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Vision seems to occur effortlessly and without mistakes. As a result, it is easy to lose sight 

of the complex representational mechanisms going on under the hood. In macaque monkeys, the 

brain region thought to be the ultimate mediator of object recognition is the inferotemporal cortex 

(IT). The purpose of this dissertation was to investigate how IT neurons respond to parts of a 

display. We used two different paradigms that disrupt the perception of object parts to query how 

different parts of a visual scene interact. 

The first project was concerned with the behavioral phenomenon known as crowding, in 

which clutter causes peripheral objects to devolve into an unintelligible jumble. We are the first to 

develop a task conducive to concurrent behavior and neuronal recordings in monkeys. To 

demonstrate the relevance of our task, we turned to a hallmark of crowding: that what matters is 

the eccentricity and spacing between objects, not object size. Having demonstrated this, we were 

set to proceed to neuronal recordings. 

Our primary question was whether crowding quantitatively reduced the strength of IT 

neuronal selectivity or alternatively whether crowding induced a qualitative change to the neuronal 

code. Our results support the latter hypothesis. We then asked additional follow-up questions 

regarding size-sensitivity and adjacency of part-part interactions. Overall, our results were 

incompatible with a pooling model of crowding and consistent with models based on attention, 

texture, or source confusion. 
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The final experiment was concerned with whether certain parts of compound objects were 

preferentially represented over others. To do this we recorded IT spiking activity while monkeys 

viewed composite shapes made up of overlapping outlines, as well as all the possible constituent 

closed parts created by the overlap. Humans tend to only perceive the simpler shapes originally 

used to create the composite, but the same was not true of IT neurons. Instead, they represented 

the composite more like its external contour than any other part, especially in the initial phase of 

the response.  
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1.0  GENERAL INTRODUCTION 

We spend every waking moment perceiving objects in the world around us. This process 

occurs so effortlessly that it is easy to forget what a challenging task object recognition poses for 

the brain. A central problem of visual perception is how the brain interprets two-dimensional 

patterns of light as belonging to three-dimensional objects. In order to interpret these shapes 

appropriately, they must first be grouped properly. But how does the brain know which features 

belong to which objects?  

The goal of this introductory chapter is to briefly review the current state of our knowledge 

of the neuronal mechanisms underlying object recognition. The focus will primarily be on the 

visual system of the macaque monkey, with the aim of highlighting some critical gaps in our 

current understanding. This chapter will conclude by identifying a set of specific experimental 

aims that address these gaps. Chapter 2 will lay out the results of a series of experiments designed 

to investigate whether macaque monkeys experience the phenomenon of crowding in peripheral 

vision. Chapter 3 will include the results of a set of experiments designed to investigate the 

neuronal basis of crowding. Chapter 4 will present the results of an experiment designed to 

investigate how overlapping shapes are segregated and interpreted by the brain. Finally, chapter 5 

will conclude by discussing how the results of experiments have furthered our understanding of 

the neuronal mechanisms of object recognition.  
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1.1 AGNOSIA AND GESTALT  

Patients with apperceptive agnosia are not blind, but they lack the ability to make sense of 

the global organization of an object. Acuity, color vision, depth perception, and motion perception 

are all perfectly normal (Farah, 2004). However, when they are asked to reproduce drawings of 

complex objects the process is laborious and the result is an unintelligible jumble.  

In the 1970s, a 73-year-old artist was rendered agnosic after a stroke. The patient was 

unable to recognize faces and about 75% of the objects presented to him. When drawing these 

unnamable objects, he tended to focus on the details instead of the global organization, and he 

often lost his place. As a result, his drawings contained some of the same features as the original 

image, but they were disjointed and disproportional (Fig. 1). Interestingly, despite his stroke, his 

drawings retained the same style as before. He maintained his techniques of perspective, 

shadowing, and texture, suggesting that all he lost was the capacity to meld object parts into a 

cohesive whole (Wapner et al., 1978).  

This notion of a cohesive whole visual percept dates 

all the way back to the Gestalt psychologists, based in the 

Berlin School of Experimental Psychology around the turn 

of the 20th century. Among this clan was Kurt Koffka, who 

famously said, “The whole is other than the sum of the 

parts,” (Koffka, 1935). What he meant by this statement is 

that the whole, or the gestalt, of a visual object has an 

existence in the perceptual system independent of its parts. 

The simple presence of the parts does not define the whole. 

Figure 1. Airplane drawing by an artist with 

apperceptive agnosia attempting to copy from 

the photograph below. (Reprinted with 

permission from Cortex, Wapner et al. 

(1978), Fig. 6).  
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Rather, those parts must cohere in a specific way to create a meaningful whole. 

Driven largely by introspection, the Gestaltists worked out a set of laws of perceptual 

organization. At the heart of these laws is the Law of Prägnanz, which is a German word meaning 

goodness of form (Metzger, 1936). This law commands that the environment is perceived in the 

simplest way possible. For instance, if two lines cross it is much more parsimonious to view them 

as both continuing on their original trajectories after the point of intersection rather than suddenly 

jibing to take up the other’s course. This particular example is also known as the Law of 

Continuity.  

Although simple observation lends credence to the Gestalt laws, evidence for an underlying 

mechanism is scant (Lee and Nguyen, 2001; Sáry et al., 2007). One of the aims of this project is 

to look for a neuronal basis for the Law of Prägnanz by recording from neurons in the area of the 

macaque monkey brain thought to encode subjective visual experience (Sheinberg and Logothetis, 

1997). 

1.2 BRAIN STRUCTURES FOR OBJECT REPRESENTATION 

Wapner’s agnosic artist acquired his injury from a blockage in his posterior cerebral artery 

(1978). This artery supplies blood to the occipital cortex and the ventral portion of the temporal 

lobe (Gray, 1918). Brain imaging of another famous apperceptive agnosic, patient DF, revealed 

that her lesion bilaterally affected a brain structure called lateral occipital cortex (LOC; James et 

al., 2003). Area LOC (Fig. 2A) is functionally defined in healthy subjects as being more active 

when viewing whole objects compared to viewing scrambled versions of those same objects (Grill-

Spector et al., 2001; James et al., 2003). Thus, LOC is defined as a region involved in holistic form 
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perception more so than the perception of local features. Just as in Wapner’s stroke patient, the 

neuronal basis of perceiving parts and wholes appears to be dissociable (1978). 

A homologous structure to human LOC in the macaque monkey is inferotemporal cortex 

(IT; Tsao et al., 2003). Just like LOC, IT (Fig. 2B) is more active when viewing whole objects 

versus viewing the scrambled parts of those objects (Desimone et al., 1984; Tsao et al., 2003; 

Vogels, 1999). IT lesions impair discrimination of complex visual objects (Cowey and Gross, 

1970; Ungerleider and Mishkin, 1982), and neurons in this region fire vigorously in response to 

complex visual stimuli (Desimone et al., 1984; Gross et al., 1972; Tanaka et al., 1991). These 

neurons are broadly tuned, responding in a graded fashion to a large number of stimuli (Rolls et 

al., 1994) that share features (Brincat and Connor, 2004) or fall into the same category (Freedman 

et al., 2003). This selectivity to object structure and identity is accompanied by the amazing 

invariance across identity-preserving manipulations (Dicarlo et al., 2012), such as size, position 

(Ito et al., 1995), and 3D viewpoint (Ratan Murty and Arun, 2015). 

IT receives most of its input from feed-forward projections along a massively convergent 

hierarchy of visual cortical areas (Felleman and Van Essen, 1991). Shape information is 

progressively refined as it travels up the ventral “what” stream (Fukushima, 1980; Riesenhuber 

Figure 2. Visual object representation in the brain. A, Lateral Occipital Cortex (LOC) in the human brain. B, Inferior 

Temporal Cortex (IT) in the macaque monkey brain.  
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and Poggio, 1999). The ideal stimulus at each successive stage becomes increasingly complex 

(Guclu and van Gerven, 2015). 

Starting at the very beginning of the process, light information travels from the retina to 

the lateral geniculate nucleus of the thalamus. The thalamus then sends projections to primary 

visual cortex (V1), which is the earliest cortical stage of shape processing in the ventral stream 

(Ungerleider and Mishkin, 1982). Neurons in V1 respond to luminance contrast at varying spatial 

frequency and orientation (Hubel and Wiesel, 1965). The primary purpose of this stage is to create 

a veridical representation of lines and edges. Lesions to this area produce a scotoma (Heinen and 

Skavenski, 1991; Koerner and Teuber, 1973; Miller et al., 1980).  

V1 then projects to area V2, which has slightly larger receptive fields (Kobatake and 

Tanaka, 1994), and responds to higher level features such as illusory contours (Lee and Nguyen, 

2001), border ownership (Zhou et al., 2000), and texture (Freeman et al., 2013). Thus, in V2 we 

already see a higher-order visual representation taking shape, rather than a compressed replication 

of the scene. Whereas V1 is necessary to detect low-level features such as line orientation, V2 is 

necessary for detecting lines defined by grouping and collinearity or texture (Merigan et al., 1993). 

The step from V2 to V4 results in even further abstraction and cognitive influence emerges. 

Receptive fields get larger still (Kobatake and Tanaka, 1994), and the effects of border ownership 

become both stronger and more common (Zhou et al., 2000). V4 is also where visual attention 

begins to exert strong effects (McAdams and J. Maunsell, 1999; Moran and Desimone, 1985; 

Motter, 1994). This area is necessary for focusing spatial attention to isolate one stimulus from 

distractors (De Weerd et al., 1999).  



 

 6 

1.3 INFEROTEMPORAL CORTEX AS A WINDOW TO PERCEPTION 

One of the defining characteristics of IT neurons is that they have large receptive fields, 

averaging about 10° in diameter, always including the fovea, and centered in the contralateral 

hemifield (Gross et al., 1969; Op De Beeck and Vogels, 2000). When multiple objects are present 

in one of these expansive receptive fields, the neuron fires at a rate equivalent to the mean of the 

rate evoked by each object individually (Zoccolan et al., 2005). This phenomenon is called divisive 

normalization. Fortunately, attention rescues individual objects from divisive normalization by 

restoring the firing rate of the attended object (Chelazzi et al., 1998; Moran and Desimone, 1985; 

Zhang et al., 2011). This process may form the neuronal basis by which primates can make sense 

of cluttered scenes. In this way, IT neurons encode what the subject perceives, not merely what is 

presented to the eye.  

Another line of evidence linking IT to perceptual experience comes from the field of 

binocular rivalry. Binocular rivalry is an experimental paradigm in which each eye is presented 

with a different image. Under these conditions, the eyes compete and the winner takes all such that 

subjects report perceiving only one of the images at a time. Traveling up the neuronal hierarchy 

from primary visual cortex to IT, spiking activity becomes progressively more correlated with the 

subject’s perceptual report (Leopold and Logothetis, 1996; Sheinberg and Logothetis, 1997). In a 

more naturalistic setting in which monkeys freely searched for target objects in natural scenes, IT 

neurons only responded to their preferred stimulus if it was actually noticed (Sheinberg and 

Logothetis, 2001). When playing tricks on the monkey by changing the target image mid-trial, IT 

neuronal firing predicted whether the animal would choose the initial target or the new target as 

well as the timing of this decision (Mruczek and Sheinberg, 2007).  
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1.4 CROWDING 

What happens in IT when the perception of objects goes awry? To approach this question, 

we turned to a well-studied phenomenon, known as crowding, that in healthy humans looks a lot 

like agnosia (Strappini et al., 2017). In peripheral vision individual features are detectable and 

discriminable, but their locations in space seem to become unglued, creating a jumbled percept 

(Lettvin, 1976).   

The first investigations into crowding involved showing subjects arrays of letters at varying 

eccentricities and with varying space between them (Bouma, 1970). As long as letters were above 

the acuity level for the subject they were perfectly legible when presented alone (Fig. 3). When 

placed in close proximity, however, the letters interfered with each other such that subjects could 

no longer read any of them individually. Thus, crowding is not a failure of acuity, but a failure to 

segregate objects. Bouma also found that the distance between letters that gave rise to crowding 

was proportional to the eccentricity of the whole array (1970), which became known as Bouma’s 

Law (Pelli and Tillman, 2008). Although Bouma discovered this law using letters, it has since been 

demonstrated to generalize to other types of feature classes, including orientation, hue, saturation, 

and size (van den Berg et al., 2007), and even the features within a face (Pelli and Tillman, 2008). 

As long as features are similar  (Kooi et al., 1994), they can crowd one another. Unfortunately, 

that’s where the data stops being neat and tidy. 

Despite great effort across a great many labs, the ensuing decades proved crowding to be 

“an enigma wrapped in a paradox and shrouded in a conundrum” (Levi, 2008). It does not appear 

to arise from surround suppression (Petrov et al., 2007). Crowding may (He et al., 1996) or may 

not (Freeman and E. P. Simoncelli, 2011) represent a limit on the peripheral resolution of spatial 
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attention. Crowding appears to match a 

representation based on pooled summary statistics 

(Balas et al., 2009), which correspond to the 

information encoded in mid-level visual areas 

(Freeman et al., 2013) pooled over those neurons’ 

receptive fields (Freeman and E. P. Simoncelli, 

2011). Yet this explanation cannot capture the 

striking anisotropy of the fields over which 

peripheral features are pooled (Toet and Levi, 

1992). First and foremost, it’s not clear how the 

neuronal code gets corrupted to give rise to crowding. Answering this question requires recording 

from visual neurons while subjects view crowded and uncrowded displays, and that approach 

forms the basis for the first major thrust of this dissertation.  

1.5 DO MONKEYS BEHAVE AS IF THEIR VISION IS CROWDED? 

In the decades of crowding research, humans have been used exclusively. The macaque 

monkey provides an attractive model for studying the neuronal mechanisms behind crowding, but 

without having first established that they experience visual crowding it is not clear whether any 

insights from the monkey would generalize across species.  The aim of the experiments described 

in chapter 2 will be to explicitly test whether rhesus macaques exhibit the behavioral hallmarks of 

crowded peripheral vision. A positive result establishes a monkey-friendly task that can be used to 

investigate how crowding arises in the brain at the level of single neurons. 

Figure 3. Crowding demonstration. On each line, 

fixate the black dot and try to read the letter X. Since 

the X is legible in isolation or with far away flankers, 

you clearly possess the necessary acuity for letters of 

this size and eccentricity. When flankers are nearby 

the X dissolves into a hodgepodge of features. 

However, If you fixate the X directly, it is clearly 

discriminable in all cases, demonstrating that 

crowding is specific to peripheral vision. 
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1.6 HOW DO IT NEURONS ENCODE CROWDED DISPLAYS? 

 It has been well established that IT neurons exhibit divisive normalization when multiple 

objects fall within their receptive field (Carandini and Heeger, 2011; Chelazzi et al., 1998; Sripati 

and Olson, 2010a; Zoccolan et al., 2005). Divisive normalization weakens the representation of 

simultaneously-presented stimuli by averaging together the responses to individual stimuli. When 

those stimuli are far apart, however, divisive normalization can be overcome by spatial attention 

(Chelazzi et al., 1998; J. Lee and J. H. Maunsell, 2009; Reynolds and Heeger, 2009). Critically, 

under a divisive normalization/attention framework, only the strength of the signal is altered, not 

its nature. 

Many psychologists who study crowding think that the underlying mechanism has to do 

with averaging (Greenwood et al., 2009; Harrison and Bex, 2015; Parkes et al., 2001), or that the 

spotlight of attention has minimum size limits such that nearby clutter may not be able to be 

excluded (Cavanagh et al., 1999). These hypotheses are not mutually exclusive. No prior studies 

have systematically investigated the connection between divisive normalization and crowding, nor 

have they had the temporal resolution to measure how attention relates to crowding. These are two 

of the hypothesis we plan to test in chapter 3. 

An alternative hypothesis about the neuronal basis of crowding states that rather than 

weakening object representations there is a qualitative change in how crowded objects are encoded 

(Chastain, 1982; Freeman et al., 2012; Strasburger and Malania, 2013). In these models of 

crowding, the qualitative change tends to take the form of substitution of distracter features for 

those of the target (Chastain, 1982; Krumhansl and Thomas, 1977; Wolford, 1975), or substituting 

a whole distractor for the target (Strasburger et al., 1991), or a mixture of the two (Freeman et al., 

2012). In any case, this account of crowding dictates that the neuronal code is not merely weakened 
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but qualitatively altered. Attention may be involved in this model as well (Strasburger, 2005), 

although there is no neuronal evidence to support this claim at the present time. In chapter 3 we 

will also examine whether a qualitative change in the IT neuronal code occurs as inter-object 

spacing decreases. If so we will attempt to characterize the nature of that change. 

1.7  ARE COMPOUND OBJECT PARTS SIMPLY SUMMED? 

While the previous section was concerned with the interferences between different shapes 

in peripheral vision, next we explore how the parts of foveal objects cohere into a meaningful 

whole. Are wholes represented as merely the sum of their parts? Or were the Gestaltists right in 

asserting that the whole is something altogether different (Koffka, 1935)? 

For IT neurons, when parts were spatially segregated to opposite poles of a baton, the whole 

was no more than the sum of its parts (Sripati and Olson, 2010a). However, when two overlapping 

shape outlines were presented, IT neurons exhibited response suppression compared to when the 

outline in the forefront was presented alone (Missal et al., 1999). An important caveat to this 

experiment is that since the researchers didn’t show the background shape alone it is not clear 

whether the reduction they observed was the result of divisive normalization (Zoccolan et al., 

2005) or some other process. They also did not investigate whether the new features created by 

the overlapping outlines played a role in shaping neuronal responses to the whole.  

The aim of the experiment described in chapter 4 will be to test whether IT neurons follow 

the Gestalt law of simplicity by decomposing overlapping shape outlines into the parts that seem 

most natural, as humans tend to do (Metzger, 1936; Pomerantz et al., 1977). An alternative 
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hypothesis is that IT neurons represent compound images as the sum (or average) of any complete 

set of parts.  
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2.0  MACAQUE MONKEYS EXPERIENCE VISUAL CROWDING 

In peripheral vision, objects easily discriminated on their own become less discriminable 

in the presence of surrounding clutter. This phenomenon is known as crowding. The neuronal 

mechanisms underlying crowding are not well understood. Better insight might come from single-

neuron recording in nonhuman primates, provided they exhibit crowding. However previous 

demonstrations of crowding have been confined to humans. In the present study, we set out to 

determine whether crowding occurs in rhesus macaque monkeys. We found that animals trained 

to identify a target letter among flankers displayed three hallmarks of crowding as established in 

humans. First, at a given eccentricity, increasing the spacing between the target and the flankers 

improved recognition accuracy.  Second, the critical spacing, defined as the minimal spacing at 

which target discrimination was reliable, was proportional to eccentricity. Third, the critical 

spacing was largely unaffected by object size. We conclude that monkeys, like humans, experience 

crowding. These findings open the door to studies of crowding at the neuronal level in the monkey 

visual system. 
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2.1 INTRODUCTION 

In comparison to foveal vision, our view of the periphery is impoverished. This is due in 

part to the fact that there are fewer cones and fewer retinal ganglion cells dedicated to peripheral 

than to foveal locations (Wässle et al., 1989). Foveal overrepresentation persists as visual 

information flows through the thalamus to primary visual cortex where the amount of tissue 

devoted to a given eccentricity is directly proportional to acuity. Thus acuity is believed to decrease 

in the periphery as a direct result of coarser sampling by cones (Cowey and Rolls, 1974). 

Peripheral vision suffers not only from reduced acuity but also from information loss due 

to crowding. The essence of crowding is that a peripheral item recognizable on its own becomes 

illegible when surrounded by other nearby items. Crowding is usually quantified in terms of critical 

spacing, the maximum distance at which surrounding clutter interferes with object recognition. 

Critical spacing, like acuity, scales with eccentricity (Bouma, 1970). However, unlike acuity, 

critical spacing possesses no well-established neuronal explanation. Mechanisms that appear to 

have been ruled out include surround suppression (Petrov et al., 2007) and impaired feature 

detection (Levi et al., 2002a; Parkes et al., 2001; Pelli et al., 2004). Pooling of feature information 

within neuronal receptive fields remains, however, a plausible explanation (Flom et al., 1963b). 

The rate at which critical spacing scales with eccentricity in humans is explicable by pooling within 

windows roughly the size of neuronal receptive fields in area V2 of the monkey (Freeman and E. 

P. Simoncelli, 2011). Yet, pooling within V2 receptive fields cannot be the full explanation 

because these receptive fields lack the anisotropic structure required to account for radial-

tangential differences in critical spacing (Toet and Levi, 1992). Elliptical zones of integration 

might conceivably arise from a top-down selection process (He et al., 1996) tied to the saccadic 
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system, in which an anisotropy for precision mirrors the anisotropy for critical spacing (Harrison 

et al., 2013; Nandy and Tjan, 2012). 

To draw firm conclusions concerning the neuronal processes that underlie crowding will 

require studying the phenomenon by means of invasive techniques such as are typically employed 

in nonhuman primates. However, nonhuman primates will be appropriate for study only if they 

exhibit crowding. The aim of the present study was to determine whether they do. The universal 

hallmark of crowding is Bouma’s law, which in its most general form states that the critical spacing 

at which an object becomes unidentifiable among similar flankers depends solely on eccentricity, 

regardless of the nature of the object (Pelli and Tillman, 2008). It follows that critical spacing is 

independent of object size (Levi, 2008; Pelli et al., 2004). To determine whether monkeys exhibit 

crowding, we trained two macaques to perform a visual discrimination task in which we could 

vary the spacing, eccentricity and size of the target and the flanking distractors. We found that 

psychometric functions relating accuracy to target-flanker distance resembled those of humans, 

that critical spacing was proportional to eccentricity, and that critical spacing was largely 

unaffected by object size. We conclude that monkeys experience crowding. This observation paves 

the way for investigations into the neuronal mechanisms underlying crowding in awake, behaving 

monkeys. 
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2.2 METHODS 

2.2.1 Animals and Equipment 

Two adult male rhesus macaque monkeys (Macaca mulatta) were used in these 

experiments (monkey 1 and monkey 2). Experimental procedures were approved by the Carnegie 

Mellon University Institutional Animal Care and Use Committee and were in compliance with the 

United States Public Health Service Guide for the Care and Use of Laboratory Animals. 

For behavioral testing, each monkey was seated in a primate chair with the head stabilized 

by a surgically implanted post. Events during each trial were controlled by Cortex software 

(NIMH). Visual stimuli were presented on a 17” LCD screen with 1024 x 768 pixels of resolution 

positioned 18” from the animal’s eyes. Eye position was tracked by an infrared system (ISCAN). 

The system was calibrated by requiring the monkey, at the beginning of each block of trials, to 

fixate a small target presented successively at four locations corresponding to the corners of a 14° 

x 14° square centered on the screen. Offline, the readings on each trial were converted to degrees 

of visual angle by performing a linear transformation based on the stored calibration voltages. 

2.2.2 Task Design 

On each trial, the monkey responded to presentation of a target in the right visual field by 

making a saccade directly above or below fixation (Fig. 4A). The targets were Sloan letters A, F, 

H, U, and Z (courtesy of Denis Pelli) and counterparts obtained by rotating them 90°.  Each letter 

had an aspect ratio of one. A letter and its rotated counterpart were associated with saccades in  
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opposite directions according to rules counterbalanced across animals. The target-saccade 

mapping shown in Fig. 4B was used for monkey 1 and reversed for monkey 2. Flankers, when 

present, consisted of Sloan letters K, P, T, and Y. Their arrangement varied from trial to trial (Fig. 

