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Urbanization has far reaching and significant effects on forest ecosystems, directly through 

urban development and indirectly through supportive processes such as coal mining and 

agriculture. Urban processes modify the landscape leading to altered hillslope hydrology, 

increased disturbance, and the introduction of non-native forest pathogens. This dissertation 

addresses several challenges in our ability to detect these urbanization impacts on forests via 

geospatial analyses. 

The role of forests in urban hydrological processes has been extensively studied, but the 

impacts of urbanized hydrology on forests remain poorly examined. This dissertation documented 

impacts to hydrology and forests at variety of temporal and spatial scales: 1) A geospatial 

comparison of the historic and contemporary forests of Allegheny County, Pennsylvania revealed 

substantial shifts in tree species, but less change in the species soil moisture preference. These 

results document additional evidence that increased heterogeneity in urban soil moisture alters 

forest structure. 2) To examine soil moisture changes, impacts of longwall mine subsidence were 

assessed by using a Landsat based canopy moisture index and hot spot analysis tools at the forest 

patch scale. Declines in forest canopy moisture were detected over longwall mines as mining 
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progressed through time, and results contradicted assumptions that the hydrological impacts 

overlying LMS recover within 4-5 years following subsidence of undermined land. 3) Utilizing a 

landslide susceptibility model (SINMAP), increases in landslide susceptibility were predicted in 

Pittsburgh, PA based on several scenarios of ash tree loss to the emerald ash borer (EAB), a bark 

beetle that rapidly kills ash trees. This model provides a tool to predict changes in landslide 

susceptibility following tree loss, increasing the understanding of urban forest function and its role 

in slope stability. Detecting how urbanized hydrology impacts forest health, function, and 

development is fundamental to sustaining the services forests provide. Results from this 

dissertation will ultimately allow improvements in the management and protection of both trees 

and water resources in urban systems and beyond. 



vi 

TABLE OF CONTENTS 

PREFACE .................................................................................................................................. XIV 

1.0 INTRODUCTION ........................................................................................................ 1 

BIBLIOGRAPHY ......................................................................................................................... 7 

2.0 HISTORIC FOREST TO URABAN SAVANNA: THE EVOLUTION OF 

CONTEMPORARY FORESTS IN PITTSBURGH, PA ........................................................ 10 

2.1 INTRODUCTION ............................................................................................. 10 

2.2 METHODS ......................................................................................................... 12 

2.2.1 Study Site ........................................................................................................ 12 

2.2.2 Tree Data ........................................................................................................ 12 

2.2.3 Landscape Analysis ....................................................................................... 17 

2.2.4 Surveyor Bias and Uncertainty .................................................................... 19 

2.2.5 Wetland Indicator Status .............................................................................. 20 

2.3 RESULTS AND DISCUSSION ........................................................................ 21 

2.3.1 Scale Differences Between Historic and Urban Datasets ........................... 21 

2.3.2 Uncertainty and Bias in the Historic Trees Dataset ................................... 23 

2.3.3 Changes to Species Composition and WIS Groups .................................... 24 

2.3.4 Comparison of WIS Landscape Position between Historic and 

Contemporary Forests ............................................................................................... 27 

2.3.5 WIS Category VS Hillslope Position ............................................................ 32 

2.4 CONCLUSIONS ................................................................................................ 39 

BIBLIOGRAPHY ....................................................................................................................... 42 



vii 

3.0 EMERALD ASH BOREER AND THE URBAN FOREST: CHANGES IN 

LANDSLIDE POTENTIAL DUE TO CANOPY LOSS SCENARIOS IN THE CITY OF 

PITTSBURGH, PA ..................................................................................................................... 46 

3.1 INTRODUCTION ............................................................................................. 46 

3.2 METHODS ......................................................................................................... 48 

3.2.1 Distribution of Ash ........................................................................................ 48 

3.2.2 Slope Stability ................................................................................................ 49 

3.3 RESULTS AND DISCUSSION ........................................................................ 52 

3.3.1 Distribution of Ash Trees .............................................................................. 52 

3.3.2 Scenario Analysis ........................................................................................... 53 

3.3.3 Model Sensitivity Analysis ............................................................................ 56 

3.3.4 Sensitivity to Spatial Variability .................................................................. 61 

3.4 CONCLUSIONS ................................................................................................ 62 

BIBLIOGRAPHY ....................................................................................................................... 65 

4.0 THE DETECTION OF CHANGES TO TREE CANOPY MOISTURE 

FOLLOWING LONGWALL MINE SUBSIDENCE VIA A LANDSAT DERIVED 

MOISTURE INDEX ................................................................................................................... 70 

4.1 INTRODUCTION ............................................................................................. 70 

4.2 METHODS ......................................................................................................... 73 

4.2.1 Study Area ...................................................................................................... 73 

4.2.2 Data ................................................................................................................. 73 

4.2.3 Analysis ........................................................................................................... 78 

4.3 RESULTS ........................................................................................................... 81 



viii 

4.3.1 Dry Pixel Proportions .................................................................................... 81 

4.3.2 Wet Pixel Proportions ................................................................................... 84 

4.3.3 2013 as an Outlier .......................................................................................... 84 

4.3.4 Consistently Wet and Dry Areas .................................................................. 88 

4.4 DISCUSSION ..................................................................................................... 93 

4.4.1 Patch Fragmentation in Northern Areas..................................................... 93 

4.4.2 Longwall Mining Impacts to Canopy Moisture .......................................... 93 

4.4.3 Distinct Landscape Position of Wet and Dry Areas ................................... 94 

4.4.4 Hydrological Healing Not Apparent ............................................................ 98 

4.4.5 Role of Geology in Consistently Wet/Dry Areas ......................................... 98 

4.5 IMPLICATIONS ............................................................................................. 102 

BIBLIOGRAPHY ..................................................................................................................... 104 

5.0 CONCLUSIONS AND SYNTHESIS ..................................................................... 108 

BIBLIOGRAPHY ..................................................................................................................... 111 



ix 

 LIST OF TABLES 

Table 2-1: Trees identified only to the genus level of classification………………………..……..15 

Table 2-2: Breakpoint descriptions of TPI categories. ................................................................. 18 

Table 2-3: Wetland indicator state and description ...................................................................... 21 

Table 2-4: Species list for each tree point dataset......................................................................... 22 

Table 3-1: Sensitivity analysis results, all quasi-stable (QS) and unstable (UNS) pixels………..58 

Table 3-2: Sensitivity analysis results, forested quasi-stable (QS) and unstable (UNS) .............. 58 

Table 4-1: September Landsat imagery acquired for this study…………………………………..74 



x 

LIST OF FIGURES 

Figure 1-1: An example of historic survey maps used to record witness trees. .............................. 3 

Figure 1-2: Historic photos of Pittsburgh, PA in the late 1800s ..................................................... 4 

Figure 1-3:Impacts of longwall mine subsidence on flat vs. mountainous terrain ......................... 6 

Figure 2-1: The state of Pennsylvania and location of Allegheny, County. ................................. 11 

Figure 2-2: A) Original survey map containing tree species data that can be used to reconstruct 

settlement forests for Allegheny County. …………………………………………………..…….13 

Figure 2-3: A. Historic trees B. Davey street trees C. iTree D. Natural Areas Study (NAS).. ..... 16 

Figure 2-4:Proportoin of species and and proportion of trees within each WIS category and tree 

dataset ........................................................................................................................................... 25 

Figure 2-5: Elevation categories in the city of Pittsburgh at which Davey street trees cluster. ... 28 

Figure 2-6: Density plots with slope (% rise) and elevation. Blue gradient indicates increasing tree 

point density of the 4 WIS categories within each tree dataset .................................................... 29 

Figure 2-7: Pittsburgh’s urban forest depicted as two components: streets trees (red) and urban 

woodlands (blue). 3D panels show detail of separation between street trees and woodlands.. .... 31 

Figure 2-8: Proportion of each WIS category for each hillslope category within the historic trees 

dataset. .......................................................................................................................................... 33 

Figure 2-9: Proportion of each WIS category for each TPI category within the iTree dataset. ... 34 

Figure 2-10: Proportion of each WIS category for each TPI category within the NAS trees dataset.

....................................................................................................................................................... 36 



 

 xi 

Figure 2-11: Proportion of each WIS category for each TPI category within the Davey street trees 

dataset. .......................................................................................................................................... 38 

Figure 3-1: Location of Pittsburgh, Pennsylvania. Depicted in black are landslide susceptible areas 

based on bedrock geology (Pomeroy, 1979)................................................................................. 47 

Figure 3-2: A. The average of NAS and iTree based predictions of the proportion of trees in each 

pixel that are ash, based on slope class. ........................................................................................ 54 

Figure 3-3: Plot depicts forested pixels that were predicted to transition from stable to quasi-stable 

or unstable status following the loss of ash from the pixel. .......................................................... 55 

Figure 3-5: Model response following the application of high root cohesion (Cr = 23,000 N/m2) 

versus the default root cohesion (Cr = 3000 N/m2) value.. .......................................................... 57 

Figure 3-4: Model response following measured soil density (SSURGO) compared to 10% higher 

the original SSURGO soil density values. .................................................................................... 57 

Figure 3-6: Frequency of pixel values for quasi-stable and unstable pixels resulting from a Monte 

Carlo analysis ................................................................................................................................ 63 

Figure 4-1: A) S.S. Peng (2008) model of zones that form following LMS ................................ 71 

Figure 4-2: A) Study site location in southwestern Pennsylvania, in Greene and Washington 

Counties. ....................................................................................................................................... 74 

Figure 4-3: Precipitation and temperature data from the Waynesburg, PA climate data station. . 76 

Figure 4-4: Annual data ranges of the 179,572 forest pixels utilized in this study ...................... 78 

Figure 4-5: Forest patch analysis areas derived from the 2011 NLCD LULC classification. ...... 79 

Figure 4-6: A) This panel shows the increasing proportion of dry pixels per each forest patch as 

mining progresses. ........................................................................................................................ 82 

Figure 4-7: Normalized mean proportion of dry pixels of forest per year of imagery. ................ 86 



xii 

Figure 4-8: Mean proportion of wet pixels of forest patches per year of imagery.. ..................... 87 

Figure 4-9: Percentage of pixels consistently categorized as wet or dry within each analysis area 

in all six years of imagery used. .................................................................................................... 89 

Figure 4-10: Boxplots showing elevation of the pixels consistently categorized as “wet” or “dry” 

for all six Landsat images. ............................................................................................................ 90 

Figure 4-11: Plot depicting the elevation range of pixels consistently categorized during the Getis 

Ord G* hot spot analysis as significantly dry. .............................................................................. 91 

Figure 4-12: Plot depicting the elevation range of pixels consistently categorized as significantly 

wet during the Getis Ord G* hot spot analysis. ............................................................................ 92 

Figure 4-13: The hexagonal plots depict forested pixel locations as hillslope position versus 

elevation.. ...................................................................................................................................... 95 

Figure 4-14: Conceptual model showing watershed boundaries and ground water aquifers of the 

Appalachian plateau based on Sheets and Kozar, 2000. ............................................................... 97 

Figure 4-15: Percentage of bedrock geology type underlying consistently wet and dry areas. .... 99 

Figure 4-16: Map depicting bedrock geology of the study region.............................................. 100 

Figure 4-17:  Method of selecting forest patches potentially influenced by the upper limestone 

boundary of the Washington formation ...................................................................................... 101 



xiii 

LIST OF EQUATIONS 

Equation 2-1: Equation used to calculate the topographic position index. ................................... 18 

Equation 3-1: SINMAP Equation ................................................................................................. 49 

Equation 4-1: Normalized Difference Moisture Index. ................................................................ 75 



xiv 

PREFACE 

Funding for this research was provided by Tree Pittsburgh, Tree Vitalize, Heinz 

Foundations, The Pennsylvania Department of Environmental Protection, and The Leighton 

Memorial Scholarship, and the University of Pittsburgh. 

Several collaborators in Pittsburgh made this research possible, including Danielle 

Crumrine with Tree Pittsburgh, Jeffery Bergman with Treevitalize, and Erin Copeland with the 

Pittsburgh Parks Conservancy. I am grateful for their support, both in the form of collaboration 

and through providing me with the necessary data to complete my work. I would also like to thank 

Melanie Ordway and Gillian Capper for their hard work in assisting me to process data for Chapter 

2. 

I would also like to acknowledge all of those at the University of Pittsburgh who have 

provided me with so much support over the years. I am grateful for the friendship and support of 

the geograds. There were many days where I was not sure what I would have done without them. 

I would also like to thank the Bain and Elliott Lab groups for their feedback, friendship, and 

support, including Krissy Hopkins, Rob Rossi, Sarah Lavin, Angela Mullins, Becky Tisherman, 

Marja Copeland, Kassia Groszewski, Lucy Rose, and Marion Divers. 

I would like to thank my Committee members for their guidance and thoughtful dissertation 

comments. I would like to especially thank my advisor Dan Bain for his support, patience, 

guidance, and for giving me the freedom to pursue the science questions and opportunities that 

most interested me. His faith and encouragement allowed me to develop into the person and 

scientist I have always endeavored to become.  



xv 

I want to thank my family for their love and support over the years, particularly my parents 

for their high expectations, encouragement, and always believing in me. Thank you to my amazing 

siblings for your love and support, I am lucky to have you in my life, especially my twin sister 

Kate who would do anything for me without complaint. I also include Janine Krippner in this list, 

as she was a dear freind and much like a sister to me during my time at Pitt. Finally, I am 

gracious for my husband Brad and his constant support. Through good times and bad, my 

partner of 14 years has never doubted my intelligence, my abilities, or my resolve, even when 

doubt was all I had for myself.  



1 

1.0  INTRODUCTION 

The contemporary forests of southwestern Pennsylvania are the product of centuries of 

human influence through urbanization and industrialization of the landscape.  Urbanization has 

far-reaching and significant effects on forest ecosystems, directly through urban development and 

indirectly through agriculture and the energy extraction activities required to power cities (e.g. 

coal mining). These processes result in changes to the landscape that alter hillslope hydrology, 

introduce forest pathogens, modify soils, and increase disturbance (Vannatta et al. 2012; Pfeil-

McCullough et al. 2015; Walsh et al. 2005; Jim 1997). The consequences of these impacts vary 

with location, altering forest structure, function, and health (McPherson et al. 1997). 

Understanding how human-dominated forests function and develop is key to sustaining the 

ecosystem services they provide. For example, in densely populated urban areas such as 

Pittsburgh, Pennsylvania, urban forests provide many important services, including shade, runoff 

reduction by intercepting rainfall/increasing evapotranspiration (ET), stabilization of hillslopes, 

and removal of air pollution. These services have high ecological and economical value, increasing 

the health and safety of the urban environment (McPherson et al. 1994; McPherson et al. 1997).  

Urban soils are highly modified from their original properties, both physically and 

chemically. Soil properties also vary across urban environments, but generally are often 

structurally degraded, contaminated, and compacted (Pouyat et al. 2007). Additionally, impervious 

surfaces alter surface and ground water hydrology by limiting groundwater recharge 
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(Bartens et al. 2008). In these conditions, storm water does not infiltrate into the soil, but is instead 

redirected swiftly into sewers and streams (Walsh et al. 2005). These changes alter the natural 

drainage patterns of soil water within cities, leading to soils that are hospitable to different 

communities of trees and vegetation (Bartens et al. 2009). Despite the recognition of spatial 

heterogeneity, urban soils are poorly characterized and it is unclear how urban soils influence 

urban forests (Pickett and Cadenasso 2009).  

