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Inspired by the fact that human brain is much more efficient than any nowadays computers, 

neuromorphic computing is aim at performing near human brain ability of processing huge amount 

of data in an extreme short time. For the hardware part, neuromorphic computing is also extended 

to systems facilitating the computation of neural network and machine learning algorithms. 

Recently, IBM Neurosynaptic system is one of the well-known project that dedicated on energy-

efficient neural network applications. However, However, one of the known issues in TrueNorth 

design is the limited precision of synaptic weights, each of which can be selected from only four 

integers. To improve the computation accuracy and reduce the incurred hardware cost, in this 

work, we investigate seven different regularization functions in the cost function of the learning 

process on TrueNorth platform. Our experimental results proved that the proposed techniques 

considerably improve the computation accuracy of TrueNorth platform and reduce the incurred 

hardware and performance overheads.  
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1.0  INTRODUCTION 

The modern computing industry is primarily constructed atop von Neumann architecture, which 

separates computation and data processing from main storage [1]. Following technology scaling, 

the increasing gap between limited memory bandwidth and large computing power offered by 

multicore microprocessors becomes prominent and starts to hinder the performance upscaling of 

computer systems [2]. Moreover, it has been shown that von Neumann architecture is not very 

efficient in processing cognitive applications that often require qualitative rather than quantitative 

results [3]. Neuromorphic computing, which denotes the VLSI systems that mimic neuro-

biological architecture, was recently attracted study as an alternative solution of von Neumann 

architecture for future computing system development. The concept of neuromorphic computing 

is also extended to systems facilitating the computation of neural network and machine learning 

algorithms [4]. Various platforms including CPUs [5], GPUs [6], FPGAs [7], and ASIC chips 

[8]are developed to satisfy different tradeoffs among performance, power, adaptability, 

programmability, and scalability. Inspired by the spiking-event driven structure of human brains, 

IBM released a special ASIC neuromorphic computing chip named TrueNorth in 2014. A 

TrueNorth chip contains 5.4 billion transistors with 4,096 neurosynaptic cores, 1 million digital 

neurons, and 256 million synapses. It is structured with 100 billion parallel computational units 

(neurons) [9]. The TrueNorth is able to achieve a peak computation of 58 Giga synaptic operations 
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per second with only 65mW in power consumption, making it extremely efficient and promising 

in neuromorphic computing applications [4]. 

The TrueNorth achieves the high computing efficiency and the large supported computing 

model scale by sacrificing the precision of the signals and data computed and propagated on the 

system. For example, all communications between the neurosynaptic cores are represented by 

binary spikes. And the synaptic weights are stored as integers with only four values [10]. The low 

resolution of the data representation induces quantization loss when mapping a trained neural 

network in floating-point data format onto a TrueNorth chip and therefore, results in inference 

accuracy degradation. To compensate the quantization loss, stochastic computing methods are 

adopted when implementing a design on TrueNorth: data is statistically represented in both 

temporal and spatial domains, i.e., using multiple spikes or hardware copies of the neural networks 

[11]. The final outcome is obtained by averaging the results of the redundant computations. Such 

a workaround prolongs the execution time and increases the required hardware resources.  

In our initial analysis on the model learning and deploying process of the TrueNorth, we found 

that except for using redundant copies to represent high-precision data, another way to reduce the 

quantization loss is to minimize the discrepancy between the trained weights and the quantized 

weights of the network. In this work, we systematically study the effect on system quantization 

when applying seven different regularization methods in the cost function of the training process 

of the TrueNorth. Our experiments show that the L1TEA regularization gives the best inference 

accuracy on the TrueNorth after quantization among all seven tested regularizations – the trained 

weights are effectively clustered around the available integer representations, significantly 

reducing the quantization loss.  
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2.0  TRUENORTH PRELIMINARY 

Figure 1 depicts the architecture of the TrueNorth chip. The chip is composed of a scalable 

network of configurable neurosynaptic cores, each of which contains memory (“synapses”), 

processors (“neurons”), and communication (“axons”) in close proximity. The inter-core 

communication is carried by all-or-none spike events over a message-passing network. The 

numbers of the neurons and the axons in a neurosynaptic core are limited at 256 and one axon in 

a core can connect to only one neurosynaptic core. The TrueNorth is physically designed to 

efficiently implement regular neural networks, which must be able to be mapped to densely 

connected 256×256 local proximities. 