4C). They were always of the same size as the target. We chose letters as stimuli because their use 

is common in human studies of crowding. The monkeys’ prior experience with letters was 

fundamentally different from the experience of human subjects. To allay concern that this might 

affect crowding, we collected data from two human subjects using identical displays as described 

in a later section.   

Within each block of trials, the size and eccentricity of the target were fixed. Size and 

eccentricity were manipulated across three experiments: Experiment 1 (size 1° at eccentricity 6°), 

Experiment 2 (size 0.5° at eccentricity 3°), and Experiment 3 (size 0.5° at eccentricity 6°). To 

characterize the effect of size and eccentricity on choice accuracy required cross-block 

Figure 4.  Task Description. A, Sequence of events during a typical trial. Dashed circle indicates the location of the 

animal’s gaze during each epoch. B, The full set of targets with their associated responses. The association of targets 

with “up” and “down” responses in monkey 1, as indicated here, was reversed for monkey 2. C, The flankers 

surrounding the target could appear in any of four configurations.  
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comparison. To minimize the influence of random fluctuations from block to block, each monkey 

completed twelve blocks of trials for each experiment. Each block required performing a 

discrimination under 192 different conditions as described next.   

Within each block, the variable of key interest was the center-to-center spacing between 

the target and the flankers. On a given trial, this could assume any of six values with equal 

likelihood. In a block involving the presentation of targets at an eccentricity of 6°, the possible 

spacings were 1.1°, 1.45°, 1.8°, 2.15°, 2.5° and infinity (target alone). In a block involving the 

presentation of targets at an eccentricity of 3°, the possible spacings were 0.6°, 0.8°, 1.0°, 1.2°, 

1.4° and infinity (target alone). Other incidental factors varying within a block were fully 

counterbalanced against spacing. These factors included target identity, saccade direction, 

placement of the target in the upper or lower visual field and flanker configuration. In each block, 

we employed as targets two letters and their rotated counterparts. The four targets appeared with 

equal frequency. Saccades in upward and downward directions were demanded with equal 

frequency because targets associated with the two directions were equally common. In each block, 

the target appeared equally often above and below the zero-degree horizontal meridian. In blocks 

involving the presentation of targets at 3° and 6° eccentricity, the vertical displacement from the 

horizontal meridian was 0.5° and 1°, respectively. The flankers could appear in any of four 

configurations (Fig. 4C). 

Full counterbalancing required assessing behavior under 192 conditions corresponding to 

all possible combinations of six spacings, four targets, two vertical locations and four flanker 

configurations. The conditions were imposed in random order with the sole exception that each 

combination of target, spacing and flanker occurred once in the first half of the block (when the 

display was centered at one vertical location) and again in the second half of the block (when the 
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display was centered at the other vertical 

location). The sequence of vertical locations 

was upper-then-lower for half of the target-

spacing-flanker combinations and lower-

then-upper for the other half. 

 During a single block, the monkey 

had to complete a trial successfully under 

each of the 192 conditions.  A trial was 

considered successful if the monkey made a 

saccade in the correct direction. This 

culminated in juice reward followed by an 

immediate advance to the next trial. A trial 

was aborted if the monkey’s gaze deviated by 

more than 2° horizontally or 3° vertically 

from the central fixation point. In practice, 

the gaze rarely deviated more than 1° 

horizontally or 2° vertically (Fig. 5). 

Breaking fixation or making an erroneous 

response resulted in withholding of reward 

and a time-out of several seconds. The 

condition was returned to the pool from 

which future trials would be drawn. We 

based behavioral analysis exclusively on 

Figure 5. Gaze Angle. For each monkey, during each trial, 

we measured the mean eye position during the period in 

which the letter array was on the screen. Each panel shows 

the grand mean and the horizontal and vertical standard 

deviations of the values obtained from one monkey in one 

experiment. Positive values on the vertical axis indicate 

displacement of gaze above the fixation point. Positive values 

on the horizontal axis indicate displacement of gaze toward 

the target. A, Experiment 1. B, Experiment 2. C, Experiment 

3.  
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those 192 trials in which the monkey made the first saccadic decision under a given condition 

without regard to whether the decision was correct or incorrect.  

2.2.3 Schedule of Training and Testing 

After training on basic skills such as maintaining gaze on a central fixation point and 

making a saccade to a suddenly appearing peripheral circle, the monkeys were introduced to a 

visual discrimination task in which a 1° target appearing at fixation instructed an upward or 

downward saccade. This phase took one month in monkey 1 and three months in monkey 2. Next, 

the monkeys were eased into performing the same discrimination on 1° targets presented at an 

eccentricity of 6°. This phase took one month in monkey 1 and three months in monkey 2. Next, 

they were habituated to performing in the presence of flanking distractors at various spacings by 

presenting the distractors at very low contrast initially and gradually increasing their contrast. This 

phase took one month in monkey 1 and four months in monkey 2. We continued to train the 

monkeys with flankers fully visible until their performance stabilized. This took four months in 

monkey 1 and two weeks in monkey 2. We then introduced them to task variants with 0.5° targets 

centered at an eccentricity of 3° or 6°. To achieve stable behavior under multiple interleaved 

conditions took two weeks in monkey 1 and six weeks in monkey 2. Finally, we collected 

behavioral data over the course of one month in each animal, interleaving blocks of trials with 0.5° 

objects at an eccentricity of 3°, 0.5° objects at an eccentricity of 6°, and 1° objects at an eccentricity 

of 6°. 
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2.2.4 Data Analysis 

The universal measure of crowding is critical spacing, the maximal spacing at which 

flankers seriously interfere with target discrimination (Bouma, 1970; Pelli and Tillman, 2008). 

Human studies typically adopt a definition of critical spacing based on a fixed threshold halfway 

between chance and perfect accuracy, taking the critical spacing to be that spacing at which a 

psychometric function fitted to the data intersects the threshold (Chung, 2007; Kooi et al., 1994; 

Toet and Levi, 1992). The use of a predefined threshold would be problematic in monkeys because 

their performance is more erratic than the performance of humans. Even under undemanding 

conditions, overall accuracy rarely approaches 100%. Furthermore, overall accuracy can be 

affected by minor changes in a task, including, in the present instance, alterations of target size 

and eccentricity and the addition of flankers. It is impossible, in such cases, to distinguish between 

a bottom-up cause (such as poor acuity) and a top-down cause (such as poor motivation or 

confusion in the face of difficulty). To circumvent this difficulty, we adopted the following 

approach. 

We defined threshold as the inflection point of a sigmoidal function fitted to points 

representing accuracy as a function of flanker spacing: 

 𝑷 𝒔 = 𝜷𝟏 +
𝜷𝟎(𝜷𝟏

𝟏) 𝒔
	𝒔𝒄
	
𝜷𝟐

     Eq. 1 

where P(s) is the probability of a correct response at a given spacing (s), β0 represents the lower 

asymptote, β1 is the upper asymptote, β2 determines the slope at the inflection point, and sC is the 

inflection point. Model parameters were fitted using nonlinear least-squares (provided in the 

MATLAB Curve-Fitting Toolbox). We operationally defined critical spacing as the model 
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coefficient sC.  This approach conforms in spirit to the practice in human studies of selecting a 

threshold midway between chance and perfect performance. 

Human studies often include data from trials in which flankers were absent in the set of 

data to which the psychometric curve is fitted (Levi et al., 2002b; Pelli et al., 2004). The inclusion 

of singleton data would be problematic in monkeys due to reasons noted above. Accordingly, we 

based our estimate of critical spacing exclusively on trials in which flankers were present. 

To be sure that the results obtained from monkeys were not an artifact of these choices 

with regard to the how critical spacing was measured, we repeated all analyses using two 

alternative models: a model in which β1 was fixed at the performance level when no flankers were 

present and a model in which β2 was fixed at the average slope across experiments. The essential 

findings were the same (Fig. 10). We also applied to human data the measurement procedure 

customized for use in monkeys. The essential findings were the same (Fig. 11). 

2.3 RESULTS 

Both animals were able to discriminate the target at a rate well above chance when the 

flankers were sufficiently far away. Both experienced a falloff in accuracy as the flankers moved 

closer to the target. To determine whether the pattern of falloff was consistent with expectations 

based on crowding, we assessed performance as a function of the eccentricity of the display and 

size of the letters within it.  
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2.3.1 Experiment 1 

We first assessed performance with displays consisting of 1° letters with the target at 6° 

eccentricity (Fig. 6A). These parameters are within the range commonly used to demonstrate 

crowding in humans (Chung, 2007; Levi et al., 2002b; Tripathy and Cavanagh, 2002). As in 

humans (Kooi et al., 1994; Tripathy and Cavanagh, 2002; Yeshurun and Rashal, 2010) accuracy 

Increased as a function of target-flanker spacing in a pattern well fit by a sigmoidal function (Fig. 

6C-D; goodness of fit: R2  = 1.0 in monkey 1 and 0.99 in monkey 2). That the fit was good is not 

surprising inasmuch as there were five data points and the model had four free parameters. The 

Figure 6.  Experiment 1. A, The target was placed at an eccentricity of 6° in the right visual field. Each target and 

flanker subtended 1°. B, Flankers were spaced at five center-to-center distances from the target. In a sixth condition, 

flankers were absent. C, Accuracy as a function of spacing in monkey 1. Each data point reflects the mean over all 

blocks. Error bars indicate the SEM across blocks. The red curve is fit to five points representing performance when 

flankers were present. The dashed red line indicates the critical spacing defined as the inflection point of the fitted 

curve. D, Equivalent psychometric data for monkey 2. 
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purpose of curve-fitting was to allow us to establish the inflection point of the best-fit curve, which 

serves as an operational measure of critical spacing (Methods).  

This measure possesses the virtue of being insensitive to asymptotic accuracy, which 

typically varies from monkey to monkey. Monkey 1 (Fig. 6C) was superior to monkey 2 (Fig. 6D) 

in asymptotic accuracy.  Nevertheless, the measured critical spacing was virtually identical in the 

two animals: 1.45° in monkey 1 and 1.47° in monkey 2.  

2.3.2 Experiment 2 

If the critical spacing, as measured above, genuinely arose from crowding, then, according 

to Bouma’s law (Bouma, 1970; Pelli and Tillman, 2008), it should decline with a reduction in 

eccentricity. To test this prediction, we scaled the display down by a factor of 0.5, reducing target 

eccentricity to 3° and letter size to 0.5° and contracting the range of target-flanker spacings 

proportionately. As in the first experiment, the data were well fit by a sigmoidal function (Fig. 7C-

D; goodness of fit: R2 = 0.99 in monkey 1 and 0.90 in monkey 2). The measured critical spacing 

was 0.82° in monkey 1 (diminished from experiment 1 by a factor of 0.57) and 0.90° in monkey 2 

(diminished from experiment 1 by a factor of 0.61). These values were close to the value of 0.5 

predicted from Bouma’s law.  

2.3.3 Experiment 3 

 The reduction in critical spacing from experiment 1 to experiment 2 might in principal have 

arisen either from scaling down the eccentricity of the display or from scaling down the size of the 

letters. However, classic accounts of crowding predict that critical spacing should be largely 
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independent of letter size (Levi et al., 2002b; Pelli et al., 2004; Tripathy and Cavanagh, 2002) 

unlike lateral masking, which should scale with size (Levi et al., 2002a; Pelli et al., 2004). To test 

this prediction, we presented the display at the original eccentricity of 6° while employing small 

letters (0.5°). The data were well fit by a sigmoidal function (Fig. 8C-D; goodness of fit: R2 = 0.93 

in monkey 1 and 0.90 in monkey 2). The critical spacing derived from the fitted curves was 1.42° 

in monkey 1 and 1.43° in monkey 2. These values were very close to values measured in 

experiment 1 with letters twice as large. This outcome is compatible with observations in humans 

viewing crowded displays. It is incompatible with an explanation based solely on lateral masking.  

Figure 7.  Experiment 2. A, The target was placed at an eccentricity of 3° in the right visual field. Each target and 

flanker subtended 0.5°. B, Flankers were spaced at five center-to-center distances from the target. In a sixth condition, 

flankers were absent. C, Accuracy as a function of spacing in monkey 1. Each data point reflects the mean over all 

blocks. Error bars indicate the SEM across blocks. The blue curve is fit to five points representing performance when 

flankers were present. The dashed blue line indicates the critical spacing defined as the inflection point of the fitted 

curve. The red curve is carried over from experiment 1 for comparison. D, Equivalent psychometric data for monkey 

2.  
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2.3.4 Comparison 

The results of experiments 1-3 are summarized in Fig. 9. From this figure, it is clear that 

the critical spacing depended primarily on eccentricity (6° in experiments 1 and 3 as compared to  

3° in experiment 2) and not on letter size (as indicated by the dashed white lines superimposed on 

the bars).  As a basis for statistical comparison among the outcomes of the three experiments, we 

computed critical spacing for each of the twelve blocks of trials completed by each monkey in 

each experiment. 

To determine whether eccentricity influenced the critical spacing with size held constant, 

we carried out an ANOVA with monkey (1 or 2) and eccentricity (3° in experiment 2 or 6° in 

experiment 3) as factors. In accordance with Bouma’s law, there was a significant main effect of 

eccentricity (p < 0.01). The interaction between monkey and eccentricity was not significant (p = 

0.12). 

To determine whether letter size influenced critical spacing with eccentricity held constant, 

we carried out an ANOVA with monkey (1 or 2) and size (1° in experiment 1 or 0.5° in experiment 

3) as factors. In accordance with Bouma’s law, size had no significant main effect on critical 

spacing (p = 0.21). However, the interaction between monkey and size did approach significance 

(p = 0.065). Post hoc analysis revealed that this effect arose from a tendency in monkey 1 for the 

critical spacing to increase in conjunction with letter size (two-tailed t-test, p = 0.01). In monkey 

1, a 100% increase in letter size produced a 25% increase in critical spacing. In monkey 2, it 

produced a 4% decrease. Even the effect observed in monkey 1 was far too small to support an 

explanation based solely on lateral masking. 

Each of the aforementioned ANOVAs revealed a marginally significant main effect of 

monkey (p = 0.03 when eccentricity was a factor and p = 0.07 when size was a factor). This  
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arose from a tendency for the critical spacing to be smaller in monkey 1 than in monkey 2. It is not 

surprising that there should have been a difference between the monkeys. Humans also show inter-

individual differences in critical spacing (Toet and Levi, 1992).  

In each block of trials, the monkey was required to discriminate between two pairs of 

targets out of the five that were available for testing (Fig. 4B). To be sure that the results 

generalized across targets, we sorted the data from all of the blocks by target-pair. We found that 

overall accuracy varied with target-identity (ANOVA with target-pair as factor, p < 0.01 for both 

M1 and M2), with the pattern of dependence differing between monkeys as if each had learned 

some target-pairs better than others. To test whether the dependence of critical spacing on 

Figure 8. Experiment 3. A, The target was placed at an eccentricity of 6° in the right visual field. Each target and 

flanker subtended 0.5°. B, Flankers were spaced at five center-to-center distances from the target. In a sixth condition, 

flankers were absent. C, Accuracy as a function of spacing in monkey 1. Each data point reflects the mean over all 

blocks. Error bars indicate the SEM across blocks. The green curve is fit to five points representing performance when 

flankers were present. The dashed green line indicates the critical spacing defined as the inflection point of the fitted 

curve. The red and blue curves are carried over from experiments 1 and 2 for comparison. D, Equivalent psychometric 

data for monkey 2.  
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eccentricity in experiments 2 and 3 was a function of target-identity, we carried out an ANOVA 

on data from each monkey with target-pair and eccentricity as factors. This revealed no significant 

main effect of target-pair (p = 0.25 and 0.19 in M1 and M2), a significant main effect of 

eccentricity (p < 0.01 for M1 and M2) and, critically, no significant interaction (p = 0.35 and 0.94 

in M1 and M2). To test whether the lack of dependence of critical spacing on size in experiments 

1 and 3 was a function of target-identity, we carried out an ANOVA on data from each monkey 

with target-pair and size as factors. This revealed no significant main effect of target-pair (p = 0.27 

and 0.61 in M1 and M2), no significant main effect of size (p = 0.08 and 0.81 in M1 and M2) and, 

critically, no significant interaction (p = 0.72 and 0.85 in M1 and M2). We conclude that the key 

results of the study did not depend on the identity of the targets. 

 Finally, we asked whether an identical approach would yield comparable results in humans. 

This step was motivated by two considerations. First, prior exposure to letters was different in the 

monkeys than it typically is in human subjects. The monkeys were intensively trained on arbitrary 

letter-saccade associations whereas human subjects are literate. Second, the method by which we 

computed the critical distance in monkeys was adapted to their particular pattern of performance. 

In particular, we fitted a curve to data derived exclusively from flanker-present conditions. Using 

stimuli and methods of analysis identical to those employed in the monkey study, we assessed 

Figure 9. Comparison of critical spacing 

across experiments 1-3. For statistical 

comparison, critical spacing was estimated 

separately for each block of trials. The 

height of each bar indicates the mean of 

critical spacing across all 24 blocks in a 

given experiment. Each error bar indicates 

the SEM across the blocks. Critical 

spacing, as indicated by bar height, was 

almost entirely unrelated to object size, 

which is indicated by the dashed line 

superimposed on each bar. 
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crowding in two human participants (see Supplementary Materials: Human Experiments 

Paralleling the Monkey Experiments). The results were closely similar to those obtained in 

monkeys (Fig. 11). An ANOVA on critical spacing values with species (monkey or human) and 

experiment (1, 2 or 3) as factors revealed a marginally significant effect of species (p = 0.035), a 

highly significant effect of experiment (p = 3.5 x 10-14) and no interaction effect (p = 0.21). The 

absence of a significant interaction effect indicates that the pattern of variation across experimental 

conditions (the signature of crowding) did not differ between species. In one additional human 

experiment, we showed that expanding the set of test conditions to include smaller target-flanker 

spacings exerted no systematic effect on measured critical spacing (see Supplementary Materials: 

Human Experiment with Narrow Spacing and Fig. 12). We conclude that the observations obtained 

in monkeys are not an artifact either of their specialized experience with letters or of the methods 

of analysis necessary for characterizing their behavior. 

2.4 DISCUSSION 

We have carried out tests in macaque monkeys to determine whether they exhibit visual 

crowding. The key findings are the following. First, the ability of the monkeys to identify a 

peripheral target declined with decreasing distance between the target and the surrounding 

flankers. Second, the critical spacing scaled with eccentricity. Third, the critical spacing did not 

scale with object size. Together these results meet the standard diagnostic criteria for crowding 

(Levi, 2008; Pelli et al., 2004; Pelli and Tillman, 2008). This is the first demonstration that 

nonhuman primates exhibit crowding. The finding that crowding occurs in monkeys means that it 
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will be possible in the future to investigate the neuronal underpinnings with invasive methods not 

generally applicable in human studies.  

2.4.1 Comparison with Human Crowding Literature 

The average critical spacing for monkeys in this study was 0.26 φ where φ denotes target 

eccentricity. For humans tested under identical conditions, the average critical spacing was 0.25 

φ. These values are lower than the value of 0.5 φ reported in the classic study of Bouma (1970). 

Many other reports on crowding also describe values less than 0.5 φ. Pelli and colleagues (2004) 

note, with regard to results from a particular series of experiments, that “Bouma was right to say 

‘roughly’ 0.5. For some of our data, this value drops as low as 0.3.” Similarly, Chung et al. (2001) 

list, in their Table 1, prior studies yielding critical spacings as low as 0.1 φ and as high as 0.5 φ. 

Variability in measurements of critical spacing can arise from many sources. These include the 

arrangement of the elements in the display (Toet and Levi, 1992), the degree of similarity between 

the targets and distractors (Kooi et al., 1994), the duration of the display (Tripathy and Cavanagh, 

2002), the predictability of the display’s location (Yeshurun and Rashal, 2010) and the amount of 

prior training of the observers (Chung et al., 2007). The outcome also is dependent on the method 

for computing critical spacing. At present, no single method can be taken as representing a gold 

standard. The clipped line fit (Pelli et al., 2004) gives comparatively large readings because it 

yields a critical distance that lies close to the shoulder of the performance-versus-distance function. 

The approach of fitting a continuous curve to the data and noting the point at which it intersects a 

criterial performance level (Tripathy and Cavanagh, 2002) yields comparatively small readings 

because, with commonly used criteria, the intersection occurs on the slope rather than at the 

shoulder of the performance-versus-distance function. Our approach falls into the latter category. 
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To determine how our measurements of critical spacing compare to results obtained in 

previous studies, we carried out detailed analyses of data from two studies employing methods 

similar to ours and reporting results independently for multiple individuals. Details are provided 

in Supplementary Materials. Toet and Levi (1992) graphically depict, in Figure 6, the critical 

spacings of six individuals. Most relevant for comparison are horizontal critical spacings for 

displays centered on the horizontal meridian at eccentricities of 2.5°, 5° and 10°. We found, by 

taking measurements directly from the figure, that the critical spacing, as measured across all 

individuals and eccentricities, had a mean of 0.27 φ. Table 1 of Chung (2007) contains values from 

which the critical spacings of eight observers may be derived. We found that the critical spacings 

of individuals studied before intensive training, and thus comparable to our human observers, had 

a mean of 0.20 φ. The studies just discussed examined crowding induced by two rather than four 

flankers. There is little difference between critical spacings measured under two-flanker and four-

flanker conditions (Pelli et al., 2004). Nevertheless, we thought it worthwhile to compare our 

results to those of a study that also employed four flankers. The “same colour” data points in Figure 

2 of  Põder (2007) represent the average performance of seven observers required to identify a 0.5° 

letter flanked by four other letters at an eccentricity of 3.3° - a close match to the geometry of 

displays employed in experiment 2 of our study. Applying our estimation procedure to these data 

points yielded a critical spacing of 0.23 φ (see Supplementary Materials: Analysis of Data from 

Prior Studies and Fig. 13). We conclude that our measurements of critical spacing are compatible 

with results reported previously.  

In our study, both monkey and human observers exhibited some degree of flanker cost: 

performance even at the largest spacing tested was worse than when targets were presented in 

isolation as singletons. Among the monkeys, the mean percent correct for the largest spacing was 
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80% as compared to 86% under the singleton condition, giving a flanker cost of 6%. Among the 

humans, the mean percent correct for the largest spacing was 93% as compared to 98% under the 

singleton condition, giving a flanker cost of 5%. Flanker cost could arise from any of several 

sources. It might reflect genuine albeit weak crowding arising when flankers encroach on the 

penumbra of the crowding field. It might arise from a reduction of attention to the target induced 

by the presence of flankers. It might arise from basing report on a flanker rather than on the target. 

Although we cannot identify the origin of the flanker cost in our study, we can ask whether it is 

comparable to the cost observed previously under parametrically equivalent conditions. In the 

monkeys of our study, the largest spacing was, on average across all experiments, 1.71 times the 

critical spacing. In our human observers, the ratio was 1.74. On the assumption that the flanker 

cost arises from genuine but weak crowding occurring when the flankers lie at the edge of the 

crowding field, we selected for comparison a prior study in which the ratio was approximately the 

same (Chung, 2007). Measurements taken from Figure 4 and parameters taken from Table 1 of the 

cited paper indicate that the largest tested spacing was, on average across all eight observers, 1.76 

times the critical spacing. Among observers in the cited study, the mean percent correct score for 

the largest spacing was 82% as compared to 99% under the singleton condition, giving a flanker 

cost of 16% with rounding error. Details are provided in Supplementary Materials. We conclude 

that the flanker costs observed among monkeys and humans in our study did not exceed flanker 

costs observed in previous studies of crowding. 

