, lengths and branchpoint 

densities280. Indeed, this work by Ryan et al. shows that decreasing ratios of fibrinogen to 

thrombin leads to increased fiber density and branchpoint density. The higher tensile and 

ultimate properties exhibited by the VAA Fib_5 could be due to the lower ratio of fibrinogen to 

thrombin which leads to increased fiber density and branchpoint density. Additionally, we 

assumed a Poisson’s Ratio of 0.25 for both groups based on previously published values268 

although the actual value is likely to change when changing the concentration of fibrinogen in 
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the sample groups. Lastly, we assumed a uniform strain across the length of the sample though 

this may not be the case. Future studies should determine any convoluting effects of non-

constant fibrinogen to thrombin ratios by testing additional samples where this ratio is kept 

constant. Future studies should also focus on measuring transverse stretch in order to calculate an 

experimental Poisson’s Ratio and determining the axial strain distribution through video analysis 

and ink spattering of the samples. These analyses will also help determine if the VAA affects the 

strain conditions near the seal. These considerations were beyond the scope of the current study.  

2.5 CONCLUSION 

 Our VAA design was validated through the successful mechanical tests of two groups of 

fibrin gels made from two different concentrations of fibrinogen that were previously unable to 

withstand uniaxial tensile testing using conventional methods. This anchorage method will allow 

new studies into the uniaxial mechanics and/or mechanobiology of soft materials. Specifically, 

this tool will now allow mechanical testing of our SMC seeded fibrin gels that will ultimately 

allow us to determine the mechanical quality of any elastin produced in the experiments 

described in Chapter 3.  
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3.0  SPECIFIC AIM 1, PART 1: ELASTIN PRODUCTION OF SMOOTH MUSCLE 
CELLS WHEN CO CULUTRED WITH MSCS 

The first part of Aim 1 is showing that elastin fibers can be produced by adult, human 

SMCs when co-cultured with ADMSCs. We employed 3D cell culture by utilizing fibrin gels. 

Our gels were then subjected to qualitative imaging, a quantitative biochemical assay, and 

mechanical tensile testing all chosen due to the experiments’ ability to detect mature - fully 

assembled and cross-linked by lysyl oxidase (LOX) - elastic fibers. 

3.1 INTRODUCTION 

Elastic recoil is a necessary quality of many tissues in the body, including skin, lung, 

ligaments, and large diameter arteries19. This recoil is provided primarily by elastic fibers made 

up of elastin and a supporting microfibrillar network. In the context of the abdominal aorta, most 

elastic fibers are created primarily during development281 and then slowly degrade. The half-life 

for this process has been disputed as either ~40282 or ~8054 years.  

The critical hallmark of AAA is a noted loss of elastic fibers in the medial layer of the 

vessel. This loss of elastic fibers is thought to lead to a host of downstream effects that 

exacerbate the disease, such as higher circumferential stretch and stress in the vessel wall, 

marked increase in the circulating inflammatory environment, and increased elastolytic activity 
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by resident SMCs among others. Notably, researchers hypothesize that in order to ever fully 

reverse the disease, production of new, mechanically functional elastic fibers will be necessary2.  

The physiological process of cellular elastin synthesis and matrix assembly is a highly 

complex process involving coordinated intracellular and extracellular activities directed by 

SMCs (described in detail elsewhere283,284). The elastin production process begins when elastin 

protein is secreted by SMCs as a tropoelastin precursor molecule. This molecule is then moved 

into the extracellular space and binds to a chaperone elastin binding protein (EBP) which 

protects the tropoelastin from degradation283. Arrays of microfibrillar glycoproteins made up of 

fibrillins (particularly 1, 3 and 5), microfibril associated glycoproteins (MAGPs 1 and 2), and 

fibulins (1,2, and 5)45,46,285,286  in the extracellular space reduce binding affinity of the EBP for 

tropoelastin and the cell membrane facilitating the release of bound tropoelastin and the 

dissociation of the EBP from the cell membrane. The tropoelastin collects on the microfibrillar 

scaffold as amorphous elastin and then undergoes crosslinking by oxidation of lysine amino acid 

side chains on the elastin molecules via LOX287. This results in mature fibers (~300 nm-1 μm in 

diameter), containing a core of crosslinked, amorphous elastin, surrounded by microfibrils288,289. 

Mature fibers are then linked by desmosine and isodesmosine moieties providing the ability to 

stretch and recoil as a single unit thus providing a portion of a vessel’s mechanical properties. 

The contributions of elastic fibers (compared to collagen fibers) to vessel mechanics have been 

quantified from the different regions of the stress–strain curve290.  

Given that elastogenesis is a complex, multistep process, it isn’t surprising that it has 

been the subject of research in the context of aneurysms and regenerative medicine. Broadly 

speaking, elastogenesis efforts can be classified into two groups: elastin synthesis inhibitors (e.g., 

ascorbic acid291, basic fibroblast growth factor292, cyclic AMP293, and monensin294) and elastin 
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synthesis stimulators (e.g., cyclic GMP293, fetal calf serum295, insulin-like growth factor 1 [IGF-

1]296,297, and transforming growth factor β1 [TGF-β1]298).  

In this chapter, we too seek to establish a method of inducing adult, human, SMCs to 

produce mature, mechanically functional elastic fibers. We chose to seed SMCs in fibrin gels in 

various states of mechanical loading before stimulating the SMCs with ADMSC co-culture, 

TGF-β1 stimulation, or conditioned media (CM) collected from ADMSCs in an attempt to 

induce SMC elastogenesis.  

3.2 METHODS 

3.2.1 Cell Culture 

Commercially sourced ADMSCs (Thermo Fisher Scientific, #R7788110) were cultured 

in 75-cm2 or 175-cm2 tissue culture flasks (Corning) and grown under defined culture media  

[1:1 Dulbecco’s modified Eagle’s medium (DMEM; Gibco #11965) to DMEM/F12 (Gibco 

#113300) with 10% fetal bovine serum (Atlanta Biologics #S11550), antibiotics (1% Pen/Strep, 

0.5% Fungizone, 0.1% Gentamycin), and 10 µL of 10 mM dexamethasone] mixed with 25% 

Preadipocyte Growth Medium (#C-27410, #C-39425; PromoCell). Culture media was changed 

every 2-3 days and when ADMSCs were expanded to near confluence, they were passage 

expanded utilizing 0.25% trypsin-EDTA (#25200-056; Gibco) or utilized for subsequent 

experimentation. 

To obtain conditioned media, culture media was replenished in near confluent flasks of 

ADMSCs (~80%) and cultured for an additional two days upon which it was collected. The 
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conditioned media was then centrifuged (#Sorvall Legend RT, 1200 rpm, 5 min) to remove any 

cellular material or debris. It was stored at –80°C until use. 

Additionally, human aortic SMCs were purchased from ATCC (#PCS-100-012) and 

grown in a similar manner to ADMSCs but in their own culture media (Cell Applications, #311-

500, #311-GS). 

3.2.2 Fibrin Gel Fabrication 

SMC-seeded fibrin constructs were fabricated by mixing bovine fibrinogen type I (3 

mg/mL, Sigma-Aldrich, St. Louis MO) with bovine thrombin (1 NIHU/mL, Sigma-Aldrich, St. 

Louis, MO) and SMC cell suspension (3x105 cells/gel). The gels were plated in the troughs of 

Flexcell(Flexcell Int.™ Tissue-Train™ plates, Hillsborough, NC) for the early time point studies 

and within 24-well plates (Corning) that had been imprinted with custom circular molds for the 

late time point studies. Gels were allowed to polymerize for at least 2 hours in incubator 

conditions (37°C, 5% CO2) before adding SMC culture media. The gels were allowed to 

compact for 2 days before being subjected to treatments. 

ADMSC-seeded fibrin constructs were fabricated by mixing bovine fibrinogen type I (3 

mg/mL, Sigma-Aldrich, St. Louis MO) with bovine thrombin (1 NIHU/mL, Sigma-Aldrich, St. 

Louis, MO) and ADMSC cell suspension (4.5x106 cells/gel). The gels were plated on top of 

SMC gels within the Flexcell™ Tissue-Train™ plates (Flexcell Int., Hillsborough, NC) for the 

early time point studies and on top of SMC gels within the 24-well plates (Corning) for the late 

time point studies. Gels were allowed to polymerize for at least 2 hours in incubator conditions 

(37°C, 5% CO2) before adding SMC culture media. The gels were then cultured in incubator 

conditions according to the treatment condition. 
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3.2.3 Treatment Description 

The experimental groups are summarized in Table 4. The groups are broken down by 

treatment delivered to the SMC-seeded fibrin gel, the length of the treatment, and the loading 

condition imposed. In order to understand the final experimental groups, a note should be made 

about the ideas behind the formation of these groups.  

Originally, we intended to only use the Flexcell Tissue-Train system in our studies due to 

its ability to mechanically stimulate our fibrin gels. This mechanical stimulation would mimic 

the conditions we imagined an MSC-seeded fibrin gel therapeutic and resident SMCs would 

experience when the therapeutic was delivered to the periadventitial surface of a AAA. However, 

after seeing some of the results that are shown in Section 3.3.1, we realized that our experimental 

design would need to be altered. We moved away from using the Flexcell Tissue-Train system 

due to the cost involved while troubleshooting the co-culture system. Ultimately, we found that 

extended culture of the co-culture system in the 24-well plates was sufficient for elastin 

production. It was this pivot in approach that led to using two different culture times and two 

different culture substrates and loading conditions.  

The experimental groups and controls were as follows: A control group received normal 

SMC culture media in the early time point group (10 days) and normal SMC culture media along 

with 200 µL of fibrin gel (fabricated in the same concentrations as the SMC gels) in the late time 

point group (28 days). Another control group received normal SMC culture media supplemented 

with 3ng/ml TGF-β1 in the early time point group (10 days) and normal SMC culture media 

culture media supplemented with 3ng/ml TGF-β1 along with 200 µL of fibrin gel (fabricated in 

the same concentrations as the SMC gels) in the late time point group (28 days). An 
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experimental ADMSC co-culture group received a 200 µL fibrin gel containing 4.5x106 

ADMSCs on top of the SMC-seeded fibrin gels. An experimental CM group received a mix of 

culture media containing 50% normal SMC culture media and 50% CM from 9.0x106 ADMSCs 

in the early time point group (10 days) and the same mixture of media along with 200 µL of 

fibrin gel (fabricated in the same concentrations as the SMC gels) in the late time point group (28 

days).  

 Treatments lasted for 10 and 28 days for the early and late time points, respectively. 
Lastly, the early time point gels were all cultured in of Flexcell™ Tissue-Train™ plates (Flexcell 
Int., Hillsborough, NC) and subjected to 10% stretch at 1 Hz in the stretched loading condition 
and static, uniaxial constrainment in the constrained loading condition. The constrained loading 
condition for the late time point consisted on static, radially constrained gels.  

 
 
 

Table 4. Experimental group descriptions. Experimental groups are described by treatment, culture time, and 
loading condition. The number of samples for each group is shown for the ninhydrin assay. 
 

 

Experimental Group # Treatment Description Culture Time Loading Condition 
Group 1 No Treatment (n=3) 10 days Constrained 
Group 2 No Treatment (n=3) 10 days Stretched 
Group 3 TGFβ-1 (n=3) 10 days Stretched 
Group 4 ADMSC Co-culture (n=8) 10 days Stretched 
Group 5 CM (n=8) 10 days Stretched 
Group 6 Fibrin Only (n=2) 10 days Stretched 
Group 7 Rat Aorta (n=1) N/A N/A 
Group 8 ADMSC Co-culture (n=5) 28 days Constrained 
Group 9 TGFβ-1 (n=5) 28 days Constrained 

Group 10 CM (n=5) 28 days Constrained 
Group 11 No Treatment (n=5) 28 days Constrained 
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3.2.4 Qualitative Elastin Fiber Imaging 

After culture, the fibrin tissue constructs were prepared for imaging using three 

modalities. Tissue constructs were lifted from culture plates and put onto glass slides for 

multiphoton imaging. Additional samples from the late time point group were fixed in 4% 

paraformaldehyde for 30 minutes before being embedded in paraffin wax and sectioned (5µm) 

for Verhoeff's Van Gieson and immunofluorescence staining.  

An Olympus multi-photon microscope (Model FV10, ASW software) was used to 

observe elastin. Elastin was automatically detected and visualized based on intrinsic fluorescence 

(excitation wavelength 780 nm, emission wavelength 525±25 nm). 

Paraffin embedded sections were deparaffinized by 3 minute washes in xylene, 

xylene/ethanol mix, and ever decreasing dilutions of ethanol before being rinsed in tap water. 

Sections were then stained with Verhoeff's Van Gieson (VVG) stain. Additional sections were 

labeled for elastin using a standard immunofluorescence (IFC) protocol staining for BA4 (1:200, 

Sigma #E4013) and a Cy3 conjugated goat anti-mouse (GAM) secondary (1:1000, Sigma 

#AP124C) with counterstains for DAPI. All sectioned samples were imaged using NIS Elements 

software (version 4.0).  

3.2.5 Quantitative Elastin Protein Detection 

After multi-photon microscopy, tissue constructs were analyzed for elastin content using 

previously published protocols299,300. Briefly, basic hydrolysis (0.1 M NaOH, 1 hour at 98°C) 

and centrifugation will separate insoluble elastin from other tissue construct components. Each 

fraction will then be fully hydrolyzed in acidic conditions (6 M HCl, 24 hours at 110°C) and then 
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dried. Total protein and elastin content are determined by a ninhydrin assay compared to 

standards of known amounts of bovine serum albumen (BSA) and elastin. 

3.2.6 Tensile Testing 

The VAA described in Chapter 2 and developed specifically for this purpose was 

clamped into an Instron uniaxial tensile testing system (Instron, #5543a, Norwood, MA,) and 

tissue constructs from the early time point gels were gently placed next to the open ends of the 

VAA while the vacuum was turned on. Samples were stretched to initial, unloaded lengths by 

moving the crosshead until force readings were present. A constant crosshead speed of 0.1 

mm/sec was used to pull on the samples, and the applied load and resulting displacement were 

recorded continuously using the Instron-packaged software (Bluehill, Version 2, Instron, 

Norwood, MA). Stress, stretch, and other mechanical properties were calculated as described in 

Sections 2.2.3 and 2.2.4.  

3.2.7 Statistics 

All statistical analysis was done utilizing Minitab software (version 16) to perform either 

t-tests or ANOVA. Statistical significance was accepted at p<0.05. All data were verified for 

parametric tests by confirming normality and homogeneity of variance (not shown). Appropriate 

post-hoc tests when using ANOVA analyses were performed (Fisher’s LSD, Tukey). 
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3.3 RESULTS 

3.3.1 Early Time Point Studies from Flexcell Culture Plates 

To assess whether ADMSCs could induce adult, human SMCs to produce elastic fibers 

detectable using common imaging modalities, SMC-seeded fibrin gels were imaged via 

multiphoton imaging for early time point studies (Figure 5). While emission signal was detected 

at a higher level in Group 4 (Figure 5, C) when compared to Group 2 (Figure 5, A) and Group 3 

(Figure 5, B) in the early time point group, the signal was localized to the cell bodies and lacked 

any fibers or network appearance. 
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Figure 5. There is little elastin autofluorescence in SMC seeded fibrin gels after 10 days in culture. Elastin 
autofluorescence images reveal low levels of emission signal in Group 2 (A), slightly higher levels of emission 
signal in Group 3 (B), and bright signal in Group 4 (C). 
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To assess whether ADMSCs could induce adult, human SMCs to produce mechanically 

functional elastic fibers, SMC-seeded fibrin gels from the early time point group were uniaxially 

tensile tested using the VAA described in Chapter 2. Table 5 summarizes the results for yield 

stretch and tangent modulus for all tested groups. One-way ANOVA reveal statistically 

significant differences in the groups for both yield stretch (p=0.017) and tangent modulus 

(p=0.003). Subsequent Tukey tests, an ANOVA post-hoc analysis which finds means that are 

significantly different from each other, revealed that Group 1 had a higher yield stretch than 

Groups 3, 4, & 5. Tukey test also revealed that Group 1 had a higher tangent modulus than all 

other tested groups. 

 
 
 

Table 5. Constrained gels showed a higher yield stretch than all groups expect the stretched group and a 
higher tangent modulus than all groups. Measurements for yield stretch and tangent modulus are given as mean ± 
standard deviation. Tukey groupings identifiers “A” and “B” show which groups have significantly different means. 
The ADMSC group yielded useful data in 6 of 8 (75%) tests. All other groups yielded useful data in 2of 3 (67%) of 
tests.  

 

 

 

 

Experimental Group # Yield Stretch  Tukey Groupings 
Tangent Mod. 

(kPa) Tukey Groupings 

Group 1 (n=2) 2.2±0.5 A 135.5±51.2 A 
Group 2 (n=2) 1.3±0.1 A B 24.1±5.8 B 

Group 3 (n=2) 1.4±0.1 B 16.2±13.0 B 
Group 4 (n=6) 1.4±0.2 B 25.1±19.7 B 

Group 5 (n=2) 1.2±0.3 B 18.3±10.7 B 
One way ANOVA p=0.017 p=0.003 
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To assess whether ADMSCs could induce adult, human SMCs to produce detectable 

amounts of insoluble elastic fibers, SMC-seeded fibrin gels were separated into soluble and 

insoluble components after NaOH boil. The resultant supernatant and pellet were further 

processed before being measured in a ninhydrin assay. The total amount of insoluble elastin 

measured in the early time points (Figure 6) was statistically different for Group 6 (ANOVA, 

p=0.023). The assay did show detectable amounts of elastin for all other groups. For a better 

comparison between the groups in the early time point, percentage of elastin was calculated with 

respect to total protein content (Figure 7). The only statistical differences noted were between 

Group 7 and Groups 1, 2, 4, 5, & 6 (ANOVA, p=0.042). 
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Figure 6. Ninhydrin assay reveals that all groups produced elastin after just 10 days in culture. Values shown 
as mean ± standard deviation. * indicates significant difference from all other groups. 
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Figure 7. Ninhydrin assay reveals that all groups produced elastin after just 10 days in culture. Values shown 
as mean ± standard deviation. Statistically different groups are indicated by * and #. 
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3.3.2 Late Time Point Studies in Tissue Culture Plates 

To assess whether ADMSCs could induce adult, human SMCs to produce elastic fibers 

detectable using common imaging modalities, SMC-seeded fibrin gels were imaged via 

multiphoton imaging for late time points (Figure 8). There seems to be fibers located in Groups 

8 & 9 (Figure 8, A and B, respectively). The network is far more developed when compared to 

Group 10 (Figure 8, C). Lastly, Group 11 (Figure 8, D) merely shows glowing cell bodies. 

Additional samples from the late time point groups were stained with VVG (Figure 9) 

and via IFC (Figure 10) to reveal elastic fibers and networks. All groups showed faint VVG 

staining especially noticeable in parts of the gels that seems to have undergone fiber compaction. 

The IFC stain reveals a much more intense signal that is seen unbroken throughout the gels in 

Groups 8 & 9 (Figure 10, B and C, respectively). This unbroken signal reflects the results 

shown by the multiphoton imaging and is far more developed when compared to Groups 10 & 11 

(Figure 10, D and E, respectively) though both groups show small amount of network 

development. 
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Figure 8. Elastin autofluorescence images reveal a developed elastin network in long term culture. Elastic 
fibers (red arrows) are seen in Group 8 (A) and Group 9 (B). A less developed network is seen in Group 10 (C), and 
no network is seen (merely glowing cell outlines) in Group 11 (D). 
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Figure 9. VVG stained images reveal a faint staining in all groups around areas of dense fiber accumulation 
within the gels. The orientation of the sections is shown at top (A). Group 8 is shown in (B.) Group 9 is shown in 
(C). Group 10 is shown in (D). Group 11 is shown in (E). 
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Figure 10. IFC stained images reveal a vivid network at various levels of signal intensity between the 
experimental groups. The orientation of the sections is shown at top (A). Group 8 is shown in (B.) Group 9 is 
shown in (C). Group 10 is shown in (D). Group 11 is shown in (E). 
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The same ninhydrin assay was carried out for the late time point groups. While no 

statistical difference was shown between any of the groups (ANOVA, p=0.472) when looking at 

the percent elastin of total protein (Figure 11), the assay did reveal that the samples were 

producing insoluble elastic fibers. The percentage of elastin was calculated with respect to total 

protein content (Figure 12). No statistical difference was shown between any of the groups 

(ANOVA, p=0.554). 
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Figure 11. Ninhydrin assay reveals that all groups produced elastin after 28 days in culture. Values shown as 
mean ± standard deviation. 
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Figure 12. Ninhydrin assay reveals that all groups produced elastin after 28 days in culture. Values shown as 
mean ± standard deviation. 
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3.4 DISCUSSION 

The gradual breakdown of elastic fibers is seen in a wide variety of tissues such as skin, 

lung, and arteries. As elastic fibers break down, the resultant elastin degradation products have 

been shown to upregulate the inflammatory response78,301-303 and inhibit the switch from M1 

macrophages to M2 macrophages304. The damage done to adult elastic fiber rich tissue is often 

repaired with unorganized material that does not function properly281. Diseases such as 

atherosclerosis cause SMCs to deposit amorphous amyloid elastic fibers305; however, these 

easily degraded pseudo-fibers displaying limited crosslinking, are disorganized, and contribute to 

the pathology. AAAs present an even more complex prospect of regenerating elastic fibers and 

matrix within an active proteolytic environment featuring local production and activity of 

elastolytic enzymes by both recruited inflammatory cells and SMCs306. 

Given the complexity of elastic matrix assembly described at the beginning of this 

chapter, one appreciates the challenges faced when trying to regenerate natural elastic matrix 

structures by adult SMCs307 or even less elastogenic, diseased SMCs305,308,309. Particularly in the 

case of AAAs, the challenges described above ultimately reduce the net accumulation of new 

elastin deposits while disrupting new and pre-existing elastic matrix structures46. Knowledge and 

methods of promoting assembly of precursors into mature, structural, and functional elastic 

fibers310 remains fleeting.  

The ability of adult SMCs to produce mechanically functional elastic fibers is thought to 

be necessary for an interventional therapy to work for treating AAAs2. Though the resident 

SMCs within a AAA are synthetic311 and producing elastin mRNA52, adults do not normally 

produce mechanically functional elastic fibers. In this aim we have induced elastic fiber 

production in adult SMCs as shown by biochemical (Figure 6, Figure 7, Figure 11, & Figure 
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12) and imaging (Figure 8 & Figure 10) means which is in line with other published studies 

stimulating SMCs with TGF-β1312-314. This study adds to the field showing that elastic fiber 

production is also possible by co-culturing SMCs with ADMSCs in a 3D fibrin gel (Figure 8A 

& Figure 10B), and the effect is present but somewhat subdued when treating the same SMCs 

with CM. This reduced effect is apparent in the multiphoton and IFC imaging of that group 

showing a less developed elastic network (Figure 8C & Figure 10D, respectively). This may be 

due to the inability of CM to increase LOX expression in SMCs as shown by Swamin et al.315. 

Our working hypothesis is that the ADMSCs are acting in a paracrine manner, producing 

growth factors that are ultimately responsible for the SMC elastogenesis. The most studied 

elastogenic factors to date for SMCs are TGF-β1 and IGF-1, which have been shown to increase 

elastin synthesis both transcriptional and post-translational means. TGF-β1 improves matrix 

assembly via LOX mRNA expression upregulation and enzyme activity316 while preventing 

proteolysis of existing matrix by tipping the balance of MMPs (2 and 9) and TIMPs (1,2,3) in 

favor of TIMPs317,318. Elastogenic effects are enhanced synergistically when TGF-β1 and IGF-1 

were provided to healthy SMCs together with the hyaluronan oligomers319,320. Exogenous LOX 

supplemented to rat aortic SMC cultures improves tropoelastin crosslinking significantly, 

enhancing elastic matrix deposition above what is capable by endogenous LOX enzymes 

alone321. The extracellular transport of endogenous LOX and functional activity of endogenous 

and exogenous LOX can be further enhanced by copper ions which enable electron transfer from 

oxygen to facilitate oxidative deamination of lysyl groups in elastin and collagen287.  

Additionally, elastin production has been shown in human vascular smooth muscle cells 

embedded in 3D scaffolds when stimulated with TGF-β1313, and TGF-β1 has a dose dependent 
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effect on elastin production312,314. Clearly, the growth factors above have a profound elastogenic 

effect on adult, human SMCs.  

Rather than using growth factors as therapeutic agents directly, MSCs could be used for 

paracrine effects as they secrete TGF-β1, IFG-1 and other growth factors194. This treatment 

modality could remove concerns about off target effects from treating with supraphysiological 

concentrations of growth factors, provide a renewable source of growth factors, and allow for 

synergic effects that could happen when different growth factors are combined312. 

 In fact, paracrine factors secreted by MSCs have been shown to evoke in vivo wound 

healing, tissue repair, and regeneration in different tissue types322,323. CM collected from in vitro 

MSC cultures in real time, or collected and then concentrated, has also been shown to improve 

cellular health in diseased cells in vitro324,325, restore tissue/organ state and function in 

vivo322,323, and stimulate SMC migration326,327. SMC migration is a feature of a synthetic 

phenotype21. Removing SMCs from their native environment likely switches the phenotype from 

contractile to synthetic, and our paracrine treatment is likely encouraging the cells to remain 

synthetic while in the 3D fibrin gel. In the context of aneurysm disease, Swamin et al.315 

investigated whether and how exposing diseased SMCs to trophic factors generated by co-

cultured BMMSC-derived smooth muscle like cells impacts their matrix synthesis potential. 

These cultures displayed upregulation of elastin, fibrillin-1, and fibulin-5 expression thus 

providing the cells with the essential building blocks for elastic fiber and network synthesis. 

In light of the published literature regarding elastogenesis, we explored using MSCs - 

specifically ADMSCs - as therapeutic agents in the treatment of AAA. We believe that these 

ADMSCs will act as growth factor factories, secreting TGF-β1 as well as other growth 

factors194. Using ADMSCs instead of the factors they produce allows for communication 
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between the therapeutic cells and the target cells which could in turn produce a more desirable 

result. In the context of this chapter, the purpose of the ADMSCs is to stimulate the SMCs to 

produce mature elastic fibers; however, in the overall context of treating AAA, MSCs also 

attenuate the circulating inflammatory environment195,328. 

While MSCs have been isolated from a variety of tissues and basically everywhere blood 

vessels are found329,330, adipose tissue makes for an attractive source of MSCs due to its growing 

abundance in the western population. ADMSCs express classic mesodermal markers used to 

classify MSCs (CD44, CD73, CD90, CD105331), but ADMSCs also express CD34332,333, a 

marked distinct from bone marrow MSCs334. Upon definition as a multipotent stem cell in 

2001335 and recent characterization of surface marker profile, genome, and composition336-340, 

ADMSC research has extended to fields ranging from regenerative medicine341-351 to cancer352-

354. Here we employ the ADMSC as a therapeutic cell to treat AAA with the ultimate goal of 

stimulating new elastic fiber production. 

Since Group 10 (Figure 8C & Figure 10D) did not perform as well from a qualitative 

standpoint as Group 8 (Figure 8A & Figure 10B), the ADMSC co-culture may be producing 

different growth factors due to the culture environment (gel vs. stiff substrate) or in response to 

signals received from the SMCs. In this regard, the co-culture may be necessary to produce 

meaningful quantities of mature, fully crosslinked elastic fibers in the context of AAA. While we 

were unable to quantify differences in the amount of elastin produced from the ninhydrin assay 

(Figure 12), we were able to show that measurable amounts of mature, crosslinked elastin were 

present in our biochemical assay (Figure 11). It should be noted that while the ninhydrin assay is 

a standard method of detecting insoluble elastin, the method itself is a highly involved process 

which could explain the high variance seen in the data.   
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Additionally, during the elastic fiber assembly process, a number of naturally occurring 

fluorophores such as pyridolamine crosslinks355 as well as desmosine and isodesmosine356 

elastin crosslinks are trapped within the fiber. Exciting these fluorophores using multiphoton 

microscopy allows researchers to visualize elastin with intrinsic confocal resolution with great 

depth penetration due to the use of near-infrared excitation wavelengths. This imaging modality 

can be used on fresh tissue without sectioning, staining or other preparation. Collagen can also 

be detected alongside elastin due to its second harmonic (SHG) signal357. This technique has 

been used to investigate the collagen and elastin fiber networks in arteries217,250,252-254,358,359, 

heart valves360,361, and changes in the collagen matrix of porcine cartilage362. The multiphoton 

images from the long term culture ADMSC and TGF-β1 experimental groups clearly show 

signal in the form of fibers. 

Interestingly, the mechanical analysis shows a much higher yield stretch and tangent 

modulus for Group 1 when compared to the Groups 2-5 (Table 5). This means that the resultant 

gel was stiffer and more distensible which could be explained by an increase in the amount of 

collagen produced relative to the other groups. Collagen production by SMCs when cultured in 

fibrin gels has been shown before267,269,363 and these conditions are somewhat similar to the 

constrained group. This mechanical analysis has limitations inherent to the material fabrication 

and assumptions made regarding fibrin gels. We assumed a Poisson’s Ratio of 0.25 for all groups 

although the actual value is likely to change between each group and evolve as ECM is 

produced. Lastly, we assumed a uniform strain across the length of the sample though this may 

not be the case.  

One of the requirements for a lasting, interventional AAA therapy is the replacement of 

lost elastic fibers in the aortic wall. While others have shown that MSC treatment can modulate 
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the circulating inflammatory AAA environment195,328, another important aspect of interventional 

AAA therapies, this study is the first to show that ADMSCs are capable of inducing SMCs to 

produce mature, elastic fibers in an in-vitro analog to our proposed in-vivo treatment.  

3.5 CONCLUSION 

In conclusion, when co-cultured with adult SMCs in a 3D fibrin gel, ADMSCs stimulate 

elastic fiber production. This novel finding lends credence to using ADMSCs as a pro-

elastogenic therapy for treating AAAs. 

3.6 FUTURE WORK 

The work presented in this chapter represents an exciting new finding, and will be 

constructed into a manuscript in combination with the results of Chapter 4. While this Aim 

makes clear progress in showing that ADMSCs can stimulate elastic fiber production in adult 

SMCs, future work needs to focus on understanding the mechanism of action as well as 

improving quantification efforts. Future studies should also focus on extended culture times as 

we have shown that elastic fiber production seems to take longer than 10 days and appears, 

qualitatively, by 28 days. Longer time points need to be investigated for this co-culture system in 

order to understand the time course of elastic fiber production.  Lastly, the elastogenic ability of 

diseased SMCs needs to be compared to the healthy SMCs used in this study. Treating SMCs 
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with elastase in culture could serve as an intermediate step to using SMCs harvested from 

aneurysmal tissue.  
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4.0  SPECIFIC AIM 1, PART 2:  

IN-SILICO EFFECTS OF ELASTIN PRODUCTION IN THE CONTEXT OF AAA 

The second part of Aim 1 is understanding the potential effects, mechanics, and 

mechanobiology of elastin production in an expanding AAA. After seeing that elastic fibers are 

produced by SMCs when co-cultured with ADMSCs in the first part of Aim 1, we introduced 

elastin production in a constrained mixture model of AAA G&R25. By understanding the effects 

and potential benefits of a pro-elastogenic therapy within the context of a constrained mixture 

model of AAA G&R, we will be better prepared to carry out future experiments to refine and 

optimize a pro-elastogenic therapy. 

4.1 INTRODUCTION 

As discussed in the introduction to this dissertation (Section 1.2.5), models of soft tissue 

G&R have been around for some time. Specifically, the framework posed by Humphrey and 

Rajagopal164 has been refined and proven useful for explaining the processes and trends 

associated with arterial G&R since its introduction22-25,96,165,169-171,174-176,178,179,181. The 

resulting numerical experiments have predicted trends and behaviors which were then compared 

to experimental observations. Though not the focus of this dissertation, it is important to 
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understand the three fundamental hypotheses on which these frameworks rely: constitutive 

turnover, depositional prestretches, and vasoactivity22. 

The constitutive turnover hypothesis states that synthesizing cells, SMCs in the context of 

AAAs and relevant to this work, respond to their changing chemo-mechanical environment by 

turning over the extracellular matrix and via cell proliferation and apoptosis. This hypothesis is 

based upon experimental observations100-103, and Fung proposed a conceptual mathematical 

relation stating that the volumetric growth rate is a function of stress104. Fung arrived at this 

concept while trying to understand the function of residual stress residing in blood vessels. He 

saw a correlation between the arterial stresses and the change in residual strain. Fung’s 

explanation for this relation was a biological law that related the rate of growth or resorption of 

tissue with the stress in the tissue. This implied that residual stresses are related to the 

remodeling of the blood vessel wall (i.e. blood vessels remodel when stresses change). Fung’s 

insight provided a stress-growth relationship which has become a biomechanical foundation for 

tissue engineering and regenerative medicine. For its use in this chapter, this constitutive 

turnover hypothesis is governed by Equation 4-1: 

 
 

  (4-1) 

 
 
In Equation 4-1, mα(s) is the net mass production for the α constituent (collagen and smooth 

muscle) at simulation time, s. The net mass production rate is dependent on mα
0, a defined 
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homeostatic mass production rate, and a scaling factor dependent upon the ratio of the Cauchy 

stress at time s, σα(s), and the initial homeostatic Cauchy stress, σα(s), for each constituent. 

In addition to the stress-volumetric growth rate relation, the constitutive turnover 

hypothesis also governs the direction in which fibrillar proteins such as collagen are deposited. 

The local, principal stresses or stretches define the directions of fiber alignment for newly 

deposited material which affects local anisotropy106,107. These concepts can be tested in arterial 

G&R models by comparing predicted responses to evolved arteries. 

Experimental observations47,364,365 also reveal that cells achieve such G&R by actively 

manipulating structural proteins during and following deposition. The mechanical forces exerted 

by synthetic cells during deposition or reorganization are contributing to the mechanical 

properties exhibited by the extracellular matrix, which can lead to residual stresses in unloaded 

tissues and thus optimal states of stress in vivo366. 

The next fundamental hypothesis, depositional prestretches, captures the mechanobiology 

of the cells and states that newly produced constituents are deposited under a state of prestretch. 

The experimental evidence suggests that synthetic cells are capable of depositing material in 

varying quantities, in different directions, and in a state of mechanical prestretch281,364. This 

hypothesis covers related phenomena, such as spatial variations in prestretches resulting from 

differential deposition and cross-linking over specific temporal intervals during 

development367,368. This hypothesis also suggests that constituents possess a potentially unique 

prestretch104,369,370. The depositional prestretch concept is closely related to the constitutive 

turnover hypothesis with interesting complementary effects. In this chapter, the depositional 

prestretches for collagen, elastin, and smooth muscle are 1.08, 1.3, and 1.2, respectively.  
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The last fundamental hypothesis, vasoactivity, is related to smooth muscle contractility. 

Murray371 first proposed, through deductive physiology, that the body minimizes metabolic costs 

by maintaining an optimal volume of blood. This conclusion implied luminal shear stresses must 

be maintained by arteries actively adjusting their diameter372,373. Two separate mechanisms 

governing smooth muscle activity have been identified374: actin–myosin fiber overlap375 and 

chemical dosage-response (e.g. acetylcholine and endothelin-1). For example, when subjected to 

increased shear stresses arteries dilate in response to upregulation of nitric oxide by endothelial 

cells. Vasoactivity is coupled to matrix remodelling in two phases: acute changes in vascular 

tone followed by long-term entrenchment372.  

Acutely, activated SMCs allow arteries to rapidly respond to changes in blood flow. 

Contractile SMCs minimize the metabolic costs associated with maintaining caliber while 

maintaining the ability to adapt to altered hemodynamic conditions375. Though SMCs can 

accommodate these acute effects (e.g. brief physical exertion), SMCs can also shift its vasoactive 

response under sustained hemodynamic changes376 ultimately resetting the artery's caliber. The 

vasoactive hypothesis has since been demonstrated by numerous observations377. For its use in 

this chapter, this vasoactivity hypothesis is governed by Equation 4-2: 

 
 
 

 (4-2) 

 
 

 
where fact(s) is the active stress generated by the smooth muscle at any simulation time, s. This 

stress is dependent upon the ratio of smooth muscle density, ρm(s), to total density of the 
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constituents, ρ(s), the maximum force capable of being generated by smooth muscle, Tmax, the 

ratio of vasoconstrictors and vasodilators (Cb is the homeostatic ratio and Cs is a scaled factor 

based on the shear stress), and ratio of the shear stress at time s, τw(s) and the initial homeostatic 

shear stress, τw(0).  

In summary, constrained mixture models of AAA G&R are designed to account for 

biological features and processes that are essential to both tissue maintenance and adaptation: 

constitutive turnover, depositional prestretches, and vasoactivity. Moreover, said models are well 

suited for basic hypothesis generation and testing, such as the one under investigation here – if 

elastin is produced in a AAA, then the growth of the AAA will slow. The biological 

appropriateness of these fundamental hypotheses enables the implementation of the model to 

capture and predict relevant features of the complex time-varying changes in dilatation, 

composition, and biomechanics of the AAA. 

4.2 METHODS 

4.2.1 FEA Stress Analysis 

Generally speaking, FEA is numerical technique that discretizes and approximates 

boundary value problems or partial differential equations. As employed in this chapter, FEA is 

used to solve the solid mechanics problem posed in our study – a vessel experiencing loading on 

the lumen due to blood pressure. In order to utilize FEA, we must know some prescribed 

quantities such as displacements or tractions that occur at the boundary, or enclosing geometry. 

These prescribed quantities are called boundary conditions. The geometry of the object in 
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question must also be discretized, or meshed, and mechanical properties must be prescribed to 

discretized element. The mechanical properties describe how each element will deform in 

response to a force, and the coordinates of each element, or nodes, determine where the linear 

approximations to the differential equations governing the body’s movement will be made. 

The implementation of the FEA utilized a two-layered model of AAA with separate 

mechanical properties for the medial (inner 2/3 of vessel) and adventitial (outer 1/3 of vessel) 

layers. These mechanical properties are updated based on the growth laws contained within the 

G&R model which have a time step of two weeks. Boundary conditions were employed such that 

only radial nodal displacements were permitted, and a pressure of 93 mmHg was prescribed over 

the lumen of the vessel defined by set of 2D surface elements. When utilizing these assumptions, 

the problem is reduced to a single-dimensional analysis of the inflation of a thick-walled tube 

with fixed axial length. 