Further, human influence on contemporary forest structure, function, and evolution is not 

well understood. The research findings reported in this dissertation provide a spatially explicit 

analysis of on forest impacts following urbanization, including changes in species composition, 

relative soil moisture, and slope stability. The questions addressed in this research seek to fill key 

gaps: 1) How does urbanization alter patterns of soil moisture and therefore vegetation?, 2) How  

do forest losses to exotic pests impact human coupled forest systems?, and 3) How does long wall 

mining alter soil moisture patterns and therefore forest ecosystems?   

To explores how urban hydrology, management intensity, and forest life history intersect 

to influence urban forest evolution, chapter 2 uses historic witness tree data derived from European 

settlement-era surveys of Allegheny County, PA (Figure 1-1). Witness tree data have been used to 

reconstruct pre-settlement forests in parts of the eastern U.S. and the resulting studies have 

provided fundamental reconstructions of historic forest species composition and distribution 

(Black et al. 2002; Whitney 1984; Whitney 1986; Whitney and Adams 1980; Whitney and DeCant 

2003; Hall et al. 2002). However, these studies generally do not focus on urban forests (i.e. human-

dominated forest systems) and therefore the literature on the evolution of urban forests from the 

early forest is poorly documented. Chapter 2 also examines changes in urban soil moisture through 

shifts in species type via the soil moisture preferences of trees within a modern urban forest. This  



3 

analysis reveals shifts in tree species type within the urban datasets (i.e. soil moisture preference) 

assumed to arise from soil moisture preferences. importantly, this analysis revealed that proportion 

of upland species increased from historical forests in all the urban forest datasets we considered. 

This suggests landscape-scale changes in soil moisture patterns following European settlement.  

Chapter 3 examines how urbanization can also drive local geomorphic processes. 

Southwestern Pennsylvania is an area prone to landslides due to underlying layers of shale and 

sandstone characteristic of the region (Pomeroy 1982).  While vegetation is a primary control on 

slope stability (Nilaweera and Nutalaya 1999; Ekanayake and Phillips 2002), efforts to 

characterize patterns of urban slope stability following pathogen induced tree mortality are rare 

(Pfeil-McCullough et al. 2015). Loss of forests due to deforestation, construction projects, and 

introduced pests often leads to hillslope instability and failure in both rural and urban settings,  

Figure 1-1: An example of historic survey maps used to record witness trees. The left image is a historic 

survey map of Pittsburgh, PA. The red box on the map is the location of the red bordered image on the right. 

Each circular vertex is a survey point, some of which indicate a tree. A black oak witness tree is identified 

with a red arrow. 
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Figure 1-2: Historic photos of Pittsburgh, PA in the late 1800s, depicting erosion issues and hillslope 

instability due to a missing urban forest. A. View from the future site of the Bloomfield Bridge near the 

Bloomfield neighborhood. B and C. Mount Washington at two different locations.  
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costing Pennsylvania an estimated average of 10 million dollars a year in 1991 (Pomeroy 1982; 

DCNR 2009). The introduction of emerald ash borer (EAB) into eastern United States around 

2002 has led to the loss of tens of millions of ash trees, including those within Pittsburgh’s urban 

forest (Anulewicz et al. 2007). EAB tree mortality will likely decrease hillslope stability, as ash 

is an important canopy member of Pittsburgh’s urban forest. Though Pittsburgh is now above the 

national average in canopy cover (~40% vs ~27%), historically Pittsburgh slopes were mostly 

bare, leading to erosion issues, rocks falls, and landslides (Figure 1-2) (Davey Resource Group 

2012). Chapter 3 develops predictive models to evaluate how the loss of a major canopy 

member, white ash (Fraxinus spp.), impacts landslide susceptibility in Pittsburgh, PA (Pfeil-

McCullough et al. 2015). This study predicted an increase in hillslope instability with increasing 

loss of ash, while also identifying key model parameters (soil density and soil cohesion) that 

strongly influence model output. This research advances knowledge of hillslope processes and 

urban forest function in a city with high topographic relief. 

Chapter 4 explores urbanization impacts on forests that reach beyond the boundaries of a 

city and extend to other necessary components of the urban system such as energy production. 

Much of southwestern Pennsylvania, has been impacted by longwall mine subsidence (Figure 1-

3) (Tonsor et al. 2013). During longwall mining, coal is removed in long panels after which the

roof of the mine is collapsed into the void. This subsidence leads to damage in the overlying rock 

formations with impacts to surface hydrology and groundwater (Figure 1-3) (Tonsor et al. 2013). 

Though the more immediately detrimental surface impacts (e.g. drained streams, water bodies, and 

wells) are well characterized, less noticeable impacts to shallow groundwater and soil moisture are 

challenging to detect and poorly understood.  Through detecting changes in tree canopy moisture 
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content over time using multispectral satellite imagery, this chapter describes previously 

undocumented impacts of longwall coal mining to overlying tree canopy health. 

Despite the potential costs and dangers of an unhealthy urban forest (e.g. landslides, 

increased storm runoff, high energy bills, poor air quality), human impacts on forests are not 

entirely understood (Dwyer, Nowak, and Noble 2003; Qi and Zhang 2010; Vannatta, Hauer, and 

Schuettpelz 2012). Knowledge gaps exist in how forests have developed following European 

settlement, specifically to original hydrology and disturbance regimes that influence forest 

community dynamics (Figure 1-2). These gaps limit forest protection and management efforts, as 

hydrology is a key factor driving forest structure, species composition, and health (Grant et al. 

2013). This dissertation characterizes contemporary forests, and further ties these changes to 

specific human impacts on forest ecosystems at the landscape scale. 

A.

B.

C.

Figure 1-3: (A.) A fractured stream bed above a longwall mine in southwestern Pennsylvania. (B and C) A 

pond in Green County, PA drained following longwall mine subsidence. (photo credit: Citizens Coal Council). 
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2.0  HISTORIC FOREST TO URABAN SAVANNA: THE EVOLUTION OF 

CONTEMPORARY FORESTS IN PITTSBURGH, PA 

2.1 INTRODUCTION 

  Since European settlement, the forests of Allegheny County, Pennsylvania have been 

heavily disturbed by human activities (e.g. timber harvesting, charcoaling, agriculture, and steel 

production), particularly in the City of Pittsburgh (Buck 1936; Smith and Vankat 1991; Tarr 2004). 

These activities have transformed the landscape, directly altering forest structure and function as 

well as ground and surface water flow paths that influence forest communities. Despite the 

dramatic changes that have taken place in southwestern Pennsylvania and Allegheny County in 

particular, the evolution of the region’s urban and human-dominated forest systems are not well 

characterized. To best manage and protect forests that are coupled to human systems, it is 

important to understand how forests change, as elucidation of these changes reveals the influence 

of human activity on modern urban forest composition.  

 Witness trees were trees recorded in original land surveys and maps as surveying 

monuments, thus original surveys provide species composition data for the early to mid-18th 

century forest (Foster et al. 2004). For example, this method was employed to determine 

composition and disturbance histories of Michigan’s pine forests (Whitney 1984; Whitney 1986; 

Whitney and Adams 1980). Here we utilize witness trees in a similar manner, to understand the 

evolution of contemporary forests within Allegheny County, PA. 

The original survey maps (Houck 1914) are used as historical assessments of forest 

composition and as a baseline for evaluating modern soil moisture and forest composition. 
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Specifically, the relationships between soil characteristics and physiography are compared to 

clarify the influence of both non-human (e.g., soil and topography) and human processes. 

Ultimately, the distribution of trees is fundamental to built infrastructure, particularly in 

southwestern Pennsylvania where trees provide many services, including stability to urban 

hillslopes, reduction of runoff, and shade (Ekanayake and Phillips 2002; Nilaweera and Nutalaya 

1999; Pomeroy 1982). This research characterizes historic forest conditions at the time of 

European settlement and identifies human influences on urban forest species composition and 

structure. Additionally, this study serves as a demonstration for how contemporary urban forests 

may be assessed using historic survey data.   

 

Figure 2-1: The state of Pennsylvania and location of Allegheny, County. 
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2.2 METHODS 

2.2.1 Study Site 

Allegheny County is located in southwestern Pennsylvania and its current borders were 

established by 1800 (Figure 2-1). Row crop agriculture (e.g., corn and wheat) was key to the 

economy and growth of the region during the 18th and beginning of the 19th century, before the 

region transformed into an energy and steel production economy (Tarr 2004). The economic 

growth of Allegheny County led to extensive deforestation and modification of the landscape 

through agricultural clearance, mining and development. Allegheny County is within the 

Appalachian Plateau, a region characterized by high topographic relief and deeply incised 

sedimentary rock. 

2.2.2 Tree Data 

Digital original historic survey maps of the townships of Allegheny County (Houck 1914) 

were georectified in ArcGIS using matching landmarks on modern township maps (e.g. roads, 

borders) (Anon. 2017). Once georectified, witness trees recorded on the historic maps were 

digitized into a point shape file, with the following attributes: species/genus, year surveyed and 

recorded, and surveyor name if given. Multiple trees could be represented by a single data point 

and data points could also represent stumps, posts, or stones instead of trees, in the same location 

(Figure 2-2 & Figure 2-3c). All data not representing trees was removed from the dataset. This 

resulted in a dataset of 8403 points, containing 9766 trees representing 36 species (Table 2-3).  
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A. 

B. 

Figure 2-2: A) Original survey map (http://images.library.pitt.edu/w/warrarntee) containing tree species 

data that can be used to reconstruct settlement forests for Allegheny County. B) 8403 Survey points 

digitized from original survey maps for Allegheny County. Pittsburgh is shown in the center. The 

differences in surveying seen between the northern and southern parts of the county are simply due to 

differences in surveying methods, as the northern part of the county was surveyed by the government. 
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In the historic dataset twenty-five percent of trees were only identified down to the genus 

level, creating uncertainty in the environmental conditions preferred by those individual trees. To 

avoid removing 25% of the historic tree data from the analysis, assumptions were made to assign 

species-level designations to the genus-only tree identifications (Table 2-1). Individual tree species 

within a genus can vary in environmental requirements (e.g. soil moisture, sunlight, temperature), 

therefore when only a genus is specified and not a genus and a species, comparisons among 

datasets becomes difficult. Thus, we assumed the number of species within a genus based on the 

number of trees actually identified down to the species level. Specifically, the most common 

species was selected to represent the unidentified trees with a species. For example, trees only 

identified as oak were assumed to be white oak (Quercus alba L.), the most common species of 

oak. 

 For genera that were more evenly divided in species number, trees were assigned based 

on the proportion of each species with in a genus. Ash was the only genus in the dataset that 

required species assignment based on proportions. The trees that were only identified to ash were 

proportionally assigned as either black ash (Fraxinus nigra Marshall) or white ash (Fraxinus 

americana L.) by multiplying the number of ash trees identified to the genus-level by the 

proportion of ash trees identified as white ash and black ash respectively. The assumptions made 

are listed in Table 2-1 and this bias was considered carefully during the analyses. 

No assumptions were made for two typically understory species, dogwood and hawthorn, 

as no species were recorded for either genus in the dataset. However, the most probable species 

choices for both did not vary greatly in growing requirements and thus species assumptions are 

likely unnecessary (Table 2-1).  
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Urban forest data from Pittsburgh, PA was used for contemporary urban forest comparison 

(Figure 2-3). Three forest datasets were used to represent urban forests: iTree, Natural Areas Study 

(NAS), and Davey Street Trees (Davey Resource Group 2012; Davey Resource Group 2015, 

Biohabitats Inc. 2010) (Figure 2-3b-2-3d). These datasets represent three different urban forest 

structures: street trees, urban woodlands, and parks (Konijnendijk et al. 2013; Welch 1994). These 

different urban forest types experience different stressors, environments,  and management 

practices, making it necessary to compare each separately to the historic dataset (Konijnendijk et 

al. 2013; Welch 1994). We define urban woodlands as patches of forests within a city that are not 

planted for the purpose of lining streets and they instead grow in a natural forest structure (Welch 

1994). The iTree dataset is made up of 136 randomly generated sampling points based on 1/10 

acre plots, representing 1435 trees and 74 species. The Pittsburgh urban woodland polygon was 

compared against a high-resolution base map after which a 60m buffer was applied to the 

woodland polygon to account for wooded areas not included within the shape file. Seventy-five of 

the iTree randomly generated sampling plots are located at least within 60m from the edge of  

Genus Common Name  USFS Code Species Assumption Count %
Carya Hickory CARYA bitternut hickory 1271 51.4
Cornus Dogwood CORNU no assumption 224 9.1
Jugla Walnut JUGLA black walnut 212 8.6
Fraxinus Ash FRAI white or black ash 212 8.6
Ulmus Elm ULMUS american elm 132 5.3
Castanea Chestnut CASTA american chestnut 124 5.0
Acer Maple ACER sugar maple 108 4.4
Pinus Pine PINUS white pine 84 3.4
Prunus Cherry PRUNU black cherry 48 1.9
Crataegus Hawthorn CRATA no assumption 24 1.0
Quercus Oak QU white oak 15 0.6
Betula Birch BETUL yellow birch 13 0.5
Salix Willow SALIX black willow 7 0.3

TOTAL= 2474 100%

Table 2-1: Trees identified only to the genus level of classification by historic surveyors with the species 

assumption given as a common name. 
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A. B. 

C. D. 

Figure 2-3: A. Historic trees B. Davey street trees C. iTree D. Natural Areas Study (NAS). The historic tree 

dataset was created using two different types of surveying, with a more regular method applied in the 

northern part of the county. The Davey tree dataset (B.) represents trees roadside in the City of Pittsburgh. 

The iTree and NAS dataset represent plots in which trees were recorded in urban woodland and park areas 

respectively. 
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mapped urban woodland (PASDA 2017). The 75 plots located in urban woodlands represent 77% 

(n=1104) of the iTree dataset and 61 species.  

The Davey Street tree dataset is a collection of trees recorded roadside within the city limits 

of Pittsburgh. The dataset is made up of 29,144 points representing approximately 144 tree species, 

each point representing a single tree identified down to species-level. 

2.2.3 Landscape Analysis 

Landscape data representing elevation and slope derived from a 3 meter Lidar digital 

elevation model (DEM) were extracted to each tree point in ArcGIS (PAMAP Program 2006). 

Other landscape properties (e.g. aspect, concavity) were extracted and analyzed, but only analysis 

generated from elevation and slope data were utilized in further analysis. These site characteristics 

describing the position of each tree on the landscape were then compared across the 4 tree 

population datasets. Further, to understand landscape characteristics that drive soil moisture 

patterns and influence forest species composition, hillslope position was also calculated from the 

DEM (PAMAP Program 2006) using a topographic position index developed by (Jones et al. 2000) 

(Equation 2-1) .  An averaged DEM was created using a round annulus neighborhood, with a 9-

pixel inner diameter and a 27-pixel outer diameter. The resulting raster was used to calculate the 

topographic position index (TPI) (Equation 2-1).  Positive TPI values indicate areas higher than 

surrounding areas, while negative TPI values indicate areas lower than surrounding areas. Values 

near zero are considered flat. The index was further classified into 6 hillslope position categories 

using the standard deviation of the TPI raster and slope to define the category cutoffs (Table 2-2). 
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Equation 2-1: Equation used to calculate the topographic position index for the study region. A 3 meter DEM 

was used to populate the equation, which was applied to the DEM using a moving window to calculate the 

focal mean in the shape of an annulus. The inner diameter of the annulus was 9 pixels, and the outer diameter 

was 27 pixels. 