2.4.2 Crowding versus Masking and Attention 

Crowding differs from ordinary masking in several ways preeminent among which is the 

pattern of dependence on target eccentricity and size (Levi et al., 2002b; Pelli et al., 2004; Tripathy 
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and Cavanagh, 2002). In crowding, the critical spacing scales with eccentricity independently of 

size, whereas, in masking, the reverse is true. To a very close approximation, the results that we 

obtained in both monkeys and humans conformed to the pattern expected from crowding. In 

monkeys there was a slight deviation from the ideal insofar as, when letters were presented at an 

eccentricity of 6°, the critical spacing was slightly greater if the target subtended 1° than if it 

subtended 0.5° (Fig. 9). This effect was not significant in the combined data but did achieve 

significance in a post hoc test on data from monkey 1. We do not believe that this argues against 

interpreting our results as due to crowding for the following reasons. First, the results for both 

monkeys conformed much more closely to the pattern expected from crowding than to that 

expected from masking. Second, the dependence on target size was weak and inconsistent. Third, 

it has been observed in some studies of crowding in humans that the critical spacing increases 

slightly as target size increases (Levi et al., 2002b; Tripathy and Cavanagh, 2002).  

Distinguishing the effects of crowding from the effects of attention is a difficult challenge 

because the two processes may be closely related. It has been hypothesized that the critical spacing 

arises from a limit on the spatial resolution of visual attention (Cavanagh et al., 1999; He et al., 

1996; Intriligator and Cavanagh, 2001). We know at present only that crowding and attention 

interact. For example, precueing the hemifield in which the display will appear (Yeshurun and 

Rashal, 2010) or planning an eye movement to the target (Harrison et al., 2013) shrinks the critical 

spacing. The effects of attention and crowding are dissociable under special circumstances, for 

example when subjects judge average orientation across a group of Gabor patches (Dakin et al., 

2009). However, the design of our study did not allow a firm dissociation.  
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2.4.3 Limitations of the Present Study 

The tasks presented in this paper were designed to be performed by nonhuman primates in 

conjunction with neurophysiological recording. The design therefore differs in some regards from 

methods established in psychophysical studies on humans. We tested only two subjects of each 

species, we presented a limited library of target and flanker letters, and we required subjects to 

discriminate only between two orientations of each letter. Possibly as a result of these experimental 

choices, our results exhibited some patterns not typically present in psychophysical studies of 

crowding in humans.  

First, flanker cost was highly variable across tasks and across subjects. Most strikingly, 

monkey 2 exhibited a flanker cost of 19% during experiment 2 (Fig. 7D), but only 6% for 

experiment 1 (Fig. 6D) and 1% for experiment 3 (Fig. 8D). In contrast, monkey 1 exhibited a 

sizeable flanker cost for experiment 1 (8%, Fig. 6C) compared to smaller flanker costs for 

experiment 2 (2%, Fig. 7C) and experiment 3 (3%, Fig. 8C). Flanker cost varied across subjects 

and experiments in the human studies as well, but to a lesser degree (Fig. 11). It is possible that, 

with more practice, greater motivation, or better sampling of target-distractor distances, the mean 

and variance of flanker cost would have decreased. To minimize and stabilize flanker cost would 

be a desirable goal for future experiments in nonhuman primates.  

We also observed considerable variability in the lower asymptote of the psychometric 

function and in its slope. To accommodate this variability, we adopted a curve fitting procedure 

that allowed these parameters to vary independently. Variability across individuals might have 

been less had we tailored letter size to the acuity limit of each subject (Chung, 2007). Additionally, 

we might have used a larger set of targets so as to prevent performance based on idiosyncratically 

selected diagnostic features. Steps such as these, aimed at equating to the greatest extent possible 
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the performance of different individuals, would be a desirable feature of future experiments in 

nonhuman primates. 

Finally, monkey 1 exhibited a significant reduction in critical spacing when letter size was 

decreased with all other factors held constant. This effect suggests that crowding was confounded 

with masking when the larger letters closely abutted. It would be desirable, in future experiments, 

to avoid this problem through the use of relatively small targets. 

2.4.4 Questions for Future Physiological Inquiry 

We know from human studies that crowding is a cortical phenomenon (Flom et al., 1963a) 

increasing in magnitude along the ventral stream (Anderson et al., 2012; Bi et al., 2009). However, 

much remains to be learned about the underlying neuronal mechanisms. Having established that 

monkeys experience crowding, we are now in a position to attack these questions in experiments 

based on neuronal recording. There are at least two fundamental outstanding questions about the 

neuronal correlates of crowding that could be addressed in such experiments. 

2.4.4.1 Reduction in Strength 

We take inferotemporal cortex as an example in terms of which to consider this question. 

This region is a logical candidate for the study of crowding because it is necessary for the efficient 

discrimination of letter-like images (Cowey and Gross, 1970) and because it contains neurons 

selective for letter-like stimuli (Sripati and Olson, 2010a). We speculate that crowding is manifest 

among inferotemporal neurons in the form of a reduction in the strength of the signal encoding the 

identity of the target. The neuronal representation of an image is reduced by the simultaneous 

presence of other images even when they are separated by distances greater than those at which 
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crowding occurs (Zhang et al., 2011; Zoccolan et al., 2005). The reduction takes a form well 

described in terms of divisive normalization (Carandini and Heeger, 2011). When images are far 

apart, neuronal activity representing the identity of a given item can be restored to almost normal 

strength by allocating top-down attention to it (Chelazzi et al., 1998; Moran and Desimone, 1985; 

Zhang et al., 2011). When images are close together, this mechanism might fail either because 

bottom-up pooling of information about the target and flankers has rendered the target unavailable 

for independent selection (Parkes et al., 2001) or because the spatial resolution of top-down 

attention is limited (He et al., 1996). In either event, one would expect the neuronal signal 

representing the identity of the target to become progressively weaker, and attentional selection to 

become progressively less effective, as the elements of the display move closer to each other over 

the range of distances at which crowding operates. To test this prediction would require no more 

than recording target-discriminating neuronal activity during performance of the crowding task. 

2.4.4.2 Qualitative Change 

In the simplest form of the bottom-up pooling model (Parkes et al., 2001) and in any model 

based on the limited spatial resolution of top-down attention (He et al., 1996), one would expect 

inferotemporal cortex neurons to fire at a rate representing the average of rates elicited by the 

separate elements of the display considered individually. However, there are other models in which 

the weakening of the representation of the target results from a more profoundly nonlinear 

interaction with the flankers that cannot be explained by divisive normalization. It has been 

proposed that the degradation of the target representation arises from the computation of textural 

statistics  (Balas et al., 2009), from the illusory conjunction of features (Greenwood et al., 2010; 

Pelli et al., 2004; Põder and Wagemans, 2007), from substitution of a flanker for a target (Freeman 

et al., 2012), and from a combination of these processes (Hanus and Vul, 2013). Each of these 
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scenarios gives rise to specific predictions, potentially testable in a neuronal recording experiment, 

concerning the effect of the presence of the flankers on neuronal selectivity for the target.  

2.5 SUPPLEMENTARY MATERIAL 

2.5.1 Human Experiments Paralleling the Monkey Experiments 

The results of human experiments paralleling the monkey experiments are presented in the 

main text and depicted in Fig. 11. We describe in this section the methodology of the human 

experiments. 

Two right-handed adults, both female, completed tests conducted under a protocol 

approved by the Institutional Review Board of Carnegie Mellon University. Subject 1 is an author 

(EC). The other subject was unaware of the specific purpose of the experiment. All spatial 

conditions, including screen distance and the configuration, size and eccentricity of the stimuli, 

Figure 10. Varying the curve-fitting procedure had only a minimal effect on estimates of critical spacing. A, Critical 

spacing estimated using a model in which the asymptote of the accuracy curve was fixed at the accuracy measured 

for singleton targets.  B, Critical spacing estimated using a model in which the slope was fixed at the average value 

measured across all three experiments. Conventions as for Fig. 9. 
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were identical to those imposed 

during the monkey experiment.  

Procedures for data analysis were 

likewise identical to those employed 

in the monkey experiment. We used a 

chin rest to enforce viewing distance 

and stabilize the head. 

For each experiment, the 

subject completed five blocks. A 

block consisted of 192 trials 

conforming to the same conditions as 

in the corresponding monkey 

experiment. Each block used two pairs 

of targets just as in the monkey 

experiment. Across the five blocks, 

each of the five pairs of targets was 

employed twice. At the beginning of 

each block, to solidify the target-

response associations, the subject 

performed 16 practice trials with 

singleton targets. These were not 

included in the analytic dataset. 

Figure 11. Results from human subjects performing the same tasks 

as the monkeys. A, Experiment 1. Conventions as in Fig. 6. B, 

Experiment 2. Conventions as in Fig. 7. C, Experiment 3. 

Conventions as in Fig. 8. D, Comparison across experiments 1-3. 

Conventions as in Fig. 9. 
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A trial began with onset of a fixation point in the center of the screen (Fig. 4A). When the 

subject had attained fixation and was ready to view the array, she pressed the spacebar. This 

triggered the immediate appearance of the display. The duration of the display was restricted to 

100 ms so as to negate any contribution from reflexive saccades. The subject reported the identity 

of the target by pressing a key on a keyboard. Responses on the up and down arrow keys were 

mapped onto the targets according to the same rules that governed upward and downward saccades 

in monkey 1 (Fig. 4B).   Feedback was given on each trial in the form of a click if the response 

was correct and silence otherwise. A trial in which the subject hit neither key was repeated later in 

the block. Trials in which the response was incorrect were not repeated. 

 

2.5.2 Human Experiment with Narrow Spacing 

We carried out an additional set of tests in subject 1 to determine whether measurements 

of critical spacing would be significantly altered by expanding the set of test conditions to include 

smaller target-flanker spacings. 

Experiment 2 was repeated with center-to-center spacings that included, in addition to the 

six used previously, a narrower spacing of 0.4°. We reduced the letter size to 0.3° so that at even 

the narrowest spacing the targets and flankers would not touch. The principles of blocking and 

trial structure were the same as in the original version of the experiment. A run encompassed 32 

trials at each of seven flanker spacings for a total trial count of 224. The subject completed five 

runs just as in the original version of the experiment. Critical spacing for subject 1 in the original 

experiment was 0.60° ± 0.02°. Critical spacing in the modified experiment was 0.64° ± 0.04° (Fig. 

12A,C). The difference was not signficant (two-sample t-test, t(8) = 0.79, p = 0.45).  
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Experiment 3 was repeated with center-to-center spacings that included, in addition to the 

six used previously, a narrower spacing of 0.75°. The principles of blocking and trial structure 

were the same as in the original version of the experiment. A run encompassed 32 trials at each of 

seven flanker spacings for a total trial count of 224. The subject completed five runs just as in the 

original version of the experiment. Critical spacing for subject 1 in the original experiment was 

1.55° ± 0.12°. Critical spacing for the same subject in the modified experiment was 1.19° ± 0.21° 

(Fig. 12B,C). The difference, although not significant (two-sample t-test, t(8) = 1.43, p = 0.19), 

was in the direction expected from previous demonstrations that training can ameliorate crowding 

within limits (Chung, 2007). To determine whether the critical spacing of subject 1 had achieved 

stability at this point, we repeated the experiment modified to include seven flanker spacings. The 

resulting measure of critical spacing 

(1.30° ± 0.20°) was not significantly 

different from the measures obtained 

in the original experiment (two-

sample t-test, t(8) = 1.12, p = 0.30) 

and the previous run of the modified 

experiment (two-sample t-test, t(8) = 

0.45, p = 0.66). 

To summarize: including in 

the test set a condition with 

especially narrow spacing led to an 

increase in measured critical spacing 

in one case and a decrease in the other 

Figure 12. Results from human subject 1 collected under conditions in 

which the set of center-to-center spacings had been expanded to include 

an especially small spacing. Details in Supplementary Materials: Human 

Experiment with Narrow Spacing. A, Modified experiment 2. B, 

Modified experiment 3. C, Critical spacings measured in the two 

experiments. Conventions as in Fig. 11.  
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case, with neither change statistically significant.  We conclude that including a condition with 

narrower spacing in the test set did not produce a systematic change in critical spacing.  

2.5.3 Analysis of Data from Prior Studies 

2.5.3.1 Measuring Critical Spacing in Toet and Levi (1992) 

We based our analysis on Figure 6 of the cited paper. For each subject, we measured the 

distance from the central point to the circle at 10° eccentricity along the horizontal axis. We 

computed the average of the six measured lengths to get X, the distance in the figure corresponding 

to 10°. For each subject, we measured the horizontal extent of the interaction polygon for a target 

placed at 10° horizontal eccentricity (L10) and did likewise for targets placed at 5° (L5) horizontal 

eccentricity and 2.5° (L2.5) horizontal eccentricity. From these widths, we computed critical 

spacing (c) as a fraction of eccentricity (φ) using the formula given below. The term of 0.5 in the 

numerator adjusts for the fact that each horizontal line encompassed two center-to-center distances. 

      

𝑐𝜑 =
0.5𝐿𝜑

𝜑

10
𝑋

     Eq. 2 

       

The mean across all subjects and eccentricities was 0.27 φ with a standard deviation of 

0.13 φ. The results for the individual subjects are given in Table 1. 
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Table 1. Critical spacing relative to eccentricity in Toet and Levi (1992). 

Subject c2.5° c5° c10° 

AT 0.48 0.46 0.35 
JT 0.24 0.25 0.49 

MS 0.08 0.12 0.20 

JE --- 0.17 0.39 

JW 0.27 0.18 0.18 
PB 0.32 0.20 0.17 

2.5.3.2 Measuring Critical Spacing in Chung (2007) 

The aim of this analysis was to compute in units of eccentricity (φ) the pre-test spatial 

extent of crowding provided for each subject in Table 1 of the cited paper. The eccentricity of the 

target was always 10°. The spatial extent of crowding (S) is given in units of letter size. Letter size 

for each subject was 1.4 times the critical print size. The critical print size (P, in degrees) is 

provided for each subject in Table 1. We used the following conversion formula: 

𝑐𝜑 =
1.4𝑆𝑃

10
     Eq. 3 

The mean across all subjects was 0.20 φ with a standard deviation of 0.05 φ. The values 

for the individual subjects are provided in Table 2. 

Table 2. Critical spacing relative to eccentricity in Chung (2007). 

Subject S P c 

AS 0.97 0.95 0.13 
LG 1.08 1.38 0.21 
MM 1.08 1.64 0.25 
NV 1.26 1.4 0.25 
SA 1.2 1.26 0.21 
SU 1.33 1.5 0.28 
SW 1.12 0.97 0.15 
TN 0.93 1.17 0.15 
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2.5.3.3 Measuring Critical Spacing in Põder (2007) 

The aim of this analysis was to compute in units of 

eccentricity (φ) the spatial extent of crowding for “same 

colour” data presented in Figure 2 of the cited paper. We 

measured the height of each point on the plot and and linearly 

transformed each height into the appropriate units. Then we 

applied our inflection point method for calculating critical 

spacing (Eq. 1). The resulting critical spacing was 0.23 φ.  The 

curve fit is depicted according to our conventions in Figure 

13. 

2.5.3.4 Measuring Distractor Cost in Chung (2007) 

We quantified distractor cost by taking measurements from Figure 4 of the cited paper. In 

the plot for each subject, we inferred the percent correct in the absence of distractors (A) from the 

height of the horizontal dashed line by taking the ratio of this height to the height of the y-axis. 

Likewise, we inferred the percent correct in the presence of distractors at the largest spacing tested 

(D) from the height of the rightmost open symbol. The distractor cost was given by A-D. The mean 

of A-D across all subjects was 16.1% with a standard deviation of 7.0%. The values for the 

individual subjects are provided in Table 3.  

Figure 13.  Application of our method for 

estimating critical spacing to data from 

Fig. 2 of Põder (2007). Inset indicates the 

geometry of the display in the task on 

which the figure is based. Conventions as 

in Fig. 12. 
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Table 3. Widest spacing versus critical spacing in Chung (2007). 

Subject A D A-D 

AS 99.8 90.2 9.6 

LG 99.8 90.2 9.6 

MM 99.5 76.0 23.5 

NV 95.2 85.4 9.7 

SA 99.8 80.4 19.4 

SU 94.8 71.0 23.8 

SW 99.5 76.0 23.5 

TN 100.0 90.2 9.8 

2.5.3.5 Widest Spacing versus Critical Spacing in Chung (2007) 

The widest spacing tested (W, in units equal to 1.4 times the critical print size) was 2.0 in 

all subjects except AS, in whom it was 1.6. The critical spacing (S, in units equal to 1.4 times the 

critical print size) is given for each subject in column 1 of Chung’s Table 1. To express the widest 

spacing tested as a ratio of the critical spacing, we computed W/S. The mean of W/S across all 

subjects was 1.76 with a standard deviation of 0.20. The values for the individual subjects are 

provided in Table 4. 

Table 4. Comparing critical spacing to widest spacing in Chung (2007). 

Subject W S W/S 

AS 1.6 0.97 1.65 

LG 2.0 1.08 1.85 

MM 2.0 1.08 1.85 

NV 2.0 1.26 1.59 

SA 2.0 1.2 1.67 

SU 2.0 1.33 1.50 

SW 2.0 1.12 1.79 

TN 2.0 0.93 2.15 
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3.0  CROWDING CONFUSES THE NEURONAL CODE 

Peripheral vision suffers from information loss, not only from acuity, but by the mysterious 

phenomenon known as crowding, in which the presence of clutter causes perfectly recognizable 

objects in isolation to become a jumbled hodgepodge. Although crowding has been studied 

extensively for the last half century in humans, methodological limitations have prevented the field 

from asking questions about the fundamental brain mechanisms behind crowding. Of particular 

interest is how crowding affects the neurons associated with object recognition. We recorded 

single neuron responses from macaque monkeys in a series of experiments, each designed to get 

at different aspects of crowding. First, we discovered that crowding qualitatively altered neuronal 

preferences, thus confusing the object code. Next, we observed that aspects of this code change 

persisted even when the entire display was scaled up to escape crowding. Finally, we showed that 

even non-adjacent parts of crowded objects interact.  
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3.1 INTRODUCTION 

In primates, the visual representation of peripheral space is crowded, meaning that an item 

recognizable on its own becomes unintelligible when imbedded in clutter. Crowded objects don’t 

disappear or blur, but rather they devolve into a jumble of features. Because the vast majority of 

visual space is peripheral and objects rarely appear in isolation, crowding is ubiquitous. Crowding 

affects everything from reading speed (Pelli et al., 2007) to avoiding obstacles while driving 

(Whitney and Levi, 2011).  

Fortunately, crowding provides a natural experiment in which feature detection and feature 

integration are decoupled (Pelli et al., 2004). These early stages of visual processing are critical 

for laying the foundations for object representation. Therefore, the study of crowding may provide 

new insights about how objects are represented in the brain. 

The computational mechanism underlying crowding has been variously characterized as 

averaging of visual signals for nearby stimuli (Greenwood et al., 2009; Harrison and Bex, 2015; 

Parkes et al., 2001), confusion between target and distractor elements (Chastain, 1982; Freeman 

et al., 2012; Strasburger and Malania, 2013), and reducing objects to texture (Balas et al., 2009; 

Freeman and E. P. Simoncelli, 2011; Lettvin, 1976). At the implementation level, regions over 

which crowded stimuli interact could be set by receptive fields (Flom et al., 1963b; Freeman and 

E. P. Simoncelli, 2011; Keshvari and Rosenholtz, 2016), cortical distance (Mareschal et al., 2010; 

Pelli, 2008), or the spotlight of spatial attention (Chen et al., 2014; He et al., 1996). Even the motor 

system gets a piece of the action with the hypothesis that crowding results from limitations in the 

accuracy of saccadic eye movements (Harrison et al., 2013; Nandy and Tjan, 2012).   

Largely, theories of crowding have been shaped by psychophysical experiments, which 

cannot get at neuronal mechanisms directly. To delve into the brain-based origins of crowding, 
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several groups have recently turned to brain imaging (Anderson et al., 2012; Bi et al., 2009; Chen 

et al., 2014; Fang and He, 2008; Millin et al., 2013) and EEG (Chen et al., 2014; Ronconi et al., 

2016). From these studies, we have learned that crowding appears to be a multi-stage process 

(Ronconi et al., 2016) that is evident as early as V1 (Millin et al., 2013) and increases along the 

ventral visual hierarchy (Anderson et al., 2012), peaking in LOC (Herzog et al., 2015). Despite 

this success with mapping where crowding is apparent in the brain, the spatial and temporal 

resolution of fMRI and EEG are not sufficient to capture how individual neurons within those 

brain regions encode crowded and uncrowded stimuli.  

To draw firm conclusions concerning the neuronal underpinnings of crowding will require 

studying the phenomenon by means of invasive techniques such as are typically employed in 

nonhuman primates. Having shown previously that nonhuman primates exhibit the same 

behavioral hallmarks of crowding as humans during  a task conducive to neurophysiology 

(Crowder and Olson, 2015), we are poised to be the first to directly explore the crowding 

phenomenon at the level of single neurons.  

The aim of the present study was to determine how crowding affects the neuronal code 

underlying visual object representation in the pinnacle of the ventral stream, a region known as 

inferotemporal cortex (IT). We recorded individual neurons IT of two macaque monkeys while 

they either passively viewed or discriminated between peripheral letters under various degrees of 

crowding. Since IT is known to be important for object recognition (Ungerleider and Mishkin, 

1982) and tracks perception (Sheinberg and Logothetis, 1997), the effect of crowding on the 

neuronal code for peripheral objects should be evident at the level of IT.  

Specifically, we tested two specific hypotheses. First, crowding could impair object 

recognition by weakening neuronal selectivity, as predicted by averaging models (Greenwood et 
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al., 2009; Harrison and Bex, 2015; Parkes et al., 2001). A second possibility is that crowding could 

qualitatively change the neuronal code to confuse downstream neurons, as predicted by feature 

substitution models (Chastain, 1982; Freeman et al., 2012; Strasburger, 2005). 

What we discovered first was that crowding both qualitatively altered neuronal preferences 

and quantitatively weakened selectivity. This qualitative change could be decomposed into main 

effects and interaction effects. Only qualitative changes to interaction effects seemed to vary with 

absolute spacing – rather than relative spacing – the way that crowding does behaviorally. Finally, 

we showed that even non-adjacent parts of crowded objects interacted.  

3.2 MATERIALS AND METHODS 

3.2.1 Animals and Equipment 

Two adult male rhesus macaque monkeys (Macaca mulatta) were used in these 

experiments (monkey 1 and monkey 2). Experimental procedures were approved by the Carnegie 

Mellon University Institutional Animal Care and Use Committee and were in compliance with the 

United States Public Health Service Guide for the Care and Use of Laboratory Animals. Before 

the recording period, each monkey was surgically fitted with a cranial implant and headpost (Crist 

Instrument). After initial training, a 2 cm-diameter vertically oriented cylindrical recording 

chamber (Crist) was implanted over the left hemisphere in both monkeys. In both animals MRI 

brain scans were used to position the chamber mediolaterally above the superior temporal sulcus 

and rostrocaudally above anterior medial temporal sulcus. 
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 For behavioral testing, each monkey was seated in a primate chair with the head stabilized 

using the headpost. Events during each trial were controlled by Cortex software (NIMH). Visual 

stimuli were presented on a 17” LCD screen with 1024 x 768 pixels of resolution positioned 18” 

from the animal’s eyes. The precise time at which images appeared on the screen was recorded 

using a photodetector circuit (designed by NIMH) and built in-house. Eye position was tracked by 

an infrared system (ISCAN). The system was calibrated by requiring the monkey, at the beginning 

of each block of trials, to fixate a small target presented successively at four locations 

corresponding to the corners of a 14° x 14° square centered on the screen. Offline, the readings on 

each trial were converted to degrees of visual angle by performing a linear transformation based 

on the stored calibration voltages. 