 

 

Figure 1. Architecture of the TrueNorth chip. 
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Traditional neural networks often require utilization of high precision floating point 

computations, and therefore is unsuitable to low precision integer computations on the True North. 

Additionally, the state-of-the-art training algorithms also must be performed in the continuous and 

differentiable space. However, the activation information in the TrueNorth is represented as binary 

spikes; the synaptic weight at each cross-point of crossbar structure in a neurosynpatic core is 

quantized to a low-resolution integer, which is selected from only four candidates. Accordingly, 

the quantization effect is the major cause of inference accuracy degradation of the model after 

being deployed onto the TrueNorth chip.  

The current workaround [10], as illustrated in Figure 2, utilizes stochastic computing concept 

to mitigate the adverse impact of quantization in both temporal and spatial domains: 

• Temporal copying: multiple ticks of spikes are randomly sampled in a frame so that the 

math expectation of the spikes can approximate the floating-point inputs or activations;  

• Spatial copying: multiple copies of the trained neural networks are randomly instantiated 

so that the math expectation of the weights can approximate the trained floating-point 

values.  

In original mathematic representation, for example, for a neuron with input vector x, weight 

vector w, activation function f (·), the output of the neuron a can be calculated by: 

𝑦𝑦 = 𝐱𝐱𝑇𝑇𝐰𝐰, and                                                                              (1a) 

𝑎𝑎 = 𝑓𝑓(𝑦𝑦).                                                                                   (1b) 

Here y is sum of the products of respective input and weight. The McCulloch-Pitts neuron 

model that is adopted by the TrueNorth can be expressed by:  

𝑦𝑦′ = (𝐱𝐱′)𝑇𝑇 ∙ 𝐰𝐰′ , and                                                                  (2a) 

𝑎𝑎′ = �1, 𝑦𝑦′ ≥ 0
0, 𝑦𝑦′ < 0 .                                                                        (2b) 
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Where 𝐱𝐱′ and 𝑎𝑎′ are the binary spike approximations of inputs and activations, respectively. 

𝐰𝐰′ is the vector of the synaptic weights selected from four integer values, which can be either 

positive or negative (for simplicity, we only depict two integers in Figure 2).  

It is known that the accuracy of stochastic computing can be improved by raising the number 

of the temporal and/or spatial copies and averaging the result of these copies. Although the same 

tricks can be applied to the TrueNorth, say, increasing the number of ticks and network copies, 

they prolong execution time or occupy more hardware cores significantly. This intrinsic drawback 

of stochastic computing greatly hinders the scalability of the TrueNorth platform. 

 

 

Figure 2. Temporal and special copying’s of the TrueNorth. 
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3.0  METHODOLOGY 

3.1 MODEL DEPLOYMENT ON THE TRUENORTH 

As aforementioned in Section 2, the discrepancy between the trained weights and the quantized 

weights is the major cause of quantization loss of the TrueNorth. In other words, if we can 

minimize such a discrepancy, the quantization loss should be reduced accordingly.  

To better understand the generation of quantization loss, we mathematically formulate the 

quantization process on the TrueNorth as follows: Given a trained weight 𝑤𝑤𝑖𝑖  in floating-point 

format, the TrueNorth first selects one (𝑐𝑐𝑖𝑖) of four integer levels (𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3) on the synapse at the 

corresponding cross-point of the neurosynaptic core; The connectivity (ON/OFF) on the cross-

point is then randomly sampled with a sampling probability 𝑝𝑝𝑖𝑖 = 𝑤𝑤𝑖𝑖/𝑐𝑐𝑖𝑖 . Mathematically, the 

expectation of the synaptic weight (𝑤𝑤𝑖𝑖′) on TrueNorth equals the trained floating-point weights as: 

𝐸𝐸{𝑤𝑤𝑖𝑖′} = 𝑝𝑝𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖 = 𝑤𝑤𝑖𝑖
𝑐𝑐𝑖𝑖
∙ 𝑐𝑐𝑖𝑖 = 𝑤𝑤𝑖𝑖 .                                                (3) 

