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ANALYSIS AND GEOMETRY IN METRIC SPACES:

SOBOLEV MAPPINGS,

THE HEISENBERG GROUP,

AND THE WHITNEY EXTENSION THEOREM

Scott Zimmerman, PhD

University of Pittsburgh, 2017

This thesis focuses on analysis in and the geometry of the Heisenberg group as well as

geometric properties of Sobolev mappings. It begins with a detailed introduction to the

Heisenberg group. After, we see a new and elementary proof for the structure of geodesics in

the sub-Riemannian Heisenberg group. We also prove that the Carnot-Carathéodory metric

is real analytic away from the center of the group.

Next, we prove a version of the classical Whitney Extension Theorem for curves in the

Heisenberg group. Given a real valued function defined on a compact set in Euclidean space,

the classical Whitney Extension Theorem from 1934 gives necessary and sufficient conditions

for the existence of a Ck extension defined on the entire space. We prove a version of the

Whitney Extension Theorem for C1, horizontal curves in the Heisenberg group.

We then turn our attention to Sobolev mappings. In particular, given a Lipschitz map

from a compact subset Z of Euclidean space into a Lipschitz connected metric space, we

construct a Sobolev extension defined on any bounded domain containing Z.

Finally, we generalize a classical result of Dubovitskĭı for smooth maps to the case of

Sobolev mappings. In 1957, Dubovitskĭı generalized Sard’s classical theorem by establishing

a bound on the Hausdorff dimension of the intersection of the critical set of a smooth map

and almost every one of its level sets. We show that Dubovitskĭı’s theorem can be generalized

to W k,p
loc (Rn,Rm) mappings for all positive integers k and p > n.
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1.0 INTRODUCTION

This thesis is composed of four original papers created during my time as a graduate student

at the University of Pittsburgh. These results are summarized here.

1.1 GEODESICS IN THE HEISENBERG GROUP

The sub-Riemannian Heisenberg group H1 is R3 given the structure of a Lie group via the

introduction of a smooth group operation. This group operation induces a basis of left

invariant vector fields {X, Y, T} on R3. We use this basis of vector fields to define a smooth

distribution of 2-dimensional planes in the 3-dimensional tangent space at any point p in R3

as the span of X(p) and Y (p). An absolutely continuous curve in R3 is horizontal if it lies

tangent to this distribution almost everywhere.

Intuitively, a curve in space is horizontal if its velocity is restricted to a particular 2-

dimensional plane at almost every time. That is, the motion of a horizontal curve must

almost everywhere be some combination of movement in the direction of X and movement

in the direction of Y . Such a restriction is very natural. For example, a person on a bicycle

can cycle forward and backward or rotate their front tire at some angle. Any motion of the

bicycle must be some combination of these two movements.

This Lie group structure, 2n-dimensional distribution, and notion of horizontality may

be similarly defined in higher dimensions to construct the Heisenberg group Hn from R2n+1.

We give Hn a metric space structure via the usual Carnot-Carathéodory metric dcc defined

as the infimum of lengths of horizontal curves connecting any two given points. Any two

points in Hn may be connected by a horizontal curve (see Theorem 26) so dcc is indeed a
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metric.

In particular, there is a shortest curve (that is, a geodesic) connecting any two points in

Hn. In H1, it can easily be shown that any geodesic from the origin to a point on the vertical

axis must project down to a circle on the xy-plane. Indeed, this result follows from the

classical isoperimetric inequality and Green’s theorem. Any geodesic in H1 can be obtained

from one described here by applying left multiplication in the group operation. However,

such a simple geometric argument does not easily generalize to the higher dimensional case.

In Chapter 4, we determine the structure of geodesics in Hn via an explicit parameter-

ization as seen in Theorem 35. Such parameterizations have been previously established,

but previous proofs rely on the Pontryagin maximum principle [5, 10, 73]. We provide a

new and more geometric proof involving a version of the isoperimetric inequality in R2n (see

Theorem 38). The proof is similar to that of the classical isoperimetric inequality in the

plane given by Hurwitz [53] and relies strongly on Fourier series.

Moreover, in this chapter we see that the Carnot-Carathéodory metric is real analytic

away from the vertical axis (Theorem 42). Monti showed in [72, 73] that the metric is C∞

smooth away from the vertical axis, but real analyticity of the metric is an original result.

From the proof of this result, we find an implicit formula for the CC-metric (Corollary 43).

Recent advances regarding geodesics in Hn and the analyticity of the CC-metric can be found

in the article by Ritoré [78].

In H1, geodesics connecting the origin to a fixed point on the vertical axis can all be

mapped onto one another via a rotation about this axis. Chapter 4 concludes with a similar

type of result. Proposition 44 allows us to obtain any geodesic connecting the origin in Hn

to a point on the (2n+ 1)st axis via a rotation in R2n+1 about this axis.

1.2 THE WHITNEY EXTENSION THEOREM FOR HORIZONTAL

CURVES IN THE HEISENBERG GROUP

Chapter 5 focuses again on curves in the Heisenberg group. The classical Whitney Extension

Theorem from 1934 [94] established a necessary and sufficient condition for the existence
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of a Ck extension of a real-valued, continuous function defined on a compact set in Rm.

Whitney’s theorem has found applications in the construction of pathological mappings [93]

and in the approximation of Lipschitz mappings by C1 maps [29, Theorem 3.1.15]. These

approximations appear in the study of rectifiability which has had recent popularity in the

setting of the Heisenberg group.

In 2001, Franchi, Serapioni, and Serra Cassano [32] proved a C1 version of the Whitney

extension theorem for real valued functions on the Heisenberg group. We would like to prove

a version of Whitney’s theorem for mappings into the Heisenberg group. That is, given a

continuous mapping f : K → Hn defined on a compact set K ⊂ Rm, under what conditions

does f have a Ck, horizontal extension F defined on all of Rm? Here, differentiability of F

is defined in the classical sense as a mapping into R2n+1. Clearly, if a smooth, horizontal

extension F of f exists, then f must already satisfy Whitney’s classical condition. However,

we will see in Proposition 48 that Whitney’s condition alone is not enough. Moreover, in

Proposition 49, we establish a restriction on vertical growth that any C1, horizontal curve

in Hn necessarily satisfies.

Theorem 50 in Chapter 5 establishes a version of Whitney’s theorem for C1 curves in

the Heisenberg group. More precisely, we find a necessary and sufficient condition for the

existence of a C1, horizontal extension of a continuous mapping into Hn defined on a compact

subset of R. Theorem 52 is a rewording of Theorem 50 in terms of the Pansu derivative [75].

As an application of this result, we prove a version of the Lusin approximation for Lipschitz

curves in Hn proven previously by Speight [81]. That is, we show that any Lipschitz curve

in the Heisenberg group is equal to a C1, horizontal curve up to a set of arbitrarily small

measure.

1.3 SOBOLEV EXTENSIONS OF LIPSCHITZ MAPPINGS INTO METRIC

SPACES

In Chapter 6, we continue to explore the existence of extensions of mappings into the Heisen-

berg group. Suppose X and Y are metric spaces and f : X ⊃ A→ Y is L-Lipschitz. Much

3



work has been done historically to determine when one may extend f to a CL-Lipschitz map

defined on X (for a constant C ≥ 1) [17, 28, 54, 61, 62, 63, 90, 91]. It is known that such

an extension always exists when Y is R [69], when Y is a Banach space and A is a finite set

[54], or when X and Y are both Hilbert spaces [86].

We say that a metric space Y is Lipschitz (n− 1)-connected if there is a constant γ ≥ 1

so that any L-Lipschitz map f : Sk → Y on the k-dimensional sphere has a γL-Lipschitz

extension F : Bk+1 → Y on the (k+ 1)-ball for k = 0, 1, . . . , n− 1. Lang and Schlichenmeier

[61] proved that there is a constant C ≥ 1 such that any L-Lipschitz map from a closed set

A ⊂ X into a Lipschitz (n− 1)-connected space Y has a CL-Lipschitz extension as long as

X has Assouad-Nagata dimension at most n. (See [6, 61, 91] for more information about

AN dimension.) Wenger and Young [91] proved this Lipschitz extension result for Lipschitz

mappings into the Heisenberg group Hn with the same dimension restriction on X.

This Lipschitz extension result fails, however, when the dimension of the domain is too

large. Balogh and Fässler [7] constructed a Lipschitz map from the n-sphere into Hn which

has no Lipschitz extension defined on the (n + 1)-ball. Thus, one cannot hope to construct

a Lipschitz extension in general from a subset of Rm into Hn.

However, we show in Chapter 6 that, if Ω ⊂ Rm is a bounded domain, then any Lipschitz

mapping from a compact subset of Ω into the Heisenberg group Hn has a Sobolev extension

in the class W 1,p(Ω,Hn) for 1 ≤ p < n+ 1 regardless of the dimension m. Moreover, we have

a bound on the Sobolev norm of the first 2n components of the mapping in terms of the

Lipschitz constant. These are the contents of Theorem 63. Here, W 1,p Sobolev regularity

means that the extension is in the classical Sobolev space W 1,p(Ω,R2n+1) and satisfies a weak

horizontality condition (6.1). The restriction on p is sharp in the sense that the theorem

fails when p = n+ 1 (see Proposition 64).

Further, we will see in Theorem 66 that this extension result holds in more generality.

That is, any Lipschitz mapping from a compact subset of Ω into any Lipschitz (n − 1)-

connected metric space Y has an extension in the class AR1,p(Ω, Y ) for 1 ≤ p < n + 1.

Again there is no restriction on the dimension, and we have a bound on the “slope” of

the extension. The class AR1,p(Ω, Y ) is the set of Ambrosio-Reshetnyak-Sobolev mappings

defined in Section 6.1 and first introduced in [4, 76].
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1.4 THE DUBOVITSKII-SARD THEOREM IN SOBOLEV SPACES

Chapter 7 continues the study of Sobolev mappings. Consider a mapping f : Rn → Rm. If f

is of class Ck for k > max(n−m, 0), the famous theorem of Sard from 1942 [79] demonstrates

that the set of critical values of f has m-dimensional Lebesgue measure zero. The regularity

k in Sard’s result is optimal [24, 37, 43, 55, 66, 93].

In 1957, Dubovitskĭı [24] proved a generalization of Sard’s result (seemingly without any

knowledge of the previous theorem). He showed that the intersection of the critical set of

a Ck mapping f : Rn → Rm with the level set f−1(y) has (n − m − k + 1)-dimensional

Hausdorff measure zero for m-almost every y ∈ Rm.

The theorem of Sard has been generalized in recent years to apply to the class of Sobolev

mappings. See, for example, [2, 12, 13, 14, 21, 31, 59, 87]. One such generalization was

proven in 2001 by De Pascale [21]. He showed that the critical values of any map in the

class W k,p
loc (Rn,Rm) has m-dimensional Lebesgue measure zero when k > max(n−m, 0) and

n < p < ∞. Notice that, since p > n, the Sobolev mapping is actually in the class Ck−1 as

a result of the Morrey inequality.

In Theorem 84, we find a generalization of Dubovitskĭı’s result to the Sobolev class in

the sense of De Pascale’s result. That is, we show that the intersection of the critical set

of f ∈ W k,p
loc (Rn,Rm) with the level set f−1(y) has (n −m − k + 1)-dimensional Hausdorff

measure zero for m-almost every y ∈ Rm when n < p <∞.

De Pascale’s proof of the Sard theorem for Sobolev maps relies on a version of the classical

Morse Theorem [74] which decomposes the critical set of a mapping into pieces on which

difference quotients converge quickly. Some proofs of the classical Sard theorem [1, 65, 70, 84]

utilize the Kneser-Glaeser Rough Composition theorem [35, 57] (see Theorem 86). This is

the method that Figalli used in 2008 to reprove De Pascale’s version of the Sard theorem. In

the proof of Theorem 84, we also rely on this Kneser-Glaeser result. A proof of this classical

theorem is then given at the end of the chapter.
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2.0 PRELIMINARY NOTIONS

2.1 METRIC SPACES AND THEIR PROPERTIES

Throughout the thesis, the symbol C will be used to represent a generic constant, and the

actual value of C may change in a single string of estimates. By writing C = C(n,m), for

example, we indicate that the constant C depends on n and m only.

Definition 1. A metric space is an ordered pair (X, d) where X is a set and d : X ×X →

[0,∞) is a function (called a metric) satisfying the following for every x, y, z ∈ X:

1. d(x, y) = d(y, x),

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) ≤ d(x, z) + d(z, y).

We simply write the metric space X if the metric d is understood.

For any x ∈ X and r > 0, we will call B(x, r) = {y ∈ X : d(x, y) < r} the open ball in

X centered at x with radius r. Given any A ⊂ X, the diameter of A equals

diam (A) := sup{d(x, y) : x, y ∈ A}.

Suppose (X, dX) and (Y, dY ) are metric spaces.

Definition 2. A mapping f : X → Y is L-Lipschitz continuous for L ≥ 0 if

dY (f(a), f(b)) ≤ LdX(a, b) for every a, b ∈ X.

We say f : X → Y is α-Hölder continuous for α > 0 if there is C ≥ 0 with

dY (f(a), f(b)) ≤ C dX(a, b)α for every a, b ∈ X.

6



We call the collection P(X) of all subsets of X the power set of X.

Definition 3. An outer measure µ on X is a mapping µ : P(X) → [0,∞] satisfying the

following:

1. µ(∅) = 0,

2. if A,B ∈ P(X) with A ⊂ B, then µ(A) ≤ µ(B),

3. for any sequence {Aj} in P(X), we have

µ

(
∞⋃
j=1

Aj

)
≤

∞∑
j=1

µ(Aj).

.

Throughout the thesis, we will consider a very special outer measure. Define for any

s ≥ 0, δ > 0, and A ⊂ X

Hs
δ(A) := inf

{
∞∑
j=1

(diamUj)
s : A ⊂

∞⋃
j=1

Uj, diam (Uj) < δ

}
.

Notice that Hs
δ(A) is non-decreasing as δ → 0 as we are taking infima over smaller and

smaller sets.

Definition 4. The s-dimensional Hausdorff measure Hs is defined for any A ⊂ X as

Hs(A) := lim
δ→0+

Hs
δ(A).

The Hausdorff measure is indeed an outer measure. We say that a set is s-null if its

s-dimensional Hausdorff measure equals zero. In the special case s = 0, H0 is simply

the counting measure. The Hausdorff measure is a natural generalization of the Lebesgue

measure Ln on Rn in the following sense: for any A ⊂ Rn,

Ln(A) = 2−nωnHn(A)

where ωn = πn/2Γ(n
2

+ 1)−1 is the volume of the unit n-ball. Occasionally, we will write

|A| to represent the Lebesgue measure of a set A ⊂ Rn when the dimension of the space is

understood.
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The Hausdorff measure allows us to extend the notion of dimension to any metric space.

Suppose A ⊂ X. It easily follows from the definition of the Hausdorff measure that, if Hs(A)

is non-zero for some s > 0, then Ht(A) =∞ for t ∈ (0, s). Similarly, if Hs(A) is finite, then

Ht(A) = 0 for t ∈ (s,∞). This allows us to define the following:

Definition 5. The Hausdorff dimension of A ⊂ X is

dimH A = inf{s ≥ 0 : Hs(A) = 0}.

Here, we use the convention inf ∅ =∞.

2.1.1 Curves in metric spaces

In this subsection, we will state some properties of curves in metric spaces without proof.

For proofs of these results and more details, see Section 3 of [42] and Chapter 5 of [52].

Definition 6. A curve in a metric space (X, d) is a continuous map Γ : [a, b] → X. The

length of a curve Γ is defined to be

`d(Γ) = sup
n−1∑
i=0

d(Γ(si),Γ(si+1)),

where the supremum is taken over all n ∈ N and all partitions a = s0 ≤ s1 ≤ . . . ≤ sn = b.

We say that a curve Γ is rectifiable if `d(Γ) <∞. The classical notion of “speed” carries

over to the metric space case in the following sense:

Definition 7. For a curve Γ : [a, b]→ X, the speed of Γ at t ∈ (a, b) is

|Γ̇|d(t) := lim
h→0

d(Γ(t+ h),Γ(t))

|h|

whenever this limit exists.

Theorem 8. If a curve Γ : [a, b] → X is Lipschitz, then the speed |Γ̇|d exists almost every-

where and

`d(Γ) =

∫ b

a

|Γ̇|d(t) dt.

8



With any rectifiable curve Γ we may associate a length function sΓ : [a, b] → [0, `d(Γ)]

defined as

sΓ(t) = `(Γ|[a,t]) for any t ∈ [a, b],

and this provides us with the following important reparametrization.

Theorem 9. If Γ : [a, b] → X is a rectifiable curve, then there is a unique curve Γ̃ :

[0, `d(Γ)] → X (called the arc-length parameterization of Γ) so that Γ = Γ̃ ◦ sΓ. Moreover,

`d(Γ̃|[0,t]) = t for any t ∈ [0, `d(Γ)] (so Γ̃ is 1-Lipschitz), and | ˙̃Γ|d = 1 almost everywhere.

2.2 SOBOLEV MAPPINGS

Detailed proofs of the results in this section may be found in [27].

2.2.1 Sobolev mappings on Euclidean space

Consider an open subset Ω ⊂ Rm. Say L1
loc(Ω) is the space of locally integrable functions on

Ω. That is, f ∈ L1
loc(Ω) if f |K ∈ L1(K) for every compact K ⊂ Ω. Here, f |K denotes the

restriction of f to the set K. Also, denote by C∞0 (Ω) the space of infinitely differentiable

functions with compact support in Ω.

Definition 10. For f ∈ L1
loc(Ω) and 1 ≤ i ≤ m, we say that gi ∈ L1

loc(Ω) is the weak (or

distributional) partial derivative of f with respect to xi in Ω if

∫
Ω

f
∂φ

∂xi
dx = −

∫
Ω

giφ dx

for every φ ∈ C∞0 (Ω).

Assuming the weak partial derivatives of f ∈ L1
loc(Ω) exist, we will denote them as ∂f/∂xi

for i = 1, . . . ,m and write ∇f for the m-vector consisting of the weak partial derivatives of

f . Since the weak partial derivatives are themselves functions, we may consider weak partial

derivatives of higher order as well. By Dαf we will denote the weak partial derivative of

f with respect to the multiindex α = (α1, . . . , αm). In particular Dδif = ∂f/∂xi where
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δi = (0, . . . , 0, 1, 0, . . . , 0) is a multiindex with 1 in the ith position. Also |α| = α1 + . . .+ αm

and α! = α1! · · ·αm!. Dkf will denote the vector whose components are the derivatives Dαf ,

|α| = k. Note that D0f = f .

Definition 11. The Sobolev space W 1,p(Ω), 1 ≤ p ≤ ∞ consists of those real valued functions

f ∈ Lp(Ω) whose distributional partial derivatives ∂f/∂xi are also functions in Lp(Ω) for

i = 1, . . . ,m. Moreover, for any positive integer k and 1 ≤ p ≤ ∞, we may define W k,p(Ω)

to be the class of all f ∈ Lp(Ω) so that Dαf ∈ Lp(Ω) for any n-multiindex with |α| ≤ k.

For any f ∈ W k,p(Ω), define

‖f‖Wk,p(Ω) =
∑
|α|≤k

‖Dαf‖Lp(Ω).

Elements of W k,p
loc (Ω) are those functions in Lploc(Ω) whose weak partial derivatives up to

order k also lie in Lploc(Ω).

The Sobolev space W k,p(Ω,Rn) consists of mappings f : Ω → Rn whose component

functions are members of W k,p(Ω). Occasionally, Df will be used to denote the matrix

composed of the weak partial derivatives of the components of f .

2.2.2 The ACL characterization of Sobolev mappings

Definition 12. For an interval I ⊂ R, we say that a function f : I → R is absolutely

continuous if, for every ε > 0, there is a δ > 0 so that, given any pairwise disjoint, finite

collection {(ai, bi)}Ni=1 of subintervals of I satisfying

N∑
i=1

(bi − ai) < δ,

we have
N∑
i=1

|f(bi)− f(ai))| < ε.
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For an open set U ⊂ R, say f : U → R is locally absolutely continuous if f is absolutely

continuous on any compact interval in U .

Suppose Ω is a domain in Rm. (That is, Ω ⊂ Rm is open and connected.) Call ACL(Ω)

the space of all measurable real valued functions f on Ω so that, for (m − 1)-almost every

line ¯̀ parallel to a coordinate axis, the restriction of f to ` = ¯̀∩ Ω is locally absolutely

continuous. The notation “ACL” is shorthand for “absolutely continuous on lines.” The

partial derivatives of f ∈ ACL(Ω) exist almost everywhere in Ω in the classical sense.

Definition 13. Say f ∈ ACLp(Ω) if f ∈ ACL(Ω) and if f and |∇f | are in Lp(Ω). Say

f ∈ ACLp(Ω,Rn) if each of the component functions of f is in ACLp(Ω).

The following geometric characterization of Sobolev mappings will be important through-

out the thesis.

Lemma 14. Suppose 1 ≤ p <∞. Then W 1,p(Ω) = ACLp(Ω).

For a proof, see [95, Theorem 2.1.4]. In particular, if f ∈ W 1,p(Ω), then there is some

representative f̃ of f (i.e. f̃ and f differ on a set of measure zero) for which f̃ ∈ ACLp(Ω).

Conversely, if f ∈ ACLp(Ω), then f ∈ W 1,p(Ω) and the weak partial derivatives of f equal

the classical partial derivatives almost everywhere.

2.2.3 Approximation by smooth functions

Several properties of Sobolev maps require the boundary of the domain to be regular in some

sense. We will now see one example of this regularity. For any r > 0 and x ∈ Rm, say

Q(x, r) = {y ∈ Rm : |xj − yj| < r, j = 1, . . . ,m}

is the cube around x with side length 2r.

Definition 15. Suppose Ω ⊂ Rm is a bounded domain. Say Ω is a Lipschitz domain if, for

every x ∈ ∂Ω, ∂Ω is the graph of a Lipschitz map near x. That is, there is some r > 0 and

a Lipschitz h : Rm−1 → R so that (after rotating and relabeling the coordinate axes)

Ω ∩Q(x, r) = {y ∈ Rm : h(y1, . . . , ym−1) < ym} ∩Q(x, r).
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We now have the following important result which states that the Sobolev space is the

completion of smooth maps under the Sobolev norm.

Theorem 16. Suppose Ω ⊂ Rm is a domain and f ∈ W 1,p(Ω) for 1 ≤ p < ∞. Then there

is a sequence {fi} in W 1,p(Ω) ∩ C∞(Ω) so that

‖fi − f‖W 1,p(Ω) → 0 as i→∞.

If Ω is a bounded Lipschitz domain, then we may choose an approximating sequence in

W 1,p(Ω) ∩ C∞(Ω).

2.2.4 Trace and extensions

One considers the restriction of a function to the boundary of its domain when solving

boundary value problems. However, since Sobolev functions are defined almost everywhere

in their domain (due to the equivalence relation on Lp), we cannot restrict the map to the

boundary of the domain, as it may not be defined there. Instead, we consider the trace of

the mapping.

Theorem 17. Assume Ω is a bounded Lipschitz domain and 1 ≤ p < ∞. Then there is a

bounded, linear operator

T : W 1,p(Ω)→ Lp(∂Ω,Hm−1)

called the trace operator so that

Tf = f |∂Ω for every f ∈ W 1,p(Ω) ∩ C(Ω).

The trace function Tf is uniquely defined up to Hm−1-null sets on ∂Ω. We also have

the following: if {fi} is any sequence in C∞(Ω) converging to f in W 1,p(Ω), then {fi|∂Ω}

converges in Lp(∂Ω,Hm−1), so we can define Tf := limi→∞ fi|∂Ω (and this is independent of

the approximating sequence). Thus, while we cannot always describe the boundary values

of a Sobolev map f , we may define the trace of f as the limit of the boundary values of an

approximating sequence.

Complementary to the restriction of a Sobolev map, we also may consider the extension

of a Sobolev map. This will be a focus of Chapter 6.
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Theorem 18. Assume Ω is a bounded Lipschitz domain and 1 ≤ p < ∞. Then there is a

bounded, linear operator

E : W 1,p(Ω)→ W 1,p(Rm)

called the extension operator so that

Ef = f on Ω for all f ∈ W 1,p(Ω).

13



3.0 THE HEISENBERG GROUP

Below, we introduce the sub-Riemannian Heisenberg group Hn and give many important

definitions and geometric properties.

3.1 THE FIRST HEISENBERG GROUP

The Heisenberg group is defined as H1 = C× R = R3 with the group law

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2 imzz′) = (x+ x′, t+ y′, t+ t′ + 2(yx′ − xy′)).

Here z = x + iy, z′ = x′ + iy′. Clearly 0 = (0, 0) ∈ C × R is the identity element and

(z, t)−1 = (−z,−t). The Heisenberg group is an example of a Lie group.

Left multiplication by (z, t) ∈ H1

`(z,t) : H1 → H1, `(z,t)(z
′, t′) = (z, t) ∗ (z′, t′)

defines a diffeomorphism of R3.

A vector field X on H1 = R3 is said to be left invariant if

d`(z,t) ◦X = X ◦ `(z,t) for all (z, t) ∈ H1.

In other words

d`p(X(q)) = X(p ∗ q) for all p, q ∈ H1.
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Any left invariant vector field is uniquely determined by its value at the identity element

which is, in our case, the origin. That means the class of left invariant vector fields can be

identified with the tangent space to H1 at 0

h1 = T0H1.

The vectors ∂
∂x

, ∂
∂y

, ∂
∂t

form a basis of h1. We will show now how to find corresponding left

invariant vector fields:

X(z, t) = d`(z,t)

( ∂
∂x

∣∣∣
0

)
, Y (z, t) = d`(z,t)

( ∂
∂y

∣∣∣
0

)
, T (z, t) = d`(z,t)

( ∂
∂t

∣∣∣
0

)
.

Recall that

`(z,t)(z
′, t′) = (x+ x′, y + y′, t+ t′ + 2(yx′ − xy′).

Hence1

d`(z,t) =


1 0 0

0 1 0

2y −2x 1


Thus

X(x, y, t) = d`(z,t)

( ∂
∂x

∣∣∣
0

)
=


1 0 0

0 1 0

2y −2x 1




1

0

0

 =


1

0

2y

 =
∂

∂x
+ 2y

∂

∂t
.

Similarly we find the other two vector fields. This yields

Lemma 19. The vector fields

X(x, y, t) =
∂

∂x
+ 2y

∂

∂t
, Y (x, y, t) =

∂

∂y
− 2x

∂

∂t
, T (x, y, t) =

∂

∂t

are left invariant and form a basis of left invariant vector fields on the Heisenberg group H1.

1We differentiate with respect to x′, y′, t′ and the point (x, y, t) is fixed.
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These left invariant vector fields turn h1 into a Lie algebra with respect to the commutator

operation [X, Y ] = XY −Y X. Easy calculations show all of the commutator relations in h1:

(3.1) [X, Y ] = XY − Y X = −4T, [X,T ] = 0, [Y, T ] = 0.

Observe that the Jacobian determinant of the left translation diffeomorphism `(z,t) equals 1

for all (z, t). That is, volume is preserved under left translation, so the Lebesgue measure

in R3 is the left invariant Haar measure in H1. Similarly, one can check that the Lebesgue

measure is also the right invariant Haar measure. Thus we proved

Theorem 20. The Lebesgue measure on R3 is a bi-invariant Haar measure on H1.

For r > 0 we define the dilation

δr : H1 → H1, δt(z, t) = (rz, r2t).

Lemma 21. The dilations form a group of automorphisms of the group H1. Since the

Jacobian of δr equals r4, we have that

|δr(E)| = r4|E| for any measurable set E ⊂ R3.

Here and in what follows |E| stands for the Lebesgue measure of a set E.
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3.1.1 Other ways to define the Heisenberg group

Consider the group H̃1 of upper triangular matrices
1 y t

0 1 x

0 0 1

 , x, y, t ∈ R

with respect to matrix multiplication. We will show that the groups H1 and H̃1 are iso-

morphic. That is, this group of matrices provides an alternate definition of the Heisenberg

group.

Since 
1 y t

0 1 x

0 0 1




1 y′ t′

0 1 x′

0 0 1

 =


1 y + y′ t′ + yx′ + t

0 1 x′ + x

0 0 1

 ,

the group H̃1 can be identified with R3 equipped with the group law

(x, y, t)⊗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + yx′).

One can easily check that the mapping

φ : H̃1 → H1

φ(x, y, t) = (x, y, 4t− 2xy)

is the desired group isomorphism.

The left invariant vector fields on H̃1 are

X̃ =
∂

∂x
+ y

∂

∂t
, Ỹ =

∂

∂y
, T̃ =

∂

∂t
,

and we have

dφ(X̃) = X, dφ(Ỹ ) = Y, dφ(T̃ ) = 4T.

Indeed,

dφ =


1 0 0

0 1 0

−2y −2x 4

 ,
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so

dφ(X̃) =


1 0 0

0 1 0

−2y −2x 4




1

0

y

 =


1

0

−2y + 4y

 =
∂

∂x
+ 2y

∂

∂t
= X

dφ(Ỹ ) =


1 0 0

0 1 0

−2y −2x 4




0

1

0

 =


0

1

−2x

 =
∂

∂y
− 2x

∂

∂t
= Y

dφ(T̃ ) =


1 0 0

0 1 0

−2y −2x 4




0

0

1

 =


0

0

4

 = 4
∂

∂t
= 4T.

That is, dφ maps a basis of left invariant vector fields {X̃, Ỹ , T̃} onto a basis of left invariant

vector fields {X, Y, 4T}.

3.1.2 Why we call it the Heisenberg group

Heisenberg originally wrote the bracket relations (3.1) in his formulation of quantum me-

chanics. In his work, X, Y , and T are self-adjoint operators on a Hilbert space. The operator

X corresponds to a measurement of position, Y corresponds to a measurement of momen-

tum, and T is a multiple of the identity operator. Heisenberg did not actually construct the

Heisenberg group but rather its Lie algebra. Any Lie algebra uniquely determines a con-

nected, simply connected Lie group. Herman Weyl was the first to construct the Lie group

associated with Heisenberg’s Lie algebra in order to explain the mathematical equivalence

of Schrödinger’s and Heisenberg’s approaches to quantum mechanics [92]. For this reason,

physicists often refer to this Lie group as the Weyl group, while mathematicians call it the

Heisenberg group.
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3.1.3 Higher dimensional generalizations

For any positive integer n, we define the Heisenberg group Hn = Cn × R = R2n+1. We may

generalize the notions of the group law, inverses, and dilations from H1 to Hn as follows for

any (z, t) ∈ Cn × R and r > 0:

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2 im
n∑
j=1

zjz
′
j) = (x+ x′, t+ y′, t+ t′ + 2

n∑
j=1

(yjx
′
j − xjy′j))

(z, t)−1 = (−z,−t)

δr(z, t) = (rz, r2t)

|δr(E)| = r2n+2|E|

As before, the dilations δr form a group of automorphisms, and the Lebesgue measure is a

bi-invariant Haar measure on Hn.

A basis of left invariant vector fields is given at any point (x1, y1, . . . , xn, yn, t) ∈ Hn by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t

for j = 1, 2, . . . , n. As above, these left invariant vector fields determine the Lie algebra hn.

It is not hard to see that [Xj, Yj] = −4T for j = 1 . . . , n and all other commutators vanish.