After the initial behavioral training was complete, Each day’s recording session would 

begin with the insertion of a varnish-coated tungsten microelectrode with an initial impedance of  

1.0 M  at 1 kHz (FHC) into the temporal lobe through a transdural guide tube advanced using a 

hydraulic microdrive (Narishige). When mapping a new track electrodes were lowered to a depth 

such that its tip was 10 mm above the superior temporal sulcus, as estimated from MRI images of 

each animal’s brain. Using a grid inside the chamber with 1mm spacing between holes (Crist) the 

electrode could be advanced reproducibly along the same tracks day to day. The action potentials 

of a single neuron were isolated online by means of a commercially available spike-sorting system 

(Plexon). All threshold-crossing waveforms were recorded during the experiments. The threshold 

was chosen such that some noise and multiunits were recorded along with the single unit isolations. 

Final spike sorting was performed manually offline. 

Neurons were probed first with a set of 32 colorful photographs of objects to see whether 

they were visually-responsive. If so, they were further tested with relevant stimuli from the specific 
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experiments, which were presented foveally and in isolation during this initial phase to ensure that 

neurons and stimuli were selected in a way that remained agnostic to experimental questions. 

Stimuli were chosen to maximize both the mean and the range of firing rates evoked by the 

stimulus set. 

3.2.2 Tasks and training 

Monkeys were trained to fixate and discriminate peripheral letters as described previously 

(Crowder and Olson, 2015). Each animal engaged in three distinct tasks, which are described 

separately in the Results. All experiments were run as separate blocks with trials presented in a 

pseudorandom order. Incomplete or incorrect trials were repeated at random later in the block.  

Although monkey 2 performed adequately on the similar behavioral tasks employed in our 

prior study (Crowder and Olson, 2015), following chamber implantation surgery this animal could 

not be motivated to report perceived stimulus identity. As a result, he only engaged in passive 

viewing in the present study. In all cases where monkey 1 performed a behavioral task while 

monkey 2 merely fixated, we performed analyses separately for the two animals to ensure that this 

behavioral difference did not meaningfully affect the results.  

3.2.3 Data Analysis 

Neurons were only considered for analysis if for all trials combined they fired at a 

significantly higher rate in the period 70 to 270 ms after stimulus onset compared to the baseline 

period, -100 to 50 ms. Significance was assessed using a paired Student’s t-test with  = 0.05.  
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Peristimulus time histograms (PSTHs) were computed by aligning spikes to the time the 

photodetector registered the onset of the stimulus, counting the spikes in each 1ms bin, and 

convolving with an alpha function designed with time constants measured for excitatory post-

synaptic potentials (1ms for growth, 20ms for decay) (Hanes et al., 1995). This approach has two 

advantages over smoothing with a gaussian kernel. First, it is a causal filter so it does not smear 

the timing of spikes to earlier timepoints. Second, it avoids the arbitrariness of choosing the 

standard deviation of the gaussian kernel because the time constants used in the alpha function are 

derived from physiology. 

Before combining the responses of individual neurons into population responses for any of 

the analyses used in this study, neuronal preferences were determined using a leave-one-out cross-

validation procedure. All trials but one were used to determine the neuronal preference, and 

depending on the stimulus presented on the held-out trial it could be labeled as either “preferred” 

or “non-preferred.” This procedure was iterated until all trials were labeled. The advantage of this 

method is that it makes full use of all trials without introducing bias that would cause pure noise 

to appear selective. Unless otherwise noted, spike counts were always taken from the period 70ms 

to 270ms after stimulus onset, which captures the typical latency and transient burst of 

inferotemporal cortex neurons. 

We used correlation analysis to compare how consistently populations of neurons 

responded across different conditions. To put these correlations in context of a theoretical ceiling 

we also computed the correlation across neurons within the same condition. Naturally, this 

required a split halves approach. To correct for reducing the number of paired observations by 

half, we used the Spearman-Brown prediction formula (Brown, 1910; Spearman, 1910). 
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To understand how letters interfere with one another during crowding, we divided neuronal 

responses into pairwise main effects and interaction effects. Main effects measure the strength of 

firing rate selectivity between different stimulus identities, regardless of other factors. In contrast, 

interaction effects measure how the identity of one stimulus affects the spike rate evoked by 

another. The simplest way to explain pairwise main and interaction effects is to imagine a two-by-

two matrix in which columns represent the levels of the top element and rows represent the levels 

of the bottom element. Each box contains a mean firing rate for that particular set of top and bottom 

elements.  

The main effect of the top element is then simply computed by taking the difference 

between the column averages and the main effect of the bottom element is equal to the difference 

between the row averages. Then the top and bottom element main effects can be averaged together 

to get a single main effect measurement. For interaction effects, we first calculated the average 

firing rate along the two diagonals of the two-by-two matrix, and then took the difference. Main 

and interaction effects were computed separately for each neuron. To combine these measurements 

into population metrics, we again used a leave-one-out approach to find preferred and non-

preferred stimuli. For each held out trial, we used the remaining trials to find the preferred and 

non-preferred top element, bottom element, and diagonal. Then once all the trials were labeled in 

this way, we computed the main and interaction effects for all the trials together and averaged 

these across neurons.  



 

 52 

3.3 RESULTS 

Having demonstrated previously that macaque monkeys experience the hallmarks of visual 

crowding (Crowder and Olson, 2015) we sought to explore how crowding affects the 

inferotemporal cortex neuronal code in these same animals. To do this, we employed three 

complementary experiments, each designed to get at a different aspect of how crowding might 

impair neuronal object representations. Each will be discussed separately in the following sections. 

3.3.1 Experiment 1 

Since we are the first to pursue crowding at the single neuron level, our first experiment 

was designed to be a slightly simplified version of one of the tasks we used to demonstrate the 

crowding effect behaviorally in these animals (Crowder and Olson, 2015). Having both single unit 

spiking data and behavior from the same conditions we can then ask how the decline in behavioral 

accuracy characteristic of crowding correlates with changes in the neuronal code for the target of 

visual discrimination. There are two alternative hypotheses we aim to test. First, it could be that 

crowding diminishes the neuronal selectivity for the target through the well-characterized process 

of divisive normalization (Zoccolan et al., 2005). When stimuli are far apart divisive normalization 

can be overcome by attention (Chelazzi et al., 1993), but it remains a mystery whether this 

push/pull between attention and divisive normalization comes into play for crowded displays. A 

second hypothesis states that crowding disrupts the neuronal code for the target by qualitatively 

altering neuronal tuning. Under this regime, behavior would be disrupted not by weak target 

signals, but rather by confusing signals. These hypotheses make distinct predictions regarding 
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strength of selectivity and consistency of the neuronal code between crowded and uncrowded 

displays and these are precisely what we aim to test in experiment 1. 

3.3.1.1 Task and Stimuli Design 

To ensure that our results would be pertinent to the phenomenon of crowding we kept the 

task essentially the same as experiment 1 in our previous paper (Crowder and Olson, 2015), except 

that we simplified it slightly by reducing the number of possible spacings between targets and 

flankers from five to three. This served to make the number of trials more manageable to complete 

while holding a stable neuronal isolation.   

On each trial, monkey 1 had to determine the identity of a target in the right visual field 

and indicate his choice by making a saccade directly above or below fixation (Fig. 14A). Monkey 

2 viewed the same displays but was not required to make saccades. The targets were Sloan letters 

A, F, H, U, and Z (courtesy of Denis Pelli) and counterparts obtained by rotating them 90°. A letter 

and its rotated counterpart were associated with saccades in opposite directions. The target–

saccade mapping is shown in Figure 14B. Flankers, when present, consisted of Sloan letters K, P, 

T, and Y. Their arrangement varied from trial to trial (Fig. 14C). Targets and flankers were 1° and 

had an aspect ratio of 1. The array was always centered at 6° eccentricity.  

The variable of interest was the center-to-center spacing between the target and the flankers 

(Fig. 14D). On a given trial, this could assume any of four values with equal likelihood, including 

1.1°, 1.8°, 2.5°, and infinity (target alone, hereafter referred to as “singleton”). Other incidental 

factors were fully counterbalanced against spacing. These factors included target identity, saccade 

direction, placement of the target in the upper or lower visual field, and flanker configuration. 

In each session, we employed as targets two letters and their rotated counterparts. The four 

targets appeared with equal frequency. Saccades in upward and downward directions were 
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demanded with equal frequency because targets associated with the two directions were equally 

common. Likewise, in each block, the target appeared equally often 1° above and below the 0° 

horizontal meridian. The flankers could appear in any of four configurations (Fig. 14C). 

Full counterbalancing required 128 conditions, corresponding to all possible combinations 

of four spacings, four targets, two vertical locations, and four flanker configurations. The 

conditions were imposed in random order with the sole exception that each combination of target, 

spacing, and flanker occurred once in the first half of the block (when the display was centered at 

one vertical location) and again in the second half of the block (when the display was centered at 

the other vertical location). The sequence of vertical locations was upper-then-lower for half of the 

target–spacing–flanker combinations and lower-then-upper for the other half.  

The monkey had to complete eight trials successfully under each of the 128 conditions. A 

trial was considered successful if the monkey made a saccade in the correct direction (monkey 1) 

or maintained central fixation (monkey 2). Correct trials culminated in a juice reward followed by 

Figure 14. Experiment 1 task 

and stimulus design. A, The 

timing of task events for the 

discrimination task 

performed by monkey 1. The 

task for monkey 2 was the 

same except omitting the 

choice and saccade epochs. B, 

Half of the targets in the 

discrimination task 

corresponded to upward 

saccades while the other half 

were associated with 

downward saccades. C, The 

flankers surrounding the 

target always consisted of the 

same four Sloan letters, but 

they could be arranged in four 

different ways. D, The 

spacing between the target 

and flankers could be one of 

three values and targets were 

also presented as singletons. 
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an immediate advance to the next trial. A trial was aborted if the monkey’s gaze deviated by more 

than 2° horizontally or 3° vertically from the central fixation point during fixation periods or if 

they made a saccade to the stimulus array thereafter. These types of errors were rare and generally 

the animals maintained fixation tightly on the central spot both horizontally (mean and standard 

deviation 0.05°  0.67° for monkey 1 and 0.08°  0.68° for monkey 2) and vertically (0.26°  

0.88° for monkey 1 and 0.37°  0.97° for monkey 2). Breaking fixation or making an erroneous 

response resulted in withholding the reward and a time-out of several seconds. The failed condition 

was returned to the pool from which future trials would be drawn. We based neuronal analysis 

exclusively on the correct trials. 

3.3.1.2 Crowding Reduces the Strength of the Singleton Code 

As we showed previously (Crowder and Olson, 2015), target identification accuracy 

declined as a function of flanker spacing (Fig. 15A), which could be well fit with a two-parameter 

logit function (goodness-of-fit test, 2(29) = 0.004, p = 0.95). Accuracy was significantly lower 

when flankers were nearby compared to mid spacing (Wilcoxon signed rank test, z(29) = 3.84, p 

= 1.2 x 10-4), far spacing flankers (Wilcoxon signed rank test, z(29) = 4.54, p = 1.3 x 10-6), or 

singletons (Wilcoxon signed rank test, z(29) = 4.70, p 2.6 x 10-6). There were no other significant 

pairwise differences, so we consider the near spacing displays to be crowded whereas the mid and 

far spacing displays to be uncrowded. 

The purpose for incorporating behavior is so that we can map our neuronal results onto the 

perceptual accuracy. Because only near flankers significantly deteriorated accuracy, a true 

neuronal correlate of the crowding phenomenon should severely impair neuronal target selectivity 

only at when flankers are near the target, while sparing other conditions. Selectivity impairments 
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can take two primary forms: quantitative or qualitative. We will tackle the quantitative change 

first. Here we define neuronal preferences on the basis of singleton conditions, and operationalize 

selectivity as the mean firing rate difference between the most and least preferred targets. 

We recorded 38 visually-responsive neurons from monkey 1 and 33 visually-responsive 

neurons from monkey 2. For each neuron, we designated the most preferred (Fig. 15B) and least 

preferred (Fig. 15C) target on the basis of the singleton trials using a leave-one-out procedure (see 

Methods), which enabled us to compare selectivity between singletons and all spacing conditions 

fairly. Time-varying selectivity was computed for each spacing independently (Fig. 15D). As letter 

spacing decreased, neuronal selectivity significantly decreased as well (linear regression, F(71) = 

29.84, p = 6.8 x 10-7). Pairwise analysis revealed that selectivity was lower when flankers were 

near, compared to singleton (Wilcoxon signed rank test, z(71) = 4.00, p = 3.2 x 10-5), far (z(71) = 

3.18, p = 0.002), or mid (z(71) = 3.60, p = 1.6 x 10-4) flanker spacings.  

Because only monkey 1 was engaged in the discrimination task we wanted to be sure that 

these results were consistent across animals, so we repeated the previous analyses on each animal 

separately (Fig. 15E,F). Again, target selectivity significantly decreased with spacing for monkey 

1 (linear regression, F(38) = 7.1, p = 0.009) as well as for monkey 2 (linear regression, F(33) = 

14.3, p = 3.2 x 10-4). Likewise, the pairwise comparisons remained significant as well. For monkey 

1, selectivity was still significantly lower for near flankers compared to singletons (Wilcoxon 

signed rank, z(38) = 2.75, p = 0.003) and mid spacing flankers (z(38) = 2.15, p = 0.02). For far 

flankers the difference was borderline significant (z(38) = 1.51, p = 0.06). For monkey 2, 

selectivity was still significantly lower for near flankers compared singletons (Wilcoxon signed 

rank test, z(33) = 3.24, p = 6.0 x 10-4), mid flankers (z(33) = 2.18, p = 0.01), and far flankers (z(33) 

= 2.38, p = 0.008).   
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Figure 15. Experiment 1. Crowding reduces the strength of selectivity. A, Behavior on the discrimination task by 

monkey 1. B, Population firing rate responses to the preferred target averaged across both animals. C, Population 

responses to the non-preferred target averaged across both animals. D, Selectivity (difference in firing rate) between 

the best and worst targets averaged across both animals. E, The selectivity between best and worst targets for monkey 

1. F, Selectivity between best and worst targets for monkey 2. G, Empirical cumulative distribution function for 

latency of target selection across the population of neurons, as defined by the time the delta function (shown as an 

average over the whole population in D) reached half-height. H, Same as G except for using data from monkey 1 

only. I, Same as G except using data from monkey 2 only. 
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One of the advantages of neurophysiology is that not only do we get a glimpse of the fine-

grain selectivity between specific stimuli, but we also have access to the millisecond-level 

timecourse of that signal. This timecourse can reveal insights about the dynamic processes that 

lead to neuronal responses. Of particular interest in this context is the relationship between top-

down attention – the dynamic process of selecting a region of space to focus on – and crowding.  

When analyzing the latency of target selectivity across different flanker spacings we found 

a striking relationship between latency and the degree of crowding in the display (Fig. 15G-I). To 

avoid the confound with signal strength we defined latency as the time the selectivity curve reached 

half-maximum height. Across the population of neurons recorded from both monkeys, latency 

significantly increased as spacing decreased (linear regression, F(71) = 7.98, p = 0.005). Pairwise 

comparisons revealed that latency was greater for near flankers compared to far flankers 

(Wilcoxon signed rank test, z(71) = 2.80, p = 0.005) or singletons (z(71) = 4.18, p = 1.5 x 10-5). 

There was a trend toward significance for mid spacing flankers (z(71) = 1.34, p = 0.09).  

Again, we checked that the effect was present in both monkeys individually. For monkey 

1 the target selectivity signal arose significantly later for near flankers versus singletons (Wilcoxon 

signed rank test, z(38) = 2.63, p = 0.009) or far flankers (z(38) = 1.70,  p = 0.04). For monkey 2, 

there was a trend toward significance for near flankers versus singletons (Wilcoxon signed rank 

test, z(33) = 1.46, p = 0.07) and mid flankers (z(33) = 1.65,  p = 0.05).  

The finding that latency increases as flankers encroach on the target is consistent with an 

account of crowding that incorporates attention, but it does not rule out other interpretations. For 

instance, IT neuronal response latency is also increased by occlusion (Kosai et al., 2014) or the 
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addition of noise (Emadi and Esteky, 2013), and latency in early visual cortex is increased by 

surround suppression (M. A. Smith et al., 2006). 

3.3.1.3  Crowding Qualitatively Alters the Neuronal Code 

In the previous section, we defined neuronal preferences on the basis of neuronal 

preferences for targets in isolation. While we found that the singleton code was diminished as 

flankers grew near, we also don’t know at this point whether crowding qualitatively alters the 

neuronal code. Furthermore, although the previous section seemed to demonstrate crowding-

induced quantitative weakening of selectivity, all we really know is that the selectivity for 

singletons was diminished. This does not preclude the situation in which absolute selectivity 

between arrays remains static, or even increases. Based on the results so far, both the quantitative 

weakening and the qualitative change hypotheses are still in the running.  

To distinguish between these possibilities, we next defined neuronal preferences 

independently for each flanker spacing (Fig. 16) using a leave-one-out procedure to avoid bias (see 

Methods). Flanker proximity still had a significant effect on the magnitude of target selectivity in 

the combined data (linear regression, F(71) = 16.9, p = 0.001) as well as for both monkeys 

considered independently (linear regression, F(38) = 18.82, p  = 1.1 x 10-4 for monkey 1, and F(33) 

= 5.70, p = 0.02 for monkey 2). Post hoc pairwise comparison on the full data set revealed that 

neurons were significantly less selective between targets with nearby flankers compared to 

flankers at intermediate spacing (Wilcoxon signed rank test, z(71) = 1.78, p = 0.04), far spacing 

(Wilcoxon signed rank test, z(71) = 3.15, p = 8.2 x 10-4), and singletons (Wilcoxon signed rank 

test, z(71) = 3.17, p = 1.6 x 10-4). 

The same trend was present when considering the each monkey’s data separately 

(Wilcoxon signed rank test, z(38) = 1.70, p = 0.04), far spacing (z(38) = 2.51, p = 0.04), and 
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Figure 16. Experiment 1. Neuronal preferences determined separately within each spacing 

condition. A, combined across anomals. B, monkey 1. C, monkey 2. D, Latency distributions for 

combined data. E, monkey 1. F, monkey 2. Conventions the same as Fig. 15D-I. 
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singletons (z(38) = 2.80, p = 0.003). For monkey 2, post hoc pairwise comparisons revealed that 

selectivity was still significantly lower for targets surrounded by nearby flankers compared to far 

flankers (Wilcoxon signed rank test, z(33) = 1.72, p = 0.04) or singletons (z(33) = 2.00, p = 0.02). 

Overall, these findings provide continued support for the hypothesis that crowding quantitatively 

weakens the neuronal code. 

However, quantitative and qualitative changes are not mutually exclusive. Despite the 

persistent quantitative effect, selectivity for the most crowded targets was strikingly increased 

when preferences were defined separately within each spacing condition (compare Fig. 15D-F to 

Fig. 16A-C). For easier direct comparison with the singleton-based analysis, we computed the 

average firing rate difference between most and least preferred target letters at each flanker spacing 

for each neuron under both methods (Fig. 17). Selectivity was significantly greater for the within-

spacing-defined analysis for both the combined data (Wilcoxon signed rank test, z(71) = 3.39, p = 

3.5 x 10-4), as well as for each monkey considered separately (z(38) = 1.85, p = 0.03 for monkey 

1 and z(33) = 2.48, p = 0.007 for monkey 2). The finding that using crowded trials to define 

neuronal preferences significantly improved neuronal selectivity to crowded targets supports the 

hypothesis that crowding causes a qualitative change in the neuronal code.  

To be sure of the robustness of our latency results from the singleton-based analysis, we 

repeated that procedure on the within-spacing-based selectivity curves. Again, target selection 

occurred later when flankers were near the target compared to other spacings (Fig. 16D-F). This 

result was statistically significant for the combined data (Wilcoxon signed rank, z(71) = 2.37, p = 

0.009 for singtons, z(71) = 2.06, p = 0.02 for far flankers, and z(71) = 2.32, p = 0.02 for mid flanker 

spacing). 
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Figure 17. Experiment 1. Selectivity 

for target letter. A, Combined data 

across both monkeys. The solid line 

indicates mean firing rate difference 

between the most and least preferred 

targets when the preferences of each 

neuron were determined from 

singleton trials. Error bars indicate 

SEM. The dashed line indicates the 

mean selectivity when preference were 

defined separately within each spacing 

condition. Significant differences 

between the dashed and solid curves at 

each spacing are denoted by asterisks 

directly above each point. Significant 

differences between the singleton 

condition versus near-flanker 

selectivity are denoted by asterisks 

beside the vertical brackets, where the 

solid bracket corresponds to the 

singleton-defined preferences and the 

dashed bracket corresponds to the 

within-spacing-defined preferences. 

To examine the divergence between 

the two curves, we computed the 

difference between them and examined 

how it varied between spacings. In all 

cases, significant differences are 

denoted by * (Wilcoxon signed rank 

test, p < 0.05). In all cases, the 

statistical test was Wilcoxon signed 

rank with * denoting p < 0.05 and ** 

denoting p < 0.01. B, Monkey 1 data 

only. C, Monkey 2 data only.  
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For individual monkeys, the results were similar, but less statistically robust. For monkey 

1, latency was significantly greater for near flanker trials versus singletons (Wilcoxon signed rank, 

z(38) = 2.10, p = 0.02) and trending toward significance for mid spacing (z(38) = 1.54, p = 0.06) 

and far spacing (z(38) = 1.56, p = 0.06) flankers. For monkey 2, latency was significantly greater 

when flankers were near compared to all other conditions (Wilcoxon signed rank, z(33) = 2.11, p 

= 0.02 for singletons, z(33) = 1.78, p = 0.04 for far spacing, and z(33) = 1.92, p = 0.03 for mid 

spacing). 

Previously, all of our analyses have focused on the magnitude of neuronal selectivity, as 

measured by the difference between firing rates evoked by the most and least preferred stimuli, 

out of the possible four presented during each session. To better characterize the degree to which 

neurons were changing their target preferences as a function of crowding, we next considered how 

the responses to all four targets correlated across different flanker spacings. A relatively strong 

correlation between near-flanker (crowded) conditions and the other conditions would indicate 

conservation of the code and argue against a qualitative impact of crowding (Fig. 18). Importantly, 

we wanted to establish a ceiling against which to compare the correlations of interest, because 

what appears to be a “low” correlation across two spacings might actually be the largest correlation 

possible. To that end, we subdivided firing rates into even and odd trials so that we could calculate 

correlations within the same spacing (Fig. 18A-C, colored circles on main diagonal), which 

indicate the maximum possible correlation that any of the off-diagonal correlations could achieve.  

Since we were correlating across the population of neurons with naturally varying mean firing 

rates, we first z-scored the data so that spurious correlations wouldn’t arise simply from some 

neurons firing more than others in general.  
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Figure 18. Experiment 1. Target 

preference correlations across spacing. 