The finite element model was employed with user-specified material properties within 

FEAP378 and using a Q1-P0 ‘mixed’ element, based on the three-field variational approach 

described by Hu and Washizu379-381. This element uses linear shape functions for deformations 

and is appropriate for modeling incompressible materials. The eigenvectors and corresponding 

eigenvalues were computed using LAPACK382, and temporal integrations were performed using 

trapezoidal rule quadrature. All time constants were updated with a temporal resolution of 

2 weeks per time step. Results were calculated at the element Gauss points. The mesh utilized 

400 eight-noded hexahedral elements (820 nodes in total). 



 75 

4.2.2 Elastin Production in Tissue Growth and Remodeling Models 

An existing constrained mixture model of G&R25 was modified to allow for elastin 

production. The existing models do not allow for elastin production as adult cells do not 

normally produce elastin in its mechanically functional fiber form. The existing model25 only 

allows for elastin degradation modeled as exponential decay with a half-life of 40 years which 

accounts for the only form of elastin degradation within the AAA model. To modify this model 

for studying an elastogenic therapy, the change in elastin mass parameter (which is negative in 

the baseline model) was modified to add new elastin to the remaining elastin (making it a net 

accumulation of elastin). We explored a range of elastin mass production rates (Table 6) within 

the growth and remodeling simulations at various points in the growth history of the AAA. The 

FEAP input model and custom material property codes can be found in Error! Bookmark not 

defined.. 

 

Table 6. A number of elastin production factors were explored by modifying constrained mixture models of 
AAA G&R. The values listed are in units of µg/mm3/2 weeks. The elastin production factors are multiples of the 
absolute value of the natural elastin degradation rate calculated at the end of the baseline model run25. These values 
are added to the existing elastin at each time step within the simulation after the elastogenic intervention. 

 

Normal elastin degration rate -0.675
Elastin Production Factor 

2x 1.350
3x 2.025
4x 2.700
8x 5.400
16x 10.800
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4.2.3 Intervention Time Points 

A constrained mixture model of G&R was run in order to establish a baseline model for 

AAA G&R. The implementation was similar to a previously published study by Valentin et al.25. 

The resulting output from this baseline model, the inner and outer diameters of the modeled 

AAA, is shown in Figure 13. The input that starts this model down the path of becoming a AAA 

is the loss of a predefined, critical amount of elastin (~65% of initial content) and a small amount 

of collagen and smooth muscle (~3.5% for each). As shown, the model captures characteristic 

features of AAA such as dilation (increase in both inner and outer diameters) and wall thinning 

(decrease in difference between outer and inner diameters, shown at least in some AAA 

cases383). Three “time points” are identified in the simulation: the time point when a 30% 

increase in outer diameter is reached, the time point when a 40% increase in outer diameter is 

reached, and the time point when a 50% increase in outer diameter is reached, the latter 

representing the clinical definition of a AAA. 
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Figure 13. A constrained mixture model of AAA G&R is able to capture known qualities of AAA. The upper 
red curve represents the progression of the outer diameter of the model AAA while the lower red curve represents 
progression of the inner diameter of the model AAA. The vertical black, green, and blue lines reflect the time points 
that the outer diameter is increased by 30%, 40%, and 50%, respectively. 
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4.2.4 Monitoring Model Properties 

In order to understand how elastin production within a constrained mixture model of 

AAA G&R affects the progression of the disease, the displacement and stress tensor were 

tracked within the output of the FEA, and the relative amount of collagen in the model was 

tracked within the custom material property codes. The enlargement rate of the AAA was also 

calculated for all 15 parameter combinations (5 elastin production factors and 3 intervention time 

points) at the end of the model run. 

A full set of model outputs is provided in Appendix B. Here three models are employed: 

a model that recovers vessel homeostasis, a baseline model without elastogenic intervention, and 

a model with 2x elastin production at 30% increase in outer diameter. The aortic diameters and 

changes in collagen, elastin, smooth muscle, and smooth muscle active stress are shown.  

4.3 RESULTS 

4.3.1 Changes in Diameter with Elastin Production 

The inner and outer diameters from the constrained mixture models of AAA G&R 

featuring elastin production at 50% increase in outer diameter are shown in Figure 14. While 

elastin production does decrease the rate at which the diameter is expanding, the effects are small 

even at the greatest elastin production factors tested. In Figure 15, diameter vs. model simulation 

time is shown at the various elastin production factors tested for the 40% increase in outer 

diameter intervention time point. Elastin production slows the dilatation of the AAA more than 
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the 50% increase time point. In Figure 16, again, diameter vs. model simulation time is shown at 

the various elastin production factors tested but this time for the 30% increase in outer diameter 

intervention time point. Elastin production slows the dilatation of the AAA to a greater degree 

than both the 40% and 50% increase time points. The effect is so dramatic at the highest elastin 

production factors that the both the inner and outer diameter begin to decrease, signifying a 

contraction of the AAA within the model space. Lastly, Table 7 shows the calculated rate of 

outer diameter increase at the end of simulation time for selected model intervention time points 

and elastin production factors. The rate of aneurysmal enlargement at the end of the baseline 

model run (~ 10 years simulation time) is 5.340 mm/year. 
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Figure 14. Elastin production at 50%  increase in outer diameter moderately slows enlargement. Diameter in 
mm is shown on the y-axis. Model simulation time is shown on the x-axis. The outer diameters are the top curves, 
and the inner diameters are bottom curves.  
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Figure 15. Elastin production at 40% increase in outer diameter slows enlargement to an appreciable extent. 
Diameter in mm is shown on the y-axis. Model simulation time is shown on the x-axis. The outer diameters are the 
top curves, and the inner diameters are bottom curves. 
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Figure 16. Elastin production at 30%  increase in outer diameter greatly slows enlargement and even 
contracts the aneurysm at higher elastin production factors. Diameter in mm is shown on the y-axis. Model 
simulation time is shown on the x-axis. The outer diameters are the top curves, and the inner diameters are bottom 
curves. 
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Table 7. Increasing elastin production and earlier intervention slows the rate of aneurysmal enlargement. The 
rate of aneurysmal enlargement (outer diameter) at the end of the baseline model run (~ 10 years simulation time) is 
5.340 mm/year.  Intervention at 30% growth of the vessel caused the aneurysm to begin to contract at as high as 
15.480 mm/year (i.e. residual tension begins to pull the artery back towards its original size) with most elastin 
production rates. 

 

30% 40% 50%

2x 3.338 3.110 4.711

3x -0.692 3.172 4.274

4x -13.302 2.356 3.791

8x -15.480 1.352 3.302
5.340
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4.3.2 Changes in Collagen Content with Elastin Production 

Moving forward, all results shown are from the 30% increase time point featuring the 2x 

elastin production factor. This model was chosen because the model was able to complete the 

most time steps in the G&R simulation and thus would provide the most data to compare with 

the baseline G&R model run. Figure 17 shows the changes in collagen content over simulated 

time from the constrained mixture models of AAA G&R featuring 2x elastin production with 

intervention at 30% increase in outer diameter and the baseline model for the adventitial (top 

curves) and medial (bottom curves) layers. In Figure 18 & Figure 19, we zoom in on the 

adventitia and media, respectively, to more easily see the differences in the collagen content. The 

trend for both layers is clear. When elastin is produced in the G&R models, there is an initial net 

reduction in collagen in both layers compared to the baseline model that returns to the baseline 

model amounts by the end of the model run.  
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Figure 17. 2x elastin production at 30%  increase in outer diameter lowers the amount of collagen in the 
adventitia and media in constrained mixture models of AAA G&R. The ratio of remaining collagen to initial 
collagen content is shown on the y-axis. Model simulation time is shown on the x-axis. Average collagen content 
through the adventitia is shown by the top curves, and average collagen content through the media are bottom 
curves. The baseline model values are shown in red. The 2x elastin production factors model is shown in green.. 
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Figure 18. 2x elastin production at 30%  increase in outer diameter lowers the amount of collagen in the 
adventitia in constrained mixture models of AAA G&R. The ratio of remaining collagen to initial collagen 
content is shown on the y-axis. Model simulation time is shown on the x-axis. The baseline model values are shown 
in red. The 2x elastin production factors model is shown in green. 
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Figure 19. 2x elastin production at 30%  increase in outer diameter lowers the amount of collagen in the 
media in constrained mixture models of AAA G&R. The ratio of remaining collagen to initial collagen content is 
shown on the y-axis. Model simulation time is shown on the x-axis. The baseline model values are shown in red. 
The 2x elastin production factors model is shown in green. 
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4.3.3 Changes in Stress with Elastin Production 

Since stress based growth is a driver in the constrained mixture models of AAA G&R 

employed in this exercise, it is prudent to examine the changes in stress when elastin production 

is allowed. Figure 20 shows the calculated von Mises stresses from the constrained mixture 

models of AAA G&R featuring elastin production at 30% increase in outer diameter and the 

baseline model for the luminal surface (top curves), the medial-adventitial interface (middle 

curves), and adventitial surface (bottom curves). The von Mises stress is reduced when elastin is 

produced in the G&R models through the thickness of the vessel. 
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Figure 20. 2x elastin production at 30%  increase in outer diameter lowers the amount of collagen in the 
media in constrained mixture models of AAA G&R. The von Mises stress (kPA) is shown on the y-axis. Model 
simulation time is shown on the x-axis. The von Mises stresses on the luminal surface are the top curves, the von 
Mises stresses at the interface between the media and adventitia are the middle curves, and the von Mises stresses on 
the adventitial surface are the bottom curves. The baseline model values are shown in red. The 2x elastin production 
factors model is shown in green. 
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4.4 DISCUSSION 

In this study, we modified an existing constrained mixture model of AAA G&R within a 

3D finite element framework, a tool that utilizes constrained mixture models that account for 

chemical and stress based changes in masses and orientations of arterial constituents. Our FEA 

included physiologically relevant geometry and boundary conditions. Embedded within the 

custom material properties codes were the key G&R postulates: constitutive turnover, 

depositional prestretches, and vasoactivity. 

The modification of the constrained mixture model of AAA G&R was to allow for elastin 

production in the material properties codes. This modification was done to mimic a pro-

elastogenic therapy for the treatment of an existing and expanding AAA such as the ADMSC 

treatment explored in-vitro in Chapter 3 and explored in-vivo in Chapter 5. When elastin is 

allowed to be produced, we are able to capture and predict relevant features of the complex time-

varying changes in dilatation, composition, and biomechanics of the AAA.  

Some important distinctions should be made between the computational AAA G&R 

model and what is actually happening in physical AAAs. In the AAA G&R model, elastin is 

slowly degraded, but this degradation in the G&R model is a degradation of mechanically 

functional elastin. This would be analogous to breaks in the elastic fibers in a physical AAAs and 

less insoluble elastin in the tissue. Tissue from AAA patients has been shown to contain less 

insoluble elastin that non-aneurysmal tissue even though mRNA levels are similar52. The amount 

of insoluble elastin has also been shown to decrease with increasing AAA diameters384 which is 

similar to what we see in the baseline AAA G&R models.  

In all experimental cases examined, the rate of diameter enlargement of the AAA was 

slowed. We speculated that this would be the case due to the distensibility and recoil properties 
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of elastin which is akin to adding stretched rubber bands around an inflated rubber tube. A 

question we sought to answer with respect to the dilatation of the AAA was how much newly 

produced elastin would be necessary to produce a desired result (i.e., a reduction of the 

enlargement rate by 50%). This figure was selected because it has been postulated that reducing 

the enlargement rate by 50% would remove the need for surgery by ten years385. A number of 

experimental cases met or came close to this desired result which can be seen in Table 7. Less 

elastin production is necessary the sooner the intervention is initiated. 

After seeing that the 50% reduction in enlargement rate is obtainable, we turned our 

focus to the collagen composition of the artery. Focusing on the 30% intervention time point 

with the 2x elastin production factor, we examined the collagen content relative to the amount of 

collagen at the start of the simulation. Compared to the baseline AAA G&R model, the amount 

of collagen is lower in the adventitia and media when elastin is produced. In both layers, there is 

an initial net increase in collagen when the elastin production is turned on, but by the end of the 

simulation, the amount of collagen is largely unchanging. The adventitia is particularly 

interesting as seen in Figure 18. The amount of collagen in the elastin production model is 

increased initially and then starts to decrease before leveling off. There seems to be competing 

interests between the stress based collagen production and the vasoactivity which is being 

influenced by the changes in diameter due to elastin production. Smaller diameters are leading to 

less stretch on the existing SMCs thus allowing the SMCs to produce more active stress.  

The overall lower reduction in relative amounts of collagen production in the elastin 

production model compared to the baseline model can partially be explained by the lower von 

Mises stress shown in Figure 20. The lower von Mises stress leads to less collagen production 

with the material properties codes which is one of the fundamental hypothesis built into the G&R 
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models, stress based constitutive turnover. Additionally, part of the stress is being shifted to the 

newly produced elastin, and some is being shifted to SMCs that are able to produce more active 

stress when they are stretched less. 

The chosen constrained mixture model of AAA G&R is an ‘integral-based’ approach 

where the total history of the arterial constituents is accounted for over a finite model simulation 

time. There are other G&R models such as the ‘rate-based’ approach introduced by Watton et al. 

386 where physiologically determined remodelling rates for constituents are used to predicted 

dilations of the aneurysm. The integral approach can account for time-varying mass production 

and degradation rates while retaining their biological interpretations, an advantage over the rate-

based approaches. However, an integral-based formulation is computationally demanding 

requiring mass amounts of memory. In contrast, the rate-based approach used by Watton above 

and others387,388 is more computationally expedient. 

There are other inherent limitations to the general framework of the constrained mixture 

model of AAA G&R used in this study. Due to the discretization of the results, error can arise in 

slight deviations from the desired loaded geometry which changes the initial conditions for the 

time-dependent G&R simulation. While these differences are initially small, these errors 

manifest as compounding errors in the kinetics modeling. Some of the accumulation of error can 

be reduced by variable temporal resolutions. Additionally, variable temporal resolutions may be 

necessary and useful to investigate some of the more peculiar observations such as the amount of 

collagen found in the adventitia in Figure 18. 

Lastly, it should be noted that in this implementation, newly formed fibers are deposited 

in a constant direction. This is because our simplified case produces a first principal stresses in a 

constant, circumferential direction. However, the principal stress directions are not necessarily 
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constant, and non-constant principal stresses will be seen in irregularly shaped aneurysms that 

are not captured in this implementation. 

In the baseline AAA G&R models, the loss of elastin leads to luminal expansion and 

ineffective vasoactivity due to stretched SMCs, behaviors that are consistent with the physical 

manifestation of AAAs. One of the inherent compensation mechanisms on display in the model 

is the local stiffening of collagen shown in the increases von Mises stresses in the model. In 

contrast, when elastin production is allowed in our simulations, three things are clear: a decrease 

in diameter enlargement, a decrease in short term collagen deposition, and a decrease in von 

Mises stress. 

4.5 CONCLUSION 

The results of this study show that elastin production within an aneurysm could relieve 

the maladaptive mechanical environment to an extent that slows aneurysmal enlargement.  Early 

intervention can reduce the enlargement rate by more than 50%, potentially delaying the need for 

surgical intervention by 10 years385. These findings also confirm our thoughts that regeneration 

of functional elastic fibers in a AAA can help slow the progression of the disease. 

4.6 FUTURE WORK 

These exciting results can be used to guide future experiments that study elastin 

production. They can also be used as a starting point for optimizing treatment protocols for AAA 
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therapies such as MSC therapy. Additional work needs to be devoted towards addressing 

computational limitations through creative problem posing such as changing the temporal 

resolution of the time step, creative coding that optimizes the problem for parallel computing, 

and upgrades in computational hardware. Studies should also be devoted to some of the more 

interesting changes in collagen content that are displayed in Figure 18. 
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5.0  SPECIFIC AIM 2: PERIADVENTITIAL ADMSC THERAPY TO SLOW AND/OR 

REVERSE THE PROGRESSION OF AN ELASTASE PERFUSED AAA 

In Aim 2 we tested an ADMSC based therapy in a mouse elastase perfusion model of 

AAA.  We tested two ADMSC delivery methods: in saline suspension and within a fibrin gel. 

We then evaluated the treatment using physical measurements, histological characterization, and 

mechanical testing. The work presented in Aim 2 that utilized the saline suspension cell delivery 

has been previously published140. 

5.1 INTRODUCTION 

AAA rupture was the cause of mortality in over 11,000 cases in 2008 in the US116. Large 

AAAs (>6.0 cm diameter) expand more rapidly than small AAAs (<4.0 cm diameter) with the 

former expanding 7 to 8 mm annually while the latter only expand 1 to 4 mm annually. As 

demonstrated by the slow growth rate of small AAAs, the disease can take years to reach a size 

when surgical intervention is recommended (> 5.5 cm diameter) which is the endovascular 

placement of a synthetic graft to physically exclude the aneurysmal aorta. Surgical intervention 

does not benefit small AAAs118, and management of these patients is limited to “watchful 

waiting” (i.e., serial imaging of the AAA progression until the threshold for surgical treatment is 
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met.) Additionally, the use of pharmaceutical treatment to alter the progression of small AAAs 

has been proven ineffective184,389,390.  

The process of aneurysmal enlargement is complex, involving inflammatory cells, 

increased MMP activity leading to elastin and collagen degradation, smooth muscle apoptosis, 

and hypoxia mediated weakening114. These processes are heavily based on cellular activity, 

therefore AAAs represent an optimal target for regenerative MSC based therapy. MSCs have the 

ability to secrete growth factors193,194 which could suppress inflammation and MMP activity 

while stimulating elastin and collagen production. MSCs can also differentiate, thus providing a 

potential means to replace lost smooth muscle cells. Furthermore, MSCs have already shown 

promise as a treatment for AAAs in animal models when delivered systemically195 and by direct 

injection into the aortic wall133 immediately after an elastase insult. Though the former study 

showed a reduction in the inflammatory response suggesting a paracrine mechanism of action, 

systemic delivery of cells may encounter physical barriers such as atherosclerotic plaques and 

ILT.  The latter showed displayed MSC engraftment into the aneurysmal wall allowing for the 

possibility of MSC differentiation, but this delivery method which would require puncturing a 

weakened AAA wall could be troublesome to a vascular surgeon in a clinical setting.  

These approaches have proven useful in evaluating the effects of MSCs on the diseased 

condition showing a proof of concept for the stem cell treatment of AAA. However, AAA is a 

complex disease that takes years to fully develop to the stage where medical intervention is 

necessary. In humans, the exact moment when sufficient elastin is lost and the disease is initiated 

is unknown. Therefore, any clinical stem cell based therapy would be delivered well into the 

disease progression. The lapse between disease onset and diagnosis presents the need for an 

alternate therapeutic model. The objective of this study was to explore an alternative therapeutic 
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model using localized, delayed delivery of MSCs to an established and expanding aneurysm in 

an animal model. 

5.2 METHODS 

5.2.1 Culture of MSCs 

OriCell™ C57BL/6 green fluorescent protein (GFP) labeled murine ADMSCs were 

purchased commercially (Cyagen Biosciences Inc., Santa Clara, CA.) The ADMSCs were 

cultured according to the manufacturer’s protocols. Briefly, the ADMSCs were cultured at 37°C 

and 5.0% CO2 with OriCell™ Adipose-derived Stem Cell Growth Medium (10% fetal bovine 

serum, 1% penicillin-streptomycin, 1% glutamine; Cyagen Biosciences Inc., Santa Clara, CA.) 

The ADMSCs were used between passages 6–10. Media changes were performed every 2-3 

days. Once the ADMSCs were approximately 80-90% confluent, the ADMSCs were washed 

three times in phosphate-buffered saline and then incubated with Trypsin-EDTA (Gibco, Life 

Technologies, Grand Island, NY) solution for 5 min to remove them from the flasks. These cells 

were used in the saline suspension delivery method.  

Commercially sourced human ADMSCs (Thermo Fisher Scientific, #R7788110) were 

cultured in 75-cm2 or 175-cm2 tissue culture flasks (Corning) and grown under defined culture 

media  [1:1 Dulbecco’s modified Eagle’s medium (DMEM; Gibco #11965) to DMEM/F12 

(Gibco #113300) with 10% fetal bovine serum (Atlanta Biologics #S11550), antibiotics (1% 

Pen/Strep, 0.5% Fungizone, 0.1% Gentamycin), and 10 µL of 10 mM dexamethasone] mixed 

with 25% Preadipocyte Growth Medium (#C-27410, #C-39425; PromoCell). Culture media was 
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changed every 2-3 days and when ADMSCs were expanded to near confluence, they were 

passage expanded utilizing 0.25% trypsin-EDTA (#25200-056; Gibco) or utilized for subsequent 

experimentation. These cells were used in the fibrin gel delivery method. 

5.2.2 Elastase Perfusion 

Adult male mice were subjected to transient elastase perfusion of the abdominal aorta as 

described previously69,76,139,157,391. Briefly, after sedation and sterile preparation, a midline 

laparotomy was made to expose the peritoneum. Once abdominal contents were displaced in 

moistened gauze, a small incision was made in the mouse’s right retroperitoneal muscle.  

Forceps created a subcutaneous space, and then a subcutaneous microport (Instech, Plymouth 

Meeting, PA) connected to a polyurethane catheter tubing (Braintree Scientific, Braintree, MA) 

was attached and placed in the retroperitoneal space.  The exposed tubing was set aside to 

proceed with dissection of the infrarenal aorta. The surrounding tissues were cleaned peri-

aortically, and the diameter was measured under magnification with a micrometer. A segment of 

infrarenal aorta was isolated, and a 5-minute perfusion was performed through an arteriotomy at 

100 mm Hg with a solution containing type I porcine pancreatic elastase (PPE, 0.16 U/mL; 

Sigma-Aldrich, St. Louis, MO). All of the experiments were performed with a single PPE 

preparation derived from the same commercial source and lot. Following aortic perfusion the 

arteriotomy was repaired, an Ivalon sponge (5mm x 8mm) was connected to the end of the set 

aside tubing, and the sponge was tacked in place over the aorta (for schematic see Figure 21). 

The incision was closed, and the animal was allowed to completely recover before returning to 

standard housing. The animals were maintained in standard housing with ad libitum access to 

standard food and water for 14 days. 
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Figure 21. Elastase perfusion and localized adipose-derived mesenchymal stem cells treatment. (A) Schematic 
representing elastase perfusion. (B) Schematic demonstrating our delayed, localized delivery system. (C) 
Photograph of delayed, localized delivery system in place after elastase perfusion. (A & B) adapted with permission 
from Bartoli et. al120. 

 

 



 100 

5.2.3 ADMSC Delivery 

For experimental consistency, all groups had the local delivery sponge in place, and the 

elastase perfusion surgery (denoting day 0) was performed on all groups. Two ADMSC delivery 

methods were tested: in saline suspension and within a fibrin gel. The saline suspension delivery 

method was the first method explored as a proof-of-concept study. The fibrin gel delivery 

method was added in an attempt to improve ADMSC retention. In the saline suspension delivery, 

the groups were as follows (Figure 22): 1) An early aneurysm group that was sacrificed on day 5 

prior to any injection in order to demonstrate successful aneurysm induction (n=3.) 2) An 

untreated aneurysm group was given 400 µl of saline via port injection on day 5. The mice were 

sacrificed on day 14 (n=6.) 3) A local ADMSC delivery group was given 1x105 ADMSCs 

suspended in 400 µl of saline via port injection on day 5. The mice were sacrificed on day 14 

(n=9, 7 animals survived to day 14; cell concentration = 2.5x105 cells/mL.) All saline delivered 

ADMSC experiments were performed at Washington University in St. Louis in the laboratory of 

Dr. John Curci.  
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Figure 22. Experimental and control groups for saline delivery. Day 0 denotes elastase perfusion surgery and 
AAA induction. On day 5, post-elastase perfusion (D5 post-EP) animals were sacrificed in order to demonstrate 
successful aneurysm induction (n = 3, early aneurysm group). On D5 post-EP, treatment group animals were given 
stem cell therapy via port injection and were sacrificed on D14 post-EP (n = 9, seven animals survived to D14 post-
EP, local ADMSCs treatment group). On D5 post-EP, untreated control group animals were given 400 μl of saline 
via port injection and were sacrificed on D14 post-EP (n = 6, untreated aneurysm group). 
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When using fibrin as a delivery vehicle for the ADMSCs to allow for the potential 

increase in ADMSC engraftment to the periadventitial AAA wall, the groups were as follows: 1) 

An untreated control group where saline was delivered via port injection on day 6. The mice 

were sacrificed on day 15 (n=4.) 2) A local ADMSC delivery group was given 1x105 ADMSCs 

suspended in 250 µl of fibrin gel via port injection on day 6. The mice were sacrificed on day 15 

(n=10; fibrinogen concentration = 3 mg/mL, thrombin concentration = 1 NIHU/mL, cell 

concentration = 4.0x105 cells/mL.). 3) A local, acellular fibrin delivery group was given 250 µl 

of fibrin gel via port injection on day 6. The mice were sacrificed on day 15 (n=23; fibrinogen 

concentration = 3 mg/mL, thrombin concentration = 1 NIHU/mL). ADMSC-seeded fibrin gels 

were mixed from constituent solutions as a single batch for delivery. Up to three mice at a time 

were injected for the cell based treatments. These mice were further grouped by the order in 

which they were injected from the single batch of ADMSC-seeded fibrin gel for diameter 

analysis. The group labeled “injection 1” consisted of animals that received the first injection 

from the single batch of ADMSC-seeded fibrin gel. The group labeled “injection 2 or 3” 

consisted of animals that received the second or third injection from the single batch of ADMSC-

seeded fibrin gel. It should be noted that the treatment delivery and harvest occurred at days 6 

and 15, respectively. These values are each one day later than the saline delivery counterparts 

described in Section 5.2.3. All fibrin delivered ADMSC experiments were performed at 

Vanderbilt University in the laboratory of Dr. John Curci.  
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5.2.4 Aorta Diameter Measurement 

Two weeks following elastase perfusion, the mice were again anesthetized, and the 

laparotomy incision was reopened. Final aortic diameter was measured in vivo with an ocular 

grid prior to sacrifice. Animals were euthanized, and the entire perfused segment of aorta was 

harvested for further analysis. The diameter data are presented as a % increase in diameter 

defined as the difference in final and initial diameters divided by the initial diameter and 

multiplied by 100 to be expressed as a percentage.  

5.2.5 Histological Characterization of Aorta 

Aortic specimens were formalin fixed for 24 hours before being preserved via paraffin 

embedding. Paraffin embedded tissue blocks were sectioned using a microtome at 5 µm 

thickness. Before staining, sections were deparaffinized and rehydrated by consecutive washes in 

xylene, alcohol, and de-ionized water. Cross sections of the aortic wall were stained with 

Verhoeff-Van Gieson (VVG) stain for elastin as well as hematoxylin and eosin to identify 

cellular composition. 

Rehydrated sections were blocked with 5% goat serum and incubated with primary 

mouse specific recombinant tropoelastin antibody (1:1000, generous gift from R.P. Mecham, 

Washington University in St. Louis392) overnight. Sections were then incubated with Alexa 647-

conjugated goat anti-rabbit antibody (Molecular Probes, Life Technologies, Grand Island, NY) 

followed by counterstaining with 4',6-diamidino-2-phenylindole (DAPI) and imaged on a 

fluorescent microscope (Olympus, Provis 1, Center Valley, PA, Center for Biological Imaging, 

University of Pittsburgh).  
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Additional samples were also stained with a mouse F4/80 antibody (BioRad, 

MCA497A488) as pan macrophage marker in a similar manner as described above. A 1:50 

dilution was used as well as a proteinase K antigen retrieval step. The antibody was 

preconjugated with Alexa 488.  

Unstained specimens were imaged using a multi-photon microscope (Olympus, Model 

FV10, Center Valley, PA, Center for Biological Imaging, University of Pittsburgh) to observe 

elastin fiber arrangement. Samples were excited at 790 nm wavelength, and elastin was detected 

according to intrinsic fluorescence wavelength (525 ± 25 nm). 

5.2.6 Mechanical Testing and Characterization of Aorta 

Ring sections were cut from the murine aortas (shipped cold overnight from Vanderbilt 

University) at the midpoint between the renal arteries and the iliac-tail-aortic trifurcation. The 

rings were threaded with stiff metal wire which was clamped in an Instron tensile testing device   

described in Section 2.2.3. The mechanical analysis was performed in the same manner as 

described in Section 2.2.4 with the notable exception of using a Poisson’s ratio of 0.5 which 

indicates an incompressible material.  

5.2.7 Statistics 

All statistics were performed in a similar manner to Section 3.2.7 (“Statistics”). 
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5.3 RESULTS 

5.3.1 Progression of AAA with Saline Delivered ADMSC Treatment 

Five days after elastase perfusion, the artery dilated to approximately double the original 

diameter (Figure 23). At this point, when the aneurysm has already been established, either 

saline or ADMSCs were delivered through the treatment port. The untreated (saline) aneurysm 

group had a larger diameter than the early aneurysm group indicating that the untreated 

aneurysm continued to enlarge. By contrast, the group treated with ADMSCs demonstrated an 

aortic diameter equivalent to the early aneurysm group (and smaller than the untreated group) 

indicating that the expansion of the AAA had essentially been halted at the time of ADMSC 

treatment.  
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Figure 23. Progression of aneurysm is halted with local adipose-derived mesenchymal stem cells treatment. % 
increases in aortic diameter measurements (mean ± standard deviation) for early aneurysm group (93.3 ± 5.77 %, n 
= 3), local ADMSCs treatment group (104.29 ± 12.72 %, n = 7), and untreated aneurysm group (151.67 ± 18.35 %,, 
n = 6). A two-way analysis of variance revealed unequal means (*, p < 0.001) between groups. Tukey tests revealed 
which groups differed. 
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5.3.2 Histological Changes with Saline Delivered ADMSC Treatment 

VVG, elastin autofluorescence, and immunofluorescent staining are shown in Figure 24. 

Qualitative examination of the imaged sections revealed less disruption of the elastic lamella in 

the local ADMSC treatment group when compared with the untreated aneurysm group. This is 

most apparent with VVG staining where elastin fiber breaks are highlighted by red arrows. The 

elastic fibers look similar between the early aneurysm group and the local ADMSC treatment 

group indicating that the delivery of ADSMCs is associated with preserved elastin integrity at the 

time of ADMSC treatment. Immunofluorescent staining (Figure 24B) and elastin 

autofluorescence (Figure 24C) confirmed the VVG results (Figure 24A).  

Aneurysm progression in this model is mediated by inflammation – inflammatory cells 

are recruited by elastin degradation peptides and actively contribute to further matrix 

degradation393. In our study, moderately severe inflammation was apparent at day 5 (note the 

presence of mononuclear cells in Figure 25). At day 14, the presence of mononuclear cells 

decreased, but no significant difference was seen between treatment groups. Additionally, at day 

14, there are no detectable macrophages in the local ADMSC treatment group compared to the 

early aneurysm and untreated aneurysm groups which display positive staining for macrophages 

(Figure 26).  
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Figure 24. Qualitative examination of elastin. Images from early aneurysm (left column), untreated aneurysm 
(middle column) and local ADMSC treatment (right column) groups are shown after Verhoeff–Van Gieson 
staining (top row), elastin immunofluorescence (middle row), and elastin autofluorescence (bottom row) (n = 2 all 
groups). 
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Figure 25. Monocyte infiltration of the abdominal aortic aneurysm is not significantly reduced with adipose 
derived mesenchymal stem cells delivery. Images from early aneurysm, untreated aneurysm and local ADMSC 
treatment groups are shown after staining with hematoxylin and eosin (n = 2 all groups). 
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5.3.3 Figure 26. Local ADMSC treated aortas show no macrophages at day 14 post elastase perfusion. Images from 
early aneurysm (top), untreated aneurysm (middle) and local ADMSC treatment (bottom) groups are shown after 
macrophage immunofluorescence staining (green) (n = 1 all groups). All groups are counterstained with DAPI 
(blue). 
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Diameter Measurements with Fibrin Delivered ADMSC Treatment 

Six days after elastase perfusion, saline (no ADMSCs), fibrin(no ADMSCs), or ADMSC 

seeded fibrin treatments were delivered through the treatment port. Upon harvest at day 15, there 

was no statistical differences in the % increase in outer aortic dimeter (p=0.308). Figure 27 

shows the mean and standard deviation for each group. The untreated saline controls harvested at 

day 15 were smaller than the equivalent untreated saline controls harvested at day 14 shown in 

Figure 23 (p=0.0004).  

The ADMSC seeded fibrin delivery group was further broken down according to the 

timing of the injections. Since there is a temporal aspect to fibrin gelling, mice that were injected 

at a later gelation time were separated from mice that received the first injection from the batch 

mixing of fibrin. This breakdown is shown in Figure 28. The groups are not statistically 

different when including this further breakdown (p=0.239).  
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Figure 27. Aneurysm growth is unchanged with local adipose-derived mesenchymal stem cells treatment 
delivered via fibrin (p=0.308). % increases in aortic diameter measurements (mean ± standard deviation) for local 
saline (no ADMSC) treatment group (82.14 ± 17.98 %, n = 4), local fibrin (no ADMSC) treatment group (62.60 ± 
33.92 %, n = 23), and local ADMSC treatment group in fibrin (50.71 ± 22.64 %, n = 10). 
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Figure 28. Aneurysm growth is unchanged with local adipose-derived mesenchymal stem cells treatment 
delivered via fibrin even when accounting for injection order (p=0.239). % increases in aortic diameter 
measurements compared to per elastase perfusion measurements (mean ± standard deviation) for local saline (no 
ADMSC) treatment group (82.14 ± 17.98 %, n = 4), local fibrin (no ADMSC) treatment group (62.60 ± 33.92 %, n 
= 23), local ADMSC treatment injection 1 group (43.45 ± 29.14 %, n = 6), and local ADMSC second treatment 
injection 2 or 3 group (75.00 ± 24.40 %, n = 4). The first two bars from left to right are the same as the first two 
bars from left to right in Figure 27. 
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5.3.4 Aorta Mechanical Properties with Fibrin Delivered ADMSC Treatment 

In order to determine the tangent modulus of the aortas, the circumferential Cauchy stress 

was calculated and plotted against the circumferential stretch ratio is shown in Figure 29 (along 

with similar data from Collins et al.167). One-way ANOVA reveals differences in the tangent 

modulus, seen visually as the higher slope of the second linear portions of the curves in Figure 

29, between the groups (p=0.014). Subsequent Tukey tests revealed that the native aortas have a 

lower tangent modulus than the acellular fibrin treated and ADMSC-seeded fibrin treated groups 

(Table 8). 
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Figure 29. Elastase treatment leads to a stiffer aorta in mice. Circumferential stretch ratio is shown on the x-axis. 
Circumferential Cauchy stress is shown on the y-axis. The solid lines are from the following groups: Black = native 
aorta, blue=fibrin only treatment, orange=ADMSC treatment, red =saline treatment. The black triangle data points 
are native mouse aortas from Collins et al167. The black circle data points are elastase treated mouse aortas from 
Collins et al167. 
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Table 8. Native aortas have a lower tangent modulus than all elastase treated groups. Measurements for 
tangent modulus are given as mean ± standard deviation. Tukey groupings identifiers “A” and “B” show which 
groups have different means.  

Group Tangent Mod. (MPa)  Tukey Groupings 
Native aorta (n=3) 0.6±0.3 A 

Saline (n=2) 2.9±0.3 A B 
Fibrin Only (n=6) 3.3±1.4 B 

ADMSC (n=4) 4.2±1.2 B 
One way ANOVA p=0.014 
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5.4 DISCUSSION 

Local ADMSC treatment delivered by saline suspension halted aortic diameter 

enlargement at the time of cell delivery (Figure 23). It has been estimated that if enlargement 

rates of small aneurysms (<4.0 cm diameter in humans) could be reduced by even 50%, the need 

for surgical intervention could be delayed by 10 years, thus preventing the need for intervention 

in many patients385. From a qualitative perspective, ADMSC treatment preserved the structure of 

elastic lamellae at levels comparable to the time of cell delivery, although quantitative analysis 

has not been performed. This could indicate a role for ADMSC in preventing elastin degradation 

and/or promoting elastic fiber production. Elastin degradation is both a hallmark of a developed 

AAA and an active recruiter of inflammatory cells394 that continues the AAA destructive cycle. 

Preserving elastin integrity, and thus decreasing inflammation, could halt AAA progression. In 

our study, we cannot conclusively state that ADMSC diminished the inflammatory response, but 

they could theoretically have offset any monocyte-derived elastase activity. Our study also 

showed a decrease in the presence of macrophages when treated locally with ADMSCs (Figure 

25). 

Alternately, and not exclusive, to preventing degradation, therapeutic cells could 

stimulate elastin production. Elastic fibers can be produced by human vascular SMCs in vitro 

when stimulated with TGF-β1313 which is secreted by ADMSCs194. Therefore, ADMSCs could 

stimulate repair by native vascular SMCs.  

When considering the increase in aortic diameter and elastin structure, our periadventitial 

stem cell delivery method produced results similar to those shown by Sharma et al.195 where the 
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systemic delivery of MSCs reduced the rate of AAA progression and preserved elastin lamella 

integrity in elastase-perfused mice. Our study extends the work of Sharma et al. by 

demonstrating that the macroscopic benefits of stem cell therapy are accessible to established 

and expanding aneurysms and not limited to attenuating the inflammation response immediately 

following elastase perfusion. Our study also shows that periadventitial delivery of a stem cell 

therapy is effective and may avoid potential problems of systemic delivery such as unintended 

stem cell migration and engraftment. It also focuses the cells on the anatomically defined 

segment of the aorta affected by the disease and circumvents the physical barriers presented by 

endothelium, atherosclerotic plaque and/or ILT. This an important finding in the development of 

treatments for patients with an identified AAA, of which 90% are smaller than the size 

recommended for surgical repair (5.5 cm)395.  

Although this study yielded exciting results, it does have limitations. This proof-of-

concept study was designed to be a short-term study. While the murine elastase-perfused 

aneurysm does not expand after our chosen end point of 14 days120, the human aneurysm 

expands progressively. Longer studies will need to be completed in order to understand the long 

term effects of our treatment. Additionally, future studies will investigate the progression of the 

disease in real-time by sacrificing animals at more frequent intervals and utilizing noninvasive 

imaging, such as ultrasound or micro-CT/micro-MRI. 

In this study of local ADMSC treatment delivered via saline suspension, we had sought 

to develop and show proof-of-concept for an alternative therapeutic model for AAAs. A 

localized, periadventitial route of stem cell therapy administration avoids the drawbacks of both 

systemic delivery (e.g., uncertain destination of cells and presence of ILT) and local delivery via 

direct injection into a weakened aneurysmal wall. The placement of the port, catheter, and 
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sponge (Figure 21) allows for initiation of therapy at any point in the development of the model 

aneurysm. A final advantage of our approach is the use of MSCs sourced from adipose tissue. 