𝑇𝑇𝑇𝑇𝑇𝑇 = �𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑓𝑓𝑓𝑓𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐷𝐷𝐷𝐷𝐷𝐷,  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 9𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑖𝑖, 27𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑑𝑑𝑝𝑝𝑖𝑖 𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝𝑖𝑖�� +  . 5) 

Table 2-2: Breakpoint descriptions of TPI categories. 
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2.2.4 Surveyor Bias and Uncertainty 

There are multiple sources of bias within each dataset, including surveyor bias, data 

collection methods, and data purpose (e.g. study, inventory, or boundary marking). Witness trees 

were not recorded for the purpose of collecting tree data, therefore there are many potential sources 

of bias as a result. In the historic trees dataset, property lines were drawn based on surveyor and 

property owner choices. This introduces potential bias in witness tree datasets. Surveyors also 

likely based their choice of witness trees on economic value, ease of inscription, size, health, 

longevity, and/or abundance (Black and Abrams 2001; Whitney 1986). Determining individual 

surveyor influence on historic tree identification over the historic tree dataset was assessed by 

finding the average number of trees identified by each surveyor. Next surveyors within the top 5% 

(n=64) of surveyors (those recording more than 20 trees), were assessed by their identification of 

the top three tree species (white oak, black oak, and bitternut hickory) for the historic dataset. Only 

the most active surveyors were examined for bias as it was not conceivable to assess the entire 

dataset due to the sample size that results for the vast majority of surveyors. Bias was assessed by 

comparing expected versus actual identification rates of the top three tree species. The number of 

trees without a surveyor name recorded were also identified (n=281).  

Though the contemporary data was collected for the purpose of documenting trees, bias is 

still present due to data collection methods and sampling design.  Bias within the iTree dataset is 

largely based on site accessibility. Randomly generated points occurring within city owned 

property (e.g. urban woodlands, city parks) were more likely to be chosen for data collection. 

Survey plots also had to be accessible by foot, meaning plots could not be located on dangerous 

slopes. The Davey Streets trees will contain bias due to being located exclusively roadside. Most 

roads within Pittsburgh are located on shallower slopes. For all three datasets, error may occur in 
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tree identification. The sources of bias within each dataset were considered during data analysis 

and are discussed below. 

2.2.5 Wetland Indicator Status 

All three datasets differ widely in species composition, particularly between historic and 

contemporary data sets, making shifts in forest structure and composition difficult to detect over 

time. Therefore, wetland indicator status (WIS) was used to compare shifts in hydrological 

conditions at similar landscape positions across all three datasets.  Soil moisture conditions differ 

based on landscape position.  Generally, positions higher in the landscape (e.g. ridges and hilltops) 

tend to be drier than areas lower in the landscape (e.g. valleys and toe slopes). The difference in 

moisture accumulation influences species composition. In addition, the geohydrology of the 

Appalachian plateau can lead to relatively wet hillslopes in Allegheny County due to the discharge 

of perched aquifers as springs at high hillslope positions (Sheets and Kozar 2000). Further, 

urbanization and human modification of the landscape change soil moisture regimes, and therefore 

the tree species that grow in an area. For example, increased compaction and impervious cover can 

dry soils, whereas leaking infrastructure (e.g. sewer and water lines) and roadways can increase 

wetness in other areas (Pfeil-McCullough et al. 2015). WIS categories range from obligate wetland 

species occurring only within a wetland (OBL) to species that occur on uplands only (UPL) (Table 

2-2). WIS for each species was acquired using the USDA PLANTS database 

(https://plants.usda.gov). All tree species, whether native or introduced/exotic, that were assigned 

a wetland indicator status in the PLANTS database were assigned the corresponding WIS category. 

Trees that are native to the region but lacked a WIS in the PLANTS database were categorized as 

“none” (Table 2-2). Non-native trees species lacking a WIS were labeled as “EXO”.  The WIS 
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categories are being applied in this study to infer changes between settlement-era forest and 

modern urban forests. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Scale Differences Between Historic and Urban Datasets 

Comparison of the contemporary and historic datasets is limited by the contrasting sampled 

spatial extents of the data sets. The historic dataset was collected countywide (though there are 

few witness trees recorded inside city limits), whereas all three contemporary datasets are confined 

to the city boundaries of Pittsburgh. Despite the difference in analysis footprint, the Allegheny 

County landscape is relatively consistent across the county. The entire county is within the 

unglaciated portion of the Allegheny plateau ecoregion, of the Appalachian Plateau physiographic 

province (Bailey 2004). Further, the historic trees dataset has a much lower sampling density 

compared to the contemporary datasets, as the 9,766 tree points used in the analysis are spread out 

Table 2-3: Wetland indicator state and description 
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Table 2-4: Species list for each tree point dataset with the count for each species (#) Species are listed by 

common name 
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over the entire county whereas the Pittsburgh points are confined to a much smaller area (1930  

Km2 vs 150 Km2).  

 As a result, the modern data likely reflects physiography within the city of Pittsburgh more 

strongly, such as a close proximity to the large rivers. However, given the consistency in the local 

landscape, it is a reasonable assumption that the natural process and forests located within city 

boundaries did not vary significantly from the rest of the county and the historical conditions 

recorded in the county were representative of pre-European conditions in the city. 

2.3.2 Uncertainty and Bias in the Historic Trees Dataset 

The identification of historic trees as witness tree markers in Allegheny County was carried 

out by 1,296 individual surveyors (or surveying pairs). Of the 1,296 surveyors, 1,219 (95%) 

recorded 20 trees or less, with 8 as the median number of trees identified per surveyor. The 

maximum number of trees recorded by a single person was 84, with only one other surveyor 

coming close with 77. Two-hundred and eighty-one of the identified historic trees were not 

credited to any surveyors. Considering most tree identification was divided among 1,219 people, 

it is unlikely that a single surveyor had a strong influence on the composition of the dataset.   

To assess bias within the historic trees dataset, the top 5% of surveyors (those recording 

more than 20 trees) were evaluated by comparing identification rates for the top three species: 

white oak (n=4,530), bitternut hickory (n=1,298), and black oak (n=1,125) (numbers are the total 

of each species in the entire dataset) (Table 2-4). The expected identification rate is the proportion 

of each species within the entire dataset (e.g. # of white oak / # of trees in dataset). The expected 

rates were compared to the identification rates of each species within the top 5% of surveyors (e.g. 

# of white oaks top 5% / # of all trees top 5%). White oak ID rates varied the most with an expected 
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rate of 46% and an actual rate of 49% for the top surveyors. Black oak and bitternut hickory had 

expected rates of 13% and 12% respectively compared to a 14% actual rate for both species. 

Though there are slightly higher rates of identification in the top 5% of surveyors, overall the 

differences are minor and likely do not impact the interpretation of results. Even though there does 

not appear to be strong individual bias when considering the top 5% of surveyors, it is harder to 

estimate the bias of the entire group of surveyors. It is likely there were some biases common to 

the entire group of surveyors, likely reflecting the culture of the historical period in which the 

surveys took place (1700-1800s). It is not possible to know the individual priorities or 

circumstances of each surveyor or each surveying project, therefore this possibility cannot be ruled 

out and must be considered when evaluating the results.  

2.3.3 Changes to Species Composition and WIS Groups  

The species composition of forests in Allegheny County has changed dramatically since 

European settlement of the region. All three contemporary datasets contained more non-native 

species (exotic to the study region) than the historic dataset, which only has one exotic tree species 

(2.8% of the population) (Figure 2-4, Table 2-4). In contrast, the iTree data set had 31% and the 

Davey street tree dataset had 41% non-native species (Figure 2-4). However, each component of 

the urban forest (e.g. street trees, park forests, and urban woodlands) develops and is managed 

differently and must be considered separately when making comparisons to historic forests.  

Tree species that can tolerate a broad range of light and soil moisture conditions are 

typically chosen for street tree plantings.  This choice has led to more urban tolerant non-native 

selections for street trees in the urban environment as opposed to native tree species (Bassuk et al. 

2009; Welch 1994). Though approximately 137 species make up Pittsburgh street trees, eight  
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Figure 2-4: Black bars represent the percentage of trees within each WIS category per tree dataset. The grey 

bars represent the percentage of tree species within each tree dataset that fall with each WIS category.  Red 

numbers are for the columns indicating percentage of each tree species in each WIS category. The dashed box 

contains the non-WIS categories. A. Historic Trees B. NAS   C. iTree D. Davey street trees 
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species dominate 71.6% of the population with Norway maple (Acer platanoides) as the most 

common street tree species. Four of the eight species are non-natives from Europe and China 

(Table 2-4). All eight species are listed as recommended street trees that tolerate persistently wet 

soils to persistently dry soils and grow adequately in shaded areas (Welch 1994). In comparison, 

the dominant settlement-era tree species of white oak (Quercus alba) that makes up 46.2% of the 

historic tree dataset, requires full sun with maturity and well drained soils (Moore 2002). 

Additionally, white oak will not tolerate urban soils (compaction and high fill content) or 

disturbance to its root system and is not recommended as an urban tree (Bassuk et al. 2009; Moore 

2002). Only five white oaks are recorded in the Davey street tree dataset out of nearly 31,000 

recorded trees. Furthermore, whereas the historic forests of the region were predominantly (71.2%) 

white oak, black oak, and bitternut hickory (Table 2-4), urban street trees are selected for species 

diversity to safe guard against disease and pests (e.g. Asian longhorn beetle, emerald ash borer) 

and increase resilience against large mortality losses (Abrams 2005; Bassuk et al. 2009; Welch 

1994). In Pittsburgh, urban forest diversity is a management priority and likely contributes to the 

high diversity found in the street tree dataset (Davey Resource Group 2012; Welch 1994). The 

species compositions of the street tree component of the urban forest evolved differently from 

historic forests due to urban environmental conditions, with humans driving species selection and 

management.  

The urban woodland component of Pittsburgh’s urban forest may be more similar to the 

historic forests of the region in structure than the street trees, but the similarities remain limited. 

Nine species make up 69.1% of the entire iTree dataset, with seven of those species being native 

to the region (Table 2-4). The two-non-native species are Norway maple (Acer platanoides) and 

tree of heaven (Ailanthus altissima), both species known to be highly invasive (Whitney and 
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Adams 1980). Black locust (Robinia psuedoacacia) is the most common tree in the iTree dataset 

as it grows well in poor soils and spreads easy through its roots, while Norway maple is the second 

most common tree in the iTree dataset (Table 2-4). The most common species of the iTree survey 

establish and spread easily either through wind or bird dispersal, in contrast to the historic trees in 

which the most common species (oaks and hickory) are heavy seeded trees that require animals 

such as squirrels for propagation (Anon. 2009; Welch 1994). Urban woodlands in Pittsburgh, 

particularly those not on park property, rely primarily on natural succession instead of planned 

plantings when it comes to the recruitment of new trees. Therefore, species composition in urban 

woodlands will represent tree species most competitive in the urban environment (i.e. able to 

tolerate poor soil, salt, pollution, and varying hydrological conditions) and will draw from both 

existing soil seedbanks as well as introduced street and yard species. 

2.3.4 Comparison of WIS Landscape Position between Historic and Contemporary Forests 

Though the distribution of trees among WIS functional groups is similar across the four 

datasets, urbanization has led to divergences in landscape position of WIS functional groups from 

settlement period forests, particularly with street trees. Davey street trees which are located only 

adjacent to roads, have higher densities of trees occurring in three distinct clusters of elevation in 

all four WIS categories (Figure 2-5 and 2-6). Most Davey street trees are located in either the 

lowest neighborhoods (e.g. the Southside Flats, the North Shore) adjacent to the rivers (~700’-

900’ above MSL) or neighborhoods within the paleochannel (~900-1000’ above MSL) (Figure 2-

5 & 2-7). These neighborhoods represent the flattest and least steep areas of the city, where dense 

development and thus the most roads have been placed. In contrast, the hill neighborhoods located 

in the blue areas of Figure 2-7 have the lowest density of streets and thus street trees in the city. 
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The street trees are a clear example of how urbanization can direct forest development, as human 

development and planning of the landscape has directly determined the species selection and 

distribution of the street tree urban forest component. 

The iTree dataset more closely resembles the historic dataset in tree distribution on the 

landscape by soil moisture preference (Figure 2-6). This may be due to the more natural 

development of urban woodlands (iTree) as opposed to urban street trees. Both the iTree and 

historic datasets show the highest density of trees for each WIS group between 1000’ and 1200’ 

and on similarly steep slopes (Figure 2-6). However, the historic dataset shows a broader range of 

elevation for the UPL WIS category then the iTree dataset. The more restricted elevation range of 

the UPL species in urban woodlands may be due to human constraints on urban woodlands  

Figure 2-5: Elevation categories in the city of Pittsburgh at which Davey street trees cluster. Black pixels do 

not denote elevation values, but instead indicate rivers and streams within the city. 
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Density 

A. 

B. 

C. 

D. 

Figure 2-6: A. Davey Street Trees B. NAS C. iTree and D. Historic. Density plots with slope (% rise) and 

elevation. Blue gradient indicates increasing tree point density of the 4 WIS categories within each tree dataset, 

with lighter blue indicating the highest point densities. Plots are ordered by WIS category with the wettest 

category (FACW) on the left and the driest category (UPL) on the right. The red line is a reference point set at 

1000’ to aid in visual comparison of the plots. 
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and where they are permitted to exist within the city. Therefore, urban woodlands may only occur 

in the cityscape where a specific range of slope and elevation intersect. Overall, urban woodlands 

occur through succession, likely driving more natural patterns that resemble historic forests in the 

landscape location of WIS functional groups. 

The parks trees (NAS) are more similar to both the historic trees and urban woodlands, but 

exhibit some clear differences. The NAS, historic, and iTree datasets occur over a similar range of 

slope and all extend beyond 50 percent rise (Figure 2-6). However, the NAS trees occur in 

narrower ranges of elevation and slope (Figure 2-6). The NAS UPL and FACU trees only occur 

on slopes greater than 25% rise, while the FACW and FAC trees occur at shallower slopes similar 

to the iTree and historic data. The NAS trees also cluster more densely on steeper slope positions, 

whereas historic and NAS trees cluster more densely on shallower slopes. The NAS trees occur 

primarily between 800’ and 1000’, as opposed to the iTree and historic datasets with elevation 

ranges up to 1200’ (Figure 2-6). Much like Pittsburgh’s urban woodlands, the city’s parks are also 

restricted to specific locations within the city. Pittsburgh parks were established in areas that were 

too steep to develop, which may be influencing the distribution of WIS categories within the parks 

(Figure 2-6). Despite clear differences among the NAS, iTree and historic datasets due to human 

imposed limitations (and small sample size, n=437), the NAS dataset is more similar to those 

datasets than the Davey street trees. Like the urban woodlands, the park trees are more influenced 

by natural processes than human management, leading a similar distribution of species types to 

historic forests. 
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Figure 2-7: Pittsburgh’s urban forest depicted as two components: streets trees (red) and urban woodlands 

(blue). 3D panels show detail of separation between street trees and woodlands. A) an example of Davey 

Street tree and urban woodland distribution from the North Shore toward the North Hills region of the city. 