A, Combined data across monkeys. The 

color code is retained from previous 

figures. Correlations are computed by 

comparing even and odd trials and axes 

are labeled accordingly. Correlation 

strength (Spearman-Brown corrected) is 

denoted by circle diameter. Negative 

correlations are denoted by open circles. 

B, Monkey 1. Conventions as in A. C, 

Monkey 2. D, Correlation strength as a 

function of spacing. Error bars indicate 

95% confidence intervals. The dashed 

line indicates correlations between odd 

and even trials at the same spacing (i.e., 

the main diagonal in A). The solid line 

indicates the correlation between the 

singletons and the other spacings, 

averaged over the upper and lower 

triangles of the matrix. Significant 

differences between the correlation 

strength at a given spacing is denoted by 

* (Pearson correlation confidence 

intervals, p < 0.05) or ** (p < 0.01) 

directly above error bars. Significant 

differences between the singleton-

singleton correlations and the near-

singleton correlations are denoted by ** 

(Pearson correlation confidence 

intervals, p < 0.01) beside the vertical 

solid bracket. Significant differences 

between the singleton-singleton and 

near-near correlations are denoted by * 

(p < 0.05) beside the vertical dashed 

bracket.  The difference between the 

curves is compared across spacings using 

a bootstrap analysis with 1,000 

iterations. E, Monkey 1 data only. Same 

conventions as in D. F, Monkey 2 data 

only. 
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For both monkeys as well as in the combined data, the near-near correlation was 

significantly greater than the near-singleton correlation (95% confidence intervals; Fig. 18D-F, 

yellow points on dashed versus solid lines). This finding indicates that the neurons consistently 

signaled the identity of crowded targets, yet they used a different pattern of responses than when 

those same targets were presented in isolation.  

To get a sense for whether the crowded code was particularly deviated from the singleton 

code, we compared the spread between the two curves (dashed versus solid lines) as a function of 

flanker spacing. What we found was that for the combined data the spread was greater for near 

compared to either mid or far flankers (1,000 iteration bootstrap, p < 0.01; Fig. 18C). Both 

monkeys showed the same trend, albeit weaker, in their individual data (1,000 iteration bootstrap, 

p < 0.05; Fig. 18D,E).  

Overall, these results serve to bolster the notion that crowding qualitatively alters the 

pattern of neuronal responses across different targets. Together, these findings suggest that the 

detrimental effects of crowding on behavioral performance (Fig. 15A) were at least in part due to 

a confusion of the neuronal code and not solely due to divisive normalization. A firing rate pattern 

signifying one target in isolation could signify another as flankers crowd around. This is not only 

a novel task, but also a novel neuronal behavior.  

3.3.2 Experiment 2 

While the first experiment provided evidence that crowding qualitatively alters neuronal 

selectivity in IT, our experimental design was not equipped to determine exactly what that 

qualitative changes entailed. We designed experiment 2 explicitly for the purpose of decomposing 

selectivity into main effects from interaction effects. If the qualitative change was to manifest as a 
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main effect, that would mean that the mere presence of another stimulus disrupts the neuronal code 

for the target. If, on the other hand, the qualitative change was to manifest as an interaction effect, 

that would mean that the identity of the flanker influences the nature of the code change. We also 

included an additional control in the form of stimulus size. Since crowding is driven by the absolute 

spacing between peripheral stimuli, independent of their size, we wanted to be sure that any 

neuronal mechanism we may ascribe to crowding possesses this same property.   

3.3.2.1 Task and Stimuli Design  

To better understand the mechanism by which crowding disrupts neuronal preferences, we 

orthogonalized three variables: stimulus spacing, stimulus size, and stimulus pairing. This design 

allowed us to calculate the main and interaction effects between the stimuli and observe how they 

changed with spacing, size, and the method of main and interaction effect determination.  

Both animals were passively fixating while letter-like stimuli appeared in the contralateral 

visual hemifield (Fig. 19A). Each trial consisted of two alternating periods of fixation and passive 

viewing. The stimuli on the screen during the second passive viewing session were never the same 

as the first. The full set of all possible combinations of first and second stimuli were presented in 

random order throughout the session. These constraints aimed to minimize the effects of repetition 

suppression (McMahon and Olson, 2007) and perceptual learning (Miyashita, 1988) that could 

influence firing rates and introduce confounds. 

Stimuli were a combination of Sloan letters and Sloan-like letters designed in the lab, which 

we refer to collectively as “elements.” Each session involved a set of four elements, chosen from 

one of two separate sets (Fig. 19A,B). At most two of these elements were on the screen at any 

given time, with one located vertically above the other. The vertical arrangement was chosen 

because IT receptive fields are usually shaped like a 2D Gaussian distribution, overlapping the 
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fovea, and extending into the contralateral hemifield (Op De Beeck and Vogels, 2000). Vertically-

arranged elements are less likely to exit the receptive field as spacing increases, unlike 

horizontally-arranged elements.  The element pair was always presented at 6° eccentricity and 

vertically centered about the horizontal meridian. Two of the elements could appear on top and 

two could appear on bottom for a total of four possible pairings during a given session (Fig. 

19A,B). Each stimulus was also presented by itself at 6° eccentricity, situated on the horizontal 

meridian. We had two such sets of letter-like stimuli at our disposal, and the choice between them 

was dictated by the preferences of the neurons we happened to be recording from.  

The variables of interest were stimulus size, absolute center-to-center spacing between 

stimuli, and center-to-center spacing relative to size. We chose two letter sizes, 1° and 2°, as a 

compromise between the small letter sizes used in the crowding literature (as well as in our 

experiment 1) and the fact that the optimal stimulus size for IT neurons is 3.7° on average (Ito et 

al., 1995). The large element displays were identical to the small element displays except scaled 

up by a factor of 2 (Fig 19C). Inter-element spacings were chosen such that the smallest spacing 

for large elements was the same absolute center-to-center spacing as the largest spacing between 

small elements (2.2°).  

Altogether there were 40 unique conditions in a session. These conditions included all 

possible combinations of the four stimulus pairs, two stimulus sizes, and four spacings relative to 

size, as well as the four large and four small stimuli shown by themselves. Each condition was 

presented eight times to get a good estimate of mean firing rate for each neuron. Since two 

conditions were presented in a given trial, the animals only had to complete 160 trials total during 

a recording session. Successful trials were those in which the animal maintained fixation on the 

fixation point at the center of the screen throughout the entire trial duration (Fig. 19D).  



 

 68 

  

Figure 19. Experiment 2 task and stimulus design. A, The top and bottom elements and all 

possible combinations for stimulus set 1. B, The top and bottom elements as well as all 

combinations for stimulus set 2. C, There were four possible spacings, two sizes, as well as 

singletons. The large letters were twice the size of the small letters. Spacings were chosen such 

that the nearest relative spacing for the large letters was the same absolute spacing as the farthest 

possible spacing for the small letters. D, The sequence of events during each trial. 
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3.3.2.2 Main Effects Change with Size-Relative Spacing 

We recorded 34 visually-responsive neurons from monkey 1 and 36 from monkey 2 while 

they performed the experiment 2 passive fixation task (Fig. 19). Because both monkeys performed 

the same task their data was combined in the figures, but we also repeated all tests separately for 

each monkey individually. The same trends generally persisted, with divergences noted where they 

appeared. 

First we computed the main effect of target identity (see Methods) for each spacing and 

element size (Fig. 20A,B). Similar to experiment 1, preferences used to align main effects across 

neurons were defined on the basis of singleton conditions (solid line) and then again within each 

spacing independently (dashed line). Because the design of this experiment produced a main effect 

of both top and bottom elements we averaged those together to arrive at a single main effect 

measurement at each spacing and size.  

We were interested in whether main effects underwent a qualitative change as spacing 

between elements decreased, and if so, whether this change was dependent upon relative or 

absolute spacing. So, for each spacing, size, and neuron we looked for differences in main effect 

strength across the two methods of preference designation (Fig. 20A,B, dashed versus solid line). 

For small elements, there was a significant difference between singleton-defined versus within-

spacing-defined main effects for near-spacing (Wilcoxon signed rank test, z(70) = 4.66, p = 3.2 x 

10-6), mid-near spacing (z(70) = 3.07, p = 0.002), and mid-far spacings (z(70) = 2.24, p = 0.02). 

For large elements, there was a significant difference for near-spacing (z(70) = 2.82, p = 0.005), 

mid-near-spacing (z(70) = 7.10, p = 1.2 x 10-12), and mid-far-spacings (z(70) = 3.99, p = 6.7 x 10-

5). Main effects appear to change qualitatively with the relative spacing between elements. 
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Figure 20. Experiment 2. Main and interaction effects change with spacing. A, Mean main effect averaged over 

the top and bottom elements for small elements as a function of spacing. Error bars indicate standard error of the 

mean. Solid line connects cases where singletons were used to define neuronal preferences. Dashed line connects 

cases where preferences were defined within each spacing separately. Gray lines indicate linear regression fit. B, 

Mean main effects for large elements. Conventions as in A. C, Interaction effect of small elements as a function 

of spacing. Solid line connects cases where preferences were defined from the far spacing trials. Dashed line 

connects the cases where preferences were defined separately within each spacing. D, Interaction effects for large 

elements. Conventions as in C. In all panels, significance is denoted with ** (p < 0.01) or * (p < 0.05).  Significant 

difference between the dashed and solid curves within a given spacing are denoted by asterisks directly above the 

error bars. Significant differences between dashed and solid lines across spacings are denoted by horizontal 

brackets. Significant differences between far- and near-element spacings for the wintin-defined conditions are 

denoted by vertical brackets. 
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When the data from each monkey was considered separately, the overall trend remained 

the same but many comparisons between the singleton-defined and within-spacing-defined main 

effect strength failed to reach statistical significance. For monkey 1 and small elements, mid-far-

spacing remained significant (Wilcoxon signed rank test, z(34) = 2.25, p = 0.02) and far spacing 

was trending toward significance (z(34) = 1.63, p = 0.10). For large elements the difference 

between the curves remained significant for near spacing (z(34) = 2.48, p = 0.01) and was trending 

toward significance for mid-near (z(34) = 1.51, p = 0.13) and mid-far spacings (z(34) = 1.44, p = 

0.15). For monkey 2 and small elements, the singleton-defined and within-spacing defined main 

effect strength was still highly significantly different for near (z(36) = 5.63, p = 1.8 x 10-8), mid- 

near (z(36) = 5.90, p = 3.5 x 10-9), and mid-far (z(36) = 4.14,  p = 3.5 x 10-5) spacings. For large 

elements, the singleton-defined and within-spacing-defined main effects remained significantly 

different for mid-near (z(36) = 6.60, p = 4.0 x 10-11) spacing, and was trending toward significance 

for mid-far spacing (Wilcoxon signed rank test, z(36) = 1.74, p = 0.08). 

Having shown that main effects undergo a qualitative change as relative inter-element 

spacing decreases, we wanted to see whether the magnitude of this change intensified as the 

elements drew nearer, as we observed with selectivity in experiment 1. The purpose here is to 

determine whether the widening gap for selectivity – which we attributed to crowding – is still 

present when we’ve pulled out only main effects and controlled for relative versus absolute 

spacing. For small elements, the qualitative change in main effect was significantly larger for near 

compared to either mid-far (Wilcoxon signed rank test, z(70) = 1.94, p = 0.03) or far spacing (z(70) 

= 1.72, p = 0.04) conditions. Mid-near also underwent a significantly larger qualitative change 

compared to far spacing conditions (z(70) = 2.43, p = 0.008; Fig. 20A). Large elements exhibited 

a similar pattern. The separation between the two curves was significantly larger for mid-near 
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(z(70) = 2.76, p = 0.003), mid-far (z(70) = 1.97, p = 0.02), and near-spacing (z(70) = 1.74, p = 

0.04) conditions compared to far spacing conditions (Fig. 20B). The qualitative change in main 

effects continues to mirror what we saw in experiment 1 for selectivity. Furthermore, it is relative 

rather than absolute spacing that drives the qualitative change in main effects. 

The same trend was present in both monkeys’ individual data, albeit not as statistically 

robust as in the combined data. For monkey 1, there was a significant width difference when 

comparing large elements at mid-near versus mid-far spacings (Wilcoxon signed rank test, z(34) 

= 1.78, p = 0.04) or when comparing small elements at near spacing versus mid-far (z(34) = 1.61, 

p = 0.05) and far (z(34) = 2.05, p = 0.02) spacings. For monkey 2, the curves were significantly 

more separated for small elements at near spacing compared to mid-near (Wilcoxon signed rank 

test, z(36) = 1.75, p = 0.04), mid-far (z(36) = 2.14, p = 0.02), and far (z(36) = 2.46, p = 0.007) 

spacings. For large elements, the curves became significantly wider between mid-near (Wilcoxon 

signed rank test, z(36) = 5.05, p = 4.5 x 10-7) and far (z(36) = 2.80, p = 0.005) spacings compared 

with far spacing.  

Because we saw such a pronounced impact of spacing on the latency of target selection 

during experiment 1, we were curious whether this effect persisted for the present experiment. If 

so, that would be an indication that the latency effect was driven by a bottom-up mechanism – 

because neither element in the experiment 2 pairings was more likely than the other to be a target 

of attention – and was not dependent on the number of items in the array. On the contrary, we did 

not find evidence for a connection between inter-element-spacing and main effect latency for 

experiment 2. When selectivity was determined separately for each spacing, the time to main effect 

half height across the population of neurons was not significantly affected by inter-element spacing 

for either small (linear regression, F(70) = 1.82, p = 0.18) or large (F(70) = 0.84, p = 0.36) 
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elements. When main effect preferences were determined from the singleton conditions, there was 

a slight trend toward longer latency with narrower spacing for small elements (F(70) = 3.25, p = 

0.07), but not for large elements (F(70) = 1.37, p = 0.24). There was also no significant latency 

effect for monkey 1 (singleton-defined: F(34) = 0.96, p = 0.33 for small elements and F(34) = 

1.78, p = 0.19 for large elements; within-spacing-defined: F(34) = 1.26, p = 0.27 for small 

elements, F(34) = 1.09, p = 0.30 for large elements) or monkey 2 (singleton-defined: F(36) = 0.47, 

p = 0.50 for small elements and F(36) = 0.09, p = 0.76 for large elements; within-spacing-defined: 

F(36) = 0.11, p = 0.74 for small elements, F(36) = 0.06, p = 0.80 for large elements). 

So far, the analyses we have presented for experiment 2 have considered large and small 

element conditions separately. Similar to experiment 1, we observed a qualitative change in main 

effects as inter-element spacing decreased in both cases. However, since the central question here 

is whether main effects constitute a neuronal correlate of the crowding phenomenon we must 

directly compare main effects at matched absolute and relative spacings. Since the degree of 

crowding is determined by eccentricity (which we kept constant here) and absolute center-to-

center spacing between stimuli regardless of stimulus size (Levi, 2008; Pelli et al., 2004), we 

expected that if crowding were manifest in main effects then the pattern of main effects would 

vary systematically as a function of absolute, not relative, spacing.  

First, we tested the effect of absolute spacing. To do this we called upon the pair of 

conditions in which absolute spacing was held constant while element size varied. When large 

elements were situated at the near spacing they had the same absolute spacing (2.2°) as when small 

elements were positioned at the far spacing (Fig. 19C). Comparing the within-spacing-defined 

main effects for these two conditions revealed no significant difference for either the combined 

data (Wilcoxon signed rank test, z(70) = 0.10, p = 0.46) or for either monkey individually (z(34) = 
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0.42, p = 0.74 for monkey 1 and z(36) = 1.22, p = 0.22 for monkey 2). When considering singleton-

defined main effects, a borderline significant difference emerged for the combined data (z(70) = 

1.47, p = 0.07) and monkey 2 (z(36) = 1.63, p = 0.10), but not for monkey 1 (z(34) = 0.56, p = 

0.58). The most striking evidence against absolute spacing, however, comes from the difference 

between the curves (Fig. 20A,B, compare the spread for far spacing with small elements to near 

spacing with large elements). There was a significantly greater difference for large elements 

spaced near one another compared to small elements spaced far apart (Wilcoxon signed rank test, 

z(70) = 2.60, p = 0.005). This was also true of the individual monkey data (z(34) = 1.97, p = 0.05 

for monkey 1, and z(36) = 2.45, p = 0.01 for monkey 2). 

Since absolute spacing did not appear to be the primary driver of the qualitative main effect 

change, we next turned to size-relative spacing. For this step, we were comparing more than just a 

single pair of conditions, so we performed an ANCOVA analysis to determine how the pattern of 

main effects changed as a function of scale. Essentially, we were asking whether the slope of the 

fit line (gray line in Fig. 20A) for small elements was different from the slope of the fit line for the 

large elements (gray line in Fig. 20B). We did this separately for both singleton-defined and 

within-spacing-defined main effects. In all cases, size had no significant impact on the pattern of 

results (F(70) = 0.28, p = 0.60 for singleton-defined main effects, and F(70) = 0.08, p = 0.78 for 

within-spacing-defined main effects). This held true for both monkey 1 (F(34) = 1.43, p = 0.24 for 

singleton-defined, and F(34) = 0.73, p = 0.40 for within-spacing-defined main effects) and for 

monkey 2 (F(36) = 0.35, p = 0.55 for singleton-defined, and F(36) = 0.02, p = 0.89 for within-

spacing-defined main effects). We take this as evidence that the qualitative change in main effects 

is a function of the relative spacing between elements, not absolute spacing. Therefore, we are 
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hard-pressed to claim that main effects are at the heart of the crowding phenomenon. Next, we 

turn to interaction effects as a potential candidate for the neuronal correlate of crowding. 

3.3.2.3 Interaction Effects Are Sensitive to Element Size 

As with the main effects, we calculated interaction effects for each spacing and for each 

element size. Rather than defining preferences on the basis of singletons, because that makes no 

sense for interactions, we used the size-relative far spacing trials as a point of comparison for the 

within-spacing analysis. The calculation of interaction effect strength is detailed in the Methods.  

As with main effects, there were no strong latency trends for the onset of interactions across 

the IT neuronal population. When selectivity was determined by singletons, the time to interaction 

effect half height across the population of neurons was not significantly affected by inter-element 

spacing for either large or small elements (linear regression, F(70) = 2.79, p = 0.10 for small 

elements, and F(70) = 0.43, p = 0.63 for large). Likewise, when selectivity was determined 

separately for each spacing neither small nor large elements exhibited a systematic change in 

interaction latency as a function of spacing (linear regression, F(70) = 0.17, p = 0.68 for small 

elements, and F(70) = 0.84, p = 0.36 for large). There was also no significant latency effect for 

monkey 1 (singleton-defined: F(34) = 0.48, p = 0.49 for small elements and F(34) = 0.03, p = 0.86 

for large elements; within-spacing-defined: F(34) = 2.10, p = 0.15 for small elements, F(34) = 

0.41, p = 0.52 for large elements) or monkey 2 (singleton-defined: F(36) = 0.08, p = 0.78 for small 

elements and F(36) = 1.65, p = 0.21 for large elements; within-spacing-defined: F(36) = 0.43, p = 

0.52 for small elements, F(36) = 2.35,  p = 0.13 for large elements). 

The first order of business was to determine whether qualitative changes in neuronal 

preferences were manifest in interaction effects. Indeed, this was what we observed for both small 

(Fig. 20C) and large (Fig. 20D) elements. Similar to main effects, interactions were larger when 
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defined on the basis of far-spacing conditions (compare dashed and solid lines). This relationship 

was significant for small elements at near spacing (Wilcoxon signed rank test, z(70) = 1.94, p = 

0.04), mid-near spacing (z(70) = 6.39, p = 1.7 x 10-10), and mid-far spacing (z(70) = 4.90, p = 9.6 

x 10-7). The same trend was present for large elements (Wilcoxon signed rank test, z(70) = 6.91, p 

= 4.8 x 10-12 for near, z(70) = 8.78, p = 1.7 x 10-18 for mid-near, and z(70) = 7.54, p = 4.5 x 10-14 

for mid-far spacing). Comparing the difference between the two methods across spacing, we saw 

that for both small and large elements the largest effect was evident for the mid-near element 

spacing. Compared to near-spacing conditions, mid-near-spacing interactions were significantly 

larger for both small (Wilcoxon signed rank test, z(70) = 6.37, p = 2.0 x 10-10) and large (z(70) = 

2.20, p = 0.03) elements. The non-monotonic relationship between the qualitative neuronal code 

change suggests that size-relative mid-range distances between elements are optimal for 

interactions, whereas the closest spacings may give way to interference.  

In contrast with main effects, however, interaction strength actually increased as spacing 

between elements decreased, but only for large elements (linear regression; F(70) = 7.59, p = 

0.008; Fig. 20D). That the pattern of results was different across sizes for interactions was 

intriguing because it suggested that perhaps interaction effects underlie crowding. To directly test 

how spacing impacted interaction strength across the two stimulus sizes, we compared the slopes 

of the linear regression fits (Fig. 20C,D, gray lines). What we found was that the slope of the fit 

lines was significantly different across stimulus sizes regardless of how interactions were defined 

(ANCOVA, F(70) = 26.17, p = 0.0003 for within-spacing-defined interactions, and F(70) = 15.6, 

p = 0.0005 for far-defined).  

This pattern was slightly different across monkeys. For monkey 1, the within-spacing-

defined interaction effects significantly decreased with spacing for small elements (linear 
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regression, F(34) = 4.44,  p = 0.04), but did not systematically vary for large elements (linear 

regression, F(34) = 1.15, p = 0.29). The difference in slope across size was still significant 

(ANCOVA, F(34) = 5.71, p = 0.02). For monkey 2, within-spacing-defined interactions did not 

vary across spacing for small elements (linear regression, F(36) = 0.009, p = 0.92), but for large 

elements there was a significant increase in interaction effect magnitude as spacing decreased 

(linear regression, F(36) = 4.39, p = 0.04). Again, there was a significant difference in slope across 

size (ANCOVA, F(36) = 6.21, p = 0.02). Therefore, in all cases interaction effects were not scale 

invariant. But to claim that crowding is manifest in interaction effects requires more than simply 

showing that it is not driven by relative spacing. We must show that absolute spacing is a better 

predictor.  

This is precisely what we found. Absolute interaction strength did not vary significantly 

when elements were at the same spacing, 2.2° apart (Wilcoxon signed rank test, z(70) = 0.98, p = 

0.33). This was true for both monkey 1 (z(34) = 0.56, p = 0.58) and monkey 2 (z(36) = 1.02, p = 

0.30). This finding supports the idea that interactions underlie the crowding phenomenon.  
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3.3.2.4  Swapping Preferences 

Main and interaction effects are informative, but also quite removed from the raw data. To 

gain intuition about what these effects mean for the neuronal code it’s often helpful to see what 

individual neurons are doing. For the population-level main and interaction effects to change with 

spacing, individual neurons should be flipping their preferences across spacings. That’s exactly 

what we saw (Fig. 21). 

When looking at the exact same element pair at both the near and far spacing it’s clear that 

the neuronal code is not static (Fig. 21). Whereas one element pair is preferred at one spacing (Fig. 

21A, compared dashed and solid lines), the other pair is preferred at a different spacing (Fig. 21B). 

In this example, the top element in the pair was held constant to demonstrate that the preference 

for the two bottom elements truly flipped, simply as the result of the proximity of the other element. 

For this neuron, the other top element did not generate such a preference flip (Fig. 21C,D). 

Therefore, this illustrates an example of a single neuron that underwent a qualitative interaction 

effect change (as seen by the specificity of the preference flip to a particular top element; compare 

Fig. 21A,B to Fig. 21C,D). 