ADMSCs are a very attractive clinical source of stem cells due to the ease of obtaining adipose 

tissue from donors seeking liposuction treatment and the high yield of MSCs from adipose 

tissue351,396. Our study revealed how ADMSCs can alter the progression of an already 

established and expanding aneurysm while others have shown the ADMSCs have 

immunomodulatory properties397. 

In contrast to the results when ADMSCs were delivered with saline, ADMSCs delivered 

via a fibrin hydrogel had no significant effect on aneurysm in terms of % increase in outer 

diameter and tangent modulus of the vessel. There are a number of confounding factors that 

could be influencing our results. First, the size of the aneurysm in terms of % increase in outer 

diameter is smaller when comparing the untreated aneurysm controls between the saline 

suspension delivery experiments performed at Washington University in St. Louis and the fibrin 

gel delivery experiments performed at Vanderbilt University. Though following the same 

protocols, the change in location has also meant a change in animal technician performing the 

surgeries, different lots of elastase, and potential differences in food and water given to the 

animals. Since the aneurysm we were treating is small overall, the ADMSC therapy may not be 

able to have a large enough effect to be seen in a macroscopic measurement such as diameter.  

Another confounding factor could be the timing of the delivery using fibrin gels as a 

delivery vehicle. Once the constituents of the fibrin gel are mixed, gelation begins. Should 

gelation proceed too rapidly, the cells may not be able to get close enough to the aorta to have a 

positive effect. This is partially shown in the trend of lower diameters for the aortas treated with 

the first injection from the fibrin-cell mixture compared to the second and third injections from 
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the fibrin-cell mixture which are highlighted in Figure 28. Gelation may have been nearing 

completion by the time the second and third injections from the fibrin-cell mixture were 

delivered to the animals thus inhibiting the cells from reaching the periadventitial AAA wall.  

5.5 CONCLUSION 

We have developed an animal model for delayed, periadventitial delivery of ADMSCs to 

ameliorate elastase-induced AAA. Delayed, periadventitial delivery of ADMSCs halted two 

aspects of aneurysm progression – expansion of the aortic diameter and fragmentation of the 

elastic lamella. This work represents an important step towards developing clinically realistic 

stem cell therapies for AAA patients.  

5.6 FUTURE WORK 

Future work should concentrate on generating larger aneurysms in the fibrin based 

delivery of ADMSCs experiments. Once this technique is refined, work needs to be dedicated to 

improving ADMSC delivery to the periadventitial surface of the aorta. Once improved and 

shown to be effective, the ADMSC’s mechanisms of action need to be determined to fully 

understand why the therapy is effective. Lastly, these studies need to be extended to longer time 

points in order to determine the lasting effect of the treatment. 
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6.0  SPECIFIC AIM 3: DEVELOP CLINICAL MSC DELIVERY SYSTEM 

The third Specific Aim of this dissertation is the early developmental work towards 

creating a clinical delivery system for our MSC therapy (which is thoroughly described in 

Section 6.1.1). Critical aspects of this clinical delivery system were evaluated four ways: 1) we 

evaluated the loading efficiency of iron nanoparticles into ADMSCs, 2) we determined cell 

viability with respect to fibrin gelling parameters and iron nanoparticle size, 3) we examined 

whether a magnetic force between the iron nanoparticles and an external magnet could induced 

movement of ADMSCs through a fibrin gel, and 4) we created and evaluated a cell delivery 

prototype. But, before detailing the experimental methods, it is important to understand the 

motivation and design criteria of our MSC delivery system as well as an overall description of 

the system. 

6.1 DESIGN DESCRIPTION, MOTIVATION, AND CRITERIA 

6.1.1 Clinical MSC Delivery System Description 

We wish to deliver our proposed MSC therapy to the periadventitial surface of a AAA in 

a minimally invasive manner. This will be accomplished by gaining access to the peri-aortic 

space through the use of image-guided needles or retroperitoneoscopic techniques, and directing 



 122 

the transmural migration of MSCs by incorporating iron nanoparticles within the MSCs along 

with the placement of an intra-aortic magnet. The iron nanoparticle loaded MSCs will be 

delivered along with a fibrin gel which will entrap the cells on the periadventitial surface of the 

AAA. Local delivery of therapeutic agents should overcome noted inefficiencies of systemic 

delivery (i.e., poor homing398, compromised vasa64,65,109-111, and physical barriers like the 

ILT113). Our approach also has the potential intrinsic benefit of reduced systemic 

effects/toxicities.  

When combined, the resulting therapy is the delivery of therapeutic cells to the 

periadventitial surface of the AAA with a fibrin gel holding the cells in place. The practical 

implementation of this system will occur as follows: (1) the endoluminal magnetic probe will be 

placed in the AAA lumen through femoral artery catheterization, and placement will be 

confirmed via ultrasound, (2) prescribed volumes of iron nanoparticle loaded therapeutic cells, 

fibrinogen, and thrombin solutions will be loaded into syringes and attached to a mixing and 

dispensing device that is designed to ensure that the solutions are mixed at the exact ratio and 

only upon injection, and (3) up to two translumbar injections can be made on either side of the 

spine to the periadventitial side of the AAA, and the solutions of iron nanoparticle loaded 

therapeutic cells, fibrinogen, and thrombin will be dispensed and mixed simultaneously. 

This system is designed to ensure delivery of the therapeutic cells to the periadventitial 

surface of the AAA. The magnetic force between the iron nanoparticles and the endoluminal 

magnetic probe pull the therapeutic cells to the periadventitial surface of the AAA. The fibrin gel 

forms around the cells, restricting cell movement after withdrawal of the endoluminal magnetic 

probe. The mixing and dispensing system is designed to ensure the iron nanoparticle loaded 

therapeutic cells, fibrinogen, and thrombin solutions do not begin mixing until the time of 
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dispensing and are mixed in the appropriate ratios. While novel technology is being developed 

for this therapeutic cellular delivery system, the parts are designed to leverage existing 

technologies such as syringes, surgical needles, and ultrasonic probing systems. In our small 

animal studies, described in Chapter 5, we have been successful at delivering a fibrin gel to the 

area immediately surrounding the aorta in an elastase perfused AAA mouse model140. The 

insights gained from our small animal studies combined with the development and testing of the 

proposed system will ensure a quality and effective end product. It is important to note that some 

of the work detailed below has been put into a successfully funded development grant through 

the University of Pittsburgh Center for Medical Innovation (F_168-2016, PI: Blose) and is the 

subject of an invention disclosure submitted to the University's Office of Technology 

Management (Disclosure #03490). 

6.1.2 Minimally Invasive Delivery of MSCs 

We sought to make our therapeutic delivery of MSCs as minimally invasive as possible 

for two reasons. First, the advanced age of most patients makes open surgery a risky proposition 

with respect to mortality and extends hospital stays. Both problems are currently manifested with 

open repair of AAA. Secondly, the cost of an invasive surgery would be higher requiring more 

skilled healthcare providers, sterile rooms, and longer in-hospital recovery times. We have 

designed the delivery system to distribute a chosen therapeutic, MSC-seeded fibrin gels, to the 

periadventitial surface of the AAA. This will be accomplished through an ultrasonic guided 

translumbar injection.  
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6.1.3 Directed Homing of MSCs 

Upon injection, the MSC-seeded fibrin gel is still a cell suspension in a viscous liquid. 

Gelation takes some time to complete and is tunable280. During the interval of time between 

injection and gelation, there is an opportunity, and possibly a necessity, to direct the injected 

cells to the periadventitial surface. Should the therapeutic MSCs become locked in the fibrin gel, 

any potential paracrine mechanism of action, which is demonstrated in Chapters 3 and 5, could 

be hindered if the MSCs are too far from the AAA wall.  

Our proposed solution to this problem was to use magnetic attraction to concentrate the 

cells in a desired location. We borrowed a technique pioneered in imaging modalities using iron 

nanoparticles399-401. Loading cells with iron nanoparticles has since been used in the magnetic 

guidance of stem cells for preclinical testing of therapies for myocardial infarction402 and retinal 

degeneration403, and we will adapt this approach for AAAs by loading iron nanoparticles inside 

our therapeutic cells. A magnetic probe can be introduced into the lumen of the AAA via femoral 

artery access. The magnetic attraction force between the magnetic probe and the iron 

nanoparticles will pull the iron nanoparticle loaded cells through the fibrin hydrogel to the 

periadventitial surface of the AAA. 

6.1.4 Magnetic Probe Placement Considerations 

The endoluminal magnetic probe needs adequate femoral access which is influenced by 

aortic and iliac tortuosity posing a challenge to accessing the AAA404 The concept of tortuosity, 

an estimate of the arc to chord ratio, is often left to qualitative and subjective characterizations. 

Historically, there was no consensus on the best method of quantifying tortuosity and therefore 
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was not commonly done. Advances in computerized measurement techniques have led to an 

adoption of femoral artery tortuosity measurements which have demonstrated an increased rate 

of asymptomatic femoral dissections in more tortuous arteries405-408. 

Though tortuosity measurements are helpful in determining the best course of therapy for 

a AAA patient409,  the tortuosity of the femoral artery is often mitigated for EVAR patients by 

using an extra stiff guide wire, a "pull down" maneuver, and occasional implantation of a 

temporary graft sutured to the common iliac artery via a retroperitoneal approach. The "pull 

down" maneuver consists of dissecting the common femoral and external iliac arteries and 

pulling these arteries inferiorly to straighten the tortuosity410. Once straightened, a sheath (15-18 

Fr [3Fr = 1mm]) is inserted to allow the graft probe to reach the desired location. We will borrow 

this technique and size our probe to fit inside a 15-18 Fr sheath.  

The magnetic probe was designed to fit within an 18 Fr sheath in order to utilize the “pull 

down” technique when necessary. Additionally, the magnetic probe was designed such that it can 

be visualized using ultrasonic imaging by using solid metallic magnets. A prototype of the 

magnetic probe is shown in Figure 30.  
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Figure 30. Magnetic probe designed to fit within an 18 Fr sheath. Disk magnets (1.5 mm height x 3 mm 

diameter) were glued to the inside of a clear PVC 5 mm outer diameter tube. 
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6.1.5 Cell Delivery Vehicle Material Considerations 

We chose fibrin as our vehicle for cell delivery due to its ease of gelation and extensive 

track record of cell compatibility299,411-414. The use of a hydrogel will restrict the cells to the 

local aneurysmal aorta (providing a decreased risk of cells ending up in remote tissue beds 

compared to systemic delivery). Also, because of its temporal and thermal gelation properties, 

fibrin can be injected while still a liquid and gel inside the body at our desired location. Fibrin 

has already been approved by the Food and Drug Administration (FDA) in a number of 

applications under the tradenames TISSEEL, EVARREST, etc. However, it is important to note 

that the FDA does not broadly approve a specific material; rather they approve a material for a 

specific application.  

The gelling nature of the fibrin requires that the constituents of the gel be mixed as close 

to injection as possible. Once mixed, the fibrin begins to gel, and the cells will have a harder 

time localizing to the periadventitial surface of the AAA as the gelation process proceeds even in 

the presence of a magnetic attraction force. In order to delay the gelation as long as possible and 

to remove any user error with respect to gelation, a delivery device needed to be designed such 

that the prescribed volumes of iron nanoparticle loaded therapeutic cells, fibrinogen, and 

thrombin solutions can only be mixed as the injection is occurring. 

A cell delivery mixer was designed to accommodate three separate “Luer-Lok” syringes 

as inputs and a single “Luer-Lok” as output. The diameters of the tubes from each input “Luer-

Lok” were also designed to ensure that the volumetric flow rate is constant for all three inputs.  

A 3D rendering of the cell delivery mixer is shown in Figure 31.  
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Figure 31. Cell delivery mixer designed to ensure gels are mixed only while injecting. A) The three inputs (top) 
were designed to accommodate a “Luer-Lok” syringe. Equal volumes of the fibrinogen, thrombin, and iron 
nanoparticle loaded ADMSCs will be loaded into three separate syringes and dispensed at the same time through the 
single output (bottom). B) Fibrin gel constituent components loaded into a syringe and locked in the fibrin gel 
mixer. From left to right, the constituents are fibrinogen solution (pink), cell suspension (yellow), and thrombin 
solution (blue). 
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6.1.6 FDA Regulatory Considerations 

The practical application of our MSC based AAA therapeutic would fall under the FDA 

category “combination product” designation. A combination product is defined by the FDA as “a 

product comprised of any combination of a drug and a device, a biological product and a device, 

a drug and a biological product, or a drug, device, and a biological product.”415 The FDA 

classifies these products differently as a precautionary measure due to interactions of the 

products being combined that may not be readily apparent. In our specific application, the 

delivery of our therapeutic is to a new location. The delivery location may make it “necessary to 

develop new methods to determine the effect of such localized/targeted delivery, particularly 

when it results in higher exposure to that target than when the drug is systemically 

administered.”415  

Additionally, the FDA would consider our product a cellular therapy (CT) which is 

grouped with gene therapy (GT) products and referred to collectively as CGT. The FDA is 

rightfully worried about the risks of CGT products. A previous trial showed tumors in the brain 

and spinal cord when a patient was treated with intrathecal allogeneic stem cells for ataxia 

telangiectasia416. This tragic outcome highlights the risky nature of CGT products.  

It is their very nature that we are trying to harness for a therapeutic that makes CT 

products a unique, dynamic, and complex problem to address. The ADMSCs used in our therapy 

produce a number of beneficial growth factors such as TGF-β1194 in the context of treating 

AAA, but the ADSMC may also produce other undesirable growth factors that negatively affect 

the patient such as interluekin-6417, a pro-inflammatory cytokine. Additionally, the therapeutic 

cells, such as the ADMSCs used or our studies or MSCs in general, could also develop undesired 

functions such as a CT that was delivered to the heart which produced cardiomyocytes that were 
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beating out of sync418. Clearly, the FDA understands the risks associated with CT, and our AAA 

therapy will need to address those concerns. 

6.2 METHODS 

6.2.1 Cell Culture 

For all cell-based experiments, commercially sourced human ADMSCs (Thermo Fisher 

Scientific, #R7788110) were cultured in 75-cm2 or 175-cm2 tissue culture flasks (Corning) and 

grown under defined culture media  [1:1 Dulbecco’s modified Eagle’s medium (DMEM; Gibco 

#11965) to DMEM/F12 (Gibco #113300) with 10% fetal bovine serum (Atlanta Biologics 

#S11550), antibiotics (1% Pen/Strep, 0.5% Fungizone, 0.1% Gentamycin), and 10 µL of 10 mM 

dexamethasone] mixed with 25% Preadipocyte Growth Medium (#C-27410, #C-39425; 

PromoCell). Culture media was changed every 2-3 days, and when ADMSCs were expanded to 

near confluence, they were passage expanded utilizing 0.25% trypsin-EDTA (#25200-056; 

Gibco) or utilized for subsequent experimentation. Cells were used between passages 6-10.  

6.2.2 Iron Nanoparticle Loading Efficiency 

Cell loading with iron nanoparticles (fluidMAG-D, Chemicell) was performed according 

to published protocols419,420. Briefly, ADMSCs were incubated overnight with 0.5 mg/mL 

nanoparticles (100 or 200 nm diameter) in growth medium. Cells were also loaded with a 0.25 

mg/mL and 1.00 mg/mL iron nanoparticles, and loading efficiency was calculated as the total 
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number of cells containing iron nanoparticles (identified by staining described in Section 6.2.8) 

per view divided by the total number of cells per view (n=3 per group, 3 images per n). 

6.2.3 Fibrin Gel Fabrication 

All experiments using ADMSC-seeded fibrin constructs were fabricated by mixing 

bovine fibrinogen type I (3 mg/mL or 10 mg/mL, Sigma-Aldrich, St. Louis MO) with bovine 

thrombin (1 NIHU/mL, Sigma-Aldrich, St. Louis, MO) and ADMSC cell suspension (5.0x104 

cells/gel, 1.0x105 cells/gel, and 2.0x105 cells/gel). The gels were plated within 24-well plates 

(Corning). Gels were either allowed to polymerize for at least 2 hours in incubator conditions 

(37°C, 5% CO2) or handled immediately before adding ADMSC culture media for the viability 

(Section 6.2.4) and migration assays (Section 6.2.5), respectively. The gels were then cultured in 

incubator conditions according to the treatment condition.  

6.2.4 Cell Viability 

In order to determine the optimal fibrin gelation parameters for ADMSC viability, the 

ADMSC viability of ADMSC-seeded fibrin constructs was evaluated using an MTT assay. After 

5 days in culture, 200 mL of serum-free α-MEM and 20 mL of Thyazolyl Blue Tetrazolium 

Bromide (Sigma–Aldrich, St. Louis, MO) was added to each sample. Samples were then 

incubated at 37°C for four hours to allow crystal formation. The supernatant volume was then 

carefully removed and 200 µL of 0.04N HCl in 2-propanol solution was added to dissolve the 

crystals. Samples were kept in the dark at 4°C for 24 hours. Lastly, absorbance readings were 

taken for 100 µL of the solution for each condition at 550 nm wavelength using a microplate 
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reader (BioTek, Winooski, VT). The final number of cells was calculated using a standard curve 

generated for known cell concentrations. 

6.2.5 Magnetic Migration 

In order to determine the localization effects of short term magnetic stimulation, 

ADMSCs were loaded with iron nanoparticles (100 and 200 nm diameter) and seeded in a fibrin 

gel. Fibrin gels were also formed with iron nanoparticles only (100 and 200 nm diameter). The 

gels were plated in a 24-well plate. A magnet (0.3T) was placed under the 24-well plate in the 

center of each well. In order to determine the temporal effects of magnetic stimulation of an 

actively gelling construct, a magnet was put in place at three different time points: at the 

beginning of gelation (prior to gel plating), mid gelation (20 seconds after gel plating), and after 

complete gelation (10 minutes after gel plating). Gels were also plated without magnet placement 

as a control. A side view schematic of the experimental groups is shown in Figure 32. The gels 

were cultured in incubator conditions (37 C, 5% CO2) for 24 hours. The gels were then imaged 

from above to qualitatively assess the localization of the iron nanoparticles. 

In order to determine the localization effects of long term magnetic stimulation, gels 

made from cells loaded with 200 nm iron nanoparticles and magnet placement at mid gelation 

were cultured for 5 days. We added an additional magnet size to the longer term culture 

experiments. The larger magnet had a greater pull strength (12 lbs. vs. 4 oz.), but the same 

magnetic field surface strength (0.3 T). 
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Figure 32. Fibrin gel schematic and groups . Fibrin gels are shown in green. Cells are yellow with purple nucleus. 
Iron nanoparticles are shown in blue. Experimental groups from left to right are: cells with 100 nm iron 
nanoparticles, cells with 200 nm iron nanoparticles, 100 nm iron nanoparticles alone, 200 nm iron nanoparticles 
alone. 
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6.2.6 Fibrin Gel Mixer Performance 

In order to determine how effectively our fibrin gel mixer was able to create a uniform 

distribution of cells within an ADMSC-seeded fibrin construct, ADMSC-seeded fibrin constructs 

were made by utilizing the fibrin gel mixer described in Section 6.1.5. Equal volumes of a 

fibrinogen solution (9 mg/mL), thrombin solution (3 NIHU/mL), and ADMSC cell suspension 

(7.5x105 cells/mL), were loaded into separate 3mL syringes and attached to the fibrin gel mixer. 

400 µL gels were plated in 24-well plates using the fibrin gel mixer. Three groups of gels were 

made by rotating the fibrin gel component solutions (fibrinogen, thrombin, and cell suspension) 

syringes through the three fibrin gel mixer inputs. The three groups (n=3 per group) were named 

as follows: 1) Left – cell suspension in the left input, fibrinogen solution in the center input, and 

thrombin solution in the right input, 2) Center - cell suspension in the center input, fibrinogen 

solution in the right input, and thrombin solution in the left input, and 3) Right - cell suspension 

in the right input, fibrinogen solution in the left input, and thrombin solution in the center input. 

A control group was also made by mixing the components thoroughly by manual pipetting 

before plating. Samples were allowed to gel for 2 hours before being processed for nuclei 

imaging as described in Section 6.2.8. Three random square views (~thickness of gel x thickness 

of gel) of each gel were processed in ImageJ by fitting ellipses to nuclei. The average distance 

from each nucleus to all other nuclei is each image was calculated for each group. An additional 

qualitative mixing experiment is described and results are shown in 231.  
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6.2.7 Magnetic Probe Ultrasound Identification 

In order to show that the magnetic probe portion of the cell delivery system described in 

Section 6.1.4 is visible by ultrasonic imaging, the magnetic probe prototype was imaged within a 

tissue mimic using a 21 MHz ultrasound linear probe (MS 250) connected to a high frequency 

imaging system (Vevo2100, Visualsonics, Canada) in B-scan mode. The tissue mimic, shown in 

Figure 33, was made from a 2% gelatin solution contained within a Plexiglas chamber with a 

clear PVC tube running the length of the chamber to serve as an aorta mimic. The tube was 

approximately 3 inches from the top of the tissue mimic. Ultrasound images of the aorta mimic 

were captured with and without the magnetic probe in place and processed to highlight the 

magnetic probe.  
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Figure 33. Tissue mimic used for ultrasonic identification of magnetic probe. A Plexiglas chamber houses a 2% 

gelatin gel and a clear PVC tube to serve as tissue and aorta mimics, respectively.  
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6.2.8 Histology and Imaging 

All samples collected for imaging were fixed in 4% paraformaldehyde, frozen, and 

sectioned. Sections were stained with Prussian Blue stain for iron and DAPI to show nuclei. 

Images of sections were taken looking at the z-radial plane and taken from the middle of the gel. 

All sectioned samples were imaged using NIS Elements software (version 4.0). 

6.2.9 Statistics 

A linear regression model was used to determine significant predictors for the cell viability  

experiments. All other statistics were performed in a similar manner to Section 3.2.7 

(“Statistics”). 

 

6.3 RESULTS 

6.3.1 Optimal Iron Nanoparticle and Fibrin Gel Parameters 

When preforming the iron nanoparticle loading efficiency experiments, we found that 

~52% of cells had iron nanoparticles (Figure 34), and a one-way ANOVA revealed that the 

tested concentrations of iron nanoparticles had no effect on loading efficiency (p=0.495). A 

linear egression revealed that fibrinogen concentration (p<0.001), starting cell number 

(p<0.001), and a mixed effect term of fibrinogen concentration and starting cell number 
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(p=0.006) to be significant predictors of the ratio of viable cells to initial cells plated. These 

results are shown in Figure 35. Lower fibrinogen and plated cell concentrations lead to higher 

ratios of viable cells to initial cells plated. However, only fibrinogen concentration is a 

significant predictor (p<0.001) of total number of cells after 5 days in culture (Figure 36). 
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Figure 34. Iron nanoparticles load at the same efficiency at all tested iron nanoparticle concentrations. The 
percentage of cells staining positive for iron nanoparticles was 49.3±7.9, 57.2±11.9, 58.6±15.2 (mean±SD) for the 
low (0.25 mg/mL), medium (0.50 mg/mL), and high (1.00 mg/mL) concentration of iron nanoparticles, 
respectively. The percentage of cells with positive staining for iron nanoparticles is shown on the y-axis. The iron 
nanoparticle concentration groups are labeled on the x-axis. 
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Figure 35. Fibrinogen concentration, starting cell number and a mixed effect term of fibrinogen 
concentration and starting cell number are significant predictors of ratio of viable cells to plated cells after 5 
days in culture. The ratio of viable cells to plated cells after 5 days in culture is shown on the y-axis. The 
fibrinogen concentration (F3 = 3mg/mL, F10 = 10 mg/mL) and iron nanoparticle size groups are labeled on the x-
axis. The starting cell number is labeled with blue (2.0x105), red (1.0x105) and green (5.0x104). 
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Figure 36. Fibrinogen concentration is a significant predictor of number of viable cells after 5 days in culture. 
The number of viable cells after 5 days in culture is shown on the y-axis. The fibrinogen concentration (F3 = 
3mg/mL, F10 = 10 mg/mL) and iron nanoparticle size groups are labeled on the x-axis. The starting cell number is 
labeled with blue (2.0x105), red (1.0x105) and green (5.0x104). 
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6.3.2 In-vitro Magnetic Force Induced Cell Localization 

We assessed the ability of magnetic attractive forces between a magnet and iron 

nanoparticles to move cells through a fibrin hydrogel. This ability was tested in short and long 

term studies. The results of the short term study are shown in Figure 37. We found that cells 

loaded with iron nanoparticles were unable to be pulled through a fibrin hydrogel when the 

localizing magnetic field was introduced 20 seconds after plating the gel. This was not the case 

in the experimental group that did not include cells as iron nanoparticles were still able to 

localize over the magnet at the 20 second time point but were unable to localize at the 10 minute 

time point. Though the pictures shown in Figure 37 were taken one day after plating the gels, all 

groups looked the same shortly after placement of the magnet. 
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Figure 37. The attractive force between iron nanoparticle and magnets can move cells and iron 
nanoparticles through a fibrin gel before gelation is complete. Iron nanoparticles appear brown within a fibrin 
gel 24 hours after plating. Columns are labeled with experimental group. Rows are labeled with time of magnet 
placement with respect to plating. 
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Since we determined that acute magnetic exposure was unable to localize the cells within 

the fibrin hydrogel, we wanted to determine whether long term magnetic exposure could 

accomplish the task. When exposed to a magnetic field for five days in culture, cells loaded with 

iron nanoparticles localized over the source of the magnetic field. Figure 38B shows a cross 

section of a fibrin gel exposed to a small diameter magnet for five days that has been stained 

with Prussian Blue and DAPI. There is compression of the fibrin gel in the area directly over the 

magnet. Figure 38C shows a blowup of the red rectangle in Figure 38B for the Prussian Blue 

stain, DAPI and merged channels from top to bottom respectively. 
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Figure 38. ADMSCs loaded with iron nanoparticles localize towards a small magnet after five days in culture. 
A) Schematic of how circular gels were sectioned and imaged. The circular gel was cut in half, and then sections 
were made across the z-radial plane. B) The gel has been stained with Prussian Blue dye to identify iron 
nanoparticles. The lower blue rectangle represents the relative position and size of the magnet to the gel during 
culture. The red box is the area that is magnified in panel C which shows the DAPI and Prussian Blue stain merged.  
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Figure 39B shows a cross section of a fibrin gel exposed to a large diameter magnet for 

five days that has been stained with Prussian Blue and DAPI. There is a compression of the 

fibrin gel over nearly the entire gel which is approximately the same size as the large magnet. 

Figure 39C shows a blowup of the red rectangle in Figure 39B for the merged Prussian Blue 

and DAPI channels. 

Figure 40 shows a Prussian Blue and DAPI stain of an ADMSC seeded gel loaded with 

iron nanoparticles that was cultured for 5 days without any magnet in place. There is a small 

accumulation of cells along the bottom of the gel, but the gel remains thicker than the 

counterparts shown in Figure 38 & Figure 39. Figure 41 shows a DAPI stain of an ADMSC 

seeded gel that had not been loaded with iron nanoparticles. The gel was cultured for 5 days with 

the large magnet in place. The gel is thicker and less dense in appearance compared to the iron 

nanoparticle loaded counterpart in Figure 39.  
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Figure 39. ADMSCs loaded with iron nanoparticles localize towards a large magnet after five days in culture. 
A) Schematic of how circular gels were sectioned and imaged. The circular gel was cut in half, and then sections 
were made across the z-radial plane. B) The gel has been stained with Prussian Blue dye to identify iron 
nanoparticles. The lower blue rectangle represents the relative position of the magnet to the gel during culture. The 
red box is the area that is magnified in panel C which shows the DAPI and Prussian Blue stain merged. 
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Figure 40. ADMSCs loaded with iron nanoparticles accumulate at the bottom of the wells after five days in 
culture. Prussian Blue and DAPI are shown in top and bottom pictures, respectively for the ADMSC iron 
nanoparticle loaded gel cultured without a magnet in place.  
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Figure 41. ADMSCs without iron nanoparticles remain dispersed throughout the gel after five days in 
culture. DAPI stain for ADMSCs without iron nanoparticles when cultured for five days with a large magnet in 
place. The lower blue rectangle represents the relative position and size of the magnet to the gel during culture. 
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6.3.3 Cell Delivery Mixer Performance 

A one-way ANOVA revealed that there was no statistical difference (p=0.587) between 

any of the tested groups (Table 9). The fibrin gel mixer was able to produce fibrin gels that had a 

similar cell distribution throughout the gel compared to gels that were thoroughly mixed by 

manual pipetting. Also, the cell distribution was not dependent upon which input (Left, Center, 

or Right) that the cell suspension was attached to. A sample image of the DAPI stained nuclei 

from the control group is shown in Figure 42. 
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Figure 42. ADMSC nuclei are distributed evenly throughout the fibrin gel. The dashed white line in the top 
image indicates the outline of the fibrin gel. The red dashed boxes were randomly chosen for ImageJ ellipse fitting 
and distance measurement analysis of the blue, DAPI stained ADMSC nuclei.  
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Table 9. All groups show a similar average distance between nuclei. When fit with an ellipse, the average 
distance between centroid of each nucleus was 52.4±4.5 pixels for the control group, 49.1±12.7 pixels for the Left 
group, 45.2±5.7 pixels for the Center group, and 53.0±3.5 pixels for the Right group. 
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6.3.4 Magnetic Probe Ultrasound Identification  

The ultrasonic images of the magnetic probe are shown in Figure 43. In Figure 43A the 

image was captured without the magnetic probe in place, and the anterior aortic mimic outer and 

inner diameters can be seen in the image. The posterior outer diameter can also be seen. In 

Figure 43B, the magnetic probe was brought into the field of view, and the anterior portion of 

the catheter and the magnets can be seen. The magnetic probe is highlighted in Figure 43C in 

red. 
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Figure 43. The magnetic probe is visible within tissue and aorta mimics using ultrasonic imaging. A) An 
ultrasonic image shows the aorta mimic within the tissue mimic. B) An ultrasonic image shows the magnetic probe 
within the aorta mimic. C) The same ultrasonic image from panel B is shown with the changes from panel A 
highlighted in red. 
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6.4 DISCUSSION 

We saw no statistical difference in iron nanoparticle loading efficiency amongst the 

tested concentrations. This result was not so surprising considering the manufacturer’s 

recommended concentration is a general value to be used for all cell types, and conversations 

with the manufacturer revealed that loading efficiency will be dependent on cell type. While the 

lowest concentration tested may seem to be the best choice from a cost perspective, the middle 

concentration was chosen for all remaining experiments due to other groups maintaining good 

viability and differentiation potential using a similar concentration403,419,420.  

Our own viability studies of cells within fibrin gels after five days in culture showed that 

total cell number and ratio of cells after five days in culture to plated cells were not dependent on 

the size of iron nanoparticle used which is in agreement with other published studies403,419-421. 

Our viability experiments did show fibrinogen concentration to be a significant predictor of both 

total cell number and ratio of cells after five days in culture to plated cells, and our total cell 

numbers are consistent with other published studies267,269,411. Starting cell concentration and a 

cross talk term between starting cell concentration and fibrinogen concentration were also 

significant predictors of ratio of cells after five days in culture to plated cells. When taken 

together, the increases in cell number are largely dependent on the amount of free space within 

the fibrin gels. This can partially explain the difference in starting cell concentration being a 

significant predictor of the ratio of cells after five days in culture to plated cells but not of the 

total cell number. This knowledge can also be used to manipulate a potential cell therapy. The 

fibrinogen concentration should be kept high if cell division is undesired. Conversely, if cell 

division is desired, then fibrinogen and starting cell concentration should be kept low. In our 

application, cell division is undesirable since we want the ADMSCs producing the growth factor 
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profile shown at confluence194. However, we also desire a lower fibrinogen concentration so that 

the cells can more easily move towards the magnet. A compromise for our application would be 

using a high cell concentration with a low fibrinogen concentration. 

Using the combination of fibrin gels and iron nanoparticles seem to have no negative 

effects on our therapeutic ADMSCs in terms of viability. However, we still needed to determine 

if using the fibrin and iron nanoparticles would allow for the migration or movement of the 

therapeutic ADMSCs through the fibrin gel to the periadventitial surface of the AAA. Our short 

term experiments show that ADMSCs loaded with iron nanoparticles contained in a fibrin gel 

will move through the fibrin gel solution to a magnetic field source if the fibrin has not 

completely gelled. It is important to note that forming fibrin gels in the presence of an external 

magnetic field will produce an anisotropic gel that is aligned in the direction of the magnetic 

field422-424. This effect may be partially responsible for the increased localization of cells and 

iron nanoparticles near the magnet in the gels which were plated in the presence of a magnetic 

field.  

Our long term experiments show that ADMSCs loaded with iron nanoparticles contained 

in a fibrin gel will move to a magnetic field source even after the fibrin has gelled to an 

appreciable amount. The movement in the long term experiments seems to be due to 

compression of the fibrin gel rather than movement of the cells through the gel. This is apparent 

in Figure 38 & Figure 39 which shows compacted gels directly over the external magnet while 

Figure 41 shows that ADMSCs without iron nanoparticles within a fibrin gel do not compact 

over an external magnet. The gel remains “fluffy” in this case. Others have had success when 

using externally applied magnetic fields in attempts to localize cells or drugs that have 

incorporated iron nanoparticles402,403.  
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The hardware elements of the cell delivery system, the fibrin gel mixer and the magnetic 

probe, achieve the design criteria goals. The fibrin gel mixer was able to produce fibrin gels with 

a uniform ADMSC distribution as shown in Table 9. The magnetic probe prototype was 

successfully imaged through tissue and aorta mimics using ultrasonic imaging. 

While we largely saw movement of iron nanoparticle loaded ADMSCs toward our 

magnet, we must evaluate our product through the lens of the FDA, and there are important 

questions the FDA raises when considering CTs. For example, the FDA has explicitly expressed 

concerns425 about cell migration. When delivered systemically, CTs could end up in a variety of 

tissues. This has been seen even when cells delivered to a specific tissue or organ eventually 

migrate to unintended locations426. Our system has been designed to localize our CT and keep it 

in place. The FDA also highlights that concerns about autologous vs. allogeneic cells. We also 

share this concern. While using autologous cells is certainly possible in our therapy, we have 

concerns about the efficacy of cells derived from older patients326,327,427.   

The FDA also highlights concerns regarding combination products415 recommending that 

researchers consider the scientific and technical issues raised by the combination product and its 

constituents. Once considered, the study design to address these concerns should be performed 

using proper statistical consideration to evaluate the combination product without duplication or 

redundancy so that development is streamlined. Careful attention should be paid when 

constituents are mixed and produced as a single entity because there could now be a broader 

range of potential, unintended interactions. The FDA has additional concerns that particularly 

apply to our system. “A new device used to deliver a drug/biologic to a new area of the body that 

was previously inaccessible might make it necessary to develop new methods to determine the 

effect of such localized/targeted delivery, particularly when it results in higher exposure to that 
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target than when the drug is systemically administered. Likewise, innovative technologies such 

as nanotechnology or live cellular products may lead to the development of new manufacturing 

methodologies or unique safety issues not associated with products manufactured in other 

ways.”415 The nature of our system, a combination product and CT, does present additional 

hurdles to clear before gaining FDA approval. However, the current design and subsequent 

design iterations are made with the FDA guidelines in mind.  

Utilizing our therapeutic cell delivery system, patients could avoid the mortality risks 

associated with open AAA repair and avoid the secondary complications associated with 

endovascular repair. Our therapy may lower the total number of MRI or CT scans that surgeons 

use to monitor the growth rate and size of AAAs. 

Treating the disease early may also have other intangible quality-of-life benefits. When 

patients are diagnosed with the disease and told how the disease progresses, they (as well as their 

families) can feel stressed about having a “ticking time bomb” in their abdomen. Providing a 

viable therapy shortly after diagnosis should alleviate anxiety over the disease.  

In addition to these non-tangible benefits, we have provided a pro forma cost analysis of 

our proposed therapy in Table 10 that highlights the potential cost savings benefits. Our therapy 

will attempt to carve out a space in the huge healthcare cost burden that is AAA repair. The 

burden is over $2.125 billion dollars per year (50,000 annual patients * $85,000 total 2 year 

costs119). If only a third of patients gained enough therapeutic benefit through our treatment to 

avoid the need for surgical repair, $458 million dollars could be removed from the US healthcare 

burden each year ($2.125 billion /3 – 50,000 patients * $5,000 per patient for our therapy). 
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Table 10. Proforma cost of proposed interventional stem cell treatment for AAA. The projected costs of our 
proposed therapy are broken down by the device and the administration of the treatment. 

 

Cells $1,000
Licensed fibrin product (EVARREST) $500
Syringes $10
Solution mixer & dispenser $20
Delivery needle $40
Magnetic catheter $100
Nanoparticles $30
Subtotal $1,700

Location and Administration Costs
Hospital room $2,500
Medical technician (catheter) $400
Ultrasound technician $400
Subtotal $3,300

Total $5,000

Proposed Production Costs Cell Delivery System 
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6.5 CONCLUSION 

Individual aspects of the cell delivery system were tested with respect to their promise for 

the future clinical translation of the technology. Iron nanoparticle loading efficiency in ADMSCs 

was approximately 52% when loading the manufacturer recommended amount of iron 

nanoparticles and ±50% of manufacturer recommended amount of iron nanoparticles. Fibrinogen 

concentration was a significant predictor of cell viability in iron nanoparticle loaded, ADMSC-

seeded, fibrin gels. Acute magnetic mediated movement of iron nanoparticle loaded cells only 

happened before complete gelation of fibrin gels.  Longer term exposure to a magnet caused the 

iron nanoparticle loaded ADMSCs to compress fibrin gels locally over a magnetic field source. 

The fibrin gel mixer was able to produce gels with uniformly distributed ADMSCs. The 

magnetic probe was able to be detected using ultrasonic imaging.  

6.6 FUTURE WORK 

Iterative prototyping of the cell delivery mixer and bench side testing of the device needs 

to be performed and is currently underway. These experiments will precede large animal studies 

testing the efficacy of the system.   

The FDA pathway for approval of this system will likely be either an Investigational New 

Drug (IND) or an Investigational Device Exemption (IDE). Trial design, sample size, statistical 

methods, clinical endpoints, appropriate number of clinical studies, and appropriate 

indications/claims will all need to be determined. Since our system has a device constituent part, 

we will need to evaluate the human factors of device use on the safety and effectiveness of the 
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combination product. These studies will help us understand how users operate the system in 

realistic, stressful conditions. Lastly, manufacturing, scale-up, and quality management need to 

be considered and studied with respect to both premarket development and postmarket 

regulation.  
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7.0  STUDY SUMMARY 

The following sections will summarize the key findings presented within this dissertation, 

discuss the future directions of each Aim, and present my scientific accomplishments achieved 

through this work.  

