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SEARCH FOR BS → η′η IN BELLE DATA

Anthony Zummo, BPhil

University of Pittsburgh, 2017

We search for the decay Bs → η′η using 121.4 fb−1 of data collected at the Υ(5S) resonance

with the Belle detector at the KEKB asymmetric-energy electron-positron collider. This

decay is suppressed in the Standard Model of particle physics and proceeds through transi-

tions sensitive to new physics. The expected branching fraction for Bs → η′η in the Standard

Model is 33.5×10−6. This decay has not been observed yet. We use Monte Carlo simulation

to optimize our selection criteria for signal events and a Neural Network to separate signal

from background. Our study maximizes discovery potential for this process.
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1.0 INTRODUCTION

1.1 THEORETICAL BACKGROUND

1.1.1 The Standard Model of Particle Physics

The Standard Model of particle physics was formulated in the 1960’s and 1970’s to classify

all known subatomic particles and describe their interactions. The Standard Model classifies

fundamental particles into two groups based on the laws of statistics these particles obey.

Particles with integer spin obey Bose-Einstein statistics and are referred to as “bosons”,

while particles with half-integer (e.g. 1/2, 3/2, 5/2, ...) spin obey Fermi-Dirac statistics and

are referred to as “fermions”. The primary difference between the Bose-Einstein statistics

that describe bosons and the Fermi-Dirac statistics that describe fermions is that identical

fermions cannot occupy the same quantum state simultaneously while bosons can. This

phenomenon is called the “Pauli exclusion principle”. Included in the Standard Model’s

fundamental particles are five bosons that mediate the different fundamental interactions

between particles. These force-carrying particles are the photon which mediates electromag-

netic interactions, the gluon which mediates strong interactions, the charged W and neutral

Z bosons which mediate weak interactions, and the Higgs boson. In addition, the Standard

Model includes three “generations” of fermions, further divided into two categories of quarks

and leptons. There are six “flavors” of quarks within the Standard Model three of which

have electric charge q = +2/3 (up, charm, and top quarks) and three of which have electric

charge q = −1/3 (down, strange, and bottom quarks). These particles interact through

the strong, weak, and electromagnetic forces and bind together in different combinations to

make up composite particles. For example, protons and neutrons are baryons – particles

1



Figure 1: Fundamental particles of the Standard Model [1]

composed of three quarks – and pions are mesons – particles composed of a quark-antiquark

pair. There are also six flavors of leptons within the Standard Model. Charged leptons (elec-

trons, muons, and taus) have an electric charge of q = −1 and interact through the weak and

electromagnetic forces. Neutrinos (νe, νµ, and ντ ) have no electric charge and therefore only

interact through the weak force. All fundamental particles also have corresponding antipar-

ticles 1 which have the same properties of the particles except with the opposite quantum

numbers (such as their electric and color charges). Antiparticles are denoted either through

the explicit conjugation of charge (e.g. the antiparticle of e− is e+) or through the use of

an overbar for uncharged particles (e.g. the antiparticle of νe is ν̄e). The categorization of

the fundamental particles in the Standard Model as well as their mass, charge and spin are

summarized in Fig. 1.

The Standard Model not only classifies the fundamental particles of the universe, but also

describes the interactions between these particles. The Standard Model has been extremely

successful in explaining experimental observations and making reliable predictions. However,

1In some cases (γ, Z0), particles are their own antiparticles.
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there are several important experimental facts that the Standard Model does not address. For

example, the universe contains much more matter than antimatter, neutrinos have masses,

and astrophysical data suggest there is a large amount of dark matter in the universe. None of

these observations can be explained by the Standard Model. In addition the Standard Model

does not include any description of gravity, one of the four fundamental forces. Because of

this, searching for “New Physics” (NP) or physics “Beyond the Standard Model” (BSM) is

one of the main goals of particle physics. Searches for BSM physics are conducted in several

different areas, including the “cosmic frontier”- which includes experiments that search for

new physics using cosmological data, the “energy frontier”- which includes experiments that

search for new physics at the highest possible energies, and the “intensity frontier”- which

includes experiments that search for indirect signs of new physics by precisely measuring

and comparing rare processes to Standard Model predictions. The Belle experiment is one

such experiment searching for BSM physics at the intensity frontier. The Belle experiment

was designed to allow the properties of particles called B and Bs mesons to be studied with

unprecedented precision.