Figure 21. Experiment 2. Example 

neuron showing flipping 

preferences as a function of spacing 

between small elements. A, Yellow 

indicates near spacing. Solid line 

denotes one element pair while the 

dashed line denotes another. B, Red 

indicates far spacing. The same line 

style conventions as in A. Notice 

that the solid line is above the 

dashed line in A whereas in B the 

dashed line is on top. C, The same 

neuron responding to the other two 

pairs of elements used in this 

experiment. Near spacing again 

denoted by yellow. D, Far spacing 

with the same element pairs as in 

panel C. Notice that the order of the 

dashed and solid lines (indicating 

specific element pair) is unchanged 

across panels C, and D. 
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3.3.2.5 Main Effects are Correlated across Size, Interactions are 

Not 

IT neurons are known to maintain rank order across isolated 

stimuli regardless of size (Ito et al., 1995). Even though population 

main effect strength was scale-invariant (Fig. 20A,B), without a 

directly comparing stimulus rank order across sizes we cannot say 

for certain that the precise neuronal code was the same for large and 

small elements. To get at this question, we performed a correlation 

analysis across size for each spacing condition (Fig. 22). Large and 

small main effects were significantly correlated at all size-relative 

spacings (Fig. 22A; Pearson correlation, 99% confidence intervals). 

The magnitude of these correlations was within or above the 

minimum 95% confidence interval for the correlation between odd 

and even trials at the same size and spacing (Fig. 22A, gray line), 

indicating that neuronal preference were fully conserved across 

size. When absolute spacing was kept constant but scale and relative 

spacing were different, the correlation was still significantly 

different from zero (Fig. 22A black bar; Pearson correlation, 95% 

confidence interval). When the data from each animal was analyzed 

separately the correlations remained significantly different from zero in monkey 1 (all spacings 

except near and mid, 95% confidence intervals) as well as monkey 2 (all spacings, 95% confidence 

intervals). These results reinforce the claim that main effects are scale-invariant.  

Figure 22. Experiment 2. 

Correlation across size. A, Main 

effect correlation between 

element sizes across the 

population of neurons. Error bars 

indicate 95% confidence 

intervals and ** denotes 

significance (p < 0.01). Gray line 

indicates the across-size 

minimum lower 95% confidence 

interval of the Spearman-Brown-

corrected correlation between 

odd and even trials at each 

spacing. B, Interaction effect 

correlations across size for the 

population of neurons. 
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Interaction effects exhibited a different pattern (Fig. 22B). The correlation between 

interaction effects across large and small elements at the same relative spacing were significantly 

different from zero only for mid-near (Pearson correlation, 95% confidence interval), and mid-far 

(99% confidence interval) spacings, and failed to reach significance for near or far spacings. When 

the data from the two monkeys were considered separately the same pattern was present, but 

weaker. For monkey 1, the mid-near and mid-far cross-size correlations were significantly greater 

than zero. For monkey 2 the mid-far cross-size correlation was the only one to reach statistical 

significance. Unlike main effects, scale did seem to matter for interactions. However, even though 

absolute spacing may be a better predictor of interaction effect strength (Fig. 20C,D), there was no 

significant correlation across size for conditions in which absolute spacing was held constant 

(Pearson correlation, 95% confidence interval; Fig. 22B, black bar). This contradiction highlights 

the importance of examining how stimulus rank order changes with experimental variables, rather 

than merely measuring overall effect strength and raises the question of whether crowding is 

expressed as interactions among elements in IT neuronal representations. 

3.3.3 Experiment 3 

Whereas experiment 2 was designed to pose the question of whether the qualitative change 

in the neuronal code observed under crowding is driven by main or interaction effects, experiment 

3 aims to explore how the different parts of crowded objects contribute to crowding. It could be 

that only the adjacent edges interact with one another or main effects of certain parts are 

suppressed. Alternatively, all the elements of crowded objects may get tossed together into a 

mixed-up jumble of alphabet soup. A secondary question pertains to whether interactions between 

parts depend on the nature of the parts themselves or the location of those parts in the visual field. 
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3.3.3.1 Task and Stimuli Design 

Since we are only interested in the 

interactions between parts of crowded 

stimuli, we chose a single center-to-center 

spacing (1.1°) which matches the most 

crowded conditions in experiments 1 and 2. 

As in experiment 2, pairs of stimuli were 

always vertically-positioned. Each 

compound stimulus within the pair was made 

up of two Sloan letters fused together along 

the line they mutually share (Fig. 23A,B). 

The aspect ratio of the Sloan letters was 

halved so that when the two letters came 

together to form a compound it could have an 

aspect ratio of one. Line thickness was kept 

constant across the letters and their shared 

boundary. Four Sloan letters were combined 

together in all possible permutations to make the set of four top compounds (Fig. 23A). Another 

four Sloan letters came together in all possible combinations to make the set of four bottom 

compounds (23B). Then the four top compounds and the four bottom compounds were combined 

in all possible ways to form the complete set of 16 conditions (Fig. 23C). Each condition was 

repeated eight times for a total of 128 trials per session. During each trial the animals fixated a 

Figure 23. Experiment 3 task and stimulus design. A, Top 

and bottom elements combine in all possible ways to create 

the top compound. B, Top and bottom elements combine in 

all possible ways to create the bottom compound. C, Top and 

bottom compounds combine in all possible ways to make the 

full stimulus set. D, Series of events during each trial. 
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central spot, a pair of compounds was flashed in the periphery, and a fluid reward was given if 

fixation was held throughout (Fig. 23D). 

To decouple stimulus identity from location on the screen we also showed the same set of 

compound stimuli flipped about the horizontal axis while recording from a subset of neurons. This 

is an important control because the pattern of main effects and interactions across the elements of 

the compounds could arise from the position of those particular elements in the display. By 

inverting the displays we should also invert any patterns that are due solely to stimulus identity, 

while keeping patterns attributable to retinotopic location the same. 

3.3.3.2 Non-Adjacent Elements Interact across Crowded Displays 

We recorded from 39 visually-responsive neurons from monkey 1 and 21 from monkey 2. 

Of those, 13 visually-responsive neurons from monkey 1 and 17 from monkey 2 were tested with 

both the original stimuli as well as their vertical mirror images.  

The goal of this experiment was to determine how main and interaction effects vary across 

different parts of crowed displays and whether any pattern that might emerge was a result of 

position in the array versus the parts themselves. We could compute a main effect for each of the 

four positions by computing the difference between the preferred and non-preferred letter 

occupying that part of the stimulus. This is the same procedure that we adopted previously (see 

Methods). Likewise, the six possible pairwise interactions between each of the four parts of the 

arrays could be computed using the same recipe as before (see Methods). To determine whether 

the measured strengths were greater than expected by chance we performed a bootstrap analysis 

where we shuffled the trial labels for each neuron and computed the main and interaction effects 

on this shuffled data. We repeated this process 1,000 times and took the average across neurons 

for each run. Then we calculated the 95% and 99% percentiles of this shuffled data and compared 
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those values to the real mean main and interaction effects across neurons to determine whether 

these effects were significantly stronger than what would occur by chance. 

Main effects were significantly greater than chance for all positions in the display during 

both the original experiment (Fig. 24A; bootstrap, p < 0.01) and its vertical mirror inversion (Fig. 

24B; bootstrap, p < 0.01). Likewise, interaction effects, were greater than expected by chance 

across all parts of the display for both the original (Fig. 24A; bootstrap, p < 0.01) and inverted 

(Fig. 24B; bootstrap p < 0.01) experiments. Therefore, we may conclude that non-adjacent and 

non-connected parts of crowded objects interact and all parts of crowded displays contribute main 

effects. 

To directly examine the effect of part location on main and interaction effect magnitude, 

we turned to the sub-population of 30 neurons that were recorded in the context of both 

experiments. First, to examine whether the pattern of main effects varied as a function of letter 

Figure 24. Experiment 3. Non-adjacent interactions are tied to space. A, Main effects (circles) and interaction 

effects (curved lines) are shown as a function of the position of the element in the compound pair. Circle diameter 

indicates main effect strength and line thickness indicates interaction effect strength. B, Main and interaction effects 

for the vertically inverted stimuli. Conventions as in A. Significance was determined from a bootstrap analysis in 

which firing rates for all neurons were shuffled 1,000 times and mean interaction and main effects across the 

population were calculated on each iteration to get a null distribution. The 95th and 99th percentiles were used as 

cutoffs for * and ** designations, respectively. 
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position in the array or whether the arrays were presented in either their original configuration or 

as vertical mirror images of those displays, we set up a nonparametric two-way ANOVA with four 

levels for the factor representing letter position and two levels for the factor representing vertical 

mirror images. We found no significant difference of main effect strength either as a function of 

letter position (two-way repeated measures ANOVA, F(30) = 0.25, p = 0.84) or vertical mirror 

images (two-way repeated measures ANOVA, F(30) = 0.72, p = 0.40). There was also no 

significant interaction effect between letter position and vertical mirror inversion (two-way 

repeated measures ANOVA, F(30) = 0.26, p = 0.86). 

Considering the monkeys independently did not alter the results. For monkey 1, main effect 

strength was the same at all positions in the array (two-way repeated measures ANOVA, F(13) = 

1.24, p = 0.27) and was not significantly affected by vertical mirror inversion of the entire display 

(two-way repeated measures ANOVA, F(13) = 0.10, p = 0.76). There was also no significant 

interaction effect between letter position and vertical mirror inversion (two-way repeated measures 

ANOVA, F(13) = 0.78, p = 0.52). Similarly for monkey 2, main effect was not significantly 

modulated by letter position (two-way repeated measures ANOVA, F(17) = 0.64, p = 0.59) or 

vertical mirror images (two-way repeated measures ANOVA, F(17) = 1.33, p = 0.27). There was 

also no significant interaction effect between letter position and vertical mirror inversion (two-way 

repeated measures ANOVA, F(17) = 0.28, p = 0.84).  

As with main effects we can ask whether interaction effects were sensitive to the relative 

position between pairs in the array or vertically flipping the whole array. The factor representing 

pair distance had six levels, corresponding to the six possible pairwise interactions. The factor 

representing vertical mirror flips again had two levels. As with main effects, there were no 

significant impact of either the distance between parts (two-way repeated measures ANOVA, 



 

 85 

F(30) = 0.25, p = 0.94) or vertical mirror inversion (two-way repeated measures ANOVA, F(30) 

= 1.29, p =0.27) on interaction effect strength. There was also no significant interaction effect 

between pairwise position and vertical mirror inversion (two-way repeated measures ANOVA, 

F(30) = 0.78, p = 0.61). What this tells us is that the relative locations of parts within crowded 

displays do not affect the strength of main and interaction effects in IT neuronal populations.  

Again, the pattern of results was not different when the two monkeys were considered 

independently. For monkey 1, there was no significant effect of distance between parts on the 

strength of their interaction (two-way repeated measures ANOVA, F(13) = 0.75, p = 0.59). Neither 

was there a significant effect of vertical mirror inversion (two-way repeated measures ANOVA, 

F(13) = 0.027, p = 0.87). Likewise, there was no significant interaction between part distance and 

mirror inversion (two-way repeated measures ANOVA, F(13) = 1.36, p = 0.25). When considering 

monkey 2 alone, the pattern remained the same. Distance between parts did not modulate 

interaction strength (two-way repeated measures ANOVA, F(17) = 0.48, p = 0.79). Vertical mirror 

inversion also had no significant impact on interaction effects (two-way repeated measures 

ANOVA, F(17) = 1.62, p = 0.22). Finally, there was no significant interaction between pairwise 

distance and mirror inversion (two-way repeated measures ANOVA, F(17) = 0.77, p = 0.58). 

Overall, these results indicate that object parts within crowded displays interact 

promiscuously with all other parts in the display. This effect was not specific to particular stimuli 

falling at particular retinotopic locations because inverting displays did not significantly alter the 

results. Thus, all the parts contribute to the jumbled percept characteristic of crowding. 
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3.4 DISCUSSION 

We have carried out three complimentary experiments in macaque monkeys to determine 

how visual crowding affects neuronal object representations. The key findings are as follows. First, 

as the space between stimuli decreased, neuronal selectivity for target letters both weakened 

quantitatively and changed qualitatively (Fig. 17). A second experiment demonstrated that this 

qualitative change can be captured in terms of both main (Fig. 20A,B) and interaction effects (Fig. 

20C,D), however only interactions followed the size-invariance characteristic of crowding. The 

strength of interaction effects increased as the absolute spacing between elements decreased and 

then plateaued. Main effects, on the other hand, were driven by relative spacing between elements. 

A third experiment revealed that all parts of the stimuli within crowded arrays interact (Fig. 24). 

These findings are the first to demonstrate how crowding alters object representations at the single 

neuron level. 

3.4.1 Distinguishing between Models of Crowding 

These results enable us to test the many competing models of crowding. One popular 

account of crowding is that signals about closely-spaced peripheral stimuli are averaged together 

(Parkes et al., 2001). This averaging could easily be instantiated in neuronal populations by 

summing feedforward inputs across the relatively large receptive fields found in higher levels of 

the ventral stream (van den Berg et al., 2010). We did observe a weakening in the strength of 

selectivity as a function of crowding (Fig. 16, 20A), but the qualitative changes we observed in 

the neuronal code indicate that averaging isn’t the whole story (Figs. 17,18, and 20).  
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Another popular account of crowding is that peripheral clutter is encoded as texture (Balas 

et al., 2009; Freeman and E. P. Simoncelli, 2011). Intuitively, one can imagine texture, as well as 

crowded arrays, as “hav[ing] lost form without losing crispness” (Lettvin, 1976). Given this 

definition, it’s no surprise that IT  an area concerned with form representation  is weakly 

selective between textures compared to V4 (Rust and Dicarlo, 2010) or V2 (Freeman et al., 2013; 

Ziemba et al., 2016). If crowded arrays were perceived as texture then we should have observed a 

weakening of target selection strength, which indeed we did (Fig. 17). But again, the more 

profound and surprising result we showed was a qualitative change in neuronal preferences. 

Because no prior neurophysiology study has directly compared the pattern of firing rates evoked 

by objects to that of their texturized versions (Portilla and E. Simoncelli, 2000) it is not possible 

to say whether textures would produce the kind of qualitative change in the neuronal code that we 

observed between crowded and uncrowded displays. As such, we cannot rule out the idea that 

crowded stimuli are represented as textures. Moreover, our finding that all parts of crowded arrays 

interact (Fig. 24) seems to support this idea. 

Yet another model of crowding centers on attention (He et al., 1996). The idea is that 

crowding arises when the attentional spotlight is no longer able to isolate a single stimulus 

(Cavanagh et al., 1999). The recent finding that the N1 EEG component inversely correlates with 

performance during a crowding task supports this assertion (Herzog et al., 2015). Only one of our 

animals in one of our experiments was indisputably deploying attention during neuronal 

recordings, and the results were essentially the same for both animals, so we cannot make strong 

claims about the role of attention. However, the fact that qualitative neuronal preference changes 

occurred at absolute spacings beyond the reach of crowding (Fig. 20B) suggests that the brain can 

overcome code confusion, and thus there may not be an inescapable loss of bottom-up information, 
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as has been suggested by opponents of the attention hypothesis (Freeman and E. P. Simoncelli, 

2011). Another piece of evidence in favor of the attention hypothesis is the latent improvement in 

neuronal selectivity for crowded targets exhibited by both monkeys during experiment 1, in which 

they were trained to attend the target (Fig.15H,I and 16E,F). If crowding were due solely to feed-

forward information loss then no such improvement should have been observed. The target 

selection latency under crowded conditions is on par with what has been seen previously in IT 

during an attention task (Chelazzi et al., 1993).  

Finally, crowding has been considered to result from feature mislocalization (Wolford and 

Shum, 1980) or substitution of a flanker for a target (Freeman et al., 2012). Conceptually, this 

model has been described as features becoming unglued from space (Pelli and Tillman, 2008). Our 

main finding that the neuronal code changed qualitatively between crowded and uncrowded 

displays generally supports this model. Feature recombination could seemingly flip a neuron’s 

preference from one stimulus to another (Fig. 21). The fact that interactions occurred across all 

parts of crowded arrays regardless of which part was where (Fig. 24) also lends support for this 

model because it relies on a system in which features are pooled across space with equal weight 

(Wolford, 1975). 

At first blush it may appear that our results do not come down strongly either in favor of 

or against any of these theories, and in fact this is an endemic problem that has plagued the field 

of crowding since its infancy. Despite recent attempts to find a grand unifying theory of crowding 

(Harrison and Bex, 2015; Keshvari and Rosenholtz, 2016), it has been called into question whether 

this quest is misguided (Agaoglu and Chung, 2016). Pitting the competing models against each 

other, Agaoglu and Chung found that none alone was sufficient to explain the entire crowding 

phenomenon. Throughout the course of our own study, using the novel approach of 
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neurophysiology, we have reached essentially the same conclusion. Crowding has proven to be far 

too complex a phenomenon to be captured by any of the existing models. 

3.4.2 Size Invariance 

While the qualitative change we observed for crowded conditions in experiment 1 seemed 

to be a reasonable neuronal correlate of crowding (Fig. 17), the lack of size invariance of this effect 

in experiment 2 (Fig. 20A-D) raised a few concerns. Size invariance is, after all, considered one 

of the hallmarks of crowding (Pelli et al., 2004). In the previous section, we interpreted these 

results as support for the attention hypothesis of crowding because presumably the large letters 

with narrow spacing were above the reach of crowding, so attention should be able to overcome 

the qualitative changes in main and interaction effects. Without behavior we cannot say this for 

certain, but the lack of an effect of spacing on latency as well as the equal status of elements as 

targets argues that attention is not being deployed during this task. 

An alternative interpretation of these results is that the qualitative change in main and 

interaction effects is not a neuronal correlate of crowding after all. Instead, it could simply be a 

general feature of object representation. Previous investigations of multiple objects or multiple 

object parts in IT have not reported the breakdown of divisive normalization that we saw as a 

function of spacing (Sripati and Olson, 2010a; Zoccolan et al., 2005), but this is also the first study 

to systematically vary the distance between a variety of peripheral stimuli. Perhaps what we 

observed in experiment 2 is simply a new manifestation of scale invariance, which is a well-known 

characteristic of IT neurons (Ito et al., 1995). It’s possible that the two-element displays in 

experiment 2 were interpreted by the animals as a single object, scaled up or down across 

conditions.  
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Interaction effects also reflected the qualitative preference change, and much more in line 

with the behavioral characterization of crowding we did observe differences across scale (Fig. 

22B). Like crowding, absolute spacing seemed to dictate within-spacing defined interaction 

strength, which sharply increased and then plateaued as absolute spacing decreased (Fig. 20C-D), 

although this plateau occurred at a much larger spacing than what we observed previously in 

behavior (Crowder and Olson, 2015)(Fig. 15A). There are two possible explanations that make 

this incongruence less damning. First, given that the task design was different between the first 

two experiments, it could be the case that the critical spacing over which crowding operates is 

much larger than in the original experiment. In line with this thought is the finding that using fewer 

flankers increased critical spacing (Banks et al., 1979). Second, because monkeys were not 

deploying attention during the second experiment, this might have had the effect of making critical 

spacing appear larger, just as attention has been said to “shrink” receptive fields (Rolls et al., 2003). 

However, without a behavioral readout on this task we can only speculate about the link between 

interaction effects and crowding.   

3.4.3 Limitations and Future Directions 

Although we uncovered some novel and surprising results, the present study is not without 

caveats. First, there are many different versions of behavioral tasks designed to show the crowding 

phenomenon and just as much variance in the findings, so our results may well not generalize. 

Some researchers use oriented gratings (Anderson et al., 2012; He et al., 1996; Parkes et al., 2001), 

others oriented letters (Flom et al., 1963a; Harrison and Bex, 2015; Tripathy and Cavanagh, 2002), 

and still others used upright letters of the English (Bouma, 1970) or Armenian (Freeman and Pelli, 

2007) alphabets. Some labs measured crowding in terms of threshold contrast (Pelli et al., 2004; 
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Strasburger et al., 1991), whereas others relied on the psychometric curve (Chung, 2007; Tripathy 

and Cavanagh, 2002; Yeshurun and Rashal, 2010). Based on the observation that crowding occurs 

across visual domains such as orientation, hue, and saturation (van den Berg et al., 2007) so long 

as flankers and targets are similar (Põder, 2007), we developed a task for nonhuman primates (Fig. 

14) that should meet the criteria for crowding. However, experiment 1 in the present study is 

admittedly limited in scope compared to the vast variations of past studies. 

Our first goal with creating a crowding task for nonhuman primates was that the behavior 

had to resemble that of humans (Crowder and Olson, 2015) and it must also facilitate neuronal 

recordings in IT. This balance between relevance to the human crowding literature as well as 

practical considerations inherent in finding selective neurons, compounded by the fact that no one 

has attempted to study crowding in an awake behaving monkey before, meant that the data from 

experiment 1 were too complex to draw strong conclusions from on its own.  

A subsequent, much simpler task (Fig. 19) was developed to address this concern; however, 

this task lacked behavior. It was an omission that proved problematic when it came time to 

understand the size invariance of the qualitative neuronal code change (Fig. 20A,B, Fig. 22A), 

precise absolute spacing effects for interactions, and most glaringly, how these neuronal findings 

relate to attention. To a human observer it is clear that the large letters with narrow spacing are 

discriminable in the periphery, and while the same is probably true of monkeys (Crowder and 

Olson, 2015), we have no direct evidence in this specific experiment. Also, because the number of 

distractors varied between experiments 1 and 2 we cannot say for sure whether critical spacing 

was the same, especially in light of evidence that distractor numerosity has been shown to reduce 

critical spacing (Banks et al., 1979). 
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Another limitation of our study is that we designed experiments 2 and 3 to be amenable to 

main and interaction effect measurements, which we expected to be telling. In fact, their 

modulation with relative spacing and tenuous connection with absolute spacing proved to be 

confusing. Future investigations into the neurophysiological basis of crowding should strive to 

attack the hypotheses we outlined in the previous section head-on so as to eliminate the ones that 

still remain standing. In particular, it would be interesting to investigate how texture derived from 

objects (Portilla and E. Simoncelli, 2000) is encoded in both peripheral and foveal vision compared 

to the original objects. Another potential avenue would be an explicit exploration of the feature 

mislocalization hypothesis of crowding (Wolford, 1975). One could record neuronal responses 

while requiring animals to report the object-relative location of features or report the identity of 

the letter in the center of an array made up of targets and distractors drawn from the same pool.  

Finally, our study didn’t touch one of the most striking and neglected characteristics of 

crowding, which is the radial-tangential anisotropy of crowding zones (Toet and Levi, 1992). 

These elliptical zones have an uncanny resemblance to saccadic eye movement endpoint scatter 

(Harrison et al., 2013; Nandy and Tjan, 2012), which also ties into the attention hypothesis of 

crowding by virtue of the fact that the same brain structures, such as the Frontal Eye Field (FEF), 

that command saccades also direct spatial attention (Moore, 2003).  FEF and IT have strong 

reciprocal connections (Schall et al., 1995), and inactivating FEF reduces IT neuronal selectivity 

for peripheral objects falling in the lesion site (Monosov et al., 2011), so it would be interesting to 

see how either sub-threshold stimulation or inactivation of FEF would affect IT neuronal responses 

to crowded displays. 
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3.4.4 Conclusions 

This work constitutes the first investigation into the neuronal mechanisms of visual 

crowding in a nonhuman primate. As the last four decades of crowding research have generally 

gone, we found the neuronal data to be more puzzling and strange than we ever imagined. 