B) an example of Davey Street tree and urban woodland distribution from downtown Pittsburgh toward the 

South Hills region of the city. 
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2.3.5 WIS Category VS Hillslope Position 

 Urbanization has restricted forest growth and altered the hydrology of Allegheny County, 

especially in the City of Pittsburgh. The differences between historical and modern tree species, 

particularly the differences among distributions of WIS category locations on hillslope positions 

(e.g. ridge vs valley) can allow evaluation of these hydrologic changes. The historic trees dataset 

is surprisingly consistent in the distribution of trees among various WIS categories across hillslope 

positions (Figure 2-8). The FACU WIS category is the most commonly occurring WIS 

classification and makes up the highest proportion of trees across hillslope positions in the historic 

dataset. Similarly, OBL and UPL are the least common WIS across landscape positions (Figure 2-

8).  The nearly identical WIS distributions among hillslope positions in the historic dataset may 

arise from either bias in witness tree selection (for white oak) or due to a strong historical 

dominance of white oak (nearly half the trees within the dataset are white oak (FACU)).   

 The dominance of facultative upland species persists in the iTree and NAS datasets despite 

the strong contrasts in species composition (Figure 2-9 & 2-10; Table 2-4). Facultative species are 

the most common in both the iTree dataset and NAS datasets (with the exception of the lower 

slope and flat hillslope positions in the NAS data (Figure 2-10)).  Both the iTree and NAS dataset 

were gathered to sample forests as they grow naturally (e.g. minimally managed compared to street 

trees) and therefore have a structure more similar to the original settlement-era forests where 

human processes were less dominant. This may explain the similarities in WIS category 

distribution between the woodlands/parks and the historic forests, as they are both driven more by 

natural processes. 
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Figure 2-8: Proportion of each WIS category for each hillslope category within the historic trees dataset. 
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Figure 2-9: Proportion of each WIS category for each TPI category within the iTree dataset. 
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 Drier urban soils resulting from human processes seem to have altered species composition 

in contemporary forests. All three contemporary datasets (Figures 2-9-2-11) have proportionally 

as much as triple the UPL trees relative to the historic dataset. Trees classified as UPL almost 

never occur in wetlands/wet areas (Lichvar et al. 2012; Anon n.d.). Soils in urban areas are often 

drier due to a highly fragmented or missing urban canopy, compaction and impervious surfaces, 

and interrupted drainage regimes (Pfeil-McCullough et al. 2015; Edmondson et al. 2011; Pavao-

Zuckerman 2008). The observed shift toward UPL species prevalence in contemporary forests 

likely indicates human disturbance to original soil moisture regimes that influence urban forest 

evolution and the active planting of species that can survive in these altered conditions.  

 Roads alter urban hillslope hydrology and may explain changes in WIS distribution, 

particularly in the Davey street tree dataset. Overall, the relative proportions of various WIS 

species in the Davey street trees are evenly distributed among WIS categories across all hillslope 

positions (Figure 2-11) Further, in Davey data the FACU category is no longer dominant. (Figure 

2-11). This contrast with the other datasets is likely due in part to sampling from a highly-managed 

and highly disturbed environment. FACW is more common in the upper slope positions than in 

the presumably wetter lower slope positions, whereas UPL is more common in lower slope 

positions despite being typically found on ridges and upper slopes (Figure 2-11). This may be 

caused by streets rerouting water away from natural flow paths and quickly into streams (Walsh 

et al. 2005). Depending on road location, they may inhibit drainage and cause water to accumulate 

in upper hillslope positions and lead to drier soils further downslope. Roads also reroute storm 

water quickly down slope, sending potential soil and ground water into sewers (Hopkins et al. 

2014; Walsh et al. 2005). Street trees are selected and planted for specific sites within the city. 

However human selection cannot entirely explain WIS category distribution in the Davey street  
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Figure 2-10: Proportion of each WIS category for each TPI category within the NAS trees dataset. 
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trees dataset, as a similar pattern in FACW and UPL is also seen in the urban woodlands (iTree) 

dataset for the valley hillslope category (Figure 2-9). These results suggest that hillslope hydrology 

influences urban forest evolution, despite heavy management of the street trees. 

 Though there is a shift across all three contemporary datasets to more upland species (e.g. 

prevalence of UPL and FACU), there is also a higher proportion of FACW species compared to 

the historic dataset, particularly in the woodland (iTree) dataset (Figure 2-9). The park and urban 

woodlands of Pittsburgh are mostly located in areas of the city that are too steep for building (Pfeil-

McCullough et al. 2015), which may influence the distribution of WIS categories within those 

datasets. In the iTree dataset, the FACW category occurs in higher proportions relative to the 

historic and NAS datasets within the ridge, upper slope, and mid slope hillslope positions (Figure 

2-9). The FACW proportions of the iTree dataset are half in the lower slope and valley categories 

relative to upper slope positions, suggesting wetter conditions supportive of hydrophyte tree 

species are more common higher on the hillslope (Figure 2-9). Though urban conditions tend to 

create drier soils, the hydrogeology of the region creates an exception in particularly steep areas 

where springs and urban forests are both common. Unfortunately, the NAS dataset does not 

contain tree data for the lower slope position and a comparison cannot be made between higher 

and lower slope positions for FACW. However, NAS does appear to be more similar to the historic 

dataset in FACW and UPL (Figure 2-10). In contrast to FACW, the UPL and FACU categories 

occur at higher proportions near the top of the hillslope, for both the NAS and iTree dataset, and 

decrease proportionally at the lower hillslope positions, indicating that drier, more well-drained 

conditions are more common near the tops the hillslopes, with groundwater discharge from springs 

more localized. The NAS and iTree datasets both have similar patterns in the number of trees 

within the upper slope, mid-slope, and ridge positions, suggesting that if these datasets had  
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Figure 2-11: Proportion of each WIS category for each TPI category within the Davey street trees dataset. 
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captured lower slopes tree species, these patterns may be consistent in lower positions as well 

(Figures 2.9 & 2.10).  

Despite dramatic changes to the landscape due to urbanization, there are surprising 

consistencies among the historic and contemporary datasets, particularly the prevalence of the 

FACU category in the NAS and iTree datasets across most hillslope positions. Despite heavy 

disturbance to drainage regimes, soil properties, and the dominance of human processes, general 

patterns in the structure of the urban forest persists, particularly within the iTree and NAS datasets. 

These results suggest that key processes controlling soil moisture have not dried soils within the 

woodland and parks urban forest enough to fundamentally transform contemporary forests. 

2.4 CONCLUSIONS 

Urban forests are often managed and analyzed using socio-political boundaries (e.g. city 

or neighborhood boundaries) or by gradients of urbanization (Welch 1994; Steenberg et al. 2013; 

Mcdonnell et al. 1997; Calfapietra et al. 2015). This study instead subdivided the urban forest 

components of Pittsburgh by life history (street trees, urban woodlands, and park trees), 

distinguishing them by origin (e.g. human planned vs natural succession) and management 

intensity. The analysis revealed that when compared to historical forests and to each other, there 

are distinct differences in WIS distribution among urban forest components, particularly between 

street trees and more natural urban forest structures (i.e. woodland and park trees). For example, 

all three contemporary datasets differ from each other in species composition (Table 2-4), with 

Davey street trees having as much as triple the species of the other datasets. There are also clear 
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differences in landscape position, as patterns in contemporary forests across elevation and slope 

revealed more restricted ranges, particularly within the Davey street trees and NAS (park trees) 

datasets. These results suggest that subdividing urban forests by life history might be a better 

approach to understanding their structure and function, particularly in the context of urban 

hydrology. 

The urban forest body of literature is well represented by works describing the role of urban 

forests in urban hydrological process (Pfeil-McCullough et al. 2015; Livesley et al. 2016), but how 

urban hydrology impacts urban forest development remains poorly characterized. This study 

revealed shifts in species type within the urban datasets (i.e. WIS designation) assumed to arise 

from soil moisture preferences. In particular, the proportion of upland species increased from 

historical proportions in all the urban forest datasets we considered. There were also deviations 

attributed to the life history (street trees vs park trees) and WIS categories of the urban forest 

datasets. For example, the Davey street trees had a more even distribution of trees across WIS 

categories, while the historic dataset had the highest number of trees in the FACU category. 

Additionally, the FACW species type (prefers wetter soils) occurred more frequently at higher and 

presumably drier hillslope positions than expected within the iTree dataset. These shifts in species 

composition suggest that urbanization driven hydrological change creates new soil moisture 

conditions that can influence the types of tree species that populate urban forests.  

The stressors of the urban environment and their effects on urban trees are well 

documented, from air pollution, soil compaction and introduced pests, to the urban heat island 

effect (Calfapietra et al. 2015; Conway and Vander Vecht 2015; McPherson et al. 1994; Pfeil-

McCullough et al. 2015). These urban environmental pressures result in species composition shifts 

to assemblages that are more competitive in harsher urban environments (Bassuk et al. 2009). 



41 

However, despite major differences in species composition between historic and contemporary 

forests (Table 2-4), the general distributions of species across WIS categories (i.e. soil moisture 

preference) are surprisingly similar to historic forests post-urbanization, particularly in the park 

and urban woodland forest components. Though it is known that urban hydrology contributes to 

the selection of specific tree species for planned plantings (e.g. street trees)(Bassuk et al. 2009; 

Conway and Vander Vecht 2015), the impacts of urban hydrology to more naturally growing urban 

forest components that experience low management intensities remain poorly characterized (e.g. 

urban woodlands and parks). These results suggest that landscape-scale hydrological processes 

driving soil moisture conditions that influence species composition of historic forests may persist 

and influence contemporary forests within Pittsburgh, PA today. 
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3.0  EMERALD ASH BOREER AND THE URBAN FOREST: CHANGES IN 

LANDSLIDE POTENTIAL DUE TO CANOPY LOSS SCENARIOS IN THE CITY OF 

PITTSBURGH, PA 

3.1 INTRODUCTION 

Forest cover is a primary control on slope stability. Trees and plants reinforce the soil on 

hillslopes and remove excess water through transpiration(Ekanayake and Phillips 2002; Nilaweera 

and Nutalaya 1999; Pomeroy 1982; Roering et al. 2003). Environmental factors that stabilize 

hillslopes are particularly important in urban areas where human alterations of hillslopes and 

hillslope processes can lead to destabilization. Vegetation removal is a fundamental cause of 

landsliding in many human-dominated landscapes (Glade 2003; Tsukamoto 1990). Moreover, 

urban forests not only stabilize urban hillslopes, but also reduce runoff, remove pollution from the 

atmosphere and provide cooling (McPherson et al. 1997; Xiao and McPherson 2011). Due to local 

geology and topography, Pittsburgh, Pennsylvania (Figure 3-1) is a city prone to landsliding, and 

hundreds of landslides have been recorded within city limits (Pomeroy 1982). Pittsburgh’s urban 

canopy cover is above the national average for urban areas, near 40% and, in some areas, has 

expanded over the last century (Davey Resource Group 2008; Hopkins et al. 2014). However, 

invading forest pathogens are currently killing large numbers of important canopy species in 

Pittsburgh’s urban forest.  

Emerald ash borer (Agrilus planipennis) (EAB) is an invasive bark beetle from Asia 

moving through the eastern U.S. killing ash trees (Fraxinus spp.), an important canopy genus in 

eastern and northeastern U.S. cities (BenDor et al. 2006; Tanis and McCullough 2012). Ash is a 
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dominating species in many urban forests, being both large and common in eastern US. urban areas 

(Vannatta et al. 2012). Therefore, this research focuses on the loss of ash (Fraxinus spp.) and 

resulting changes in urban slope stability. 

 The connection between tree removal and hillslope instability is important. However, 

spatially explicit predictions of landslide susceptibility changes following pathogen induced tree 

mortality are rare. This study characterizes changes in landslide susceptibility resulting from four 

canopy loss scenarios in Pittsburgh using SINMAP 2.0 (Stability Index MAPping), a spatially 

distributed slope stability model. The results of this study not only elucidate patterns of urban 

hillslope stability, but also advances knowledge of urban hillslope processes and urban forest 

function in cities with substantial topographic relief. 

 

Figure 3-1: Location of Pittsburgh, Pennsylvania. Depicted in black are landslide susceptible areas based on 

bedrock geology (Pomeroy, 1979). 
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3.2 METHODS 

3.2.1 Distribution of Ash  

 The spatial distribution of ash trees in the Pittsburgh urban forest is not well characterized. 

Two vegetation plot studies have sampled Pittsburgh’s urban forest: iTree (U.S. Forest Service 

2011) and the Natural Areas Study (NAS) (Biohabitats 2010). The iTree data were collected from 

200 plots randomly placed throughout the city, while the 39 NAS plots were randomly located 

only in four Pittsburgh city parks. The iTree plots were 0.04 ha in size, representing 0.05% of the 

city’s area. The NAS plot sizes differed by park; Frick contained seven 0.04 ha plots in size and 

the remaining 31 plots in the Highland, Riverview, and Schenley Parks were 0.016 ha (Pittsburgh 

Regional Parks Natural Areas Study 2010). The total NAS plot size area represents 0.0051% of 

the city’s area (15,100 hectares). To estimate the distribution of ash trees in the City of Pittsburgh, 

the proportion of ash trees in each NAS and iTree sampling plot was determined. All ash species 

were combined in creating this proportion. There is an initial preference for green ash by the EAB, 

however as EAB density increases, the importance of that preference declines (Anulewicz et al. 

2007). The majority of ash trees in the city were identified as white ash, however other species 

were also present (e.g. blue and green ash). The plots in these datasets fell within seven slope 

ranges (0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70 degrees), with slopes derived from a 10 

meter resolution digital elevation model (National Elevation Dataset 2003) (Figure 3-2).  

 The likelihood that any particular 10m cell contained an ash tree was estimated by treating 

the proportions derived from the plot data and slope classes as probabilities that an ash tree occurs 

on a given slope. An ash proportion map was created for the city using these proportions and Monte 

Carlo simulation.  First, a random raster with values ranging between 0 -1 was generated for all 



 

 49 

pixels with urban tree canopy and this raster divided into slope class maps by multiplying the 

random raster and each of 7 binary rasters representing each slope class (1=cell is in slope class, 

0=otherwise). All randomly generated pixel values that were greater than the  probability of an ash 

trees occurring in that slope class were set to zero and remaining cell values were changed to a 

value of 1 (i.e., the cell contains an ash). The seven resulting rasters were summed into a single 

raster to create a map of simulated ash distribution for the entire city.  This process was repeated 

100 times and these rasters summed to generate a grid of percent probability of an ash tree presence 

in the canopy. This process was completed for both the iTree and NAS data and the two resulting 

rasters were averaged to create the proportion map of ash distribution map used in this simulation.  

 The map of ash occurrence probabilities was then used to create four tree loss scenarios: 

0%, 25%, 50%, and 75% loss. Random rasters with values from 0-1 were generated and pixels 

with the value ≥0.25, ≥0.50, and ≥0.75 were converted to zero, creating three rasters representing 

25%, 50%, and 75% loss.  These rasters were multiplied by the map of ash occurrence 

probabilities, to create scenarios of canopy loss, effectively zeroing out the probability an ash tree 

occurs when “lost”. 