Based on Equation (3), the variance of 𝑤𝑤𝑖𝑖′ can be calculated by: 

𝑣𝑣𝑎𝑎𝑣𝑣{𝑤𝑤𝑖𝑖′} = 𝑐𝑐𝑖𝑖2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) = 𝑤𝑤𝑖𝑖(𝑐𝑐𝑖𝑖 − 𝑤𝑤𝑖𝑖) .                                           (4) 

Equations (3) and (4) show that there are two parameters affecting the deployment accuracy of 

the trained neural networks on the TrueNorth: the quantized weights 𝑐𝑐𝑖𝑖  and the sampling 

probability 𝑝𝑝𝑖𝑖. Since 𝑝𝑝𝑖𝑖 is a value within [0, 1], the selection of 𝑐𝑐𝑖𝑖 basically defines the bounds of 

the trained weights. 
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Figure 3. Weight distribution example of a neural network. 

 

In practice, the trained weights of the neural network are often normalized or carefully bounded 

within a range, e.g., between [–2, +2]. Figure 3 plots the weight distribution of a trained neural 

network, which is composed of 784 input neurons, one hidden layers with 300 neurons, and 10 

output classifier neurons. The weight distribution is well bounded between [–2, +2]. Four integers: 

–2, –1, +1, and +2 can be selected to represent the trained weights on the TrueNorth. For simplicity, 

in this work, we use this integer configuration in our experiments. If the values of the trained 

weights is beyond the range between [–2, +2], they can be easily normalized to the range. 

Our experiment result shows that the trained network in Figure 3 achieves a test accuracy of 

95.27%. However, after deploying the learned neural network to the TrueNorth, the test accuracy 

drops down to 90.04%. 
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3.2 ANALYSIS ON VARIANCE OF THE WEIGHTS 

Figure 4 shows the relationship between the trained floating-point weight 𝑤𝑤𝑖𝑖 and its variance on 

the TrueNorth. When the weight is between [–1, 1], 𝑐𝑐𝑖𝑖 will be selected as either –1 or 1 depending 

on the sign of the weight. The largest variance, hence, happens at 𝑤𝑤𝑖𝑖 = 0.5, leading to a variance of 

0.5. The smallest variance, which is zero, happen at –1/1 and 0. It implies that the trained weights 

of –1, 0, and 1 has no quantization loss after deployment. The corresponding 𝑝𝑝𝑖𝑖 = 1 𝑜𝑜𝑣𝑣 0 , 

respectively, at –1/1 and 0.  

When the weight 𝑤𝑤𝑖𝑖 is between [–2, –1) or (1, 2], the largest variance happens when the |𝑤𝑤𝑖𝑖| just 

slightly larger than 1. In such a case, 𝑤𝑤𝑖𝑖 has to be quantized to –2 or 2 since value of 𝑝𝑝𝑖𝑖 is bounded 

between [0, 1]. Similarly, the smallest variance, which is zero, happens at –2 and 2.  

The above analysis inspires the thinking that if we can intentionally train the weight 

distributions around the local minimums of the variance (the quantized levels in this case), we 

shall be able to reduce the accumulated variance of the weights and consequently minimize the 

quantization loss. 

 

Figure 4. Weight distribution example of a neural network. 
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3.3 ANALYSIS ON QUANTIZATION LOSS 

The above discussion shows that in TrueNorth, the quantization of weights 𝑾𝑾 is performed 

through the quantization of sampling probability at the synapse. Here 𝑾𝑾 is a 𝑚𝑚 × 𝑛𝑛 matrix. Without 

loss of generality, the discrepancy (D) between 𝑾𝑾 and the quantized values 𝑾𝑾𝒒𝒒 can be defined as: 

𝐷𝐷 = �𝑾𝑾−𝑾𝑾𝒒𝒒� = ∑ ∑ �𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑞𝑞,𝑖𝑖𝑖𝑖�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  ,                                           (5) 

where 𝑤𝑤𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑞𝑞,𝑖𝑖𝑖𝑖 are the i-th row, j-th column element of 𝑾𝑾 and 𝑾𝑾𝒒𝒒, respectively. 