7.1 SUMMARY OF RESULTS 

7.1.1 Specific Aim 1 

In Aim 1, we sought to prove that adult, human SMCs could produce elastin fibers when 

co-cultured with ADMSCs and that elastin production was able to slow the expansion of a AAA 

in a computational model. In Aim 1-1 we showed that ADMSCs in co-culture in with adult 

SMCs stimulate elastic fiber production in a 3D fibrin gels. This novel finding lends credence to 

using ADMSCs as a pro-elastogenic therapy for treating AAAs. 

In Aim 1-2 we showed that elastin production within an aneurysm could relieve the 

maladaptive mechanical environment to an extent that slows aneurysmal enlargement within a 

computational model of AAA G&R. Early intervention can reduce the enlargement rate by more 

than 50%, delaying delay the need for surgical intervention by 10 years385. These findings also 
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confirm our thoughts that regeneration of functional elastic fibers in a AAA could help slow the 

progression of the disease. 

 

7.1.2 Specific Aim 2 

In Aim 2, we sought to prove that periadventitial ADMSC treatment to an established, 

expanding, murine elastase perfused AAA could halt dilation of the artery. Indeed, we have 

developed an animal model for delayed, periadventitial delivery of ADMSCs to ameliorate 

elastase-induced AAA. Delayed, periadventitial delivery of ADMSCs halted two aspects of 

aneurysm progression – expansion of the aortic diameter and fragmentation of the elastic 

lamella. This work represents an important step towards developing clinically realistic stem cell 

therapies for AAA patients.  

7.1.3 Specific Aim 3 

In Aim 3 we sought to design and test key aspects of a cell delivery system for treating 

AAAs. We utilized iron nanoparticles, magnets, and fibrin hydrogel to localize the delivery of 

therapeutic cells to a desired location. We found the following: 1) Iron nanoparticle loading 

efficiency in ADMSCs is approximately 52% when loading the manufacturer recommended 

amount of iron nanoparticles and ±50% of manufacturer recommended amount of iron 

nanoparticles. 2) Fibrinogen concentration is a significant predictor of cell viability in iron 

nanoparticle loaded, ADMSC seeded, fibrin gels. 3) Acute magnetic mediated movement of iron 

nanoparticle loaded cells only happens before complete gelation of fibrin gels. 4) Longer term 
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exposure to a magnet will cause the iron nanoparticle loaded ADMSCs to compress fibrin gels 

locally over a magnetic field source. 5) Our fibrin gel mixer was able to make gels with a 

uniform distribution of ADMSCs. 6) Our magnetic probe was able to be imaged through tissue 

and aorta mimics via ultrasound.  

7.2 SUMMARY OF ACCOMPLISHMENTS 

The work of this dissertation has led to the generation of the following scientific 

manuscripts: 

1. Blose KJ, Pichamuthu JE, Weinbaum JS, Vorp DA. “Design and validation of a 
vacuum assisted anchorage for the uniaxial tensile testing of soft materials.” Soft 
Materials 14.2 (2016) 

2. Blose KJ, Ennis TL, Arif B, Weinbaum JS, Curci JA, Vorp DA. “Periadventitial 
adipose-derived stem cell treatment halts elastase-induced abdominal aortic aneurysm 
progression.” Regenerative medicine 9.6 (2014) 

3. Blose KJ, Weinbaum JS, Robertson AM, Vorp DA. “Stem Cell-Induced Elastin 
Production by Smooth Cells: In-Vitro Assessment and In-Silico Implications for 
Abdominal Aortic Aneurysm.” [in preparation] 
 

Additionally, a book chapter was written pertaining to the background material utilized in 

this dissertation:  

1. Blose KJ, Krawiec JT, Weinbaum JS, Vorp DA. “Chapter 15: Bioreactors for Tissue 
Engineering Purposes,” Regenerative Medicine Applications in Organ 
Transplantation, 1st Edition. Giuseppe Orlando, ed. Academic Press, 2013. 
 

Finally, multiple individual fellowships or grants were obtained by the author of this 

dissertation or by undergraduates who were mentored by the author: 

1. F_168-2016, “Minimally invasive delivery of therapeutic cells to abdominal aortic 
aneurysm” University of Pittsburgh Center for Medical Innovation Early-Stage 
Medical Technology Research and Development 2016 Pilot Funding Program [PI: 
Kory Blose] 
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2. NIH T32 EB000392, “Computationally Guided Development of Therapies for 
Abdominal Aortic Aneurysms”, 9/2014-8/2016 [Training fellowship to Kory Blose] 

3. NIH T32 HL076124, “Computational Simulation Model for Biomechanically-
Guided Growth and Differentiation of Tissue Engineered Vascular Grafts”, 2/2012-
1/2014 [Training fellowship to Kory Blose] 

4. Undergraduate Summer Research Internship Scholarship, Swanson School of 
Engineering (SSOE), University of Pittsburgh, 6/2011-8/2011 [Summer Fellowship to 
Huong Tran] 
 
 
 

7.3 FUTURE WORK 

The future directions of this dissertation are discussed within each Aim due to the 

independent nature of those projects. For the discussion of future directions in Aim 1-1 see 

Section 3.6, for Aim 1-2 see Section 4.5, for Aim 2 see Section 5.6, and for Aim 3 see Section 

6.6. 
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APPENDIX A 
 

 
 
 

FEAP IMPLEMENTATION OF CONSTRAINED MIXTURE MODEL OF AAA G&R 
 

 
 

 
FEAP Implementation: 
!====================== 
! Parenthetical citations refer to a page number within the FEAP version 8.2 User Manual. 
 
! batch mode.  
 
! Control data (pg 24) 
! All FEAP input files must begin with "FEAP" in either upper or lower case (here in lower 
case). 
! The remaining characters are used for the problem title in the output file. 
! The second record contains problem size information: 
! (a) NUMNP number of nodal point 
! (b) NUMEL number of elements 
! (c) NUMMAP number of material property sets 
! (d) NDM space dimension of mesh 
! (e) NDF maximum number of unknowns per node 
! (f) NEN maximum number of nodes per element 
! NOTE that for the first 3 items are specified as ZERO (0) since FEAP can determine 
appropriate values 
! from the data provided below (pg 25). 
feap ** aortic aging 
0  0  0  3  3  8 
 
! We define the material as an elastic solid with a neo-Hookean strain energy function 
! NOTE that this is not an incompressible material 
material 1   ! 1st material (adventitia) 
  solid    ! Solid material 
  finite   !,volume,2 
  mixed    ! Use Q1-P0 element 
  uconst adve 1.0e8 1.25e5 
  augment off 
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material 2   ! 2nd material (media) 
  solid    ! Solid material 
  finite   !,volume,2 
  mixed    ! Use Q1-P0 element 
  uconst medi 1.0e8 1.25e5 
  augment off 
 
material 3   ! 3rd material (luminal surface) 
  pressure   ! "pressure" elements 
  load,pr    ! Loaded by parameter pr 
  follower   ! Load pr "follows" the moving lumen 
  finite 
  augment off 
 
! Set a parameter pr. This is the transmural pressure (Pa). 
PARAmeter 
pr = -1.239898026e4 
! parameter for % baseline elastin degradation 
pe = 7.5e-1 
! Set parameter d. This is a displacement. 
!d = 0.0 
 
! Nodal coordinates in the global coordinate system (pg 26) 
! N NG X_N Y_N Z_N 
! N number of nodal point 
! NG generation increment to next node 
!    when no coordinate generation is required, set to ZERO (0) (pg 28) 
! X_N value of x_1 coordinate 
! Y_N value of x_2 coordinate 
! Z_N value of x_3 coordinate 
COORdinates 
1 0 0.000000E+00 7.500000E-03 -3.000000E-02 
2 0 0.000000E+00 7.700000E-03 -3.000000E-02 
3 0 0.000000E+00 7.900000E-03 -3.000000E-02 
4 0 0.000000E+00 8.100000E-03 -3.000000E-02 
5 0 0.000000E+00 8.300000E-03 -3.000000E-02 
6 0 0.000000E+00 8.500000E-03 -3.000000E-02 
7 0 0.000000E+00 8.700000E-03 -3.000000E-02 
8 0 0.000000E+00 8.900000E-03 -3.000000E-02 
9 0 0.000000E+00 9.100000E-03 -3.000000E-02 
10 0 0.000000E+00 9.300000E-03 -3.000000E-02 
11 0 0.000000E+00 7.500000E-03 -2.623803E-02 
12 0 0.000000E+00 7.700000E-03 -2.623803E-02 
13 0 0.000000E+00 7.900000E-03 -2.623803E-02 
14 0 0.000000E+00 8.100000E-03 -2.623803E-02 
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15 0 0.000000E+00 8.300000E-03 -2.623803E-02 
16 0 0.000000E+00 8.500000E-03 -2.623803E-02 
17 0 0.000000E+00 8.700000E-03 -2.623803E-02 
18 0 0.000000E+00 8.900000E-03 -2.623803E-02 
19 0 0.000000E+00 9.100000E-03 -2.623803E-02 
20 0 0.000000E+00 9.300000E-03 -2.623803E-02 
21 0 0.000000E+00 7.500000E-03 -2.268899E-02 
22 0 0.000000E+00 7.700000E-03 -2.268899E-02 
23 0 0.000000E+00 7.900000E-03 -2.268899E-02 
24 0 0.000000E+00 8.100000E-03 -2.268899E-02 
25 0 0.000000E+00 8.300000E-03 -2.268899E-02 
26 0 0.000000E+00 8.500000E-03 -2.268899E-02 
27 0 0.000000E+00 8.700000E-03 -2.268899E-02 
28 0 0.000000E+00 8.900000E-03 -2.268899E-02 
29 0 0.000000E+00 9.100000E-03 -2.268899E-02 
30 0 0.000000E+00 9.300000E-03 -2.268899E-02 
31 0 0.000000E+00 7.500000E-03 -1.934085E-02 
32 0 0.000000E+00 7.700000E-03 -1.934085E-02 
33 0 0.000000E+00 7.900000E-03 -1.934085E-02 
34 0 0.000000E+00 8.100000E-03 -1.934085E-02 
35 0 0.000000E+00 8.300000E-03 -1.934085E-02 
36 0 0.000000E+00 8.500000E-03 -1.934085E-02 
37 0 0.000000E+00 8.700000E-03 -1.934085E-02 
38 0 0.000000E+00 8.900000E-03 -1.934085E-02 
39 0 0.000000E+00 9.100000E-03 -1.934085E-02 
40 0 0.000000E+00 9.300000E-03 -1.934085E-02 
41 0 0.000000E+00 7.500000E-03 -1.618223E-02 
42 0 0.000000E+00 7.700000E-03 -1.618223E-02 
43 0 0.000000E+00 7.900000E-03 -1.618223E-02 
44 0 0.000000E+00 8.100000E-03 -1.618223E-02 
45 0 0.000000E+00 8.300000E-03 -1.618223E-02 
46 0 0.000000E+00 8.500000E-03 -1.618223E-02 
47 0 0.000000E+00 8.700000E-03 -1.618223E-02 
48 0 0.000000E+00 8.900000E-03 -1.618223E-02 
49 0 0.000000E+00 9.100000E-03 -1.618223E-02 
50 0 0.000000E+00 9.300000E-03 -1.618223E-02 
51 0 0.000000E+00 7.500000E-03 -1.320239E-02 
52 0 0.000000E+00 7.700000E-03 -1.320239E-02 
53 0 0.000000E+00 7.900000E-03 -1.320239E-02 
54 0 0.000000E+00 8.100000E-03 -1.320239E-02 
55 0 0.000000E+00 8.300000E-03 -1.320239E-02 
56 0 0.000000E+00 8.500000E-03 -1.320239E-02 
57 0 0.000000E+00 8.700000E-03 -1.320239E-02 
58 0 0.000000E+00 8.900000E-03 -1.320239E-02 
59 0 0.000000E+00 9.100000E-03 -1.320239E-02 
60 0 0.000000E+00 9.300000E-03 -1.320239E-02 
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61 0 0.000000E+00 7.500000E-03 -1.039122E-02 
62 0 0.000000E+00 7.700000E-03 -1.039122E-02 
63 0 0.000000E+00 7.900000E-03 -1.039122E-02 
64 0 0.000000E+00 8.100000E-03 -1.039122E-02 
65 0 0.000000E+00 8.300000E-03 -1.039122E-02 
66 0 0.000000E+00 8.500000E-03 -1.039122E-02 
67 0 0.000000E+00 8.700000E-03 -1.039122E-02 
68 0 0.000000E+00 8.900000E-03 -1.039122E-02 
69 0 0.000000E+00 9.100000E-03 -1.039122E-02 
70 0 0.000000E+00 9.300000E-03 -1.039122E-02 
71 0 0.000000E+00 7.500000E-03 -7.739181E-03 
72 0 0.000000E+00 7.700000E-03 -7.739181E-03 
73 0 0.000000E+00 7.900000E-03 -7.739181E-03 
74 0 0.000000E+00 8.100000E-03 -7.739181E-03 
75 0 0.000000E+00 8.300000E-03 -7.739181E-03 
76 0 0.000000E+00 8.500000E-03 -7.739181E-03 
77 0 0.000000E+00 8.700000E-03 -7.739181E-03 
78 0 0.000000E+00 8.900000E-03 -7.739181E-03 
79 0 0.000000E+00 9.100000E-03 -7.739181E-03 
80 0 0.000000E+00 9.300000E-03 -7.739181E-03 
81 0 0.000000E+00 7.500000E-03 -5.237254E-03 
82 0 0.000000E+00 7.700000E-03 -5.237254E-03 
83 0 0.000000E+00 7.900000E-03 -5.237254E-03 
84 0 0.000000E+00 8.100000E-03 -5.237254E-03 
85 0 0.000000E+00 8.300000E-03 -5.237254E-03 
86 0 0.000000E+00 8.500000E-03 -5.237254E-03 
87 0 0.000000E+00 8.700000E-03 -5.237254E-03 
88 0 0.000000E+00 8.900000E-03 -5.237254E-03 
89 0 0.000000E+00 9.100000E-03 -5.237254E-03 
90 0 0.000000E+00 9.300000E-03 -5.237254E-03 
91 0 0.000000E+00 7.500000E-03 -2.876945E-03 
92 0 0.000000E+00 7.700000E-03 -2.876945E-03 
93 0 0.000000E+00 7.900000E-03 -2.876945E-03 
94 0 0.000000E+00 8.100000E-03 -2.876945E-03 
95 0 0.000000E+00 8.300000E-03 -2.876945E-03 
96 0 0.000000E+00 8.500000E-03 -2.876945E-03 
97 0 0.000000E+00 8.700000E-03 -2.876945E-03 
98 0 0.000000E+00 8.900000E-03 -2.876945E-03 
99 0 0.000000E+00 9.100000E-03 -2.876945E-03 
100 0 0.000000E+00 9.300000E-03 -2.876945E-03 
101 0 0.000000E+00 7.500000E-03 -6.502386E-04 
102 0 0.000000E+00 7.700000E-03 -6.502386E-04 
103 0 0.000000E+00 7.900000E-03 -6.502386E-04 
104 0 0.000000E+00 8.100000E-03 -6.502386E-04 
105 0 0.000000E+00 8.300000E-03 -6.502386E-04 
106 0 0.000000E+00 8.500000E-03 -6.502386E-04 
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107 0 0.000000E+00 8.700000E-03 -6.502386E-04 
108 0 0.000000E+00 8.900000E-03 -6.502386E-04 
109 0 0.000000E+00 9.100000E-03 -6.502386E-04 
110 0 0.000000E+00 9.300000E-03 -6.502386E-04 
111 0 0.000000E+00 7.500000E-03 1.450428E-03 
112 0 0.000000E+00 7.700000E-03 1.450428E-03 
113 0 0.000000E+00 7.900000E-03 1.450428E-03 
114 0 0.000000E+00 8.100000E-03 1.450428E-03 
115 0 0.000000E+00 8.300000E-03 1.450428E-03 
116 0 0.000000E+00 8.500000E-03 1.450428E-03 
117 0 0.000000E+00 8.700000E-03 1.450428E-03 
118 0 0.000000E+00 8.900000E-03 1.450428E-03 
119 0 0.000000E+00 9.100000E-03 1.450428E-03 
120 0 0.000000E+00 9.300000E-03 1.450428E-03 
121 0 0.000000E+00 7.500000E-03 3.432189E-03 
122 0 0.000000E+00 7.700000E-03 3.432189E-03 
123 0 0.000000E+00 7.900000E-03 3.432189E-03 
124 0 0.000000E+00 8.100000E-03 3.432189E-03 
125 0 0.000000E+00 8.300000E-03 3.432189E-03 
126 0 0.000000E+00 8.500000E-03 3.432189E-03 
127 0 0.000000E+00 8.700000E-03 3.432189E-03 
128 0 0.000000E+00 8.900000E-03 3.432189E-03 
129 0 0.000000E+00 9.100000E-03 3.432189E-03 
130 0 0.000000E+00 9.300000E-03 3.432189E-03 
131 0 0.000000E+00 7.500000E-03 5.301774E-03 
132 0 0.000000E+00 7.700000E-03 5.301774E-03 
133 0 0.000000E+00 7.900000E-03 5.301774E-03 
134 0 0.000000E+00 8.100000E-03 5.301774E-03 
135 0 0.000000E+00 8.300000E-03 5.301774E-03 
136 0 0.000000E+00 8.500000E-03 5.301774E-03 
137 0 0.000000E+00 8.700000E-03 5.301774E-03 
138 0 0.000000E+00 8.900000E-03 5.301774E-03 
139 0 0.000000E+00 9.100000E-03 5.301774E-03 
140 0 0.000000E+00 9.300000E-03 5.301774E-03 
141 0 0.000000E+00 7.500000E-03 7.065534E-03 
142 0 0.000000E+00 7.700000E-03 7.065534E-03 
143 0 0.000000E+00 7.900000E-03 7.065534E-03 
144 0 0.000000E+00 8.100000E-03 7.065534E-03 
145 0 0.000000E+00 8.300000E-03 7.065534E-03 
146 0 0.000000E+00 8.500000E-03 7.065534E-03 
147 0 0.000000E+00 8.700000E-03 7.065534E-03 
148 0 0.000000E+00 8.900000E-03 7.065534E-03 
149 0 0.000000E+00 9.100000E-03 7.065534E-03 
150 0 0.000000E+00 9.300000E-03 7.065534E-03 
151 0 0.000000E+00 7.500000E-03 8.729459E-03 
152 0 0.000000E+00 7.700000E-03 8.729459E-03 
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153 0 0.000000E+00 7.900000E-03 8.729459E-03 
154 0 0.000000E+00 8.100000E-03 8.729459E-03 
155 0 0.000000E+00 8.300000E-03 8.729459E-03 
156 0 0.000000E+00 8.500000E-03 8.729459E-03 
157 0 0.000000E+00 8.700000E-03 8.729459E-03 
158 0 0.000000E+00 8.900000E-03 8.729459E-03 
159 0 0.000000E+00 9.100000E-03 8.729459E-03 
160 0 0.000000E+00 9.300000E-03 8.729459E-03 
161 0 0.000000E+00 7.500000E-03 1.029920E-02 
162 0 0.000000E+00 7.700000E-03 1.029920E-02 
163 0 0.000000E+00 7.900000E-03 1.029920E-02 
164 0 0.000000E+00 8.100000E-03 1.029920E-02 
165 0 0.000000E+00 8.300000E-03 1.029920E-02 
166 0 0.000000E+00 8.500000E-03 1.029920E-02 
167 0 0.000000E+00 8.700000E-03 1.029920E-02 
168 0 0.000000E+00 8.900000E-03 1.029920E-02 
169 0 0.000000E+00 9.100000E-03 1.029920E-02 
170 0 0.000000E+00 9.300000E-03 1.029920E-02 
171 0 0.000000E+00 7.500000E-03 1.178009E-02 
172 0 0.000000E+00 7.700000E-03 1.178009E-02 
173 0 0.000000E+00 7.900000E-03 1.178009E-02 
174 0 0.000000E+00 8.100000E-03 1.178009E-02 
175 0 0.000000E+00 8.300000E-03 1.178009E-02 
176 0 0.000000E+00 8.500000E-03 1.178009E-02 
177 0 0.000000E+00 8.700000E-03 1.178009E-02 
178 0 0.000000E+00 8.900000E-03 1.178009E-02 
179 0 0.000000E+00 9.100000E-03 1.178009E-02 
180 0 0.000000E+00 9.300000E-03 1.178009E-02 
181 0 0.000000E+00 7.500000E-03 1.317715E-02 
182 0 0.000000E+00 7.700000E-03 1.317715E-02 
183 0 0.000000E+00 7.900000E-03 1.317715E-02 
184 0 0.000000E+00 8.100000E-03 1.317715E-02 
185 0 0.000000E+00 8.300000E-03 1.317715E-02 
186 0 0.000000E+00 8.500000E-03 1.317715E-02 
187 0 0.000000E+00 8.700000E-03 1.317715E-02 
188 0 0.000000E+00 8.900000E-03 1.317715E-02 
189 0 0.000000E+00 9.100000E-03 1.317715E-02 
190 0 0.000000E+00 9.300000E-03 1.317715E-02 
191 0 0.000000E+00 7.500000E-03 1.449513E-02 
192 0 0.000000E+00 7.700000E-03 1.449513E-02 
193 0 0.000000E+00 7.900000E-03 1.449513E-02 
194 0 0.000000E+00 8.100000E-03 1.449513E-02 
195 0 0.000000E+00 8.300000E-03 1.449513E-02 
196 0 0.000000E+00 8.500000E-03 1.449513E-02 
197 0 0.000000E+00 8.700000E-03 1.449513E-02 
198 0 0.000000E+00 8.900000E-03 1.449513E-02 
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199 0 0.000000E+00 9.100000E-03 1.449513E-02 
200 0 0.000000E+00 9.300000E-03 1.449513E-02 
201 0 0.000000E+00 7.500000E-03 1.573851E-02 
202 0 0.000000E+00 7.700000E-03 1.573851E-02 
203 0 0.000000E+00 7.900000E-03 1.573851E-02 
204 0 0.000000E+00 8.100000E-03 1.573851E-02 
205 0 0.000000E+00 8.300000E-03 1.573851E-02 
206 0 0.000000E+00 8.500000E-03 1.573851E-02 
207 0 0.000000E+00 8.700000E-03 1.573851E-02 
208 0 0.000000E+00 8.900000E-03 1.573851E-02 
209 0 0.000000E+00 9.100000E-03 1.573851E-02 
210 0 0.000000E+00 9.300000E-03 1.573851E-02 
211 0 0.000000E+00 7.500000E-03 1.691152E-02 
212 0 0.000000E+00 7.700000E-03 1.691152E-02 
213 0 0.000000E+00 7.900000E-03 1.691152E-02 
214 0 0.000000E+00 8.100000E-03 1.691152E-02 
215 0 0.000000E+00 8.300000E-03 1.691152E-02 
216 0 0.000000E+00 8.500000E-03 1.691152E-02 
217 0 0.000000E+00 8.700000E-03 1.691152E-02 
218 0 0.000000E+00 8.900000E-03 1.691152E-02 
219 0 0.000000E+00 9.100000E-03 1.691152E-02 
220 0 0.000000E+00 9.300000E-03 1.691152E-02 
221 0 0.000000E+00 7.500000E-03 1.801812E-02 
222 0 0.000000E+00 7.700000E-03 1.801812E-02 
223 0 0.000000E+00 7.900000E-03 1.801812E-02 
224 0 0.000000E+00 8.100000E-03 1.801812E-02 
225 0 0.000000E+00 8.300000E-03 1.801812E-02 
226 0 0.000000E+00 8.500000E-03 1.801812E-02 
227 0 0.000000E+00 8.700000E-03 1.801812E-02 
228 0 0.000000E+00 8.900000E-03 1.801812E-02 
229 0 0.000000E+00 9.100000E-03 1.801812E-02 
230 0 0.000000E+00 9.300000E-03 1.801812E-02 
231 0 0.000000E+00 7.500000E-03 1.906209E-02 
232 0 0.000000E+00 7.700000E-03 1.906209E-02 
233 0 0.000000E+00 7.900000E-03 1.906209E-02 
234 0 0.000000E+00 8.100000E-03 1.906209E-02 
235 0 0.000000E+00 8.300000E-03 1.906209E-02 
236 0 0.000000E+00 8.500000E-03 1.906209E-02 
237 0 0.000000E+00 8.700000E-03 1.906209E-02 
238 0 0.000000E+00 8.900000E-03 1.906209E-02 
239 0 0.000000E+00 9.100000E-03 1.906209E-02 
240 0 0.000000E+00 9.300000E-03 1.906209E-02 
241 0 0.000000E+00 7.500000E-03 2.004696E-02 
242 0 0.000000E+00 7.700000E-03 2.004696E-02 
243 0 0.000000E+00 7.900000E-03 2.004696E-02 
244 0 0.000000E+00 8.100000E-03 2.004696E-02 
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245 0 0.000000E+00 8.300000E-03 2.004696E-02 
246 0 0.000000E+00 8.500000E-03 2.004696E-02 
247 0 0.000000E+00 8.700000E-03 2.004696E-02 
248 0 0.000000E+00 8.900000E-03 2.004696E-02 
249 0 0.000000E+00 9.100000E-03 2.004696E-02 
250 0 0.000000E+00 9.300000E-03 2.004696E-02 
251 0 0.000000E+00 7.500000E-03 2.097609E-02 
252 0 0.000000E+00 7.700000E-03 2.097609E-02 
253 0 0.000000E+00 7.900000E-03 2.097609E-02 
254 0 0.000000E+00 8.100000E-03 2.097609E-02 
255 0 0.000000E+00 8.300000E-03 2.097609E-02 
256 0 0.000000E+00 8.500000E-03 2.097609E-02 
257 0 0.000000E+00 8.700000E-03 2.097609E-02 
258 0 0.000000E+00 8.900000E-03 2.097609E-02 
259 0 0.000000E+00 9.100000E-03 2.097609E-02 
260 0 0.000000E+00 9.300000E-03 2.097609E-02 
261 0 0.000000E+00 7.500000E-03 2.185262E-02 
262 0 0.000000E+00 7.700000E-03 2.185262E-02 
263 0 0.000000E+00 7.900000E-03 2.185262E-02 
264 0 0.000000E+00 8.100000E-03 2.185262E-02 
265 0 0.000000E+00 8.300000E-03 2.185262E-02 
266 0 0.000000E+00 8.500000E-03 2.185262E-02 
267 0 0.000000E+00 8.700000E-03 2.185262E-02 
268 0 0.000000E+00 8.900000E-03 2.185262E-02 
269 0 0.000000E+00 9.100000E-03 2.185262E-02 
270 0 0.000000E+00 9.300000E-03 2.185262E-02 
271 0 0.000000E+00 7.500000E-03 2.267954E-02 
272 0 0.000000E+00 7.700000E-03 2.267954E-02 
273 0 0.000000E+00 7.900000E-03 2.267954E-02 
274 0 0.000000E+00 8.100000E-03 2.267954E-02 
275 0 0.000000E+00 8.300000E-03 2.267954E-02 
276 0 0.000000E+00 8.500000E-03 2.267954E-02 
277 0 0.000000E+00 8.700000E-03 2.267954E-02 
278 0 0.000000E+00 8.900000E-03 2.267954E-02 
279 0 0.000000E+00 9.100000E-03 2.267954E-02 
280 0 0.000000E+00 9.300000E-03 2.267954E-02 
281 0 0.000000E+00 7.500000E-03 2.345966E-02 
282 0 0.000000E+00 7.700000E-03 2.345966E-02 
283 0 0.000000E+00 7.900000E-03 2.345966E-02 
284 0 0.000000E+00 8.100000E-03 2.345966E-02 
285 0 0.000000E+00 8.300000E-03 2.345966E-02 
286 0 0.000000E+00 8.500000E-03 2.345966E-02 
287 0 0.000000E+00 8.700000E-03 2.345966E-02 
288 0 0.000000E+00 8.900000E-03 2.345966E-02 
289 0 0.000000E+00 9.100000E-03 2.345966E-02 
290 0 0.000000E+00 9.300000E-03 2.345966E-02 
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291 0 0.000000E+00 7.500000E-03 2.419561E-02 
292 0 0.000000E+00 7.700000E-03 2.419561E-02 
293 0 0.000000E+00 7.900000E-03 2.419561E-02 
294 0 0.000000E+00 8.100000E-03 2.419561E-02 
295 0 0.000000E+00 8.300000E-03 2.419561E-02 
296 0 0.000000E+00 8.500000E-03 2.419561E-02 
297 0 0.000000E+00 8.700000E-03 2.419561E-02 
298 0 0.000000E+00 8.900000E-03 2.419561E-02 
299 0 0.000000E+00 9.100000E-03 2.419561E-02 
300 0 0.000000E+00 9.300000E-03 2.419561E-02 
301 0 0.000000E+00 7.500000E-03 2.488991E-02 
302 0 0.000000E+00 7.700000E-03 2.488991E-02 
303 0 0.000000E+00 7.900000E-03 2.488991E-02 
304 0 0.000000E+00 8.100000E-03 2.488991E-02 
305 0 0.000000E+00 8.300000E-03 2.488991E-02 
306 0 0.000000E+00 8.500000E-03 2.488991E-02 
307 0 0.000000E+00 8.700000E-03 2.488991E-02 
308 0 0.000000E+00 8.900000E-03 2.488991E-02 
309 0 0.000000E+00 9.100000E-03 2.488991E-02 
310 0 0.000000E+00 9.300000E-03 2.488991E-02 
311 0 0.000000E+00 7.500000E-03 2.554491E-02 
312 0 0.000000E+00 7.700000E-03 2.554491E-02 
313 0 0.000000E+00 7.900000E-03 2.554491E-02 
314 0 0.000000E+00 8.100000E-03 2.554491E-02 
315 0 0.000000E+00 8.300000E-03 2.554491E-02 
316 0 0.000000E+00 8.500000E-03 2.554491E-02 
317 0 0.000000E+00 8.700000E-03 2.554491E-02 
318 0 0.000000E+00 8.900000E-03 2.554491E-02 
319 0 0.000000E+00 9.100000E-03 2.554491E-02 
320 0 0.000000E+00 9.300000E-03 2.554491E-02 
321 0 0.000000E+00 7.500000E-03 2.616283E-02 
322 0 0.000000E+00 7.700000E-03 2.616283E-02 
323 0 0.000000E+00 7.900000E-03 2.616283E-02 
324 0 0.000000E+00 8.100000E-03 2.616283E-02 
325 0 0.000000E+00 8.300000E-03 2.616283E-02 
326 0 0.000000E+00 8.500000E-03 2.616283E-02 
327 0 0.000000E+00 8.700000E-03 2.616283E-02 
328 0 0.000000E+00 8.900000E-03 2.616283E-02 
329 0 0.000000E+00 9.100000E-03 2.616283E-02 
330 0 0.000000E+00 9.300000E-03 2.616283E-02 
331 0 0.000000E+00 7.500000E-03 2.674577E-02 
332 0 0.000000E+00 7.700000E-03 2.674577E-02 
333 0 0.000000E+00 7.900000E-03 2.674577E-02 
334 0 0.000000E+00 8.100000E-03 2.674577E-02 
335 0 0.000000E+00 8.300000E-03 2.674577E-02 
336 0 0.000000E+00 8.500000E-03 2.674577E-02 
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337 0 0.000000E+00 8.700000E-03 2.674577E-02 
338 0 0.000000E+00 8.900000E-03 2.674577E-02 
339 0 0.000000E+00 9.100000E-03 2.674577E-02 
340 0 0.000000E+00 9.300000E-03 2.674577E-02 
341 0 0.000000E+00 7.500000E-03 2.729572E-02 
342 0 0.000000E+00 7.700000E-03 2.729572E-02 
343 0 0.000000E+00 7.900000E-03 2.729572E-02 
344 0 0.000000E+00 8.100000E-03 2.729572E-02 
345 0 0.000000E+00 8.300000E-03 2.729572E-02 
346 0 0.000000E+00 8.500000E-03 2.729572E-02 
347 0 0.000000E+00 8.700000E-03 2.729572E-02 
348 0 0.000000E+00 8.900000E-03 2.729572E-02 
349 0 0.000000E+00 9.100000E-03 2.729572E-02 
350 0 0.000000E+00 9.300000E-03 2.729572E-02 
351 0 0.000000E+00 7.500000E-03 2.781454E-02 
352 0 0.000000E+00 7.700000E-03 2.781454E-02 
353 0 0.000000E+00 7.900000E-03 2.781454E-02 
354 0 0.000000E+00 8.100000E-03 2.781454E-02 
355 0 0.000000E+00 8.300000E-03 2.781454E-02 
356 0 0.000000E+00 8.500000E-03 2.781454E-02 
357 0 0.000000E+00 8.700000E-03 2.781454E-02 
358 0 0.000000E+00 8.900000E-03 2.781454E-02 
359 0 0.000000E+00 9.100000E-03 2.781454E-02 
360 0 0.000000E+00 9.300000E-03 2.781454E-02 
361 0 0.000000E+00 7.500000E-03 2.830400E-02 
362 0 0.000000E+00 7.700000E-03 2.830400E-02 
363 0 0.000000E+00 7.900000E-03 2.830400E-02 
364 0 0.000000E+00 8.100000E-03 2.830400E-02 
365 0 0.000000E+00 8.300000E-03 2.830400E-02 
366 0 0.000000E+00 8.500000E-03 2.830400E-02 
367 0 0.000000E+00 8.700000E-03 2.830400E-02 
368 0 0.000000E+00 8.900000E-03 2.830400E-02 
369 0 0.000000E+00 9.100000E-03 2.830400E-02 
370 0 0.000000E+00 9.300000E-03 2.830400E-02 
371 0 0.000000E+00 7.500000E-03 2.876574E-02 
372 0 0.000000E+00 7.700000E-03 2.876574E-02 
373 0 0.000000E+00 7.900000E-03 2.876574E-02 
374 0 0.000000E+00 8.100000E-03 2.876574E-02 
375 0 0.000000E+00 8.300000E-03 2.876574E-02 
376 0 0.000000E+00 8.500000E-03 2.876574E-02 
377 0 0.000000E+00 8.700000E-03 2.876574E-02 
378 0 0.000000E+00 8.900000E-03 2.876574E-02 
379 0 0.000000E+00 9.100000E-03 2.876574E-02 
380 0 0.000000E+00 9.300000E-03 2.876574E-02 
381 0 0.000000E+00 7.500000E-03 2.920135E-02 
382 0 0.000000E+00 7.700000E-03 2.920135E-02 
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383 0 0.000000E+00 7.900000E-03 2.920135E-02 
384 0 0.000000E+00 8.100000E-03 2.920135E-02 
385 0 0.000000E+00 8.300000E-03 2.920135E-02 
386 0 0.000000E+00 8.500000E-03 2.920135E-02 
387 0 0.000000E+00 8.700000E-03 2.920135E-02 
388 0 0.000000E+00 8.900000E-03 2.920135E-02 
389 0 0.000000E+00 9.100000E-03 2.920135E-02 
390 0 0.000000E+00 9.300000E-03 2.920135E-02 
391 0 0.000000E+00 7.500000E-03 2.961231E-02 
392 0 0.000000E+00 7.700000E-03 2.961231E-02 
393 0 0.000000E+00 7.900000E-03 2.961231E-02 
394 0 0.000000E+00 8.100000E-03 2.961231E-02 
395 0 0.000000E+00 8.300000E-03 2.961231E-02 
396 0 0.000000E+00 8.500000E-03 2.961231E-02 
397 0 0.000000E+00 8.700000E-03 2.961231E-02 
398 0 0.000000E+00 8.900000E-03 2.961231E-02 
399 0 0.000000E+00 9.100000E-03 2.961231E-02 
400 0 0.000000E+00 9.300000E-03 2.961231E-02 
401 0 0.000000E+00 7.500000E-03 3.000000E-02 
402 0 0.000000E+00 7.700000E-03 3.000000E-02 
403 0 0.000000E+00 7.900000E-03 3.000000E-02 
404 0 0.000000E+00 8.100000E-03 3.000000E-02 
405 0 0.000000E+00 8.300000E-03 3.000000E-02 
406 0 0.000000E+00 8.500000E-03 3.000000E-02 
407 0 0.000000E+00 8.700000E-03 3.000000E-02 
408 0 0.000000E+00 8.900000E-03 3.000000E-02 
409 0 0.000000E+00 9.100000E-03 3.000000E-02 
410 0 0.000000E+00 9.300000E-03 3.000000E-02 
411 0 4.709289E-04 7.485200E-03 -3.000000E-02 
412 0 4.834870E-04 7.684806E-03 -3.000000E-02 
413 0 4.960451E-04 7.884411E-03 -3.000000E-02 
414 0 5.086032E-04 8.084017E-03 -3.000000E-02 
415 0 5.211613E-04 8.283622E-03 -3.000000E-02 
416 0 5.337194E-04 8.483227E-03 -3.000000E-02 
417 0 5.462775E-04 8.682833E-03 -3.000000E-02 
418 0 5.586429E-04 8.879375E-03 -3.000000E-02 
419 0 5.712636E-04 9.079975E-03 -3.000000E-02 
420 0 5.839518E-04 9.281649E-03 -3.000000E-02 
421 0 4.709289E-04 7.485200E-03 -2.623803E-02 
422 0 4.834870E-04 7.684806E-03 -2.623803E-02 
423 0 4.960451E-04 7.884411E-03 -2.623803E-02 
424 0 5.086032E-04 8.084017E-03 -2.623803E-02 
425 0 5.211613E-04 8.283622E-03 -2.623803E-02 
426 0 5.337194E-04 8.483227E-03 -2.623803E-02 
427 0 5.462775E-04 8.682833E-03 -2.623803E-02 
428 0 5.588356E-04 8.882438E-03 -2.623803E-02 
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429 0 5.713937E-04 9.082043E-03 -2.623803E-02 
430 0 5.839518E-04 9.281649E-03 -2.623803E-02 
431 0 4.709289E-04 7.485200E-03 -2.268899E-02 
432 0 4.834870E-04 7.684806E-03 -2.268899E-02 
433 0 4.960451E-04 7.884411E-03 -2.268899E-02 
434 0 5.086032E-04 8.084017E-03 -2.268899E-02 
435 0 5.211613E-04 8.283622E-03 -2.268899E-02 
436 0 5.337194E-04 8.483227E-03 -2.268899E-02 
437 0 5.462775E-04 8.682833E-03 -2.268899E-02 
438 0 5.588356E-04 8.882438E-03 -2.268899E-02 
439 0 5.713937E-04 9.082043E-03 -2.268899E-02 
440 0 5.839518E-04 9.281649E-03 -2.268899E-02 
441 0 4.709289E-04 7.485200E-03 -1.934085E-02 
442 0 4.834870E-04 7.684806E-03 -1.934085E-02 
443 0 4.960451E-04 7.884411E-03 -1.934085E-02 
444 0 5.086032E-04 8.084017E-03 -1.934085E-02 
445 0 5.211613E-04 8.283622E-03 -1.934085E-02 
446 0 5.337194E-04 8.483227E-03 -1.934085E-02 
447 0 5.462775E-04 8.682833E-03 -1.934085E-02 
448 0 5.588356E-04 8.882438E-03 -1.934085E-02 
449 0 5.713937E-04 9.082043E-03 -1.934085E-02 
450 0 5.839518E-04 9.281649E-03 -1.934085E-02 
451 0 4.709289E-04 7.485200E-03 -1.618223E-02 
452 0 4.834870E-04 7.684806E-03 -1.618223E-02 
453 0 4.960451E-04 7.884411E-03 -1.618223E-02 
454 0 5.086032E-04 8.084017E-03 -1.618223E-02 
455 0 5.211613E-04 8.283622E-03 -1.618223E-02 
456 0 5.337194E-04 8.483227E-03 -1.618223E-02 
457 0 5.462775E-04 8.682833E-03 -1.618223E-02 
458 0 5.588356E-04 8.882438E-03 -1.618223E-02 
459 0 5.713937E-04 9.082043E-03 -1.618223E-02 
460 0 5.839518E-04 9.281649E-03 -1.618223E-02 
461 0 4.709289E-04 7.485200E-03 -1.320239E-02 
462 0 4.834870E-04 7.684806E-03 -1.320239E-02 
463 0 4.960451E-04 7.884411E-03 -1.320239E-02 
464 0 5.086032E-04 8.084017E-03 -1.320239E-02 
465 0 5.211613E-04 8.283622E-03 -1.320239E-02 
466 0 5.337194E-04 8.483227E-03 -1.320239E-02 
467 0 5.462775E-04 8.682833E-03 -1.320239E-02 
468 0 5.588356E-04 8.882438E-03 -1.320239E-02 
469 0 5.713937E-04 9.082043E-03 -1.320239E-02 
470 0 5.839518E-04 9.281649E-03 -1.320239E-02 
471 0 4.709289E-04 7.485200E-03 -1.039122E-02 
472 0 4.834870E-04 7.684806E-03 -1.039122E-02 
473 0 4.960451E-04 7.884411E-03 -1.039122E-02 
474 0 5.086032E-04 8.084017E-03 -1.039122E-02 
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475 0 5.211613E-04 8.283622E-03 -1.039122E-02 
476 0 5.337194E-04 8.483227E-03 -1.039122E-02 
477 0 5.462775E-04 8.682833E-03 -1.039122E-02 
478 0 5.588356E-04 8.882438E-03 -1.039122E-02 
479 0 5.713937E-04 9.082043E-03 -1.039122E-02 
480 0 5.839518E-04 9.281649E-03 -1.039122E-02 
481 0 4.709289E-04 7.485200E-03 -7.739181E-03 
482 0 4.834870E-04 7.684806E-03 -7.739181E-03 
483 0 4.960451E-04 7.884411E-03 -7.739181E-03 
484 0 5.086032E-04 8.084017E-03 -7.739181E-03 
485 0 5.211613E-04 8.283622E-03 -7.739181E-03 
486 0 5.337194E-04 8.483227E-03 -7.739181E-03 
487 0 5.462775E-04 8.682833E-03 -7.739181E-03 
488 0 5.588356E-04 8.882438E-03 -7.739181E-03 
489 0 5.713937E-04 9.082043E-03 -7.739181E-03 
490 0 5.839518E-04 9.281649E-03 -7.739181E-03 
491 0 4.709289E-04 7.485200E-03 -5.237254E-03 
492 0 4.834870E-04 7.684806E-03 -5.237254E-03 
493 0 4.960451E-04 7.884411E-03 -5.237254E-03 
494 0 5.086032E-04 8.084017E-03 -5.237254E-03 
495 0 5.211613E-04 8.283622E-03 -5.237254E-03 
496 0 5.337194E-04 8.483227E-03 -5.237254E-03 
497 0 5.462775E-04 8.682833E-03 -5.237254E-03 
498 0 5.588356E-04 8.882438E-03 -5.237254E-03 
499 0 5.713937E-04 9.082043E-03 -5.237254E-03 
500 0 5.839518E-04 9.281649E-03 -5.237254E-03 
501 0 4.709289E-04 7.485200E-03 -2.876945E-03 
502 0 4.834870E-04 7.684806E-03 -2.876945E-03 
503 0 4.960451E-04 7.884411E-03 -2.876945E-03 
504 0 5.086032E-04 8.084017E-03 -2.876945E-03 
505 0 5.211613E-04 8.283622E-03 -2.876945E-03 
506 0 5.337194E-04 8.483227E-03 -2.876945E-03 
507 0 5.462775E-04 8.682833E-03 -2.876945E-03 
508 0 5.588356E-04 8.882438E-03 -2.876945E-03 
509 0 5.713937E-04 9.082043E-03 -2.876945E-03 
510 0 5.839518E-04 9.281649E-03 -2.876945E-03 
511 0 4.709289E-04 7.485200E-03 -6.502386E-04 
512 0 4.834870E-04 7.684806E-03 -6.502386E-04 
513 0 4.960451E-04 7.884411E-03 -6.502386E-04 
514 0 5.086032E-04 8.084017E-03 -6.502386E-04 
515 0 5.211613E-04 8.283622E-03 -6.502386E-04 
516 0 5.337194E-04 8.483227E-03 -6.502386E-04 
517 0 5.462775E-04 8.682833E-03 -6.502386E-04 
518 0 5.588356E-04 8.882438E-03 -6.502386E-04 
519 0 5.713937E-04 9.082043E-03 -6.502386E-04 
520 0 5.839518E-04 9.281649E-03 -6.502386E-04 
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521 0 4.709289E-04 7.485200E-03 1.450428E-03 
522 0 4.834870E-04 7.684806E-03 1.450428E-03 
523 0 4.960451E-04 7.884411E-03 1.450428E-03 
524 0 5.086032E-04 8.084017E-03 1.450428E-03 
525 0 5.211613E-04 8.283622E-03 1.450428E-03 
526 0 5.337194E-04 8.483227E-03 1.450428E-03 
527 0 5.462775E-04 8.682833E-03 1.450428E-03 
528 0 5.588356E-04 8.882438E-03 1.450428E-03 
529 0 5.713937E-04 9.082043E-03 1.450428E-03 
530 0 5.839518E-04 9.281649E-03 1.450428E-03 
531 0 4.709289E-04 7.485200E-03 3.432189E-03 
532 0 4.834870E-04 7.684806E-03 3.432189E-03 
533 0 4.960451E-04 7.884411E-03 3.432189E-03 
534 0 5.086032E-04 8.084017E-03 3.432189E-03 
535 0 5.211613E-04 8.283622E-03 3.432189E-03 
536 0 5.337194E-04 8.483227E-03 3.432189E-03 
537 0 5.462775E-04 8.682833E-03 3.432189E-03 
538 0 5.588356E-04 8.882438E-03 3.432189E-03 
539 0 5.713937E-04 9.082043E-03 3.432189E-03 
540 0 5.839518E-04 9.281649E-03 3.432189E-03 
541 0 4.709289E-04 7.485200E-03 5.301774E-03 
542 0 4.834870E-04 7.684806E-03 5.301774E-03 
543 0 4.960451E-04 7.884411E-03 5.301774E-03 
544 0 5.086032E-04 8.084017E-03 5.301774E-03 
545 0 5.211613E-04 8.283622E-03 5.301774E-03 
546 0 5.337194E-04 8.483227E-03 5.301774E-03 
547 0 5.462775E-04 8.682833E-03 5.301774E-03 
548 0 5.588356E-04 8.882438E-03 5.301774E-03 
549 0 5.713937E-04 9.082043E-03 5.301774E-03 
550 0 5.839518E-04 9.281649E-03 5.301774E-03 
551 0 4.709289E-04 7.485200E-03 7.065534E-03 
552 0 4.834870E-04 7.684806E-03 7.065534E-03 
553 0 4.960451E-04 7.884411E-03 7.065534E-03 
554 0 5.086032E-04 8.084017E-03 7.065534E-03 
555 0 5.211613E-04 8.283622E-03 7.065534E-03 
556 0 5.337194E-04 8.483227E-03 7.065534E-03 
557 0 5.462775E-04 8.682833E-03 7.065534E-03 
558 0 5.588356E-04 8.882438E-03 7.065534E-03 
559 0 5.713937E-04 9.082043E-03 7.065534E-03 
560 0 5.839518E-04 9.281649E-03 7.065534E-03 
561 0 4.709289E-04 7.485200E-03 8.729459E-03 
562 0 4.834870E-04 7.684806E-03 8.729459E-03 
563 0 4.960451E-04 7.884411E-03 8.729459E-03 
564 0 5.086032E-04 8.084017E-03 8.729459E-03 
565 0 5.211613E-04 8.283622E-03 8.729459E-03 
566 0 5.337194E-04 8.483227E-03 8.729459E-03 
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567 0 5.462775E-04 8.682833E-03 8.729459E-03 
568 0 5.588356E-04 8.882438E-03 8.729459E-03 
569 0 5.713937E-04 9.082043E-03 8.729459E-03 
570 0 5.839518E-04 9.281649E-03 8.729459E-03 
571 0 4.709289E-04 7.485200E-03 1.029920E-02 
572 0 4.834870E-04 7.684806E-03 1.029920E-02 
573 0 4.960451E-04 7.884411E-03 1.029920E-02 
574 0 5.086032E-04 8.084017E-03 1.029920E-02 
575 0 5.211613E-04 8.283622E-03 1.029920E-02 
576 0 5.337194E-04 8.483227E-03 1.029920E-02 
577 0 5.462775E-04 8.682833E-03 1.029920E-02 
578 0 5.588356E-04 8.882438E-03 1.029920E-02 
579 0 5.713937E-04 9.082043E-03 1.029920E-02 
580 0 5.839518E-04 9.281649E-03 1.029920E-02 
581 0 4.709289E-04 7.485200E-03 1.178009E-02 
582 0 4.834870E-04 7.684806E-03 1.178009E-02 
583 0 4.960451E-04 7.884411E-03 1.178009E-02 
584 0 5.086032E-04 8.084017E-03 1.178009E-02 
585 0 5.211613E-04 8.283622E-03 1.178009E-02 
586 0 5.337194E-04 8.483227E-03 1.178009E-02 
587 0 5.462775E-04 8.682833E-03 1.178009E-02 
588 0 5.588356E-04 8.882438E-03 1.178009E-02 
589 0 5.713937E-04 9.082043E-03 1.178009E-02 
590 0 5.839518E-04 9.281649E-03 1.178009E-02 
591 0 4.709289E-04 7.485200E-03 1.317715E-02 
592 0 4.834870E-04 7.684806E-03 1.317715E-02 
593 0 4.960451E-04 7.884411E-03 1.317715E-02 
594 0 5.086032E-04 8.084017E-03 1.317715E-02 
595 0 5.211613E-04 8.283622E-03 1.317715E-02 
596 0 5.337194E-04 8.483227E-03 1.317715E-02 
597 0 5.462775E-04 8.682833E-03 1.317715E-02 
598 0 5.588356E-04 8.882438E-03 1.317715E-02 
599 0 5.713937E-04 9.082043E-03 1.317715E-02 
600 0 5.839518E-04 9.281649E-03 1.317715E-02 
601 0 4.709289E-04 7.485200E-03 1.449513E-02 
602 0 4.834870E-04 7.684806E-03 1.449513E-02 
603 0 4.960451E-04 7.884411E-03 1.449513E-02 
604 0 5.086032E-04 8.084017E-03 1.449513E-02 
605 0 5.211613E-04 8.283622E-03 1.449513E-02 
606 0 5.337194E-04 8.483227E-03 1.449513E-02 
607 0 5.462775E-04 8.682833E-03 1.449513E-02 
608 0 5.588356E-04 8.882438E-03 1.449513E-02 
609 0 5.713937E-04 9.082043E-03 1.449513E-02 
610 0 5.839518E-04 9.281649E-03 1.449513E-02 
611 0 4.709289E-04 7.485200E-03 1.573851E-02 
612 0 4.834870E-04 7.684806E-03 1.573851E-02 
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613 0 4.960451E-04 7.884411E-03 1.573851E-02 
614 0 5.086032E-04 8.084017E-03 1.573851E-02 
615 0 5.211613E-04 8.283622E-03 1.573851E-02 
616 0 5.337194E-04 8.483227E-03 1.573851E-02 
617 0 5.462775E-04 8.682833E-03 1.573851E-02 
618 0 5.588356E-04 8.882438E-03 1.573851E-02 
619 0 5.713937E-04 9.082043E-03 1.573851E-02 
620 0 5.839518E-04 9.281649E-03 1.573851E-02 
621 0 4.709289E-04 7.485200E-03 1.691152E-02 
622 0 4.834870E-04 7.684806E-03 1.691152E-02 
623 0 4.960451E-04 7.884411E-03 1.691152E-02 
624 0 5.086032E-04 8.084017E-03 1.691152E-02 
625 0 5.211613E-04 8.283622E-03 1.691152E-02 
626 0 5.337194E-04 8.483227E-03 1.691152E-02 
627 0 5.462775E-04 8.682833E-03 1.691152E-02 
628 0 5.588356E-04 8.882438E-03 1.691152E-02 
629 0 5.713937E-04 9.082043E-03 1.691152E-02 
630 0 5.839518E-04 9.281649E-03 1.691152E-02 
631 0 4.709289E-04 7.485200E-03 1.801812E-02 
632 0 4.834870E-04 7.684806E-03 1.801812E-02 
633 0 4.960451E-04 7.884411E-03 1.801812E-02 
634 0 5.086032E-04 8.084017E-03 1.801812E-02 
635 0 5.211613E-04 8.283622E-03 1.801812E-02 
636 0 5.337194E-04 8.483227E-03 1.801812E-02 
637 0 5.462775E-04 8.682833E-03 1.801812E-02 
638 0 5.588356E-04 8.882438E-03 1.801812E-02 
639 0 5.713937E-04 9.082043E-03 1.801812E-02 
640 0 5.839518E-04 9.281649E-03 1.801812E-02 
641 0 4.709289E-04 7.485200E-03 1.906209E-02 
642 0 4.834870E-04 7.684806E-03 1.906209E-02 
643 0 4.960451E-04 7.884411E-03 1.906209E-02 
644 0 5.086032E-04 8.084017E-03 1.906209E-02 
645 0 5.211613E-04 8.283622E-03 1.906209E-02 
646 0 5.337194E-04 8.483227E-03 1.906209E-02 
647 0 5.462775E-04 8.682833E-03 1.906209E-02 
648 0 5.588356E-04 8.882438E-03 1.906209E-02 
649 0 5.713937E-04 9.082043E-03 1.906209E-02 
650 0 5.839518E-04 9.281649E-03 1.906209E-02 
651 0 4.709289E-04 7.485200E-03 2.004696E-02 
652 0 4.834870E-04 7.684806E-03 2.004696E-02 
653 0 4.960451E-04 7.884411E-03 2.004696E-02 
654 0 5.086032E-04 8.084017E-03 2.004696E-02 
655 0 5.211613E-04 8.283622E-03 2.004696E-02 
656 0 5.337194E-04 8.483227E-03 2.004696E-02 
657 0 5.462775E-04 8.682833E-03 2.004696E-02 
658 0 5.588356E-04 8.882438E-03 2.004696E-02 
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659 0 5.713937E-04 9.082043E-03 2.004696E-02 
660 0 5.839518E-04 9.281649E-03 2.004696E-02 
661 0 4.709289E-04 7.485200E-03 2.097609E-02 
662 0 4.834870E-04 7.684806E-03 2.097609E-02 
663 0 4.960451E-04 7.884411E-03 2.097609E-02 
664 0 5.086032E-04 8.084017E-03 2.097609E-02 
665 0 5.211613E-04 8.283622E-03 2.097609E-02 
666 0 5.337194E-04 8.483227E-03 2.097609E-02 
667 0 5.462775E-04 8.682833E-03 2.097609E-02 
668 0 5.588356E-04 8.882438E-03 2.097609E-02 
669 0 5.713937E-04 9.082043E-03 2.097609E-02 
670 0 5.839518E-04 9.281649E-03 2.097609E-02 
671 0 4.709289E-04 7.485200E-03 2.185262E-02 
672 0 4.834870E-04 7.684806E-03 2.185262E-02 
673 0 4.960451E-04 7.884411E-03 2.185262E-02 
674 0 5.086032E-04 8.084017E-03 2.185262E-02 
675 0 5.211613E-04 8.283622E-03 2.185262E-02 
676 0 5.337194E-04 8.483227E-03 2.185262E-02 
677 0 5.462775E-04 8.682833E-03 2.185262E-02 
678 0 5.588356E-04 8.882438E-03 2.185262E-02 
679 0 5.713937E-04 9.082043E-03 2.185262E-02 
680 0 5.839518E-04 9.281649E-03 2.185262E-02 
681 0 4.709289E-04 7.485200E-03 2.267954E-02 
682 0 4.834870E-04 7.684806E-03 2.267954E-02 
683 0 4.960451E-04 7.884411E-03 2.267954E-02 
684 0 5.086032E-04 8.084017E-03 2.267954E-02 
685 0 5.211613E-04 8.283622E-03 2.267954E-02 
686 0 5.337194E-04 8.483227E-03 2.267954E-02 
687 0 5.462775E-04 8.682833E-03 2.267954E-02 
688 0 5.588356E-04 8.882438E-03 2.267954E-02 
689 0 5.713937E-04 9.082043E-03 2.267954E-02 
690 0 5.839518E-04 9.281649E-03 2.267954E-02 
691 0 4.709289E-04 7.485200E-03 2.345966E-02 
692 0 4.834870E-04 7.684806E-03 2.345966E-02 
693 0 4.960451E-04 7.884411E-03 2.345966E-02 
694 0 5.086032E-04 8.084017E-03 2.345966E-02 
695 0 5.211613E-04 8.283622E-03 2.345966E-02 
696 0 5.337194E-04 8.483227E-03 2.345966E-02 
697 0 5.462775E-04 8.682833E-03 2.345966E-02 
698 0 5.588356E-04 8.882438E-03 2.345966E-02 
699 0 5.713937E-04 9.082043E-03 2.345966E-02 
700 0 5.839518E-04 9.281649E-03 2.345966E-02 
701 0 4.709289E-04 7.485200E-03 2.419561E-02 
702 0 4.834870E-04 7.684806E-03 2.419561E-02 
703 0 4.960451E-04 7.884411E-03 2.419561E-02 
704 0 5.086032E-04 8.084017E-03 2.419561E-02 