 

 

3.2.2 Slope Stability  

SINMAP is a landslide susceptibility model based on the “infinite slope” equation 

(SINMAP 2.0 User’s Manual 2005). The SINMAP model predicts shallow translational 
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landsliding phenomena controlled by shallow groundwater flow convergences and does not apply 

to deep-seated instability including deep earthflows and rotational slumps (Pack et al. 2011). It 

should be noted that although SINMAP only applies to shallow translational landslides, canopy 

loss can also effect these other types of landslides. A factor of safety value (FS) for each pixel in 

the NED (2003) 10m DEM for the City of Pittsburgh is calculated using Equation 3-1.  (Other 

parameters in equation 1 are defined and discussed below along with relevant data sources).  The 

FS predicts slope stability, using a range from zero to ten and was divided into three slope stability 

categories for this study: unstable (FS < 1), quasi-stable (FS > 1 and ≤1.5), and stable (FS > 1.5).  

Definition of the stability index threshold values is subjective and should be specific to the 

characteristics and conditions of the study area it’s being applied to (Pack et al. 2011). The 

classification thresholds applied in this study were based on threshold values given in the SINMAP 

2.0 manual. The SINMAP equation was constructed in ArcMap 9.3.1 model builder. 

The tree loss scenarios were used to create SINMAP simulations predicting hillslope 

stability changes in Pittsburgh with the loss of ash trees. Fundamentally ash tree losses alter soil 

cohesion (Boerner 2011; Roering et al. 2003; Schmidt et al. 2001), although some instead attribute 

the increase in slope instability to friction angle changes (Graf et al. 2009). SINMAP parameters 

were determined from available data as follows:  

Cohesion (C): C is the tendency of a soil to stick together under stress, partitioned here 

between root cohesion (Cr) and soil cohesion (Cs).  C is dimensionless and calculated using the 

equation C = (Cr + Cs)/(h*ρs*g). Thus, cohesion is also dependent on soil depth and density. Soil 

depth (h) and density (ρs) were derived from SSURGO soil data. When converting the soil 

polygons to rasters, pixels containing multiple values were assigned the value present at the center 

of the cell. g is the gravitational constant. Cmin is used for cells not “containing” tree canopy (Cr = 
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0, therefore Cmin=Cs/(h* ρs*g). Cohesion (C) is scaled to the predicted ash loss by multiplying the 

probability of ash presence by Cr in pixels where ash loss is predicted, i.e., Cmax = ((Cr *proportion) 

+ Cs) / (h* ρs*g)) and Cr=3000 N/m2 and Cs=11500 N/m2. Urban cohesion properties for roots and 

soils are not well characterized, therefore conservative values for cohesion were chosen from other 

regions and forest systems (Savigny 1990; Department of Transportation (Minnesota) 2007; Hales 

et al. 2009). 

Effective recharge (R): This is the rainfall rate (m/hr). The 25-year storm value for 

Pittsburgh, PA for a storm duration of one hour was used; 0.052 m / hr (NOAA 2011). This value 

was applied uniformly to the entire area. Recharge was assumed to be a rainfall rate in this study, 

as the ratio R/T is a combination of climate and hydrological factors (Pack et al. 1998). R/T ratios 

are often estimated in the field (Pack et al. 1998), whereas here rasterized SSURGO soil 

transmissivity data was used in combination with local climate data. 

Transmissivity (T): The rate (m2/hr) at which water passes through a unit of soil. T = Soil 

Conductivity*Soil Depth. T was calculated for each soil type using saturated conductivity (Ksat) 

and depth values in SSURGO soil data. Transmissivity values for the city ranged from .001 m2/hr 

– 0.26 m2/hr. 

Soil Density Term (r): Ratio of water density (1000 kg/m3) and soil density (kg/m3) values 

for each soil type from SSURGO soil data were used (Soil Survey Staff 2012). A horizon depth 

weighted average of SSURGO soil density values were used. Soil density values for the city ranged 

from 225 kg/m3 – 1696 kg/m3, with most (%99.7) soil density values >1055 kg/m3.  

Contributing area (a): The upslope area draining to each 10m pixel. Contributing area 

was derived using standard GIS methods from the digital elevation model (National Elevation 

Dataset 2003).  
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Land surface slope (θ) – Slope was derived from the digital elevation model. 

Friction angle (ϕ, FA): The internal friction angle of soil is the angle at which shear failure 

occurs. The higher the FA, the more stable the slope. A value of 27° was estimated for this study 

using a landslide inventory map of Pittsburgh, PA (Pomeroy and Davies 1979). 

SSURGO soil data used for all soil based parameters is a national soil database of 

synthesized soil data, including the Soil Survey of Allegheny County. This survey was conducted 

from 1964 – 1973 via walking surveys and sample collection for laboratory analysis. The product 

provides coarse soil data (at best 1:12,000 scale) for the Pittsburgh area, composed mostly of soil 

classified as urban.  

The strength of SINMAP predictions is dependent on the quality of data used to populate 

the model (Michel, Kobiyama, and Goerl 2014; Wilcock et al. 2003). In some cases, data quality 

and resolution may be lost when applying landslide susceptibility models to regional spatial scales, 

due to general heterogeneity of landscape characteristics at larger scales and data availability.  In 

particular, SINMAP is sensitive to parameter choice and will fail at the limit (Sulaiman and Rosli 

2010; Thiebes 2012).  That said, we are careful in our approach to utilize the best available data to 

understand a spatially, regional management challenge. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Distribution of Ash Trees 

 Ash trees are most likely to occur on the steeper slopes of the city (Figure 3-2B and 3-2C). 

Given the preference for flat spaces in historical urban development (Bain and Brush 2008; 
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Borchert 1961) it’s likely the preferential use of flat spaces during the building of Pittsburgh left 

predominantly steeper hillsides to more natural tree succession. The most prevalent slope classes 

in the city are 0-10, 11-20, and 21-30 degrees (Figure 3-2D). The 21-30 degree slope class is the 

third most common slope class in the city and makes up the majority of the slopes occupied by the 

urban forest (Figure 3-2B and 3-2C). Based on the Pittsburgh landslide inventory (Pomeroy and 

Davies 1979), the 21-30 degree slope class is most common slope class in the city that experiences 

land sliding. This slope class also contains the most ash trees, implying that EAB 

3.3.2 Scenario Analysis 

With increasing loss of ash (0% to 75%), landslide susceptibility increased (Figure 3-3A). 

The most common change in pixel factor of safety was “stable” pixels transitioning to “quasi-

stable” pixels. For example, in the 75% loss scenario, 737 pixels transition from stable to “quasi-

stable”, while only 46 quasi-stable pixels transitioned to “unstable” (relative to 0% loss scenario) 

(Figure 3-3).  The relatively small change from quasi-unstable to unstable results from most pixels 

classified as “unstable” in the 0% loss scenario being on slopes steeper than the friction angle and 

therefore always be predicted to be unstable under the model conditions. In general, “quasi-

unstable” pixels transitioning to “unstable” following canopy loss were in steep areas where root 

cohesion allows the pixel to remain in the stable or quasi-stable states. The model predicts that the 

loss of vegetation within these critical areas is particularly important to hillslope failure risks in 

urban areas. 

The model includes all pixels in the city, whether they are forested or not. If a pixel is not 

forested, then the root cohesion for the pixel was set to zero. Non-forested pixels do not change  
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Figure 3-2: A. The average of NAS and iTree based predictions of the proportion of trees in each pixel that 

are ash, based on slope class. The proportion of ash tree occurrence in each slope class for B. NAS (Natural 

Areas Study) and C. iTree plot data. D. The distribution of slopes in Pittsburgh. 
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stability status as the loss scenarios are applied. The loss of ash from the model causes some of the 

initially forested quasi-stable pixels to transition to unstable status (Figure 3-3). Stable pixels also 

transitioned to quasi-stable pixels following each canopy loss scenario (Figure 3-3). The 

conversion of forested pixels from stable to quasi-stable is important, as these are areas that before 

the loss of ash were considered stable (FS > 1.5) (Figure 3-3b) and are areas  where the urban 

forest is particularly important to maintaining stability and preventing landslides and are therefore 

of particular concern when considering vulnerability to tree pathogens. In addition, it is generally 

accepted that tree roots alter soil hydrology by changing soil properties (e.g. transmissivity) and 

allowing for increased infiltration of water into the soil (Bartens et al. 2009; Bramley et al. 2003; 

Chandler and Chappell 2008). During a precipitation event, the ratio of soil transmissivity to 

recharge rate (rainfall) influences if and when a column of soil reaches saturation, a factor in 

hillslope failure (Borga et al. 2002; Pack et al. 1998) High soil infiltration rates are linked to slope 

Figure 3-3: Plot depicts forested pixels that were predicted to transition from stable to quasi-stable or 

unstable status following the loss of ash from the pixel. 
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instability, as water adds weight while also reducing soil cohesion (Borga et al. 2002; Guimarães 

et al. 2003). During a storm event, the roots of an ash tree that remain in place will continue to 

facilitate infiltration of water through the soil, but no longer play a role in removing excess soil 

water. This may contribute to increased hillslope instability by altering the initial soil moisture 

status before a storm event.  However, these dynamics are beyond simulations possible with the 

SINMAP model. 

3.3.3 Model Sensitivity Analysis 

Given the substantial uncertainty in some of the model parameters, the model sensitivity 

to these uncertainties was assessed. Sensitivity was assessed by comparing changes in counts of 

unstable and quasi-stable pixels relative to changes imposed on each parameter value. Rainfall 

rates (R) were compared with 2 year and 10 year storm rates (NOAA), soil density (r) was 

compared to 10% higher soil density values, cohesion (C) was compared to a much higher cohesion 

value derived from 23,300 N/m2 (Schmidt et al. 2001), and a low and high friction angle (ϕ) values 

(20° and 30° respectively) were compared to the original SINMAP results using the default values. 

Specifically, changes in the pixel count of both unstable (FS < 1) and quasi-stable pixels (FS values 

between 1 and 1.5) were tracked by comparing pixel counts between the original outputs and the 

sensitivity analysis outputs.  

The sensitivity analysis reveals the importance of the uncertainty in soil parameters on the 

quality of stability predictions using SINMAP, specifically cohesion (soil and root) and soil 

density in predicting hillslope stability (Morrissey et al. 2001). There were also notable differences 

when forested pixels were analyzed separately for sensitivity (Table 3-1 and Table 3-2). Forested 

areas are more sensitive overall to changes in model parameters, particularly soil density and root 
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Figure 3-4: Model response following the application of high root cohesion (Cr = 23,000 N/m2) versus the 

default root cohesion (Cr = 3000 N/m2) value. Shown as the change in the number of forested unstable and 

quasi-stable pixels, with increasing loss of ash. 

Figure 3-5: Model response following measured soil density (SSURGO) compared to 10% higher the original 

SSURGO soil density values. Shown as the change in the number of forested unstable and quasi-stable pixels, 

with increasing loss of ash. 
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 Table 3-1: Sensitivity analysis results, all quasi-stable (QS) and unstable (UNS) pixels (combined). Default 

parameter model results vs. modified parameter model results, with percent increase or decrease due to 

modification. Pixels reflect all quasi-stable and unstable pixels combined for forested pixels only. Model 

modifications include: Cr = root cohesion; +10% SSURGO = soil density * 110%. A negative % change value 

indicates a decrease in pixel number following a change, while a positive value indicates an increase. 

Table 3-2: Sensitivity analysis results, forested quasi-stable (QS) and unstable (UNS) pixels (combined). 

Default parameter model results are compared with modified parameter model results, with percent increase 

or decrease due to modification. Pixels reflect all quasi-stable and unstable pixels combined for forested pixels 

only. Model modifications include: Cr = root cohesion; +10% SSURGO = soil density * 110%. A negative % 

change value indicates a decrease in pixel number following a change, while a positive value indicates an 
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cohesion as both saw large increases in percent change (Table 3-2, Figures 3-4 and 3-5). For 

example, the number of forested pixels in the 0% loss scenario classified as quasi-stable or unstable 

when root cohesion was increased in the model (Cr = 23,000 N/m2), decreased by 97% versus the 

59% decrease when all pixels are included (Figure 3-4). With increased soil density (+10% 

SSURGO) there was a 190% increase in instability for forested pixels with the 0% loss scenario 

(Figure 3-5), compared to a 115% increase overall pixels. Forested pixels also show a modest 

linear increase of roughly 5% in sensitivity to modification in the friction angle value (Table 3-2). 

The greater sensitivity among the forested pixels is most likely due to the overrepresentation of 

ash on the steeper slopes of the city (Figure 3-1). These results show that SINMAP model 

sensitivity is relative to the spatial distribution of landscape features that drive slope stability. 

 At the city scale, the SINMAP model was considered most sensitive to changes in root 

cohesion and soil density, as the magnitude of the changes to the parameters exceeded the 

modification to the model parameters. By increasing root cohesion in the SINMAP model (Cr = 

23,000 N/m2), instability was reduced by 59% before the loss of ash (0% scenario) (Table 3-1). 

Across the different scenarios, the increased cohesion results grow less sensitive with a percent 

difference of only 3% between changes in pixel counts with contrasting cohesion in the 75% ash 

loss scenario (Table 3-1) (Figure 3-4). This convergence results from the limited set of pixels that 

become unstable or quasi-unstable from reduced cohesion. Scenarios of increasing loss are 

increasingly likely to remove ash from this set of pixels and therefore differences in predicted 

stability changes due to cohesion values are much less important in severe tree loss scenarios. The 

contrast between predicted instability with high and low cohesions may also indicate that the 

selected default cohesion value may be too low. There is very little difference between the 0% loss 

and 75% loss scenarios using the default cohesion value (Cr = 3,000 N/m2), while the change is 
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much greater between scenarios when a higher cohesion value is applied (Table 3-1). In reality, 

cohesion will vary spatially and most likely be represented by a range of values including those 

selected for this study (Hales et al. 2009; Sakals and Sidle 2004). Root cohesion will be 

heterogeneous laterally and vertically through the soil and will be influenced by many factors 

including stand age, disturbance, and forest management treatments (Sakals and Sidle 2004). Root 

cohesion is also not lost immediately after tree death, but generally as early as three years following 

mortality (Ammann et al. 2009). Regeneration would likely occur, but cohesion and 

evapotranspiration provided by young saplings would not equal that of the original larger tree. 

Minimal information in the literature is available regarding urban root and soil cohesion. A better 

understanding of spatial patterns in urban root and soil cohesion properties would improve stability 

predictions.   

 The number of unstable pixels increased by 115% among all pixels at 0% loss of ash when 

the soil density (r), derived from the SSURGO data, was increased by +10% (Table 3-1).  Denser 

soils are heavier and more likely to fail when saturated. Urban soils are generally considered to be 

compacted (i.e. denser) compared to non-urban hillslopes which may reduce urban slope stability 

(Edmondson et al. 2011). Soil compaction can also reduce plant growth, lower transmissivity and 

increase erosion (Edmondson et al. 2011). These factors would also impact other model 

parameters, such as transmissivity. The SSURGO data does not necessarily reflect soil 

compaction, which may cause the SINMAP model to under-predict hillslope instability. Denser 

soils would result in higher slope instability. 