Considering an extreme case that the trained weight distribution follows uniform distribution 

𝑈𝑈(0, 1), the weights in [0, 0.5) will be quantized to 0 and the weights in [0.5 , 1] will be quantized 

to 1. When 𝑾𝑾 is large enough, the sum in D can be represented as definite integration form. Thus, 

the discrepancy depicted in Equation (5) can be written as: 

𝐷𝐷 ≈ ∫ 𝑤𝑤0.5
0 𝑑𝑑𝑤𝑤 + ∫ (1 − 𝑤𝑤)1

0.5 𝑑𝑑𝑤𝑤 = 2 ∙ ∫ 𝑤𝑤0.5
0 𝑑𝑑𝑤𝑤 = 1

4
 .                            (6) 

If we can train the neural network so that the trained weights cluster around the quantized levels, 

e.g., reshape the weight distribution to the shape shown in Figure 5, the accumulated quantization 

discrepancy D’ of this new distribution can be calculated as: 

𝐷𝐷′ ≈ 2 ∙ ∫ �− 1
𝑡𝑡2
𝑤𝑤 + 1

𝑡𝑡
� ∙ 𝑤𝑤𝑡𝑡

0 𝑑𝑑𝑤𝑤 =  𝑡𝑡
6
≤ 1

12
< 𝐷𝐷 .                                     (7) 

Here 𝑡𝑡 ≤ 0.5. The results of Equations (6) and (7) proved our hypothesis discussed in 

Section 3.1, which motivated us to optimize the learning process for weight distribution reshaping.   
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Figure 5. Original weight distribution (blue) and theoretical reshaped weight distribution (red) with 𝑡𝑡 = 0.25. 

 

3.4 THE PROPOSED METHODS 

Overfitting describes the considerable accuracy drop between the training and testing processes 

of a trained neural network. It is because during training process, too many details of the training 

set are captured so that the generality of the trained model is lost. To eliminate overfitting effect 

and increase testing accuracy, regularization is introduced to the training process. In general, 

regularization can be expressed as a penalty term in the cost function of learning process as: 

 𝐽𝐽′ = 𝐽𝐽 + 𝜆𝜆 ∙ 𝑅𝑅(𝐽𝐽).                                                             (8) 

Here coefficient 𝜆𝜆  defines the significance of the regularization term and 𝑅𝑅(𝐽𝐽) is the added 

penalty on top of the original cost function 𝐽𝐽. 

Two commonly used regularizations are L1-norm and L2-norm regularizations as: 

𝑅𝑅𝐿𝐿1(𝐽𝐽) = ||𝑤𝑤||, and                                                            (9a) 

𝑅𝑅𝐿𝐿2(𝐽𝐽) = ||𝑤𝑤||2,                                                                 (9b) 
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respectively, as shown in Figure 6(a) and (b). The hypothesis behind these two 

regularization methods is that a bigger weight is likely to produce a larger impact on the system 

result. Since the object of training process is minimizing the cost function, the existence of L1-

norm or L2-norm regularizations will bias the trained weight distribution toward zero, as we shall 

show in Section 4. In other words, regularizations may be leveraged to reshape the trained weight 

distribution toward the quantized levels on the TrueNorth. 

Besides L1-norm and L-2 norm, we also try the following regularizations in the training process 

of the TrueNorth: 

1) L1TEA: a penalty curve consists of two linear curves with the highest penalty at 

the probability of 0.5. L1TEA bias the probability (𝑝𝑝𝑖𝑖) of the weight (𝑤𝑤𝑖𝑖) on the TrueNorth toward 

both 0 and 1. 

2) Sine: a penalty curve defined by sine function. Different from L1TEA, the 

derivative of Sine changes with different probability values.  

3) Circle_11: a penalty curve that is defined as a circle centered at (1, 1) with radius 

of 1. Circle_11 offers a penalty curve that is almost symmetric to L2-norm, which generally pushes 

the weight distribution to high value side; 

4) Circle_00: a penalty curve that is defined as a circle centered at (0, 0) with radius 

of 1. Similar to Circle_ 11, Circle_00 also pushes the weight distribution low value side. We note 

that Circle_00 has the highest derivative when the weight probability is 1 while Circle_11 has the 

lowest derivative when the weight probability is 1. 