 183 

705 0 5.211613E-04 8.283622E-03 2.419561E-02 
706 0 5.337194E-04 8.483227E-03 2.419561E-02 
707 0 5.462775E-04 8.682833E-03 2.419561E-02 
708 0 5.588356E-04 8.882438E-03 2.419561E-02 
709 0 5.713937E-04 9.082043E-03 2.419561E-02 
710 0 5.839518E-04 9.281649E-03 2.419561E-02 
711 0 4.709289E-04 7.485200E-03 2.488991E-02 
712 0 4.834870E-04 7.684806E-03 2.488991E-02 
713 0 4.960451E-04 7.884411E-03 2.488991E-02 
714 0 5.086032E-04 8.084017E-03 2.488991E-02 
715 0 5.211613E-04 8.283622E-03 2.488991E-02 
716 0 5.337194E-04 8.483227E-03 2.488991E-02 
717 0 5.462775E-04 8.682833E-03 2.488991E-02 
718 0 5.588356E-04 8.882438E-03 2.488991E-02 
719 0 5.713937E-04 9.082043E-03 2.488991E-02 
720 0 5.839518E-04 9.281649E-03 2.488991E-02 
721 0 4.709289E-04 7.485200E-03 2.554491E-02 
722 0 4.834870E-04 7.684806E-03 2.554491E-02 
723 0 4.960451E-04 7.884411E-03 2.554491E-02 
724 0 5.086032E-04 8.084017E-03 2.554491E-02 
725 0 5.211613E-04 8.283622E-03 2.554491E-02 
726 0 5.337194E-04 8.483227E-03 2.554491E-02 
727 0 5.462775E-04 8.682833E-03 2.554491E-02 
728 0 5.588356E-04 8.882438E-03 2.554491E-02 
729 0 5.713937E-04 9.082043E-03 2.554491E-02 
730 0 5.839518E-04 9.281649E-03 2.554491E-02 
731 0 4.709289E-04 7.485200E-03 2.616283E-02 
732 0 4.834870E-04 7.684806E-03 2.616283E-02 
733 0 4.960451E-04 7.884411E-03 2.616283E-02 
734 0 5.086032E-04 8.084017E-03 2.616283E-02 
735 0 5.211613E-04 8.283622E-03 2.616283E-02 
736 0 5.337194E-04 8.483227E-03 2.616283E-02 
737 0 5.462775E-04 8.682833E-03 2.616283E-02 
738 0 5.588356E-04 8.882438E-03 2.616283E-02 
739 0 5.713937E-04 9.082043E-03 2.616283E-02 
740 0 5.839518E-04 9.281649E-03 2.616283E-02 
741 0 4.709289E-04 7.485200E-03 2.674577E-02 
742 0 4.834870E-04 7.684806E-03 2.674577E-02 
743 0 4.960451E-04 7.884411E-03 2.674577E-02 
744 0 5.086032E-04 8.084017E-03 2.674577E-02 
745 0 5.211613E-04 8.283622E-03 2.674577E-02 
746 0 5.337194E-04 8.483227E-03 2.674577E-02 
747 0 5.462775E-04 8.682833E-03 2.674577E-02 
748 0 5.588356E-04 8.882438E-03 2.674577E-02 
749 0 5.713937E-04 9.082043E-03 2.674577E-02 
750 0 5.839518E-04 9.281649E-03 2.674577E-02 
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751 0 4.709289E-04 7.485200E-03 2.729572E-02 
752 0 4.834870E-04 7.684806E-03 2.729572E-02 
753 0 4.960451E-04 7.884411E-03 2.729572E-02 
754 0 5.086032E-04 8.084017E-03 2.729572E-02 
755 0 5.211613E-04 8.283622E-03 2.729572E-02 
756 0 5.337194E-04 8.483227E-03 2.729572E-02 
757 0 5.462775E-04 8.682833E-03 2.729572E-02 
758 0 5.588356E-04 8.882438E-03 2.729572E-02 
759 0 5.713937E-04 9.082043E-03 2.729572E-02 
760 0 5.839518E-04 9.281649E-03 2.729572E-02 
761 0 4.709289E-04 7.485200E-03 2.781454E-02 
762 0 4.834870E-04 7.684806E-03 2.781454E-02 
763 0 4.960451E-04 7.884411E-03 2.781454E-02 
764 0 5.086032E-04 8.084017E-03 2.781454E-02 
765 0 5.211613E-04 8.283622E-03 2.781454E-02 
766 0 5.337194E-04 8.483227E-03 2.781454E-02 
767 0 5.462775E-04 8.682833E-03 2.781454E-02 
768 0 5.588356E-04 8.882438E-03 2.781454E-02 
769 0 5.713937E-04 9.082043E-03 2.781454E-02 
770 0 5.839518E-04 9.281649E-03 2.781454E-02 
771 0 4.709289E-04 7.485200E-03 2.830400E-02 
772 0 4.834870E-04 7.684806E-03 2.830400E-02 
773 0 4.960451E-04 7.884411E-03 2.830400E-02 
774 0 5.086032E-04 8.084017E-03 2.830400E-02 
775 0 5.211613E-04 8.283622E-03 2.830400E-02 
776 0 5.337194E-04 8.483227E-03 2.830400E-02 
777 0 5.462775E-04 8.682833E-03 2.830400E-02 
778 0 5.588356E-04 8.882438E-03 2.830400E-02 
779 0 5.713937E-04 9.082043E-03 2.830400E-02 
780 0 5.839518E-04 9.281649E-03 2.830400E-02 
781 0 4.709289E-04 7.485200E-03 2.876574E-02 
782 0 4.834870E-04 7.684806E-03 2.876574E-02 
783 0 4.960451E-04 7.884411E-03 2.876574E-02 
784 0 5.086032E-04 8.084017E-03 2.876574E-02 
785 0 5.211613E-04 8.283622E-03 2.876574E-02 
786 0 5.337194E-04 8.483227E-03 2.876574E-02 
787 0 5.462775E-04 8.682833E-03 2.876574E-02 
788 0 5.588356E-04 8.882438E-03 2.876574E-02 
789 0 5.713937E-04 9.082043E-03 2.876574E-02 
790 0 5.839518E-04 9.281649E-03 2.876574E-02 
791 0 4.709289E-04 7.485200E-03 2.920135E-02 
792 0 4.834870E-04 7.684806E-03 2.920135E-02 
793 0 4.960451E-04 7.884411E-03 2.920135E-02 
794 0 5.086032E-04 8.084017E-03 2.920135E-02 
795 0 5.211613E-04 8.283622E-03 2.920135E-02 
796 0 5.337194E-04 8.483227E-03 2.920135E-02 
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797 0 5.462775E-04 8.682833E-03 2.920135E-02 
798 0 5.588356E-04 8.882438E-03 2.920135E-02 
799 0 5.713937E-04 9.082043E-03 2.920135E-02 
800 0 5.839518E-04 9.281649E-03 2.920135E-02 
801 0 4.709289E-04 7.485200E-03 2.961231E-02 
802 0 4.834870E-04 7.684806E-03 2.961231E-02 
803 0 4.960451E-04 7.884411E-03 2.961231E-02 
804 0 5.086032E-04 8.084017E-03 2.961231E-02 
805 0 5.211613E-04 8.283622E-03 2.961231E-02 
806 0 5.337194E-04 8.483227E-03 2.961231E-02 
807 0 5.462775E-04 8.682833E-03 2.961231E-02 
808 0 5.588356E-04 8.882438E-03 2.961231E-02 
809 0 5.713937E-04 9.082043E-03 2.961231E-02 
810 0 5.839518E-04 9.281649E-03 2.961231E-02 
811 0 4.709289E-04 7.485200E-03 3.000000E-02 
812 0 4.833365E-04 7.682414E-03 3.000000E-02 
813 0 4.958265E-04 7.880940E-03 3.000000E-02 
814 0 5.083553E-04 8.080080E-03 3.000000E-02 
815 0 5.209021E-04 8.279507E-03 3.000000E-02 
816 0 5.334576E-04 8.479070E-03 3.000000E-02 
817 0 5.462775E-04 8.682833E-03 3.000000E-02 
818 0 5.588356E-04 8.882438E-03 3.000000E-02 
819 0 5.713937E-04 9.082043E-03 3.000000E-02 
820 0 5.839518E-04 9.281649E-03 3.000000E-02 
 
 
 
 
! List of nodes connected to an individual element (pg 28) 
! For elements where the maximum number of nodes is less or equal to 13 (i.e.,  
! the NEN parameter on the control record), the records following the command are given  
! as: 
! N number of element.  
! NG generation increment for node numbers.  
! MA material identifier associated with element.  
! ND-i i-Node number defining element  
ELEMents 
1 0 1 417 418 8 7 427 428 18 17 
2 0 1 418 419 9 8 428 429 19 18 
3 0 1 419 420 10 9 429 430 20 19 
4 0 1 427 428 18 17 437 438 28 27 
5 0 1 428 429 19 18 438 439 29 28 
6 0 1 429 430 20 19 439 440 30 29 
7 0 1 437 438 28 27 447 448 38 37 
8 0 1 438 439 29 28 448 449 39 38 
9 0 1 439 440 30 29 449 450 40 39 
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10 0 1 447 448 38 37 457 458 48 47 
11 0 1 448 449 39 38 458 459 49 48 
12 0 1 449 450 40 39 459 460 50 49 
13 0 1 457 458 48 47 467 468 58 57 
14 0 1 458 459 49 48 468 469 59 58 
15 0 1 459 460 50 49 469 470 60 59 
16 0 1 467 468 58 57 477 478 68 67 
17 0 1 468 469 59 58 478 479 69 68 
18 0 1 469 470 60 59 479 480 70 69 
19 0 1 477 478 68 67 487 488 78 77 
20 0 1 478 479 69 68 488 489 79 78 
21 0 1 479 480 70 69 489 490 80 79 
22 0 1 487 488 78 77 497 498 88 87 
23 0 1 488 489 79 78 498 499 89 88 
24 0 1 489 490 80 79 499 500 90 89 
25 0 1 497 498 88 87 507 508 98 97 
26 0 1 498 499 89 88 508 509 99 98 
27 0 1 499 500 90 89 509 510 100 99 
28 0 1 507 508 98 97 517 518 108 107 
29 0 1 508 509 99 98 518 519 109 108 
30 0 1 509 510 100 99 519 520 110 109 
31 0 1 517 518 108 107 527 528 118 117 
32 0 1 518 519 109 108 528 529 119 118 
33 0 1 519 520 110 109 529 530 120 119 
34 0 1 527 528 118 117 537 538 128 127 
35 0 1 528 529 119 118 538 539 129 128 
36 0 1 529 530 120 119 539 540 130 129 
37 0 1 537 538 128 127 547 548 138 137 
38 0 1 538 539 129 128 548 549 139 138 
39 0 1 539 540 130 129 549 550 140 139 
40 0 1 547 548 138 137 557 558 148 147 
41 0 1 548 549 139 138 558 559 149 148 
42 0 1 549 550 140 139 559 560 150 149 
43 0 1 557 558 148 147 567 568 158 157 
44 0 1 558 559 149 148 568 569 159 158 
45 0 1 559 560 150 149 569 570 160 159 
46 0 1 567 568 158 157 577 578 168 167 
47 0 1 568 569 159 158 578 579 169 168 
48 0 1 569 570 160 159 579 580 170 169 
49 0 1 577 578 168 167 587 588 178 177 
50 0 1 578 579 169 168 588 589 179 178 
51 0 1 579 580 170 169 589 590 180 179 
52 0 1 587 588 178 177 597 598 188 187 
53 0 1 588 589 179 178 598 599 189 188 
54 0 1 589 590 180 179 599 600 190 189 
55 0 1 597 598 188 187 607 608 198 197 
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56 0 1 598 599 189 188 608 609 199 198 
57 0 1 599 600 190 189 609 610 200 199 
58 0 1 607 608 198 197 617 618 208 207 
59 0 1 608 609 199 198 618 619 209 208 
60 0 1 609 610 200 199 619 620 210 209 
61 0 1 617 618 208 207 627 628 218 217 
62 0 1 618 619 209 208 628 629 219 218 
63 0 1 619 620 210 209 629 630 220 219 
64 0 1 627 628 218 217 637 638 228 227 
65 0 1 628 629 219 218 638 639 229 228 
66 0 1 629 630 220 219 639 640 230 229 
67 0 1 637 638 228 227 647 648 238 237 
68 0 1 638 639 229 228 648 649 239 238 
69 0 1 639 640 230 229 649 650 240 239 
70 0 1 647 648 238 237 657 658 248 247 
71 0 1 648 649 239 238 658 659 249 248 
72 0 1 649 650 240 239 659 660 250 249 
73 0 1 657 658 248 247 667 668 258 257 
74 0 1 658 659 249 248 668 669 259 258 
75 0 1 659 660 250 249 669 670 260 259 
76 0 1 667 668 258 257 677 678 268 267 
77 0 1 668 669 259 258 678 679 269 268 
78 0 1 669 670 260 259 679 680 270 269 
79 0 1 677 678 268 267 687 688 278 277 
80 0 1 678 679 269 268 688 689 279 278 
81 0 1 679 680 270 269 689 690 280 279 
82 0 1 687 688 278 277 697 698 288 287 
83 0 1 688 689 279 278 698 699 289 288 
84 0 1 689 690 280 279 699 700 290 289 
85 0 1 697 698 288 287 707 708 298 297 
86 0 1 698 699 289 288 708 709 299 298 
87 0 1 699 700 290 289 709 710 300 299 
88 0 1 707 708 298 297 717 718 308 307 
89 0 1 708 709 299 298 718 719 309 308 
90 0 1 709 710 300 299 719 720 310 309 
91 0 1 717 718 308 307 727 728 318 317 
92 0 1 718 719 309 308 728 729 319 318 
93 0 1 719 720 310 309 729 730 320 319 
94 0 1 727 728 318 317 737 738 328 327 
95 0 1 728 729 319 318 738 739 329 328 
96 0 1 729 730 320 319 739 740 330 329 
97 0 1 737 738 328 327 747 748 338 337 
98 0 1 738 739 329 328 748 749 339 338 
99 0 1 739 740 330 329 749 750 340 339 
100 0 1 747 748 338 337 757 758 348 347 
101 0 1 748 749 339 338 758 759 349 348 
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102 0 1 749 750 340 339 759 760 350 349 
103 0 1 757 758 348 347 767 768 358 357 
104 0 1 758 759 349 348 768 769 359 358 
105 0 1 759 760 350 349 769 770 360 359 
106 0 1 767 768 358 357 777 778 368 367 
107 0 1 768 769 359 358 778 779 369 368 
108 0 1 769 770 360 359 779 780 370 369 
109 0 1 777 778 368 367 787 788 378 377 
110 0 1 778 779 369 368 788 789 379 378 
111 0 1 779 780 370 369 789 790 380 379 
112 0 1 787 788 378 377 797 798 388 387 
113 0 1 788 789 379 378 798 799 389 388 
114 0 1 789 790 380 379 799 800 390 389 
115 0 1 797 798 388 387 807 808 398 397 
116 0 1 798 799 389 388 808 809 399 398 
117 0 1 799 800 390 389 809 810 400 399 
118 0 1 807 808 398 397 817 818 408 407 
119 0 1 808 809 399 398 818 819 409 408 
120 0 1 809 810 400 399 819 820 410 409 
121 0 2 427 426 16 17 417 416 6 7 
122 0 2 426 425 15 16 416 415 5 6 
123 0 2 425 424 14 15 415 414 4 5 
124 0 2 424 423 13 14 414 413 3 4 
125 0 2 423 422 12 13 413 412 2 3 
126 0 2 422 421 11 12 412 411 1 2 
127 0 2 437 436 26 27 427 426 16 17 
128 0 2 436 435 25 26 426 425 15 16 
129 0 2 435 434 24 25 425 424 14 15 
130 0 2 434 433 23 24 424 423 13 14 
131 0 2 433 432 22 23 423 422 12 13 
132 0 2 432 431 21 22 422 421 11 12 
133 0 2 447 446 36 37 437 436 26 27 
134 0 2 446 445 35 36 436 435 25 26 
135 0 2 445 444 34 35 435 434 24 25 
136 0 2 444 443 33 34 434 433 23 24 
137 0 2 443 442 32 33 433 432 22 23 
138 0 2 442 441 31 32 432 431 21 22 
139 0 2 457 456 46 47 447 446 36 37 
140 0 2 456 455 45 46 446 445 35 36 
141 0 2 455 454 44 45 445 444 34 35 
142 0 2 454 453 43 44 444 443 33 34 
143 0 2 453 452 42 43 443 442 32 33 
144 0 2 452 451 41 42 442 441 31 32 
145 0 2 467 466 56 57 457 456 46 47 
146 0 2 466 465 55 56 456 455 45 46 
147 0 2 465 464 54 55 455 454 44 45 
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148 0 2 464 463 53 54 454 453 43 44 
149 0 2 463 462 52 53 453 452 42 43 
150 0 2 462 461 51 52 452 451 41 42 
151 0 2 477 476 66 67 467 466 56 57 
152 0 2 476 475 65 66 466 465 55 56 
153 0 2 475 474 64 65 465 464 54 55 
154 0 2 474 473 63 64 464 463 53 54 
155 0 2 473 472 62 63 463 462 52 53 
156 0 2 472 471 61 62 462 461 51 52 
157 0 2 487 486 76 77 477 476 66 67 
158 0 2 486 485 75 76 476 475 65 66 
159 0 2 485 484 74 75 475 474 64 65 
160 0 2 484 483 73 74 474 473 63 64 
161 0 2 483 482 72 73 473 472 62 63 
162 0 2 482 481 71 72 472 471 61 62 
163 0 2 497 496 86 87 487 486 76 77 
164 0 2 496 495 85 86 486 485 75 76 
165 0 2 495 494 84 85 485 484 74 75 
166 0 2 494 493 83 84 484 483 73 74 
167 0 2 493 492 82 83 483 482 72 73 
168 0 2 492 491 81 82 482 481 71 72 
169 0 2 507 506 96 97 497 496 86 87 
170 0 2 506 505 95 96 496 495 85 86 
171 0 2 505 504 94 95 495 494 84 85 
172 0 2 504 503 93 94 494 493 83 84 
173 0 2 503 502 92 93 493 492 82 83 
174 0 2 502 501 91 92 492 491 81 82 
175 0 2 517 516 106 107 507 506 96 97 
176 0 2 516 515 105 106 506 505 95 96 
177 0 2 515 514 104 105 505 504 94 95 
178 0 2 514 513 103 104 504 503 93 94 
179 0 2 513 512 102 103 503 502 92 93 
180 0 2 512 511 101 102 502 501 91 92 
181 0 2 527 526 116 117 517 516 106 107 
182 0 2 526 525 115 116 516 515 105 106 
183 0 2 525 524 114 115 515 514 104 105 
184 0 2 524 523 113 114 514 513 103 104 
185 0 2 523 522 112 113 513 512 102 103 
186 0 2 522 521 111 112 512 511 101 102 
187 0 2 537 536 126 127 527 526 116 117 
188 0 2 536 535 125 126 526 525 115 116 
189 0 2 535 534 124 125 525 524 114 115 
190 0 2 534 533 123 124 524 523 113 114 
191 0 2 533 532 122 123 523 522 112 113 
192 0 2 532 531 121 122 522 521 111 112 
193 0 2 547 546 136 137 537 536 126 127 
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194 0 2 546 545 135 136 536 535 125 126 
195 0 2 545 544 134 135 535 534 124 125 
196 0 2 544 543 133 134 534 533 123 124 
197 0 2 543 542 132 133 533 532 122 123 
198 0 2 542 541 131 132 532 531 121 122 
199 0 2 557 556 146 147 547 546 136 137 
200 0 2 556 555 145 146 546 545 135 136 
201 0 2 555 554 144 145 545 544 134 135 
202 0 2 554 553 143 144 544 543 133 134 
203 0 2 553 552 142 143 543 542 132 133 
204 0 2 552 551 141 142 542 541 131 132 
205 0 2 567 566 156 157 557 556 146 147 
206 0 2 566 565 155 156 556 555 145 146 
207 0 2 565 564 154 155 555 554 144 145 
208 0 2 564 563 153 154 554 553 143 144 
209 0 2 563 562 152 153 553 552 142 143 
210 0 2 562 561 151 152 552 551 141 142 
211 0 2 577 576 166 167 567 566 156 157 
212 0 2 576 575 165 166 566 565 155 156 
213 0 2 575 574 164 165 565 564 154 155 
214 0 2 574 573 163 164 564 563 153 154 
215 0 2 573 572 162 163 563 562 152 153 
216 0 2 572 571 161 162 562 561 151 152 
217 0 2 587 586 176 177 577 576 166 167 
218 0 2 586 585 175 176 576 575 165 166 
219 0 2 585 584 174 175 575 574 164 165 
220 0 2 584 583 173 174 574 573 163 164 
221 0 2 583 582 172 173 573 572 162 163 
222 0 2 582 581 171 172 572 571 161 162 
223 0 2 597 596 186 187 587 586 176 177 
224 0 2 596 595 185 186 586 585 175 176 
225 0 2 595 594 184 185 585 584 174 175 
226 0 2 594 593 183 184 584 583 173 174 
227 0 2 593 592 182 183 583 582 172 173 
228 0 2 592 591 181 182 582 581 171 172 
229 0 2 607 606 196 197 597 596 186 187 
230 0 2 606 605 195 196 596 595 185 186 
231 0 2 605 604 194 195 595 594 184 185 
232 0 2 604 603 193 194 594 593 183 184 
233 0 2 603 602 192 193 593 592 182 183 
234 0 2 602 601 191 192 592 591 181 182 
235 0 2 617 616 206 207 607 606 196 197 
236 0 2 616 615 205 206 606 605 195 196 
237 0 2 615 614 204 205 605 604 194 195 
238 0 2 614 613 203 204 604 603 193 194 
239 0 2 613 612 202 203 603 602 192 193 
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240 0 2 612 611 201 202 602 601 191 192 
241 0 2 627 626 216 217 617 616 206 207 
242 0 2 626 625 215 216 616 615 205 206 
243 0 2 625 624 214 215 615 614 204 205 
244 0 2 624 623 213 214 614 613 203 204 
245 0 2 623 622 212 213 613 612 202 203 
246 0 2 622 621 211 212 612 611 201 202 
247 0 2 637 636 226 227 627 626 216 217 
248 0 2 636 635 225 226 626 625 215 216 
249 0 2 635 634 224 225 625 624 214 215 
250 0 2 634 633 223 224 624 623 213 214 
251 0 2 633 632 222 223 623 622 212 213 
252 0 2 632 631 221 222 622 621 211 212 
253 0 2 647 646 236 237 637 636 226 227 
254 0 2 646 645 235 236 636 635 225 226 
255 0 2 645 644 234 235 635 634 224 225 
256 0 2 644 643 233 234 634 633 223 224 
257 0 2 643 642 232 233 633 632 222 223 
258 0 2 642 641 231 232 632 631 221 222 
259 0 2 657 656 246 247 647 646 236 237 
260 0 2 656 655 245 246 646 645 235 236 
261 0 2 655 654 244 245 645 644 234 235 
262 0 2 654 653 243 244 644 643 233 234 
263 0 2 653 652 242 243 643 642 232 233 
264 0 2 652 651 241 242 642 641 231 232 
265 0 2 667 666 256 257 657 656 246 247 
266 0 2 666 665 255 256 656 655 245 246 
267 0 2 665 664 254 255 655 654 244 245 
268 0 2 664 663 253 254 654 653 243 244 
269 0 2 663 662 252 253 653 652 242 243 
270 0 2 662 661 251 252 652 651 241 242 
271 0 2 677 676 266 267 667 666 256 257 
272 0 2 676 675 265 266 666 665 255 256 
273 0 2 675 674 264 265 665 664 254 255 
274 0 2 674 673 263 264 664 663 253 254 
275 0 2 673 672 262 263 663 662 252 253 
276 0 2 672 671 261 262 662 661 251 252 
277 0 2 687 686 276 277 677 676 266 267 
278 0 2 686 685 275 276 676 675 265 266 
279 0 2 685 684 274 275 675 674 264 265 
280 0 2 684 683 273 274 674 673 263 264 
281 0 2 683 682 272 273 673 672 262 263 
282 0 2 682 681 271 272 672 671 261 262 
283 0 2 697 696 286 287 687 686 276 277 
284 0 2 696 695 285 286 686 685 275 276 
285 0 2 695 694 284 285 685 684 274 275 
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286 0 2 694 693 283 284 684 683 273 274 
287 0 2 693 692 282 283 683 682 272 273 
288 0 2 692 691 281 282 682 681 271 272 
289 0 2 707 706 296 297 697 696 286 287 
290 0 2 706 705 295 296 696 695 285 286 
291 0 2 705 704 294 295 695 694 284 285 
292 0 2 704 703 293 294 694 693 283 284 
293 0 2 703 702 292 293 693 692 282 283 
294 0 2 702 701 291 292 692 691 281 282 
295 0 2 717 716 306 307 707 706 296 297 
296 0 2 716 715 305 306 706 705 295 296 
297 0 2 715 714 304 305 705 704 294 295 
298 0 2 714 713 303 304 704 703 293 294 
299 0 2 713 712 302 303 703 702 292 293 
300 0 2 712 711 301 302 702 701 291 292 
301 0 2 727 726 316 317 717 716 306 307 
302 0 2 726 725 315 316 716 715 305 306 
303 0 2 725 724 314 315 715 714 304 305 
304 0 2 724 723 313 314 714 713 303 304 
305 0 2 723 722 312 313 713 712 302 303 
306 0 2 722 721 311 312 712 711 301 302 
307 0 2 737 736 326 327 727 726 316 317 
308 0 2 736 735 325 326 726 725 315 316 
309 0 2 735 734 324 325 725 724 314 315 
310 0 2 734 733 323 324 724 723 313 314 
311 0 2 733 732 322 323 723 722 312 313 
312 0 2 732 731 321 322 722 721 311 312 
313 0 2 747 746 336 337 737 736 326 327 
314 0 2 746 745 335 336 736 735 325 326 
315 0 2 745 744 334 335 735 734 324 325 
316 0 2 744 743 333 334 734 733 323 324 
317 0 2 743 742 332 333 733 732 322 323 
318 0 2 742 741 331 332 732 731 321 322 
319 0 2 757 756 346 347 747 746 336 337 
320 0 2 756 755 345 346 746 745 335 336 
321 0 2 755 754 344 345 745 744 334 335 
322 0 2 754 753 343 344 744 743 333 334 
323 0 2 753 752 342 343 743 742 332 333 
324 0 2 752 751 341 342 742 741 331 332 
325 0 2 767 766 356 357 757 756 346 347 
326 0 2 766 765 355 356 756 755 345 346 
327 0 2 765 764 354 355 755 754 344 345 
328 0 2 764 763 353 354 754 753 343 344 
329 0 2 763 762 352 353 753 752 342 343 
330 0 2 762 761 351 352 752 751 341 342 
331 0 2 777 776 366 367 767 766 356 357 
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332 0 2 776 775 365 366 766 765 355 356 
333 0 2 775 774 364 365 765 764 354 355 
334 0 2 774 773 363 364 764 763 353 354 
335 0 2 773 772 362 363 763 762 352 353 
336 0 2 772 771 361 362 762 761 351 352 
337 0 2 787 786 376 377 777 776 366 367 
338 0 2 786 785 375 376 776 775 365 366 
339 0 2 785 784 374 375 775 774 364 365 
340 0 2 784 783 373 374 774 773 363 364 
341 0 2 783 782 372 373 773 772 362 363 
342 0 2 782 781 371 372 772 771 361 362 
343 0 2 797 796 386 387 787 786 376 377 
344 0 2 796 795 385 386 786 785 375 376 
345 0 2 795 794 384 385 785 784 374 375 
346 0 2 794 793 383 384 784 783 373 374 
347 0 2 793 792 382 383 783 782 372 373 
348 0 2 792 791 381 382 782 781 371 372 
349 0 2 807 806 396 397 797 796 386 387 
350 0 2 806 805 395 396 796 795 385 386 
351 0 2 805 804 394 395 795 794 384 385 
352 0 2 804 803 393 394 794 793 383 384 
353 0 2 803 802 392 393 793 792 382 383 
354 0 2 802 801 391 392 792 791 381 382 
355 0 2 817 816 406 407 807 806 396 397 
356 0 2 816 815 405 406 806 805 395 396 
357 0 2 815 814 404 405 805 804 394 395 
358 0 2 814 813 403 404 804 803 393 394 
359 0 2 813 812 402 403 803 802 392 393 
360 0 2 812 811 401 402 802 801 391 392 
361 0 3 411 421 11 1     
362 0 3 421 431 21 11     
363 0 3 431 441 31 21     
364 0 3 441 451 41 31     
365 0 3 451 461 51 41     
366 0 3 461 471 61 51     
367 0 3 471 481 71 61     
368 0 3 481 491 81 71     
369 0 3 491 501 91 81     
370 0 3 501 511 101 91     
371 0 3 511 521 111 101     
372 0 3 521 531 121 111     
373 0 3 531 541 131 121     
374 0 3 541 551 141 131     
375 0 3 551 561 151 141     
376 0 3 561 571 161 151     
377 0 3 571 581 171 161     
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378 0 3 581 591 181 171     
379 0 3 591 601 191 181     
380 0 3 601 611 201 191     
381 0 3 611 621 211 201     
382 0 3 621 631 221 211     
383 0 3 631 641 231 221     
384 0 3 641 651 241 231     
385 0 3 651 661 251 241     
386 0 3 661 671 261 251     
387 0 3 671 681 271 261     
388 0 3 681 691 281 271     
389 0 3 691 701 291 281     
390 0 3 701 711 301 291     
391 0 3 711 721 311 301     
392 0 3 721 731 321 311     
393 0 3 731 741 331 321     
394 0 3 741 751 341 331     
395 0 3 751 761 351 341     
396 0 3 761 771 361 351     
397 0 3 771 781 371 361     
398 0 3 781 791 381 371     
399 0 3 791 801 391 381     
400 0 3 801 811 401 391     
 