As before, we may also define the Heisenberg group as H̃n = R2n+1 with the group law

(x, y, t)⊗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + y · x′)

and basis of left invariant vector fields

X̃j =
∂

∂xj
+ yj

∂

∂t
, Ỹj =

∂

∂yj
, T̃ =

∂

∂t

for j = 1, 2, . . . , n. This group is isomorphic to Hn via the group isomorphism

φ : H̃n → Hn

φ(x, y, t) = (x, y, 4t− 2x · y),

and

dφ(X̃j) = Xj, dφ(Ỹj) = Yj, dφ(T̃ ) = 4T.
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3.2 THE HORIZONTAL DISTRIBUTION

The Heisenberg group is equipped with the so called horizontal distribution

HpHn = span {X1(p), Y1(p), . . . , Xn(p), Yn(p)} for all p ∈ Hn.

This is a smooth distribution of 2n-dimensional subspaces in the (2n+1)-dimensional tangent

space TpHn = TpR2n+1. A vector v ∈ TpR2n+1 is horizontal if and only if v ∈ HpHn. That

is, if we write

(3.2) v =
n∑
j=1

(
aj

∂

∂xj

∣∣∣
p

+ bj
∂

∂yj

∣∣∣
p

)
+ c

∂

∂t

∣∣∣
p
,

for aj, bj, c ∈ R, then v is horizontal if and only if we can write

v =
n∑
j=1

a′jXj(p) + b′jYj(p)

for some a′j, b
′
j ∈ R. Since

Xj(p) =
∂

∂xj

∣∣∣
p

+ 2yj(p)
∂

∂t

∣∣∣
p

and Yj(p) =
∂

∂yj

∣∣∣
p
− 2xj(p)

∂

∂t

∣∣∣
p
,

it must be the case that aj = a′j and bj = b′j. Thus

(3.3) c = 2
n∑
j=1

(ajyj(p)− bjxj(p)).

We have shown that a vector v given by (3.2) is horizontal if and only if (3.3) is satisfied.
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3.2.1 Contact manifolds

Theorem 22. The horizontal distribution HHn is the kernel of the 1-form

(3.4) α = dt+ 2
n∑
j=1

(xj dyj − yj dxj).

i.e. HpHn = kerα(p) ⊂ TpR2n+1.

Proof.

α(Xj) =

(
dt+ 2

n∑
j=1

(xj dyj − yj dxj)

)(
∂

∂xj
+ 2yj

∂

∂t

)
= 2yj + 2(−yj) = 0

and

α(Yj) =

(
dt+ 2

n∑
j=1

(xj dyj − yj dxj)

)(
∂

∂yj
− 2xj

∂

∂t

)
= −2xj + 2xj = 0,

but α(T ) = 1.

In other words, a vector v given by (3.2) is in the kernel of α if and only if (3.3) is

satisfied.

Definition 23. Let M be a manifold of dimension 2n + 1. A contact form is a 1-form α

satisfying

α ∧ (dα)n 6= 0.

Given a contact form α, the contact structure on M is defined as the distribution of 2n-

dimensional hyperplanes

ξ = ker α ⊂ TM,

and M is called a contact manifold.

It is easy to check that α defined as in (3.4) is a contact form. Therefore, the Heisenberg

group is an example of a contact manifold. As the following result shows, any contact form

on a manifold is locally equivalent to the contact form (3.4) on the Heisenberg group up to

a change of coordinates. See [83] for a proof.

21



Theorem 24 (Darboux). Let α be a contact form on a (2n + 1)-dimensional manifold M .

For any p ∈M , there is a neighborhood U of p and a coordinate system (x1, y1, . . . , xn, yn, t)

in U so that p = (0, . . . , 0) and

α|U = dt+ 2
n∑
j=1

(xj dyj − yj dxj).

One of the problems in contact topology is the study of the global structure of a contact

manifold M . For example, one may ask if two given contact manifolds are “the same” in the

following sense: is there a diffeomorphism between the manifolds which preserves contact

structures? The Darboux theorem shows that any two contact manifolds of dimension 2n+1

are locally diffeomorphic via such a diffeomorphism, but the global question is much more

difficult. In our investigation of the Heisenberg group, however, we will only be concerned

with the local geometry of the horizontal distribution.

3.2.2 Horizontal curves

An absolutely continuous map γ : [a, b] → R2n+1 is called a curve in R2n+1. Recall that γ′

exists almost everywhere in [a, b].

Definition 25. A curve in R2n+1 is a horizontal curve if it is almost everywhere tangent to

the horizontal distribution i.e.

γ′(t) ∈ Hγ(t)Hn for almost every t ∈ [a, b].

In other words, the curve γ is horizontal if γ′ is almost everywhere a horizontal vector.

In terms of coefficients, this means

γ′(t) =
n∑
j=1

aj(t)Xj(γ(t)) + bj(t)Yj(γ(t)) a.e. t ∈ [a, b]

for some real valued coefficient functions aj, bj. Recall that a vector v ∈ TpHn written as

v =
n∑
j=1

(
aj

∂

∂xj

∣∣∣
p

+ bj
∂

∂yj

∣∣∣
p

)
+ c

∂

∂t

∣∣∣
p
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is horizontal if and only if

c = 2
n∑
j=1

(ajyj(p)− bjxj(p)).

Therefore, the curve

γ(t) = (f1(t), g1(t), . . . , fn(t), gn(t), h(t))

is horizontal if and only if the vector

γ′(t) =
n∑
j=1

(
f ′j(t)

∂

∂xj

∣∣∣
γ(t)

+ g′j(t)
∂

∂yj

∣∣∣
γ(t)

)
+ h′(t)

∂

∂t

∣∣∣
γ(t)

satisfies

(3.5) h′(t) = 2
n∑
j=1

(f ′j(t)gj(t)− g′j(t)fj(t)) for almost every t ∈ [a, b].

At every point p in Hn we have a 2n-dimensional space of directions in which a horizontal

curve may travel. Meanwhile, the tangent space at p has dimension 2n+1. Thus the condition

of horizontality on a curve is a very restrictive one. Surprisingly, any two points p, q ∈ Hn

can be connected by a horizontal curve. That is, there is a horizontal curve γ : [a, b] → Hn

so that γ(a) = p and γ(b) = q. See Theorem 26.

According to (3.5), we may construct a horizontal curve from any absolutely continuous

curve in R2n as follows: suppose

γ̃ = (f1, g1, . . . , fn, gn) : [a, b]→ R2n

is absolutely continuous, set h(a) ∈ R arbitrarily, and define

(3.6) h(t) = h(a) + 2
n∑
j=1

∫ t

a

(f ′j(τ)gj(τ)− g′j(τ)fj(τ)) dτ for every t ∈ [a, b].

The curve γ = (f1, g1, . . . , fn, gn, h) is called a horizontal lift of γ̃. Hence

π ◦ γ = γ̃

where π : R2n+1 → R2n is the standard orthogonal projection onto the first 2n coordinates.
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Figure 1: The planar curve (cos(t),− sin(t)) and its horizontal lift (cos(t),− sin(t), t)

Given an absolutely continuous curve γ̃ in R2n and a point p ∈ R2n+1 with π(p) = γ̃(t),

the curve γ̃ has a unique horizontal lift γ satisfying γ(a) = p. Indeed, (3.6) uniquely defines

this lift once a starting height h(a) is chosen.

Observe also that vertical translations along the t-axis remain horizontal. That is, given

a horizontal curve γ = (γ̃, h) and c ∈ R, the curve β = (γ̃, h+ c) is also horizontal.

Assume now that γ : [a, b]→ Hn is horizontal and its projection γ̃ = π ◦ γ onto R2n is a

closed curve. Note that

h(b)− h(a) = −2
n∑
j=1

∫ b

a

(fj(τ)g′j(τ)− gj(τ)f ′j(τ)) dτ

= −2
n∑
j=1

∫
γ̃

(xj dyj − yj dxj)

= −2
n∑
j=1

∫
γ̃j

(xj dyj − yj dxj)
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where γ̃j = (fj, gj) is the orthogonal projection of γ onto the xjyj-plane. Note that each γ̃j

is a closed curve in R2. According to Green’s Theorem,

(3.7)
1

2

∫
γ̃j

(xj dyj − yj dxj)

equals the area enclosed by the curve γ̃j. More precisely, if the curve γ̃j has self-intersections

in the plane, the integral (3.7) defines an oriented area taking into account the multiplicity

of overlaps. Figure 2 illustrates this.

Figure 2: A curve with enclosed multiplicities labeled

Since we calculated

(3.8) h(b)− h(a) = −4

(
n∑
j=1

1

2

∫
γ̃j

(xj dyj − yj dxj)

)
,

we may conclude that the change in height h(b)−h(a) of a horizontal curve equals −4 times

the sum of oriented areas enclosed by the planar projections γ̃j.

Suppose q = (0, . . . , 0, t) is any point on the t-axis. We would like to construct a hori-

zontal curve connecting the origin to this point q. We may arbitrarily define n closed curves

γ̃1, . . . , γ̃n in R2 beginning and ending at the origin (0, 0) so that the sum of their enclosed,

oriented areas equals −t/4. Then the horizontal lift γ of γ̃ = (γ̃1, . . . , γ̃n) with starting height

h(a) = 0 satisfies

h(b) = h(b)− h(a) = −4

(
n∑
j=1

1

2

∫
γ̃j

(xj dyj − yj dxj)

)
= −4

(
−t
4

)
= t.
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Thus γ satisfies γ(a) = (0, . . . , 0, 0) and γ(b) = (0, . . . , 0, t) = q as desired.

Fix p = (a1, b1, . . . , an, bn, t0) ∈ Hn and consider the curve β : [0, 1]→ Hn defined as

β(s) = (sa1, sb1, . . . , san, sbn, t0).

This is simply a line segment in R2n+1 from p to the point (0, . . . , 0, t0) on the t-axis. This

curve β is horizontal. Indeed,

β′(s) =
n∑
j=1

(
aj

∂

∂xj

∣∣∣
β(s)

+ bj
∂

∂yj

∣∣∣
β(s)

)
+ 0

∂

∂t

∣∣∣
β(s)

,

so the coefficient of ∂/∂t is

0 = 2
n∑
j=1

(aj(sbj)− bj(saj)) = 2
n∑
j=1

(ajyj(β(s))− bjxj(β(s))),

and this satisfies (3.3). We have just seen that any point p ∈ Hn may be connected to the

t-axis via a horizontal curve (in this case, a line segment). Above, we showed that any point

on the t-axis may be connected to the origin via a horizontal curve. Concatenating curves

proves the following:

Theorem 26. Any two points p, q ∈ Hn may be connected by a horizontal curve.

Fix p ∈ Hn. Connect p to the point q = (0, . . . , 0, t) on the t-axis via the line segment

parallel to R2n described above. Now define

γ̃ = (γ̃1, . . . , γ̃n)

so that γ̃1 is a negatively oriented circle in the plane starting and ending at the origin with

radius
√
t/4π, and set γ̃j ≡ (0, 0) for j = 2, . . . , n. By the above arguments, the horizontal

lift of γ̃ with starting height 0 connects the origin to q. In particular, if p is close to the

origin, then there is a short, horizontal curve connecting them. This observation will be used

in the proof of Lemma 30 below.
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3.3 THE CARNOT-CARATHÈODORY METRIC

Equip HHn with a Riemannian metric g so that the vectors X1, Y1, . . . , Xn, Yn are orthonor-

mal at every point in Hn. The metric g is only defined on the spaces HpHn rather than on

the entire tangent space TpR2n+1. Clearly, the metric g is left-invariant.

3.3.1 Lengths of curves

Let γ : [a, b]→ Hn be a horizontal curve and write

γ′(t) =
n∑
j=1

aj(t)Xj(γ(t)) + bj(t)Yj(γ(t)) a.e. t ∈ [a, b].

The horizontal length of γ is defined by

(3.9) `H(γ) :=

∫ b

a

|γ′(t)|H dt

where

|γ′(t)|H =
√
〈γ′(t), γ′(t)〉g =

√√√√ n∑
j=1

(aj(t))2 + (bj(t))2.

Definition 27. The Carnot-Carathèodory metric in Hn is defined for all p, q ∈ Hn by

dcc(p, q) = inf
γ
{`H(γ)}

where the infimum is taken over all horizontal curves connecting p and q.

Recall from Theorem 26 that any two points in Hn may be connected by a horizontal

curve, so dcc is a well defined metric. Clearly, the Carnot-Carathèodory metric is left in-

variant. In what follows, we will always assume that Hn is equipped with the horizontal

distribution and the Carnot-Carathèodory metric.
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3.3.2 Properties of the Carnot-Carathèodory metric

Let π : R2n+1 → R2n be the orthogonal projection

π(x1, y1, . . . , xn, yn, t) = (x1, y1, . . . , xn, yn)

onto the first 2n coordinates. We have for any p = (x1, y1, . . . , xn, yn, t) ∈ Hn

dπp(Xj(p)) = dπp

 ∂

∂xj

∣∣∣∣∣
p

+ 2yj
∂

∂t

∣∣∣∣∣
p

 =
∂

∂xj

∣∣∣∣∣
π(p)

and

dπp(Yj(p)) = dπp

 ∂

∂yj

∣∣∣∣∣
p

− 2xj
∂

∂t

∣∣∣∣∣
p

 =
∂

∂yj

∣∣∣∣∣
π(p)

.

Thus dπp maps an orthonormal basis of (HpHn, g) onto an orthonormal basis of Tπ(p)R2n.

Hence, the linear map

dπp : (HpHn, g)→ Tπ(p)R2n

is an isometry. In particular, for any horizontal curve γ, the horizontal length `H(γ) equals

the Euclidean length `E(γ̃) of the projection

γ̃ = π ◦ γ : [a, b]→ R2n.

Recall that the dilations δr for r > 0 are group automorphisms δr : Hn → Hn defined by

δr(z, t) = (rz, r2t).

These dilations commute with the lengths of horizontal curves in the following sense.

Theorem 28. If γ is a horizontal curve in Hn, then δr ◦ γ is horizontal as well and

`H(δr ◦ γ) = r`H(γ).

In particular,

dcc(δr(p), δr(q)) = rdcc(p, q) for all p, q ∈ Hn.

28



Proof. We will prove this result in H1, but the same argument applies to Hn. We have

dδrX(p) =


r 0 0

0 r 0

0 0 r2




1

0

2y

 =


r

0

2r2y

 = r

(
∂

∂x
+ 2ry

∂

∂t

)
= rX(δr(p)).

Similarly, dδrY (p) = rY (δr(p)). The result follows easily.

Theorem 29. If E ⊂ R2n+1 is compact, then there is a constant C = C(E) ≥ 1 such that

(3.10) C−1|p− q| ≤ dcc(p, q) ≤ C|p− q|1/2 ∀ p, q ∈ E.

In particular, this implies that (Hn, dcc) and (R2n+1, | · |) are topologically equivalent. In

order to prove this result, we introduce a new metric on Hn. For any (z, t) ∈ Hn, define the

Korányi gauge ‖ · ‖K as

‖(z, t)‖K := (|z|4 + t2)1/4

and the Korányi metric dK as

dK(p, q) := ‖q−1 ∗ p‖K .

Figure 3: The unit Korányi sphere in H1

In order to prove that dK is indeed a metric, one must prove that the triangle inequality

holds. While it does indeed hold, we will not prove it as we will not need it.
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Lemma 30. The metrics dcc and dK are bi-Lipschitz equivalent. That is, there is a constant

C ≥ 1 satisfying

C−1dK(p, q) ≤ dcc(p, q) ≤ CdK(p, q) ∀ p, q ∈ Hn.

Proof. We begin with a sketch of a proof that the function d0 : R2n+1 → [0,∞) defined

as d0(p) := dcc(0, p) is continuous. We will prove continuity at the origin, and general

continuity will then follow from left multiplication. If |p| is small for some p ∈ Hn, the

horizontal curve γ from the discussion following Theorem 26 connecting p to the origin will

have small horizontal length (since the horizontal length of this curve equals the Euclidean

length of its projection). Therefore, dcc(0, p) must be small as well.

Observe now that ‖δr(p)‖K = r‖p‖K for all r > 0. Let S = {p ∈ Hn : ‖p‖K = 1} be

the unit sphere in the Korányi metric. Since S is compact in R2n+1 and p 7→ dcc(0, p) is

continuous and non-zero on S, there is a constant C ≥ 1 so that

C−1 ≤ dcc(0, p) ≤ C ∀ p ∈ S.

Fix 0 6= p ∈ Hn, and set r = ‖p‖−1
K . Then ‖δr(p)‖K = 1, so δr(p) ∈ S. Hence

‖p‖−1
K dcc(0, p) = rdcc(0, p) = dcc(0, δr(p)) ∈ [C−1, C],

so, for any p ∈ Hn,

C−1‖p‖K ≤ dcc(0, p) ≤ C‖p‖K

Since left multiplication is an isometry on (Hn, dcc), we have for any p, q ∈ Hn

dcc(p, q) = dcc(q
−1 ∗ p, 0),

and hence

C−1dK(p, q) = C−1‖q−1 ∗ p‖K ≤ dcc(p, q) ≤ C‖q−1 ∗ p‖K = CdK(p, q).
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Proof of Theorem 29. We will first prove the left inequality. Notice that, if E ⊂ R2n+1 is

compact, then dcc(p, q) is uniformly bounded for any p, q ∈ E since the mapping p 7→ dcc(0, p)

is continuous. Fix p, q ∈ E, and suppose {γk} is a sequence of horizontal curves with

`H(γk) → dcc(p, q). Then there is a some integer N so that, for all k ≥ N , the x and y

components of γk are bounded by some constant depending only on the set E. Indeed, the

horizontal length of a curve is equal to the Euclidean length of its projection to R2n, and

the boundedness of dcc on E implies that these projections cannot stray too far from the

projection of E. Hence, for any γ = γk with k ≥ N , (3.5) gives

|γ′(t)| =

√√√√ n∑
j=1

f ′j(t)
2 + g′j(t)

2 + h′(t)2 ≤ C

√√√√ n∑
j=1

f ′j(t)
2 + g′j(t)

2 = C|γ′(t)|H a.e. t.

Therefore, |p − q| ≤ `E(γ) ≤ C`H(γ) for any horizontal curve connecting p and q. Taking

the limit in k gives |p− q| ≤ Cdcc(p, q).

We will now show that dK(p, q) ≤ |p − q|1/2, so the theorem will follow from the bi-

Lipschitz equivalence of dK and dcc. Fix p, q ∈ E. Write p = (z, t) and q = (z′, t′). One may

check that

dK(p, q) = ‖q−1 ∗ p‖K =

|z − z′|4 +

∣∣∣∣∣t− t′ + 2
n∑
j=1

(x′jyj − xjy′j)

∣∣∣∣∣
2
1/4

≤ C|z − z′|+ C

∣∣∣∣∣t− t′ + 2
n∑
j=1

(x′jyj − xjy′j)

∣∣∣∣∣
1/2

for some C > 0. The inequality, and hence the theorem, follows.

Corollary 31. Hn is complete. Closed, bounded sets in Hn are compact.
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3.3.3 Rectifiable curves in the Heisenberg group

If Γ : [a, b] → Hn is any continuous (not necessarily horizontal) curve in the metric space

(Hn, dcc), then, as in the discussion in Section 2.1.1, its length with respect to the Carnot

Carathèodory metric is

`cc(Γ) = sup
n−1∑
j=0

dcc(Γ(si),Γ(si+1)).

Taking n = 1 above, it immediately follows from the definition of dcc that `cc(Γ) ≤ `H(Γ).

Thus every horizontal curve is rectifiable. However, it is not obvious if `cc(Γ) = `H(Γ). It

is also not clear whether every rectifiable curve in Hn can be reparametrized as a horizontal

curve. Both of these facts are true, and this discussion is summarized here.

Proposition 32. In Hn,

1. any horizontal curve Γ is rectifiable and `cc(Γ) = `H(Γ).

2. Lipschitz curves in Hn are horizontal.

3. every rectifiable curve admits a 1-Lipschitz parameterization and is horizontal after this

reparametrization.

Condition 2. in the above result will follow from the following useful proposition.

Proposition 33. Suppose Ω ⊂ Rm is open. and f = (f1, g1, . . . , fn, gm, h) : Ω → Hn is

locally Lipschitz. Then f is differentiable almost everywhere, and

Dh(x) = 2
n∑
j=1

(gj(x)Dfj(x)− fj(x)Dgj(x)) for almost every x ∈ Ω.

In other words, the image of Df(x) lies in Hf(x)Hn almost everywhere.

If α is the contact form (3.4), this result says that f ∗α = 0 almost everywhere for any

locally Lipschitz f .

Proof. Since f is locally Lipschitz as a mapping into Hn, it is also locally Lipschitz as a map

into R2n+1 (by Theorem 29). Thus, by the classical Rademacher theorem, Df exists almost

everywhere in Ω.
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Choose x ∈ Ω so that Df(x) exists. Hence the definition of dK and its bi-Lipschitz

equivalence with dcc give∣∣∣∣∣h(y)− h(x) + 2
n∑
j=1

(fj(x)gj(y)− fj(y)gj(x))

∣∣∣∣∣
1/2

≤ dK(f(x), f(y)) ≤ C|x− y|

for all y close enough to x and some constant C ≥ 1 (depending on the local Lipschitz

constant of f at x). After adding and subtracting fj(x)gj(x) in the above sum, we have∣∣∣∣∣h(y)− h(x)− 2
n∑
j=1

(gj(x)Dfj(x)− fj(x)Dgj(x)) · (y − x)

∣∣∣∣∣
≤ C2|x− y|2 + 2

n∑
j=1

|fj(x)| |gj(y)− gj(x)−Dgj(x) · (y − x)|

+ 2
n∑
j=1

|gj(x)| |fj(y)− fj(x)−Dfj(x) · (y − x)|

= o(|x− y|),

since fj and gj are differentiable at x.

Proof of Proposition 32. Condition 2. follows from the previous proposition, and 3. follows

from 2. and the fact that the arc-length parameterization of a rectifiable curve is 1-Lipschitz.

We now prove condition 1.

Recall from the discussion preceding Proposition 32 that `cc(Γ) ≤ `H(Γ). Hence it re-

mains to prove that `cc(Γ) ≥ `H(Γ). Extend the Riemannian metric defined on the horizontal

distribution HHn to a Riemannian metric g in R2n+1. For example, we may do so by requir-

ing that the vector fields Xj, Yj, T are orthonormal at every point of R2n+1. The Riemannian

metric g defines a metric dg in R2n+1 as the infimum of lengths of curves connecting two

given points. Here, the length of an absolutely continuous curve β : [a, b]→ R2n+1 is defined

as the integral

`g(β) =

∫ b

a

√
g (β′(s), β′(s)) ds.

Since this is the same approach that was used to define the Carnot-Carathéodory metric, we

have `g(Γ) = `H(Γ) for any horizontal curve Γ. Thus it is obvious that dg(p, q) ≤ dcc(p, q)

since, in the case of this new Riemannian metric, we take the infimum of lengths over a
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larger class of curves. It is a well known fact in Riemannian geometry that for an absolutely

continuous curve β : [a, b]→ R2n+1

`g(β) = sup
n−1∑
i=0

dg(β(si), β(si+1)),

where the supremum is taken over all positive integers n and all partitions a = s0 ≤ s1 ≤

. . . ≤ sn = b as before. Therefore, if Γ : [a, b]→ R2n+1 is horizontal, we have

`H(Γ) = `g(Γ) = sup
n−1∑
i=0

dg(Γ(si),Γ(si+1)) ≤ sup
n−1∑
i=0

dcc(Γ(si),Γ(si+1)) = `cc(Γ).
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4.0 GEODESICS IN THE HEISENBERG GROUP

This chapter is based on the paper [48].

Definition 34. A geodesic from p to q in Hn is a curve of shortest length connecting the

two points.

As we saw in Theorem 26, any two points in the Heisenberg group can be connected by a

horizontal curve. In fact, any two points can be connected by a geodesic, and the structure

of every geodesic in the form of an explicit parameterization is known. The proofs in the

case of H1 can be found in [9, 19, 33, 71], and the general case of Hn is treated in [5, 10, 73].

If n = 1, the structure of geodesics can be obtained via the two dimensional isoperimetric

inequality (see [9, 19, 71]). Consider a horizontal curve Γ = (γ, t) in H1 connecting the origin

to some point q = (0, 0, T ) with T 6= 0. The length of Γ equals the length of its projection

γ to R2 (which is a closed curve). Also, by (3.6), the change T in the height of Γ must

equal −4 times the signed area enclosed by γ. Thus the projection of any horizontal curve

connecting 0 to q must enclose the same area |T |/4, and finding a geodesic which connects

0 to q reduces to a problem of finding a shortest closed curve γ enclosing a fixed area.

Thus the classical isoperimetric inequality implies that Γ will have smallest length when γ

is a circle. Then the t component of Γ is determined by (3.6) and one obtains an explicit

parametrization of the geodesics in H1 connecting the origin to a point on the t-axis. Such

geodesics pass through all points (x0, y0, t0), t0 6= 0 in H1. If q = (x0, y0, 0), then it is easy to

see that the segment 0q connecting the origin to q is a geodesic. This describes all geodesics

connecting the origin to any other point in H1. Due to the left-invariance of the vector fields

X and Y , parameterizations for geodesics between arbitrary points in H1 may be found by

left multiplication of the geodesics discussed above.
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This elegant argument, however, does not apply to Hn when n > 1 and known proofs of

the structure of geodesics in Hn are based on the Pontryagin maximum principle [5, 10, 73]. In

this chapter we will provide a straightforward and elementary argument leading to an explicit

parameterization of geodesics in Hn (Theorem 35). Our argument is based on Hurwitz’s proof

[53], of the isoperimetric inequality in R2 involving Fourier series. The Hurwitz argument is

used to prove a version of the isoperimetric inequality for closed curves in R2n (Theorem 38).

This isoperimetric inequality allows us to extend the isoperimetric proof of the structure of

geodesics in H1 to the higher dimensional case Hn as seen in the proof of Theorem 35. For

a related, but different isoperimetric inequality in R2n, see [80].

As an application of our method we also prove that the Carnot-Carathéodory metric is

real analytic away from the center of the group (Theorem 42). This improves a result of

Monti [72, 73]. He proved that this distance is C∞ smooth away from the center. We also

find a formula for the Carnot-Carathéodory distance (Corollary 43) that, we hope, will find

application in the study of geometric properties of the Heisenberg groups.

4.1 THE ISOPERIMETRIC INEQUALITY AND THE STRUCTURE OF

GEODESICS

Any horizontal curve Γ is rectifiable, and we may parametrize the curve with respect to arc-

length. Under this parameterization, the speed |Γ̇|dcc of Γ : [0, `H(Γ)] → Hn (as defined in

Section 2.1.1) is equal to 1 almost everywhere. According to Proposition 32, the lengths `H

and `cc of any sub-curve of Γ coincide, so by Theorem 8 and the definition of `H it follows that

|Γ′|H = |Γ̇|dcc = 1 almost everywhere. Then, we can reparametrize Γ as a curve defined on

[0, 1] with |Γ′|H constant almost everywhere, and hence we can assume that Γ : [0, 1]→ Hn

satisfies

(4.1)
n∑
j=1

(x′j(s))
2 + (y′j(s))

2 = `H(Γ)2 = `cc(Γ)2 for almost all s ∈ [0, 1].

On the other hand any rectifiable curve in Hn can be reparametrized as a horizontal curve

via the arc length parameterization (Proposition 32), and thus, when looking for length
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minimizing curves (geodesics), it suffices to restrict our attention to horizontal curves Γ :

[0, 1]→ Hn satisfying (4.1). When this is satisfied, we say that Γ has constant speed.

Since the left translation in Hn is an isometry, it suffices to investigate geodesics con-

necting the origin 0 ∈ Hn to another point in Hn. Indeed, if Γ is a geodesic connecting 0 to

p−1 ∗ q, then p ∗ Γ is a geodesic connecting p to q.

If q belongs to the subspace R2n × {0} ⊂ R2n+1 = Hn, then it is easy to check that the

straight line Γ(s) = sq, s ∈ [0, 1] is a unique geodesic (up to a reparametrization) connecting

0 to q. Indeed, it is easy to check that Γ is horizontal, and its length `cc(Γ) = `H(Γ) equals

the Euclidean length |0q| of the segment 0q because Γ is equal to its projection γ. For any

other horizontal curve Γ̃ = (γ̃, t̃) connecting 0 to q, the projection γ̃ on R2n would not be a

segment (since horizontal lifts of curves are unique up to vertical shifts), and hence we would

have `cc(Γ̃) = `H(Γ̃) = `E(γ̃) > |0q| = `cc(Γ) which proves that Γ̃ cannot be a geodesic.

In Theorem 35, we will describe the structure of geodesics in Hn connecting the origin to

a point (0, 0, T ) ∈ R2n×R = Hn, T 6= 0, lying on the t-axis. Later we will see (Corollary 41)

that these curves describe all geodesics in Hn connecting 0 to q 6∈ R2n × {0}. The geodesics

connecting 0 to q ∈ R2n × {0} have been described above.

Theorem 35. A horizontal curve

Γ(s) = (x(s), y(s), t(s)) = (x1(s), . . . , xn(s), y1(s), . . . , yn(s), t(s)) : [0, 1]→ Hn

of constant speed, connecting the origin Γ(0) = (0, 0, 0) ∈ R2n × R = Hn to a point Γ(1) =

(0, 0,±T ), T > 0, on the t-axis is a geodesic if and only if

(4.2)
xj(s) = Aj(1− cos(2πs))∓Bj sin(2πs)

yj(s) = Bj(1− cos(2πs))± Aj sin(2πs)

for j = 1, 2, . . . , n and

t(s) = ±T
(
s− sin(2πs)

2π

)
where A1, . . . , An, B1, . . . , Bn are any real numbers such that 4π

∑n
j=1(A2

j +B2
j ) = T .
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Figure 4: A geodesic in H1 connecting the origin to (0, 0, 1)

Remark 36. Observe that if Γ(1) = (0, 0,+T ), the equations (4.2) give a constant-speed

parametrizations of negatively oriented circles in each of the xjyj-planes, centered at (Aj, Bj),

and of radius
√
A2
j +B2

j . Each circle passes through the origin at s = 0. The signed area of

such a circle equals −π(A2
j + B2

j ). Thus the change in height t(1)− t(0) which is −4 times

the sum of the signed areas of the projections of the curve on the xjyj-planes equals

(−4)
n∑
j=1

(
− π(A2

j +B2
j )
)

= T.

Clearly this must be the case, because Γ connects the origin to (0, 0, T ). Any collection of

circles in the xjyj-planes passing through the origin and having radii rj ≥ 0 are projections

of a geodesic connecting the origin to the point (0, 0, T ) where T = 4π
∑n

j=1 r
2
j . In particular

we can find a geodesic for which only one projection is a nontrivial circle (all other radii are

zero) and another geodesic for which all projections are non-trivial circles. That suggests

that the geodesics connecting (0, 0, 0) to (0, 0, T ) may have many different shapes. This is,

however, an incorrect intuition. As we will see in Section 4.3, all such geodesics are obtained

from one through a rotation of R2n+1 about the t-axis. This rotation is also an isometric
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mapping of Hn. The above reasoning applies also to the case when Γ(1) = (0, 0,−T ) with

the only difference being that the circles are positively oriented.

Remark 37. The parametric equations for the geodesics can be nicely expressed with the

help of complex numbers, see (4.15).

4.1.1 The isoperimetric inequality

The proof of Theorem 35 is based on the following version of the isoperimetric inequality

which is of independent interest. In the theorem below we use identification of R2n with Cn

given by

R2n 3 (x, y) = (x1, . . . , xn, y1, . . . , yn)↔ (x1 + iy1, . . . , xn + iyn) = x+ iy ∈ Cn.