Crowding is not  merely the reduction in strength of neuronal selectivity for the target object. 

Instead, the preferences of IT neurons changed qualitatively while preserving a good portion of 

the selectivity between crowded arrays. Just as with subjective experience, crowded letters don’t 

fade or disappear, but rather they transform. We take this as support for models that explain 

crowding as a devolution of objects into texture (Rosenholtz et al., 2012) or as mislocalization of 

object features (Strasburger and Malania, 2013). The latency of target selectivity under crowded 

conditions suggests that what sets the limit on peripheral resolution is not bottom-up pooling, but 

rather top-down attention. Having taken this first step toward finding a neuronal correlate of 

crowding, future work may address models of crowding at the single neuron level more directly.  
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4.0  INFEROTEMPORAL NEURONS BREAK THE LAW OF SIMPLICITY 

The visual system is tasked with the tricky job of taking in sometimes ambiguous 

information and constructing an internal representation that enables some degree of understanding. 

One way in which the brain might achieve this is to invoke the Gestalt law of simplicity, which 

states that the visual system interprets input with from the simplest possible explanation. A classic 

example of the law of simplicity in action is the case of overlapping shape outlines. The natural 

tendency is to perceive this composite figure as the set of shapes originally used to construct it, 

but there are many other possible — albeit more complicated — interpretations. We hypothesized 

that monkey inferotemporal cortex neurons would also decompose such composite figures into 

their natural constituents. What we found, however, was exactly the opposite. The neuronal 

representation most resembling the composite figure was actually the external contour, tracing the 

overall footprint of the composite figure. This effect was especially true early in the stimulus 

presentation period. We interpret this finding as more support for the global advantage effect, and 

argue against an inferotemporal object code based on the law of simplicity. 
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4.1 INTRODUCTION 

Any theory of perception must deal with the basic fact that two-dimesional projections onto 

the retina permit many alternative interpretations. Therefore, the visual system must impose its 

own constraints to allow for the convergence on a single explanation for what the eyes are taking 

in. One such constraint is known as the law of simplicity, which lies at the heart of the Gestalt 

school of perceptual organization (Wertheimer, 1923).  

Simplicity hinges on the belief that the visual system interprets its available information 

with the simplest explanation possible. For instance, it’s simpler to imagine that a horse occluded 

by a tree is a single, whole animal rather than two half-animals. The law of simplicity is 

conjectured to underlie all other laws of perceptual organization (Wertheimer, 1923). From the 

very beginning, the simplicity  principle  was  put forward in opposition to the likelihood principle 

suggested earlier by Helmholtz, which has persisted as the predominant competing theory. 

Helmholtz’s likelihood principle suggests that the visual system interprets input as being derived 

not from the simplest interpretation, but from the most likely, based on prior experience (1925). 

Returning to the horse in the forest example, this theory states that the tree is considered an 

occluder and the horse considered whole because that’s far more likely than any alternative 

interpretation. Given this rather mundane example, both likelihood and simplicity are congruent, 

but what happens when we decouple them such that the simplest interpretation is unlikely? 

Leeuwenberg and Boselie proposed such a Gedankenexperiment by constructing the silhouette of 

a horse with a head on both ends (1988). The most likely interpretation is that there are two horses 

standing side by side facing opposite directions. The simplest interpretation, however, is that this 

is a strange animal with two heads, by virtue of symmetric information being redundant. This 

example seems to demonstrate that because likelihood and simplicity give rise to different 
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predictions they cannot be reconciled. However, at the level of theory they converge (Chater, 

1996). 

Likelihood is best and most commonly described within a Bayesian framework. Bayes’ 

rule takes in the prior probabilities of various scenarios as well as the current observations and 

spits out the most likely interpretation of these data (Bayes et al., 1763). Even though there is no 

explicit penalty for complexity, Bayes’ rule tends to favor simpler interpretations of the data 

(MacKay, 1992). Coming from the other side, structural information theory (SIT) is explicitly built 

upon the Gestalt principle of simplicity (Pomerantz and Kubovy, 1986), yet as a side-effect it 

exhibits the veridicality of stimulus identity that is characteristic of the likelihood model 

(Wagemans et al., 2012). Bayes rule and SIT can even be shown to be mathematically equivalent 

(Chater, 1996). So even though simplicity arose as a reaction to the likelihood hypothesis, these 

two models of perception are not mutually exclusive and may even be interdependent. How then 

does one explain the two-headed horse (Leeuwenberg and Boselie, 1988)? Even though such an 

animal is unlikely to occur based on raw frequency of sightings, the lack of depth and boundary 

cues do suggest the likelihood that this is one continuous object (Chater, 1996). However, this 

argument is purely theoretical and the empirical evidence to settle the debate is still lacking. 

Many studies have found evidence for various gestalt laws subsidiary to simplicity, such 

as grouping, illusory contours, common fate, similarity, and “seeing the forest before the trees” 

(Bona et al., 2014; Lee and Nguyen, 2001; Martin and Heydt, 2015; Sáry et al., 2007; Sripati and 
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Olson, 2009; Wannig et al., 2011; Zaretskaya et al., 2013; 

Zhou et al., 2000), but none have explicitly tested the 

neuronal basis for the law of simplicity. 

To tackle this mother of all Gestalt laws head-on we 

chose to leverage the problem that inspired the SIT model in 

the first place (Pomerantz and Kubovy, 1986). When shape 

outlines overlap the composite (Fig. 25A, yellow) humans 

still tend to perceive the “natural” parts used to construct it 

in the first place (Metzger, 1936). However, this is not the 

only possible interpretation. One can also imagine 

decomposing this composite figure into the “unnatural” parts 

typically hidden from conscious perception (Fig. 25, blue).  

Since neurons in IT tend to track conscious visual 

perception while subjects view and report on bistable stimuli 

(Sheinberg and Logothetis, 1997), we hypothesized that 

these neurons might also preferentially encode the natural parts of compound stimuli, and thus 

following the law of simplicity. We tested this by comparing the responses to each part and set of 

parts against the response to the composite. What we found was quite the opposite. The 

representation most resembling the composite was actually the external contour, tracing the global 

footprint of the composite (Sripati and Olson, 2010b), especially early in the trial. We take this as 

more support for the global advantage effect (Sripati and Olson, 2009), and argue against an 

inferotemporal object code based on the law of simplicity.   

Figure 25. The law of simplicity. There 

is a natural tendency to interpret  a 

composite figure made of overlapping 

shapes (yellow) as a collection of the 

“natural” parts used to construct it (red). 

However, there are other possible 

interpretations, which involve 

decomposing the composite into 

“unnatural” parts (blue). The tendency to 

perceive natural parts and overlook 

unnatural parts is evidence for the Gestalt 

law of simplicity. 

“natural” parts

“unnatural” parts

composite
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4.2 MATERIALS AND METHODS 

4.2.1 Animals and Equipment 

Two adult male rhesus macaque monkeys (Macaca mulatta) were used in these 

experiments (monkey 1 and monkey 2). Experimental procedures were approved by the Carnegie 

Mellon University Institutional Animal Care and Use Committee and were in compliance with the 

United States Public Health Service Guide for the Care and Use of Laboratory Animals. Before 

the recording period, each monkey was surgically fitted with a cranial implant and headpost (Crist 

Instrument). After initial training, a 2 cm-diameter vertically oriented cylindrical recording 

chamber (Crist) was implanted over the left hemisphere in both monkeys. In both animals, MRI 

brain scans were used to position the chamber mediolaterally above the superior temporal sulcus 

and rostrocaudally above anterior medial temporal sulcus. 

For behavioral testing, each monkey was seated in a primate chair with the head stabilized 

using the headpost. Events during each trial were controlled by Cortex software (NIMH). Visual 

stimuli were presented on a 17” LCD screen with 1024 x 768 pixels of resolution positioned 18” 

from the animal’s eyes. The precise time at which images appeared on the screen was recorded 

using a photodetector circuit (designed by NIMH and built in-house). Eye position was tracked by 

an infrared system (ISCAN). The system was calibrated by requiring the monkey, at the beginning 

of each block of trials, to fixate a small target presented successively at four locations 

corresponding to the corners of a 14° x 14° square centered on the screen. Offline, the readings on 

each trial were converted to degrees of visual angle by performing a linear transformation based 

on the stored calibration voltages. 
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Each day’s recording session would begin with the insertion of a varnish-coated tungsten 

microelectrode with an initial impedance of 1.0 M  at 1 kHz (FHC) into the temporal lobe through 

a transdural guide tube advanced using a hydraulic microdrive (Narishige). When mapping a new 

track electrodes were lowered to a depth such that its tip was 10 mm above the superior temporal 

sulcus, as estimated from MRI images of each animal’s brain. Using a grid inside the chamber 

with 1mm spacing between holes (Crist) the electrode could be advanced reproducibly along the 

same tracks day to day. The action potentials of a single neuron were isolated online by means of 

a commercially available spike-sorting system (Plexon). All waveforms were recorded during the 

experiments and final spike sorting was performed manually offline. 

Neurons were probed first with a set of 32 colorful photographs of objects to see whether 

they were visually-responsive. If so, they were further tested with the four composite stimuli (Fig. 

26A, yellow shapes), which ensure that neurons and stimuli were selected in a way that remained 

agnostic to experimental questions. Stimuli were chosen to maximize both mean firing rate. The 

composite that elicited the highest firing rate was chosen, along with all of its constituent parts 

(Fig 26A). 

4.2.2 Task and Training 

Monkeys were trained to maintain fixation within a 2° by 2° window around a central 

fixation point while shapes flashed on the screen at 2° eccentricity in the right visual hemifield. 

After fixating for 200ms a stimulus appeared for 200ms, followed by a 500ms gap (Fig. 26B). If 

fixation was maintained throughout the stimulus period the animals received a small juice reward 

and were allowed to look around freely until the fixation spot reappeared. All stimuli were 
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presented in a pseudorandom order so that each would be shown 8 times. Incomplete trials were 

repeated later in the block.  

Compound stimuli were formed from two overlapping shape outlines, which together 

spanned 2.5° horizontally and 3.5° vertically (Fig. 26A, yellow). Then those compound stimuli 

were decomposed into all of the constituent closed parts possible, so as not to introduce closure as 

a confound. The parts could either be the ones that the compound was initially composed of, which 

we dubbed “natural” parts (Fig. 26A, red), whereas other parts were labeled “unnatural” (Fig. 26A, 

blue). The natural parts were always 2.5° by 2.5° across whereas the unnatural parts could vary in 

size. The first category of unnatural parts was made by bisecting the compound stimulus along the 

vertical axis where the constituent shapes intersect (Fig. 26A, leftmost blue). The second kind of 

unnatural decomposition was made by separating the external contour of the compound from the 

internal contour (Fig. 26A, rightmost blue). The key difference between the natural and unnatural 

part designations is that to get the natural parts from the compound one must invoke the gestalt 

law of simplicity, which states that people tend to interpret ambiguous or complex images as being 

composed of the simplest forms possible (Metzger, 1936). The natural parts are more simple by 

virtue of having fewer abrupt direction changes (i.e., corners) that the unnatural shapes. Parts were 

always presented at the same location on the screen as they appeared in the composite, which was 

intended to avoid any influence that spatial location of particular features may have on the neuronal 

responses. 
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Figure 26. Passive fixation task. A, Four possible stimulus sets, each comprised of the composite (yellow) as well 

as its corresponding natural (red) and unnatural (blue) parts. B, Task sequence, which repeated with pseudorandom 

order until each shape had been presented 8 times. 
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4.2.3 Data Analysis 

Neurons were only considered for analysis if they fired at a significantly higher rate in the 

period 70 to 270 ms after stimulus onset compared to the baseline period, -100 to 50 ms. 

Significance was assessed using a Wilcoxon signed rank test with  = 0.05. Unless otherwise 

noted, this same epoch, 70 to 270ms after stimulus onset, was used for all analyses. 

Because the central question asks whether IT neurons encode composites as if they are 

made up of the natural parts, we need a way to measure how similar the population of neurons 

considers these images to be. To do this we measured the Euclidean distance between each pair of 

images in multidimensional neuronal activation space. The larger the distance, the less similar the 

population considers those images to be. The advantage of the neuronal activation space approach 

is that it gets around the issue of specific neuronal preferences and interrogates the population as 

a whole, much the way a downstream brain area might.  

Euclidean distance (ED) can be visualized in a time-varying, stimulus-aligned manner 

similar in spirit to a peristimulus time histogram (PSTHs). To do this, firing rates were first aligned 

to stimulus onset and then the ED between pairs of images was computed for each 5ms bin. 

Another way we visualized similarity between the stimuli was with multidimensional scaling, 

which finds a set of 2D coordinates for each stimulus such that the 2D distances are as close as 

possible to the distances measured in the full activation space. This was implemented with a built-

in function in MATLAB (mdscale) after first standardizing the firing rates into z-scores, as 

required by the model. The quality of this 2D representation was assessed as percent of total 

variance across the multidimensional space captured by the first two dimensions. This can be 

computed by dividing the sum of the eigenvalues for the first two dimensions into the sum of all 

the eigenvalues.  
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Another way to examine similarity between stimulus representations is with a dendrogram. 

For this we used another built-in MATLAB function (linkage) to convert z-scored mean firing 

rates into hierarchical clusters and then another function (dendrogram) was used to visualize these 

clusters. A dendrogram consists of a hierarchical series of inverted U-shaped connectors between 

clusters. The shorter the U (dubbed cophenic distance), the closer the clusters. To determine 

whether a given dendrogram was a good representation of the actual similarity between neuronal 

representations, we computed the Pearson correlation between the cophenic distances in the tree 

and the actual distances in the full neuronal activation space (cophenet in MATLAB). Like any 

correlation, this value could vary from 0 (poor dendrogram) to 1 (perfect dendrogram).  

To assess the degree to which the firing rate of the composite reflected the sum of its 

various pairs of parts, we first computed the average firing rate of the composite for each neuron. 

Then we computed average firing rate for one part as well as the average firing rate evoked by its 

complement. If the whole is equal to the sum of the parts then these values for each neuron should 

lie close to the unity line, which we assessed using a Wilcoxon signed-rank test.  

We also examined the degree to which the composite representation resembled that of the 

parts at different epochs following visual stimulation. We defined three epochs on the basis of the 

ED versus time plots. Epoch 1 spanned 80 to 150ms. Epoch 2 spanned 150 to 270ms. Epoch 3 

spanned 270 to 300ms. The epochs were initially selected visually, but each was confirmed to 

reflect a significant difference between the ED for the outline of the composite and the ED of the 

other parts. Within each epoch, we computed z-scored mean firing rates of each neuron for each 

part and then calculated the correlation coefficient between those values and the z-scored mean 

firing rates evoked by the composite during the same epochs.  
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To completely rid our measures of distance in neuronal activation space from possible 

firing rate confounds, we also computed distance in terms of the angle between population firing 

rate vectors. Distance between two stimulus conditions could then be calculated as the shortest 

great circle path between the corresponding population vectors. We used the following equation: 

θ𝑖,𝑗 =  cos−1(𝑟̂𝑖 ⋅ 𝑟̂𝑗)     Eq. 4 

where 𝑟̂𝑖 is the unit vector of the population firing rate for stimulus i, and 𝑟̂𝑗 is the unit vector of 

the population firing rate for stimulus j. The output, θ𝑖,𝑗, is the angular distance between the two 

population vectors, and it must lie within 0 to  radians. 

4.3 RESULTS 

We recorded 37 visually-responsive neurons from monkey 1 and 30 from monkey 2. The 

main question concerned whether the representation of the composite image more closely 

resembled that of the natural parts, which would indicate adherence to the law of simplicity. Our 

first major test was whether the average Euclidean distance in neuronal activation space between 

the natural parts and composite was smaller than the distance between the unnatural parts and the 

composite. This turned out not to be true (Fig. 27A). The distance between the neuronal 

representation of the composite and its constituent parts was not significantly different for natural 

versus unnatural decompositions either in the composite data (Wilcoxon signed rank, z(67) = 0.55, 

p = 0.58) or for monkey 1 (z(37) = 0.46, p = 0.73) or monkey 2 (z(30) = 0.02, p = 0.98) considered 

separately. 

Lacking evidence for the law of simplicity, we turned to the classic Gestalt adage that “the 

whole is different from the sum of the parts” (Koffka, 1935). We did observe this to be true for 



 

 105 

both natural (Fig. 27B) and unnatural (Fig. 27C,D) parts, with significant deviation from the sum 

in all cases (Wilcoxon signed rank, z(67) = 5.89, p = 4.0 x 10-9 for natural parts,  z(67) = 6.34, p = 

2.3 x 10-10 for vertically bisected unnatural parts, and z(67) = 6.35, p = 2.2 x 10-10 for nested 

contours). Rather than the sum, the average of the individual part responses was not significantly 

different from the response to the whole, regardless of whether it was deconstructed into natural 

parts (Wilcoxon signed rank, z(67) = 0.68, p = 0.50), vertically-bisected unnatural parts (z(67) = 

0.14, p = 0.89), or nested contours (z(67) = 1.12, p = 0.26). This finding is in line with previous 

work using non-overlapping shapes (Sripati and Olson, 2010a; Zoccolan et al., 2005). 

The same trend was present when both monkeys were considered separately. For monkey 

1, the neuronal responses to the composite significantly deviated from the responses to the sum of 

any complementary set of parts (Wilcoxon signed rank, z(34) = 4.35, p = 1.4 x 10-5 for natural 

parts,  z(34) = 4.76, p = 1.9 x 10-6 for vertically bisected unnatural parts, and z(34) = 4.78, p = 1.7 

x 10-6 for nested contours). In contrast, the average was a much more reasonable model (Wilcoxon 

signed rank, z(34) = 1.12, p = 0.26 for natural parts,  z(34) = 1.03, p = 0.30 for vertically bisected 

unnatural parts, and z(34) = 0.13, p = 0.89 for nested contours). For monkey 2, the neuronal 

responses to the sum was still a poor model (Wilcoxon signed rank, z(30) = 4.02, p = 5.6 x 10-5 for 

natural parts,  z(30) = 4.23, p = 2.4 x 10-5 for vertically bisected unnatural parts, and z(30) = 4.17, 

p = 3.0 x 10-5 for nested contours). In contrast, the average was a much more reasonable model 

(Wilcoxon signed rank, z(30) = 0.26, p = 0.78 for natural parts,  z(30) = 1.09, p = 0.28 for vertically 

bisected unnatural parts, and z(30) = 1.49, p = 0.14 for nested contours). 

  



 

 106 

 

Figure 27. Composites are no more represented as natural parts than unnatural parts. A, Average euclidean distance 

in neuronal activation space between the composite and natural (red) versus unnatural (blue) parts as a function of 

time since stimulus onset. B, The firing rates evoked by the composite are not equal to the sum of the responses to 

the natural parts. Filled circles indicate neurons whose firing rates significantly deviated from the dashed line 

representing a summation model (Wilcoxon signed rank test, p < 0.05). The percentage of significant neurons is 

indicated in the lower right corner. C, The same analysis as in B, except comparing the unnatural parts created by 

separating the composite into upper and lower components. D, The same analysis again except using the unnatural 

parts consisting of the external and internal contours.  
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Having ruled out simplicity as the guiding rule behind the inferotemporal shape code, we 

took a step back and asked how the response to each individual part compared to that of the whole.  

Using multidimensional scaling (see Methods) to render inter-object distances on a 2D plane, we 

saw that the composite was closest to the external contour in neuronal activation space (Fig. 28A). 

For monkey 1 considered alone, the results were virtually identical, with 68% varance explained 

by the reduced dimensions. For monkey 2, the composite was still closest to the external contour, 

but the natural shapes no longer appeared to be the next closest (61% of variance explained). 

Because collapsing the full 67-dimension neuronal activation space onto a 2D plane is 

bound to lose and distort information, we also analyzed the clustering in the full activation space 

using a dendrogram (see Methods). Just as before, the composite most closely clustered with the 

contour (Fig. 28B). The dendrogram representation correlated strongly with the distances between 

shapes in the full neuronal activation space (cophenic correlation, r = 0.73). When the data for the 

two monkeys was analyzed separately, monkey 1 again was nearly a carbon copy of the combined 

data (cophenic correlation = 0.58) while monkey 2 had some deviations in which parts clustered 

together (cophenic correlation = 0.78). Nevertheless, in both cases, the composite clustered most 

closely with the external contour. 

One possible explanation for this effect is that the composite and external contour may 

simply evoke higher mean firing rates compared to the other parts due to their relatively large size 

and overall number of photon emissions. However, that doesn’t seem to be the case because mean 

firing rate was not significantly different across conditions (Kruskal-Wallis test, H(67) = 3.93,  p 

= 0.69; Fig. 28C). The same was true for monkey 1 alone (H(37) = 3.92,  p = 0.69) as well as 

monkey 2 (H(30) = 1.15,  p = 0.98). 
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Overall, composites are encoded more like 

contours than any other part, but does this effect vary 

over time? The propensity to perceive global shape 

over local details (Navon, 1977) or for IT neurons to 

encode global shape first (Sripati and Olson, 2009) 

suggests that this might be the case. If so, we also 

want to know whether all the other parts are 

represented equally later in the trial. 

What we found is that the composite is 

indeed represented similarly to the contour in the 

early portion of the trial (Fig. 29A). During the first 

epoch, from 80 to 150ms after stimulus onset, the 

squared difference in mean firing rate between the 

composite and its contour was smaller than the mean 

squared firing rate difference between the composite 

and all the other parts (Wilcoxon signed rank test, 

z(67) = 2.53, p = 0.006). For the second epoch, from 

150 to 270ms after stimulus onset, the contour was 

actually significantly farther away in neuronal 

activation space than the other parts (Wilcoxon 

signed rank test, z(67) = 1.86, p = 0.03). For the 

third epoch, from 270 to 300ms, the system 

Figure 28. Composites more closely resemble the 

external contour than natural parts. A, Distance in 

neuronal activation space collapsed onto two-

dimensions using multidimensional scaling. The 

external contour (blue keyhole) is closest to the 

composite (yellow). B, Dendrogram showing the 

same result. C, The above results cannot be 

explained by mean firing rate because it is not 

significantly different across conditions.   
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oscillated back toward a contour-

heavy interpretation of the composite 

stimulus (Wilcoxon signed rank test, 

z(67) = 2.70, p = 0.004). 

When considering the data 

from monkey 1 alone, the results 

followed the same trend and the 

difference between the curves was 

significant for epoch 1 (Wilcoxon 

signed rank test, z(37) = 2.07, p = 

0.02), epoch 2 (Wilcoxon signed rank 

test, z(37) = 1.76, p = 0.04), and 

epoch 3 (Wilcoxon signed rank test, 

z(37) = 2.29, p = 0.01). For monkey 2 

alone the data again followed the 

same overall trend, but the effect was 

just shy of statistical significance for 

all epochs (Wilcoxon signed rank test, 

epoch 1: z(30) = 1.43, p = 0.08, epoch 

2:  z(30) = 0.91, p = 0.18,  epoch 3:  z(30) = 1.55, p = 0.06). 

To see whether particular parts matched the composite better than others during the 

different epochs, we computed the correlation coefficient between the z-scored firing rate evoked 

by each part and that of the composite (Fig. 29B). For the first epoch, only the external contour 

Figure 29. Composites resemble different parts over time. A, 

Euclidean distance as a function of the time after stimulus onset. The 

purple curve reflects distance between the composite while the green 

curve reflects the average distance between the composite and 

remaining parts. When the contour distance is less, the difference 

between the curves is highlighted in light purple. Likewise, when the 

distance is less for the remaining parts the area between the curves is 

highlighted in light green. Significant differences between the 

curves, pooled over shaded regions, are denoted with ** (p < 0.01). 