EDAT 
360 
1 2.762542E-04 8.790935E-03 -2.811901E-02 1.299301E+00 2.223579E-02
 5.924147E-01 
2 2.825170E-04 8.990479E-03 -2.811901E-02 1.299301E+00 2.223517E-02
 5.924147E-01 
3 2.888201E-04 9.190664E-03 -2.811901E-02 1.299301E+00 2.223613E-02
 5.924148E-01 
4 2.762783E-04 8.791318E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
5 2.825573E-04 8.991120E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
6 2.888364E-04 9.190923E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
7 2.762783E-04 8.791318E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
8 2.825573E-04 8.991120E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
9 2.888364E-04 9.190923E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
10 2.762783E-04 8.791318E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
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11 2.825573E-04 8.991120E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
12 2.888364E-04 9.190923E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
13 2.762783E-04 8.791318E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
14 2.825573E-04 8.991120E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
15 2.888364E-04 9.190923E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
16 2.762783E-04 8.791318E-03 -1.179681E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
17 2.825573E-04 8.991120E-03 -1.179681E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
18 2.888364E-04 9.190923E-03 -1.179681E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
19 2.762783E-04 8.791318E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
20 2.825573E-04 8.991120E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
21 2.888364E-04 9.190923E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
22 2.762783E-04 8.791318E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
23 2.825573E-04 8.991120E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
24 2.888364E-04 9.190923E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
25 2.762783E-04 8.791318E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
26 2.825573E-04 8.991120E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
27 2.888364E-04 9.190923E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
28 2.762783E-04 8.791318E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
29 2.825573E-04 8.991120E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
30 2.888364E-04 9.190923E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
31 2.762783E-04 8.791318E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
32 2.825573E-04 8.991120E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
33 2.888364E-04 9.190923E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
34 2.762783E-04 8.791318E-03 2.441308E-03 1.299301E+00 2.223676E-02 5.924148E-01 
35 2.825573E-04 8.991120E-03 2.441308E-03 1.299301E+00 2.223676E-02 5.924148E-01 
36 2.888364E-04 9.190923E-03 2.441308E-03 1.299301E+00 2.223676E-02 5.924148E-01 
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37 2.762783E-04 8.791318E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
38 2.825573E-04 8.991120E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
39 2.888364E-04 9.190923E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
40 2.762783E-04 8.791318E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
41 2.825573E-04 8.991120E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
42 2.888364E-04 9.190923E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
43 2.762783E-04 8.791318E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
44 2.825573E-04 8.991120E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
45 2.888364E-04 9.190923E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
46 2.762783E-04 8.791318E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
47 2.825573E-04 8.991120E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
48 2.888364E-04 9.190923E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
49 2.762783E-04 8.791318E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
50 2.825573E-04 8.991120E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
51 2.888364E-04 9.190923E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
52 2.762783E-04 8.791318E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
53 2.825573E-04 8.991120E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
54 2.888364E-04 9.190923E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
55 2.762783E-04 8.791318E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
56 2.825573E-04 8.991120E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
57 2.888364E-04 9.190923E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
58 2.762783E-04 8.791318E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
59 2.825573E-04 8.991120E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
60 2.888364E-04 9.190923E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
61 2.762783E-04 8.791318E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
62 2.825573E-04 8.991120E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
63 2.888364E-04 9.190923E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
64 2.762783E-04 8.791318E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
65 2.825573E-04 8.991120E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
66 2.888364E-04 9.190923E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
67 2.762783E-04 8.791318E-03 1.854011E-02 1.299301E+00 2.223676E-02 5.924148E-01 
68 2.825573E-04 8.991120E-03 1.854011E-02 1.299301E+00 2.223676E-02 5.924148E-01 
69 2.888364E-04 9.190923E-03 1.854011E-02 1.299301E+00 2.223676E-02 5.924148E-01 
70 2.762783E-04 8.791318E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
71 2.825573E-04 8.991120E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
72 2.888364E-04 9.190923E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
73 2.762783E-04 8.791318E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
74 2.825573E-04 8.991120E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
75 2.888364E-04 9.190923E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
76 2.762783E-04 8.791318E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
77 2.825573E-04 8.991120E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
78 2.888364E-04 9.190923E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
79 2.762783E-04 8.791318E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
80 2.825573E-04 8.991120E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
81 2.888364E-04 9.190923E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
82 2.762783E-04 8.791318E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
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83 2.825573E-04 8.991120E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
84 2.888364E-04 9.190923E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
85 2.762783E-04 8.791318E-03 2.382764E-02 1.299301E+00 2.223676E-02 5.924148E-01 
86 2.825573E-04 8.991120E-03 2.382764E-02 1.299301E+00 2.223676E-02 5.924148E-01 
87 2.888364E-04 9.190923E-03 2.382764E-02 1.299301E+00 2.223676E-02 5.924148E-01 
88 2.762783E-04 8.791318E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
89 2.825573E-04 8.991120E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
90 2.888364E-04 9.190923E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
91 2.762783E-04 8.791318E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
92 2.825573E-04 8.991120E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
93 2.888364E-04 9.190923E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
94 2.762783E-04 8.791318E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
95 2.825573E-04 8.991120E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
96 2.888364E-04 9.190923E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
97 2.762783E-04 8.791318E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
98 2.825573E-04 8.991120E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
99 2.888364E-04 9.190923E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
100 2.762783E-04 8.791318E-03 2.702074E-02 1.299301E+00 2.223676E-02 5.924148E-01 
101 2.825573E-04 8.991120E-03 2.702074E-02 1.299301E+00 2.223676E-02 5.924148E-01 
102 2.888364E-04 9.190923E-03 2.702074E-02 1.299301E+00 2.223676E-02 5.924148E-01 
103 2.762783E-04 8.791318E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
104 2.825573E-04 8.991120E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
105 2.888364E-04 9.190923E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
106 2.762783E-04 8.791318E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
107 2.825573E-04 8.991120E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
108 2.888364E-04 9.190923E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
109 2.762783E-04 8.791318E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
110 2.825573E-04 8.991120E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
111 2.888364E-04 9.190923E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
112 2.762783E-04 8.791318E-03 2.898355E-02 1.299301E+00 2.223676E-02 5.924148E-01 
113 2.825573E-04 8.991120E-03 2.898355E-02 1.299301E+00 2.223676E-02 5.924148E-01 
114 2.888364E-04 9.190923E-03 2.898355E-02 1.299301E+00 2.223676E-02 5.924148E-01 
115 2.762783E-04 8.791318E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
116 2.825573E-04 8.991120E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
117 2.888364E-04 9.190923E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
118 2.762783E-04 8.791318E-03 2.980616E-02 1.299301E+00 2.223676E-02 5.924148E-01 
119 2.825573E-04 8.991120E-03 2.980616E-02 1.299301E+00 2.223676E-02 5.924148E-01 
120 2.888364E-04 9.190923E-03 2.980616E-02 1.299301E+00 2.223676E-02 5.924148E-01 
121 2.699992E-04 8.591515E-03 -2.811902E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
122 2.637202E-04 8.391712E-03 -2.811902E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
123 2.574411E-04 8.191910E-03 -2.811902E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
124 2.511621E-04 7.992107E-03 -2.811902E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
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125 2.448830E-04 7.792304E-03 -2.811902E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
126 2.386040E-04 7.592501E-03 -2.811902E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
127 2.699992E-04 8.591515E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
128 2.637202E-04 8.391712E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
129 2.574411E-04 8.191910E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
130 2.511621E-04 7.992107E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
131 2.448830E-04 7.792304E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
132 2.386040E-04 7.592501E-03 -2.446351E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
133 2.699992E-04 8.591515E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
134 2.637202E-04 8.391712E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
135 2.574411E-04 8.191910E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
136 2.511621E-04 7.992107E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
137 2.448830E-04 7.792304E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
138 2.386040E-04 7.592501E-03 -2.101492E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
139 2.699992E-04 8.591515E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
140 2.637202E-04 8.391712E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
141 2.574411E-04 8.191910E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
142 2.511621E-04 7.992107E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
143 2.448830E-04 7.792304E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
144 2.386040E-04 7.592501E-03 -1.776154E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
145 2.699992E-04 8.591515E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
146 2.637202E-04 8.391712E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
147 2.574411E-04 8.191910E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
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148 2.511621E-04 7.992107E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
149 2.448830E-04 7.792304E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
150 2.386040E-04 7.592501E-03 -1.469231E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
151 2.699992E-04 8.591515E-03 -1.179680E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
152 2.637202E-04 8.391712E-03 -1.179680E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
153 2.574411E-04 8.191910E-03 -1.179680E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
154 2.511621E-04 7.992107E-03 -1.179680E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
155 2.448830E-04 7.792304E-03 -1.179680E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
156 2.386040E-04 7.592501E-03 -1.179680E-02 1.299301E+00 2.223676E-02
 5.924148E-01 
157 2.699992E-04 8.591515E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
158 2.637202E-04 8.391712E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
159 2.574411E-04 8.191910E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
160 2.511621E-04 7.992107E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
161 2.448830E-04 7.792304E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
162 2.386040E-04 7.592501E-03 -9.065200E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
163 2.699992E-04 8.591515E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
164 2.637202E-04 8.391712E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
165 2.574411E-04 8.191910E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
166 2.511621E-04 7.992107E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
167 2.448830E-04 7.792304E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
168 2.386040E-04 7.592501E-03 -6.488217E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
169 2.699992E-04 8.591515E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
170 2.637202E-04 8.391712E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
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171 2.574411E-04 8.191910E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
172 2.511621E-04 7.992107E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
173 2.448830E-04 7.792304E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
174 2.386040E-04 7.592501E-03 -4.057099E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
175 2.699992E-04 8.591515E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
176 2.637202E-04 8.391712E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
177 2.574411E-04 8.191910E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
178 2.511621E-04 7.992107E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
179 2.448830E-04 7.792304E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
180 2.386040E-04 7.592501E-03 -1.763592E-03 1.299301E+00 2.223676E-02
 5.924148E-01 
181 2.699992E-04 8.591515E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
182 2.637202E-04 8.391712E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
183 2.574411E-04 8.191910E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
184 2.511621E-04 7.992107E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
185 2.448830E-04 7.792304E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
186 2.386040E-04 7.592501E-03 4.000947E-04 1.299301E+00 2.223676E-02 5.924148E-01 
187 2.699992E-04 8.591515E-03 2.441309E-03 1.299301E+00 2.223676E-02 5.924148E-01 
188 2.637202E-04 8.391712E-03 2.441309E-03 1.299301E+00 2.223676E-02 5.924148E-01 
189 2.574411E-04 8.191910E-03 2.441309E-03 1.299301E+00 2.223676E-02 5.924148E-01 
190 2.511621E-04 7.992107E-03 2.441309E-03 1.299301E+00 2.223676E-02 5.924148E-01 
191 2.448830E-04 7.792304E-03 2.441309E-03 1.299301E+00 2.223676E-02 5.924148E-01 
192 2.386040E-04 7.592501E-03 2.441309E-03 1.299301E+00 2.223676E-02 5.924148E-01 
193 2.699992E-04 8.591515E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
194 2.637202E-04 8.391712E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
195 2.574411E-04 8.191910E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
196 2.511621E-04 7.992107E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
197 2.448830E-04 7.792304E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
198 2.386040E-04 7.592501E-03 4.366982E-03 1.299301E+00 2.223676E-02 5.924148E-01 
199 2.699992E-04 8.591515E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
200 2.637202E-04 8.391712E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
201 2.574411E-04 8.191910E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
202 2.511621E-04 7.992107E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
203 2.448830E-04 7.792304E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
204 2.386040E-04 7.592501E-03 6.183654E-03 1.299301E+00 2.223676E-02 5.924148E-01 
205 2.699992E-04 8.591515E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
206 2.637202E-04 8.391712E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 



 201 

207 2.574411E-04 8.191910E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
208 2.511621E-04 7.992107E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
209 2.448830E-04 7.792304E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
210 2.386040E-04 7.592501E-03 7.897497E-03 1.299301E+00 2.223676E-02 5.924148E-01 
211 2.699992E-04 8.591515E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
212 2.637202E-04 8.391712E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
213 2.574411E-04 8.191910E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
214 2.511621E-04 7.992107E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
215 2.448830E-04 7.792304E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
216 2.386040E-04 7.592501E-03 9.514329E-03 1.299301E+00 2.223676E-02 5.924148E-01 
217 2.699992E-04 8.591515E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
218 2.637202E-04 8.391712E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
219 2.574411E-04 8.191910E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
220 2.511621E-04 7.992107E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
221 2.448830E-04 7.792304E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
222 2.386040E-04 7.592501E-03 1.103964E-02 1.299301E+00 2.223676E-02 5.924148E-01 
223 2.699992E-04 8.591515E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
224 2.637202E-04 8.391712E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
225 2.574411E-04 8.191910E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
226 2.511621E-04 7.992107E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
227 2.448830E-04 7.792304E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
228 2.386040E-04 7.592501E-03 1.247862E-02 1.299301E+00 2.223676E-02 5.924148E-01 
229 2.699992E-04 8.591515E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
230 2.637202E-04 8.391712E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
231 2.574411E-04 8.191910E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
232 2.511621E-04 7.992107E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
233 2.448830E-04 7.792304E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
234 2.386040E-04 7.592501E-03 1.383614E-02 1.299301E+00 2.223676E-02 5.924148E-01 
235 2.699992E-04 8.591515E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
236 2.637202E-04 8.391712E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
237 2.574411E-04 8.191910E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
238 2.511621E-04 7.992107E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
239 2.448830E-04 7.792304E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
240 2.386040E-04 7.592501E-03 1.511682E-02 1.299301E+00 2.223676E-02 5.924148E-01 
241 2.699992E-04 8.591515E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
242 2.637202E-04 8.391712E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
243 2.574411E-04 8.191910E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
244 2.511621E-04 7.992107E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
245 2.448830E-04 7.792304E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
246 2.386040E-04 7.592501E-03 1.632501E-02 1.299301E+00 2.223676E-02 5.924148E-01 
247 2.699992E-04 8.591515E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
248 2.637202E-04 8.391712E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
249 2.574411E-04 8.191910E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
250 2.511621E-04 7.992107E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
251 2.448830E-04 7.792304E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
252 2.386040E-04 7.592501E-03 1.746482E-02 1.299301E+00 2.223676E-02 5.924148E-01 
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253 2.699992E-04 8.591515E-03 1.854010E-02 1.299301E+00 2.223676E-02 5.924148E-01 
254 2.637202E-04 8.391712E-03 1.854010E-02 1.299301E+00 2.223676E-02 5.924148E-01 
255 2.574411E-04 8.191910E-03 1.854010E-02 1.299301E+00 2.223676E-02 5.924148E-01 
256 2.511621E-04 7.992107E-03 1.854010E-02 1.299301E+00 2.223676E-02 5.924148E-01 
257 2.448830E-04 7.792304E-03 1.854010E-02 1.299301E+00 2.223676E-02 5.924148E-01 
258 2.386040E-04 7.592501E-03 1.854010E-02 1.299301E+00 2.223676E-02 5.924148E-01 
259 2.699992E-04 8.591515E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
260 2.637202E-04 8.391712E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
261 2.574411E-04 8.191910E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
262 2.511621E-04 7.992107E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
263 2.448830E-04 7.792304E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
264 2.386040E-04 7.592501E-03 1.955452E-02 1.299301E+00 2.223676E-02 5.924148E-01 
265 2.699992E-04 8.591515E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
266 2.637202E-04 8.391712E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
267 2.574411E-04 8.191910E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
268 2.511621E-04 7.992107E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
269 2.448830E-04 7.792304E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
270 2.386040E-04 7.592501E-03 2.051152E-02 1.299301E+00 2.223676E-02 5.924148E-01 
271 2.699992E-04 8.591515E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
272 2.637202E-04 8.391712E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
273 2.574411E-04 8.191910E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
274 2.511621E-04 7.992107E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
275 2.448830E-04 7.792304E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
276 2.386040E-04 7.592501E-03 2.141435E-02 1.299301E+00 2.223676E-02 5.924148E-01 
277 2.699992E-04 8.591515E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
278 2.637202E-04 8.391712E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
279 2.574411E-04 8.191910E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
280 2.511621E-04 7.992107E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
281 2.448830E-04 7.792304E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
282 2.386040E-04 7.592501E-03 2.226608E-02 1.299301E+00 2.223676E-02 5.924148E-01 
283 2.699992E-04 8.591515E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
284 2.637202E-04 8.391712E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
285 2.574411E-04 8.191910E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
286 2.511621E-04 7.992107E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
287 2.448830E-04 7.792304E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
288 2.386040E-04 7.592501E-03 2.306960E-02 1.299301E+00 2.223676E-02 5.924148E-01 
289 2.699992E-04 8.591515E-03 2.382763E-02 1.299301E+00 2.223676E-02 5.924148E-01 
290 2.637202E-04 8.391712E-03 2.382763E-02 1.299301E+00 2.223676E-02 5.924148E-01 
291 2.574411E-04 8.191910E-03 2.382763E-02 1.299301E+00 2.223676E-02 5.924148E-01 
292 2.511621E-04 7.992107E-03 2.382763E-02 1.299301E+00 2.223676E-02 5.924148E-01 
293 2.448830E-04 7.792304E-03 2.382763E-02 1.299301E+00 2.223676E-02 5.924148E-01 
294 2.386040E-04 7.592501E-03 2.382763E-02 1.299301E+00 2.223676E-02 5.924148E-01 
295 2.699992E-04 8.591515E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
296 2.637202E-04 8.391712E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
297 2.574411E-04 8.191910E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
298 2.511621E-04 7.992107E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
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299 2.448830E-04 7.792304E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
300 2.386040E-04 7.592501E-03 2.454276E-02 1.299301E+00 2.223676E-02 5.924148E-01 
301 2.699992E-04 8.591515E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
302 2.637202E-04 8.391712E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
303 2.574411E-04 8.191910E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
304 2.511621E-04 7.992107E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
305 2.448830E-04 7.792304E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
306 2.386040E-04 7.592501E-03 2.521741E-02 1.299301E+00 2.223676E-02 5.924148E-01 
307 2.699992E-04 8.591515E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
308 2.637202E-04 8.391712E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
309 2.574411E-04 8.191910E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
310 2.511621E-04 7.992107E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
311 2.448830E-04 7.792304E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
312 2.386040E-04 7.592501E-03 2.585387E-02 1.299301E+00 2.223676E-02 5.924148E-01 
313 2.699992E-04 8.591515E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
314 2.637202E-04 8.391712E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
315 2.574411E-04 8.191910E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
316 2.511621E-04 7.992107E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
317 2.448830E-04 7.792304E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
318 2.386040E-04 7.592501E-03 2.645430E-02 1.299301E+00 2.223676E-02 5.924148E-01 
319 2.699992E-04 8.591515E-03 2.702075E-02 1.299301E+00 2.223676E-02 5.924148E-01 
320 2.637202E-04 8.391712E-03 2.702075E-02 1.299301E+00 2.223676E-02 5.924148E-01 
321 2.574411E-04 8.191910E-03 2.702075E-02 1.299301E+00 2.223676E-02 5.924148E-01 
322 2.511621E-04 7.992107E-03 2.702075E-02 1.299301E+00 2.223676E-02 5.924148E-01 
323 2.448830E-04 7.792304E-03 2.702075E-02 1.299301E+00 2.223676E-02 5.924148E-01 
324 2.386040E-04 7.592501E-03 2.702075E-02 1.299301E+00 2.223676E-02 5.924148E-01 
325 2.699992E-04 8.591515E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
326 2.637202E-04 8.391712E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
327 2.574411E-04 8.191910E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
328 2.511621E-04 7.992107E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
329 2.448830E-04 7.792304E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
330 2.386040E-04 7.592501E-03 2.755513E-02 1.299301E+00 2.223676E-02 5.924148E-01 
331 2.699992E-04 8.591515E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
332 2.637202E-04 8.391712E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
333 2.574411E-04 8.191910E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
334 2.511621E-04 7.992107E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
335 2.448830E-04 7.792304E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
336 2.386040E-04 7.592501E-03 2.805927E-02 1.299301E+00 2.223676E-02 5.924148E-01 
337 2.699992E-04 8.591515E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
338 2.637202E-04 8.391712E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
339 2.574411E-04 8.191910E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
340 2.511621E-04 7.992107E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
341 2.448830E-04 7.792304E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
342 2.386040E-04 7.592501E-03 2.853487E-02 1.299301E+00 2.223676E-02 5.924148E-01 
343 2.699992E-04 8.591515E-03 2.898354E-02 1.299301E+00 2.223676E-02 5.924148E-01 
344 2.637202E-04 8.391712E-03 2.898354E-02 1.299301E+00 2.223676E-02 5.924148E-01 
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345 2.574411E-04 8.191910E-03 2.898354E-02 1.299301E+00 2.223676E-02 5.924148E-01 
346 2.511621E-04 7.992107E-03 2.898354E-02 1.299301E+00 2.223676E-02 5.924148E-01 
347 2.448830E-04 7.792304E-03 2.898354E-02 1.299301E+00 2.223676E-02 5.924148E-01 
348 2.386040E-04 7.592501E-03 2.898354E-02 1.299301E+00 2.223676E-02 5.924148E-01 
349 2.699992E-04 8.591515E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
350 2.637202E-04 8.391712E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
351 2.574411E-04 8.191910E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
352 2.511621E-04 7.992107E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
353 2.448830E-04 7.792304E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
354 2.386040E-04 7.592501E-03 2.940683E-02 1.299301E+00 2.223676E-02 5.924148E-01 
355 2.699665E-04 8.590995E-03 2.980616E-02 1.299301E+00 2.223541E-02 5.924147E-01 
356 2.636551E-04 8.390678E-03 2.980616E-02 1.299301E+00 2.223401E-02 5.924146E-01 
357 2.573777E-04 8.190903E-03 2.980616E-02 1.299301E+00 2.223402E-02 5.924146E-01 
358 2.511038E-04 7.991181E-03 2.980616E-02 1.299301E+00 2.223418E-02 5.924146E-01 
359 2.448369E-04 7.791571E-03 2.980616E-02 1.299301E+00 2.223467E-02 5.924147E-01 
360 2.385852E-04 7.592202E-03 2.980616E-02 1.299301E+00 2.223589E-02 5.924147E-01 
 
 
! Perturbed elements 
PERTurbations 
9 
 
 
118 
119 
120 
355 
356 
357 
358 
359 
360 
 
 
! Edge BOUndary conditions 
! i-coord x_i value, (ibc(j), j = 1...NDF) (pg. 257) 
! example: 1 0    1 0 0 
! means that if the x-value of the node is 0, restrain displacements in the x-direction 
EBOUndary 
!   1 0.0 1 0 1 
!   2 0.0 0 1 1 
!   3 -5.0E-05 0 0 1 
!   3 5.0E-05 0 0 1 
 
! Edge DISplacement conditions 
! i-coord x_i value, (d(j), j = 1...NDF) 
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! example: 1 10    d 0 0 
! means that if the x-value of the node is 10, displace by d units in the x-direction 
EDISplacement 
!   1 0   0 0 0 
!   1 10  d 0 0 
!   2 0   0 0 0 
!   2 10  0 d 0 
!   3 0   0 0 0 
 
! BOUNdary restraint conditions 
! node1 ngen1 (id(i, node1), i = 1...NDF) (pg. 229) 
! if id(i,node) = 0 a force will be an applied load to dof (default). 
! if id(i,node) != 0 a displacement will be imposed to dof. 
BOUNdary 
1 0 0 1 1 
2 0 0 1 1 
3 0 0 1 1 
4 0 0 1 1 
5 0 0 1 1 
6 0 0 1 1 
7 0 0 1 1 
8 0 0 1 1 
9 0 0 1 1 
10 0 0 1 1 
11 0 0 1 0 
12 0 0 1 0 
13 0 0 1 0 
14 0 0 1 0 
15 0 0 1 0 
16 0 0 1 0 
17 0 0 1 0 
18 0 0 1 0 
19 0 0 1 0 
20 0 0 1 0 
21 0 0 1 0 
22 0 0 1 0 
23 0 0 1 0 
24 0 0 1 0 
25 0 0 1 0 
26 0 0 1 0 
27 0 0 1 0 
28 0 0 1 0 
29 0 0 1 0 
30 0 0 1 0 
31 0 0 1 0 
32 0 0 1 0 

33 0 0 1 0 
34 0 0 1 0 
35 0 0 1 0 
36 0 0 1 0 
37 0 0 1 0 
38 0 0 1 0 
39 0 0 1 0 
40 0 0 1 0 
41 0 0 1 0 
42 0 0 1 0 
43 0 0 1 0 
44 0 0 1 0 
45 0 0 1 0 
46 0 0 1 0 
47 0 0 1 0 
48 0 0 1 0 
49 0 0 1 0 
50 0 0 1 0 
51 0 0 1 0 
52 0 0 1 0 
53 0 0 1 0 
54 0 0 1 0 
55 0 0 1 0 
56 0 0 1 0 
57 0 0 1 0 
58 0 0 1 0 
59 0 0 1 0 
60 0 0 1 0 
61 0 0 1 0 
62 0 0 1 0 
63 0 0 1 0 
64 0 0 1 0 
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65 0 0 1 0 
66 0 0 1 0 
67 0 0 1 0 
68 0 0 1 0 
69 0 0 1 0 
70 0 0 1 0 
71 0 0 1 0 
72 0 0 1 0 
73 0 0 1 0 
74 0 0 1 0 
75 0 0 1 0 
76 0 0 1 0 
77 0 0 1 0 
78 0 0 1 0 
79 0 0 1 0 
80 0 0 1 0 
81 0 0 1 0 
82 0 0 1 0 
83 0 0 1 0 
84 0 0 1 0 
85 0 0 1 0 
86 0 0 1 0 
87 0 0 1 0 
88 0 0 1 0 
89 0 0 1 0 
90 0 0 1 0 
91 0 0 1 0 
92 0 0 1 0 
93 0 0 1 0 
94 0 0 1 0 
95 0 0 1 0 
96 0 0 1 0 
97 0 0 1 0 
98 0 0 1 0 
99 0 0 1 0 
100 0 0 1 0 
101 0 0 1 0 
102 0 0 1 0 
103 0 0 1 0 
104 0 0 1 0 
105 0 0 1 0 
106 0 0 1 0 
107 0 0 1 0 
108 0 0 1 0 
109 0 0 1 0 
110 0 0 1 0 

111 0 0 1 0 
112 0 0 1 0 
113 0 0 1 0 
114 0 0 1 0 
115 0 0 1 0 
116 0 0 1 0 
117 0 0 1 0 
118 0 0 1 0 
119 0 0 1 0 
120 0 0 1 0 
121 0 0 1 0 
122 0 0 1 0 
123 0 0 1 0 
124 0 0 1 0 
125 0 0 1 0 
126 0 0 1 0 
127 0 0 1 0 
128 0 0 1 0 
129 0 0 1 0 
130 0 0 1 0 
131 0 0 1 0 
132 0 0 1 0 
133 0 0 1 0 
134 0 0 1 0 
135 0 0 1 0 
136 0 0 1 0 
137 0 0 1 0 
138 0 0 1 0 
139 0 0 1 0 
140 0 0 1 0 
141 0 0 1 0 
142 0 0 1 0 
143 0 0 1 0 
144 0 0 1 0 
145 0 0 1 0 
146 0 0 1 0 
147 0 0 1 0 
148 0 0 1 0 
149 0 0 1 0 
150 0 0 1 0 
151 0 0 1 0 
152 0 0 1 0 
153 0 0 1 0 
154 0 0 1 0 
155 0 0 1 0 
156 0 0 1 0 
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157 0 0 1 0 
158 0 0 1 0 
159 0 0 1 0 
160 0 0 1 0 
161 0 0 1 0 
162 0 0 1 0 
163 0 0 1 0 
164 0 0 1 0 
165 0 0 1 0 
166 0 0 1 0 
167 0 0 1 0 
168 0 0 1 0 
169 0 0 1 0 
170 0 0 1 0 
171 0 0 1 0 
172 0 0 1 0 
173 0 0 1 0 
174 0 0 1 0 
175 0 0 1 0 
176 0 0 1 0 
177 0 0 1 0 
178 0 0 1 0 
179 0 0 1 0 
180 0 0 1 0 
181 0 0 1 0 
182 0 0 1 0 
183 0 0 1 0 
184 0 0 1 0 
185 0 0 1 0 
186 0 0 1 0 
187 0 0 1 0 
188 0 0 1 0 
189 0 0 1 0 
190 0 0 1 0 
191 0 0 1 0 
192 0 0 1 0 
193 0 0 1 0 
194 0 0 1 0 
195 0 0 1 0 
196 0 0 1 0 
197 0 0 1 0 
198 0 0 1 0 
199 0 0 1 0 
200 0 0 1 0 
201 0 0 1 0 
202 0 0 1 0 