Every rectifiable curve γ admits the arc-length parametrization. By rescaling it, we may

assume that γ is a constant speed curve defined on [0, 1].

Theorem 38. If γ = (x1, . . . , xn, y1, . . . , yn) : [0, 1] → R2n is a closed rectifiable curve

parametrized by constant speed, then

(4.3) L2 ≥ 4π|D|,

where L is the length of γ and D = D1 + . . .+Dn is the sum of signed areas enclosed by the

curves γj = (xj, yj) : [0, 1]→ R2, i.e.

Dj =
1

2

∫ 1

0

(y′j(s)xj(s)− x′j(s)yj(s)) ds.

Moreover, equality in (4.3) holds if and only if there are points A,B,C,D ∈ Rn such that γ

has the form

(4.4) γ(s) = (C + iD) + (1− e+2πis)(A+ iB), when L2 = 4πD

and

(4.5) γ(s) = (C + iD) + (1− e−2πis)(A+ iB) when L2 = −4πD.
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Remark 39. Let Aj, Bj, Cj and Dj, j = 1, 2, . . . , n be the components of the points A,B,C

and D respectively. In terms of real components of γ, (4.4) can be written as

(4.6)
xj(s) = Cj + Aj(1− cos(2πs)) +Bj sin(2πs)

yj(s) = Dj +Bj(1− cos(2πs))− Aj sin(2πs)

and (4.5) as

(4.7)
xj(s) = Cj + Aj(1− cos(2πs))−Bj sin(2πs)

yj(s) = Dj +Bj(1− cos(2πs)) + Aj sin(2πs).

That is, the curves γj = (xj, yj) are circles of radius
√
A2
j +B2

j passing through (Cj, Dj) at

s = 0. In the case of (4.4) they are all positively oriented and in the case of (4.5) they are

all negatively oriented. In either case, they are parametrized with constant angular speed.

Remark 40. If we have two different circles of the form (4.4) having the same radius, then

one can be mapped onto the other one by a composition of translations and a unitary map of

Cn. See the proof of Proposition 44. The same comment applies to circles of the form (4.5).

Proof. Let γ = (x1, . . . , xn, y1, . . . , yn) : [0, 1] → R2n be a closed rectifiable curve. By trans-

lating the curve, we may assume without loss of generality that γ(0) = 0. It suffices to prove

(4.3) along with equations (4.6) and (4.7) (with C = D = 0) which are, as was pointed out

in Remark 39, equivalent to (4.4) and (4.5). Since the curve has constant speed, its speed

equals the length of the curve, so

n∑
j=1

(x′j(s))
2 + (y′j(s))

2 = L2.

In particular the functions xj and yj are L-Lipschitz continuous and xj(0) = yj(0) = xj(1) =

yj(1) = 0. Hence the functions xj, yj extend to 1-periodic Lipschitz functions on R, and so

we can use Fourier series to investigate them. We will follow notation used in [26]. For a

1-periodic function f let

f̂(k) =

∫ 1

0

f(x)e−2πikx dx, k ∈ Z
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be its kth Fourier coefficient. By Parseval’s identity,

L2 =
n∑
j=1

∫ 1

0

|x′j(s)|2 + |y′j(s)|2 ds =
n∑
j=1

∑
k∈Z

|x̂′j(k)|2 + |ŷ′j(k)|2

=
n∑
j=1

∑
k∈Z

4π2k2
(
|x̂j(k)|2 + |ŷj(k)|2

)
(4.8)

Note that

D = D1 + . . .+ Dn =
1

2

n∑
j=1

∫ 1

0

(
y′j(s)xj(s)− x′j(s)yj(s)

)
ds.

Since x′j and y′j are real valued, we have x′j(s) = x′j(s) and y′j(s) = y′j(s). Thus we may apply

Parseval’s theorem to this pair of inner products to find

D =
1

2

n∑
j=1

(∑
k∈Z

ŷ′j(k)x̂j(k)−
∑
k∈Z

x̂′j(k)ŷj(k)

)

=
1

2

n∑
j=1

∑
k∈Z

2πki
(
x̂j(k)ŷj(k)− ŷj(k)x̂j(k)

)
= π

n∑
j=1

∑
k∈Z

k · 2 Im
(
ŷj(k)x̂j(k)

)
,(4.9)

since i(z̄ − z) = 2 Im z. Subtracting (4.9) from (4.8) gives

L2

4π2
− D

π
=

n∑
j=1

[∑
k∈Z

k2
(
|x̂j(k)|2 + |ŷj(k)|2

)
− k · 2 Im

(
ŷj(k)x̂j(k)

)]
=

n∑
j=1

[∑
k∈Z

(k2 − |k|)
(
|x̂j(k)|2 + |ŷj(k)|2

)
+|k|

(
|ŷj(k)|2 − 2 sgn(k)Im

(
ŷj(k)x̂j(k)

)
+ |x̂j(k)|2

) ]
=

n∑
j=1

[∑
k∈Z

(k2 − |k|)
(
|x̂j(k)|2 + |ŷj(k)|2

)
+
∑
k∈Z

|k|
∣∣ŷj(k) + i sgn(k)x̂j(k)

∣∣2].(4.10)

The last equality follows from the identity |a + ib|2 = |a|2 − 2 Im(āb) + |b|2 which holds for

all a, b ∈ C. Since every term in this last sum is non-negative, it follows that L2

4π2 − D
π
≥ 0.

Thus, we have L2 ≥ 4πD. Reversing the orientation of the curve, i.e. applying the above

argument to γ̃(t) = γ(1− t) gives L2 ≥ −4πD, so (4.3) follows.

Equality in (4.3) holds if and only if either L2 = 4πD or L2 = −4πD. We will first

consider the case L2 = 4πD. This equality will occur if and only if each of the two sums
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contained inside the brackets in (4.10) equals zero. Since k2− |k| > 0 for |k| ≥ 2, the first of

the two sums vanishes if and only if x̂j(k) = ŷj(k) = 0 for every |k| ≥ 2 and j = 1, 2, . . . , n.

Hence nontrivial terms in the second sum correspond to k = ±1, and thus this sum vanishes

if and only if ŷj(±1) = −i sgn(±1)x̂j(±1). That is, for every j = 1, . . . , n,

(4.11) ŷj(1) = −i x̂j(1) and ŷj(−1) = i x̂j(−1).

Now since each xj and yj is Lipschitz, their Fourier series converge uniformly on [0, 1]. Note

that the only non-zero terms in the Fourier series appear when |k| ≤ 1. Thus L2 = 4πD if

and only if (4.11) is satisfied and for every s ∈ [0, 1] and j = 1, . . . , n

(4.12)
xj(s) = x̂j(−1)e−2πis + x̂j(0) + x̂j(1)e2πis

yj(s) = ŷj(−1)e−2πis + ŷj(0) + ŷj(1)e2πis.

In particular, 0 = xj(0) = x̂j(−1) + x̂j(0) + x̂j(1) and hence x̂j(0) = −x̂j(−1) − x̂j(1) for

each j = 1, . . . , n. This together with Euler’s formula gives

xj(s) = x̂j(−1)
(
e−2πis − 1

)
+ x̂j(1)

(
e2πis − 1

)
= −(x̂j(−1) + x̂j(1))(1− cos(2πs)) + (−ix̂j(−1) + ix̂j(1)) sin(2πs)

= −(x̂j(−1) + x̂j(1))(1− cos(2πs))− (ŷj(−1) + ŷj(1)) sin(2πs).

The last equality follows from (4.11). Similarly, we have

yj(s) = −(ŷj(−1) + ŷj(1))(1− cos(2πs)) + (x̂j(−1) + x̂j(1)) sin(2πs).

If we write Aj = −(x̂j(−1) + x̂j(1)) and Bj = −(ŷj(−1) + ŷj(1)), then we have

(4.13)
xj(s) = Aj(1− cos(2πs)) +Bj sin(2πs)

yj(s) = Bj(1− cos(2πs))− Aj sin(2πs).

Note that it follows directly from the definition of Fourier coefficients that the numbers

Aj, Bj are real.
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The case L2 = −4πD is reduced to the above case by reversing the orientation of γ as

previously described. In that case the curves γj are given by

(4.14)
xj(s) = Aj(1− cos(2πs))−Bj sin(2πs)

yj(s) = Bj(1− cos(2πs)) + Aj sin(2πs).

We proved that if L2 = 4πD, then γ is of the form (4.6) and if L2 = −4πD, then it is of the

form (4.7). In the other direction, a straightforward calculation shows that any curve of the

form (4.6) satisfies L2 = 4πD and any curve of the form (4.7) satisfies L2 = −4πD. This

completes the proof.

4.1.2 The structure of geodesics

Proof of Theorem 35. Suppose first that Γ = (γ, t) : [0, 1] → Hn is any horizontal curve of

constant speed connecting the origin to the point (0, 0,+T ), T > 0. Recall from (4.1) that

n∑
j=1

(x′j(s))
2 + (y′j(s))

2 = `cc(Γ)2 =: L2.

Thus γ : [0, 1] → R2n is a closed curve of length L parametrized by arc-length. Moreover

γ(0) = 0.

If D is defined as in Theorem 38, it follows from (3.6) that

T = 2
n∑
j=1

∫ 1

0

(
x′j(s)yj(s)− y′j(s)xj(s)

)
ds = −4D

so D < 0 and L2 ≥ πT by Theorem 38. Now Γ is a geodesic if and only if L2 = πT = −4πD

which is the case of the equality in the isoperimetric inequality (4.3). We proved above that

this is equivalent to the components of γ satisfying (4.14), and this is the (0, 0,+T ) case of

(4.2). One may also easily check that 4π
∑n

j=1(A2
j +B2

j ) = −4D = T .

Suppose now that Γ : [0, 1] → Hn is any horizontal curve of constant speed connecting

the origin to the point (0, 0,−T ), T > 0. Then Γ = (x(s), y(s), t(s)) is a geodesic if and only

if

Γ̃(s) = (x̃(s), ỹ(s), t̃(s)) = (x(1− s), y(1− s), t(1− s) + T )
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is a geodesic connecting Γ̃(0) = (0, 0, 0) and Γ̃(1) = (0, 0, T ) since reversing a curve’s

parametrization does not change its length and since the mapping (x, y, t) 7→ (x, y, t + T )

(the vertical lift by T ) is an isometry on Hn. Therefore Γ̃ = (x̃, ỹ, t̃) must have the form

(4.14). Hence the (0, 0,−T ) case of (4.2) follows from (4.14) by replacing s with 1− s.

The formula for the t component of Γ follows from (3.6); the integral is easy to compute

due to numerous cancellations.

Using the complex notation as in Theorem 38, the geodesics from Theorem 35 connecting

the origin to (0, 0,±T ), T > 0 can be represented as

(4.15) Γ(s) =
((

1− e∓2πis
)
(A+ iB), t(s)

)

where A = (A1, . . . , An), B = (B1, . . . , Bn) are such that 4π|A+ iB|2 = T and

t(s) = ±T
(
s− sin(2πs)

2π

)
.

Theorem 35 and a discussion preceding it describes geodesics connecting the origin to points

either on the t-axis (0, 0,±T ), T > 0 or in R2n × {0}. The question now is how to describe

geodesics connecting the origin to a point q which is neither on the t-axis nor in R2n × {0}.

It turns out that geodesics described in Theorem 35 cover the entire space Hn \ (R2n × {0})

and we have

Corollary 41. For any q ∈ Hn which is neither in the t-axis nor in the subspace R2n × {0}

there is a unique geodesic connecting the origin to q. This geodesic is a part of a geodesic

connecting the origin to a point on the t-axis.

Proof. Let q = (c1, . . . , cn, d1, . . . , dn, h) be such that h 6= 0 and cj, dj are not all zero. We

can write q = (c + id, h) ∈ Cn × R. First we will construct a geodesic Γq given by (4.15)

so that Γq(s0) = q for some s0 ∈ (0, 1). Clearly, the curve Γq
∣∣
[0,s0]

will be part of a geodesic

connecting the origin to a point on the t-axis. Then we will prove that this curve is a unique

geodesic (up to a reparametrization) connecting the origin to q. Assume that h > 0 (the

case h < 0 is similar). We will find a geodesic passing through q that connects (0, 0, 0) to
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(0, 0, T ), for some T > 0. (If h < 0 we find Γ that connects (0, 0, 0) to (0, 0,−T ).) It suffices

to show that there is a point A+ iB ∈ Cn such that the system of equations

(4.16)
(
1− e−2πis

)
(A+ iB) = c+ id, 4π|A+ iB|2

(
s− sin(2πs)

2π

)
= h

has a solution s0 ∈ (0, 1). We have A+ iB = (c+ id)/(1− e−2πis) and hence

(4.17) 2π
|c+ id|2

1− cos(2πs)

(
s− sin(2πs)

2π

)
= h.

This equation has a unique solution s0 ∈ (0, 1) because the function on the left hand side is an

increasing diffeomorphism of (0, 1) onto (0,∞). We proved that, among geodesics connecting

(0, 0, 0) to points (0, 0, T ), T > 0, there is a unique geodesic Γq passing through q. Suppose

now that Γ̃ is any geodesic connecting (0, 0, 0) to q. Gluing Γ̃ with Γq
∣∣
[s0,1]

we obtain a

geodesic connecting (0, 0, 0) to (0, 0, T ) and hence (perhaps after a reparametrization) it

must coincide with Γq. This proves uniqueness of the geodesic Γq
∣∣
[0,s0]

.

4.1.3 A formula for the Carnot-Carathéodory distance

We will now use the proof of Corollary 41 to find a formula for the Carnot-Carathéodory

distance between 0 and q = (z, h), z 6= 0, h > 0. We will need this formula in the next

section. Let

(4.18) H(s) =
2π

1− cos(2πs)

(
s− sin(2πs)

2π

)
: (0, 1)→ (0,∞)

be the diffeomorphism of (0, 1) onto (0,∞) described in (4.17). Let

Γ(s) =
((

1− e−2πis
)

(A+ iB), t(s)
)

be the geodesic from the proof of Corollary 41 that passes through q at s0 ∈ (0, 1). We

proved that s0 is a solution to (4.17) and hence s0 is a function of q given by

s0(q) = H−1(h|z|−2).

Note that A+ iB = z/(1− e−2πis0), so

|A+ iB| = |z|√
2(1− cos(2πs0))

.
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Figure 5: The function H defined on
⋃
n∈Z(n, n+ 1)

Hence

√√√√ n∑
j=1

(x′j(s))
2 + (y′j(s))

2 = L =
√
πT = 2π|A+ iB| = 2π|z|√

2(1− cos(2πs0))

where L is the length of Γ and Γ(1) = (0, 0, T ). Therefore

(4.19) dcc(0, q) =

∫ s0

0

√√√√ n∑
j=1

(x′j(s))
2 + (y′j(s))

2 ds =
2πs0|z|√

2(1− cos(2πs0))
.

4.2 ANALYTICITY OF THE CARNOT-CARATHÉODORY METRIC

The center of the Heisenberg group Hn is Z = {(z, h) ∈ Hn : z = 0}. It is well known that

the distance function in Hn is C∞ smooth away from the center [72, 73], but through the

use of (4.2), we will now see that this distance function is actually real analytic.
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Theorem 42. The Carnot-Carathéodory distance dcc : R2n+1 × R2n+1 → R is real analytic

on the set {
(p, q) ∈ Hn ×Hn = R2n+1 × R2n+1 : q−1 ∗ p 6∈ Z

}
.

Proof. In the proof we will make a frequent use of a well known fact that a composition

of real analytic functions is analytic, [60, Proposition 2.2.8]. It suffices to prove that the

function d0(p) = dcc(0, p) is real analytic on Hn \Z. Indeed, w(p, q) = q−1 ∗ p is real analytic

as it is a polynomial. Also, dcc(p, q) = (d0 ◦ w)(p, q), so real analyticity of d0 on Hn \ Z will

imply that dcc is real analytic on w−1(Hn \ Z) = {(p, q) ∈ Hn ×Hn : q−1 ∗ p /∈ Z}.

Define H : (−1, 1)→ R as

(4.20) H(s) =
2π

1− cos(2πs)

(
s− sin(2πs)

2π

)
=

2πs
3!
− (2πs)3

5!
+ (2πs)5

7!
− . . .

1
2!
− (2πs)2

4!
+ (2πs)4

6!
− . . .

.

Here, we divided by a common factor of (2πs)2 in the two power series on the right hand

side. That is, the denominator equals (1−cos(2πs))(2πs)−2 which does not vanish on (−1, 1).

This implies that H is real analytic on (−1, 1). Indeed, considering s as a complex variable,

we see that H(s) is holomorphic (and hence analytic) in an open set containing (−1, 1) as a

ratio of two holomorphic functions with non-vanishing denominator.

As we pointed out in (4.18), the function H is an increasing diffeomorphism of (0, 1) onto

(0,∞). Since it is odd and H ′(0) = 2π/3 6= 0, H is a real analytic diffeomorphism of (−1, 1)

onto R. Again, using a holomorphic function argument we see that H−1 : R → (−1, 1) is a

real analytic.

The function z 7→ |z|−2 is analytic on R2n\{0} (as a composition of a polynomial z 7→ |z|2

and an analytic function 1/x), so the function (z, h) 7→ h|z|−2 is analytic in Hn \ Z. Hence

also s0(q) = H−1(h|z|−2) is analytic on Hn \ Z.

Fix q = (z, h) ∈ Hn \ Z with h > 0. Then by (4.19)

(4.21) d0(q) =
2πs0|z|√

2(1− cos(2πs0))
.

Since H(s0) = h|z|−2, formula (4.20) yields

2πs0 = (1− cos(2πs0))h|z|−2 + sin(2πs0).
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Substituting 2πs0 in the numerator of the right hand side of (4.21) gives

d0(q) =
h
√

1− cos(2πs0)√
2|z|

+
|z| sin(2πs0)√

2
√

1− cos(2πs0)
= h sin(πs0)|z|−1 + |z| cos(πs0)

where we used the trigonometric identities

√
1− cos(2πs0) =

√
2| sin(πs0)| =

√
2 sin(πs0) and

sin(2πs0)

sin(πs0)
= 2 cos(πs0).

To treat the case h ≤ 0 let us define s0(q) = H−1(h|z|−2) for any q = (z, h), z 6= 0. Previously

we defined s0(q) only when h > 0. It is easy to check that the mapping

q = (x, y, t) = (z, t) 7→ q̄ = (z̄,−t) = (x,−y,−t)

is an isometry of the Heisenberg group, so d0(q) = d0(q̄).

If h < 0 and q̄ = (z̄,−h), then

s0(q) = H−1(h|z|−2) = −H−1(−h|z̄|−2) = −s0(q̄)

and hence

d0(q) = d0(q̄) = −h sin(πs0(q̄))|z̄|−1 + |z̄| cos(πs0(q̄)) = h sin(πs0(q)) + |z| cos(πs0(q)).

In the case h = 0, Γ is a straight line in R2n from the origin to q, and so d0(q) = |z|.

Therefore

d0(q) = h sin(πs0(q))|z|−1+|z| cos(πs0(q)) = h sin(πH−1(h|z|−2))|z|−1+|z| cos(πH−1(h|z|−2))

for every q = (z, h) ∈ Hn \ Z, and so d0 is analytic on Hn \ Z.

We also proved

Corollary 43. For z 6= 0, the Carnot-Carathéodory distance between the origin (0, 0) and

(z, h), z 6= 0 equals

dcc((0, 0), (z, h)) = h sin(πH−1(h|z|−2))|z|−1 + |z| cos(πH−1(h|z|−2)).
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4.3 CLASSIFICATION OF NON-UNIQUE GEODESICS

Any point (0, 0,±T ), T > 0 on the t axis can be connected to the origin by infinitely many

geodesics. The purpose of this section is to show that all such geodesics are actually obtained

from one geodesic by a linear mapping which fixes the t-axis. This map is an isometry of Hn

and also an isometry of R2n+1.

Proposition 44. If Γ1 : [0, 1] → Hn and Γ2 : [0, 1] → Hn are constant-speed geodesics with

Γ1(0) = Γ2(0) = (0, 0, 0) and Γ1(1) = Γ2(1) = (0, 0,±T ) with T > 0, then we can write

Γ2 = V ◦ Γ1 where V is a isometry in Hn which fixes the t-coordinate. The map V is also

an isometry of R2n+1, specifically a rotation about the t-axis.

In the following proof, U(n,C) will represent the space of n × n unitary matrices with

complex coefficients.

Proof. Consider geodesics Γ1 = (γ1, t) and Γ2 = (γ2, t) defined in the statement of the

proposition. As in the discussion before Corollary 41, we consider γ1 and γ2 as functions

into Cn rather than into R2n and write

γ1(s) =
(
1− e∓2πis

)
(A+ iB), γ2(s) =

(
1− e∓2πis

)
(C + iD)

where 4π|A+ iB|2 = 4π|C+ iD|2 = T . We claim that there is a unitary matrix U ∈ U(n,C)

such that U(A+ iB) = C + iD. Indeed, for any 0 6= z ∈ Cn, use the Gram-Schmidt process

to extend {z/|z|} to an orthonormal basis of Cn and define Wz to be the matrix whose

columns are these basis vectors. Here, we consider orthogonality with respect to the standard

Hermitian inner product 〈u, v〉C =
∑n

j=1 ujvj. Then Wz ∈ U(n,C) and Wze1 = z/|z| where

{e1, . . . , en} is the standard basis of Cn. Thus the desired operator is U = WC+iD ◦W−1
A+iB.

Define the linear map V : Cn × R→ Cn × R by V (z, t) = (Uz, t). Since

U
((

1− e∓2πis
)

(A+ iB)
)

=
(
1− e∓2πis

)
(C + iD),

for every s ∈ [0, 1] and since V fixes the t-component of Cn × R, we have V ◦ Γ1 = Γ2.

We now prove that V is an isometry on Hn. Indeed, suppose p, q ∈ Hn and Γ = (γ, t) :

[0, 1]→ Hn is a geodesic connecting them. Then V ◦ Γ = (U ◦ γ, t). Since Γ is horizontal, it
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is easy to check that t′(s) = 2 Im〈γ(s), γ′(s)〉C for almost every s ∈ [0, 1]. Unitary operators

preserve the standard inner product on Cn, and so

t′(s) = 2 Im 〈γ(s), γ′(s)〉C = 2 Im 〈(U ◦ γ)(s), (U ◦ γ′)(s)〉C

= 2 Im

〈
(U ◦ γ)(s),

d

ds
(U ◦ γ)(s)

〉
C

for almost every s ∈ [0, 1]. That is, V ◦ Γ is horizontal. Also,

`H(Γ) =

∫ 1

0

√
〈γ′(s), γ′(s)〉C ds =

∫ 1

0

√
〈(U ◦ γ′)(s), (U ◦ γ′)(s)〉C ds = `H(V ◦ Γ).

Thus dcc(V p, V q) ≤ `H(Γ) = dcc(p, q). Since U is invertible and U−1 ∈ U(n,C), we may

argue similarly to show that dcc(p, q) = dcc(V
−1V p, V −1V q) ≤ dcc(V p, V q), and so V is

an isometry on Hn. Clearly unitary transformations of Cn are also orientation preserving

isometries of R2n and hence V is a rotation of R2n+1 about the t-axis.
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5.0 THE WHITNEY EXTENSION THEOREM FOR HORIZONTAL

CURVES IN THE HEISENBERG GROUP

This chapter is based on the paper [97]. In 1934, Whitney [94] discovered a necessary and

sufficient condition for the existence of an extension f̃ ∈ Ck(Rm) of a continuous function

f : K → R defined on a compact set K ⊂ Rm. The purpose of this chapter is to prove a

version of the Whitney Extension Theorem for mappings from a compact subset of R into the

sub-Riemannian Heisenberg group Hn. Applications of Whitney’s extension theorem may

be found in the construction of functions with unusual differentiability properties (see [93])

and the existence of C1 approximations for Lipschitz mappings (see [29, Theorem 3.1.15]

or Corollary 60 below). Such approximations are useful in the study of rectifiable sets, and

the notion of rectifiability has seen recent activity in the setting of Hn (see for example

[7, 32, 56, 68]). In fact, the authors in [68] indicate that a Whitney type extension theorem

into the Heisenberg group would help show the equivalence of two notions of rectifiability

in Hn. For a comprehensive summary of the work done on Whitney type questions, see the

introduction and references of [30].

Definition 45. We say that a continuous function f : K → R defined on a compact set

K ⊂ Rm is of Whitney class C1(K) (equivalently f ∈ C1(K)) if there is a continuous function

Df ∈ C(K,Rm) such that

(5.1) lim
|b−a|→0
a,b∈K

|f(b)− f(a)−Df(a) · (b− a)|
|b− a|

= 0.

We will call Df the derivative of f in the Whitney sense or the Whitney derivative of f .
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Note that, a priori, Df is unrelated to the classical derivative since it is simply a contin-

uous function defined on a compact set.

Condition (5.1) is necessary for the existence of a C1 extension since any smooth function

defined on Rm will satisfy (5.1) on a compact set K ⊂ Rm with Whitney derivative equal

to the classical derivative. Whitney proved that (5.1) is also sufficient to guarantee the

existence of a C1 extension. That is, for any compact K ⊂ Rm and f ∈ C1(K), there exists

a function f̃ ∈ C1(Rm) such that f̃ |K = f and ∇f̃ |K = Df . See [65, 94] for proofs of this.

Whitney actually proved a similar result with higher order regularity of f , but we will focus

here only on the first order case. See Theorem 102 below for the statement of this higher

order result.

The Whitney class can be defined for mappings between higher dimensional Euclidean

spaces in an obvious way. A mapping F : K → RN is said to be of Whitney class C1(K,RN)

(equivalently F ∈ C1(K,RN)) for a compact K ⊂ Rm if each component fj of F is of Whitney

class C1(K) with Whitney derivative Dfj. Call DF = (Df1, . . . ,DfN) : K → (Rm)N the

Whitney derivative of F . Given any F ∈ C1(K,RN), we may construct a C1 extension of F

by applying Whitney’s result to each of its components.

5.1 FORMULATING THE PROBLEM

A natural question may be asked: what form would a sort of Whitney extension theorem

take in the Heisenberg group? In 2001, Franchi, Serapioni, and Serra Cassano [32] proved a

C1 version of the Whitney extension theorem for mappings from the Heisenberg group Hn

into R. The authors provided a concise proof highlighting the major differences between

the Euclidean and Heisenberg cases. For a full exposition of the proof, see [88]. In this

theorem, the function defined on a compact K ⊂ Hn is extended to C1
H function. That

is, the derivatives of the extension in the horizontal directions exist and are continuous. In

2006, Vodop’yanov and Pupyshev [89] proved a Ck version of Whitney’s theorem for real

valued functions defined on closed subsets of general Carnot groups.

In 2013, Piotr Haj lasz posed the following two questions:
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• (Whitney extension) What are necessary and sufficient conditions for a continuous map

f : K → R2n+1 withK ⊂ Rm compact andm ≤ n to have a C1 extension f̃ : Rm → R2n+1

satisfying im(Df̃(x)) ⊂ Hf̃(x)Hn for every x ∈ Rm?

• (C1 Luzin property) Is it true that, for every horizontal curve Γ : [a, b] → Hn and any

ε > 0, there is a C1, horizontal curve Γ̂ : [a, b]→ Hn such that

|{s ∈ [a, b] : Γ̂(s) 6= Γ(s)}| < ε?

Remark 46. Note that the Whitney extension problem stated above is very different from

the one solved by Franchi, Serapioni, and Serra Cassano since the nonlinear constraint now

lies in the target space. Such a constraint makes the problem much more difficult.

Remark 47. We only consider the Whitney problem in the case when m ≤ n since, if m > n,

we have possible topological obstacles preventing the existence of a smooth extension. For

more details, see [7, 22].

Let us consider the Whitney extension question in the case when m = 1. For K ⊂ R

compact, let Γ = (f1, g1, . . . , fn, gn, h) : K → R2n+1 be continuous so that there is a C1,

horizontal extension Γ̃ : R→ R2n+1. Then clearly Γ ∈ C1(K,R2n+1) with Whitney derivative

Γ′ := Γ̃′|K . That is,

(5.2) lim
|b−a|→0
a,b∈K

|Γ(b)− Γ(a)− (b− a)Γ′(a)|
|b− a|

= 0.

Γ′ must also satisfy the horizontality condition

(5.3) h′(s) = 2
n∑
j=1

(f ′j(s)gj(s)− fj(s)g′j(s))

for any s ∈ K since any C1, horizontal curve defined on R satisfies (5.3) for every s ∈ R. We

may ask the following: are conditions (5.3) and (5.2) sufficient to guarantee the existence of

a horizontal, C1 extension Γ̃ of Γ? As we see here, the answer to this is, in general, “no”.

Proposition 48. There is a compact K ⊂ R and Γ = (f, g, h) ∈ C1(K,R3) with Whitney

derivative Γ′ = (f ′, g′, h′) satisfying h′ = 2(f ′g − fg′) so that no C1, horizontal curve Γ̃ :

R→ H1 satisfies Γ̃|K = Γ.
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The next natural question to ask is the following: under what additional assumption

does there exist a C1, horizontal extension of Γ ∈ C1(K,R2n+1)? The following proposition

describes a necessary condition that every C1, horizontal curve satisfies.

Proposition 49. Suppose U ⊂ R is open and Γ = (f1, g1, . . . , fn, gn, h) : U → Hn is C1 and

horizontal. Then for any compact K ⊂ U

(5.4) lim
|b−a|→0
a,b∈K

∣∣∣h(b)− h(a)− 2
∑n

j=1(fj(b)gj(a)− fj(a)gj(b))
∣∣∣

|b− a|2
= 0.

The proofs of these two propositions are presented in Section 5.2.

5.1.1 The Whitney extension theorem for curves

As we will now see, the main result of this chapter shows that assuming condition (5.4)

in addition to (5.2) and (5.3) is in fact necessary and sufficient for the existence of a C1,

horizontal extension of a continuous Γ : R ⊃ K → Hn. This is summarized as follows:

Theorem 50. Suppose K ⊂ R is compact. Suppose Γ = (f1, g1, . . . , fn, gn, h) : K → Hn is

of Whitney class C1(K,R2n+1) with Whitney derivative Γ′ = (f ′1, g
′
1, . . . , f

′
n, g
′
n, h

′).

Then there is a horizontal, C1 curve Γ̃ : R→ Hn such that Γ̃|K = Γ and Γ̃′|K = Γ′ if and

only if

(5.5) lim
|b−a|→0
a,b∈K

∣∣∣h(b)− h(a)− 2
∑n

j=1(fj(b)gj(a)− fj(a)gj(b))
∣∣∣

|b− a|2
= 0

and

(5.6) h′(s) = 2
n∑
j=1

(
f ′j(s)gj(s)− g′j(s)fj(s)

)
for every s ∈ K.

Remark 51. We actually do not need to assume that h ∈ C1(K) because it is a consequence

of (5.5) and the fact that fj ∈ C1(K) and gj ∈ C1(K) for j = 1, . . . , n. The proof of this is

simple, but it is contained at the end of Section 5.2 for completeness.

Theorem 50 can be reformulated using the Lie group structure of Hn as follows:
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Theorem 52. Suppose K ⊂ R is compact. Suppose Γ = (f1, g1, . . . , fn, gn, h) : K → Hn and

Γ′ = (f ′1, g
′
1, . . . , f

′
n, g
′
n, h

′) : K → Hn are continuous.