B, The correlation between z-scored firing rates evoked by each part 

versus the composite. Error bars represent the 95% confidence 

intervals. Significant positive correlations are denoted by * (p < 0.05) 

and ** (p < 0.01). 
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was significantly positively correlated with the 

composite (Pearson correlation, r(67) = 0.17 p = 

0.03). During the second epoch, the only part 

significantly positively correlated with the 

composite was the one corresponding to the top half 

of the composite figure (Pearson correlation, r(67) = 

0.25 p = 0.006). For the third epoch, none of the parts 

were significantly positively correlated with the 

composite. There were significant negative 

correlations during all three epochs, but the 

interpretation of this finding is unclear. 

Even though there were no significant 

differences in mean firing rate across stimulus 

conditions we were still concerned that firing rate 

covariation may be confounding our results. To 

completely remove firing rate from the equation we 

set aside Euclidean distance in favor of a distance 

measure that was instead based on the angle between 

the population firing rate vectors (Eq. 4). Since the 

angle and magnitude of population firing rate 

vectors are independent, we could be confident that 

any findings produced by this method were not due 

to firing rate contamination.  

Figure 30. Population vector angle yields the same 

results. A, Multidimensional scaling reflects 

approximate population vector angle between stimuli. 

As in Fig. 28A the composite is closest to the external 

contour. B, Dendrogram of angular distances between 

stimuli. Compare to Fig. 28B. C, Timecourse of the 

angular distances between the composite and the 

external contour (purple) and the mean angular distance 

between the composite and the remaining parts (green). 

Compare to Fig. 29A. 
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First, we repeated the multidimensional scaling analysis (Fig. 28A) using angular distance 

instead of Euclidean distance. Our results looked remarkably similar to the original analysis (Fig. 

30A). The composite was still situated closest to the external contour. Next we constructed a 

dendrogram with these correlation-derived distances, and arrived at the same essential outcome as 

with the ED-based clustering (Fig. 28B). The representation of the composite was closer to that of 

the external contour compared to other parts (Fig. 30B).  

Finally, we wanted to determine whether the temporal precedence of the contour-like 

representation was still present when examining angular distance between population vectors. The 

temporal dynamics remained intact (Fig. 30C), compared to the previous analysis (Fig. 29A). What 

differed between the two methods is that while the Euclidean distance between the composite and 

its constituent parts rose from baseline, the angular distance actually decreased from baseline. This 

is not surprising, but it serves to reinforce the rationale behind using angular distance as a metric 

unbiased by firing rate. Using a bootstrap analysis, we determined that the angular distance 

between composite and contour was significantly less than that of the other parts for the early 

epoch (1,000 permutations, p = 0.04) and trending toward significance for late epochs (1,000 

permutations, p = 0.07). For the middle epoch, there was no significant difference in angular 

distance (1,000 permutations, p = 0.59). The early epoch effect remained significant when 

considering only the data from monkey 1 (n = 37, p = 0.05), but only trended toward significance 

for monkey 2 (n = 30, p = 0.16). In both animals the trend was always in favor of a smaller angular 

distance between the composite and the external contour. 
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4.4 DISCUSSION 

We studied the responses of IT neurons to composite shapes and all of their constituent 

parts shown in isolation.  These parts can be categorized as either natural or unnatural based on 

the Gestalt law of simplicity (Fig. 25). The natural parts are those whose overlapping contours 

were used to construct the composites in the first place, and when taken as pairs they have fewer 

corners compared to the unnatural shapes. Humans tend to regard the unnatural parts as invisible 

unless they are explicitly pointed out (Metzger, 1936).  

What we found was that as a population IT neurons no more encoded the composite like 

the natural parts than like the unnatural parts (Fig. 27A). Instead, these overlapping shapes more 

closely resembled the average of any pair of complementary parts (Fig. 27B-D). One of the 

unnatural parts did come close to the composite in neuronal activation space: the external contour. 

This effect was prominent early in the trial (Fig. 29A).  

4.4.1 Relation to Occlusion   

Previous work using overlapping shape outlines demonstrated mean firing rate suppression 

to the composites compared to the individual natural parts (Missal et al., 1999). Our results did not 

replicate this finding. Instead, we observed that mean firing rates was the same across conditions 

(Fig. 28C) and on a neuron-by-neuron basis the composite response was equal to the average of 

the responses to the parts (Fig. 27B-D).  

Our results are also at odds with a prior finding in V4 that the representation of accidental 

contours – those generated by occlusion of solid shapes – were suppressed (Bushnell et al., 2011). 

The analog of accidental contours in our study were the unnatural parts. We saw no evidence that 
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the responses to unnatural parts were suppressed compared to natural parts or composites. 

However, the comparison between accidental contours created by opaque occluders and the 

creation of unnatural parts by overalapping shape outlines are not exactly the same, so it is unclear 

whether our results truly stand in opposition.  

Instead it may be the case that opaque occluders more forcefully assert the percept of 3D 

overlap whereas line drawings are perceived as 2D intersections. However, Missal and colleagues 

also explored the effect of opaque occluders and found no significant differences between those 

conditions and overlapping shape outlines (1999), suggesting that the lack of suppression we 

observed was not due to our use of shape outlines. Neither these studies nor ours incorporated 

behavior so we can’t say for sure whether the neuronal difference reflect genuine difference in 

mental percepts.  

4.4.2 The Whole is equal to the Average of the Parts 

Our result that the whole is equal to the average of the parts is in agreement with prior 

studies involving IT neurons (Sripati and Olson, 2010a) and visual search behavior (Pramod and 

Arun, 2016a). Under these previous designs, the parts were segregated to separate poles of the 

objects, and the local features anchoring the parts to the object never changed, so it is less 

surprising that IT neurons would encode the whole as a linear combination of the parts in this 

context.  

One exception to this rule of part summation was the presence of symmetry, which 

increased the perceived dissimilarity between objects (Pramod and Arun, 2016a). Symmetry has 

long been a fixture of the Gestalt theories of vision, and it ties into the law of simplicity by the 

virtue that symmetric objects are simpler than their asymmetric counterparts so they attain 
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configural superiority such that they “pop out” of visual arrays (Pomerantz et al., 1977). Another 

interesting parallel between this behavioral work and the present experiment is that when the 

targets of visual search were varied in their natural parts – in this case defined as the top and bottom 

halves of a wasp-waisted figure – there was a slight advantage over when the unnatural parts – 

defined as the parts separated by a vertical bisection – were varied across search targets (Pramod 

and Arun, 2016a). Because of this behavioral evidence that the Gestalt of objects affects their 

mental representation, it was surprising that there were no nonlinearities present in our results.  

Using the kind of 2D line drawings that we employed, it has been demonstrated that 

humans more readily perceive natural compared to unnatural parts (Mens and Leeuwenberg, 

1988). Because our results stand in opposition to this behavior, we can postulate three 

explanations. First, it may be the case that neuronal segregation of natural from unnatural parts 

may require conscious effort that our monkeys were not inspired to put forth. Second, parsing 

composites into natural parts may be unique tendency of humans, perhaps as a result of prior 

history with interpreting abstract shapes. Third, the breakdown of composites into natural versus 

unnatural parts may occur somewhere outside of IT cortex. While IT activity correlates with 

spontaneous perceptual oscillations of a bistable image (Sheinberg and Logothetis, 1997), task 

instructions not seem to modulate IT responses evoked by single objects (Vogels et al., 1995).  The 

supposition that monkeys don’t perceptually parse composites into their natural parts remain 

plausible because no one has explicitly tested this in monkeys behaviorally. While functional 

imaging demonstrates activation in human LOC when displays possess the Gestalt rule of good 

continuation (Kuai et al., 2016), monkey IT is not a perfect analog. Therefore, we cannot conclude 

from our negative finding that the law of simplicity is not reflected elsewhere in the primate brain.  
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4.4.3 Dissociating External Contour from Internal Parts 

While we did not find evidence for natural part preference, we did observe that one part 

stood above the rest. Of all the parts we tested, the external contour came closest to capturing the 

representation of the composite (Fig. 29A). This is similar to the finding that IT neurons encode 

image dissimilarity according to the global footprint of objects (Sripati and Olson, 2010b). 

Many attempts have been made in the past to describe the high level neuronal 

representation of shapes in terms of the external contour of objects. So-called boundary-based 

models first convert an object into a silhouette, discarding internal detail. Four boundary-based 

models were compared against human psychophysics during a visual search task and found to be 

wholly inadequate to describe the perception of shape dissimilarity (Pramod and Arun, 2016b). 

One of these models, Fourier descriptor filters was also tested against shape representations in IT 

and found to be a poor fit in that system as well (Albright and Gross, 1990).  

What we observed is that especially early in the trial (Fig. 29), the composite was encoded 

more like the external contour than any other part. Later in the trial the parts – in particular the part 

created from the top half of the composite – became more equally represented. We take this as 

evidence for the global advantage effect, in which global shape is perceived before local details 

(Navon, 1977), which has previously been demonstrated in IT with Navon-style hierarchical 

stimuli (Sripati and Olson, 2009). 

4.4.4 Likelihood versus Simplicity 

Finally, we return to an age-old debate. Are visual stimuli interpreted in the simplest way 

possible (Wertheimer, 1923), or as the most likely interpretation (Helmholtz, 1925)? Our results 
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are more consistent with the latter theory. Each part was equally likely to appear under our 

experimental design. The simplicity of parts conferred no bias on neuronal responses. Composites 

were instead encoded as a linear combination of their constituent parts.  

By contrast, prior studies have shown that IT neurons robustly encode familiarity 

(Anderson et al., 2008; Freedman et al., 2005; Li et al., 1993; Mruczek and Sheinberg, 2005). 

Therefore, a neuronal mechanism exists in inferotemporal cortex whereby the input could be 

interpreted based on its likelihood, which is in turn derived from past experience. This is the idea 

behind hierarchical Bayesian models of visual cortex (Lee and Mumford, 2003). Since our 

experiment did not vary the likelihood that any part would appear we cannot say that our results 

provide evidence for the likelihood model, only that our results do not support its rival, the 

simplicity model.  

4.4.5 Conclusions 

Ultimately what we conclude from these results is that inferotemporal cortex does not abide 

by the Gestalt law of simplicity when encoding two-dimensional overlapping shapes. Such 

composites were merely represented as the average of any pair of constituent parts, regardless of 

how complex or how unnatural they were. Furthermore, the whole was represented especially well 

by the external contour alone, particularly in the first 70ms of the visual burst. We take this as 

additional evidence that global form is encoded before local features and that this phenomenon 

occurs in inferotemporal cortex.  
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5.0  GENERAL DISCUSSION 

The purpose of the experiments described in this dissertation was to investigate the 

neuronal mechanisms that contribute to object representation. The experiment presented in chapter 

2 investigated whether macaque monkeys experience the phenomenon of crowding. We 

demonstrated that, like humans, macaque monkeys have greater trouble discriminating peripheral 

letters when other letters are nearby, and that the interference zone was dependent solely on 

eccentricity. These are the hallmarks of crowding, and they provide a new behavioral paradigm 

for investigating this phenomenon at the neuronal level, which has never before been done. The 

experiments presented in chapter 3 did just that. We investigated the effects of crowding on visual 

object representations in inferotemporal cortex. What we found was that crowding both 

quantitatively weakens the neuronal selectivity between crowded objects and qualitatively alters 

the neuronal code. In chapter 4 we continued the theme of investigating how parts of objects 

interact, this time in the context of overlapping shapes that create new parts. What we found is that 

rather than following Gestalt principle of simplicity, inferotemporal cortex neurons encoded 

composite stimuli as the average of any complete set of their constituent parts. The significance of 

our findings was discussed at a more technical level at the end of the previous chapters. Here, we 

provide a more general overview of the relevance of our findings to the field of visual neuroscience 

at large.  
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5.1 A MONKEY MODEL OF VISUAL CROWDING 

Much of what we think we know about the human nervous system comes from the study 

of nonhuman animals. The emphasis on animal models in understandable given the limitations of 

experimental tools available for use in humans, particularly when it comes to understanding 

mechanisms at or below the level of single neurons. For many cognitive and behavioral 

neuroscientists, the animal of choice has been the macaque monkey (Macaca mulatta). The role of 

macaques as proxies for humans is especially apparent in vision research. When textbooks turn 

from human visual function to its neuronal basis, they switch from human to macaque studies so 

casually that one could easily lose sight of the fact that these species are not neurologically 

equivalent. 

Old World monkeys, the group to which macaques belong, diverged from apes and humans 

approximately 25–30 million years ago (Wilkinson et al., 2010). When considering the 

evolutionary relationship between any pair of species, it is important to keep in mind that 

evolutionary changes can and do occur along both branches emanating from the most recent 

common ancestor. Thus, it is not a given that homologous structures and functions are conserved. 

 While it has been asserted that monkeys see what humans see (Kaas, 1992), when the two 

species were tested in side-by-side psychophysical tasks, researchers found “important, nontrivial 

differences between the data for monkeys and humans” (Harwerth and E. L. Smith, 1985). 

Whereas humans showed the greatest sensitivity to light in the red part of the spectrum and the 

lowest sensitivity to blue, macaques followed the opposite trend, which the researchers attribute 

to pre-retinal light loss due to higher macular pigment in humans (Harwerth and E. L. Smith, 

1985). Humans also possess superior acuity compared to macaques, as measured by orientation 

discrimination (Vazquez et al., 2000), Vernier acuity (Kiorpes et al., 1993), or the peak spatial 
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frequency of luminance contrast sensitivity (Harwerth and E. L. Smith, 1985). Harwerth and Smith 

chalked this acuity difference up to differences in the size of the eye. Additionally, humans had 

larger and more profoundly inhibitory “perceptive fields” – the regions of visual space over which 

an annulus interferes with the detection of a spot of light within in (Spillmann et al., 1987) – which 

may have implications for attention allocation (Kaas and Collins, 2003). This result is also relevant 

to the present study, which is concerned with crowding.  

 With the ultimate goal of understanding the neuronal mechanisms underlying crowding we 

did not want to assume that monkeys exhibit crowding or that a task suitable for monkey 

neurophysiology would produce crowding. What we observed was that macaque monkeys do 

exhibit the essential hallmarks of crowding.  

At the most basic level, nearby flankers impeded the discrimination of peripheral targets, 

and as the spacing between targets and flankers increased performance improved. Most 

importantly, the critical spacing over which flankers interfered with target recognition scaled with 

eccentricity, independent of target/flanker size. Human behavior under identical task conditions 

reflected these same overall patterns, although critical spacings were on average a little smaller in 

humans. This finding establishes a benchmark for the extent and spread of crowding in a nonhuman 

primate that can be invoked for future neurophysiological investigations. Our results also support 

the use of the macaque monkey as a relevant model organism for future studies of crowding. 

Crowding researchers can now avail themselves of the powerful invasive tools not available for 

human studies. 
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5.2 CROWDING AND OBJECT REPRESENTATION  

At the core of most vision research is implicitly or explicitly a hierarchical, feedforward 

model, in which visual processing proceeds from the analysis of basic features to more and more 

complex ones (Fukushima, 1980; Guclu and van Gerven, 2015; Riesenhuber and Poggio, 1999; 

Serre et al., 2007). Neurons in the primary visual cortex V1 act as filters to detect the lines and 

edges of visual images (Hubel and Wiesel, 1959). Neurons in V2 pool information from V1 

neurons to encode more complex features, such as contours (Hegde and Van Essen, 2000) or 

texture (Freeman et al., 2013). This coding principle of filtering and pooling proceeds along the 

visual hierarchy to V4 and ultimately IT. The beauty and main goal of these models is to replace 

subjective terms, such as the Gestalt laws, by truly mechanistic theory, but there’s an inherent 

danger that the theory will be over-simplified. 

Let’s consider two important characteristics of this hierarchical feedforward theoretical 

framework. First, if information is lost at the early stages, it is irretrievably lost, since processing 

at each level is fully determined by convergent inputs from the previous level. Second, receptive 

field size increases along the visual hierarchy because integration over progressively larger parts 

of the visual scene is necessary for representing faces and objects, as IT does. Although these 

hierarchical feedforward models don’t generally account for differences between foveal and 

peripheral vision, we know empirically that receptive fields also get larger as a function of 

eccentricity (Gattass et al., 1981; 1988).  

So, what does any of this have to do with crowding? Several researchers have pointed to 

large peripheral receptive fields as the fundamental neuronal mechanism underlying crowding 

(Freeman and E. P. Simoncelli, 2011; Rosenholtz, 2012). By this line of reasoning, peripheral 

object recognition becomes difficult when objects are embedded in clutter because irrelevant 
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elements comingle with relevant ones when they all fall within the same receptive field. Past 

behavioral experiments, as well as the results presented in chapter 3, highlight the flaws of this 

account of crowding, and by extension, the purely hierarchical feedforward model of object 

recognition in general. 

In particular, crowding is not an inevitable bottleneck, as was once thought (Levi, 2008). 

Adding more flankers (Banks et al., 1979), planning a saccadic eye movement (Harrison et al., 

2013), and arranging flankers such that they exhibit grouping (Livne, 2010) can release peripheral 

stimuli from crowding. In our own research, we observed that information apparently lost in the 

feedforward sweep may not be entirely irretrievable under crowding. When attention was deployed 

to crowded targets, neuronal selectivity improved over time (Fig. 15, 16), which should not have 

occurred if target information was actually lost. Furthermore, we observed qualitative changes in 

the neuronal preferences for targets (Fig. 17, 18), main effects (Fig. 20A,B), and interaction effects 

(Fig. 20C,D) as a function of the spacing between peripheral stimuli. This finding doesn’t follow 

from a feedforward, hierarchical model that pools information across receptive fields. Therefore, 

these models fail to explain crowding and thus they cannot explain object recognition in general.  

Overall, crowding offers a powerful tool for breaking the normal processes of object 

recognition, and in turn highlighting ways in which models of the brain come up short. By probing 

crowding at the level of single neurons we were able to uncover a novel neuronal behavior – 

swapping stimulus preferences –  which future models of vision should be able to replicate.  

Besides crowding, hierarchical feedforward models of vision also fail to account for the 

primacy of the whole – seeing the forest before the trees – as well as the laws of vision put forth 

by the Gestalt school of psychology. While the Gestalt system was light on mechanistic theory, 

the phenomena they sought to explain do not go away. In the next section, we investigate how the 
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Gestalt law of simplicity relates to the encoding of parts and wholes by inferotemporal cortex 

neurons. 

5.3 THE WHOLE EQUALS THE AVERAGE OF THE PARTS 

Since it was first committed to the page a century ago, researchers have attempted to 

operationalize the fuzzy Gestalt notion that the whole is not simply the sum of its constituent parts. 

The goal of operationalization was to create quantitative and falsifiable hypotheses, and ultimately 

to develop a theoretical framework that captures the perceptual phenomena that inspired the 

Gestaltists in the first place.  

Perhaps the most famous attempt at translating Gestalt psychology into a quantitative 

model came in the form of structural information theory (SIT), which is based on Shannon’s 

information theory (1948). Rather than quantifying information by the probability of occurrence – 

as Shannon did – SIT quantifies the information load of a visual stimulus by the number of 

parameters needed to specify its content. For instance, two parallel curves in an object, let’s call 

them c, could be represented as 2c, whereas two different curves, would have to be represented 

with their own parameters, say d and e. When objects can be represented according to multiple 

coding schemes – such as when occlusion introduces accidental contours – SIT offers a mechanism 

to quantify the information load of each potential representation. Following the Gestaltist elevation 

of simplicity as the core principal of visual representation, proponents of SIT postulated that 

stimuli are perceptually organized according to the simplest – i.e., lowest information load – 

representation possible (Simon, 1972).  
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We sought to test this hypothesis by constructing composite stimuli that could be 

decomposed in several ways, with varying degrees of complexity. What we observed was that 

composite stimuli were not preferentially represented as a combination of the simplest possible set 

of parts (Fig. 27A). Rather, the composite was encoded as the average of any complete set of parts 

(Fig. 27B-D). This finding is in line with the idea that even though hidden figures tend not to rise 

to the level of conscious awareness they are still present in the subconscious (Mens and 

Leeuwenberg, 1988). Despite the lack of evidence for SIT, we did find support for another 

operationalization of holistic processing: primacy of the whole (Fig. 29A, 30C). 

Primacy of the whole – the idea that stimuli are processed holistically before their local 

features are perceived – has been previously demonstrated both behaviorally (Navon, 1977) and 

at the level of single neurons (Sripati and Olson, 2009). What these results imply is that visual 

processing progresses hierarchically down a decision tree, with global form at the top and local 

features in the branches. This is like the predominant hierarchical, feedforward models of the visual 

system, except played out in reverse (Hochstein and Ahissar, 2002).  

Our findings reinforced the notion of primacy of the whole in the sense that the external 

contour of a composite stimulus was represented first, before the other parts. However, the more 

precise hierarchical conceptualization of this theory found less support in our data. We constructed 

hierarchical trees depicting the relationships between the various parts and the composite (Fig. 

28B). While the external contour continued to cluster with the composite in this analysis, and the 

parts formed a secondary cluster, it was the curvy part of the set – depicted as a circle in Fig. 28B 

– that stood atop the hierarchy, not the external contour or the composite. Yet again, this 

operationalization of Gestalt principles was not fully borne out in the neuronal data. 
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While our simple experiment with composite shapes and various decompositions is not 

sufficient to reject Gestalt theory outright, it does cast doubt on the notion that Gestalt laws are 

innately present in the visual system. It could be that holistic neuronal representations in the visual 

system only come with practice (Baker et al., 2002). Or perhaps monkeys lack the level of holistic 

perception that humans possess (Bruce, 1982), such that to the nonhuman primate brain the whole 

really is simply a combination of its parts (Sripati and Olson, 2010a). Since our experiment lacked 

behavior, we cannot make any strong claims about how our animals perceived the compound 

stimuli. 

Ultimately, the behavioral evidence for Gestalt laws is robust and real (Elder and Zucker, 

1994; Pomerantz et al., 1977; Pomerantz and Portillo, 2011; Sekuler and Palmer, 1992). 

Introspectively, these rules of perception seem effortless, almost inescapable (Metzger, 1936). 

Thus, despite the absence of mechanistic explanations, we should not reject the Gestaltists’ 

intuitions. They protect us from falling back on the reductionist view that the representation of 

integrated, coherent forms can be understood by studying local processing alone. 

5.4 SUMMARY AND CONCLUSIONS 

The work described in this dissertation has resulted in three contributions to our 

understanding of the neuronal mechanisms of object recognition. The first discovery is that 

macaque monkeys exhibit the behavioral hallmarks of visual crowding. This is the first 

demonstration of this phenomenon in a non-human primate and it establishes a new experimental 

paradigm for future investigation of the elusive neuronal mechanisms underlying crowding. The 

second discovery is that crowding both quantitatively weakens and qualitatively changes the 
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neuronal code in inferotemporal cortex. This finding rules out an explanation of crowding based 

solely on signal averaging. The third discovery is that neurons in inferotemporal cortex do not 

follow the Gestalt law of simplicity. Instead, they encode composite shapes as the average of any 

set of its constituent parts, not just those that appear “natural” or “simple” (i.e., possess the fewest 

corners). Taken together, these results provide novel insights into how the representation of object 

parts interfere and cohere in inferotemporal cortex.  
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