203 0 0 1 0 
204 0 0 1 0 
205 0 0 1 0 
206 0 0 1 0 
207 0 0 1 0 
208 0 0 1 0 
209 0 0 1 0 
210 0 0 1 0 
211 0 0 1 0 
212 0 0 1 0 
213 0 0 1 0 
214 0 0 1 0 
215 0 0 1 0 
216 0 0 1 0 
217 0 0 1 0 
218 0 0 1 0 
219 0 0 1 0 
220 0 0 1 0 
221 0 0 1 0 
222 0 0 1 0 
223 0 0 1 0 
224 0 0 1 0 
225 0 0 1 0 
226 0 0 1 0 
227 0 0 1 0 
228 0 0 1 0 
229 0 0 1 0 
230 0 0 1 0 
231 0 0 1 0 
232 0 0 1 0 
233 0 0 1 0 
234 0 0 1 0 
235 0 0 1 0 
236 0 0 1 0 
237 0 0 1 0 
238 0 0 1 0 
239 0 0 1 0 
240 0 0 1 0 
241 0 0 1 0 
242 0 0 1 0 
243 0 0 1 0 
244 0 0 1 0 
245 0 0 1 0 
246 0 0 1 0 
247 0 0 1 0 
248 0 0 1 0 
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249 0 0 1 0 
250 0 0 1 0 
251 0 0 1 0 
252 0 0 1 0 
253 0 0 1 0 
254 0 0 1 0 
255 0 0 1 0 
256 0 0 1 0 
257 0 0 1 0 
258 0 0 1 0 
259 0 0 1 0 
260 0 0 1 0 
261 0 0 1 0 
262 0 0 1 0 
263 0 0 1 0 
264 0 0 1 0 
265 0 0 1 0 
266 0 0 1 0 
267 0 0 1 0 
268 0 0 1 0 
269 0 0 1 0 
270 0 0 1 0 
271 0 0 1 0 
272 0 0 1 0 
273 0 0 1 0 
274 0 0 1 0 
275 0 0 1 0 
276 0 0 1 0 
277 0 0 1 0 
278 0 0 1 0 
279 0 0 1 0 
280 0 0 1 0 
281 0 0 1 0 
282 0 0 1 0 
283 0 0 1 0 
284 0 0 1 0 
285 0 0 1 0 
286 0 0 1 0 
287 0 0 1 0 
288 0 0 1 0 
289 0 0 1 0 
290 0 0 1 0 
291 0 0 1 0 
292 0 0 1 0 
293 0 0 1 0 
294 0 0 1 0 

295 0 0 1 0 
296 0 0 1 0 
297 0 0 1 0 
298 0 0 1 0 
299 0 0 1 0 
300 0 0 1 0 
301 0 0 1 0 
302 0 0 1 0 
303 0 0 1 0 
304 0 0 1 0 
305 0 0 1 0 
306 0 0 1 0 
307 0 0 1 0 
308 0 0 1 0 
309 0 0 1 0 
310 0 0 1 0 
311 0 0 1 0 
312 0 0 1 0 
313 0 0 1 0 
314 0 0 1 0 
315 0 0 1 0 
316 0 0 1 0 
317 0 0 1 0 
318 0 0 1 0 
319 0 0 1 0 
320 0 0 1 0 
321 0 0 1 0 
322 0 0 1 0 
323 0 0 1 0 
324 0 0 1 0 
325 0 0 1 0 
326 0 0 1 0 
327 0 0 1 0 
328 0 0 1 0 
329 0 0 1 0 
330 0 0 1 0 
331 0 0 1 0 
332 0 0 1 0 
333 0 0 1 0 
334 0 0 1 0 
335 0 0 1 0 
336 0 0 1 0 
337 0 0 1 0 
338 0 0 1 0 
339 0 0 1 0 
340 0 0 1 0 
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341 0 0 1 0 
342 0 0 1 0 
343 0 0 1 0 
344 0 0 1 0 
345 0 0 1 0 
346 0 0 1 0 
347 0 0 1 0 
348 0 0 1 0 
349 0 0 1 0 
350 0 0 1 0 
351 0 0 1 0 
352 0 0 1 0 
353 0 0 1 0 
354 0 0 1 0 
355 0 0 1 0 
356 0 0 1 0 
357 0 0 1 0 
358 0 0 1 0 
359 0 0 1 0 
360 0 0 1 0 
361 0 0 1 0 
362 0 0 1 0 
363 0 0 1 0 
364 0 0 1 0 
365 0 0 1 0 
366 0 0 1 0 
367 0 0 1 0 
368 0 0 1 0 
369 0 0 1 0 
370 0 0 1 0 
371 0 0 1 0 
372 0 0 1 0 
373 0 0 1 0 
374 0 0 1 0 
375 0 0 1 0 
376 0 0 1 0 
377 0 0 1 0 
378 0 0 1 0 
379 0 0 1 0 
380 0 0 1 0 
381 0 0 1 0 
382 0 0 1 0 
383 0 0 1 0 
384 0 0 1 0 
385 0 0 1 0 
386 0 0 1 0 

387 0 0 1 0 
388 0 0 1 0 
389 0 0 1 0 
390 0 0 1 0 
391 0 0 1 0 
392 0 0 1 0 
393 0 0 1 0 
394 0 0 1 0 
395 0 0 1 0 
396 0 0 1 0 
397 0 0 1 0 
398 0 0 1 0 
399 0 0 1 0 
400 0 0 1 0 
401 0 0 1 1 
402 0 0 1 1 
403 0 0 1 1 
404 0 0 1 1 
405 0 0 1 1 
406 0 0 1 1 
407 0 0 1 1 
408 0 0 1 1 
409 0 0 1 1 
410 0 0 1 1 
411 0 0 1 1 
412 0 0 1 1 
413 0 0 1 1 
414 0 0 1 1 
415 0 0 1 1 
416 0 0 1 1 
417 0 0 1 1 
418 0 0 1 1 
419 0 0 1 1 
420 0 0 1 1 
421 0 0 1 0 
422 0 0 1 0 
423 0 0 1 0 
424 0 0 1 0 
425 0 0 1 0 
426 0 0 1 0 
427 0 0 1 0 
428 0 0 1 0 
429 0 0 1 0 
430 0 0 1 0 
431 0 0 1 0 
432 0 0 1 0 
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433 0 0 1 0 
434 0 0 1 0 
435 0 0 1 0 
436 0 0 1 0 
437 0 0 1 0 
438 0 0 1 0 
439 0 0 1 0 
440 0 0 1 0 
441 0 0 1 0 
442 0 0 1 0 
443 0 0 1 0 
444 0 0 1 0 
445 0 0 1 0 
446 0 0 1 0 
447 0 0 1 0 
448 0 0 1 0 
449 0 0 1 0 
450 0 0 1 0 
451 0 0 1 0 
452 0 0 1 0 
453 0 0 1 0 
454 0 0 1 0 
455 0 0 1 0 
456 0 0 1 0 
457 0 0 1 0 
458 0 0 1 0 
459 0 0 1 0 
460 0 0 1 0 
461 0 0 1 0 
462 0 0 1 0 
463 0 0 1 0 
464 0 0 1 0 
465 0 0 1 0 
466 0 0 1 0 
467 0 0 1 0 
468 0 0 1 0 
469 0 0 1 0 
470 0 0 1 0 
471 0 0 1 0 
472 0 0 1 0 
473 0 0 1 0 
474 0 0 1 0 
475 0 0 1 0 
476 0 0 1 0 
477 0 0 1 0 
478 0 0 1 0 

479 0 0 1 0 
480 0 0 1 0 
481 0 0 1 0 
482 0 0 1 0 
483 0 0 1 0 
484 0 0 1 0 
485 0 0 1 0 
486 0 0 1 0 
487 0 0 1 0 
488 0 0 1 0 
489 0 0 1 0 
490 0 0 1 0 
491 0 0 1 0 
492 0 0 1 0 
493 0 0 1 0 
494 0 0 1 0 
495 0 0 1 0 
496 0 0 1 0 
497 0 0 1 0 
498 0 0 1 0 
499 0 0 1 0 
500 0 0 1 0 
501 0 0 1 0 
502 0 0 1 0 
503 0 0 1 0 
504 0 0 1 0 
505 0 0 1 0 
506 0 0 1 0 
507 0 0 1 0 
508 0 0 1 0 
509 0 0 1 0 
510 0 0 1 0 
511 0 0 1 0 
512 0 0 1 0 
513 0 0 1 0 
514 0 0 1 0 
515 0 0 1 0 
516 0 0 1 0 
517 0 0 1 0 
518 0 0 1 0 
519 0 0 1 0 
520 0 0 1 0 
521 0 0 1 0 
522 0 0 1 0 
523 0 0 1 0 
524 0 0 1 0 
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525 0 0 1 0 
526 0 0 1 0 
527 0 0 1 0 
528 0 0 1 0 
529 0 0 1 0 
530 0 0 1 0 
531 0 0 1 0 
532 0 0 1 0 
533 0 0 1 0 
534 0 0 1 0 
535 0 0 1 0 
536 0 0 1 0 
537 0 0 1 0 
538 0 0 1 0 
539 0 0 1 0 
540 0 0 1 0 
541 0 0 1 0 
542 0 0 1 0 
543 0 0 1 0 
544 0 0 1 0 
545 0 0 1 0 
546 0 0 1 0 
547 0 0 1 0 
548 0 0 1 0 
549 0 0 1 0 
550 0 0 1 0 
551 0 0 1 0 
552 0 0 1 0 
553 0 0 1 0 
554 0 0 1 0 
555 0 0 1 0 
556 0 0 1 0 
557 0 0 1 0 
558 0 0 1 0 
559 0 0 1 0 
560 0 0 1 0 
561 0 0 1 0 
562 0 0 1 0 
563 0 0 1 0 
564 0 0 1 0 
565 0 0 1 0 
566 0 0 1 0 
567 0 0 1 0 
568 0 0 1 0 
569 0 0 1 0 
570 0 0 1 0 

571 0 0 1 0 
572 0 0 1 0 
573 0 0 1 0 
574 0 0 1 0 
575 0 0 1 0 
576 0 0 1 0 
577 0 0 1 0 
578 0 0 1 0 
579 0 0 1 0 
580 0 0 1 0 
581 0 0 1 0 
582 0 0 1 0 
583 0 0 1 0 
584 0 0 1 0 
585 0 0 1 0 
586 0 0 1 0 
587 0 0 1 0 
588 0 0 1 0 
589 0 0 1 0 
590 0 0 1 0 
591 0 0 1 0 
592 0 0 1 0 
593 0 0 1 0 
594 0 0 1 0 
595 0 0 1 0 
596 0 0 1 0 
597 0 0 1 0 
598 0 0 1 0 
599 0 0 1 0 
600 0 0 1 0 
601 0 0 1 0 
602 0 0 1 0 
603 0 0 1 0 
604 0 0 1 0 
605 0 0 1 0 
606 0 0 1 0 
607 0 0 1 0 
608 0 0 1 0 
609 0 0 1 0 
610 0 0 1 0 
611 0 0 1 0 
612 0 0 1 0 
613 0 0 1 0 
614 0 0 1 0 
615 0 0 1 0 
616 0 0 1 0 
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617 0 0 1 0 
618 0 0 1 0 
619 0 0 1 0 
620 0 0 1 0 
621 0 0 1 0 
622 0 0 1 0 
623 0 0 1 0 
624 0 0 1 0 
625 0 0 1 0 
626 0 0 1 0 
627 0 0 1 0 
628 0 0 1 0 
629 0 0 1 0 
630 0 0 1 0 
631 0 0 1 0 
632 0 0 1 0 
633 0 0 1 0 
634 0 0 1 0 
635 0 0 1 0 
636 0 0 1 0 
637 0 0 1 0 
638 0 0 1 0 
639 0 0 1 0 
640 0 0 1 0 
641 0 0 1 0 
642 0 0 1 0 
643 0 0 1 0 
644 0 0 1 0 
645 0 0 1 0 
646 0 0 1 0 
647 0 0 1 0 
648 0 0 1 0 
649 0 0 1 0 
650 0 0 1 0 
651 0 0 1 0 
652 0 0 1 0 
653 0 0 1 0 
654 0 0 1 0 
655 0 0 1 0 
656 0 0 1 0 
657 0 0 1 0 
658 0 0 1 0 
659 0 0 1 0 
660 0 0 1 0 
661 0 0 1 0 
662 0 0 1 0 

663 0 0 1 0 
664 0 0 1 0 
665 0 0 1 0 
666 0 0 1 0 
667 0 0 1 0 
668 0 0 1 0 
669 0 0 1 0 
670 0 0 1 0 
671 0 0 1 0 
672 0 0 1 0 
673 0 0 1 0 
674 0 0 1 0 
675 0 0 1 0 
676 0 0 1 0 
677 0 0 1 0 
678 0 0 1 0 
679 0 0 1 0 
680 0 0 1 0 
681 0 0 1 0 
682 0 0 1 0 
683 0 0 1 0 
684 0 0 1 0 
685 0 0 1 0 
686 0 0 1 0 
687 0 0 1 0 
688 0 0 1 0 
689 0 0 1 0 
690 0 0 1 0 
691 0 0 1 0 
692 0 0 1 0 
693 0 0 1 0 
694 0 0 1 0 
695 0 0 1 0 
696 0 0 1 0 
697 0 0 1 0 
698 0 0 1 0 
699 0 0 1 0 
700 0 0 1 0 
701 0 0 1 0 
702 0 0 1 0 
703 0 0 1 0 
704 0 0 1 0 
705 0 0 1 0 
706 0 0 1 0 
707 0 0 1 0 
708 0 0 1 0 
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709 0 0 1 0 
710 0 0 1 0 
711 0 0 1 0 
712 0 0 1 0 
713 0 0 1 0 
714 0 0 1 0 
715 0 0 1 0 
716 0 0 1 0 
717 0 0 1 0 
718 0 0 1 0 
719 0 0 1 0 
720 0 0 1 0 
721 0 0 1 0 
722 0 0 1 0 
723 0 0 1 0 
724 0 0 1 0 
725 0 0 1 0 
726 0 0 1 0 
727 0 0 1 0 
728 0 0 1 0 
729 0 0 1 0 
730 0 0 1 0 
731 0 0 1 0 
732 0 0 1 0 
733 0 0 1 0 
734 0 0 1 0 
735 0 0 1 0 
736 0 0 1 0 
737 0 0 1 0 
738 0 0 1 0 
739 0 0 1 0 
740 0 0 1 0 
741 0 0 1 0 
742 0 0 1 0 
743 0 0 1 0 
744 0 0 1 0 
745 0 0 1 0 
746 0 0 1 0 
747 0 0 1 0 
748 0 0 1 0 
749 0 0 1 0 
750 0 0 1 0 
751 0 0 1 0 
752 0 0 1 0 
753 0 0 1 0 
754 0 0 1 0 

755 0 0 1 0 
756 0 0 1 0 
757 0 0 1 0 
758 0 0 1 0 
759 0 0 1 0 
760 0 0 1 0 
761 0 0 1 0 
762 0 0 1 0 
763 0 0 1 0 
764 0 0 1 0 
765 0 0 1 0 
766 0 0 1 0 
767 0 0 1 0 
768 0 0 1 0 
769 0 0 1 0 
770 0 0 1 0 
771 0 0 1 0 
772 0 0 1 0 
773 0 0 1 0 
774 0 0 1 0 
775 0 0 1 0 
776 0 0 1 0 
777 0 0 1 0 
778 0 0 1 0 
779 0 0 1 0 
780 0 0 1 0 
781 0 0 1 0 
782 0 0 1 0 
783 0 0 1 0 
784 0 0 1 0 
785 0 0 1 0 
786 0 0 1 0 
787 0 0 1 0 
788 0 0 1 0 
789 0 0 1 0 
790 0 0 1 0 
791 0 0 1 0 
792 0 0 1 0 
793 0 0 1 0 
794 0 0 1 0 
795 0 0 1 0 
796 0 0 1 0 
797 0 0 1 0 
798 0 0 1 0 
799 0 0 1 0 
800 0 0 1 0 



 214 

801 0 0 1 0 
802 0 0 1 0 
803 0 0 1 0 
804 0 0 1 0 
805 0 0 1 0 
806 0 0 1 0 
807 0 0 1 0 
808 0 0 1 0 
809 0 0 1 0 
810 0 0 1 0 

811 0 0 1 1 
812 0 0 1 1 
813 0 0 1 1 
814 0 0 1 1 
815 0 0 1 1 
816 0 0 1 1 
817 0 0 1 1 
818 0 0 1 1 
819 0 0 1 1 
820 0 0 1 1 

 
! DISPlacement nodal boundary displacements 
! node1 ngen1 (d(i, node1), i = 1...NDF) (pg. 265) 
! where d(j,node) Ð Value of displacement for j-dof 
DISPlacement 
  1 0 0 0 0 
  2 0 0 0 0 
  3 0 0 0 0 
  4 0 0 0 0 
  5 0 0 0 0 
  6 0 0 0 0 
  7 0 0 0 0 
  8 0 0 0 0 
  9 0 0 0 0 
  10 0 0 0 0 
  11 0 0 0 0 
  12 0 0 0 0 
  13 0 0 0 0 
  14 0 0 0 0 
  15 0 0 0 0 
  16 0 0 0 0 
  17 0 0 0 0 
  18 0 0 0 0 
  19 0 0 0 0 
  20 0 0 0 0 
  21 0 0 0 0 
  22 0 0 0 0 
  23 0 0 0 0 
  24 0 0 0 0 
  25 0 0 0 0 
  26 0 0 0 0 
  27 0 0 0 0 
  28 0 0 0 0 
  29 0 0 0 0 
  30 0 0 0 0 
  31 0 0 0 0 

  32 0 0 0 0 
  33 0 0 0 0 
  34 0 0 0 0 
  35 0 0 0 0 
  36 0 0 0 0 
  37 0 0 0 0 
  38 0 0 0 0 
  39 0 0 0 0 
  40 0 0 0 0 
  41 0 0 0 0 
  42 0 0 0 0 
  43 0 0 0 0 
  44 0 0 0 0 
  45 0 0 0 0 
  46 0 0 0 0 
  47 0 0 0 0 
  48 0 0 0 0 
  49 0 0 0 0 
  50 0 0 0 0 
  51 0 0 0 0 
  52 0 0 0 0 
  53 0 0 0 0 
  54 0 0 0 0 
  55 0 0 0 0 
  56 0 0 0 0 
  57 0 0 0 0 
  58 0 0 0 0 
  59 0 0 0 0 
  60 0 0 0 0 
  61 0 0 0 0 
  62 0 0 0 0 

  63 0 0 0 0 
  64 0 0 0 0 
  65 0 0 0 0 
  66 0 0 0 0 
  67 0 0 0 0 
  68 0 0 0 0 
  69 0 0 0 0 
  70 0 0 0 0 
  71 0 0 0 0 
  72 0 0 0 0 
  73 0 0 0 0 
  74 0 0 0 0 
  75 0 0 0 0 
  76 0 0 0 0 
  77 0 0 0 0 
  78 0 0 0 0 
  79 0 0 0 0 
  80 0 0 0 0 
  81 0 0 0 0 
  82 0 0 0 0 
  83 0 0 0 0 
  84 0 0 0 0 
  85 0 0 0 0 
  86 0 0 0 0 
  87 0 0 0 0 
  88 0 0 0 0 
  89 0 0 0 0 
  90 0 0 0 0 
  91 0 0 0 0 
  92 0 0 0 0 
  93 0 0 0 0 
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  94 0 0 0 0 
  95 0 0 0 0 
  96 0 0 0 0 
  97 0 0 0 0 
  98 0 0 0 0 
  99 0 0 0 0 
  100 0 0 0 0 
  101 0 0 0 0 
  102 0 0 0 0 
  103 0 0 0 0 
  104 0 0 0 0 
  105 0 0 0 0 
  106 0 0 0 0 
  107 0 0 0 0 
  108 0 0 0 0 
  109 0 0 0 0 
  110 0 0 0 0 
  111 0 0 0 0 
  112 0 0 0 0 
  113 0 0 0 0 
  114 0 0 0 0 
  115 0 0 0 0 
  116 0 0 0 0 
  117 0 0 0 0 
  118 0 0 0 0 
  119 0 0 0 0 
  120 0 0 0 0 
  121 0 0 0 0 
  122 0 0 0 0 
  123 0 0 0 0 
  124 0 0 0 0 
  125 0 0 0 0 
  126 0 0 0 0 
  127 0 0 0 0 
  128 0 0 0 0 
  129 0 0 0 0 
  130 0 0 0 0 
  131 0 0 0 0 
  132 0 0 0 0 
  133 0 0 0 0 
  134 0 0 0 0 
  135 0 0 0 0 
  136 0 0 0 0 
  137 0 0 0 0 
  138 0 0 0 0 
  139 0 0 0 0 

  140 0 0 0 0 
  141 0 0 0 0 
  142 0 0 0 0 
  143 0 0 0 0 
  144 0 0 0 0 
  145 0 0 0 0 
  146 0 0 0 0 
  147 0 0 0 0 
  148 0 0 0 0 
  149 0 0 0 0 
  150 0 0 0 0 
  151 0 0 0 0 
  152 0 0 0 0 
  153 0 0 0 0 
  154 0 0 0 0 
  155 0 0 0 0 
  156 0 0 0 0 
  157 0 0 0 0 
  158 0 0 0 0 
  159 0 0 0 0 
  160 0 0 0 0 
  161 0 0 0 0 
  162 0 0 0 0 
  163 0 0 0 0 
  164 0 0 0 0 
  165 0 0 0 0 
  166 0 0 0 0 
  167 0 0 0 0 
  168 0 0 0 0 
  169 0 0 0 0 
  170 0 0 0 0 
  171 0 0 0 0 
  172 0 0 0 0 
  173 0 0 0 0 
  174 0 0 0 0 
  175 0 0 0 0 
  176 0 0 0 0 
  177 0 0 0 0 
  178 0 0 0 0 
  179 0 0 0 0 
  180 0 0 0 0 
  181 0 0 0 0 
  182 0 0 0 0 
  183 0 0 0 0 
  184 0 0 0 0 
  185 0 0 0 0 

  186 0 0 0 0 
  187 0 0 0 0 
  188 0 0 0 0 
  189 0 0 0 0 
  190 0 0 0 0 
  191 0 0 0 0 
  192 0 0 0 0 
  193 0 0 0 0 
  194 0 0 0 0 
  195 0 0 0 0 
  196 0 0 0 0 
  197 0 0 0 0 
  198 0 0 0 0 
  199 0 0 0 0 
  200 0 0 0 0 
  201 0 0 0 0 
  202 0 0 0 0 
  203 0 0 0 0 
  204 0 0 0 0 
  205 0 0 0 0 
  206 0 0 0 0 
  207 0 0 0 0 
  208 0 0 0 0 
  209 0 0 0 0 
  210 0 0 0 0 
  211 0 0 0 0 
  212 0 0 0 0 
  213 0 0 0 0 
  214 0 0 0 0 
  215 0 0 0 0 
  216 0 0 0 0 
  217 0 0 0 0 
  218 0 0 0 0 
  219 0 0 0 0 
  220 0 0 0 0 
  221 0 0 0 0 
  222 0 0 0 0 
  223 0 0 0 0 
  224 0 0 0 0 
  225 0 0 0 0 
  226 0 0 0 0 
  227 0 0 0 0 
  228 0 0 0 0 
  229 0 0 0 0 
  230 0 0 0 0 
  231 0 0 0 0 
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  232 0 0 0 0 
  233 0 0 0 0 
  234 0 0 0 0 
  235 0 0 0 0 
  236 0 0 0 0 
  237 0 0 0 0 
  238 0 0 0 0 
  239 0 0 0 0 
  240 0 0 0 0 
  241 0 0 0 0 
  242 0 0 0 0 
  243 0 0 0 0 
  244 0 0 0 0 
  245 0 0 0 0 
  246 0 0 0 0 
  247 0 0 0 0 
  248 0 0 0 0 
  249 0 0 0 0 
  250 0 0 0 0 
  251 0 0 0 0 
  252 0 0 0 0 
  253 0 0 0 0 
  254 0 0 0 0 
  255 0 0 0 0 
  256 0 0 0 0 
  257 0 0 0 0 
  258 0 0 0 0 
  259 0 0 0 0 
  260 0 0 0 0 
  261 0 0 0 0 
  262 0 0 0 0 
  263 0 0 0 0 
  264 0 0 0 0 
  265 0 0 0 0 
  266 0 0 0 0 
  267 0 0 0 0 
  268 0 0 0 0 
  269 0 0 0 0 
  270 0 0 0 0 
  271 0 0 0 0 
  272 0 0 0 0 
  273 0 0 0 0 
  274 0 0 0 0 
  275 0 0 0 0 
  276 0 0 0 0 
  277 0 0 0 0 

  278 0 0 0 0 
  279 0 0 0 0 
  280 0 0 0 0 
  281 0 0 0 0 
  282 0 0 0 0 
  283 0 0 0 0 
  284 0 0 0 0 
  285 0 0 0 0 
  286 0 0 0 0 
  287 0 0 0 0 
  288 0 0 0 0 
  289 0 0 0 0 
  290 0 0 0 0 
  291 0 0 0 0 
  292 0 0 0 0 
  293 0 0 0 0 
  294 0 0 0 0 
  295 0 0 0 0 
  296 0 0 0 0 
  297 0 0 0 0 
  298 0 0 0 0 
  299 0 0 0 0 
  300 0 0 0 0 
  301 0 0 0 0 
  302 0 0 0 0 
  303 0 0 0 0 
  304 0 0 0 0 
  305 0 0 0 0 
  306 0 0 0 0 
  307 0 0 0 0 
  308 0 0 0 0 
  309 0 0 0 0 
  310 0 0 0 0 
  311 0 0 0 0 
  312 0 0 0 0 
  313 0 0 0 0 
  314 0 0 0 0 
  315 0 0 0 0 
  316 0 0 0 0 
  317 0 0 0 0 
  318 0 0 0 0 
  319 0 0 0 0 
  320 0 0 0 0 
  321 0 0 0 0 
  322 0 0 0 0 
  323 0 0 0 0 

  324 0 0 0 0 
  325 0 0 0 0 
  326 0 0 0 0 
  327 0 0 0 0 
  328 0 0 0 0 
  329 0 0 0 0 
  330 0 0 0 0 
  331 0 0 0 0 
  332 0 0 0 0 
  333 0 0 0 0 
  334 0 0 0 0 
  335 0 0 0 0 
  336 0 0 0 0 
  337 0 0 0 0 
  338 0 0 0 0 
  339 0 0 0 0 
  340 0 0 0 0 
  341 0 0 0 0 
  342 0 0 0 0 
  343 0 0 0 0 
  344 0 0 0 0 
  345 0 0 0 0 
  346 0 0 0 0 
  347 0 0 0 0 
  348 0 0 0 0 
  349 0 0 0 0 
  350 0 0 0 0 
  351 0 0 0 0 
  352 0 0 0 0 
  353 0 0 0 0 
  354 0 0 0 0 
  355 0 0 0 0 
  356 0 0 0 0 
  357 0 0 0 0 
  358 0 0 0 0 
  359 0 0 0 0 
  360 0 0 0 0 
  361 0 0 0 0 
  362 0 0 0 0 
  363 0 0 0 0 
  364 0 0 0 0 
  365 0 0 0 0 
  366 0 0 0 0 
  367 0 0 0 0 
  368 0 0 0 0 
  369 0 0 0 0 
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  370 0 0 0 0 
  371 0 0 0 0 
  372 0 0 0 0 
  373 0 0 0 0 
  374 0 0 0 0 
  375 0 0 0 0 
  376 0 0 0 0 
  377 0 0 0 0 
  378 0 0 0 0 
  379 0 0 0 0 
  380 0 0 0 0 
  381 0 0 0 0 
  382 0 0 0 0 
  383 0 0 0 0 
  384 0 0 0 0 
  385 0 0 0 0 
  386 0 0 0 0 
  387 0 0 0 0 
  388 0 0 0 0 
  389 0 0 0 0 
  390 0 0 0 0 
  391 0 0 0 0 
  392 0 0 0 0 
  393 0 0 0 0 
  394 0 0 0 0 
  395 0 0 0 0 
  396 0 0 0 0 
  397 0 0 0 0 
  398 0 0 0 0 
  399 0 0 0 0 
  400 0 0 0 0 
  401 0 0 0 0 
  402 0 0 0 0 
  403 0 0 0 0 
  404 0 0 0 0 
  405 0 0 0 0 
  406 0 0 0 0 
  407 0 0 0 0 
  408 0 0 0 0 
  409 0 0 0 0 
  410 0 0 0 0 
  411 0 0 0 0 
  412 0 0 0 0 
  413 0 0 0 0 
  414 0 0 0 0 
  415 0 0 0 0 

  416 0 0 0 0 
  417 0 0 0 0 
  418 0 0 0 0 
  419 0 0 0 0 
  420 0 0 0 0 
  421 0 0 0 0 
  422 0 0 0 0 
  423 0 0 0 0 
  424 0 0 0 0 
  425 0 0 0 0 
  426 0 0 0 0 
  427 0 0 0 0 
  428 0 0 0 0 
  429 0 0 0 0 
  430 0 0 0 0 
  431 0 0 0 0 
  432 0 0 0 0 
  433 0 0 0 0 
  434 0 0 0 0 
  435 0 0 0 0 
  436 0 0 0 0 
  437 0 0 0 0 
  438 0 0 0 0 
  439 0 0 0 0 
  440 0 0 0 0 
  441 0 0 0 0 
  442 0 0 0 0 
  443 0 0 0 0 
  444 0 0 0 0 
  445 0 0 0 0 
  446 0 0 0 0 
  447 0 0 0 0 
  448 0 0 0 0 
  449 0 0 0 0 
  450 0 0 0 0 
  451 0 0 0 0 
  452 0 0 0 0 
  453 0 0 0 0 
  454 0 0 0 0 
  455 0 0 0 0 
  456 0 0 0 0 
  457 0 0 0 0 
  458 0 0 0 0 
  459 0 0 0 0 
  460 0 0 0 0 
  461 0 0 0 0 

  462 0 0 0 0 
  463 0 0 0 0 
  464 0 0 0 0 
  465 0 0 0 0 
  466 0 0 0 0 
  467 0 0 0 0 
  468 0 0 0 0 
  469 0 0 0 0 
  470 0 0 0 0 
  471 0 0 0 0 
  472 0 0 0 0 
  473 0 0 0 0 
  474 0 0 0 0 
  475 0 0 0 0 
  476 0 0 0 0 
  477 0 0 0 0 
  478 0 0 0 0 
  479 0 0 0 0 
  480 0 0 0 0 
  481 0 0 0 0 
  482 0 0 0 0 
  483 0 0 0 0 
  484 0 0 0 0 
  485 0 0 0 0 
  486 0 0 0 0 
  487 0 0 0 0 
  488 0 0 0 0 
  489 0 0 0 0 
  490 0 0 0 0 
  491 0 0 0 0 
  492 0 0 0 0 
  493 0 0 0 0 
  494 0 0 0 0 
  495 0 0 0 0 
  496 0 0 0 0 
  497 0 0 0 0 
  498 0 0 0 0 
  499 0 0 0 0 
  500 0 0 0 0 
  501 0 0 0 0 
  502 0 0 0 0 
  503 0 0 0 0 
  504 0 0 0 0 
  505 0 0 0 0 
  506 0 0 0 0 
  507 0 0 0 0 
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  508 0 0 0 0 
  509 0 0 0 0 
  510 0 0 0 0 
  511 0 0 0 0 
  512 0 0 0 0 
  513 0 0 0 0 
  514 0 0 0 0 
  515 0 0 0 0 
  516 0 0 0 0 
  517 0 0 0 0 
  518 0 0 0 0 
  519 0 0 0 0 
  520 0 0 0 0 
  521 0 0 0 0 
  522 0 0 0 0 
  523 0 0 0 0 
  524 0 0 0 0 
  525 0 0 0 0 
  526 0 0 0 0 
  527 0 0 0 0 
  528 0 0 0 0 
  529 0 0 0 0 
  530 0 0 0 0 
  531 0 0 0 0 
  532 0 0 0 0 
  533 0 0 0 0 
  534 0 0 0 0 
  535 0 0 0 0 
  536 0 0 0 0 
  537 0 0 0 0 
  538 0 0 0 0 
  539 0 0 0 0 
  540 0 0 0 0 
  541 0 0 0 0 
  542 0 0 0 0 
  543 0 0 0 0 
  544 0 0 0 0 
  545 0 0 0 0 
  546 0 0 0 0 
  547 0 0 0 0 
  548 0 0 0 0 
  549 0 0 0 0 
  550 0 0 0 0 
  551 0 0 0 0 
  552 0 0 0 0 
  553 0 0 0 0 

  554 0 0 0 0 
  555 0 0 0 0 
  556 0 0 0 0 
  557 0 0 0 0 
  558 0 0 0 0 
  559 0 0 0 0 
  560 0 0 0 0 
  561 0 0 0 0 
  562 0 0 0 0 
  563 0 0 0 0 
  564 0 0 0 0 
  565 0 0 0 0 
  566 0 0 0 0 
  567 0 0 0 0 
  568 0 0 0 0 
  569 0 0 0 0 
  570 0 0 0 0 
  571 0 0 0 0 
  572 0 0 0 0 
  573 0 0 0 0 
  574 0 0 0 0 
  575 0 0 0 0 
  576 0 0 0 0 
  577 0 0 0 0 
  578 0 0 0 0 
  579 0 0 0 0 
  580 0 0 0 0 
  581 0 0 0 0 
  582 0 0 0 0 
  583 0 0 0 0 
  584 0 0 0 0 
  585 0 0 0 0 
  586 0 0 0 0 
  587 0 0 0 0 
  588 0 0 0 0 
  589 0 0 0 0 
  590 0 0 0 0 
  591 0 0 0 0 
  592 0 0 0 0 
  593 0 0 0 0 
  594 0 0 0 0 
  595 0 0 0 0 
  596 0 0 0 0 
  597 0 0 0 0 
  598 0 0 0 0 
  599 0 0 0 0 

  600 0 0 0 0 
  601 0 0 0 0 
  602 0 0 0 0 
  603 0 0 0 0 
  604 0 0 0 0 
  605 0 0 0 0 
  606 0 0 0 0 
  607 0 0 0 0 
  608 0 0 0 0 
  609 0 0 0 0 
  610 0 0 0 0 
  611 0 0 0 0 
  612 0 0 0 0 
  613 0 0 0 0 
  614 0 0 0 0 
  615 0 0 0 0 
  616 0 0 0 0 
  617 0 0 0 0 
  618 0 0 0 0 
  619 0 0 0 0 
  620 0 0 0 0 
  621 0 0 0 0 
  622 0 0 0 0 
  623 0 0 0 0 
  624 0 0 0 0 
  625 0 0 0 0 
  626 0 0 0 0 
  627 0 0 0 0 
  628 0 0 0 0 
  629 0 0 0 0 
  630 0 0 0 0 
  631 0 0 0 0 
  632 0 0 0 0 
  633 0 0 0 0 
  634 0 0 0 0 
  635 0 0 0 0 
  636 0 0 0 0 
  637 0 0 0 0 
  638 0 0 0 0 
  639 0 0 0 0 
  640 0 0 0 0 
  641 0 0 0 0 
  642 0 0 0 0 
  643 0 0 0 0 
  644 0 0 0 0 
  645 0 0 0 0 
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  646 0 0 0 0 
  647 0 0 0 0 
  648 0 0 0 0 
  649 0 0 0 0 
  650 0 0 0 0 
  651 0 0 0 0 
  652 0 0 0 0 
  653 0 0 0 0 
  654 0 0 0 0 
  655 0 0 0 0 
  656 0 0 0 0 
  657 0 0 0 0 
  658 0 0 0 0 
  659 0 0 0 0 
  660 0 0 0 0 
  661 0 0 0 0 
  662 0 0 0 0 
  663 0 0 0 0 
  664 0 0 0 0 
  665 0 0 0 0 
  666 0 0 0 0 
  667 0 0 0 0 
  668 0 0 0 0 
  669 0 0 0 0 
  670 0 0 0 0 
  671 0 0 0 0 
  672 0 0 0 0 
  673 0 0 0 0 
  674 0 0 0 0 
  675 0 0 0 0 
  676 0 0 0 0 
  677 0 0 0 0 
  678 0 0 0 0 
  679 0 0 0 0 
  680 0 0 0 0 
  681 0 0 0 0 
  682 0 0 0 0 
  683 0 0 0 0 
  684 0 0 0 0 
  685 0 0 0 0 
  686 0 0 0 0 
  687 0 0 0 0 
  688 0 0 0 0 
  689 0 0 0 0 
  690 0 0 0 0 
  691 0 0 0 0 

  692 0 0 0 0 
  693 0 0 0 0 
  694 0 0 0 0 
  695 0 0 0 0 
  696 0 0 0 0 
  697 0 0 0 0 
  698 0 0 0 0 
  699 0 0 0 0 
  700 0 0 0 0 
  701 0 0 0 0 
  702 0 0 0 0 
  703 0 0 0 0 
  704 0 0 0 0 
  705 0 0 0 0 
  706 0 0 0 0 
  707 0 0 0 0 
  708 0 0 0 0 
  709 0 0 0 0 
  710 0 0 0 0 
  711 0 0 0 0 
  712 0 0 0 0 
  713 0 0 0 0 
  714 0 0 0 0 
  715 0 0 0 0 
  716 0 0 0 0 
  717 0 0 0 0 
  718 0 0 0 0 
  719 0 0 0 0 
  720 0 0 0 0 
  721 0 0 0 0 
  722 0 0 0 0 
  723 0 0 0 0 
  724 0 0 0 0 
  725 0 0 0 0 
  726 0 0 0 0 
  727 0 0 0 0 
  728 0 0 0 0 
  729 0 0 0 0 
  730 0 0 0 0 
  731 0 0 0 0 
  732 0 0 0 0 
  733 0 0 0 0 
  734 0 0 0 0 
  735 0 0 0 0 
  736 0 0 0 0 
  737 0 0 0 0 