Then there is a horizontal, C1 curve Γ̃ : R→ Hn such that Γ̃|K = Γ and Γ̃′|K = Γ′ if and

only if

(5.7) lim
b−a→0+

a,b∈K

∣∣δ(b−a)−1

(
Γ(a)−1 ∗ Γ(b)

)
− Γ′0(a)

∣∣ = 0

where Γ′0 = (f ′1, g
′
1, . . . , f

′
n, g
′
n, 0), and

h′(s) = 2
n∑
j=1

(
f ′j(s)gj(s)− g′j(s)fj(s)

)
for every s ∈ K.

Here, δ(b−a)−1 is the Heisenberg dilation. After assuming (5.6) and rewriting (5.7) using

the definitions of the group law and dilations, we see that (5.7) is satisfied if and only if (5.5) is

true and Γ is of Whitney class C1(K,R2n+1) with Whitney derivative Γ′. That is, Theorem

50 and Theorem 52 are indeed equivalent. Notice the similarity between the formulation

of (5.7) and the definition of the Pansu derivative (see [72, 75] for information on Pansu

differentiation). In fact, Proposition 49 implies that Γ′0 may be viewed as a Whitney-Pansu

derivative of Γ. Thus (5.7) acts as a sort of Whitney-Pansu condition for mappings defined

on compact subsets of R.

In 2015, Speight [81] showed that a horizontal curve Γ : [a, b]→ Hn coincides with a C1,

horizontal curve Γ̂ on [a, b] up to a set of arbitrarily small measure. That is, he answered

the C1 Luzin approximation question posed by Haj lasz in the positive. After seeing the

paper by Speight, I quickly realized that this C1 Luzin result follows from Theorem 50. This

is summarized at the end of this chapter in Corollary 60. Moreover, Speight showed the

surprising result that the Luzin approximation does not hold for curves in the Engel group.

5.2 PROOFS OF SOME PROPOSITIONS

We will first present the proof Proposition 49 as this result is used in the proof of Proposi-

tion 48.
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5.2.1 Necessity of the growth condition

Proof of Proposition 49. Since K is compact, we may assume without loss of generality that

U is bounded. It suffices to prove (5.4) when U is an open interval. Indeed, U =
⋃∞
i=1(ai, bi)

for disjoint intervals (ai, bi). Since K is compact, K ⊂
⋃N
i=1(ai, bi) for some N ∈ N, and so

we are only required to prove (5.4) on each (ai, bi) ∩K with i ≤ N . We may also replace K

by a possibly larger compact interval (also called K) contained in the interval U .

Since Γ is horizontal, we have that h′ = 2
∑n

j=1(f ′jgj−fjg′j) on U . Choose M > 0 so that

|f ′j| < M and |g′j| < M on K for every j = 1, . . . , n. Fix j ∈ {1, . . . , n}. For any a, b ∈ K

with a < b, we have (a, b) ⊂ K, and so

∫ b

a

f ′j(t)gj(t) dt

=

∫ b

a

f ′j(t)[gj(a) + g′j(a)(t− a) + gj(t)− gj(a)− g′j(a)(t− a)] dt

= gj(a)

∫ b

a

f ′j(t) dt+ g′j(a)

∫ b

a

f ′j(t)(t− a) dt+

∫ b

a

f ′j(t)[gj(t)− gj(a)− g′j(a)(t− a)] dt.

Now

1

(b− a)2

∣∣∣∣∣
∫ b

a

f ′j(t)[gj(t)− gj(a)− g′j(a)(t− a)] dt

∣∣∣∣∣
≤ M

b− a

∫ b

a

|gj(t)− gj(a)− g′j(a)(t− a)|
|t− a|

dt

which vanishes uniformly on K as |b− a| → 0 since gj is C1. In other words,
∫ b
a
f ′j(t)[gj(t)−

gj(a)− g′j(a)(t− a)] dt = o(|b− a|2) uniformly on K as |b− a| → 0. Moreover

∫ b

a

f ′j(t)(t− a) dt =

∫ b

a

(f ′j(t)− f ′j(a))(t− a) dt+

∫ b

a

f ′j(a)(t− a) dt.

As above, we have
∫ b
a
(f ′j(t) − f ′j(a))(t − a) dt = o(|b − a|2) uniformly on K as |b − a| → 0

since fj is C1. Thus we can write

∫ b

a

f ′j(t)gj(t) dt = [fj(b)− fj(a)]gj(a) + g′j(a)f ′j(a)

∫ b

a

(t− a) dt+ o(|b− a|2).
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Similar arguments yield

∫ b

a

g′j(t)fj(t) dt = [gj(b)− gj(a)]fj(a) + f ′j(a)g′j(a)

∫ b

a

(t− a) dt+ o(|b− a|2).

Hence ∫ b

a

(f ′j(t)gj(t)− g′j(t)fj(t)) dt = fj(b)gj(a)− fj(a)gj(b) + o(|b− a|2).

Therefore,

h(b)− h(a) =

∫ b

a

h′(t) dt = 2
n∑
j=1

∫ b

a

(f ′j(t)gj(t)− fj(t)g′j(t)) dt

= 2
n∑
j=1

(fj(b)gj(a)− fj(a)gj(b)) + o(|b− a|2)

uniformly as |b− a| → 0 for a, b ∈ K. This completes the proof.

5.2.2 Failure of the classical conditions in the Heisenberg group

As implied above, the following counterexample will fail to have a C1, horizontal extension

since any such extension would not satisfy the necessary condition outlined in Proposition

49 on the compact set K.

Proof of Proposition 48. Let

K =
∞⋃
n=0

[
1− 1

2n
, 1− 3

4
· 1

2n

]
∪ {1} =:

∞⋃
n=0

[cn, dn] ∪ {1}.

Then K is compact. Define Γ = (f, g, h) : K → H1 so that, for each n ∈ N ∪ {0},

Γ(t) = (0, 0, 3−n) for t ∈ [cn, dn], and set Γ(1) = (0, 0, 0) (see Figure 6). Define Γ′(t) = (0, 0, 0)

for every t ∈ K. We will show that

(5.8)
|Γ(b)− Γ(a)− (b− a)Γ′(a)|

|b− a|

converges uniformly to 0 as |b− a| → 0 on K.
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Figure 6: The mapping Γ from the proof of Proposition 48

Figure 7: A possible horizontal extension of Γ. This extension is not smooth at the origin.
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Let ε > 0 and fix n ∈ N with 4(2/3)n < ε. Suppose a, b ∈ K with |b− a| < 2−(n+2). If a

and b lie in the same interval [ck, dk], then (5.8) equals 0. If a and b lie in different intervals

[ck, dk] and [c`, d`] for some k, ` ∈ N ∪ {0} (say ` > k), then k ≥ n. Indeed, if k < n, then

|b− a| ≥ c` − dk ≥ ck+1 − dk = 2−(k+2) > 2−(n+2)

which is impossible. Hence,

|Γ(b)− Γ(a)− (b− a)Γ′(a)|
|b− a|

≤ 3−k − 3−`

c` − dk
≤ 3−k

ck+1 − dk
= 4

(
2

3

)k
≤ 4

(
2

3

)n
< ε.

If either a or b equals 1 and the other point lies in the interval [ck, dk] for some k ∈ N∪ {0},

then, as in the above argument, k ≥ n. In this case, (5.8) is bounded by 4
3

(
2
3

)n
< ε. Thus

Γ ∈ C1(K,R3), so there exists a C1 extension of Γ to all of R.

Suppose now that Γ̃ = (γ̃, h̃) : R → H1 is a C1, horizontal extension of Γ. By Proposi-

tion 49, Γ̃ must satisfy |h̃(b)− h̃(a)|/|b− a|2 → 0 uniformly on K as |b− a| → 0. However,

|cn+1 − dn| = 2−(n+2) → 0 as n→∞, but

|h(cn+1)− h(dn)|
|cn+1 − dn|2

=
3−n − 3−(n+1)

4−(n+2)
=

32

3

(
4

3

)n
→∞

as n→∞. Thus Γ has no C1, horizontal extension to all of R.

5.2.3 Equivalence of the theorem statements

We complete this section with the proof of Remark 51.

Proof. Let K ⊂ R be compact. Suppose Γ = (f1, g1, . . . , fn, gn, h) : K → Hn satisfies (4.9).

Suppose also that fj ∈ C1(K) and gj ∈ C1(K) for j = 1, . . . , n with Whitney derivatives

f ′1, g
′
1, . . . , f

′
n, g
′
n. Then

|h(b)− h(a)− (b− a)h′(a)| ≤

∣∣∣∣∣h(b)− h(a)− 2
n∑
j=1

(fj(b)gj(a)− fj(a)gj(b))

∣∣∣∣∣
+ 2

n∑
j=1

∣∣fj(b)gj(a)− fj(a)gj(b)

− (b− a)
(
f ′j(a)gj(a)− fj(a)g′j(a)

) ∣∣
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= o(|b− a|2) + 2
n∑
j=1

∣∣gj(a)
(
fj(b)− (b− a)f ′j(a)

)
− fj(a)

(
gj(b)− (b− a)g′j(a)

) ∣∣
= o(|b− a|2) + o(|b− a|)

uniformly as |b− a| → 0 for any a, b ∈ K. That is, h ∈ C1(K).

5.3 CONSTRUCTING THE WHITNEY EXTENSION

Proof of Theorem 50. Write Γ = (γ, h) = (γ1, . . . , γn, h) where γj = (fj, gj) : K → R2.

The necessity of conditions (4.9) and (5.6) was verified in Proposition 49 and in the

discussion preceding Proposition 48. We will now prove that these are sufficient conditions.

Since K is compact, we can define the closed interval I = [min{K},max{K}]. Thus

I \K is open, so I \K =
⋃
i(a

i, bi) for pairwise disjoint open intervals (ai, bi). To construct

the extension Γ̃ of Γ, we will define a C1 extension γ̃ of γ on each interval [ai, bi] so that the

horizontal lift of γ̃ will coincide with Γ on K.

If the collection {(ai, bi)}i is finite, then we can construct the extension directly. On each

[ai, bi] and for each j ∈ {1, . . . , n} define γ̃ij = (f̃ ij , g̃
i
j) : [ai, bi] → R2 to be a curve which is

C1 on [ai, bi] satisfying

(5.9) γ̃ij(a
i) = γj(a

i) and γ̃ij(b
i) = γj(b

i),

(5.10) (γ̃ij)
′(ai) = γ′j(a

i) and (γ̃ij)
′(bi) = γ′j(b

i),

(5.11) 2

∫ bi

ai

(
(f̃ ij)

′g̃ij − f̃ ij(g̃ij)′
)

=
1

n

[
h(bi)− h(ai)

]
.

The fact that a curve exists satisfying the first two conditions is obvious. The value on

the right hand side of condition (5.11) is fixed, and the integral on the left may be interpreted
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as an area via Green’s theorem. Thus any curve with prescribed values at ai and bi as in

(5.9) and (5.10) can be adjusted in (ai, bi) without disturbing the curve at the endpoints so

that this integral condition (5.11) is indeed satisfied.

Now define the curve γ̃ : I → R2n so that

γ̃|K = γ and γ̃|(ai,bi) = (γ̃i1, . . . , γ̃
i
n)

for every i ∈ N. The properties (5.9) and (5.10) above ensure that γ̃ is C1 on I. Extend

γ̃ to a C1 curve on all of R. Finally, define Γ̃ = (γ̃, h̃) to be the unique horizontal lift of γ̃

so that h̃(min{K}) = h(min{K}). Property (5.11) ensures that this lift is a C1 extension

of Γ since, on [ai, bi], the horizontal lift traverses the distance h(bi) − h(ai) in the vertical

direction (as described in (3.6)).

Now, consider the case when the collection {(ai, bi)} is infinite. The simple construction

above can not in general be applied directly in this case. Indeed, in the above construction,

there was little control on the behavior of the curves. For example, curves filling a small

gap from γj(a
i) to γj(b

i) could be made arbitrarily long. Thus we must now be more careful

when constructing these curves.

Notice that the sequence {(ai, bi)}∞i=1 satisfies bi − ai → 0 as i → ∞ since I is bounded

and the intervals are disjoint. Thus, using the fact that each fj ∈ C1(K) and gj ∈ C1(K) and

using (4.9), we can find a non-increasing sequence εi → 0 so that the following conditions

hold for each i ∈ N:

bi − ai < εi, |γ(bi)− γ(ai)| < εi,

∣∣∣∣γ(bi)− γ(ai)− (bi − ai)γ′(ai)
bi − ai

∣∣∣∣ < εi,

∣∣∣∣γ(bi)− γ(ai)− (bi − ai)γ′(bi)
bi − ai

∣∣∣∣ < εi,

1

n

∣∣∣∣∣h(bi)− h(ai)−
∑n

j=1(fj(b
i)gj(a

i)− fj(ai)gj(bi))
(bi − ai)2

∣∣∣∣∣ < εi.

Our plan for the proof will be as follows: for each i ∈ N we will construct a horizontal

curve Γ̃i in Hn defined on [ai, bi] connecting Γ(ai) to Γ(bi) and satisfying conditions (5.9),

(5.10), and (5.11). In addition, the curves will be constructed in a controlled way so that the
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concatenation of all of these curves creates a C1, horizontal extension of Γ. To create these

curves in Hn, we will first define for each i ∈ N curves γ̃ij : [ai, bi] → R2 in each xjyj-plane

connecting γj(a
i) to γj(b

i). Horizontally lifting each curve γ̃i = (γ̃i1, . . . , γ̃
i
n) to Γ̃i will create

an extension Γ̃ : I → Hn of Γ. The controlled construction of the curves γ̃ij together with

(5.11) will ensure that this extension Γ̃ is indeed C1.

We begin with the following lemma in which we define a curve ηij from [ai, bi] into the

xjyj-plane sending ai to the origin and bi to (|γj(bi)− γj(ai)|, 0) Later, we will compose the

curves in the lemma with planar rotations and translations to create the curves γ̃ij connecting

γj(a
i) to γj(b

i) as described above.

We now introduce some notation. Fix j ∈ {1, . . . , n}. For each i ∈ N, if |γj(bi)−γj(ai)| >

0, let uij =
γj(b

i)−γj(ai)
|γj(bi)−γj(ai)| and let vij be the unit vector perpendicular to uij given by a counter-

clockwise rotation of uij in the xjyj-plane. If |γj(bi) − γj(ai)| = 0, define uij and vij to be

the unit vectors pointing in the xj and yj coordinate directions respectively. Since each γj is

of Whitney class C1(K,R2), we may choose M > 0 so that
|γj(bi)−γj(ai)|
|bi−ai| < M , |γ′j(ai)| < M ,

and |γ′j(bi)| < M for every i ∈ N and every j = 1, . . . , n.

Lemma 53. Fix i ∈ N and j ∈ {1, . . . n}. There exists a C1 curve ηij = (xij, y
i
j) : [ai, bi]→ R2

satisfying

(5.12) ηij(a
i) = (0, 0) and ηij(b

i) =
(
|γj(bi)− γj(ai)|, 0

)
,

(5.13) (ηij)
′(ai) = (γ′j(a

i) · uij, γ′j(ai) · vij) and (ηij)
′(bi) = (γ′j(b

i) · uij, γ′j(bi) · vij),

(5.14) ||ηij||∞ < P (εi) and ||(ηij)′ − (γ′j(a
i) · uij, γ′j(ai) · vij)||∞ < P (εi)

where P (t) = C ′(t1/2 + t2) for every t ≥ 0 and some constant C ′ ≥ 0 depending only on M ,

and

(5.15)

2

∫ bi

ai

(
(xij)

′yij − xij(yij)′
)

=
1

n

[
h(bi)− h(ai)− 2

n∑
m=1

(
fm(bi)gm(ai)− fm(ai)gm(bi)

)]
.
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The proof of this lemma is omitted here for continuity. It is presented in the appendix.

Remark 54. Observe that γ′j(a
i)·uij and γ′j(a

i)·vij are the components of the vector γ′j(a
i) in

the orthonormal basis 〈uij,vij〉. Soon, we will define the curve γ̃ij by moving ηij via a rotation

and translation. The rotation will map the standard basis in the xjyj-plane to 〈uij,vij〉, and

hence (5.13) will imply (γ̃ij)
′(ai) = γ′j(a

i) and (γ̃ij)
′(bi) = γ′j(b

i). The translation will map

the segment connecting the origin and (|γj(bi) − γj(ai)|, 0) to the segment γj(ai)γj(bi), and

so (5.12) will give γ̃ij(a
i) = γj(a

i) and γ̃ij(b
i) = γj(b

i). Condition (5.14) exhibits control on

the C1 norm of ηij and will thus give us control on the C1 norm of its isometric image γ̃ij.

Note also that the integral condition (5.15) seems more complicated than (5.11). However,

after rotating and translating ηij, (5.15) will reduce to (5.11).

Fix j ∈ {1 . . . , n} and i ∈ N. Define the curve ηij : [ai, bi]→ R2 as in the lemma. Define

the isometry Φi
j : R2 → R2 as Φi

j(p) = Aijp+ cij for p ∈ R2 where cij = (fj(a
i), gj(a

i)) and

Aij =
1

|γj(bi)− γj(ai)|

 fj(b
i)− fj(ai) −(gj(b

i)− gj(ai))

gj(b
i)− gj(ai) fj(b

i)− fj(ai)



when |γj(bi)− γj(ai)| 6= 0 and Aij = I2×2 if |γj(bi)− γj(ai)| = 0. That is, Φi
j is the isometry

described in Remark 54. When γj(a
i) = γj(b

i), Φi
j is simply a translation sending the origin

to γj(a
i) without any rotation. Now define γ̃ij = Φi

j ◦ ηij : [ai, bi] → R2. Hence γ̃ij is a C1

curve in R2 connecting γj(a
i) to γj(b

i).

Write γ̃i = (γ̃i1, . . . , γ̃
i
n) : [ai, bi] → R2n. Now, define Γ̃i : [ai, bi] → Hn to be the unique

horizontal lift of γ̃i with starting height h(ai). The resulting lift is C1 on [ai, bi] by definition.

Define Γ̃ : I → Hn so that

Γ̃|K = Γ and Γ̃|(ai,bi) = Γ̃i

for each i ∈ N. Write Γ̃ = (γ̃, h̃) = (γ̃1, . . . , γ̃n, h̃) where γ̃j = (f̃j, g̃j) for each j ∈ {1, . . . , n}.

It remains to show that Γ̃ is C1 on all of I. Notice that we do not yet know if Γ̃ is even

continuous.

Claim 55. For each i ∈ N,
∫ bi
ai
h̃′ = h(bi)− h(ai).
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Fix j ∈ {1, . . . , n} and suppose |γj(bi)− γj(ai)| 6= 0. We have

(Φi
j ◦ ηij) =

 xij
fj(b

i)−fj(ai)
|γj(bi)−γj(ai)| − y

i
j
gj(b

i)−gj(ai)
|γj(bi)−γj(ai)| + fj(a

i)

xij
gj(b

i)−gj(ai)
|γj(bi)−γj(ai)| + yij

fj(b
i)−fj(ai)

|γj(bi)−γj(ai)| + gj(a
i)


where ηij = (xij, y

i
j). This gives

ω(γ̃′j, γ̃j) = ω((Φi
j ◦ ηij)′, (Φi

j ◦ ηij))

= gj(a
i)

(
(xij)

′ fj(b
i)− fj(ai)

|γj(bi)− γj(ai)|
− (yij)

′ gj(b
i)− gj(ai)

|γj(bi)− γj(ai)|

)
− fj(ai)

(
(xij)

′ gj(b
i)− gj(ai)

|γj(bi)− γj(ai)|
+ (yij)

′ fj(b
i)− fj(ai)

|γj(bi)− γj(ai)|

)
+

((
fj(b

i)− fj(ai)
|γj(bi)− γj(ai)|

)2

+

(
gj(b

i)− gj(ai)
|γj(bi)− γj(ai)|

)2
)

((xij)
′yij − xij(yij)′).

Now since the constructions in the lemma give∫ bi

ai
(yij)

′ = yij(b
i)− yij(ai) = 0 and

∫ bi

ai
(xij)

′ = xij(b
i)− xij(ai) = |γj(bi)− γj(ai)|

and (
fj(b

i)− fj(ai)
|γj(bi)− γj(ai)|

)2

+

(
gj(b

i)− gj(ai)
|γj(bi)− γj(ai)|

)2

=

(
|γj(bi)− γj(ai)|
|γj(bi)− γj(ai)|

)2

= 1,

we have

2

∫ bi

ai
ω((Φi

j ◦ ηij)′, (Φi
j ◦ ηij)) = 2(fj(b

i)gj(a
i)− fj(ai)gj(bi)) + 2

∫ bi

ai

(
(xij)

′yij − xij(yij)′
)
.

By condition (5.15), we have

2

∫ bi

ai

(
(xij)

′yij − xij(yij)′
)

=
1

n

[
h(bi)− h(ai)− 2

n∑
m=1

(fm(bi)gm(ai)− fm(ai)gm(bi))

]
,

thus ∫ bi

ai
h̃′ = 2

n∑
j=1

∫ bi

ai
ω((Φi

j ◦ ηij)′, (Φi
j ◦ ηij))

=
n∑
j=1

[
2
(
fj(b

i)gj(a
i)− fj(ai)gj(bi)

)
+

1

n

[
h(bi)− h(ai)− 2

n∑
m=1

(fm(bi)gm(ai)− fm(ai)gm(bi))

]]
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= h(bi)− h(ai).

If |γj(bi)− γj(ai)| = 0, then Ai is the identity. Thus∫ bi

ai
h̃′ = 2

n∑
j=1

∫ bi

ai

[
(xij)

′(yij + gj(a
i))− (yij)

′(xij + fj(a
i))
]

= 2
n∑
j=1

∫ bi

ai

(
(xij)

′yij − (yij)
′xij
)

= h(bi)− h(ai)

since fj(a
i) = fj(b

i) and gj(a
i) = gj(b

i) in this case. This completes the proof of the claim.

Claim 56. sups∈[ai,bi] |γ̃(s)− γ(ai)| → 0 as i→∞.

We have for any i ∈ N, any s ∈ [ai, bi], and any j ∈ {1, . . . , n},

|γ̃j(s)− γj(ai)| = |Φi
j(η

i
j(s))− γj(ai)| = |ηij(s)| < P (εi)

by (5.14) since (Φi
j)
−1(γj(a

i)) = (0, 0) and Φi
j is an isometry on R2. Since P (εi) → 0 as

i→∞, the claim is proven.

Claim 57. sups∈[ai,bi] |Γ̃′(s)− Γ′(ai)| → 0 as i→∞.

We have for any i ∈ N, any s ∈ [ai, bi], and any j ∈ {1, . . . , n},

|γ̃′j(s)− γ′j(ai)| = |(Φi
j ◦ ηij)′(s))− γ′j(ai)|

= |Aij((ηij)′(s))− Aij(γ′j(ai) · uij, γ′j(ai) · vij)|

= |(ηij)′(s)− (γ′j(a
i) · uij, γ′j(ai) · vij)| < P (εi)

by (5.14). Finally, by (5.6) and the definition of a horizontal lift

sup
s∈[ai,bi]

|h̃′(s)− h′(ai)|

≤ sup
s∈[ai,bi]

2
n∑
j=1

∣∣∣(f̃ ′j(s)g̃j(s)− g̃′j(s)f̃j(s))− (f ′j(a
i)gj(a

i)− g′j(ai)fj(ai))
∣∣∣

which can be made arbitrarily small as i→∞ because of the convergences in Claim 56 and

this claim. This proves the claim.

By definition, Γ̃ is C1 on (ai, bi) for any i ∈ N, so it is C1 on I \K. We will now verify

the differentiability of Γ̃ on K.
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Claim 58. For any t ∈ K, Γ̃ is differentiable at t and Γ̃′(t) = Γ′(t).

Suppose t ∈ K (so Γ̃(t) = Γ(t)). If t = ai for some i ∈ N, then for any j ∈ {1, . . . , n}

and 0 < δ < bi − ai, we can use the definition of γ̃i to write

δ−1|γ̃j(ai + δ)− γ̃j(ai)− δγ′j(ai)|

= δ−1|Aij(ηij(ai + δ)) + cij − (Aij(η
i
j(a

i)) + cij)− δAij((ηij)′(ai))|

= δ−1|ηij(ai + δ)− ηij(ai)− δ(ηij)′(ai)|

which vanishes as δ → 0 since ηij is differentiable from the right at ai. Thus γ̃ is differentiable

from the right at ai and the right derivative equals γ′(ai). Moreover,

lim
δ→0+

γ̃′j(a
i + δ) = lim

δ→0+
Aij((η

i
j)
′(ai + δ)) = Aij((η

i
j)
′(ai)) = γ′j(a

i).

Thus γ̃′ is continuous from the right at ai. Now Γ̃ was constructed on (ai, bi) by lifting γ(ai)

to the height h(ai). Hence
∫ c
ai
h̃′ = h̃(c)− h(ai) for any c ∈ (ai, bi). Thus for 0 < δ < bi − ai,

δ−1|h̃(ai + δ)− h̃(ai)− δh′(ai)|

≤ 2δ−1

n∑
j=1

∫ ai+δ

ai

∣∣∣(f̃ ′j(s)g̃j(s)− g̃′j(s)f̃j(s))− (f ′j(a
i)gj(a

i)− g′j(ai)fj(ai))
∣∣∣ ds

which vanishes as δ → 0 by the right sided continuity of γ̃ and γ̃′ at ai. Therefore Γ̃ is

differentiable from the right at ai and the right derivative is Γ′(ai).

We can similarly argue to show that γ̃ is differentiable from the left at bi for any i ∈ N

with left derivative equal to γ′(bi) and that γ̃′ is continuous from the left at bi. Applying

Claim 55 with 0 < δ < bi − ai gives

δ−1|h̃(bi − δ)− h̃(bi) + δh′(bi)| = δ−1|δh′(bi) + (h̃(bi − δ)− h̃(ai))− (h(bi)− h(ai))|

≤ δ−1

∫ bi

bi−δ

∣∣∣h′(bi)− h̃′(s)∣∣∣ ds
which vanishes as δ → 0 as above. Therefore Γ̃ is differentiable from the left bi and the left

derivative equals Γ′(bi).

We will now show that Γ̃ is differentiable from the right at any t ∈ K. Suppose now that

t 6= ai for any i ∈ N since we already proved right hand differentiability at ai above. (We
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may also suppose that t 6= max{K}.) Fix ε̃ > 0. Let {tk} be any decreasing sequence in K

with tk → t. Since Γ ∈ C1(K,R2n+1), there is some N > 0 so that for any k > N

(tk − t)−1|Γ(tk)− Γ(t)− (tk − t)Γ′(t)| < ε̃.

Suppose there is a decreasing sequence {tk} in I \K with tk → t. Then tk ∈ (aik , bik) for

some ik ∈ N for every k ∈ N. (Notice that ik →∞ as k →∞ since t 6= aik for any k ∈ N.)

Now

(tk − t)−1|Γ̃(tk)− Γ(t)−(tk − t)Γ′(t)|

≤ (tk − t)−1|Γ̃(tk)− Γ(aik)− (tk − aik)Γ′(aik)|

+ (tk − t)−1|(tk − aik)Γ′(aik)− (tk − aik)Γ′(t)|

+ (tk − t)−1|Γ(aik)− Γ(t)− (aik − t)Γ′(t)|.

We may bound the first term on the right as follows:

(tk − t)−1|Γ̃(tk)− Γ(aik)− (tk − aik)Γ′(aik)| ≤ (tk − t)−1

∫ tk

aik

∣∣∣Γ̃′(s)− Γ′(aik)
∣∣∣ ds.

By Claim 57, this is bounded by ε̃ for large enough k since tk−aik < tk− t. The second term

can be bounded by |Γ′(aik)−Γ′(t)|. Since Γ′ is continuous on K, this may also be made less

than ε̃ for large k. Finally, the third term can be made smaller than ε̃ since Γ ∈ C1(K,R2n+1)

and since (aik − t)/(tk − t) ≤ 1.

Since any decreasing sequence {tk} in I with tk → t either has a subsequence entirely

contained in K or a subsequence entirely contained in I \K, we have proven the differentia-

bility of Γ from the right for any t ∈ K (t 6= max{K}) with right derivative equal to Γ′(t).

By an identical argument involving an increasing sequence {tk} in I with tk → t when t 6= bi

and t 6= min{K}, we have that Γ is differentiable from the left at any t ∈ K (t 6= min{K})

with left derivative Γ′(t). Thus we may conclude the statement of the claim.

Claim 59. Γ̃ is C1 on I.
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We have already shown that Γ̃ is differentiable on I with Γ̃′|K = Γ′. Since Γ̃ is C1 on

each (ai, bi), Γ̃′ is continuous on I \K. It remains to show that Γ̃′ is continuous on K.

Fix t ∈ K. If t = ai for some i ∈ N, we showed in the proof of the previous claim that

γ̃′ is continuous from the right at t. This gives for any 0 < δ < bi − ai

|h̃′(ai + δ)− h̃′(ai)|

≤ 2
n∑
j=1

∣∣∣(f̃ ′j(ai + δ)g̃j(a
i + δ)− g̃′j(ai + δ)f̃j(a

i + δ))− (f ′j(a
i)gj(a

i)− g′j(ai)fj(ai))
∣∣∣

which vanishes as δ → 0, and so Γ̃′ is continuous from the right at ai. A similar argument

gives continuity of Γ̃′ from the left at bi.

Suppose t 6= ai for any i ∈ N and t 6= max{K}. Let {tk} be a decreasing sequence in K

with tk → t. Then |Γ′(t) − Γ′(t + δk)| may be made arbitrarily small when k is large since

Γ′ is continuous on K. If there is a decreasing sequence {tk} in I \ K with tk → t, then

tk ∈ (aik , bik) for some ik ∈ N for every k ∈ N, and so

|Γ′(t)− Γ̃′(tk)| ≤ |Γ′(t)− Γ′(aik)|+ |Γ′(aik)− Γ̃′(tk)|

may be made arbitrarily small for large k by Claim 57. As above, since any decreasing

sequence {tk} in I with tk → t either has a subsequence entirely contained in K or a

subsequence entirely contained in I \K, we have shown that Γ̃′ is continuous from the right

at t. A similar argument when t 6= bi and t 6= min{K} involving an increasing sequence {tk}

gives continuity of Γ̃′ from the left on K. This proves the claim

Extending Γ̃ from I to R in a smooth, horizontal way completes the proof of the theorem.
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5.4 THE LUZIN APPROXIMATION FOR HORIZONTAL CURVES

We will now see that the Luzin approximation of horizontal curves in Hn follows from the

above result as it does in the classical case. As mentioned earlier, this is a new proof of the

result of Speight [81].

Corollary 60. Suppose Γ = (f1, g1, . . . , fn, gn, h) : [a, b] → Hn is horizontal. Then, for

every ε > 0, there is a C1, horizontal curve Γ̃ : R → Hn and a compact set E ⊂ [a, b] with

|[a, b] \ E| < ε so that Γ̃(t) = Γ(t) and Γ̃′(t) = Γ′(t) for every t ∈ E.

Proof. Since Γ is horizontal, it is absolutely continuous as a mapping into R2n+1. Thus it is

differentiable almost everywhere in (a, b) and the derivative Γ′ is L1 on (a, b). Suppose that

t ∈ (a, b) is a point of differentiability of Γ and that t is a Lebesgue point of f ′j and g′j for

j = 1, . . . , n. Define Γ̄ = (f̄1, ḡ1, . . . , f̄n, ḡn, h̄) : [a, b] → Hn so that Γ̄(s) = Γ(t)−1 ∗ Γ(s).