  The SINMAP model was generally insensitive to the remaining parameters, recharge and 

friction angle (R, FA). A 29.7% reduction in FA resulted in a 21.6% difference from the 0% loss 

default results, while a 10.5% increase resulted in a difference decrease of 9.1%. As ash was lost, 
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the percent difference was reduced by less than a percent from 0% loss to 75% loss for both 

modified FA values (Table 3-1). Due to the importance of slope in stability predictions, changes 

in model response were expected. However, the magnitudes of the changes observed in model 

prediction are similar to the magnitude of the changes made to the FA parameter and therefore 

indicate a lack of model sensitivity to changes in FA.  Further, altering rainfall (R) did not change 

the predicted outcome. This results from the threshold nature of the relative wetness (RW) 

component of the SINMAP equation. Relative wetness describes the depth of the perched water 

table and ranges in value from 0 to 1, with values over 1 representing overland flow (SINMAP 2.0 

User’s Manual 2005). No change was observed because the values of R (2, 10, and 25-year storm 

values for Pittsburgh, PA) used, all produced RW values of 1, indicating saturation of the soil 

during these large storm events. Complete saturation of all soils resulting in overland flow during 

most storm events in Pittsburgh is not likely. This model result may be due to low saturated 

conductivity (Ksat) values in the SSURGO soil data, which will result in low transmissivity 

estimations and thus lower SINMAP index values. 

3.3.4 Sensitivity to Spatial Variability 

The tree loss scenarios were created through the use of selective pixel removal from 

uniform random rasters. This could potentially produce dramatically different model predictions 

due to natural variation in the spatial distributions of slopes and soils. To assess the importance of 

spatial variability on model output, an additional Monte Carlo analysis was performed to evaluate 

uncertainty in model scenario predictions. The SINMAP model was run with 100 unique 25% loss 

tree scenario rasters to generate 100 sets of newly quasi-stable and unstable pixels (Figure 3-6). 

The random removal of pixels for the tree loss scenarios resulted in only minor changes in model 



 

 62 

prediction, with a standard deviation of only 16.1 and 4.0 from the mean for the number of quasi-

stable and unstable pixels respectively (Figure 3-6). The Monte Carlo results are comparable to 

the original model results. The spatial distribution of landscape features may impact model results, 

depending on patterns of tree loss.  

The spread of forests pathogens and the associated tree loss is not necessarily random and 

may depend on factors related to forest pathogen life cycle, transportation methods, and other 

related landscape and environmental factors. Ideally, data for landslide risk prediction would be 

representative at the grid scale of the model, but in reality parameter data often exists as field 

collected point data or as estimated values from the literature (Burton et al. 1998). Therefore, the 

true spatial variability of soil, landscape, and tree distributions of a region is unknown and these 

uncertainties can greatly impact model predictions. However, in Pittsburgh there seem to be 

enough potential landslide initiation points present, that a random removal of ash from the model 

consistently impacts a high number of them.  Therefore, uncertainty in the model is associated 

primarily with the model parameters and in this case is not sensitive to spatial patterns in the 

geospatial data.  

3.4 CONCLUSIONS 

 This study estimated changes in hillslope instability due to tree mortality in Pittsburgh, 

Pennsylvania. A slope stability investigation was carried out through the use of the SINMAP 

model in GIS, by manipulating the cohesion term (C) within the equation to represent the loss of 

ash from the urban canopy. The results demonstrate a reduction in slope stability with increasing 

loss of ash from the urban canopy. Moreover, the ash distribution resulted in the highest 
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Figure 3-6: Frequency of pixel values for quasi-stable and unstable pixels resulting from a Monte Carlo 

analysis where the SIMAP model was run 100 times at a 25% loss scenario and the number of quasi-stable and 

unstable pixels were tabulated to determine uncertainty due to spatial patterns. Plot insets shows the mean, 

median, and standard deviation respectively. 
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percentage of ash presence occurring on the slopes that were steepest and also classified to be 

landslide prone based on bedrock geology. This emphasizes the importance of ash in Pittsburgh’s 

urban forest, particularly to hillslope stability.  Model uncertainty was associated primarily with 

model parameters, particularly soil properties (e.g. cohesion and density). The model was not 

sensitive to natural geospatial variation of model parameters and produced consistent results 

despite the random removal of ash from the canopy.  

SINMAP is a useful tool for assessing changes to hillslope stability after the loss of ash 

that can complement existing strategies to increase tree species diversity and thus forest resiliency 

against exotic forest pathogens (Conway and Vander Vecht 2015). Further, this model can 

similarly be modified and applied to assess impacts from other forest pathogens or catastrophic 

events that result in changes the urban forests. In this way SINMAP can be utilized as a tool by 

urban forest managers to make more strategic urban forest management decisions as well as to 

increase the understanding of urban forest function and its role in slope stability. 
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4.0  THE DETECTION OF CHANGES TO TREE CANOPY MOISTURE 

FOLLOWING LONGWALL MINE SUBSIDENCE VIA A LANDSAT DERIVED 

MOISTURE INDEX 

4.1 INTRODUCTION 

 The environmental impacts of high extraction coal mining methods (e.g. longwall mining, 

mountaintop removal) to surface processes are increasingly documented (Bernhardt and Palmer 

2011; Wickham et al. 2007).  Changes to surface and ground water hydrological regimes following 

high extraction mining disturbance can be substantial, though characterization remains incomplete 

(Bell, Stacey, and Genske 2000; Palmer et al. 2010; Zegre et al. 2014). In contrast to mountaintop 

mining, longwall mining is a form of high extraction mining that takes place underground. During 

longwall mining, coal is completely removed in large rectangular panels and the overlying rock 

collapses into the void. The degree to which the surface is impacted by longwall mine subsidence 

(LMS) is dependent on the depth to mining, the thickness of the mined coal seam, and the width 

of the mined panels (Iannacchione et al. 2008; Liu, Tan, and Ning 2015; Peng 2008).  Some of the 

readily apparent hydrological impacts include disrupted stream and spring flow, dry domestic 

water wells, and drained ponds and lakes (Tonsor et al. 2013). Stretching and compression of the 

land surface likely impacts soil moisture and shallow groundwater, however, these impacts are 

challenging to detect and study (Figure 4-1).  

 The specific hydrological impacts following longwall mine subsidence currently cannot be 

accurately predicted, particularly in areas of high topographic relief (Booth 2006; Holla 1997).  
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Figure 4-1: A) S.S. Peng (2008) model of zones that form following longwall mine subsidence: Caved zone: 

Complete disruption. Full of debris and roof material 2 – 10x mining height. Fractured zone: continuous 

open fractures which can be 30 -60x mining height. Continuous deformation zone: constrained with no 

permeability Change. Soil zone: 50 feet to surface, cracks generally considered to be temporary. The photo 

depicts soil impacts to an area of low relief following longwall mine subsidence. B) Less understood are 

potential impacts to soils and the associated vegetation in areas of high relief following longwall mine 

subsidence. This conceptual model depicts soil extension that can occur on undermined slopes. Picture 

Credits: Outlaw Partners/Joseph T. O'Connor (explorebigsky.com/coal) & Kelly Robertson Farms 

(krfarms.net) 
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Established conceptual models of subsidence are based on flat topography, with three major zones 

of fracture and deformation described (Peng 2008) (Figure 4-1a). However, the longwall mining 

impacts to hydrology in high relief regions where longwall mining often occurs remain less clear 

(Figure 4-1b) (Bian et al. 2008; Bian, Zhang, and Lei 2011; Li et al. 2013). LMS causes fracturing 

and deformation of the overlying strata, which leads to changes in fracture porosity and 

permeability, and ultimately changes to ground water flow (Booth 2006). Further, impacts to these 

high relief areas may be greater than those that occur in flatter regions (Elsworth and Liu 1995; 

Holla 1997; Li, Liu, and Zhao 2016).  To clarify post LMS hydrological changes, studies have 

used ground based monitoring systems such as ground water wells and piezometers, but the 

resulting data are spatially and temporally limited and the monitoring wells are often destroyed 

following subsidence (Kelly, Luo, and Craig 2002; Tonsor et al. 2013). Here, we use spatially and 

temporally continuous remotely sensed data to examine subtler, landscape-scale patterns of 

hydrologic change. 

Forests are a dominant and economically important land cover type in southwestern 

Pennsylvania and in many other regions across the globe. Hydrological changes to soils following 

LMS likely impact overlying forest ecosystems. Changes to soil moisture can be directly observed 

with remote sensing methods such as multispectral imagery or radar data (Wang and Qu 2009). 

However, due to the dense canopy cover, these techniques are generally not applied to forested 

areas. Given this limitation, changes in tree canopy moisture with a Landsat derived vegetation 

index were evaluated to infer underlying changes in soil moisture dynamics following LMS. The 

normalized difference moisture index (NDMI) provides an indication of relative moisture levels 

within the tree canopy and allows for comparison among canopies. Patterns of tree canopy water 

content derived from Landsat satellite imagery of southwestern Pennsylvania were analyzed over 
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a 12-year period as mining progressed through two regions with different patterns of land use and 

forest patches. This study characterizes otherwise difficult to detect LMS hydrological impacts 

using readily available Landsat products. 

4.2 METHODS 

4.2.1 Study Area 

The study site is located in southwestern Pennsylvania, USA, a humid temperate region of 

high topographic relief (up to 240 meters), in which longwall coal mining is a historical and 

ongoing process (Iannacchione et al. 2008; Tonsor et al. 2013).  Land cover is predominantly 

mixed deciduous forests and mixed agricultural land use (Homer et al. 2015). The mined panels 

included in this study belong to two longwall mines, as defined by the mining permits, Enlow Fork 

to the north and Bailey Deep to the south. Panels mined between 1986 and 2013 were examined 

here.  In these mines, the oldest mining took place near the boundary between the mines and mining 

moves away from this boundary in northeast/southwest directions (arrows in Figure 4-2b). 

4.2.2 Data 

 High level Landsat surface reflectance data products from Landsat 5, 7, and 8 for the month 

of September were acquired, including derived products depicting the Normalized Difference 

Moisture Index (NDMI) from the USGS (Table 4-1).  Dense cloud cover rendered most of the 

summer scenes (June – August) unusable for southwestern Pennsylvania. September imagery 
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Figure 4-2: A) Study site location in southwestern Pennsylvania, in Greene and Washington Counties. Bailey 

mine panels present in West Virginia were excluded from this study. B) The division between the Bailey Deep 

and Enlow Fork mined panels. 

Table 4-1: September Landsat imagery acquired for this study. 
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 coincides with periods of maximum water deficit at the end of the growing season and thus periods 

sensitive to soil moisture changes. The series of  September images are preprocessed, meaning 

they are atmospherically and topographically corrected (L1T) (Masek et al. 2006). NDMI 

(Equation 4-1) utilizes a water insensitive band in the near infrared region (NIR) region and a 

water sensitive band in the short wave infrared (SWIR) region that is sensitive to the quantity of 

water present within vegetation (Pechanec et al. 2014). Applied together they provide an indication 

of the moisture level in leaves or the entire canopy depending on the scale of application. In 

contrast to greenness indices utilizing visible and NIR bands such as the normalized difference 

vegetation index (NDVI), NDMI is sensitive to small changes in vegetation stress indicated by 

changes to moisture levels within the leaves. Bands used in the NDMI index differ slightly based 

on imagery used. For Landsat 5 and Landsat 7, bands 4 and 5 were used. For Landsat 8, bands 5 

and 6 were used. 

Differences in climate from year to year could influence patterns of canopy moisture so 

growing season precipitation and temperature trends for each year of imagery were compared. 

Climate data (“NOAA National Center for Environmental Information,” 2016) were evaluated 

across the study period (Figure 4-3). Total precipitation and average temperature were determined 

for the growing season and over the 8 days before the imagery was acquired (Figure 4-3). 

  

 
  

𝑁𝑁𝐷𝐷𝐷𝐷𝑇𝑇 =
𝑁𝑁𝑇𝑇𝑁𝑁(0.76−0.90)

 
 − 𝑆𝑆𝑆𝑆𝑇𝑇𝑁𝑁(1.55−1.75)

𝑁𝑁𝑇𝑇𝑁𝑁(0.76−0.90)
 

+ 𝑆𝑆𝑆𝑆𝑇𝑇𝑁𝑁(1.55−1.75)
 

Equation 4-1: Normalized Difference Moisture Index. The spectral ranges are in micrometers. 
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Figure 4-3: Precipitation and temperature data from the Waynesburg, PA climate data station. A) Total 

precipitation and average temperature from March through September of the respective year of the 

imagery. B) Total precipitation and average temperate for the 8 days preceding imagery acquisition. 
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Climate conditions were consistent year to year (Figure 4-3a). Mean total rainfall between March 

and September was 0.64m (±0.1) (Figure 4-3a). Average maximum temperature among all 

growing seasons was 21.9°C (±1.4) with an average minimum of 7.1°C (±2-3) (Figure 4-3a).  

However, the eight-day precipitation totals and temperature averages suggests there may have been 

precipitation in Waynesburg, PA on the day several of the images were acquired (2002, 2010, and 

2014) (Figure 4-3b). The Waynesburg PA climate station is not located in the mined area, but 

approximately 20km east and may not be representative of the conditions present in the scene 

analyzed. NEXRAD WSR-88D and TDWR radar data from the Pittsburgh NEXRAD site was 

used to determine if rainfall fell on imagery acquisition dates after 2009. Light rainfall (<0.01 

in/hour) was present adjacent to, but not directly over the analysis areas the day of acquisition for 

the 2014 image. The remaining 2010 and 2013 images did not contain rainfall the day of 

acquisition. It is not clear if precipitation occurred over panels mined before 2009 in the hours 

before the images were acquired, however the imagery was predominantly cloud free and if rainfall 

occurred it may have occurred later in the day. The NEXRAD data indicates that rainfall was 

unlikely during imagery acquisition after 2009. 

 The NDMI values varied little among years, with the largest deviation occurring in 2013 

(Figure 4-4).  The 179,572 pixels representing forest canopy were originally evaluated 

individually, comparing landscape features and mining activity on a pixel by pixel basis. This 

approach resulted in differences in average pixel canopy moisture content that were small and 

strongly overlapping (Figure 4-4). The range of NDMI values for 2013 are below 0.3, while the 

other four years are between 0.3 and 0.4. (Figure 4-4). The difference observed for 2013 is most 

likely due to canopy differences, as the 2013 image was acquired toward the end of the month on 

September 26th, while the others were all acquired on and before September 11th. Because the 
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2013 image was acquired toward the end of the month, the beginning of autumn tree leaf 

senescence is likely to reduce canopy moisture.  Relationships between pixel attributes (e.g. 

elevation, aspect, slope, topographic index, hillslope curvature, mined/unmined) and NDMI values 

were explored, but no patterns were found. 