  738 0 0 0 0 
  739 0 0 0 0 
  740 0 0 0 0 
  741 0 0 0 0 
  742 0 0 0 0 
  743 0 0 0 0 
  744 0 0 0 0 
  745 0 0 0 0 
  746 0 0 0 0 
  747 0 0 0 0 
  748 0 0 0 0 
  749 0 0 0 0 
  750 0 0 0 0 
  751 0 0 0 0 
  752 0 0 0 0 
  753 0 0 0 0 
  754 0 0 0 0 
  755 0 0 0 0 
  756 0 0 0 0 
  757 0 0 0 0 
  758 0 0 0 0 
  759 0 0 0 0 
  760 0 0 0 0 
  761 0 0 0 0 
  762 0 0 0 0 
  763 0 0 0 0 
  764 0 0 0 0 
  765 0 0 0 0 
  766 0 0 0 0 
  767 0 0 0 0 
  768 0 0 0 0 
  769 0 0 0 0 
  770 0 0 0 0 
  771 0 0 0 0 
  772 0 0 0 0 
  773 0 0 0 0 
  774 0 0 0 0 
  775 0 0 0 0 
  776 0 0 0 0 
  777 0 0 0 0 
  778 0 0 0 0 
  779 0 0 0 0 
  780 0 0 0 0 
  781 0 0 0 0 
  782 0 0 0 0 
  783 0 0 0 0 
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  784 0 0 0 0 
  785 0 0 0 0 
  786 0 0 0 0 
  787 0 0 0 0 
  788 0 0 0 0 
  789 0 0 0 0 
  790 0 0 0 0 
  791 0 0 0 0 
  792 0 0 0 0 
  793 0 0 0 0 
  794 0 0 0 0 
  795 0 0 0 0 
  796 0 0 0 0 

  797 0 0 0 0 
  798 0 0 0 0 
  799 0 0 0 0 
  800 0 0 0 0 
  801 0 0 0 0 
  802 0 0 0 0 
  803 0 0 0 0 
  804 0 0 0 0 
  805 0 0 0 0 
  806 0 0 0 0 
  807 0 0 0 0 
  808 0 0 0 0 
  809 0 0 0 0 

  810 0 0 0 0 
  811 0 0 0 0 
  812 0 0 0 0 
  813 0 0 0 0 
  814 0 0 0 0 
  815 0 0 0 0 
  816 0 0 0 0 
  817 0 0 0 0 
  818 0 0 0 0 
  819 0 0 0 0 
  820 0 0 0 0 

 
! ANGLe nodal boundary conditions. 
! see pp 44, 213, 219. 
ANGLe 
1 0 9.00E+01 
2 0 9.00E+01 
3 0 9.00E+01 
4 0 9.00E+01 
5 0 9.00E+01 
6 0 9.00E+01 
7 0 9.00E+01 
8 0 9.00E+01 
9 0 9.00E+01 
10 0 9.00E+01 
11 0 9.00E+01 
12 0 9.00E+01 
13 0 9.00E+01 
14 0 9.00E+01 
15 0 9.00E+01 
16 0 9.00E+01 
17 0 9.00E+01 
18 0 9.00E+01 
19 0 9.00E+01 
20 0 9.00E+01 
21 0 9.00E+01 
22 0 9.00E+01 
23 0 9.00E+01 
24 0 9.00E+01 
25 0 9.00E+01 
26 0 9.00E+01 
27 0 9.00E+01 
28 0 9.00E+01 
29 0 9.00E+01 

30 0 9.00E+01 
31 0 9.00E+01 
32 0 9.00E+01 
33 0 9.00E+01 
34 0 9.00E+01 
35 0 9.00E+01 
36 0 9.00E+01 
37 0 9.00E+01 
38 0 9.00E+01 
39 0 9.00E+01 
40 0 9.00E+01 
41 0 9.00E+01 
42 0 9.00E+01 
43 0 9.00E+01 
44 0 9.00E+01 
45 0 9.00E+01 
46 0 9.00E+01 
47 0 9.00E+01 
48 0 9.00E+01 
49 0 9.00E+01 
50 0 9.00E+01 
51 0 9.00E+01 
52 0 9.00E+01 
53 0 9.00E+01 
54 0 9.00E+01 
55 0 9.00E+01 
56 0 9.00E+01 
57 0 9.00E+01 
58 0 9.00E+01 

59 0 9.00E+01 
60 0 9.00E+01 
61 0 9.00E+01 
62 0 9.00E+01 
63 0 9.00E+01 
64 0 9.00E+01 
65 0 9.00E+01 
66 0 9.00E+01 
67 0 9.00E+01 
68 0 9.00E+01 
69 0 9.00E+01 
70 0 9.00E+01 
71 0 9.00E+01 
72 0 9.00E+01 
73 0 9.00E+01 
74 0 9.00E+01 
75 0 9.00E+01 
76 0 9.00E+01 
77 0 9.00E+01 
78 0 9.00E+01 
79 0 9.00E+01 
80 0 9.00E+01 
81 0 9.00E+01 
82 0 9.00E+01 
83 0 9.00E+01 
84 0 9.00E+01 
85 0 9.00E+01 
86 0 9.00E+01 
87 0 9.00E+01 
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88 0 9.00E+01 
89 0 9.00E+01 
90 0 9.00E+01 
91 0 9.00E+01 
92 0 9.00E+01 
93 0 9.00E+01 
94 0 9.00E+01 
95 0 9.00E+01 
96 0 9.00E+01 
97 0 9.00E+01 
98 0 9.00E+01 
99 0 9.00E+01 
100 0 9.00E+01 
101 0 9.00E+01 
102 0 9.00E+01 
103 0 9.00E+01 
104 0 9.00E+01 
105 0 9.00E+01 
106 0 9.00E+01 
107 0 9.00E+01 
108 0 9.00E+01 
109 0 9.00E+01 
110 0 9.00E+01 
111 0 9.00E+01 
112 0 9.00E+01 
113 0 9.00E+01 
114 0 9.00E+01 
115 0 9.00E+01 
116 0 9.00E+01 
117 0 9.00E+01 
118 0 9.00E+01 
119 0 9.00E+01 
120 0 9.00E+01 
121 0 9.00E+01 
122 0 9.00E+01 
123 0 9.00E+01 
124 0 9.00E+01 
125 0 9.00E+01 
126 0 9.00E+01 
127 0 9.00E+01 
128 0 9.00E+01 
129 0 9.00E+01 
130 0 9.00E+01 
131 0 9.00E+01 
132 0 9.00E+01 
133 0 9.00E+01 

134 0 9.00E+01 
135 0 9.00E+01 
136 0 9.00E+01 
137 0 9.00E+01 
138 0 9.00E+01 
139 0 9.00E+01 
140 0 9.00E+01 
141 0 9.00E+01 
142 0 9.00E+01 
143 0 9.00E+01 
144 0 9.00E+01 
145 0 9.00E+01 
146 0 9.00E+01 
147 0 9.00E+01 
148 0 9.00E+01 
149 0 9.00E+01 
150 0 9.00E+01 
151 0 9.00E+01 
152 0 9.00E+01 
153 0 9.00E+01 
154 0 9.00E+01 
155 0 9.00E+01 
156 0 9.00E+01 
157 0 9.00E+01 
158 0 9.00E+01 
159 0 9.00E+01 
160 0 9.00E+01 
161 0 9.00E+01 
162 0 9.00E+01 
163 0 9.00E+01 
164 0 9.00E+01 
165 0 9.00E+01 
166 0 9.00E+01 
167 0 9.00E+01 
168 0 9.00E+01 
169 0 9.00E+01 
170 0 9.00E+01 
171 0 9.00E+01 
172 0 9.00E+01 
173 0 9.00E+01 
174 0 9.00E+01 
175 0 9.00E+01 
176 0 9.00E+01 
177 0 9.00E+01 
178 0 9.00E+01 
179 0 9.00E+01 

180 0 9.00E+01 
181 0 9.00E+01 
182 0 9.00E+01 
183 0 9.00E+01 
184 0 9.00E+01 
185 0 9.00E+01 
186 0 9.00E+01 
187 0 9.00E+01 
188 0 9.00E+01 
189 0 9.00E+01 
190 0 9.00E+01 
191 0 9.00E+01 
192 0 9.00E+01 
193 0 9.00E+01 
194 0 9.00E+01 
195 0 9.00E+01 
196 0 9.00E+01 
197 0 9.00E+01 
198 0 9.00E+01 
199 0 9.00E+01 
200 0 9.00E+01 
201 0 9.00E+01 
202 0 9.00E+01 
203 0 9.00E+01 
204 0 9.00E+01 
205 0 9.00E+01 
206 0 9.00E+01 
207 0 9.00E+01 
208 0 9.00E+01 
209 0 9.00E+01 
210 0 9.00E+01 
211 0 9.00E+01 
212 0 9.00E+01 
213 0 9.00E+01 
214 0 9.00E+01 
215 0 9.00E+01 
216 0 9.00E+01 
217 0 9.00E+01 
218 0 9.00E+01 
219 0 9.00E+01 
220 0 9.00E+01 
221 0 9.00E+01 
222 0 9.00E+01 
223 0 9.00E+01 
224 0 9.00E+01 
225 0 9.00E+01 
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226 0 9.00E+01 
227 0 9.00E+01 
228 0 9.00E+01 
229 0 9.00E+01 
230 0 9.00E+01 
231 0 9.00E+01 
232 0 9.00E+01 
233 0 9.00E+01 
234 0 9.00E+01 
235 0 9.00E+01 
236 0 9.00E+01 
237 0 9.00E+01 
238 0 9.00E+01 
239 0 9.00E+01 
240 0 9.00E+01 
241 0 9.00E+01 
242 0 9.00E+01 
243 0 9.00E+01 
244 0 9.00E+01 
245 0 9.00E+01 
246 0 9.00E+01 
247 0 9.00E+01 
248 0 9.00E+01 
249 0 9.00E+01 
250 0 9.00E+01 
251 0 9.00E+01 
252 0 9.00E+01 
253 0 9.00E+01 
254 0 9.00E+01 
255 0 9.00E+01 
256 0 9.00E+01 
257 0 9.00E+01 
258 0 9.00E+01 
259 0 9.00E+01 
260 0 9.00E+01 
261 0 9.00E+01 
262 0 9.00E+01 
263 0 9.00E+01 
264 0 9.00E+01 
265 0 9.00E+01 
266 0 9.00E+01 
267 0 9.00E+01 
268 0 9.00E+01 
269 0 9.00E+01 
270 0 9.00E+01 
271 0 9.00E+01 

272 0 9.00E+01 
273 0 9.00E+01 
274 0 9.00E+01 
275 0 9.00E+01 
276 0 9.00E+01 
277 0 9.00E+01 
278 0 9.00E+01 
279 0 9.00E+01 
280 0 9.00E+01 
281 0 9.00E+01 
282 0 9.00E+01 
283 0 9.00E+01 
284 0 9.00E+01 
285 0 9.00E+01 
286 0 9.00E+01 
287 0 9.00E+01 
288 0 9.00E+01 
289 0 9.00E+01 
290 0 9.00E+01 
291 0 9.00E+01 
292 0 9.00E+01 
293 0 9.00E+01 
294 0 9.00E+01 
295 0 9.00E+01 
296 0 9.00E+01 
297 0 9.00E+01 
298 0 9.00E+01 
299 0 9.00E+01 
300 0 9.00E+01 
301 0 9.00E+01 
302 0 9.00E+01 
303 0 9.00E+01 
304 0 9.00E+01 
305 0 9.00E+01 
306 0 9.00E+01 
307 0 9.00E+01 
308 0 9.00E+01 
309 0 9.00E+01 
310 0 9.00E+01 
311 0 9.00E+01 
312 0 9.00E+01 
313 0 9.00E+01 
314 0 9.00E+01 
315 0 9.00E+01 
316 0 9.00E+01 
317 0 9.00E+01 

318 0 9.00E+01 
319 0 9.00E+01 
320 0 9.00E+01 
321 0 9.00E+01 
322 0 9.00E+01 
323 0 9.00E+01 
324 0 9.00E+01 
325 0 9.00E+01 
326 0 9.00E+01 
327 0 9.00E+01 
328 0 9.00E+01 
329 0 9.00E+01 
330 0 9.00E+01 
331 0 9.00E+01 
332 0 9.00E+01 
333 0 9.00E+01 
334 0 9.00E+01 
335 0 9.00E+01 
336 0 9.00E+01 
337 0 9.00E+01 
338 0 9.00E+01 
339 0 9.00E+01 
340 0 9.00E+01 
341 0 9.00E+01 
342 0 9.00E+01 
343 0 9.00E+01 
344 0 9.00E+01 
345 0 9.00E+01 
346 0 9.00E+01 
347 0 9.00E+01 
348 0 9.00E+01 
349 0 9.00E+01 
350 0 9.00E+01 
351 0 9.00E+01 
352 0 9.00E+01 
353 0 9.00E+01 
354 0 9.00E+01 
355 0 9.00E+01 
356 0 9.00E+01 
357 0 9.00E+01 
358 0 9.00E+01 
359 0 9.00E+01 
360 0 9.00E+01 
361 0 9.00E+01 
362 0 9.00E+01 
363 0 9.00E+01 
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364 0 9.00E+01 
365 0 9.00E+01 
366 0 9.00E+01 
367 0 9.00E+01 
368 0 9.00E+01 
369 0 9.00E+01 
370 0 9.00E+01 
371 0 9.00E+01 
372 0 9.00E+01 
373 0 9.00E+01 
374 0 9.00E+01 
375 0 9.00E+01 
376 0 9.00E+01 
377 0 9.00E+01 
378 0 9.00E+01 
379 0 9.00E+01 
380 0 9.00E+01 
381 0 9.00E+01 
382 0 9.00E+01 
383 0 9.00E+01 
384 0 9.00E+01 
385 0 9.00E+01 
386 0 9.00E+01 
387 0 9.00E+01 
388 0 9.00E+01 
389 0 9.00E+01 
390 0 9.00E+01 
391 0 9.00E+01 
392 0 9.00E+01 
393 0 9.00E+01 
394 0 9.00E+01 
395 0 9.00E+01 
396 0 9.00E+01 
397 0 9.00E+01 
398 0 9.00E+01 
399 0 9.00E+01 
400 0 9.00E+01 
401 0 9.00E+01 
402 0 9.00E+01 
403 0 9.00E+01 
404 0 9.00E+01 
405 0 9.00E+01 
406 0 9.00E+01 
407 0 9.00E+01 
408 0 9.00E+01 
409 0 9.00E+01 

410 0 9.00E+01 
411 0 8.64E+01 
412 0 8.64E+01 
413 0 8.64E+01 
414 0 8.64E+01 
415 0 8.64E+01 
416 0 8.64E+01 
417 0 8.64E+01 
418 0 8.64E+01 
419 0 8.64E+01 
420 0 8.64E+01 
421 0 8.64E+01 
422 0 8.64E+01 
423 0 8.64E+01 
424 0 8.64E+01 
425 0 8.64E+01 
426 0 8.64E+01 
427 0 8.64E+01 
428 0 8.64E+01 
429 0 8.64E+01 
430 0 8.64E+01 
431 0 8.64E+01 
432 0 8.64E+01 
433 0 8.64E+01 
434 0 8.64E+01 
435 0 8.64E+01 
436 0 8.64E+01 
437 0 8.64E+01 
438 0 8.64E+01 
439 0 8.64E+01 
440 0 8.64E+01 
441 0 8.64E+01 
442 0 8.64E+01 
443 0 8.64E+01 
444 0 8.64E+01 
445 0 8.64E+01 
446 0 8.64E+01 
447 0 8.64E+01 
448 0 8.64E+01 
449 0 8.64E+01 
450 0 8.64E+01 
451 0 8.64E+01 
452 0 8.64E+01 
453 0 8.64E+01 
454 0 8.64E+01 
455 0 8.64E+01 

456 0 8.64E+01 
457 0 8.64E+01 
458 0 8.64E+01 
459 0 8.64E+01 
460 0 8.64E+01 
461 0 8.64E+01 
462 0 8.64E+01 
463 0 8.64E+01 
464 0 8.64E+01 
465 0 8.64E+01 
466 0 8.64E+01 
467 0 8.64E+01 
468 0 8.64E+01 
469 0 8.64E+01 
470 0 8.64E+01 
471 0 8.64E+01 
472 0 8.64E+01 
473 0 8.64E+01 
474 0 8.64E+01 
475 0 8.64E+01 
476 0 8.64E+01 
477 0 8.64E+01 
478 0 8.64E+01 
479 0 8.64E+01 
480 0 8.64E+01 
481 0 8.64E+01 
482 0 8.64E+01 
483 0 8.64E+01 
484 0 8.64E+01 
485 0 8.64E+01 
486 0 8.64E+01 
487 0 8.64E+01 
488 0 8.64E+01 
489 0 8.64E+01 
490 0 8.64E+01 
491 0 8.64E+01 
492 0 8.64E+01 
493 0 8.64E+01 
494 0 8.64E+01 
495 0 8.64E+01 
496 0 8.64E+01 
497 0 8.64E+01 
498 0 8.64E+01 
499 0 8.64E+01 
500 0 8.64E+01 
501 0 8.64E+01 
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502 0 8.64E+01 
503 0 8.64E+01 
504 0 8.64E+01 
505 0 8.64E+01 
506 0 8.64E+01 
507 0 8.64E+01 
508 0 8.64E+01 
509 0 8.64E+01 
510 0 8.64E+01 
511 0 8.64E+01 
512 0 8.64E+01 
513 0 8.64E+01 
514 0 8.64E+01 
515 0 8.64E+01 
516 0 8.64E+01 
517 0 8.64E+01 
518 0 8.64E+01 
519 0 8.64E+01 
520 0 8.64E+01 
521 0 8.64E+01 
522 0 8.64E+01 
523 0 8.64E+01 
524 0 8.64E+01 
525 0 8.64E+01 
526 0 8.64E+01 
527 0 8.64E+01 
528 0 8.64E+01 
529 0 8.64E+01 
530 0 8.64E+01 
531 0 8.64E+01 
532 0 8.64E+01 
533 0 8.64E+01 
534 0 8.64E+01 
535 0 8.64E+01 
536 0 8.64E+01 
537 0 8.64E+01 
538 0 8.64E+01 
539 0 8.64E+01 
540 0 8.64E+01 
541 0 8.64E+01 
542 0 8.64E+01 
543 0 8.64E+01 
544 0 8.64E+01 
545 0 8.64E+01 
546 0 8.64E+01 
547 0 8.64E+01 

548 0 8.64E+01 
549 0 8.64E+01 
550 0 8.64E+01 
551 0 8.64E+01 
552 0 8.64E+01 
553 0 8.64E+01 
554 0 8.64E+01 
555 0 8.64E+01 
556 0 8.64E+01 
557 0 8.64E+01 
558 0 8.64E+01 
559 0 8.64E+01 
560 0 8.64E+01 
561 0 8.64E+01 
562 0 8.64E+01 
563 0 8.64E+01 
564 0 8.64E+01 
565 0 8.64E+01 
566 0 8.64E+01 
567 0 8.64E+01 
568 0 8.64E+01 
569 0 8.64E+01 
570 0 8.64E+01 
571 0 8.64E+01 
572 0 8.64E+01 
573 0 8.64E+01 
574 0 8.64E+01 
575 0 8.64E+01 
576 0 8.64E+01 
577 0 8.64E+01 
578 0 8.64E+01 
579 0 8.64E+01 
580 0 8.64E+01 
581 0 8.64E+01 
582 0 8.64E+01 
583 0 8.64E+01 
584 0 8.64E+01 
585 0 8.64E+01 
586 0 8.64E+01 
587 0 8.64E+01 
588 0 8.64E+01 
589 0 8.64E+01 
590 0 8.64E+01 
591 0 8.64E+01 
592 0 8.64E+01 
593 0 8.64E+01 

594 0 8.64E+01 
595 0 8.64E+01 
596 0 8.64E+01 
597 0 8.64E+01 
598 0 8.64E+01 
599 0 8.64E+01 
600 0 8.64E+01 
601 0 8.64E+01 
602 0 8.64E+01 
603 0 8.64E+01 
604 0 8.64E+01 
605 0 8.64E+01 
606 0 8.64E+01 
607 0 8.64E+01 
608 0 8.64E+01 
609 0 8.64E+01 
610 0 8.64E+01 
611 0 8.64E+01 
612 0 8.64E+01 
613 0 8.64E+01 
614 0 8.64E+01 
615 0 8.64E+01 
616 0 8.64E+01 
617 0 8.64E+01 
618 0 8.64E+01 
619 0 8.64E+01 
620 0 8.64E+01 
621 0 8.64E+01 
622 0 8.64E+01 
623 0 8.64E+01 
624 0 8.64E+01 
625 0 8.64E+01 
626 0 8.64E+01 
627 0 8.64E+01 
628 0 8.64E+01 
629 0 8.64E+01 
630 0 8.64E+01 
631 0 8.64E+01 
632 0 8.64E+01 
633 0 8.64E+01 
634 0 8.64E+01 
635 0 8.64E+01 
636 0 8.64E+01 
637 0 8.64E+01 
638 0 8.64E+01 
639 0 8.64E+01 
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640 0 8.64E+01 
641 0 8.64E+01 
642 0 8.64E+01 
643 0 8.64E+01 
644 0 8.64E+01 
645 0 8.64E+01 
646 0 8.64E+01 
647 0 8.64E+01 
648 0 8.64E+01 
649 0 8.64E+01 
650 0 8.64E+01 
651 0 8.64E+01 
652 0 8.64E+01 
653 0 8.64E+01 
654 0 8.64E+01 
655 0 8.64E+01 
656 0 8.64E+01 
657 0 8.64E+01 
658 0 8.64E+01 
659 0 8.64E+01 
660 0 8.64E+01 
661 0 8.64E+01 
662 0 8.64E+01 
663 0 8.64E+01 
664 0 8.64E+01 
665 0 8.64E+01 
666 0 8.64E+01 
667 0 8.64E+01 
668 0 8.64E+01 
669 0 8.64E+01 
670 0 8.64E+01 
671 0 8.64E+01 
672 0 8.64E+01 
673 0 8.64E+01 
674 0 8.64E+01 
675 0 8.64E+01 
676 0 8.64E+01 
677 0 8.64E+01 
678 0 8.64E+01 
679 0 8.64E+01 
680 0 8.64E+01 
681 0 8.64E+01 
682 0 8.64E+01 
683 0 8.64E+01 
684 0 8.64E+01 
685 0 8.64E+01 

686 0 8.64E+01 
687 0 8.64E+01 
688 0 8.64E+01 
689 0 8.64E+01 
690 0 8.64E+01 
691 0 8.64E+01 
692 0 8.64E+01 
693 0 8.64E+01 
694 0 8.64E+01 
695 0 8.64E+01 
696 0 8.64E+01 
697 0 8.64E+01 
698 0 8.64E+01 
699 0 8.64E+01 
700 0 8.64E+01 
701 0 8.64E+01 
702 0 8.64E+01 
703 0 8.64E+01 
704 0 8.64E+01 
705 0 8.64E+01 
706 0 8.64E+01 
707 0 8.64E+01 
708 0 8.64E+01 
709 0 8.64E+01 
710 0 8.64E+01 
711 0 8.64E+01 
712 0 8.64E+01 
713 0 8.64E+01 
714 0 8.64E+01 
715 0 8.64E+01 
716 0 8.64E+01 
717 0 8.64E+01 
718 0 8.64E+01 
719 0 8.64E+01 
720 0 8.64E+01 
721 0 8.64E+01 
722 0 8.64E+01 
723 0 8.64E+01 
724 0 8.64E+01 
725 0 8.64E+01 
726 0 8.64E+01 
727 0 8.64E+01 
728 0 8.64E+01 
729 0 8.64E+01 
730 0 8.64E+01 
731 0 8.64E+01 

732 0 8.64E+01 
733 0 8.64E+01 
734 0 8.64E+01 
735 0 8.64E+01 
736 0 8.64E+01 
737 0 8.64E+01 
738 0 8.64E+01 
739 0 8.64E+01 
740 0 8.64E+01 
741 0 8.64E+01 
742 0 8.64E+01 
743 0 8.64E+01 
744 0 8.64E+01 
745 0 8.64E+01 
746 0 8.64E+01 
747 0 8.64E+01 
748 0 8.64E+01 
749 0 8.64E+01 
750 0 8.64E+01 
751 0 8.64E+01 
752 0 8.64E+01 
753 0 8.64E+01 
754 0 8.64E+01 
755 0 8.64E+01 
756 0 8.64E+01 
757 0 8.64E+01 
758 0 8.64E+01 
759 0 8.64E+01 
760 0 8.64E+01 
761 0 8.64E+01 
762 0 8.64E+01 
763 0 8.64E+01 
764 0 8.64E+01 
765 0 8.64E+01 
766 0 8.64E+01 
767 0 8.64E+01 
768 0 8.64E+01 
769 0 8.64E+01 
770 0 8.64E+01 
771 0 8.64E+01 
772 0 8.64E+01 
773 0 8.64E+01 
774 0 8.64E+01 
775 0 8.64E+01 
776 0 8.64E+01 
777 0 8.64E+01 
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778 0 8.64E+01 
779 0 8.64E+01 
780 0 8.64E+01 
781 0 8.64E+01 
782 0 8.64E+01 
783 0 8.64E+01 
784 0 8.64E+01 
785 0 8.64E+01 
786 0 8.64E+01 
787 0 8.64E+01 
788 0 8.64E+01 
789 0 8.64E+01 
790 0 8.64E+01 
791 0 8.64E+01 
792 0 8.64E+01 

793 0 8.64E+01 
794 0 8.64E+01 
795 0 8.64E+01 
796 0 8.64E+01 
797 0 8.64E+01 
798 0 8.64E+01 
799 0 8.64E+01 
800 0 8.64E+01 
801 0 8.64E+01 
802 0 8.64E+01 
803 0 8.64E+01 
804 0 8.64E+01 
805 0 8.64E+01 
806 0 8.64E+01 
807 0 8.64E+01 

808 0 8.64E+01 
809 0 8.64E+01 
810 0 8.64E+01 
811 0 8.64E+01 
812 0 8.64E+01 
813 0 8.64E+01 
814 0 8.64E+01 
815 0 8.64E+01 
816 0 8.64E+01 
817 0 8.64E+01 
818 0 8.64E+01 
819 0 8.64E+01 
820 0 8.64E+01 

 
end 
 
!INTER 
BATCh 
 LIST,,1 
END 
1,10,401,410 
 
! BATCh specify some solution steps (pg. 137) 
BATCh 
 
! ! PLOT deformations in the x_i direction where i = 1. 
! plot,defo,1 
! 
!  ! PLOT using 3D PERSpective view with inew  = 1 for use of old parameters (pg. 496). 
! plot,pers,1 
 
 ! PROPortional load command (pg. 148) 
 ! Input a proportional load with ramp loading. 
 ! NOT BEING USED FOR ARTERY 
 !prop,,1 
 
 ! The value for a time increment (pg. 141) 
 dt,,1.0 
 
 ! Perform check of mesh correctness (pg. 139) 
 check 
 
 ! Repeated execution of solution commands (pg. 144) 
 !  
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 loop time 600 
 
  ! We can have it continue to solve for as long as we want (pg. 154) 
  time,,0.0 
 
  ! Set the convergence tolerace (pg. 155) 
  tol,,1.0e-5 
 
  ! Use this many Newton-Raphson iterations 
  loop newton 100 
 
   ! UTANgent matrix command (pg. 159) 
   ! Permits a non-symmetric tanget array 
   ! results in the computation of a tangent array 
   utan,,1 
 
!   ! Clear the PLOT screen (pg. 198) 
!   plot,wipe 
! 
!   ! Hides interior surfaces (pg. 204) 
!   plot,hide 
! 
!   ! PLOT deformations 
!   plot,defo 
! 
!   ! PLOT mesh 
!   plot,mesh 
! 
!   ! Show filled plots 
!   plot,fill 
! 
!   ! Show axes 
!   plot,axis 
! 
!   ! Plot CONTours for dof 3 
!   plot,cont,1 
  next newton 
 
  ! Output all displacements and stresses. 
  disp,LIST,1 
  !stre,all 
  !stre,node,1,10660 
  !grdt 
 next 
 
 ! End the time loop 
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 end 
! End the batch job 
END 
 
Stop 
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APPENDIX B 
 

 
 

 
COMPARISON OF MODEL OUTPUTS FOR HOMEOSTATIC, BASELINE, AND 2X 

ELASTIN PRODUCTION MODELS  
 

 
 
 

The following describes the changes in mass and mass production rates of the 

constituents of the AAA G&R models (elastin, collagen, and smooth muscle) used in Figures 

44-48. All constituent and active stress time history plots are shown for the medial layer as the 

adventitial layer contains no smooth muscle and a small amount of elastin.  

The amount of each constituent depends on the survival of the original and any 

subsequently produced material and how much material is produced. The decay constant for 

collagen and smooth muscle scales with deviations of tension with respect to the tension of the 

constituent at its depositional prestretch (i.e. the removal is faster at higher tensions and lower 

and slower at lower tensions). The production rate for collagen and smooth muscle scales with 

deviations from a homeostatic stress (i.e. larger stresses lead to a net production of material and 

smaller stresses lead to a net removal of material). Active stress scales with both the relative 

amount of smooth muscle compared to the total amount of material and the stretch of the smooth 

muscle (i.e. larger stretches produces higher active stresses). Elastin decays at a constant rate 

unless noted otherwise. 

Homeostasis model: This model has no step loss in elastin, collagen, or smooth muscle. 

The net mass production rates for collagen and smooth muscle follow the stress based mass 
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production rules. The net mass production for elastin is modeled by exponential decay with a 40 

year half-life.  

Baseline model: This model has a step loss in elastin (~65%), collagen (~3.5%), and 

smooth muscle (~3.5%) at the start of the model. After this step loss, the net mass production 

rates for collagen and smooth muscle follow the stress based mass production rules, and the net 

mass production for elastin is modeled by exponential decay with a 40 year half-life. 

2x elastin production model: This model has a step loss in elastin (~65%), collagen 

(~3.5%), and smooth muscle (~3.5%) at the start of the model. After this step loss, the net mass 

production rates for collagen and smooth muscle follow the stress based mass production rules, 

and the net mass production for elastin is modeled by exponential decay with a 40 year half-life 

up until a 30% increase in the outer diameter of the vessel (~8.6 years simulation time). Up until 

this intervention point, this model is exactly the same as the baseline model. At the intervention 

time point, elastin decay goes to zero, and new elastin is added to the remaining elastin at a rate 

of 1.350 µg/mm3/2 weeks.  
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Figure 44. Diameters of computation models of AAA G&R. A homeostatic model was created that shows little 
change in inner and outer aortic diameters (blue). The baseline model of AAA G&R is shown in red. The model of 
AAA G&R with 2x elastin production at 30% increase in baseline outer diameter is shown in green. Diameter (mm) 
is on the y-axis. Model simulation time is shown on the x-axis. 
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Description of diameter plot (Figure 44): 

The homeostasis model (shown in blue) maintains the vessel geometry while 

experiencing the gradual loss in elastin. This is likely due to increases in the amount of collagen, 

smooth muscle, and the active generation of stress.  

In the baseline (shown in red) and 2x elastin production (shown in green) models prior to 

the elastogenic intervention, the large decrease in elastin and small decreases in collagen and 

smooth muscle do not initially change the diameter. This can be attributed to the stiffness of the 

remaining collagen (in both the media and adventitia) and active stress generated by smooth 

muscle. The luminal expansion starts at approximately one year (after approximately 5 collagen 

half-lives when only about ~3% of the original collagen has survived from the start of the model)   

when the continued loss of highly prestretched elastin, coupled with continued small losses in 

collagen and smooth muscle have diminished the ability to actively maintain inner radius due to 

substantial increased circumferential passive stiffening. In the baseline model, the diameter 

continues to increase.  

Once we introduce the elastogenic intervention, this addition of prestretched elastin 

immediately begins to change the rate of growth of the AAA in part because of the prestretch 

and in part due to the increases in mass in all of the wall constituents. 
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Figure 45. Medial ratio of remaining elastin to initial elastin within computation models of AAA G&R. The 
homeostatic model is shown in blue. The baseline model of AAA G&R is shown in red. The model of AAA G&R 
with 2x elastin production at 30% increase in baseline outer diameter is shown in green. Ratio of elastin to initial 
elastin is on the y-axis. Model simulation time is shown on the x-axis. 
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Description of elastin plot (Figure 45): 

The homeostasis model (shown in blue) loses elastin at a rate modeled by exponential 

decay with a 40 year half-life. 

In the baseline (shown in red) and 2x elastin production (shown in green) models prior to 

the elastogenic intervention, there is a step loss of elastin at the beginning of the model of ~65%. 

After the initial step loss, the remaining elastin is lost at a rate modeled by exponential decay 

with a 40 year half-life).  

In the 2x elastin production model at the intervention time point, elastin decay goes to 

zero and new elastin is added to the remaining elastin at a rate of 1.350 µg/mm3/2 weeks. 

 

 



 237 

 

Figure 46. Medial ratio of remaining collagen to initial collagen within computation models of AAA G&R. 
The homeostatic model is shown in blue. The baseline model of AAA G&R is shown in red. The model of AAA 
G&R with 2x elastin production at 30% increase in baseline outer diameter is shown in green. Ratio of collagen to 
initial collagen is on the y-axis. Model simulation time is shown on the x-axis. 
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Description of collagen plot (Figure 46): 

The homeostasis model (shown in blue) slowly adds collagen as elastin is slowly 

degraded. This addition helps to maintain the vessel geometry.  

In the baseline (shown in red) and 2x elastin production (shown in green) models prior to 

the elastogenic intervention, there is a small step loss of collagen at the beginning of the model 

of ~3.5%. After the initial step loss, collagen continues to decrease in the media (due to a shift of 

stress from the media to the adventitia) before maintaining a constant level until approximately 8 

years simulation time where accelerated removal due to higher tensions is balancing higher 

production rates due to higher stresses. After this point in the baseline model the increase in 

tension has become so large that collagen production is unable to compensate, and the collagen is 

removed again until the end of the simulation.  

In the 2x elastin production model at the intervention time point, increasing elastin is 

associated with an increase in the amount of collagen produced. This is due to the elastin 

lowering the tension on the collagen and thus reducing the collagen decay constant. The system 

then returns to a balance between the removal of old collagen and the production of new 

collagen. 
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Figure 47. Medial ratio of remaining smooth muscle to initial smooth muscle within computation models of 
AAA G&R. The homeostatic model is shown in blue. The baseline model of AAA G&R is shown in red. The model 
of AAA G&R with 2x elastin production at 30% increase in baseline outer diameter is shown in green. Ratio of 
smooth muscle to initial smooth muscle is on the y-axis. Model simulation time is shown on the x-axis. 
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Description of smooth muscle plot (Figure 47): 

The homeostasis model (shown in blue) slowly adds smooth muscle as elastin is slowly 

degraded. This addition helps to maintain the vessel geometry.  

In the baseline (shown in red) and 2x elastin production (shown in green) models prior to 

the elastogenic intervention, there is a small step loss of smooth muscle at the beginning of the 

model of ~3.5%. After the initial step loss, smooth muscle continues to decrease in the media 

(due to a shift of stress from the media to the adventitia) before maintaining a constant level until 

approximately 10 years simulation time where accelerated removal due to higher tensions is 

balancing higher production rates due to higher stresses. After this point in the baseline model 

the increase in tension has become so large that smooth muscle production is unable to 

compensate, and the smooth muscle is removed again until the end of the simulation. 

In the 2x elastin production model at the intervention time point, increasing elastin is 

associated with maintenance of the amount of smooth muscle. This is due to the elastin lowering 

the tension on the smooth muscle and thus reducing the smooth muscle decay constant. The 

system then returns to a balance between the removal of old smooth muscle and the production 

of new smooth muscle. 
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Figure 48. Medial ratio of smooth muscle active stress to initial smooth muscle active stress within 
computation models of AAA G&R. The homeostatic model is shown in blue. The baseline model of AAA G&R is 
shown in red. The model of AAA G&R with 2x elastin production at 30% increase in baseline outer diameter is 
shown in green. Ratio of smooth muscle active stress to initial smooth muscle active is on the y-axis. Model 
simulation time is shown on the x-axis. 
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Description of active stress plot (Figure 48): 

The homeostasis model (shown in blue) shows slow increases in the level of active stress 

as elastin is slowly degraded, helping to maintain vessel geometry. The small loses of elastin at 

each time step within the model would normally result in a small increase in vessel diameter. 

Active stress is generated due to this small increase in vessel diameter which then works to 

decrease the diameter of the vessel. These small oscillations ultimately maintain that diameter for 

the model history.   

In the baseline (shown in red) and 2x elastin production (shown in green) models prior to 

the elastogenic intervention, there is a small step loss in the level of active stress at the beginning 

of the model of which directly scales with the decrease in amount of smooth muscle. After the 

initial step loss, the level of active stress continues to slowly increase as elastin is slowly 

degraded. This increase is likely due to a shift in the relative proportion of smooth muscle in the 

system as the total elastin is decreasing in the system. In the later stages of the model, the active 

stress continues to rise as the diameter increases even though the amount of smooth muscle is 

decreasing.  

In the 2x elastin production model at the intervention time point, increasing elastin is 

associated with a decrease in the amount of active stress. This decrease is due to the lower 

relative proportion of smooth muscle to the total amount of material in the system. 
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Discussion: 

The G&R models represent a balance between competing biomechanical forces. Within 

the AAA G&R baseline model, we have the competition of accelerated removal of constituents 

due to higher tensions, the production of constituents due to the higher stresses, and the 

generation of active stress from smooth muscle. The loss of elastin initiates a complex G&R 

sequence, resulting in luminal expansion and wall thinning. This is due to the loss of highly 

prestretched elastin, coupled with a diminished ability to actively maintain inner radius. The 

accelerated constituent removal due to ever increasing tensions ultimately overcomes the 

constituent production due to higher stresses. 

In the experimental 2x elastin production model, adding back highly prestretched elastin 

lowers the tension that the collagen and smooth muscle are under while also lowering the stress 

which increases the amount of both collagen and smooth muscle in the system while lowering 

the active stress generated by smooth muscle. The macroscopic result of introducing new elastin 

is a lower luminal expansion rate. 
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APPENDIX C 

 
 
 

 
QUALITATIVE FIBRIN GEL MIXER ASSESMENT 
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Figure 49. Mixing colored fibrin gel constituent solutions through the fibrin gel mixer produces gels that 
appear similar in color to a gel mixed by manual pipetting. A) Fibrin gel constituent components loaded into a 
syringe and locked in the fibrin gel mixer. From left to right, the constituents are fibrinogen solution (pink), cell 
suspension (yellow), and thrombin solution (blue). B) Photo of a gel mixed with manual pipetting. C) Photo of gel 
that came out of the fibrin gel mixer.  
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