Since Γ̄(t) = 0 and Γ̄ is horizontal, we have for any δ > 0 with t+ δ ∈ [a, b]

|h̄(t+ δ)|
δ2

=
1

δ2

∣∣∣∣∫ t+δ

t

h̄′(s) ds

∣∣∣∣ ≤ 2

δ

n∑
j=1

∫ t+δ

t

1

δ

∣∣f̄ ′j(s)ḡj(s)− f̄j(s)ḡ′j(s)∣∣ ds
≤ 2

δ

n∑
j=1

∫ t+δ

t

∣∣∣∣f̄ ′j(s) ḡj(s)s− t
− f̄j(s)

s− t
ḡ′j(s)

∣∣∣∣ ds
=

2

δ

n∑
j=1

∫ t+δ

t

∣∣∣∣f ′j(s)gj(s)− gj(t)s− t
− fj(s)− fj(t)

s− t
g′j(s)

∣∣∣∣ ds,

and so |h̄(t+δ)|
δ2
→ 0 as δ → 0. Similarly, |h̄(t−δ)|

δ2
→ 0 as δ → 0

Notice that h̄(s) = h(s)−h(t)−2
∑n

j=1(fj(s)gj(t)−fj(t)gj(s)) for every s ∈ (a, b). Thus

since almost every point in (a, b) is a point of differentiability of Γ and a Lebesgue point of

each f ′j and g′j, we have

(5.16) lim
s→t

∣∣∣h(s)− h(t)− 2
∑n

j=1(fj(s)gj(t)− fj(t)gj(s))
∣∣∣

(s− t)2
= 0

for almost every t ∈ (a, b). Denote by E1 the set of all t ∈ (a, b) satisfying both (5.16) and

Γ′(t) ∈ HΓ(t)Hn. Hence |[a, b] \ E1| = 0.
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Let ε > 0. By Luzin’s theorem, Γ′ is continuous on a compact set E2 ⊂ E1 with

|E1 \ E2| < ε/3. By applying Egorov’s theorem to the pointwise convergent sequence of

functions {ψk} defined on E2 as

ψk(t) = sup
s∈(t− 1

k
,t+ 1

k
)

{
|Γ(s)− Γ(t)− (s− t)Γ′(t)|

|s− t|

}
,

we see that Γ ∈ C1(E3,R2n+1) with Whitney derivative Γ′ for a compact set E3 ⊂ E2 with

|E2 \ E3| < ε/3. Once again applying Egorov’s theorem to the convergent sequence of

functions {φk} defined on E3 as

φk(t) = sup
s∈(t− 1

k
,t+ 1

k
)


∣∣∣h(s)− h(t)− 2

∑n
j=1(fj(s)gj(t)− fj(t)gj(s))

∣∣∣
(s− t)2

 ,

we conclude that (4.9) holds on a compact set E4 ⊂ E3 with |E3 \ E4| < ε/3.

Thus Γ is of Whitney class C1(E4,R2n+1), and conditions (4.9) and (5.6) hold on the

compact set E4. Therefore, by Theorem 50, there is a C1, horizontal Γ̃ : R → Hn so that

Γ̃(t) = Γ(t) and Γ̃′(t) = Γ′(t) for every t ∈ E4 where |[a, b] \ E4| < ε.

5.5 THE GAP FILLING ARGUMENT

We now prove Lemma 53 in which we explicitly construct polynomials to fill the gaps in K.

Proof. Fix i ∈ N and j ∈ {1, . . . , n}.

To simplify notation, write α = γ′j(a
i) · uij, β = γ′j(b

i) · uij, µ = γ′j(a
i) · vij, ν = γ′j(b

i) · vij,

and

(5.17) λ =
1

n

[
h(bi)− h(ai)− 2

n∑
k=1

(fk(b
i)gk(a

i)− fk(ai)gk(bi))

]
,

and so |λ|/(bi − ai)2 < εi. In other words, α and β are the components of the mapping γ′j

at ai and bi respectively in the direction of the segment γj(ai)γj(bi), and µ and ν are its

components in the perpendicular direction.

70



First, we prove that |µ| < εi and |ν| < εi. Indeed, the magnitude of (γj(b
i) − γj(ai) −

(bi − ai)γ′j(ai)) is at least equal to the magnitude of its projection along vij. That is,

εi >
|γj(bi)− γj(ai)− (bi − ai)γ′j(ai)|

bi − ai
≥
|(γj(bi)− γj(ai)− (bi − ai)γ′j(ai)) · vij|

bi − ai
= |µ|

since γj(b
i)− γj(ai) is orthogonal to vij. Replacing γ′j(a

i) with γ′j(b
i) in this argument gives

|ν| < εi. We also have

(5.18) εi >
|(γj(bi)− γj(ai)− (bi − ai)γ′j(ai)) · uij|

bi − ai
=

∣∣∣∣ |γj(bi)− γj(ai)|bi − ai
− α

∣∣∣∣
since (γj(b

i) − γj(ai)) · uij = |γj(bi) − γj(ai)|. Replacing γ′j(a
i) with γ′j(b

i) in this argument

gives
∣∣∣ |γj(bi)−γj(ai)|bi−ai − β

∣∣∣ < εi.

Define P : [0,∞)→ [0,∞) as P (t) = C ′(t1/2 + t2) where C ′ is a positive constant whose

value will be determined by the constructions of ηij and will depend only on M . In particular,

the value of C ′ will not depend on i or j.

Case 1. γj, γ
′
j, a

i, and bi satisfy

(5.19)

∣∣∣∣α + β − 9
|γj(bi)− γj(ai)|

bi − ai

∣∣∣∣ > √εi.
Write ` = |γj(bi) − γj(a

i)|. By composing with a translation of the real line, we may

assume without loss of generality that ai = 0 and write δ := bi. The bounds before the

statement of the lemma give δ < εi, ` < εi, and `/δ < M . Define the curve ηij = (xij, y
i
j) :

[0, δ]→ R2 as follows:

xij(t) = At3 +Bt2 + Ct

=
δ(α + β)− 2`

δ3
t3 +

−δ(2α + β) + 3`

δ2
t2 + αt

and

yij(t) = Dt4 + Et3 + Ft2 +Gt

= 7
6δ`(µ− ν) + δ2(αν − βµ)− 15λ

2δ4(δ(α + β)− 9`)
t4

+
δ`(33ν − 51µ) + δ2(α(µ− 6ν) + β(8µ+ ν)) + 105λ

δ3(δ(α + β)− 9`)
t3
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− δ`(24ν − 78µ) + δ2(4αµ+ 11βµ− 5αν + 2βν) + 105λ

2δ2(δ(α + β)− 9`)
t2 + µt.

See Figure 8 for a possible construction. One may check (by hand or with Mathematica;

I did both) that this curve satisfies conditions (5.12), (5.13), and (5.15). Now

|xij(t)| ≤ |A|δ3 + |B|δ2 + |C|δ

≤ δ(|α|+ |β|) + 2`+ δ(2|α|+ |β|) + 3`+ |α|δ

< εi(M +M) + 2εi + εi(2M +M) + 3εi +Mεi = (6M + 5)εi < P (εi)

after choosing C ′ large enough (since either εi ≤ (εi)2 or εi ≤ (εi)1/2). Also,

|(xij)′(t)− α| ≤ 3|A|δ2 + 2|B|δ + |C − α|

≤ 3

∣∣∣∣α + β − 2
`

δ

∣∣∣∣+ 2

∣∣∣∣−2α− β + 3
`

δ

∣∣∣∣
< 3εi + 3εi + 4εi + 2εi = 12εi < P (εi)

for large enough C ′ since
∣∣α− `

δ

∣∣ < εi and
∣∣β − `

δ

∣∣ < εi by (5.18).

Now we will consider the sizes of y and y′. First, we examine the size of terms in D. We

have ∣∣∣∣ δ`(µ− ν)

δ4(δ(α + β)− 9`)

∣∣∣∣ δ3 =
`
δ
|µ− ν|

|α + β − 9 `
δ
|
<

2Mεi√
εi

= 2M
√
εi

by (5.19). Similarly, ∣∣∣∣ δ2(αν − βµ)

δ4(δ(α + β)− 9`)

∣∣∣∣ δ3 =
|αν|+ |βµ|
|α + β − 9 `

δ
|
< 2M

√
εi.

Finally, ∣∣∣∣ λ

δ4(δ(α + β)− 9`)

∣∣∣∣ δ3 =
| λ
δ2
|

|α + β − 9 `
δ
|
<
√
εi

by (5.17). Thus 4|D|δ3 < P (εi) for large enough C ′. Identical arguments may be applied to

show that 3|E|δ2 < P (εi) and 2|F |δ < P (εi). Therefore,

|yij(t)| ≤ |D|δ4 + |E|δ3 + |F |δ2 + |G|δ < P (εi),

and

|(yij)′(t)− µ| ≤ 4|D|δ3 + 3|E|δ2 + 2|F |δ + |G− µ| < P (εi)
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for any t ∈ [0, δ] and large enough C ′. This proves (5.14) and completes the proof of the

lemma in this case.

Case 2. γj, γ
′
j, a

i, and bi satisfy∣∣∣∣α + β − 9
|γj(bi)− γj(ai)|

bi − ai

∣∣∣∣ ≤ √εi.
By composing with a translation as before, we can again write [ai, bi] = [0, δ]. We will first

find bounds on α and β in this case. We have∣∣∣∣α + β − 2
`

δ

∣∣∣∣− 7

∣∣∣∣ `δ
∣∣∣∣ ≤ ∣∣∣∣α + β − 9

`

δ

∣∣∣∣ ≤ √εi
and so we have | `

δ
| <

√
εi+2εi

7
since |α− `

δ
| < εi and |β − `

δ
| < εi. Thus also

|α| < εi +

√
εi + 2εi

7
=

√
εi + 9εi

7
and |β| <

√
εi + 9εi

7
.

We will define ηij = (xij, y
i
j) : [0, δ]→ R2 piecewise on its domain as follows:

xij(t) =

 9δα−27`
δ3

t3 + −12δα+27`
2δ2

t2 + αt : t ∈ [0, δ
3
]

9δβ−27`
δ3

t3 + −42δβ+135`
2δ2

t2 + 16δβ−54`
δ

t− 4δβ + 29
2
` : t ∈ [2δ

3
, δ]

and

yij(t) =


9µ
δ2
t3 − 6µ

δ
t2 + µt : t ∈ [0, δ

3
]

9ν
δ2
t3 − 21ν

δ
t2 + 16νt− 4δν : t ∈ [2δ

3
, δ]

.

On ( δ
3
, 2δ

3
), define ηij as

xij(t) = R cos(τ(t))−R +
`

2

yij(t) = R sin(τ(t))

where R = 1
2
√
π
|H|1/2 with

H := λ− 2

∫ δ/3

0

(x′y − xy′)− 2

∫ δ

2δ/3

(x′y − xy′)

= λ− δ`(µ− ν)

15
,
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and τ : ( δ
3
, 2δ

3
)→ R is defined as

τ(t) = ±
(
−108π

δ3
t3 +

162π

δ2
t2 − 72π

δ
t+ 10π

)
where we choose + if H ≤ 0 and − if H > 0. With this definition, xij and yij are C1 on [0, δ]

and conditions (5.12) and (5.13) are satisfied. See Figure 9 for a possible construction.

We can argue as we did in the proof of the previous case to show that

|xij(t)| < P (εi), |(xij)′(t)− α| < P (εi), |yij(t)| < P (εi), |(yij)′(t)− µ| < P (εi)

for t ∈ [0, δ
3
] ∪ [2δ

3
, δ] with large enough C ′. To prove condition (5.14), it remains to find

bounds for xij, y
i
j, and their derivatives on ( δ

3
, 2δ

3
). We have R ≤ 1

2
√
π

(
εi + 2

15
(εi)3

)1/2 ≤
1

2
√
π

(
(εi)1/2 +

√
2
15

(εi)3/2
)

, and so, for any t ∈ ( δ
3
, 2δ

3
), |xij(t)| < P (εi) and |yij(t)| < P (εi) for

large enough C ′.

We will now prove bounds for the derivatives. Notice that on ( δ
3
, 2δ

3
) we have |(xij)′(t)| ≤

|Rτ ′(t)| and |(yij)′(t)| ≤ |Rτ ′(t)|. Now for any t ∈ ( δ
3
, 2δ

3
)

|τ ′(t)| ≤ 3

∣∣∣∣108π

δ3

∣∣∣∣ (2δ

3

)2

+ 2

∣∣∣∣162π

δ2

∣∣∣∣ (2δ

3

)
+

∣∣∣∣72π

δ

∣∣∣∣ =
432π

δ
.

Therefore, |(xij)′(t)|2 and |(yij)′(t)|2 are bounded by

|Rτ ′(t)|2 = 46656π

(
|λ|
δ2

+
δ`(|µ|+ |ν|)

15δ2

)
= 46656π

(
εi +

2(εi)3/2

105
+

4(εi)2

105

)
.

Choosing large enough C ′, we have |(xij)′(t)| < P (εi) and |(yij)′(t)| < P (εi). Since |α| <
√
εi+9εi

7
and |µ| < εi, this proves condition (5.14).

It remains to prove condition (5.15). We have 2
∫ 2δ/3

δ/3
((xij)

′yij − xij(yij)′) = ∓4πR2 which

is negative if H < 0 and positive if H > 0 (and so ∓4πR2 = H). Thus

2

∫ δ

0

((xij)
′yij − xij(yij)′)

= 2

∫ δ/3

0

((xij)
′yij − xij(yij)′)∓ 4π(R)2 + 2

∫ δ

2δ/3

((xij)
′yij − xij(yij)′)

= λ =
1

n

[
h(bi)− h(ai)− 2

n∑
m=1

(fm(bi)gm(ai)− fm(ai)gm(bi))

]
.

This completes the proof of the lemma.
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Figure 8: A possible construction of ηij in Case 1

Figure 9: A possible construction of ηij in Case 2
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6.0 SOBOLEV EXTENSIONS OF LIPSCHITZ MAPPINGS INTO METRIC

SPACES

This chapter is based on the paper [96].

Definition 61. A pair of metric spaces (X, Y ) has the Lipschitz extension property if there

is a constant C > 0 so that any L-Lipschitz mapping f : A→ Y , A ⊂ X has a CL-Lipschitz

extension F : X → Y .

Extensive research has been conducted in the area of Lipschitz extensions. See, for

example, [17, 28, 54, 61, 62, 63, 86, 90, 91]. Wenger and Young [91] showed that (Rm,Hn)

has the Lipschitz extension property for m ≤ n. More generally, the authors proved that

(X,Hn) has the Lipschitz extension property as long as the Assouad-Nagata dimension of

X is at most n. See [6, 61, 91] for more information about this notion of dimension. For

such metric spaces X, Lang and Schlichenmeier [61] showed that, when Y is any Lipschitz

(n− 1)-connected metric space, there is a constant C > 0 so that any L-Lipschitz mapping

f : A→ Y defined on a closed subset A ⊂ X has a CL-Lipschitz extension F : X → Y .

Definition 62. A metric space Y is Lipschitz (n−1)-connected if there is a constant γ ≥ 1

so that any L-Lipschitz map f : Sk → Y (L > 0) on the k-dimensional sphere has a γL-

Lipschitz extension F : Bk+1 → Y on the (k + 1)-ball for k = 0, 1, . . . , n− 1.

The result of Wenger and Young follows immediately if one proves the Lipschitz (n− 1)-

connectivity of Hn. As Wenger and Young mentioned, however, proving this property for

Hn is difficult, and thus they provided a direct proof of their Lipschitz extension result.

What happens, however, when the dimension of the domain is large? As Balogh and

Fässler [7] showed, the pair (Rm,Hn) does not have the Lipschitz extension property when

m > n. Indeed, there is a bi-Lipschitz embedding of the sphere Sn into Hn, and one can

76



show that this embedding does not admit a Lipschitz extension to the ball Bn+1. Since Bn+1

can be regarded as a subset of Rm for any m > n, the result follows. (See also Theorems 1.5

and 1.6 in [45] for a shorter proof.)

In this chapter, we consider Sobolev extensions of Lipschitz mappings f : A → Hn,

A ⊂ Rm. Since Sobolev mappings form a larger class than Lipschitz mappings, it turns out

that, in the Sobolev case, we no longer have any restriction on the dimension of the domain.

The first main result of the chapter is stated here.

Theorem 63. Fix m,n ∈ N. Suppose Z ⊂ Rm is compact and Ω is a bounded domain in

Rm with Z ⊂ Ω. For 1 ≤ p < n+ 1 and any L-Lipschitz mapping f : Z → Hn, L ≥ 0, there

exists F ∈ W 1,p(Ω,Hn) with F (x) = f(x) for all x ∈ Z.

Moreover, there is a constant C > 0 depending only on m, n, and p such that, if we write

F = (F1, . . . , F2n, F2n+1), then ‖∂Fj/∂xk‖Lp(Ω) ≤ CL (diam (Ω))m/p for k = 1, . . . ,m and

j = 1, . . . , 2n.

If m ≤ n, then f admits a Lipschitz extension since Hn is Lipschitz (n− 1)-connected by

the result of Wenger and Young, and this extension belongs to W 1,p(Ω,Hn) for 1 ≤ p ≤ ∞.

However, if m > n, the result in Theorem 63 does not hold for p ≥ n+ 1. Indeed, we have

Proposition 64. There is a Lipschitz mapping f : Sn → Hn which admits no extension

F ∈ W 1,n+1(Bn+1,Hn).

One such mapping f : Sn → Hn is the bi-Lipschitz embedding used by Balogh and

Fässler [7]. In the proof of Proposition 64, we will see ideas from [40, Theorem 2], [41,

Theorem 2.3], and [45, Theorem 1.5].

Note that the bounds in Theorem 63 are given only for j < 2n + 1. Such a condi-

tion follows naturally from the sub-Riemannian geometry of the Heisenberg group. A brief

explanation of this follows Definition 73 in Section 6.1.4.

For mappings with Euclidean target, Sobolev extension results like Theorem 63 provide

extensions defined on all of Rm via composition with a cutoff function. However, since we do

not have such cutoff functions in Hn, such a simple argument will not work here. However,

we have the following

Corollary 65. Fix m,n ∈ N. Suppose Z ⊂ Rm is compact. For 1 ≤ p < n + 1 and any
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L-Lipschitz mapping f : Z → Hn, L ≥ 0, there exists F̃ ∈ W 1,p
loc (Rm,Hn) with F̃ (x) = f(x)

for all x ∈ Z.

This follows easily from the theorem. Indeed, suppose Ω is a cube containing Z and

Φ : Rm → Ω is a diffeomorphism which fixes Z. Then, if F ∈ W 1,p(Ω,Hn) is the extension

from Theorem 63, it follows that F̃ := F ◦ Φ ∈ W 1,p
loc (Rm,Hn).

It follows from classical Lipschitz extension proofs that there is a constant C > 0 so that

any L-Lipschitz mapping f : A→ Y defined on a closed subset A ⊂ Rm has a CL-Lipschitz

extension F : X → Y when Y is any Lipschitz (n − 1)-connected metric space and m ≤ n

(see [3, 54] or the proof of Lemma 78). It turns out that Theorem 63 can be generalized to

the case when the target space Hn is replaced by an arbitrary Lipschitz (n − 1)-connected

metric space Y . In this case, our extension will be in the Ambrosio-Reshetnyak-Sobolev class

AR1,p(Ω, Y ). For a bounded domain Ω in Rm and 1 ≤ p <∞, a mapping F : Ω→ Y belongs

to the class AR1,p(Ω, Y ) if there is a non-negative function g ∈ Lp(Ω) satisfying the following:

for any K-Lipschitz φ : Y → R, we have φ ◦ F ∈ W 1,p(Ω) and |∂(φ ◦ F )/∂xk(x)| ≤ Kg(x)

for k = 1, . . . ,m and almost every x ∈ Ω. This class of mappings was first introduced in [4]

and [76].

Theorem 66. Fix m,n ∈ N. Suppose Z ⊂ Rm is compact, Ω is a bounded domain in Rm

with Z ⊂ Ω, and Y is a Lipschitz (n − 1)-connected metric space with constant γ. For

1 ≤ p < n+1 and any L-Lipschitz mapping f : Z → Y , L ≥ 0, there exists F ∈ AR1,p(Ω, Y )

with F (x) = f(x) for all x ∈ Z.

Moreover, there is a constant C > 0 depending only on m, n, p, and γ such that we may

choose g ∈ Lp(Ω) in the definition of AR1,p(Ω, Y ) with ‖g‖Lp(Ω) ≤ CL (diam (Ω))m/p.

Notice that, as before, there is no restriction on the dimension of the domain. The theory

of Sobolev mappings into metric spaces has been studied extensively in [4, 38, 46, 50, 51,

52, 58, 76, 77]. See Section 6.1 below for some details on the topic. In particular, Hn valued

Sobolev mappings have been explored in [8, 20, 22, 46, 64]. One motivation for the study of

Sobolev extensions stems from the problem of approximating Sobolev mappings by Lipschitz

ones [11, 15, 22, 39, 45, 49]. In fact, the proof of Theorem 66 employs the so called zero

degree homogenization discussed in [15, 39].
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As we will see in Proposition 74, W 1,p(Ω,Hn) is contained in AR1,p(Ω,Hn). Furthermore,

in the case of bounded mappings, the two definitions of the Sobolev class are equivalent.

Hence Theorem 63 will be proven as a corollary to Theorem 66.

6.1 SOBOLEV MAPPINGS INTO METRIC SPACES

There are a variety of classes one may consider when defining a Sobolev mapping with a

metric space target. Some of these classes are addressed here. Throughout this section, we

will consider a mapping F : Ω→ Y where Ω ⊂ Rm is a bounded domain and Y is a metric

space.

6.1.1 Sobolev mappings into Banach spaces

We first consider the case when Y is a Banach space. For more details, see [23].

Definition 67. We say F ∈ Lp(Ω, Y ) if

1. For some Z ⊂ Ω with |Z| = 0, the set F (Ω \ Z) is separable,

2. φ ◦ F is measurable for every continuous, linear φ : Y → R with ||φ|| ≤ 1,

3. ||F || ∈ Lp(Ω).

In order to define a Sobolev function in this setting, we will introduce a Banach space

version of the integration by parts formula. To do this, we first need a new definition of the

integral. Suppose F satisfies the first two conditions in the above definition and {Fi} is a

sequence of simple functions from Ω into Y with Fi(x)→ F (x) pointwise a.e. That is, there

are vectors yi1, . . . , yiNi in Y and a partition Ai1, . . . , AiNi of Ω so that

Fi(x) =

Ni∑
j=1

yijχAij(x).

We may always approximate F pointwise a.e. by such simple functions. As in the case of

Lebesgue integration, define ∫
Ω

Fi(x) dx =

Ni∑
j=1

|Aij|yij.
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Definition 68. The Bochner integral of F is∫
Ω

F (x) dx = lim
i→∞

∫
Ω

Fi(x) dx.

Here, the limit is taken over any sequence {Fi} of simple functions which converges pointwise

a.e. to F .

This integral exists and is unique for any F ∈ L1(Ω, Y ). We are now ready to define the

Sobolev class.

Definition 69. For 1 ≤ p < ∞, we say F ∈ W 1,p
B (Ω, Y ) if F ∈ Lp(Ω, Y ) and there are

gj ∈ Lp(Ω, Y ) for j = 1, . . . ,m with∫
Ω

∂φ

∂xi
F = −

∫
Ω

φ gj

for every φ ∈ C∞c (Ω).

6.1.2 Embedding a metric space in a Banach space

The above definition of Banach space valued Sobolev mappings actually allows us to define

Sobolev mappings into any metric space. Suppose Y is now any metric space. Define Cb(Y )

to be the set of all bounded, continuous, real-valued functions on Y . This is a Banach space

under the supremum norm.

Theorem 70 (Kuratowski). There is an isometric embedding of Y into Cb(Y ).

Proof. Fix y0 ∈ Y . The map κ : Y → Cb(Y ) defined as κ(y) = d(y, ·)−d(y0, ·) for any y ∈ Y

is an isometry.

That is, we may always consider Y as a subset of a Banach space. In fact, if Y is separable,

then we may isometrically embed it in the Banach space `∞ of all bounded sequences of real

numbers. We can now define the Sobolev class W 1,p(Ω, Y ) in terms of this embedding.

Definition 71. For 1 ≤ p <∞, define

W 1,p
B (Ω, Y ) =

{
F ∈ W 1,p

B (Ω, Cb(Y )) : F (Ω) ⊂ κ(Y )
}
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6.1.3 The Ambrosio-Reshetnyak-Sobolev class

Suppose for now that u is in the classical Sobolev space W 1,p(Ω). Suppose also that φ :

R → R is a K-Lipschitz function. According to the ACL characterization of u, there is a

representative of u that is locally absolutely continuous along almost every line parallel to

a coordinate axis. Thus φ ◦ u is locally absolutely continuous along these lines as well, and

so it follows that φ ◦ u ∈ W 1,p(Ω). In fact, one may check that |∂(φ ◦ u)/∂xk| ≤ K|∂u/∂xk|

almost everywhere in Ω.

This property of classical Sobolev maps leads to the following definition of the Ambrosio-

Reshetnyak-Sobolev class of mappings into metric spaces introduced in [4] and [76].

Definition 72. For 1 ≤ p <∞, a mapping F belongs to the class AR1,p(Ω, Y ) if there is a

non-negative function g ∈ Lp(Ω) satisfying the following: for any K-Lipschitz φ : Y → R,

we have φ ◦ F ∈ W 1,p(Ω) and |∂(φ ◦ F )/∂xj(x)| ≤ Kg(x) for j = 1, . . . ,m and a.e. x ∈ Ω.

For more information about the relationship between these classes of Sobolev mappings,

see [46, 51].

6.1.4 Sobolev mappings into the Heisenberg group

The following definition of Sobolev mappings W 1,p(Ω,Hn) into the Heisenberg group has

been discussed in [8, 22, 46, 64]. In these references the Sobolev class is defined in terms

of the Banach space embedding as described above. However, in [22, Proposition 6.8], it is

proven that W 1,p(Ω,Hn) = W 1,p
B (Ω,Hn).

Definition 73. A mapping F : Ω → Hn is of class W 1,p(Ω,Hn) if the following two condi-

tions hold:

1. F ∈ W 1,p(Ω,R2n+1), and

2. F = (f1, g1, . . . , fn, gn, h) satisfies the weak contact equation

(6.1) ∇h(x) = 2
n∑
j=1

(gj(x)∇fj(x)− fj(x)∇gj(x)) a.e. x ∈ Ω.

Say that F ∈ W 1,p
loc (Rm,Hn) if F ∈ W 1,p

loc (Rm,R2n+1) and the weak contact equation holds for

a.e. x ∈ Rm.
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Notice that the weak contact condition (6.1) may also be written as follows:

im DF (x) ⊂ HF (x)Hn for a.e. x ∈ Ω

where DF is the weak differential of F . Consider the projection mapping π from R2n+1

onto its first 2n coordinates. It follows from the definition of the metric on the horizontal

space that dπp : HpHn → Tπ(p)R2n is an isometry for any p ∈ Hn. Hence, for almost every

x ∈ Ω, the norm of the linear map DF (x) : TxRm → HF (x)Hn is equal to the norm of

D(π ◦ F )(x) : TxRm → Tπ(F (x))R2n. This is why the quantitative estimates at the end of the

statement of Theorem 63 only apply to the partial derivatives of the first 2n components of

F .

6.1.5 The relationship between the Ambrosio-Reshetnyak and Sobolev classes

in the Heisenberg group

As we will now see, this definition gives a sufficient condition for a mapping to be in the

class AR1,p(Ω,Hn).

Proposition 74. Suppose Ω is a bounded domain in Rm and 1 ≤ p <∞. Then

W 1,p(Ω,Hn) ⊂ AR1,p(Ω,Hn).

Furthermore, if F ∈ AR1,p(Ω,Hn) is bounded, then F ∈ W 1,p(Ω,Hn).

A more precise statement of the first inclusion is as follows: any F ∈ W 1,p(Ω,Hn) has

a representative in W 1,p(Ω,R2n+1) (namely its ACL representative) which is in the class

AR1,p(Ω,Hn). This representative still satisfies the weak contact equation since (6.1) is only

required to hold almost everywhere in Ω.

A result similar to the first inclusion was proven in [8, Proposition 6.1] by embedding Hn

into `∞ via the Kuratowski embedding. The reverse inclusion for bounded maps is proven in

[22, Proposition 6.8] by applying the same embedding and invoking an ACL-type result for

Sobolev mappings into Banach spaces. Different, mostly self-contained proofs relying more

directly on the geometry of the Heisenberg group are given below.
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Proof. Suppose F ∈ W 1,p(Ω,R2n+1) satisfies (6.1) almost everywhere in Ω. We will consider

the ACLp(Ω,R2n+1) representative of F . Fix a K-Lipschitz function φ : Hn → R. First,

notice for any x ∈ Ω

|φ(F (x))| ≤ K dcc(F (x), 0) + |φ(0)| ≤ C K ‖F (x)‖K + |φ(0)|

for some C ≥ 1 from the bi-Lipschitz equivalence of dcc and dK . There is a constant M ≥ 1

depending only on n so that ‖p‖K ≤ M max{1, |p|} for any p ∈ Hn. Hence, since Ω is

bounded and F ∈ Lp(Ω,R2n+1), we have φ ◦ F ∈ Lp(Ω).

We must now show that φ◦F ∈ W 1,p(Ω) and find a function g ∈ Lp(Ω) which dominates

the partial derivatives of φ ◦ F and is independent of the choice of φ. Fix k ∈ {1, . . . ,m}.

Choose a line ¯̀ parallel to the kth coordinate axis so that F is absolutely continuous along

compact intervals in ` := ¯̀∩ Ω and so that ∂F/∂xk ∈ Lp(`,R2n+1). Suppose also that F

satisfies (6.1) almost everywhere along `. (Note that (m− 1)-almost every ¯̀ parallel to the

kth coordinate axis satisfies these conditions via Fubini’s theorem and Lemma 14.) Choose

a compact interval [a, b] ⊂ `. (Here, we abuse notation and identify ` with a subset of R.) It

follows from (6.1) that γ := F |[a,b] : [a, b] → Hn is a horizontal curve. The definition of the

metric in Hn gives

|φ(F (x))− φ(F (y))| ≤ K dcc(F (x), F (y)) ≤ K `H(γ|[x,y]) ≤ K `E(γ|[x,y])

for any [x, y] ⊂ [a, b]. Consider the Euclidean length function sγ : [a, b] → [0, `E(γ)] defined

as sγ(x) = `E(γ|[a,x]). We can write `E(γ|[x,y]) = |sγ(x)− sγ(y)| and conclude that

|φ(F (x))− φ(F (y))| ≤ K |sγ(x)− sγ(y)|

for any x, y ∈ [a, b]. Since γ is absolutely continuous on [a, b] as a Euclidean curve, sγ

is absolutely continuous as well (see for example [52, Proposition 5.1.5]). Thus φ ◦ F is

absolutely continuous on [a, b].

We will now prove the bound on the derivative of φ ◦ F along `. Fix a point x ∈ `

where ∂F/∂xk and ∂(φ◦F )/∂xk exist and which is a p-Lebesgue point of each component of

∂F/∂xk. (Note: almost every point in ` satisfies these conditions since the partial derivative

83



of F is p-integrable along `.) For any t small enough so that the interval (x, x + tek) ⊂ Ω,

we have∣∣∣∣φ(F (x+ tek))− φ(F (x))

t

∣∣∣∣ ≤ C K
dK(F (x+ tek), F (x))

|t|

= C K

(∣∣∣∣∣
n∑
j=1

(
fj(x+ tek)− fj(x)

t

)2

+

(
gj(x+ tek)− gj(x)

t

)2
∣∣∣∣∣
2

+

∣∣∣∣∣h(x+ tek)− h(x) + 2
∑n

j=1(fj(x)gj(x+ tek)− fj(x+ tek)gj(x))

t2

∣∣∣∣∣
2)1/4

for a constant C > 0 depending only on the bi-Lipschitz equivalence of dcc and dK . This

final fraction above converges to 0 as t→ 0. Indeed, the proof of this fact is nearly identical

to the proof of Proposition 1.4 in [97] since x is a p-Lebesgue point of the partial derivatives.