4.2.3 Analysis 

 Due to the noise in the pixel level analysis, forest patches were instead used as analysis 

units. Investigation of forest patches examines values in reasonable spatial areas as a unit, 

removing some of the noise that exists at the pixel scale as each patch represents a mean value for 

N
DM

I 
  

Year (of Landsat Image)  
  

Figure 4-4: Annual data ranges of the 179,572 forest pixels utilized in this study (the top and bottom 10% of 

the data were excluded to remove extreme values from the plot). Most means fall between 0.3 and 0.4, while 

2013 is below that range. The difference between the 2013 image and the others is most likely due to leaf 

senescence as it was acquired on September 26 while the others were acquired September 3 – September 11. 
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the population of pixels within it. The undermined and adjacent areas were divided into five groups 

of patches (i.e., patch analysis areas) for this study. These areas represent three distinct mining 

histories: unmined, Bailey and Enlow analysis areas mined 2002-2014 (Bailey and Enlow analysis 

areas), and the historically mined pre-2002 analysis areas. Patches were initially delineated using 

the 2006 National Land Cover Dataset (NLCD) (Fry et al. 2011). Pixels representing forest cover 

were converted into polygons. The 30m resolution of NLCD data created substantial mismatches 

in the extent of forest patches when compared with high resolution (< 1m) aerial imagery (Fry et 

al. 2011). To eliminate these mismatches and minimize edge effects, 60 meters were removed from 

the edge of each polygon. Finally, the NDMI raster pixels inside the delineated patches were 

Figure 4-5: Forest patch analysis areas derived from the 2011 NLCD LULC classification. Black areas are 

patches adjacent to mining and were not included in this analysis. 
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converted to points that represented NDMI data values for each year of Landsat data included in 

this study (2002 – 2014) (Figure 4-5). These points were then further checked against high 

resolution aerial imagery and points overlying areas without mature tree cover were deleted from 

the dataset. Areas without sufficient canopy cover will produce a NDMI value not representative 

of tree canopy moisture. 

Local modelling can identify spatial variations within heterogeneous spatial patterns. Here, 

the Getis Ord Hot Spot Analysis tool was applied to the NDMI point data in ArcMap to identify 

spatial clusters of high values (hot spots) and low values (cold spots) by comparing each point to 

its neighbors within a defined neighborhood distance (112 m in this case, the average distance to 

30 nearest neighbors). All NDMI points representing forest cover that remained after the data 

processing described above were analyzed for “hot spots” of both relative wetness and dryness 

(Getis and Ord 1992). The Hot Spot tool corrects for multiple testing and spatial dependency by 

applying the false discovery rate correction. Multiple testing is a condition that occurs when spatial 

patterns appear clustered or structured and based on probability theory the patterns are assumed to 

be significant (P>0.05), when in reality the underlying spatial processes driving them are actually 

random. Spatial dependency describes the tendency of local data to be similar and therefore inflate 

statistical significance. The false discovery rate correction will estimate the number of false 

positives that can occur due to these two sources of error and adjust the critical P- values as a 

result. The Hot Spot Analysis tool outputs a shape file indicating the level of statistical significance 

of each point by confidence level: not significant, 99%, 95%, and 90%. For this study, only the 

cold and hot points within the 99% confidence level (p <= .01) were considered, as they 

represented the most significant relatively driest points and wettest points in the canopy for each 

forest patch. The hotspot analysis was run for each LANDSAT image year, for all of the pixels 



 

 81 

within the forest patches. Once completed, the proportion of dry (cold spots) and wet (hot spots) 

pixels in each forest patch were determined (Beyer 2012). Further data were extracted for each 

forest polygon including: depth to the top of the Pittsburgh coal seam, land surface elevation 

statistics (mean, min/max) of each patch, and the year the majority of each patch was undermined.  

To quantify the dryness/wetness of each patch relative to the entire study region and 

therefore allow comparison among years, the patches were normalized for each year and each 

patch. The proportion of dry and wet pixels per patch were normalized by the proportion of dry 

and wet pixel for each scene: i.e., divide the wet/dry proportion of the patch by the wet/dry 

proportion of the patch analysis areas within the entire scene. The resulting normalized pixel 

proportion values per patch were used for both patch and patch area analysis. Areas consistently 

categorized as wet or dry over all six years of imagery were also identified and tracked, in order 

to characterize persistent canopy moisture patterns. 

4.3 RESULTS 

4.3.1 Dry Pixel Proportions 

Many landscape characteristics can influence tree canopy moisture (e.g. aspect, slope, 

hillslope, and curvature) and due to high spatial correlation, these characteristic patterns can be 

difficult to interpret at broad spatial scales. However, certain patterns of canopy dryness across 

patches are apparent (Figure 4-6a). As mining progressed, dry pixel proportion of forest patches 

seemed to increase, particularly in the Bailey Deep Mine (BDM) region of the study area (Figure  
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Figure 4-6: A) This panel shows the increasing proportion of dry pixels per each forest patch as mining 

progresses. The red dashed lines represent the progress occurring from 2002 – 2010. The Black dashed lines 

and the area between them represent mining that occurred before 2002. The p – values are from the Getis 

Ord hot spot analysis and indicate the level of statistical significance of the dry pixels used for the analysis. 

B) This panel is a closer look at the area indicated by the grey dashed circle in panel B. This panel shows the

pattern increasing dry pixel proportion following the shallow coal seam in that area, where depth to coal is ≤ 

200 meters. Mined panels are indicated in red. 
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4-6a & 4-6b).  These increases are not apparent in the Enlow Fork Mine to the north (Figure 4-6a). 

When normalized mean dry pixel proportions are compared to the depth of mining, the pattern of  

 increasing patch dryness is spatially coincident with the shallow coal contours of the mined coal 

seam itself, with some of the driest patches located over the shallowest parts the coal seam (Figure 

4-6b).  

Normalized mean proportions of dry pixels for each analysis area were compared against 

year of imagery (Figure 4-4). The changes in normalized mean proportion of dry pixels observed 

during the study period varied with mining history among the patch areas.  Mean dry pixel 

proportions of patches mined between 2002 – 2013 were compared to unmined forest patches with 

similar coal depths (Bailey Deep Mine, <200m and Enlow Fork Mine, >200m). Mean dry pixel 

proportions for the unmined forest patches (shallow control and deep control patch areas) differed 

in both ranges of values and trends over time (Figure 4-7A and 4-7B). The mean dry pixel values 

for the shallow control forest patches increased from 2002 to 2014, with values ranging from 0.37 

– 0.97 (Figure 4.7a). The shallow control and Bailey patches mean dry pixel proportion values

both increased through the study period (Figure 4.7). The Bailey patches also had higher mean 

proportions of dry pixels than the shallow control patches, with all mean pixel proportion values 

for all years greater than 0.72. The shallow control patches were more variable, with proportions 

for 2002, 2005, and 2013 as 0.37, 0.64, and 0.38 respectively and all other values at 0.83 and 

higher (Figure 4-7A). Enlow Fork mine was similar to the deep control patches in that the mean 

pixel proportions did not increase or decrease with time (when excluding 2013). However, the 

Enlow patches dry pixel proportion values were notably higher than the mean proportions of the 

deep control patch, with values ranging from 0.63 – 0.73 (excluding 0.20 for 2013) (Figure 4-7).  

The deep control patches had mean dry pixel proportion values ranging from 0.34 – 0.57. The 
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2013 values for the deep control patches fell within that range (Figure 4-7d). Finally, the pre-2002 

patches had the highest values of mean dry pixel proportions overall with a range of 0.96 – 1.3 

(Figure 4-7e).  There was a decreasing trend in dry hotspots over time for the pre-2002 mined 

patches (Figure 4-7e). 

4.3.2 Wet Pixel Proportions 

The normalized mean proportions of wet pixels were also compared among analysis areas, 

to detect changes in canopy moisture that might be associated with mining disturbance. 

Normalized mean wet pixel proportions in the shallow control patches decreased over time.  In 

contrast, Bailey patches did not change over time (Figure 4-8c). The Bailey patches had the lowest 

values of mean wet pixel proportions of all the patch areas with values ranging from 0.27 – 0.40 

(Figure 4.8c), while all of the shallow control pixel proportions tended to be higher and fell above 

0.5 (0.58 – 1.21) (Figure 4-8a). The deep control patches had the highest values of mean wet pixel 

proportion values, ranging from 0.94 – 1.10. In comparison, the Enlow patches had a similar trend 

but lower mean pixel proportion values (i.e. less wet) than the deep control patches (Figure 4-8d). 

The pre-2002 patch areas had the second lowest mean wet pixel proportions of all the areas with 

values between 0.33 – 0.55 and these patches increased in mean wet pixel proportion over the 

study period (Figure 4-8e).  

4.3.3 2013 as an Outlier 

The 2013 mean NDMI value for the entire scene was lower than the other five scenes, 

indicating drier canopy relative to the other imagery years (Figure 4-4). However, NDMI dynamics 
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represented in this study as normalized mean pixel proportions, varied among the patch analysis 

areas, as the Enlow and shallow control patch areas had normalized dry pixel proportion means 

lower relative to other years, indicating those regions have a relatively wetter forest canopy (Figure 

4-7). The Enlow and shallow control analysis areas also have higher normalized mean wet pixel 

proportion values for 2013 in comparison to the other analysis areas (Figure 4-8). Differences in 

wet and dry pixel proportion values between the Enlow and shallow control and the other analysis 

areas may also be due to differences in forest patch size and distribution among the analysis areas. 

Overall, based on the lower mean NDMI value for the entire scene and potential differences due 

to leaf senescence, 2013 was considered an outlier for this study and trends in the proportion of 

dry and wet pixels over time were calculated both with and without 2013 (Figures 4-7&4-8). 
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Figure 4-7: A) Normalized mean proportion of dry pixels of forest per year of imagery. B) Normalized mean 

proportion of dry pixels of forest patches for the deep control patch area, per year of imagery. C) Normalized 

mean proportion of dry pixels of forest patches for the Bailey patch area, per imagery year. D) Normalized 

mean proportion of dry pixels of forest patches overlying Enlow Fork Mine, per imagery year. E) Normalized 

mean proportion of dry pixels of forest patches for mined pre-2002 analysis area, per imagery year. Error 

bars represent the standard error of the mean. The solid line represents the trend calculated without 2013 

and the dashed line is with 2013 included. 
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Figure 4-8:  A) Mean proportion of wet pixels of forest patches overlying a shallow unmined coal seam, per 

year of imagery. B) Mean proportion of wet pixels of forest patches overlying a deep coal seam, per year of 

imagery. C) Mean proportion of wet pixels of forest patches overlying Bailey Mine, per imagery year. D) 

Mean proportion of wet pixels of forest patches overlying Enlow Fork Mine, per imagery year. E) Mean 

proportion of wet pixels of forest patches overlying coal seams mined pre-2002, per imagery year. Error bars 

represent the standard error of the mean. The solid line represents the trend calculated without 2013 and the 

dashed line is with 2013 included. The error bars represent the standard error of the mean. 
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4.3.4 Consistently Wet and Dry Areas 

Bailey and the pre-2002 patches differed substantially from the other patch areas in the 

percentage of pixels consistently categorized as significantly wetter or drier over all six years of 

imagery (Figure 4-9). Bailey and the pre-2002 patch areas had the highest percentage of pixels 

consistently categorized as “dry” over all six years used for this study (Figure 4-9).  The deep 

control and the Enlow patches were more similar to each other with 1.8% and 1.6% consistently 

dry pixels respectively and 15.3% and 15.4% consistently wet pixels respectively (Figure 4-9). 

The shallow control patches had a higher percentage of consistently wet pixels then than dry pixels 

as well, with 7.9% consistently wet and 2.2% consistently dry (Figure 4-9).  

The average value of topographic characteristics (e.g. slope and aspect) associated with 

consistently wet and dry pixels did not differ between the two groups, except for 

elevation. Consistently dry pixels occurred at lower elevations with mean elevation values per 

patch area at 350 – 375 meters, while consistently wet pixels occurred at higher mean elevations 

ranging between 400 and 450 meters (Figure 4-10). Mean elevations of the consistently wet and 

consistently dry pixels were similar across analysis areas (Figure 4-10). Elevation range and 

patch size for consistently dry pixels revealed differences at the patch scale among the analysis 

areas. Specifically, consistently dry pixels in the more developed northern part of the study 

region (Enlow and the shallow control) tend to occur higher in elevation than consistently dry 

pixels in the Bailey and pre-2002 analysis areas (Figure 4-11d & 4-11e). The broadest elevation 

ranges of consistently dry pixels occurred in the Bailey and pre-2002 analysis areas, with patches 

containing the consistently dry pixel elevation minimums lower than all other patch areas (Figure 

4-11a & 4-11b). The deep control patches also had relatively broader ranges of elevation for 

consistently dry pixels than the other patch analysis areas, but fell within a range of elevation 
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higher than those occurring in the Bailey and pre-2002 patches, potentially due to land use and 

local relief (Figure 4-11a, 4-11b, & 4-11c). In contrast, the shallow control patches and Enlow 

patches were similar in both the size distribution of patches and the elevation of the consistently 

dry pixel ranges (Figure 4-11d & 4-11e). The pixel ranges for these two patch areas were narrow 

in comparison to the ranges of the other three patch areas, and the patches were smaller (Figure 

4-11). 

Figure 4-9: Percentage of pixels consistently categorized as wet or dry within each analysis area in all six 

years of imagery used. Red represents consistently dry pixels and blue represents consistently wet pixels. 
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Consistently wet pixels seem to occur relatively higher in elevation than consistently 

dry pixels, and the elevation range of the consistently wet pixels are more similar over all the 

patch analysis areas (Figure 4-12). There was also less difference in the range of elevation of the 

persistently wet patches between patch areas than the persistent dry areas between patch areas 

(Figure 4-11 & Figure 4-12). For all 5 patch analysis areas, the consistently wet pixels are 

located at or near the topographic highs. 
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Figure 4-10: Boxplots showing elevation of the pixels consistently categorized as “wet” or “dry” for all six 

Landsat images. Consistently dry pixels (shown in red) occur at lower elevations then the consistently wet 

pixels (shown in blue). 
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Figure 4-11: Plot depicting the elevation range of pixels consistently categorized during the Getis Ord G* hot 

spot analysis as significantly dry. Each elevation range line represents a forest patch containing consistently 

dry pixels within a given stand mosaic. The red line at 350 meters is for reference, to aid comparison. A) 

Elevation range of constantly dry pixels within the Bailey patch area. B) Elevation range of constantly dry 

pixels within stands of the pre-2002 patch area. C) Elevation range of constantly dry pixels within stands of 

the deep control patch area. D) Elevation range of constantly dry pixels within stands of the shallow control 

patch area. E) Elevation range of constantly dry pixels within stands of the Enlow patch area. 
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Figure 4-12: Plot depicting the elevation range of pixels consistently categorized as significantly wet during 

the Getis Ord G* hot spot analysis. Each elevation range line represents a stand containing consistently wet 

pixels with a given stand mosaic. The red line at 350 meters is for reference, to aid comparison. A) Elevation 

range of constantly wet pixels within stands of the Bailey patch area. B) Elevation range of constantly wet 

pixels within stands of the pre-2002 patch area. C) Elevation range of constantly wet pixels within stands of 

the deep control patch area. D) Elevation range of constantly wet pixels within stands of the shallow control 

patch area. E) Elevation range of constantly wet pixels within stands of the Enlow patch area. 
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4.4 DISCUSSION 

4.4.1 Patch Fragmentation in Northern Areas 

The differences in spacing and the size of the patches within each analysis area may affect 

canopy moisture patterns and the interpretation of the results. Increased suburban development in 

the northern part of the study area has led to smaller and more widely spaced patches that occur at 

higher elevations (i.e. hilltops) within the Enlow and shallow control patch areas (Figures 4-2,4-

12, & 4-13). The smaller patch sizes may explain the low 2013 dry pixel proportions observed in 

the Enlow and shallow control areas, as wetter pixels tend to be located near or on hilltops, with 

drier pixels more commonly occurring on the hillslopes (Figure 4-8a & 4-8d). Hillslope hydrology 

differs from hilltop hydrology and a lack of forests on hillslopes makes changes in canopy moisture 

difficult or impossible to detect, particularly with respect to LMS (Figure 4-14)(Kozar et al. 2012). 