5) Circle_0111: a penalty curve consists of two circle curves jointed at (0.5, 1).  

Note that in all the sub-figures in Figure 6, the x-axis is the probability 𝑝𝑝𝑖𝑖 instead of the 

actual weight value (𝑤𝑤𝑖𝑖). The y-axis is the penalty value. 
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                                        (a)                              (b)                              (c)                 

    

                       (d)                               (e)                              (f)                               (g) 

Figure 6. Four regularizations investigated in this thesis. 
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4.0  EXPERIMENTAL RESULTS 

4.1 EXPERIMENTAL SETUP 

We conducted our experiment on both the IBM Neuro Synaptic Chip Simulator and the NS1e 

development platform hardware, which contains one IBM TrueNorth chip. The handwritten digit 

classification on MINIST database is used as testbench in the work. This network utilizes 4 neuro-

synaptic cores, each of which receives a 16×16 (256 pixels) block from the image via its input 

neurons, with output axons from all neurosynaptic cores being merged to 10 output classes for 

digit classification. For use of TrueNorth, pixel values are scaled to [0, 1] and converted to spikes. 

The network is trained in Caffe (a CPU and GPU framework for deep learning [6]) and deployed 

to TrueNorth by randomly sampling synaptic connections.  

The neural network is trained by following Tea learning method integrated with the 

regularization methods. The probability distributions of synaptic weights under different training 

conditions are collected in Figure 7. And the digit recognition accuracy of these networks before 

and after deploying on the TrueNorth chip are summarized in Table 1. In the following subsections, 

we will evaluate efficiencies of these regularization functions in TrueNorth implementation. 
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4.2 BASELINE WITHOUT REGULARIZATION FUNCTION 

The baseline utilizes the original TrueNorth Tea learning method without applying any 

regularization function. As can be seen in Figure 7(a), majority of the probability values are 

spreading from 0 to 1, thought 0 and 1 has relatively higher ratio. Such a distribution indeed is 

corresponding to the hypothesis in Section 3.2.  

 Our experiment shows that the network obtained in Caffe with floating-point precision has a 

test accuracy of 95.27%. After deploying the same learned model to TrueNorth by sampling the 

connectivity of synapses with the learned connection probability 𝒑𝒑, however, the test accuracy 

quickly drops to 90.04%. Such a big accuracy loss is mainly resulted by the date quantization and 

therefore is denoted as quantization induced accuracy loss.  

The recognition accuracy can be partially compensated if instantiating more copies of the 

networks and averaging their results. However, the total neurosynaptic cores required by this 

workaround sharply increases as the design scale and complexity grow up. It is not a scalable 

solution. 

 Table 1. The Accuracy on Caffe and TrueNorth 

  Caffe TrueNorth Difference λ 
No Penalty 95.27 90.04 5.23 0 
L1-norm 95.36 89.83 5.53 10-5 
L2-norm 96.04 88.36 7.68 10-4 
L1TEA 95.03 92.78 2.25 10-4 

Sine 95.16 91.58 3.58 10-5 
Circle_0111 95.06 90.7 4.36 10-3 
Circle_11 95.06 90.2 4.86 10-3 
Circle_00 95.09 90.59 4.5 10-4 
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4.3 CONVENTIONAL REGULARIZATIONS 

L1-norm and L2-norm are widely adopted in training neural networks to eliminate the 

overfitting effect. As the two regularization methods increase the penalty of higher weight values, 

both probability distributions in Figure 7(b, c) demonstrate the trend of clustering the weights 

toward 0. The weight probability distribution obtained by applying L2-norm gradually drops as 

probability increases from 0 to 1, while applying L1-norm results in more abrupt change in 

probability distribution. This is because the penalty of L2-norm changes gradually at small weight 

values, while L1-norm follows a fixed gradient corresponding to high penalty and restriction, as 

shown in Figure 6(b, c).  