Therefore,

(6.2)

∣∣∣∣∂(φ ◦ F )

∂xk
(x)

∣∣∣∣ ≤ C K

√√√√ n∑
j=1

(
∂fj
∂xk

(x)

)2

+

(
∂gj
∂xk

(x)

)2

≤ C K

∣∣∣∣ ∂F∂xk (x)

∣∣∣∣ .
Define g : Ω → R as g(x) = C

∑m
k=1

∣∣∣ ∂F∂xk (x)
∣∣∣. Thus, for any K-Lipschitz φ : Hn → R, we

have |∂(φ ◦F )/∂xk(x)| ≤ Kg(x) for almost every x ∈ Ω and k = 1, . . . ,m. Since g ∈ Lp(Ω),

it follows that F ∈ AR1,p(Ω,Hn).

We will now prove the reverse inclusion for bounded Sobolev mappings. Suppose a

mapping F ∈ AR1,p(Ω,Hn) is bounded and say g ∈ Lp(Ω) is as in the definition of the

Ambrosio-Reshetnyak-Sobolev class. By (3.10), the identity map id : Hn → R2n+1 is Lips-

chitz on some compact set containing F (Ω). Thus F = id ◦ F ∈ W 1,p(Ω,R2n+1). It remains

to show that the weak contact equation (6.1) holds almost everywhere. Choose a dense sub-

set {pi}∞i=1 of Hn. (This is possible since Hn and R2n+1 are topologically equivalent.) Define

the 1-Lipschitz maps φi : Hn → R as φi(x) = dcc(x, pi). Therefore, in Ω along (m − 1)-

almost every line parallel to a coordinate axis, φi ◦F is absolutely continuous (after possibly

redefining F on a set of measure zero), g is p-integrable, and |∂(φi ◦ F )/∂xk| ≤ g almost

everywhere for all i ∈ N. For k ∈ {1, . . . ,m}, fix such a line ¯̀ parallel to the kth axis and

write ` = ¯̀∩ Ω.
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By Fubini’s theorem, it suffices to prove that (6.1) holds almost everywhere along `.

Choose an interval [x, x + tek] ⊂ `. Fix s1, s2 ∈ [0, t]. Let ε > 0 and choose pi ∈ Hn so that

2dcc(F (x+ s1ek), pi) < ε. Then we have

dcc(F (x+ s2ek), F (x+ s1ek))− ε ≤ dcc(F (x+ s2ek), F (x+ s1ek))− 2dcc(F (x+ s1ek), pi)

≤ dcc(F (x+ s2ek), pi)− dcc(F (x+ s1ek), pi)

= φi(F (x+ s2ek))− φi(F (x+ s1ek))

=

∫ s2

s1

d

dτ
(φi ◦ F )(x+ τek) dτ

≤
∫ s2

s1

g(x+ τek) dτ.

Since ε > 0 was chosen arbitrarily, it follows that

dcc(F (x+ s2ek), F (x+ s1ek)) ≤
∫ s2

s1

g(x+ τek) dτ

for any s1, s2 ∈ [0, t]. By the integrability of g along `, the mapping F is absolutely con-

tinuous with respect to the metric d along compact intervals in `. Hence (6.1) holds almost

everywhere along ` as a result of Proposition 4.1 in [75]. We provide the relevant version of

this proposition here with its proof for completeness.

Lemma 75. If γ : [a, b] → Hn is absolutely continuous with respect to the metric on Hn,

then γ is horizontal.

Proof. By (3.10), γ is absolutely continuous into R2n+1, so γ′ exists almost everywhere in the

classical sense. Also, by Theorem 3.3 in [25], the metric derivative mdcc(γ, ·) exists almost

everywhere. That is, the following limit exists for almost every t ∈ [a, b]:

mdcc(γ, t) := lim
s→0, t+s∈[a,b]

dcc(γ(t+ s), γ(t))

|s|
.

Choose t so that γ′(t) and mdcc(γ, t) exist. Writing γ = (f1, g1, . . . , fn, gn, h), we have∣∣∣∣∣h(t+ s)− h(t)− 2
n∑
j=1

(
gj(t)f

′
j(t)− fj(t)g′j(t)

)
s

∣∣∣∣∣
≤

∣∣∣∣∣h(t+ s)− h(t) + 2
n∑
j=1

(fj(t)gj(t+ s)− gj(t)fj(t+ s))

∣∣∣∣∣
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+ 2
n∑
j=1

|fj(t)|
∣∣gj(t+ s)− gj(t)− sg′j(t)

∣∣+ 2
n∑
j=1

|gj(t)|
∣∣fj(t+ s)− fj(t)− sf ′j(t)

∣∣

These last two sums are of order o(s) as s → 0 since γ′(t) exists. By the definition of the

Korányi metric and its bi-Lipschitz equivalence with the CC-metric on Hn, for some C ≥ 1,

the first term is bounded by

C2dcc(γ(t+ s), γ(t))2

which is also of order o(s) as s→ 0 since mdcc(γ, t) exists and γ is continuous. Therefore,

h′(t) = lim
s→0

h(t+ s)− h(t)

s
= 2

n∑
j=1

(
gj(t)f

′
j(t)− fj(t)g′j(t)

)
,

so γ satisfies the contact equation (3.4) at t.

This completes the proof of the proposition.

Notice in (6.2) that only the first 2n components of F appear in the bound of the partial

derivatives of φ◦F . Compare this to the bound in Theorem 63 and to the discussion following

Definition 73.

6.1.6 Sharpness of the bounds on p

We will conclude the section with the proof of Proposition 64. Recall that this proposition

provides a counterexample to the results in Theorem 63 and Theorem 66 when the upper

bound on p is removed. In the proof, we will use the following result from [7]. Another

construction is given in [22, Theorem 3.2].

Theorem 76. For any n ≥ 1, there is a smooth embedding of the sphere Sn into R2n+1

which is horizontal and bi-Lipschitz as a mapping into Hn and has no Lipschitz extension

F : Bn+1 → Hn.
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Proof of Proposition 64. Define f : Sn → Hn to be the embedding from Theorem 76. Sup-

pose we have F ∈ W 1,n+1(Bn+1,Hn) with F (x) = f(x) for every x ∈ Sn. By the definition

of W 1,n+1(Bn+1,Hn) and Theorem 1.4 in [8], rankDF (x) ≤ n for almost every x ∈ Bn+1.

Since f−1 : f(Sn)→ Sn is C1, we may find a C1 extension Ψ : R2n+1 → Rn+1 of f−1 so that

|DΨ| ≤ M for some M > 0. Now, choose a sequence {Fk} of mappings Fk : Bn+1 → R2n+1

which are C1 up to the boundary and which satisfy the following:

• ‖Fk − F‖W 1,n+1 → 0 as k →∞,

• Hn+1({Fk 6= F})→ 0 as k →∞,

• and Fk = F = f on Sn for any k ∈ N

(see, for example, Theorem 5 and the proof of Theorem 2 in [40].) Fix k ∈ N. Since

Ψ ◦Fk is continuous on Bn+1 and equals the identity map on Sn, Brouwer’s theorem implies

Bn+1 ⊂ (Ψ ◦ Fk)(Bn+1). Additionally, |J(Ψ ◦ Fk)| ≤ M |JFk|. Here, the Jacobian |JFk| is

understood in the following sense:

|JFk(x)| =
√

det ((DFk)TDFk)(x) for all x ∈ Bn+1.

Thus

M

∫
Bn+1

|JFk| ≥
∫
Bn+1

|J(Ψ ◦ Fk)| ≥ Hn+1((Ψ ◦ Fk)(Bn+1)) ≥ Hn+1(Bn+1).

Since rankDF (x) ≤ n for almost every x ∈ Bn+1, it follows that |JFk| = 0 almost everywhere

on {Fk = F}. Therefore

0 <
Hn+1(Bn+1)

M
≤
∫
Bn+1

|JFk| =
∫
{Fk 6=F}

|JFk|.

However, Hn+1({Fk 6= F})→ 0, and |JFk| converges to |JF | in L1 due to the convergence of

Fk to F in W 1,n+1 since the Jacobian consists of sums of (n+ 1)-fold products of derivatives.

Thus this last integral vanishes as k →∞. This leads to a contradiction and completes the

proof.
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6.2 WHITNEY TRIANGULATION AND LIPSCHITZ EXTENSIONS

Here we introduce important tools that will be used in the proof of Theorem 66.

6.2.1 Whitney triangulation of an open set

Suppose Z ⊂ Rm is closed. As in the proof of many extension theorems, we will decompose

the complement of Z into Whitney cubes. We will then go one step further and construct

the Whitney triangulation of the complement of Z as in [85]. We must first introduce some

notation. For any k ∈ {0, 1, . . . ,m}, a (non-degenerate) k-simplex in Rm is the convex hull

of k + 1 vertices {e0, e1, . . . , ek} ⊂ Rm where the vectors e1 − e0, . . . , ek − e0 are linearly

independent. An `-face ω of a k-simplex σ is the convex hull of any subset {ei0 , . . . , ei`} of

vertices of σ. Denote by ∂ω the union of all (` − 1)-faces of ω. Note that, since we define

simplices to be non-degenerate, the barycenter of a simplex does not lie in any of its faces.

A simplicial complex Σ in Rm is a (possibly infinite) set consisting of simplices in Rm so

that any face of a simplex in Σ is an element of Σ and the intersection of any two simplices

in Σ is either empty or is itself an element of Σ. The dimension of Σ is the largest k so

that Σ contains a k-simplex. (Notice that the dimension of a simplicial complex in Rm is at

most m.) For any k ∈ {0, 1, . . . ,m}, the k-skeleton of Σ (denoted Σ(k)) is the subset of Rm

consisting of the union of all k-simplices in Σ. Similarly, the `-skeleton Σ
(`)
σ of a k-simplex

σ, 0 ≤ ` ≤ k, is the union of all `-faces of σ. Finally, we will write B(k, `) :=
(
k+1
`+1

)
. This is

the number of `-faces of a k-simplex.

Suppose Σ is a simplicial complex in Rm. For each ` ∈ {1, . . . ,m} and any `-simplex

ω ∈ Σ with barycenter c, say β(ω) is the minimum over all distances d(c, P ) where P is an

(`− 1)-plane containing an (`− 1)-face of ω. In particular, β(ω) > 0. Similarly, say B(ω) is

the maximum over all such distances. For any m-simplex σ, write

βσ = min {β(ω) : ω is an `-face of σ for some ` ∈ {1, . . . ,m}}

and

Bσ = max {B(ω) : ω is an `-face of σ for some ` ∈ {1, . . . ,m}} .
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That is, βσ is a lower bound on the “flatness” of σ, and Bσ is an upper bound. We are now

ready to define the Whitney triangulation of Rm \ Z. This lemma is a minor modification

of the results in [85, Section 5.1].

Lemma 77 (Whitney Triangulation). Suppose Z ⊂ Rm is closed. Then there is an m-

dimensional simplicial complex Σ in Rm so that Σ(m) = Rm \ Z and the following hold for

some constants D1, D2 > 0 (which depend only on m) and any m-simplex σ ∈ Σ:

(6.3) diam (σ) ≤ d(σ, Z) ≤ 12
√
m diam (σ),

(6.4) D1 <
diam (σ)

Bσ

≤ diam (σ)

βσ
< D2.

Intuitively, the second condition here implies that the simplices in Σ are uniformly far

from being degenerate.

Proof. As in [36], there is a decomposition of the open set Rm \ Z into a family of closed

dyadic cubes {Qi} with pairwise disjoint interiors so that

1.
⋃∞
i=1Qi = Rm \ Z,

2. diam (Qi) ≤ d(Qi, Z) ≤ 4diam (Qi) for every i ∈ N,

3. for any i ∈ N, at most 12m cubes Qj intersect Qi non-trivially.

From this cubic decomposition, we will construct the Whitney triangulation inductively as in

[85]. The collection of the vertices of the cubes is trivially a 0-dimensional simplicial complex

Σ0. We define Σ1 by dividing each edge of a Whitney cube into two 1-dimensional simplices

(segments) at its midpoint. Fix k ∈ {2, . . . ,m}, and suppose a simplicial complex Σk−1 has

been constructed on the union of the (k− 1)-cubes by dividing them into simplices. Choose

some k-cube Q in the Whitney decomposition. The union of the faces of Q is the k-skeleton

of a subcomplex of Σk−1. (Recall that the k-skeleton is a subset of Rm rather than a subset

of the simplicial complex.) For each (k − 1)-simplex in this subcomplex, create a k-simplex

by appending the center of Q to the set of its vertices. This provides a simplicial subdivision

of Q and thus a simplicial complex Σk on the union of the k-cubes. Continuing in this way

creates Σ = Σm.
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Condition (6.3) follows immediately from (A2) since, for any m-cube Q, the diameter of

an m-simplex in Q is at least half of the side length of Q. We will say that two simplices in

Σ are equivalent if one can be obtained from the other via a rotation, translation, and homo-

thetic dilation. There are only finitely many equivalence classes of simplices in Σ as a result

of (A3). Since diam (σ)/Bσ and diam (σ)/βσ are invariant under rotations, translations, and

homothetic dilations, we have (6.4).

6.2.2 Extensions into a Lipschitz connected metric space

The following Lipschitz extension result will be essential to the construction in the proof of

Theorem 66. Though the proof of this extension lemma is elementary and similar to classical

results (see for example [3, 54]), it is included here for completeness. Recall that a metric

space Y is Lipschitz (n − 1)-connected if there is a constant γ ≥ 1 so that any L-Lipschitz

map f : Sk → Y (L > 0) has a γL-Lipschitz extension F : Bk+1 → Y for k = 0, 1, . . . , n− 1.

Lemma 78. Fix positive integers m > n. Suppose Y is Lipschitz (n − 1)-connected with

constant γ, and Z ⊂ Rm is closed. Say Σ is the Whitney triangulation of Rm \Z constructed

in Lemma 77. Then there is a constant C̃ ≥ 1 depending only on m, n, and γ such that

every L-Lipschitz map f : Z → Y has an extension f̃ : Z∪Σ(n) → Y satisfying the following:

1. f̃ is LC̃-Lipschitz on any n-simplex in Σ, and

2. for any a ∈ Σ(0), f̃(a) = f(za) for some za ∈ Z with |za − a| = d(a, Z).

Proof. Fix an L-Lipschitz map f : Z → Y . For each a ∈ Σ(0) (that is, each vertex of a

simplex in Σ), choose a nearest point za ∈ Z i.e. |za − a| = d(a, Z). Define the mapping

f (0) : Σ(0) → Y as f (0)(a) := f(za). Write C0 := D2(12
√
m + 1) + 1 where D2 is the

constant from condition (6.4) in Lemma 77. Fix a 1-simplex σ1 in Σ (that is, an edge of

some m-simplex σ). Write ∂σ1 = {a, b}. Then

d(f (0)(a), f (0)(b)) = d(f(za), f(zb)) ≤ L|za − zb| ≤ L(|za − a|+ |zb − b|+ |a− b|)

= L(d(a, Z) + d(b, Z) + |a− b|) ≤ L(2 d(σ, Z) + 2 diam (σ) + |a− b|)

≤ L((24
√
m+ 2) diam (σ) + |a− b|) < L(D2(12

√
m+ 1) + 1)|a− b|.
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since βσ ≤ 1
2
|a− b|. That is, f (0) is LC0-Lipschitz continuous on ∂σ1.

By the Lipschitz connectivity of Y , there is a constant C1 > 0 depending only on C0, n,

and γ (and hence only on m, n, and γ) and an LC1-Lipschitz extension f (1) : σ1 → Y of

f (0). Since the intersection of any two 1-simplices in Σ is a vertex or empty, we can define a

map f (1) : Σ(1) → Y which is LC1-Lipschitz on any 1-simplex in Σ.

Fix k ∈ {2, . . . , n}. Suppose there is a constant Ck−1 (depending only on m, n, and γ)

and a map f (k−1) : Σ(k−1) → Y so that f (k−1) is LCk−1-Lipschitz on any (k − 1)-simplex

in Σ. Choose a k-simplex σk in Σ. We will first determine the Lipschitz constant of f (k−1)

restricted to ∂σk. Say x, y ∈ ∂σk. If x and y lie in the same (k − 1)-face of σk, then

d(f (k−1)(x), f (k−1)(y)) ≤ LCk−1|x − y|. Suppose x and y lie in different (k − 1)-faces σk−1
x

and σk−1
y of σk. We have the following simple lemma.

Lemma 79. Fix j ∈ {1, . . . ,m − 1}. There is a constant µ ≥ 1 depending only on m

satisfying the following: suppose ω1 and ω2 are j-faces of a (j + 1)-simplex ω ∈ Σ, and

x ∈ ω1 and y ∈ ω2. Then there is a point v ∈ ω1 ∩ ω2 so that

(6.5) |x− v|+ |v − y| ≤ µ|x− y|.

Proof. Choose v to be the orthogonal projection of x or y onto ω1 ∩ω2. Since there are only

finitely many possible angles at which the faces of the simplices in the Whitney triangulation

can meet, the law of sines provides a uniform bound for the ratios |x − v|/|x − y| and

|y − v|/|x− y|. That is, we may choose µ satisfying (6.5) independent of the choice of faces

ω1 and ω2 and simplex ω.

By applying the lemma to the faces σk−1
x and σk−1

y of σk, we have

d(f (k−1)(x), f (k−1)(y)) ≤ d(f (k−1)(x), f (k−1)(v)) + d(f (k−1)(v), f (k−1)(y))

≤ LCk−1|x− v|+ LCk−1|v − y| ≤ µLCk−1|x− y|

since f (k−1) is LCk−1-Lipschitz when restricted to each of σk−1
x and σk−1

y . Hence f (k−1) is

µLCk−1-Lipschitz on ∂σk. Therefore the Lipschitz connectivity of Y gives a constant Ck

depending only on m, n, γ, and Ck−1 and an LCk-Lipschitz extension f (k) : σk → Y of

f (k−1). Since the intersection of any two k-simplices is a lower dimensional simplex (or
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empty), we may define a mapping f (k) : Σ(k) → Y which is LCk-Lipschitz on each k-simplex

in Σ.

Continuing this construction inductively gives a constant Cn (depending only on m, n,

and γ) and a map f (n) : Σ(n) → Y so that f (n) is LCn-Lipschitz on any n-simplex in Σ.

Setting f̃ := f (n) and C̃ := Cn completes the proof.

6.3 CONSTRUCTING THE SOBOLEV EXTENSION

The proof of Theorem 66 is presented here. We will conclude the section with the proof of

Theorem 63. It will follow as a simple consequence of Proposition 74 since the extension we

construct will be bounded in Hn.

6.3.1 Extensions into a general Lipschitz connected metric space

Proof of Theorem 66. Fix 1 ≤ p < n+ 1 and let Ω be a bounded domain in Rm. Suppose Y

is a Lipschitz (n − 1)-connected metric space with constant γ. Let Z ⊂ Ω be compact and

nonempty, and suppose f : Z → Y is L-Lipschitz.

If m ≤ n, then it can be seen from classical results [3, 54] that there is a constant

C = C(n, γ) and a CL-Lipschitz extension F : Rm → Y of f . The proof of this fact

is similar to the proof of Lemma 78. Hence φ ◦ F is KCL-Lipschitz for any K-Lipschitz

function φ : Y → R. Moreover, for k = 1, . . . ,m, ∂(φ ◦ F )/∂xk exists and is bounded by

Kg almost everywhere in Ω where g : Ω → R is the constant function g ≡ CL. Thus

F ∈ AR1,p(Ω, Y ), and ‖g‖Lp(Ω) ≤ CL|Ω|1/p ≤ CL (diam (Ω))m/p for a constant C depending

only on m, n, and γ. We may therefore assume for the remainder of the proof that m > n.

Define the Whitney triangulation of Rm\Z as in Lemma 77. We will restrict our attention

to the m-dimensional simplicial sub-complex Σ consisting of those simplices in the Whitney

triangulation which are contained in a Whitney cube Q with Q ∩ Ω 6= ∅. We consider

this restriction so that sup{diam (σ) : σ ∈ Σ} < ∞ (since Ω is bounded). Note also that

Ω \ Z ⊂ Σ(m).
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Suppose σ is an m-simplex in Σ. We begin by constructing a sort of radial projection

of σ onto its n-skeleton. This is the so called zero degree homogenization mentioned earlier.

Denote by c the barycenter of σ. For each j ∈ {1, . . . ,m}, say {σji }
B(m,j)
i=1 is the collection

of j-faces of σ, and say cji is the barycenter of σji . (Notice σm1 = σ and cm1 = c.) Fix

j ∈ {n + 1, . . . ,m}. For each i ∈ {1, . . . , B(m, j)}, define P j
i : σji \ {c

j
i} → ∂σji to be the

projection of σji \ {c
j
i} onto ∂σji radially out from cji . That is, for x ∈ σji \ {c

j
i} if we write

x = cji + t(z − cji ) with t ∈ (0, 1] and z ∈ ∂σji , then P j
i (x) = z. Fix x ∈ σji \ {c

j
i}. For all

y ∈ σji \ {c
j
i} close enough to x, we have by similar triangles

(6.6)
|P j
i (x)− P j

i (y)|
|x− y|

≤ ν
diam (σ)

|x− cji |
.

The constant ν > 0 depends only on the dimension m since there are only finitely many

equivalence classes of simplices in Σ. In particular, P j
i is locally Lipschitz on σji \ {c

j
i}.

Extend P j
i to the remaining j-skeleton of σ by the identity map (that is, P j

i (x) = x for any

x ∈ Σ
(j)
σ \ σji ). Writing Cj = {cj1, . . . , c

j
B(m,j)}, we may define P j : Σ

(j)
σ \ Cj → Σ

(j−1)
σ as

P j := P j
1 ◦ · · · ◦ P

j
B(m,j). By arguing in a similar manner to Lemma 79, each P j is locally

Lipschitz on Σ
(j)
σ \ Cj.

In particular, Pm is locally Lipschitz on σ \ c. Now Pm−1 ◦ Pm is defined and locally

Lipschitz on σ away from the 1-dimensional set {c} ∪ (Pm)−1(Cm−1). Similarly, Pm−2 ◦

Pm−1◦Pm is locally Lipschitz away from the 2-dimensional set {c}∪(Pm)−1(Cm−1)∪(Pm−1◦

Pm)−1(Cm−2). Continuing in this way, we see that Pσ := P n+1 ◦ · · · ◦ Pm : σ \ Cσ → Σ
(n)
σ is

locally Lipschitz off the closed, (m− n− 1)-dimensional set of singularities

Cσ := {c} ∪
m−(n+1)⋃

`=1

(Pm−`+1 ◦ · · · ◦ Pm)−1(Cm−`).

We will now build the extension F of f . First, construct the extension f̃ : Z ∪Σ(n) → Y

of f given in Lemma 78. Recall that f̃ is C̃L-Lipschitz on any n-simplex in Σ. In particular,

f̃ is locally Lipschitz on Σ(n). Enumerate the collection of m-simplices {σi}∞i=1 in Σ, and

write C =
⋃
iCσi . Define F : Σ(m) ∪ Z → Y as

F (x) =

f̃(Pσi(x)) if x ∈ σi \ Cσi for some i ∈ N

f(x) if x ∈ Z
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and define F to be constant on C . This map is well defined since the intersection σi ∩ σj is

either empty or another simplex in Σ. Moreover, F is locally Lipschitz on each σi \Cσi . We

now have the following

Lemma 80. Suppose 1 ≤ p < n+ 1. Define g : Σ(m) \ C → [0,∞] as

g(x) = lim sup
y→x

d(F (x), F (y))

|x− y|
.

Then ‖g‖Lp(Ω\Z) ≤ CL(diam (Ω))m/p for a constant C > 0 depending only on m, n, p, and

γ. In particular, g ∈ Lp(Ω \ Z).

The proof of this lemma is long but elementary. It is contained, therefore, at the end

of this section. Extend g to all of Ω so that g ≡ L(C̃ + 4) on Z ∪ C . Thus g ∈ Lp(Ω) and

‖g‖Lp(Ω) ≤ CL(diam (Ω))m/p for a constant C = C(m,n, p, γ).

It remains to show that F is in the class AR1,p(Ω, Y ). Fix a K-Lipschitz function

φ : Y → R. We will first show that φ ◦ F ∈ Lp(Ω). Let x ∈ Ω \ (Z ∪ C ). Then x ∈ σi for

some i ∈ N. Choose a vertex a of σi so that a and Pσi(x) lie in the same n-face of σi. Since

F (a) = f̃(a) = f(za) as prescribed in Lemma 78, we have

|φ(F (x))| ≤ |φ(F (x))− φ(F (a))|+ |φ(f(za))| ≤ KLC̃ diam (σi) + ‖φ ◦ f‖∞ < M

for some M > 0. Since Z is compact and Ω is bounded, φ ◦ F ∈ Lp(Ω).

Now, we will use the ACL characterization of Sobolev mappings to show that φ ◦ F ∈

W 1,p(Ω). Fix k ∈ {1, . . . ,m}. Notice that (m − 1)-almost every line parallel to the kth

coordinate axis is disjoint from C since each Cσi is (m − n − 1)-dimensional. Also, g and

φ ◦F are p-integrable in Ω along (m− 1)-almost every such line since g and φ ◦F are in the

class Lp(Ω).

Choose a line ¯̀ parallel to the kth coordinate axis that is disjoint from C and suppose

that g ∈ Lp(¯̀∩Ω), and φ ◦F ∈ Lp(¯̀∩Ω). Write ` := ¯̀∩Ω. We will now show that φ ◦F is

locally Lipschitz along ` \ Z and its derivative along ` \ Z is p-integrable. Choose x ∈ ` \ Z.

We need only consider the case when x ∈ ∂σi for some i ∈ N since F is locally Lipschitz on

each σi \Cσi . In this case, for some a, b ∈ `, the segments [a, x] and [x, b] each lie entirely in

some m-simplices σa and σb respectively. Since F is locally Lipschitz when restricted to each
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of these simplices, it follows that F is Lipschitz along some segment I ⊂ [a, b] containing x.

Therefore, F is locally Lipschitz on ` \ Z, and hence φ ◦ F is as well. Now ∂(φ ◦ F )/∂xk

exists almost everywhere along ` \ Z, and the definition of g gives

∣∣∣∣∂(φ ◦ F )

∂xk
(x)

∣∣∣∣ ≤ K

[
lim sup
h→0

d(F (x+ hek), F (x))

|h|

]
≤ K g(x)

for every x ∈ ` \ Z at which the partial derivative exists. In particular, ∂(φ ◦ F )/∂xk ∈

Lp(` \ Z).

Next, we will see that φ◦F is in fact continuous along all of `. By the previous paragraph,

F is continuous along ` at any x ∈ ` \ Z. Suppose now that x ∈ ` ∩ Z. If y ∈ ` ∩ Z, then

d(F (x), F (y)) ≤ L|x − y|. Suppose instead that y ∈ ` \ Z. Then y ∈ σi for some i ∈ N.

Choose a vertex a of σi so that a and Pσi(y) lie in the same n-face of σi. Then

d(F (y), F (a)) = d(f̃(Pσi(y)), f̃(a))

≤ LC̃|Pσi(y)− a| ≤ LC̃diam (σi) ≤ LC̃d(σi, Z) ≤ LC̃|x− y|.

Also, since F (a) = f(za),

d(F (a), F (x)) = d(f(za), f(x)) ≤ L(|za − a|+ |a− y|+ |y − x|)

≤ L(d(a, Z) + diam (σi) + |x− y|)

≤ L((d(σi, Z) + diam (σi)) + d(σi, Z) + |x− y|) < 4L|x− y|.

Therefore,

(6.7) d(F (x), F (y)) ≤ L(C̃ + 4)|x− y|

for any x ∈ ` ∩ Z and y ∈ `. That is, F is continuous on `, and so φ ◦ F is as well.

Finally, we will show that φ ◦F is absolutely continuous on any compact interval in ` as

desired. Since (φ ◦ f)|`∩Z is Lipschitz, we may use the classical McShane extension [69] to

find a Lipschitz extension ψ : ` → R of (φ ◦ f)
∣∣
`∩Z . Set v := (φ ◦ F ) − ψ on `. Notice that

v′ exists almost everywhere on ` \ Z, and v′ ∈ Lp(` \ Z). Moreover, v is continuous on `, is
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absolutely continuous on compact intervals in ` \ Z, and vanishes on ` ∩ Z. Therefore, by

defining

w(x) =

v
′(x) if x ∈ ` \ Z and v′(x) exists

0 if x ∈ ` ∩ Z or v′(x) does not exist,

v is the integral of w over any interval in `. Since w is integrable on `, it follows that v is

absolutely continuous on compact intervals in `, and so φ ◦ F = v + ψ is as well. Therefore,

φ ◦ F ∈ ACLp(Ω).

Furthermore, the definition of g together with (6.7) gives |∂(φ ◦ F )/∂xk| ≤ Kg almost

everywhere along `. Hence, given any K-Lipschitz φ : Y → R, we have φ ◦F ∈ W 1,p(Ω) and

|∂(φ ◦ F )/∂xk| ≤ K g almost everywhere in Ω for k = 1, . . . ,m. We may thus conclude that

F ∈ AR1,p(Ω, Y ).

6.3.2 Extensions into the Heisenberg group

We are now ready for the proof of Theorem 63. Recall from the discussion at the beginning

of the chapter that Hn is Lipschitz (n − 1)-connected [91]. According to Proposition 74,

we need only prove that the extension F constructed in the previous proof is bounded as a

mapping into Hn and then prove the desired quantitative estimates.

Proof of Theorem 63. Suppose Y = Hn. Fix x ∈ Ω. Notice that ‖F (·)‖K is bounded on

Z since F
∣∣
Z

= f is Lipschitz. Also, F is constant on C . It therefore suffices to consider

x ∈ Ω \ (Z ∪ C ). Hence x ∈ σ for some m-simplex σ ∈ Σ. Choose a vertex a of σ so that a

and Pσ(x) lie in the same n-face of σ. Then there is some M > 0 independent of x so that

‖F (x)‖K ≤ Cdcc(F (x), F (a)) + ‖F (a)‖K ≤ CLC̃diam (σ) + ‖f(za)‖K < M

where C is the constant from the bi-Lipschitz equivalence of dcc and dK . Thus F ∈

AR1,p(Ω,Hn) is bounded, so, by Proposition 74, F ∈ W 1,p(Ω,Hn).

We now establish the quantitative estimate. Recall that ‖g‖Lp(Ω) ≤ CL(diam (Ω))m/p

where g was defined in the proof of Theorem 66. For j ∈ {1, . . . , 2n}, suppose φj : Hn → R is

the projection onto the jth coordinate. Since φj is 1-Lipschitz, the definition of AR1,p(Ω,Hn)
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gives |∂(φj ◦ F )/∂xk| ≤ g almost everywhere on Ω, so ‖∂Fj/∂xk‖Lp(Ω) ≤ CL(diam (Ω))m/p

for k = 1, . . . ,m and j = 1, . . . , 2n.

6.3.3 Integrability of g

We present here a detailed proof of the Lp integrability of the bounding function g. As

mentioned above, this proof is technical but elementary.