Changes to canopy moisture in LMS impacted regions with limited forest cover may not be 

comparable to regions with greater forest cover. Therefore, land use differences may have a strong 

influence on canopy moisture dynamics in the region that the Enlow and shallow control patches 

occupy, and should be considered when interpreting the results. 

4.4.2 Longwall Mining Impacts to Canopy Moisture 

Overall, mined areas were drier than unmined areas. The mined analysis areas had higher 

normalized mean dry pixel proportion values than the unmined patches, with the pre-2002 patch 

area having both the highest dry pixel proportion means and longest mining history out of all the 

patch areas. Any decreases in ground water elevation resulting from subsidence are likely to 



94 

increase the efficiency of soil water drainage and thus result in drier soils. The Bailey patch area 

had higher dry mean pixel proportions than the Enlow, shallow control, and deep control patch 

areas. Hydrological impacts of longwall mine subsidence to canopy moisture may also be 

magnified by shallower depths to the mined coal seam, as the fractured zone can extend closer to 

the surface (Bian et al. 2008; Holla 1997; Iannacchione et al. 2008; Matetic, Liu, and Elsworth 

1995). The Bailey patches were mined 2002 -2014, with a majority of the mining between 2002 

and 2010 from a shallow coal seam.  This study identified relatively higher normalized dry pixel 

proportions in these areas than in deeper mined areas. For example, in the Enlow patch area, over 

a deeper mined coal seam, dry mean pixel proportions were lower than Bailey and similar to the 

deep control mean dry pixel proportions (Figure 4-7). The dry normalized mean pixel proportions 

results indicate that a history of mining and depth to the mined coal seam influence canopy 

moisture patterns. 

4.4.3 Distinct Landscape Position of Wet and Dry Areas 

Patterns of consistently wet and dry pixels suggest that longwall mining impacts hillslope 

flow paths, particularly in mid to bottom slope areas. Persistently wet areas are generally on or 

near the hilltops for all analysis areas, while the consistently dry areas are located on the hillslopes 

(Figure 4-10).  At the patch scale, consistently dry pixels occur at different elevation ranges 

dependent on mining history (Figure 4-11). For example, patches in the mined Bailey and pre-

2002 areas occur over a broader range and at lower elevations than the other 3 areas (Figure 4-11). 

In contrast, the ranges for the Enlow patches and the shallow control patches are narrower than the 

ranges of Bailey, pre-2002, and deep control patches (Figure 4-11). This pattern is not likely due  
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Figure 4-13: The hexagonal plots depict forested pixel locations as hillslope position versus elevation. 

Figure 4-13: Each hexagon contains multiple points, with the point count increasing with increasing 

intensity in color of the pixel. The y-axis depicts hillslope position as red lines: valley (V), lower slope 

(LS), mid-slope (MS), upper slope (US), and ridge (R). The x-axis depict elevation above MSL in 

meters. Min, mean, and max) elevation of the patch area each plot represents is symbolized by a 

green, dashed, and blue line respectively.  Each plot represents a patch area: Deep Control, Shallow 

Control, Enlow, Bailey, and pre-2002. 
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3 areas (Figure 4-11). In contrast, the ranges for the Enlow patches and the shallow control 

patches are narrower than the ranges of Bailey, pre-2002, and deep control patches (Figure 4-11). 

This pattern is not likely due to difference in response to LMS.  The narrow elevation ranges eem 

to arise from land use differences, as clearing of forests for suburban development in the northern 

analysis areas results in smaller forest patches that are located relatively higher in the landscape 

(Figure 4-13). In addition, when comparing patches over similar mining depths (i.e. Bailey and 

pre-2002 patch areas to the deep control) elevation ranges of the persistently dry pixels of the 

deep control patches occur at higher positions on the hillslope then than the Bailey and pre-2002 

patches (Figure 4-11). 

In contrast to the consistently dry pixel distributions, the persistently wet pixels vary 

minimally in elevation ranges among all five analysis areas, regardless of mining history and land 

use differences (Figure 4-12). For all five patch areas, the elevation ranges at which the wet pixels 

occur are similar in both location and size (Figure 4-12). The contrast between consistently wet 

pixel vs consistently dry pixel elevation ranges suggests differences in ground water flow path 

characteristics cause differences in hydrologic response. For example, fracture networks that 

influence drainage networks and hillslope moisture conditions should react differently to 

subsidence than more intact bedrock.  

 Hillslopes of the Appalachian plateau contain networks of stress relief fractures formed by 

the down cutting of streams (Figure 4-14) (Kozar and Mccoy 2012; Wyrick and Borchers 1981). 

Recharge is thought to occur through the hilltops and then flow laterally through the shallow stress 

relief fractures toward the valley floors (McCoy and Kozar 2007; Sheets and Kozar 2000).  

Longwall mine subsidence can potentially alter these shallow subsurface flow path fracture 

networks through further extension or compression, changing established flow paths and 



97 

disturbing shallow groundwater sources (e.g. strata aquifers, Figure 4-14).  Longwall mining has 

been shown to cause a downslope shift in water supplies, with groundwater wells and springs 

located on hillslopes and on hilltops being most affected by longwall subsidence (Booth 2006; 

Elsworth and Liu 1995). In this data set the pre-2002 and Bailey patch areas have more consistently 

dry areas that are located further down slope than the control analysis areas.  In summary, LMS 

seems to generate drier areas on hillslopes and these areas seem to be further downslope when 

compared to control areas.  

Figure 4-14: Conceptual model showing watershed boundaries and ground water aquifers of the Appalachian 

plateau based on Sheets and Kozar, 2000. The model also depicts tensile and compression fractures that form 

as a result of stream erosion. The blue box represents the spatial location of the consistently wet pixels and 

the red box represents the spatial location of consistently dry pixels on the landscape. 
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4.4.4 Hydrological Healing Not Apparent 

One of the reasons that soil moisture impacts are relatively undocumented in Pennsylvania 

is that it is commonly assumed, though poorly established, that the hydrological impacts overlying 

longwall mine subsidence recover within 4-5 years following subsidence (Iannacchione et al. 

2008). The presumed phenomenon of “hydrological healing”, in which sediment deposition 

eventually reduces the increased porosity present following subsidence and re-establishes pre-

existing hydrological conditions, is not consistent with our observations. This analysis indicates 

that longwall mining effects on hydrology can persist beyond this 5-year time frame. In particular, 

areas mined before 2002 have a relatively drier tree canopy than the other four patch analysis areas, 

some of them mined more recently. Specifically, the pre-2002 patch area had the lowest mean wet 

pixel proportion values and highest mean dry pixel proportion values out of all five patch analysis 

areas (Figure 4-7e & Figure 4-8e). The pre-2002 patch area also has the most consistently dry pixel 

areas and the least consistently wet pixel areas (Figure 4-10). These results suggest that changes 

to ground water following longwall mine subsidence are more persistent and have more of an 

impact to overlying ecosystems than what is currently anticipated. 

4.4.5 Role of Geology in Consistently Wet/Dry Areas 

The bedrock geology of the study region may influence hydrology and impacts following 

longwall mine subsidence. Though most of the study region’s forests are underlain by the Greene 

formation, stream incision has exposed several other formations (Figure 4-15 & 4-16). The 
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Washington Formation underlies the Greene formation and is the bedrock for hillslopes in areas 

with deeper stream incision, particularly in the Bailey Mine and pre-2002 analysis area (Figure 4-

16). Most consistently dry areas are found within the patch areas where the Washington formation 

bedrock is exposed (Bailey and pre-2002). A 60-meter buffer on each side of the Washington 

formation upper boundary was used to identify consistently dry areas that may by hydrologically 

connected to the Washington formation (Figure 4-17). The majority of consistently dry areas 

intersect sections of hillslope underlain by the Washington Formation, with 141 over the pre-2002 

patch area and 75 located over the Bailey patch area.  This suggests the Washington Formation, 

particularly strata near the formation top, may have properties that can disproportionally increase 

groundwater drainage (and therefore soil water drainage), following  

Figure 4-15: Percentage of bedrock geology type underlying consistently wet and dry areas. Twelve 

consistently dry areas and 5 consistently wet areas were not included in the percentage calculations due 

to missing geology data. 
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Figure 4-16: Map depicting bedrock geology of the study region. The red polygons represent areas that have 

been consistently categorized as “dry” for all six years and the purple polygons represent areas that have 

been categorized as “wet” for all six years. The Bailey, Enlow, shallow control and deep control patch areas 

are outlined in black dashed lines for reference. The pre-2002 patch area is not outlined. 
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Figure 4-17:  Method of selecting forest patches potentially influenced by the upper limestone boundary of 

the Washington formation. A 60m buffer on each side of the Washington formation upper boundary is 

indicated by the red dashed lines. 
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subsidence. The upper limestone member (e.g. rock type) of the Washington Formation is 15 – 60 

cm thick and weathers easily when exposed to water (Newport 1973). Longwall mine subsidence 

may create new or enhance existing flow paths within this limestone, and enhance ground water 

drainage in areas near the limestone.  For example, 170 of the 317 consistently dry areas are within 

60 meters of limestone upper boundary of the Washington Formation. All but 16 of the 170 

consistently dry areas contacting the Washington formation are located over the Bailey and pre-

2002 mined areas, with 95 dry areas located over the pre-2002 patch area and 75 located over the 

Bailey patch area (Figure 4-16). The high prevalence of the consistently dry areas in close 

proximity to the upper boundary of the Washington Formation in mined areas indicates an 

important interaction among bedrock geology, longwall mine subsidence, and canopy moisture 

dynamics. 

4.5 IMPLICATIONS 

The patterns of canopy moisture in this study reveal previously uncharacterized 

hydrological impacts that follow longwall mine subsidence. Overall, canopy moisture dynamics 

of forest patches located in areas with a history of longwall mine subsidence are relatively drier 

than forests located in areas without longwall mine subsidence. These results indicate areas where 

longwall mining had occurred over 20 years ago, had the highest dry pixel proportions and was 

were relatively drier than the rest of the study area, contradicting conceptual models of self-

healing. Further, the distinct patterns in canopy moisture on LMS impacted hillslopes suggests 

evidence of impacts to existing fracture networks changing shallow groundwater flow crucial to  
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hillslope hydrologic regimes. Specifically, variation in the hillslope position of persistently wet 

and dry canopy areas when compared with mining histories indicates interactions among LMS, 

bedrock geology, and landscape characteristics (e.g. slope) that has reconfigured shallow 

groundwater flow paths for extended periods.  

Though longwall mining impacts remain poorly characterized in high relief regions, this 

study identifies patterns of canopy moisture across broad spatial scales that may explain important 

changes to ground and soil hydrology following LMS. These otherwise difficult to detect changes 

elucidate previously unknown relationships between forest canopy moisture, landscape 

characteristics, and longwall mine subsidence. 
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5.0  CONCLUSIONS AND SYNTHESIS 

Humans depend on forest systems to maintain the health and safety of urban environments. 

However, human impacts on forests through urbanization and industrialization, impacts that 

degrade forest benefits, occur across broad spatial scales. Therefore, to document forest response 

to urbanization, a multiple scale analytical framework is essential. This dissertation addressed 

significant challenges in our ability to detect human impacts on forests, predict changes in 

landslide risks following the loss of urban forests, and understand the coupling between hydrologic 

change and forest change in urban and industrial systems.  

The role of forests in urban hydrological processes has an extensive literature, but impacts 

of urban hydrological change on forests remain poorly documented (Pfeil-McCullough et al. 2015; 

Livesley et al. 2016). Chapter 2 characterizes forest transformation in Pittsburgh, PA since 

European settlement (and subsequent urbanization) through a comparison of pre-settlement forests 

to three surveys of contemporary forests. Comparisons between historic and contemporary forests 

revealed shifts in species type within the urban datasets assumed to arise from soil moisture 

preferences (i.e., wetland indicator species (WIS) designation). Specifically, shifts in WIS 

distributions toward higher proportions of species preferring both wetter and drier conditions 

relative to the historic dataset, indicate more spatial heterogeneity in modern soil moisture. Further, 

these shifts are observed at unexpected landscape positions. For example, trees that prefer wetter 

soil conditions are present near ridges, areas that are expected to be well drained and therefore 

drier. Shifts in WIS categories also varied with the forest history (i.e., parks, urban woodlands, or 

street trees), confirming urban hydrology, management, and spatial constraints interact to 

influence patches of urban forests differently.  Overall, shifts in forest species suggest that 
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urbanization-driven hydrological change creates new landscape conditions that ultimately change 

the spatial distribution of tree species and therefore the mix of species in urban forests.  However, 

even with major changes in species composition between historic and contemporary forests, there 

was surprising consistency in the soil moisture preferences of the trees in the forest. So while 

urbanization can increase heterogeneity in hydrological processes, the functional traits of historic 

forests are persistent and continue to influence contemporary forests. 

 These urban forests are especially important in cities with topographic relief, as vegetation 

is a primary control on slope stability (Ekanayake and Phillips 2002; Pfeil-McCullough et al. 

2015). Chapter 3 exposes a fundamental truth in spatial patterns of trees in urban systems: they 

often coincide with hillslope positions that are too steep to develop.  Therefore, they add important 

stability to hillslopes and rapid tree loss can be particularly devastating to urban systems.  Increases 

in landslide susceptibility were predicted in Pittsburgh based on several scenarios of ash loss to 

the emerald ash borer (EAB), a bark beetle that rapidly kills ash trees. Chapter 3 expands on 

available urban forestry tools (e.g. iTree, (Davey Resource Group 2012)) by applying a hillslope 

stability model (SINMAP) to predict spatially explicit changes in urban landslide susceptibility 

following EAB losses. This model provides the means to predict changes in landslide susceptibility 

following tree loss (e.g., other forest pathogens such as the Asian longhorn beetle) and increase 

the understanding of urban forest function and its role in slope stability. 

 Finally, urbanization impacts forests in many ways, including forests far outside the city.  

Chapter 4 reveals previously uncharacterized impacts of longwall mine subsidence (LMS) to forest 

health. Though LMS impacts are detectable at small spatial scales, hydrological changes are 

difficult to assess at the broad spatial scales over which longwall mining occurs. By using readily 

available Landsat imagery and hot spot analysis tools, declines in forest canopy moisture were 
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detected over longwall mines as mining progressed through time. Specifically, the results indicate 

that areas where longwall mining had occurred two decades ago were relatively drier than the rest 

of the study area, contradicting conceptual models of “self-healing” (the assumption that the 

hydrological impacts overlying LMS recover within 4-5 years following subsidence (Iannacchione 

et al. 2008)). The distinct patterns in canopy moisture on LMS impacted hillslopes provides 

evidence documenting how LMS impacts interact with existing hydrological flow paths to reroute 

shallow groundwater flow crucial to hillslope hydrologic regimes. The results of this chapter 

provide new insight into longwall mining impacts in high relief areas, particularly important but 

hard to measure changes to soil moisture following subsidence.  

Hydrological processes and forest ecosystems are closely linked, allowing for the use of 

forests as a proxy for hydrological change following the urbanization and industrialization of 

southwestern Pennsylvania. This relationship between forests and hydrology allows assessment of 

difficult to detect urban hydrological changes at broad spatial scales. This dissertation advances 

our ability to characterize changes in soil moisture patterns and forest function at the landscape 

scale. Results from this dissertation will ultimately allow improvements in the management and 

protection of both trees and water resources in urban systems and beyond. 
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