For the given example, applying L1-norm to the learning method shows similar performance as 

the baseline: the test accuracy obtained in Caffe or the TrueNorth is 95.36% or 89.83%, 

respectively. The baseline produces a slightly better result on the TrueNorth than the L1-norm 

function.  

Very interestingly, our experiment shows that when deploying the L2-norm regularization, the 

network obtained in Caffe with floating-point precision achieves the highest test accuracy of 

96.04% among all the learning methods investigated in the work. Unfortunately, the deployment 

on TrueNorth shows a test accuracy of merely 88.36%, which is the lowest result among all the 

tests. Such a big discrepancy is because a large number of weights fall into the range between 0 

and 0.5 as shown in Figure 7(c). This results in a big accuracy loss during data quantization.  
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4.4 L1TEA AND SINE REGULARIZATION 

L1TEA combines two linear curves and scores the highest penalty to the weight of 0.5. 

Accordingly, the probability of weights is pushed and converged close to 0 and 1. The scenario 

has been clearly demonstrated in Figure 7(d).  

Due to the high penalty and strong constrain of L1TEA regularization, the network obtained in 

training phase has a relatively lower test accuracy of 95.03%. However, since most of the weights 

during the training process are clamped to 0 and 1, the design suffers less on quantization induced 

accuracy loss. Its deployment on TrueNorth obtains the highest test accuracy of 92.78%. The 

accuracy difference between Caffe and TrueNorth is only 2.25%.  

The sine regularization follows the similar attempt as L1TEA and therefore demonstrates 

similar weights distribution, as shown in Figure 7(e). The major difference is the hill shape 

concentrated in the range from 0.4 to 0.6 in probability distribution. This comes from the intrinsic 

characteristic of the sine function – the zero gradient at the peak. Thus, it is difficult to push the 

probability at (or close to) the peak to another specific value. 

The sine function has a positive effect to TrueNorth. It is the second best among all the functions 

being used. It raises the accuracy of TrueNorth implementation to 91.58%, which is 1.54% higher 

than that of the baseline.  
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                               (a)                           (b)                           (c)                           (d) 

 

                                (e)                           (f)                           (g)                           (h) 

Figure 7. Probability distribution. (a) Without penalty (b) L1-norm (c) L2-norm (d) L1TEA (e) Sine 

function (f) Circle_00 (g) Circle_11 (h) Circle_0111. 

4.5 CIRCLE REGULARIZATIONS 

The circle_00 function attempts to push the weight probability toward the point of 1. The 

experimental result in Figure 7(f), however, shows that it is not able to diverge the small probability 

value (less than 0.72) to 1. The explanation is that the gradient of penalty function from 0 to 0.72 

is too small to penalize the weight. The gradient of large value is big enough to realize the 

penalization.  

The circle_11 function utilizes the similar concept as the circuit_00, except it tends to squeezes 

the weight probability to 0. Accordingly, Figure 7(g) shows a similar trend as the results in Figure 
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7(f). The regularization functions works fine for smaller probability but is not successful as the 

probability is larger than 0.36.  

The circle_0111 function tends to restrain the probability to 0, 0.37, 0.65 and 1. There is a high 

peak at 0.37, which means that many probability was lower than 0.5 before regularization.  

Based on the weight probability distributions, none of the three circle functions investigated in 

the work can obtain (even close to) binary data regularization. The performance of the 

corresponding TrueNorth implementations is almost same as the accuracy obtained by the baseline 

design without applying any penalty function. 
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5.0  CONCLUSION AND FUTURE WORK 

The release of IBM Neurosynaptic System announces a new age of commercial semiconductor 

neuromorphic computing chip. Although very comprehensive software and simulators are 

provided to ease the adoption of the TrueNorth, there still exist many rooms for further 

improvement. As one example presented in this work, quantization loss of the TrueNorth can be 

reduced by reshaping the distribution of the trained weights to cluster around the quantized levels. 

We systematically study the effects of using different regularization terms in the learning process 

of the TrueNorth. Among the seven tested options, L1TEA function offers the best post-

deployment inference accuracy on the TrueNorth. Experiment results also show that such an 

accuracy improvement can be translated to performance enhancement or hardware cost reduction. 
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