Proof. Suppose σ is an m-simplex in Σ. For the sake of notation, we will write Φk :=

f̃ ◦P n+1 ◦ · · · ◦P k for k ∈ {n+ 1, . . . ,m} where each P k is the radial projection of Σ
(k)
σ \Ck

to Σ
(k−1)
σ as defined earlier. As before, for j = 1, . . . ,m, say {σji }

B(m,j)
i=1 is the collection of

j-faces of σ. We will prove this lemma by induction on the dimensions of the faces of σ. In

particular, we will use the Fubini theorem to bound the integral of the “slope” of Φk by a

bound on the integral of the “slope” of Φk−1. This will allow us to bound the integral of g

(which is the “slope” of Φm = F ).

We begin with the (n + 1)-faces of σ. Suppose x ∈ σn+1
i \ {cn+1

i } for some i ∈

{1, . . . , B(m,n + 1)}. If x /∈ ∂σn+1
i , then for any y ∈ Σ

(n+1)
σ close enough to x, in fact

y ∈ σn+1
i and P n+1(x) and P n+1(y) lie in the same n-face of σn+1

i . In this case (6.6) gives

d(f̃(P n+1(x)), f̃(P n+1(y)))

|x− y|
≤ LC̃

|P n+1
i (x)− P n+1

i (y)|
|x− y|

≤ νLC̃
diam (σ)

|x− cn+1
i |

.

for y ∈ Σ
(n+1)
σ close enough to x. Since each ∂σn+1

i has Hn+1 measure zero,∫
Σ

(n+1)
σ

lim sup
y→x, y∈Σ

(n+1)
σ

d(Φn+1(x),Φn+1(y))p

|x− y|p
dHn+1(x)

=

B(m,n+1)∑
i=1

∫
σn+1
i \∂σn+1

i

lim sup
y→x, y∈σn+1

i

d(f̃(P n+1(x)), f̃(P n+1(y)))p

|x− y|p
dHn+1(x)

≤ (νLC̃)p
B(m,n+1)∑

i=1

∫
σn+1
i

diam (σ)p

|x− cn+1
i |p

dHn+1(x).

In what follows, the constant C may change value between lines in the inequalities but will

depend only on m, n, p, and γ. We first estimate the integral over each (n + 1)-face of σ.

Since p < n+ 1, we have∫
σn+1
i

1

|x− cn+1
i |p

dHn+1(x) ≤ CHn+1
(
σn+1
i

)1− p
n+1 ≤ C diam (σ)n+1−p.
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Therefore, on the entire (n+ 1)-skeleton, we have∫
Σ

(n+1)
σ

lim sup
y→x, y∈Σ

(n+1)
σ

d(Φn+1(x),Φn+1(y))p

|x− y|p
dHn+1(x) ≤ LpC diam (σ)n+1.

Now suppose k ∈ {n + 1, . . . ,m − 1} satisfies the following for a constant C depending

only on m, n, p, and γ:∫
Σ

(k)
σ

lim sup
y→x, y∈Σ

(k)
σ

d(Φk(x),Φk(y))p

|x− y|p
dHk(x) ≤ LpC diam (σ)k.

We have as before∫
Σ

(k+1)
σ

lim sup
y→x, y∈Σ

(k+1)
σ

d(Φk+1(x),Φk+1(y))p

|x− y|p
dHk+1(x)

≤
B(m,k+1)∑

i=1

∫
σk+1
i \∂σk+1

i

lim sup
y→x, y∈σk+1

i

d(Φk(P k+1(x)),Φk(P k+1(y)))p

|P k+1(x)− P k+1(y)|p
·

|P k+1(x)− P k+1(y)|p

|x− y|p
dHk+1(x).

Fix i ∈ {1, . . . , B(m, k+1)}. As before, we estimate the integral over each (k+1)-face of the

simplex σ. Without loss of generality (after a translation), we may assume σk+1
i is centered

at the origin. We thus have by (6.6)∫
σk+1
i \∂σk+1

i

lim sup
y→x, y∈σk+1

i

d(Φk(P k+1(x)),Φk(P k+1(y)))p

|P k+1(x)− P k+1(y)|p
|P k+1(x)− P k+1(y)|p

|x− y|p
dHk+1(x)

≤ νp
∫
σk+1
i

lim sup
y→x, y∈σk+1

i

d(Φk(P k+1(x)),Φk(P k+1(y)))p

|P k+1(x)− P k+1(y)|p
diam (σ)p

|x|p
dHk+1(x)

≤ νp
k+2∑
q=1

∫
(Pk+1
i )−1(σkiq )

lim sup
y→x, y∈σk+1

i

d(Φk(P k+1(x)),Φk(P k+1(y)))p

|P k+1(x)− P k+1(y)|p
diam (σ)p

|x|p
dHk+1(x)

where σki1 , . . . , σ
k
ik+2

are the k-dimensional faces of σk+1
i . We will compute the integral of each

summand in the last line. Fix q ∈ {1, . . . , k + 2}. The integral is invariant up to rotation,

so we may assume without loss of generality that σkiq is contained in the k-plane {b} × Rk.
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Thus we may consider (P k+1
i )−1(σkiq) a subset of Rk+1. Write σ̂kiq = {ẑ : (b, ẑ) ∈ σkiq} ⊂ Rk

so that (P k+1
i )−1(σkiq) = {(t, x̂) : x̂ ∈ t

b
σ̂kiq , t ∈ (0, b]}. Thus since

lim sup
y→x, y∈σk+1

i

d(Φk(P k+1(x)),Φk(P k+1(y)))

|P k+1(x)− P k+1(y)|
≤ lim sup

z→Pk+1(x), z∈σkiq

d(Φk(P k+1(x)),Φk(z))

|P k+1(x)− z|

for any x ∈ (P k+1
i )−1(σkiq \ ∂σ

k
iq) and since (P k+1

i )−1(∂σkiq) has Hk+1 measure zero, we have∫
(Pk+1
i )−1(σkiq )

lim sup
y→x, y∈σk+1

i

d(Φk(P k+1(x)),Φk(P k+1(y)))p

|P k+1(x)− P k+1(y)|p
diam (σ)p

|x|p
dHk+1(x)

≤
∫ b

0

∫
t
b
σ̂kiq

lim sup
ẑ→ b

t
x̂, ẑ∈σ̂kiq

d(Φk(b, b
t
x̂),Φk(b, ẑ))p

|(b, b
t
x̂)− (b, ẑ)|p

diam (σ)p

|(t, x̂)|p
dHk(x̂) dt

=

∫ b

0

∫
σ̂kiq

(
t

b

)k
lim sup
ẑ→x̂, ẑ∈σ̂kiq

d(Φk(b, x̂),Φk(b, ẑ))p

|(b, x̂)− (b, ẑ)|p
diam (σ)p(
t
b

)p |(b, x̂)|p
dHk(x̂) dt

≤
∫ b

0

(
t

b

)k−p
dt

∫
σkiq

lim sup
z→x, z∈σkiq

d(Φk(x),Φk(z))p

|x− z|p
diam (σ)p

bp
dHk(x)

≤
(

diam (σ)

b

)p
b LpC diam (σ)k

since k − p > 0. Since b ≥ βσ and b ≤ diam (σ), we may use (6.4) to conclude on the

(k + 1)-skeleton of σ∫
Σ

(k+1)
σ

lim sup
y→x, y∈Σ

(k+1)
σ

d(Φk+1(x),Φk+1(y))p

|x− y|p
dHk+1(x) ≤ LpC diam (σ)k+1.

By way of induction, then, we have∫
σ

g(x)p dHm(x) =

∫
σ\∂σ

lim sup
y→x

d(Φm(x),Φm(y))p

|x− y|p
dHm(x) ≤ LpC diam (σ)m

since Σ
(m)
σ = σ and Φm = F on σ. Therefore, we have∫

Ω\Z
g(x)p dx ≤

∞∑
i=1

∫
σi

g(x)p dx ≤ LpC

∞∑
i=1

diam (σi)
m.

The number of m-simplices in each cube in the Whitney decomposition of Rm\Z is bounded

by a constant C depending only on m. Hence

∞∑
i=1

diam (σi)
m =

∑
Q

∑
σ⊂Q

diam (σ)m ≤
∑
Q

∑
σ⊂Q

diam (Q)m ≤ C
∑
Q

diam (Q)m
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≤ CHm(Σ(m))

where these sums are taken over all cubes Q in the Whitney decomposition that meet Ω.

Notice that, for any x, y ∈ Σ(m) and cubes Qx and Qy containing them, we have

|x− y| ≤ diam (Qx) + d(Qx, Qy) + diam (Qy)

≤ d(Qx, Z) + d(Qx, Qy) + d(Qy, Z) ≤ 3diam (Ω).

Therefore, Hm(Σ(m)) ≤ C diam (Σ(m))m ≤ C(diam (Ω))m, and so

‖g‖Lp(Ω\Z) ≤ CL(diam (Ω))m/p

for a constant C > 0 depending only on m, n, p, and the Lipschitz connectivity constant γ

of Y . In particular, g ∈ Lp(Ω \ Z).
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7.0 THE DUBOVITSKII-SARD THEOREM IN SOBOLEV SPACES

This chapter is based on the paper [47]. Originally proven in 1942, Arthur Sard’s [79] famous

theorem asserts that the set of critical values of a sufficiently regular mapping is null. We will

use the following notation to represent the critical set of a given smooth map f : Rn → Rm:

Cf = {x ∈ Rn | rankDf(x) < m}.

Throughout this chapter, we will assume that m and n are integers at least 1.

Theorem 81 (Sard). Suppose f : Rn → Rm is of class Ck. If k > max(n−m, 0), then

Hm(f(Cf )) = 0.

Several results have shown that Sard’s result is optimal, see e.g. [24, 37, 43, 55, 66, 93].

In 1957 Dubovitskĭı [24], extended Sard’s theorem to all orders of smoothness k. See [12] for

a modernized proof of this result and some generalizations.

Theorem 82 (Dubovitskĭı). Fix n,m, k ∈ N. Suppose f : Rn → Rm is of class Ck. Write

` = max(n−m− k + 1, 0). Then

H`(Cf ∩ f−1(y)) = 0 for a.e. y ∈ Rm.

This result tells us that almost every level set of a smooth mapping intersects with its

critical set on an `-null set. Higher regularity of the function implies a reduction in the

Hausdorff dimension of the overlap between f−1(y) and Cf for a.e. y ∈ Rm.

Notice that if k > max(n −m, 0), then n −m − k + 1 ≤ 0, and so H` = H0 is simply

the counting measure on Rn. That is, if f : Rn → Rm is of class Ck and additionally

k > max(n − m, 0), Dubovitskĭı’s theorem implies that f−1(y) ∩ Cf is empty for almost

every y ∈ Rm. In other words, Hm(f(Cf )) = 0. Thus Sard’s theorem is a special case of

Dubovitskĭı’s theorem.
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7.1 HISTORY IN THE CASE OF SOBOLEV MAPPINGS

Recently, many mathematicians have worked to generalize Sard’s result to the class of

Sobolev mappings [2, 12, 13, 14, 21, 31, 59, 87]. Specifically, in 2001 De Pascale [21] proved

the following version of Sard’s theorem for Sobolev mappings.

Theorem 83. Suppose k > max(n −m, 0). Suppose Ω ⊂ Rn is open. If f ∈ W k,p
loc (Ω,Rm)

for n < p <∞, then Hm(f(Cf )) = 0.

The purpose of this chapter is to show that also the Dubovitskĭı theorem generalizes to

the case of W k,p
loc mappings when n < p < ∞. We must be very careful when dealing with

Sobolev mappings because the set f−1(y) depends on what representative of f we take. If

k ≥ 2, then Morrey’s inequality implies that f has a representative of class Ck−1,1−n
p , so the

critical set Cf is well defined. If k = 1, then Df is only defined almost everywhere and hence

the set Cf is defined up to a set of measure zero. We will say that f is precisely represented

if each component fi of f satisfies

fi(x) = lim
r→0

1

|B(x, r)|

∫
B(x,r)

fi(y) dy

for all x ∈ Ω at which this limit exists. The Lebesgue differentiation theorem ensures that

this is indeed a well defined representative of f . In what follows, we will always refer to

the Ck−1,1−n
p representative of f when k ≥ 2 and a precise representation of f when k = 1.

(Notice that the precise representative of f and the smooth representative of f are the same

for k ≥ 2.)

The main result of the chapter reads as follows.

Theorem 84. Fix n,m, k ∈ N. Suppose Ω ⊂ Rn is open and f ∈ W k,p
loc (Ω,Rm) for some

n < p <∞. If ` = max(n−m− k + 1, 0), then

H`(Cf ∩ f−1(y)) = 0 for a.e. y ∈ Rm.
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The proof of this is the subject of Section 7.3. If m > n, then since p > n we may apply

Morrey’s inequality combined with Hölder’s inequality to show that Hn(f(Q)) <∞ for any

cube Q b Ω, and so Hm(f(Ω)) = 0. Thus f−1(y) is empty for almost every y ∈ Rm, and the

theorem follows.

We will now discuss the details behind the argument that Hn(f(Q)) < ∞ for any cube

Q b Ω. Fix δ > 0, and cover Q with 2nν congruent dyadic cubes {Qj}2nν

j=1 with pairwise

disjoint interiors. According to Morrey’s inequality (see Lemma 89),

diam f(Qj) ≤ C(diamQj)
1−n

p

(∫
Qj

|Df(z)|p dz

)1/p

for every 1 ≤ j ≤ 2nν . Since diamQj = 2−νdiamQ, choosing ν large enough gives

supj diam f(Qj) < δ, and so we can estimate the pre-Hausdorff measure

Hn
δ (f(Q)) ≤ C

2nν∑
j=1

(diam f(Qj))
n

≤ C
2nν∑
j=1

(diamQj)
n(1−n

p
)

(∫
Qj

|Df(z)|p dz

)n/p

≤ C

(
2nν∑
j=1

(diamQj)
n

)1−n
p
(

2nν∑
j=1

∫
Qj

|Df(z)|p dz

)n/p

≤ CHn(Q)1−n
p

(∫
Q

|Df(z)|p dz
)n/p

.

We used Hölder’s inequality with exponents p/n and p/(p−n) to obtain the third line. Since

the right hand estimate does not depend on δ, sending δ → 0+ yields Hn(f(Q)) <∞. This

completes the proof of Theorem 84 when m > n. Hence we may assume that m ≤ n.

We will now discuss the case k = 1 to avoid any confusion involving the definition of

Cf . Since m ≤ n, we may apply the following co-area formula due to Malý, Swanson, and

Ziemer [66]:
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Theorem 85. Suppose that 1 ≤ m ≤ n, Ω ⊂ Rn is open, p > m, and f ∈ W 1,p
loc (Ω,Rm) is

precisely represented. Then the following holds for all measurable E ⊂ Ω:

∫
E

|Jmf(x)| dx =

∫
Rm
Hn−m(E ∩ f−1(y)) dy

where |Jmf | is the square root of the sum of the squares of the determinants of the m ×m

minors of Df .

Notice that |Jmf | is equals zero almost everywhere on the set E = Cf . Therefore the

above equality with E = Cf reads

0 =

∫
Rm
Hn−m(Cf ∩ f−1(y)) dy =

∫
Rm
H`(Cf ∩ f−1(y)) dy.

That is, H`(Cf ∩ f−1(y)) = 0 for a.e. y ∈ Rm, and the theorem follows. Therefore, we may

assume for the remainder of the chapter that m ≤ n and k ≥ 2.

Most proofs of Sard-type results typically involve some form of a Morse Theorem [74]

in which the critical set of a mapping is decomposed into pieces on which the function’s

difference quotients converge quickly. See [83] for the proof of the classical Sard theorem

based on this method. A version of the Morse Theorem was also used by De Pascale [21].

However, there is another approach to the Sard theorem based on the so called Kneser-

Glaeser Rough Composition theorem, and this method entirely avoids the use of the Morse

theorem. We say that a mapping f : W ⊂ Rr → R of class Ck is s-flat on A ⊂ W for

1 ≤ s ≤ k if Dαf = 0 on A for every 1 ≤ |α| ≤ s.

Theorem 86 (Kneser-Glaeser Rough Composition). Fix positive integers s, k, r, n with s <

k. Suppose V ⊂ Rr and W ⊂ Rn are open. Let g : V → W be of class Ck−s and f : W → R

be of class Ck. Suppose A∗ ⊂ V and A ⊂ W are compact sets with

1. g(A∗) ⊂ A and

2. f is s-flat on A.

Then there is a function F : Rr → R of class Ck so that F = f ◦ g on A∗ and F is s-flat on

A∗.
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This theorem ensures that the composition of two smooth maps will have the same

regularity as the second function involved in the composition provided that enough of the

derivatives of this second function are zero. After a brief examination of the rule for dif-

ferentiation of composite functions, such a conclusion seems very natural. Indeed, we can

formally compute Dα(f ◦g)(x) for all |α| ≤ k and x ∈ A∗ since any “non-existing” derivative

Dβg(x) with |β| > k−s is multiplied by a vanishing Dγf(g(x)) term with |γ| = |α|−|β| < s.

Thus we can formally set Dγf(g(x))Dβg(x) = 0. However the proof of this theorem is not

easy since it is based on the celebrated Whitney extension theorem. That should not be

surprising after all. The existence of the extension F is proven by verification that the for-

mal jet of derivatives of f ◦ g up to order k defined above satisfies the assumptions of the

Whitney extension theorem.

In 1951, Kneser presented a proof of this composition result in [57]. In the same paper, he

proved a theorem which may be obtained as an immediate corollary to the theorem of Sard,

though he did so without any reference to or influence from Sard’s result. The composition

theorem is also discussed in a different context in a 1958 paper by Glaeser [35]. A proof is

provided in Section 7.4. The reader may also find proofs of this theorem in [1, Theorem 14.1],

[65, Chapter 1, Theorem 6.1], and [67, Theorem 8.3.1].

Thom [84], quickly realized that the method of Kneser can be used to prove the Sard

theorem. See also [1, 65, 70]. Recently Figalli [31] used this method to provide a simpler

proof of Theorem 83. Our proof of Theorem 84 we will also be based on the Kneser-Glaeser

result.

7.2 AUXILIARY RESULTS

In this section we will prove some technical results related to the Morrey inequality that will

be used in the proof of Theorem 84.

The classes of functions with continuous and α-Hölder continuous derivatives of order

up to k will be denoted by Ck and Ck,α respectively. The integral average over a set S of
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positive measure will be denoted by

fS =

∫
S

f(x) dx =
1

|S|

∫
S

f(x) dx.

The characteristic function of a set E will be denoted by χE. Cubes in Rn will always have

sides parallel to coordinate directions.

We will use the following elementary result several times.

Lemma 87. Let E ⊂ Rn be a bounded measurable set and let −∞ < a < n. Then there is

a constant C = C(n, a) such that for every x ∈ E

∫
E

dy

|x− y|a
≤

C|E|
1− a

n if 0 ≤ a < n.

(diamE)−a|E| if a < 0.

Proof. The case a < 0 is obvious since then |x − y|−a ≤ (diamE)−a. Thus assume that

0 ≤ a < n. In this case the inequality is actually true for all x ∈ Rn and not only for x ∈ E.

Let B = B(0, r), |B| = |E|. We have

∫
E

dy

|x− y|a
≤
∫
B

dy

|y|a
= C

∫ r

0

t−atn−1 dt = Crn−a = C|E|1−
a
n .

The following result [34, Lemma 7.16] is a basic pointwise estimate for Sobolev functions.

Lemma 88. Let D ⊂ Rn be a cube or a ball and let S ⊂ D be a measurable set of positive

measure. If f ∈ W 1,p(D), p ≥ 1, then

(7.1) |f(x)− fS| ≤ C(n)
|D|
|S|

∫
D

|Df(z)|
|x− z|n−1

dz a.e.

When p > n, the triangle inequality |f(y) − f(x)| ≤ |f(y) − fD| + |f(x) − fD|, Hölder

inequality, and Lemma 87 applied to the right hand side of (7.1) yield a well known
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Lemma 89 (Morrey’s inequality). Suppose n < p <∞ and f ∈ W 1,p(D), where D ⊂ Rn is

a cube or a ball. Then there is a constant C = C(n, p) such that

|f(y)− f(x)| ≤ C(diamD)1−n
p

(∫
D

|Df(z)|p dz
)1/p

for all x, y ∈ D.

In particular,

diam f(D) ≤ C(diamD)1−n
p

(∫
D

|Df(z)|p dz
)1/p

.

Since p > n, the function f is continuous (Sobolev embedding) and hence the lemma

does indeed hold for all x, y ∈ D.

From this lemma we can easily deduce a corresponding result for higher order derivatives.

The Taylor polynomial and the averaged Taylor polynomial of f will be denoted by

T kx f(y) =
∑
|α|≤k

Dαf(x)
(y − x)α

α!
, T kSf(y) =

∫
S

T kx f(y) dx.

Lemma 90. Suppose n < p < ∞, k ≥ 1 and f ∈ W k,p(D), where D ⊂ Rn is a cube or a

ball. Then there is a constant C = C(n, k, p) such that

|f(y)− T k−1
x f(y)| ≤ C(diamD)k−

n
p

(∫
D

|Dkf(z)|p dz
)1/p

for all x, y ∈ D.

Proof. Given y ∈ D let

ψ(x) := T k−1
x f(y) =

∑
|α|≤k−1

Dαf(x)
(y − x)α

α!
∈ W 1,p(D).

Observe that ψ(y) = f(y) and

∂ψ

∂xj
(x) =

∑
|α|=k−1

Dα+δjf(x)
(y − x)α

α!
,

where δj = (0, . . . , 1, . . . , 0). Indeed, after applying the Leibniz rule to ∂ψ/∂xj the lower

order terms will cancel out. Since

|Dψ(z)| ≤ C(n, k)|Dkf(z)||y − z|k−1,

Lemma 89 applied to ψ yields the result.
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Applying the same argument to Lemma 88 leads to the following result, see [12, Theo-

rem 3.3].

Lemma 91. Let D ⊂ Rn be a cube or a ball and let S ⊂ D be a measurable set of positive

measure. If f ∈ W k,p(D), p ≥ 1, k ≥ 1, then there is constant C = C(n, k) such that

(7.2) |f(x)− T k−1
S f(x)| ≤ C

|D|
|S|

∫
D

|Dkf(z)|
|x− z|n−k

dz for a.e. x ∈ D.

In the next result we will improve the above estimates under the additional assumption

that the derivative Df vanishes on a given subset of D. For a similar result in a different

setting see [44, Proposition 2.3].

Lemma 92. Let D ⊂ Rn be a cube or a ball and let f ∈ W k,p(D), n < p <∞, k ≥ 1. Let

A = {x ∈ D|Df(x) = 0}.

Then for any ε > 0 there is δ = δ(n, k, p, ε) > 0 such that if

|D \ A|
|D|

< δ,

then

diam f(D) ≤ ε(diamD)k−
n
p

(∫
D

|Dkf(z)|p dz
)1/p

.

Remark 93. It is important that δ does not depend of f . The result applies very well to

density points of A. Indeed, it follows immediately that if x ∈ A is a density point, then for

any ε > 0 there is rx > 0 such that

diam f(B(x, rx)) ≤ εr
k−n

p
x

(∫
B(x,rx)

|Dkf(z)|p dz
)1/p

.
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Proof of Lemma 92. Although only the first order derivatives of f are equal zero in A, it

easily follows that Dαf = 0 a.e. in A for all 1 ≤ |α| ≤ k. Indeed, if a Sobolev function is

constant in a set, its derivative equals zero a.e. in the set, [34, Lemma 7.7], and we apply

induction. Hence

T k−1
A f(x) = fA for all x ∈ Rn.

Let ε > 0. Choose 0 < δ < 1/2 with max
{
δ
k
n
− 1
p , δ1− 1

p

}
< ε. Since δ < 1/2, |D|/|A| < 2.

Thus Lemma 91 with S = A yields

|f(x)− fA| ≤ C(n)

∫
D\A

|Dkf(z)|
|x− z|n−k

dz ≤ C(n)‖Dkf‖Lp(D)

(∫
D\A

dz

|x− z|(n−k) p
p−1

) p−1
p

.

Now the result follows directly from Lemma 87. Indeed, if k ≤ n, Lemma 87 and the estimate

|D \ A| < δ|D| ≤ C(n)δ(diamD)n

yield(∫
D\A

dz

|x− z|(n−k) p
p−1

) p−1
p

≤ C(n, k, p)|D \ A|
1
n

(k−n
p

) ≤ C(n, k, p)δ
k
n
− 1
p (diamD)k−

n
p .

If k > n, then we have(∫
D\A

dz

|x− z|(n−k) p
p−1

) p−1
p

≤ (diamD)k−n|D \ A|
p−1
p ≤ C(n, p)δ1− 1

p (diamD)k−
n
p .

Hence

diam f(D) = sup
x,y∈D

|f(x)− f(y)| ≤ 2 sup
x∈D
|f(x)− fA| ≤ C(n, k, p)ε(diamD)k−

n
p ‖Dkf‖Lp(D).

The proof is complete.

We will also need the following classical Besicovitch covering lemma, see e.g. [95, Theo-

rem 1.3.5]

Lemma 94 (Besicovitch). Let E ⊂ Rn and let {Bx}x∈E be a family of closed balls Bx =

B(x, rx) so that supx∈E{rx} < ∞. Then there is a countable (possibly finite) subfamily

{Bxi}∞i=1 with the property that

E ⊂
∞⋃
i=1

Bxi

and no point of Rn belongs to more than C(n) balls.
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7.3 PROOF OF THE DUBOVITSKII THEOREM FOR SOBOLEV MAPS

As we pointed out above we may assume that m ≤ n and k ≥ 2. It is also easy to see that

we can assume that Ω = Rn and f ∈ W k,p(Rn,Rm). Indeed, it suffices to prove the claim of

Theorem 84 on compact subsets of Ω and so we may multiply f by a compactly supported

smooth cut-off function to get a function in W k,p(Rn,Rm).

We will prove the result using induction with respect to n. If n = 1, then m = n = 1.

This gives n−m− k + 1 = 1− k ≤ 0 for any k ∈ N, so ` = 0. Thus the theorem is a direct

consequence of Theorem 85.

We shall prove now the theorem for n ≥ 2 assuming that it is true in dimensions less

than or equal to n−1. Fix p and integers m and k satisfying n < p <∞, m ≤ n, and k ≥ 2.

Write ` = max(n−m− k + 1, 0). Let f ∈ W k,p(Rn,Rm).

We can write

Cf = K ∪ A1 ∪ · · · ∪ Ak−1,

where

K := {x ∈ Cf : 0 < rankDf(x) < m}

and

As := {x ∈ Rn : Dαf(x) = 0 for all 1 ≤ |α| ≤ s}

Note that A1 ⊃ A2 ⊃ . . . ⊃ Ak−1 is a decreasing sequence of sets.

In the first step, we will show that Ak−1 ∩ f−1(y) is `-null for a.e. y ∈ Rm. Then we

will prove the same for (As−1 \ As) ∩ f−1(y) for s = 2, 3, . . . , k − 1. To do this we will

use the Implicit Function and Kneser-Glaeser theorems to reduce our problem to a lower

dimensional one and apply the induction hypothesis. Finally, we will consider the set K and

use a change of variables to show that we can reduce the dimension in the domain and in the

target so that the fact that H`(K ∩ f−1(y)) = 0 will follow from the induction hypothesis.

Claim 95. H`(Ak−1 ∩ f−1(y)) = 0 for a.e. y ∈ Rm.

Proof. Suppose x ∈ Ak−1. Notice that T k−1
x f(y) = f(x) for any y ∈ Rn since Dαf(x) = 0

for every 1 ≤ |α| ≤ k − 1. By Lemma 90 applied to each coordinate of f = (f1, . . . , fm), we
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have for any cube Q ⊂ Rn containing x and any y ∈ Q,

(7.3) |f(y)− f(x)| ≤ C(diamQ)k−
n
p

(∫
Q

|Dkf(z)|p dz
)1/p

.

Hence

(7.4) diam f(Q) ≤ C(diamQ)k−
n
p

(∫
Q

|Dkf(z)|p dz
)1/p

.

Let F1 := {x ∈ Ak−1 : x is a density point of Ak−1} and F2 := Ak−1 \ F1. We will treat

the sets F1 ∩ f−1(y) and F2 ∩ f−1(y) separately.

Step 1. First we will prove that H`(F2 ∩ f−1(y)) = 0 for almost every y ∈ Rm.

Let 0 < ε < 1. Since Hn(F2) = 0, there is an open set F2 ⊂ U ⊂ Ω such that

Hn(U) < ε
p

p−m . For any j ≥ 1 let {Qij}∞i=1 be a collection of closed cubes with pairwise

disjoint interiors such that

Qij ∩ F2 6= ∅, F2 ⊂
∞⋃
i=1

Qij ⊂ U, diamQij <
1

j
.

Since F2 ∩Qij 6= ∅, (7.4) yields

Hm(f(Qij)) ≤ C(diam f(Qij))
m ≤ C(diamQij)

m(k−n
p

)

(∫
Qij

|Dkf(x)|p dx

)m/p

.

Case: n−m− k + 1 ≤ 0 so ` = 0.

This condition easily implies that mk ≥ n so we also have mp
p−m(k − n

p
) ≥ n, and by

Hölder’s inequality,

Hm(f(F2)) ≤
∞∑
i=1

Hm(f(Qij)) ≤ C

∞∑
i=1

(diamQij)
m(k−n

p
)

(∫
Qij

|Dkf(x)|p dx

)m/p

≤ C

(
∞∑
i=1

(diamQij)
pm
p−m (k−n

p
)

) p−m
p
(∫

⋃∞
i=1Qij

|Dkf(x)|p dx

)m/p

≤ CHn(U)
p−m
p

(∫
U

|Dkf(x)|p dx
)m/p

< Cε‖Dkf‖p.(7.5)

Since ε > 0 can be arbitrarily small, Hm(f(F2)) = 0 and hence F2 ∩ f−1(y) = ∅, i.e.

H`(F2 ∩ f−1(y)) = 0 for a.e. y ∈ Rm.

Case: ` = n−m− k + 1 > 0.
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The sets {Qij ∩ f−1(y)}∞i=1 form a covering of F2 ∩ f−1(y) by sets of diameters less than

1/j. Since

diam (Qij ∩ f−1(y)) ≤ (diamQij)χf(Qij)(y)

the definition of the Hausdorff measure yields

H`(F2 ∩ f−1(y)) ≤ C lim inf
j→∞

∞∑
i=1

diam (Qij ∩ f−1(y))`(7.6)

≤ C lim inf
j→∞

∞∑
i=1

(diamQij)
`χf(Qij)(y).

We would like to integrate both sides with respect to y ∈ Rm. Note that the function on the

right hand side is measurable since the sets f(Qij) are compact. However measurability of

the function y 7→ H`(F2 ∩ f−1(y)) is far from being obvious. To deal with this problem we

will use the upper integral which for a non-negative function g : X → [0,∞] defined µ-a.e.

on a measure space (X,µ) is defined as follows:∫ ∗
X

g dµ = inf

{∫
X

φ dµ : 0 ≤ g ≤ φ and φ is µ-measurable.

}
.

An important property of the upper integral is that if
∫ ∗
X
g dµ = 0, then g = 0 µ-a.e. Indeed,

there is a sequence φi ≥ g ≥ 0 such that
∫
X
φi dµ→ 0. That means φi → 0 in L1(µ). Taking

a subsequence we get φij → 0 µ-a.e. which proves that g = 0 µ-a.e.

Applying the upper integral with respect to y ∈ Rm to both sides of (7.6), using Fatou’s

lemma, and noticing that
p

p−m

(
`+m

(
k − n

p

))
≥ n

gives ∫ ∗
Rm
H`(F2 ∩ f−1(y)) dHm(y) ≤ C lim inf

j→∞

∞∑
i=1

(diamQij)
`Hm(f(Qij))

≤ C lim inf
j→∞

∞∑
i=1

(diamQij)
`+m(k−n

p
)

(∫
Qij

|Dkf(x)|p dx

)m/p

< Cε‖Dkf‖p

by the same argument as in (7.5). Again, since ε > 0 can be arbitrarily small, we conclude

that H`(F2 ∩ f−1(y)) = 0 for a.e. y ∈ Rm.
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Step 2. It remains to prove that H`(F1 ∩ f−1(y)) = 0 for almost every y ∈ Rm.

The proof is similar to that in Step 1 and the arguments which are almost the same

will be presented in a more sketchy form now. In Step 1 it was essential that the set F2

had measure zero. We will compensate the lack of this property now by the estimates from

Remark 93.

It suffices to prove that for any cube Q̃, H`(Q̃∩F1∩f−1(y)) = 0 for a.e. y ∈ Rm. Assume

that Q̃ is in the interior of a larger cube Q̃ b Q.

By Remark 93, for each x ∈ Q̃ ∩ F1 and j ∈ N there is 0 < rjx < 1/j such that

diam f(B(x, rjx)) ≤ j−1r
k−n

p

jx

(∫
B(x,rjx)

|Dkf(z)|p dz

)1/p

.

We may further assume that B(x, rjx) ⊂ Q.

Denote Bjx = B(x, rjx). According to the Besicovitch Lemma 94, there is a countable

subcovering {Bjxi}∞i=1 of Q̃∩F1 so that no point of Rn belongs to more than C(n) balls Bjxi .

Case: n−m− k + 1 ≤ 0 so ` = 0.

We have pm
p−m(k − n

p
) ≥ n as before, so

Hm(f(Q̃ ∩ F1)) ≤ C
∞∑
i=1

Hm(f(Bjxi)) ≤ Cj−m
∞∑
i=1

r
m(k−n

p
)

jxi

(∫
Bjxi

|Dkf(z)|p dz

)m/p

≤ Cj−m

(
∞∑
i=1

rnjxi

) p−m
p
(
∞∑
i=1

∫
Bjxi

|Dkf(z)|p dz

)m/p

.

Since the balls are contained in Q and no point belongs to more than C(n) balls we conclude

that

Hm(f(Q̃ ∩ F1)) ≤ Cj−mHn(Q)
p−m
p ‖Dkf‖mp .

Since j can be arbitrarily large, Hm(f(Q̃ ∩ F1)) = 0, i.e. H`(Q̃ ∩ F1 ∩ f−1(y)) = 0 for a.e.

y ∈ Rm.

Case: ` = n−m− k + 1 > 0.

The sets {Bjxi ∩ f−1(y)}∞i=1 form a covering of Q̃ ∩ F1 ∩ f−1(y) and

diam (Bjxi ∩ f−1(y)) ≤ Crjxiχf(Bjxi )
(y).
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The definition of the Hausdorff measure yields

H`(Q̃ ∩ F1 ∩ f−1(y)) ≤ C lim inf
j→∞

∞∑
i=1

r`jxiχf(Bjxi )
(y).

Thus as above

∫ ∗
Rm
H`(Q̃ ∩ F1 ∩ f−1(y)) dHm(y)

≤ C lim inf
j→∞

∞∑
i=1

r`jxiH
m(f(Bjxi))

≤ C lim inf
j→∞

j−m
∞∑
i=1

r
`+m(k−n

p
)

jxi

(∫
Bjxi

|Dkf(z)|p dz

)m/p

≤ C lim inf
j→∞

j−mHn(Q)
p−m
p ‖Dkf‖mp = 0

since p
p−m

(
`+m

(
k − n

p

))
≥ n. Therefore H`(Q̃ ∩ F1 ∩ f−1(y)) = 0 for a.e. y ∈ Rm. This

completes the proof that H`(F1∩f−1(y)) = 0 for a.e. y ∈ Rm and hence that of Claim 95

Claim 96. H`((As−1 \ As) ∩ f−1(y)) = 0 for a.e. y ∈ Rm, s = 2, 3, . . . , k − 1.

In this step, we will use the Kneser-Glaeser composition theorem and the implicit function

theorem to apply the induction hypothesis in Rn−1.

Fix s ∈ {2, 3, . . . , k − 1} and x̄ ∈ As−1 \ As. It suffices to show that the `-Hausdorff

measure of W ∩ (As−1 \As)∩ f−1(y) is zero for some neighborhood W of x̄ and a.e. y ∈ Rm.

Indeed, As−1 \ As can be covered by countably many such neighborhoods.

By the definitions of As and As−1, Dγf(x̄) = 0 for all 1 ≤ |γ| ≤ s− 1, and Dβf(x̄) 6= 0

for some |β| = s. That is, for some |γ| = s − 1 and j ∈ {1, . . . ,m}, D(Dγfj)(x̄) 6= 0 and

Dγfj ∈ W k−(s−1),p ⊂ Ck−s,1−n
p .

Hence, by the implicit function theorem, there is some neighborhood U of x̄ and an open

set V ⊂ Rn−1 so that U ∩ {Dγfj = 0} = g(V ) for some g : V → Rn of class Ck−s. In

particular, U ∩ As−1 ⊂ g(V ) since Dγfj = 0 on As−1.

Choose a neighborhood W b U of x̄ and say A∗ := g−1(W ∩As−1) so that A∗ is compact.

Since f is s− 1 flat on the closed set As−1, f is of class Ck−1, g is of class C(k−1)−(s−1), and

g(A∗) ⊂ As−1, we can apply Theorem 86 to each component of f to find a Ck−1 function
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F : Rn−1 → Rm so that, for every x ∈ A∗, F (x) = (f ◦ g)(x) and DλF (x) = 0 for all

|λ| ≤ s− 1. That is, A∗ ⊂ CF . Hence

H`(A∗ ∩ F−1(y)) ≤ H`(CF ∩ F−1(y)) = 0.

for almost every y ∈ Rm. In this last equality, we invoked the induction hypothesis on

F ∈ Ck−1(Rn−1,Rm) ⊂ W k−1,p
loc (Rn−1,Rm) with ` = max((n−1)−m− (k−1)+1, 0). Since g

is of class C1, it is locally Lipschitz, and so H`(g(A∗∩F−1(y))) = 0 for almost every y ∈ Rm.

Since W ∩ As−1 ⊂ g(A∗), we have

W ∩ As−1 ∩ f−1(y) ⊂ g(A∗ ∩ F−1(y))

for all y ∈ Rm, and thus

H`(W ∩ (As−1 \ As) ∩ f−1(y)) ≤ H`(W ∩ As−1 ∩ f−1(y)) = 0

for almost every y ∈ Rm. The proof of the claim is complete.

Claim 97. H`(K ∩ f−1(y)) = 0 for a.e. y ∈ Rm.

Proof. Write K =
⋃m−1
r=1 Kr where Kr := {x ∈ Rn : rankDf(x) = r}. Fix x0 ∈ Kr for

some r ∈ {1, . . . ,m − 1}. For the same reason as in Claim 96 it suffices to show that

H`((V ∩Kr) ∩ f−1(y)) = 0 for some neighborhood V of x0 for a.e. y ∈ Rm.

Without loss of generality, assume that the submatrix [∂fi/∂xj(x0)]ri,j=1 formed by the

first r rows and columns of Df has rank r. Let

(7.7) Y (x) = (f1(x), f2(x), . . . , fr(x), xr+1, . . . , xn) for all x ∈ Rn.

Y is of class Ck−1 since each component of f is. Also, rankDY (x0) = n, so by the inverse

function theorem Y is a Ck−1 diffeomorphism of some neighborhood V of x0 onto an open

set Ṽ ⊂ Rn. From now on we will assume that Y is defined in V only.

Claim 98. Y −1 ∈ W k,p
loc (Ṽ ,Rn).

Proof. In the proof we will need
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Lemma 99. Let Ω ⊂ Rn be open. If g, h ∈ W `,p
loc (Ω), where p > n and ` ≥ 1, then

gh ∈ W `,p
loc (Ω).

Proof. Since g, h ∈ C`−1, it suffices to show that the classical partial derivatives Dβ(gh),

|β| = `− 1 belong to W 1,p
loc (Ω) (when ` = 1, β = 0 so Dβ(gh) = gh).

The product rule for C`−1 functions yields

(7.8) Dβ(gh) =
∑
γ+δ=β

β!

γ! δ!
DγgDδh.

Each of the functions Dγg, Dδh is absolutely continuous on almost all lines parallel to

coordinate axes, [27, Section 4.9.2], so is their product. Thus Dβ(gh) is absolutely continuous

on almost all lines and hence it has partial derivatives (or order 1) almost everywhere.

According to a characterization of W 1,p
loc by absolute continuity on lines, [27, Section 4.9.2],

it suffices to show that partial derivatives of Dβ(gh) (of order 1) belong to Lploc. This will

imply that Dβ(gh) ∈ W 1,p
loc for all β, |β| = `− 1 so gh ∈ W `,p

loc .

If Dα = DδiDβ, then the product rule applied to the right hand side of (7.8) yields

Dα(gh) =
∑
γ+δ=α

α!

γ! δ!
DγgDδh.

If |γ| < |α| = ` and |δ| < |α| = `, then the function DγgDδh is continuous and hence in Lploc.

The remaining terms are hDαg + gDαh. Clearly this function also belongs to Lploc because

the functions g, h are continuous and Dαg,Dαh ∈ Lploc. This completes the proof of the

lemma.

Now we can complete the proof of Claim 98. Since Y is a diffeomorphism of class Ck−1,

we have

(7.9) D(Y −1)(y) = [DY (Y −1(y))]−1 for every y ∈ Ṽ .

It suffices to prove that D(Y −1) ∈ W k−1,p
loc . It follows from (7.9) and a formula for the inverse

matrix that

D(Y −1) =

(
P1(Df)

P2(Df)

)
◦ Y −1,
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where P1 and P2 and polynomials whose variables are replaced by partial derivatives of f .

The polynomial P2(Df) is just detDY .

Since Df ∈ W k−1,p
loc and p > n, it follows from Lemma 99 that

P1(Df), P2(Df) ∈ W k−1,p
loc .

Note that P2(Df) = detDY is continuous and different than zero. Hence

1

P2(Df)
∈ W k−1,p

loc

as a composition of a W k−1,p
loc function which is locally bounded away from 0 and ∞ with a

smooth function x 7→ x−1. Thus Lemma 99 applied one more time implies P1(Df)/P2(Df)

is in the class W k−1,p
loc . Finally

D(Y −1) =

(
P1(Df)

P2(Df)

)
◦ Y −1 ∈ W k−1,p

loc

because composition with a diffeomorphism Y −1 of class Ck−1 preserves W k−1,p
loc . The proof

of the claim is complete.

It follows directly from (7.7) that

(7.10) f(Y −1(x)) = (x1, . . . , xr, g(x))

for all x ∈ Ṽ and some function g : Ṽ → Rm−r.

Claim 100. g ∈ W k,p
loc (Ṽ ,Rm−r).

This statement is a direct consequence of the next

Lemma 101. Let Ω ⊂ Rn be open, p > n and k ≥ 1. If Φ ∈ W k,p
loc (Ω,Rn) is a diffeomorphism

and u ∈ W k,p
loc (Φ(Ω)), then u ◦ Φ ∈ W k,p

loc (Ω).
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Proof. When k = 1 the result is obvious because diffeomorphisms preserve W 1,p
loc . Assume

thus that k ≥ 2. Since p > n, Φ ∈ Ck−1 so Φ is a diffeomorphism of class Ck−1, but also

u ∈ Ck−1 ⊂ C1 and hence the classical chain rule gives

(7.11) D(u ◦ Φ) = ((Du) ◦ Φ) ·DΦ.

Since Du ∈ W k−1,p
loc and Φ is a diffeomorphism of class Ck−1, we conclude that (Du) ◦ Φ ∈

W k−1,p
loc . Now the fact that DΦ ∈ W k−1,p

loc combined with (7.11) and Lemma 99 yield that the

right hand side of (7.11) belongs to W k−1,p
loc so D(u ◦ Φ) ∈ W k−1,p

loc and hence u ◦ Φ ∈ W k,p
loc .

This completes the proof of Lemma 101 and hence that of Claim 100.

Now we can complete the proof of Claim 97. Recall that we need to prove that

(7.12) H`((V ∩Kr) ∩ f−1(y)) = 0 for a.e. y ∈ Rm.

The diffeomorphism Y −1 is a change of variables that simplifies the structure of the map-

ping f because f ◦ Y −1 fixes the first r coordinates (see (7.10)) and hence it maps (n− r)-

dimensional slices orthogonal to Rr to the corresponding (m− r)-dimensional slices orthog-

onal to Rr. Because of this observation it is more convenient to work with f ◦ Y −1 rather

than with f . Translating (7.12) to the case of f ◦ Y −1 it suffices to show that

H`((Ṽ ∩ Y (Kr)) ∩ (f ◦ Y −1)−1)(y) = 0 for a.e. y ∈ Rm.

We used here a simple fact that the diffeomorphism Y preserves `-null sets.

Observe also that

(7.13) rankD(f ◦ Y −1)(x) = r for x ∈ Ṽ ∩ Y (Kr).

For any x̃ ∈ Rr and A ⊂ Rn, we will denote by Ax̃ the (n − r)–dimensional slice of

A with the first r coordinates equal to x̃. That is, Ax̃ := {z ∈ Rn−r : (x̃, z) ∈ A}. Let

gx̃ : Ṽx̃ → Rm−r be defined by gx̃(z) = g(x̃, z). With this notation

(f ◦ Y −1)(x̃, z) = (x̃, gx̃(z))
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and hence for y = (x̃, w) ∈ Rm

(Ṽ ∩ Y (Kr)) ∩ (f ◦ Y −1)−1(y) = g−1
x̃ (w) ∩ (Ṽ ∩ Y (Kr))x̃.

More precisely the set on the left hand side is contained in an affine (n − r)-dimensional

subspace of Rn orthogonal to Rr at x̃ while the set on the right hand side is contained in

Rn−r but the two sets are identified through a translation by the vector (x̃, 0) ∈ Rn which

identifies Rn−r with the affine subspace orthogonal to Rr at x̃.

According to the Fubini theorem it suffices to show that for almost all x̃ ∈ Rr the

following is true: for almost all w ∈ Rm−r

(7.14) H`(g−1
x̃ (w) ∩ (Ṽ ∩ Y (Kr)x̃)) = 0.

As we will see this is a direct consequence of the induction hypothesis applied to the mapping

gṼ : x̃x̃ → Rn−r defined in a set of dimension n− r ≤ n− 1. We only need to check that gx̃

satisfies the assumptions of the induction hypothesis.

It is easy to see that for each x = (x̃, z) ∈ Ṽ

D(f ◦ Y −1)(x) =

 id r×r 0

∗ D(gx̃)(z)

 .

This and (7.13) imply that for each x̃ ∈ Rr, Dgx̃ = 0 on the slice (Ṽ ∩ Y (Kr))x̃. Hence the

set (Ṽ ∩ Y (Kr))x̃ is contained in the critical set of gx̃ so

(7.15) H`(g−1
x̃ (w) ∩ (Ṽ ∩ Y (Kr))x̃) ≤ H`(g−1

x̃ (w) ∩ Cgx̃).

It follows from the Fubini theorem applied to Sobolev spaces that for almost all x̃ ∈ Rn,

gx̃ ∈ W k,p
loc (Ṽx̃,Rm−r) and hence the induction hypothesis is satisfied for such mappings

W k,p
loc 3 gx̃ : Ṽx̃ ⊂ Rn−r → Rm−r.

Since

` = max(n−m− k + 1, 0) = max((n− r)− (m− r)− k + 1, 0),

for almost all w ∈ Rm−n the expression on the right hand side of (7.15) equals zero and

(7.14) follows. This completes the proof of Claim 97 and hence that of the theorem.
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7.4 PROOF OF THE KNESER-GLAESER ROUGH COMPOSITION

THEOREM

The Kneser-Glaeser theorem follows as a direct application of Whitney’s Extension Theorem

(Theorem 102). This classical theorem was discussed in the introduction of Chapter 5. The

statement of the theorem for higher order derivatives is given here.

Theorem 102 (Whitney’s Extension Theorem). Let {hα}|α|≤k be a collection of real valued

functions defined on a compact set K ⊂ Rr satisfying

(7.16) hα(x) =
∑

|β|≤k−|α|

hα+β(y)

β!
(x− y)β +Rα(x, y)

for every x, y ∈ K where Rα is uniformly o
(
|x− y|k−α

)
as |x − y| → 0. Then there is a

function H : Rr → R of class Ck so that DαH = hα on K for every |α| ≤ k.

7.4.1 Conditions equivalent to Whitney’s Theorem

For simplicity, we will write h = h0. Now define the formal Taylor series of h as

T kxh(z) =
∑
|α|≤k

hα(x)

α!
(z − x)α

for any x ∈ K and z ∈ Rr. Notice that, if K was open, h was of class Ck on K, and hα = Dαh

for each |α| ≤ k, then T kxh would simply be the usual Taylor polynomial for h. Using this

notation, we now have the following equivalent formulation of Whitney’s Extension Theorem:

Proposition 103. Let {hα}|α|≤k be a collection of real valued functions defined on a compact

set K ⊂ Rr. Let B be a ball with K ⊂ B. Condition (7.16) is equivalent to the following:

(7.17) |T kxh(z)− T ky h(z)| ≤ c(|x− y|)
(
|x− z|k + |x− y|k

)
for every x, y ∈ K and z ∈ B where c : [0,∞) → [0,∞) is increasing, continuous, and

concave with c(0) = 0. (We say that c is a modulus of continuity.)
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Throughout the remainder of the section, the notation c will be used to represent any

constant multiple of a modulus of continuity. Thus c may change values in the same inequal-

ity.

Proof. To begin, we will show that (7.16) implies (7.17). Notice that

(7.18) |Rα(x, y)| ≤ c(|x− y|)|x− y|k−|α|

for every x, y ∈ K, |α| ≤ k, and some modulus of continuity c. Indeed, define the function

c̃ : [0,∞)→ [0,∞) as

c̃(t) = sup

{
|Rα(x, y)|
|x− y|k−|α|

: |α| ≤ k, x, y ∈ K, 0 < |x− y| ≤ t

}
,

and define the modulus of continuity c to be the infimum over all convex functions which

are greater than or equal to c̃.

We will now show that

(7.19)
∑
|α|≤k

(z − x)α

α!
Rα(x, y) = T kxh(z)− T ky h(z).

for every x, y,∈ K and z ∈ B. To do so, notice for each |α| ≤ k

Rα(x, y) = hα(x)−
∑

|β|≤k−|α|

hα+β(y)

β!
(x− y)β = hα(x)−Dα

∑
|β|≤k

hβ(y)

β!
(x− y)β


where this derivative is taken with respect to x. That is,

∑
|α|≤k

(z − x)α

α!
Rα(x, y) =

∑
|α|≤k

hα(x)

α!
(z − x)α −

∑
|α|≤k

(z − x)α

α!
Dα

∑
|β|≤k

hβ(y)

β!
(x− y)β


= T kxh(z)−

∑
|α|≤k

Dα(T kxh(y))

α!
(z − x)α

= T kxh(z)− T ky h(z)

This last equality holds since T kxh(y) is a polynomial in x of degree k, and every polynomial

of degree k is equal to its Taylor polynomial of degree k. Combining (7.19) with (7.18) gives

|T kxh(z)− T ky h(z)| ≤ c(|x− y|)
∑
|α|≤k

|z − x|α

α!
|x− y|k−|α| ≤ c(|x− y|)

(
|x− z|k + |x− y|k

)
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where we used Young’s inequality with exponents k
|α| and k

k−|α| . This proves that (7.16)

implies (7.17).

We will now show that (7.17) implies (7.16). Fix x, y ∈ K. By (7.19),

∣∣∣∣∣∣
∑
|α|≤k

(z − x)α

α!
Rα(x, y)

∣∣∣∣∣∣ = |T kxh(z)− T ky h(z)| ≤ c(|x− y|)
(
|x− z|k + |x− y|k

)

for every z ∈ B and some modulus of continuity c. Say z′ ∈ Rr is defined so that z − x =

|x− y|(z′ − x). Then

(7.20)

∣∣∣∣∣∣
∑
|α|≤k

|x− y||α|

α!
(z′ − x)αRα(x, y)

∣∣∣∣∣∣ ≤ c(|x− y|)|x− y|k
(
|z′ − x|k + 1

)
.

The left hand side of this inequality is a polynomial in the variable (z′− x) (with x fixed) of

degree k. The coefficients of any such polynomial can be written as a linear combination of

the value of the polynomial at any collection of points a0, . . . , aN ∈ Rr (for some N). Since

the value of this polynomial is bounded according to (7.20), it follows that the coefficients

|x−y||α|
α!

Rα(x, y) can be bounded in magnitude by c(|x− y|)|x− y|k. That is,

|Rα(x, y)| ≤ c(|x− y|)|x− y|k−|α|

which completes the proof.

Since every smooth function satisfies condition (7.16), the above proposition implies the

following

Lemma 104. Suppose f : Ω→ R is of class Ck for an open Ω ⊂ Rr. Then

|T kx f(z)− T ky f(z)| ≤ c(|x− y|)
(
|x− z|k + |x− y|k

)

for every x, y ∈ Ω and z ∈ Rr where c is a modulus of continuity.
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Notice that for any x, y, z ∈ Rr,

|x− z|k + |x− y|k ≤
(
|x− z|k + (|x− z|+ |y − z|)k

)
= |x− z|k +

k∑
j=0

(
k

j

)
|x− z|j|y − z|k−j

≤ |x− z|k + C
(
|x− z|k + |y − z|k

)
≤ C

(
|x− z|k + |y − z|k

)
.

We used Young’s inequality with the exponents k
j

and k
k−j in the second-to-last line. Similarly,

|x− z|k + |y − z|k ≤ C
(
|x− z|k + |x− y|k

)
. Thus the statements

|T kx f(z)− T ky f(z)| ≤ c(|x− y|)
(
|x− z|k + |x− y|k

)
and

|T kx f(z)− T ky f(z)| ≤ c(|x− y|)
(
|x− z|k + |y − z|k

)
are equivalent. We will refer to these approximations interchangeably later.

7.4.2 Rough composition of mappings

We now prove the main result of the section.

Theorem 105 (Kneser-Glaeser). Fix positive integers s, k,m, n with s < k. Suppose V ⊂ Rr

and W ⊂ Rn are open and A∗ ⊂ V and A ⊂ W are compact. Let g : V → W be of class

Ck−s with g(A∗) ⊂ A, and let f : W → R be of class Ck. Suppose also that f is s-flat on A.

Then there is a function F : W → R of class Ck so that F = f ◦ g on A∗ and F is s-flat on

A∗.

Proof. To begin, we will define a collection {hα}|α|≤k of real valued functions on A∗ so that

T ky h(z) +
∑
|λ|=k+1

pλ(x, z)(z − x)λ = T kg(x)f(T k−sx g(z))

where each pλ is a polynomial in x and z. Here, the notation T k−sx g(z) refers to the

coordinate-wise Taylor polynomial of g. That is, T k−sx g(z) is a point in Rn.
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To define this collection, choose a ball B with A∗ ⊂ B. Notice that we can write for any

x ∈ A∗ and z ∈ B

(7.21) T ky f(T k−sx g(z)) = f(y) +
∑

s+1≤|ν|≤k

Dνf(y)

ν!

 ∑
1≤|β|≤k−s

Dβg(x)

β!
(z − x)β

ν

where y = g(x).

Expand the right hand side of (7.21) and collect all terms of the form aα(x)(z − x)α for

each |α| ≤ k. All remaining terms will have the form pλ(x, z)(z − x)λ for some |λ| = k + 1

where pλ is a polynomial in x and z. Write hα(x) = α!aα(x).

First, notice that hα(x) = 0 for every 1 ≤ |α| ≤ s since, in (7.21), |ν| ≥ s + 1. Thus no

terms of the form (z − x)α appear when 1 ≤ |α| ≤ s. Also, the only term in (7.21) which

does not contain any (z − x)α with |α| ≥ 1 is f(y), and so h0(x) = f(g(x)). This leaves for

every x ∈ A∗ and z ∈ B

T kxh(z) =
∑

s+1≤|α|≤k

hα(x)

α!
(z − x)α = T ky f(T k−sx g(z))−

∑
|λ|=k+1

pλ(x, z)(z − x)λ.

By way of (7.17), it suffices to show that

|T kx1h(z)− T kx2h(z)| ≤ c(|x1 − x2|)(|z − x1|k + |z − x2|k)

for every x1, x2 ∈ A∗ and z ∈ B. In fact, it is enough to show that

(7.22) |T ky1f(T k−sx1
g(z))− T ky2f(T k−sx2

g(z))| ≤ c(|x1 − x2|)(|z − x1|k + |z − x2|k)

for every x1, x2 ∈ A∗ and z ∈ B where y1 = g(x1) and y2 = g(x2). Indeed, we have

|(T kx1h(z)− T ky1f(T k−sx1
g(z)))−(T kx2h(z)− T ky2f(T k−sx2

g(z)))|

≤
∑
|λ|=k+1

|pλ(x1, z)(z − x1)λ − pλ(x2, z)(z − x2)λ|.

For each |λ| = k + 1, we can rewrite the terms in the last line as

∣∣[pλ(x1, z)− pλ(x2, z)] (z − x1)λ + pλ(x2, z)
[
(z − x1)λ − (z − x2)λ

]∣∣
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The first term here is bounded by

|pλ(x1, z)− pλ(x2, z)|
(
|z − x1|k + |z − x2|k

)
= c(|x2 − x1|)

(
|z − x1|k + |z − x2|k

)
,

and we can bound the second term as follows by using the mean value theorem:

∣∣(z − x1)λ − (z − x2)λ
∣∣ ≤ C|x1 − x2| (t|z − x1|+ (1− t)|z − x2|)|λ|−1

= C|x1 − x2|
|λ|−1∑
j=0

(
|λ| − 1

j

)
|z − x1|j|z − x2||λ|−1−j

≤ C|x1 − x2|
(
|z − x1||λ|−1 + |z − x2||λ|−1

)
= C|x1 − x2|

(
|z − x1|k + |z − x2|k

)
where we used Young’s inequality in the second-to-last line. Thus it remains to prove (7.22).

Now, rewrite the left hand side of (7.22) as

(7.23)
∣∣[T ky1f(T k−sx1

g(z))− T ky1f(T k−sx2
g(z))

]
+
[
T ky1f(T k−sx2

g(z))− T ky2f(T k−sx2
g(z))

]∣∣
We can use Lemma 104 to bound the second term in brackets by

c(|g(x1)− g(x2)|)
(
|T k−sx2

g(z)− g(x2)|k + |g(x1)− g(x2)|k
)
.

Since g is of class Ck−s, we have |g(x1)− g(x2)| ≤ C|x1 − x2| and

|T k−sx2
g(z)− g(x2)| ≤

∑
1≤|β|≤k−s

|Dβg(x2)|
β!

|z − x2||β| ≤ C|z − x2|

for a constant C > 0 independent of the choices of x2 and z since g is Ck−s on U , A∗ ⊂ U is

compact, and x2, z ∈ B. This gives the desired upper bound for the second bracketed term

in (7.23).

Write w1 = T k−sx1
g(z) and w2 = T k−sx2

g(z). Applying Taylor’s theorem to T ky1f centered

at w1, we have

T ky1f(w2) =
∑
|µ|≤k

Dµ
(
T ky1f(w1)

)
µ!

(w2 − w1)µ,

and so we can bound the first bracketed term in (7.23) as follows:

(7.24)
∣∣T ky1f(w1)− T ky1f(w2)

∣∣ ≤ ∑
1≤|µ|≤k

1

µ!

∣∣Dµ
(
T ky1f(w1)

)∣∣ |w2 − w1||µ|.
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Also, for each component gj of g, we have by the statement after Lemma 104

|T k−sx2
gj(z)− T k−sx1

gj(z)| ≤ c(|x2 − x1|)(|z − x2|k−s + |z − x1|k−s).

Thus

(7.25) |w2 − w1| = |T k−sx2
g(z)− T k−sx1

g(z)| ≤ c(|x2 − x1|)(|z − x2|k−s + |z − x1|k−s)

We will now find bounds for each term in the sum on the right hand side of (7.24). Consider

first the case when 1 ≤ |µ| ≤ s. We may write

Dµ
(
T ky1f(w1)

)
= T k−|µ|y1

(Dµf(w1)) =
∑

|γ|≤k−|µ|

Dµ+γf(y1)

γ!
(w1 − y1)γ.

When |γ| ≤ s− |µ|, we have Dµ+γf(y1) = 0, and so

|Dµ
(
T ky1f(w1)

)
| ≤

∑
s−|µ|<|γ|≤k−|µ|

|Dµ+γf(y1)|
γ!

|w1 − y1||γ| ≤ C|w1 − y1|s−|µ|+1

for a constant C > 0 independent of the choice of y1 since f is Ck on W , A ⊂ W is compact,

and g(A∗) ⊂ A. As seen above, |w1 − y1| = |T k−sx1
g(z)− g(x1)| ≤ C|z − x1|, so by (7.25),

∣∣Dµ
(
T ky1f(w1)

)∣∣|w2 − w1||µ|

≤ c(|x2 − x1|) |z − x1|s−|µ|+1
(
|z − x2|k−s + |z − x1|k−s

)|µ|
= c(|x2 − x1|)

|µ|∑
j=0

(
|µ|
j

)
|z − x2|(k−s)j|z − x1|(k−s)(|µ|−j)+s−|µ|+1

≤ c(|x2 − x1|)
(
|z − x2|k|µ|−s|µ|+s−|µ|+1 + |z − x1|k|µ|−s|µ|+s−|µ|+1

)
≤ c(|x2 − x1|)

(
|z − x2|k + |z − x1|k

)
.

In the second-to-last line, we used Young’s inequality with the exponents k|µ|−s|µ|+s−|µ|+1
(k−s)j and

k|µ|−s|µ|+s−|µ|+1
(k−s)(|µ|−j)+s−|µ|+1

, and in the last line we used the fact that (k − s − 1)(|µ| − 1) ≥ 0. This

provides the desired bound for (7.24) when 1 ≤ |µ| ≤ s.

It remains to bound (7.24) when s+ 1 ≤ |µ| ≤ k. In this case,

|w2 − w1||µ| ≤ C|w2 − w1|s+1 ≤ c(|x2 − x1|)(|z − x2|k−s + |z − x1|k−s)s+1
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≤ c(|x2 − x1|)
s+1∑
j=0

(
s+ 1

j

)
|z − x2|(k−s)j|z − x1|(k−s)(s+1−j)

≤ c(|x2 − x1|)
(
|z − x2||µ|(k−s)(s+1) + |z − x1|(k−s)(s+1)

)
≤ c(|x2 − x1|)

(
|z − x2|k + |z − x1|k

)
As before, we have used Young’s inequality with the exponents (k−s)(s+1)

(k−s)j and (k−s)(s+1)
(k−s)(s+1−j) ,

and in the last line we used the fact that (k − s)(s + 1) ≥ k. This provides the desired

bound for (7.24) when s+1 ≤ |µ| ≤ k, and thus we have appropriately bounded (7.23). This

completes the proof.
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