1.1.2 B mesons

B mesons are particles consisting of a b antiquark or quark bound to any lighter quark or

antiquark (i.e. u, d, c, or s) via the strong force. Because the b quark or antiquark can be

bound to several different flavors of quarks, there are several different types of B mesons:

B0, B̄0, B+, B−, Bs, B̄s, B
−
c , and B+

c . Similar to most subatomic particles B mesons

are unstable and on average will decay into “daughter particles” after approximately 10−12

seconds. B mesons have many interesting properties which has led several experiments to

study these particles in great depth. One example of these properties is that the neutral B

meson states (B0 and B̄0, and Bs and B̄s) are able to oscillate between themselves and their

corresponding antiparticle. This process can occur through the exchange of two W bosons

and is shown for Bs–B̄s oscillations in Fig. 2.

Another interesting property of B mesons is that Charge Parity (CP) symmetry is vio-

lated in their decays. In fact, the primary goal of the Belle experiment was the measurement
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Figure 2: Feynman diagram of BsB̄s mixing

of CP violations in B meson decays. Charge conjugation is an operation that transforms all

particles into their antiparticles given by:

Ĉ |p〉 = |p̄〉 (1.1)

where Ĉ is the charge conjugation operator and |p〉 is an arbitrary particle. Under charge

conjugation symmetry, this operation would leave physics unchanged. However, this sym-

metry is broken in nature. In addition, a parity transformation is an operation which flips

the sign of all of the spatial coordinates given by:

P̂ |~x〉 = ± |~x〉 (1.2)

Under parity transformation symmetry this operation would leave physics unchanged,

however, this symmetry is also broken in nature. A charge parity transformation is simply

the combined transformations of charge and parity and this potential symmetry is also found

to be broken in nature. These broken symmetries give insight into the differences between

matter and antimatter, and can also give insight into the matter antimatter asymmetry in

the universe. For this reason, discovering sources of CP violation is one of the most important

goals in experimental particle physics.

4



1.1.3 Rare and Penguin Decays

One type of process that can be studied at intensity frontier experiments are rare decays of

B and Bs mesons. While there is no definition for what is considered “rare”, there are many

decays that only occur on the order of once per million B mesons. The probability of these

decays occuring, called the “branching fraction”, is thus B = 10−6. This probability can be

calculated theoretically for many decays using the framework of the Standard Model. By

measuring these branching fractions experimentally, we are able to test the Standard Model

predictions.

One type of decay that is of particular interest are the so-called “penguin” decays. These

decays occur through transitions in which a particle is emitted and reabsorbed by the same

particle. An example of this type of transition and its resemblance to a penguin is shown

in Fig. 3. The Feynman diagrams of penguin decays thus have a characteristic “loop”.

This is opposed to simpler diagrams called “tree” diagrams. These penguin decays are

suppressed in the Standard Model and occur through the transition of a b quark to a d,

or s quark (b → d, s). These transitions are interesting because the respective “tree” and

“penguin” amplitudes of these decays could be of similar magnitude, so the interference

effects between these amplitudes could be sizeable even if one of the amplitudes is relatively

small. In addition, new particles not described by the Standard Model can enter the loop and

contribute new interesting effects. The presence of new particles could thus manifest itself

in several different ways, such as a deviation of the branching fraction from the Standard

Model prediction, CP violating asymmetries, or allowing decays forbidden in the Standard

Model. By searching for new rare decays of Bs mesons that are sensitive to NP, we are able

to either provide evidence for NP or constrain existing models.

1.2 THE BELLE EXPERIMENT

The Belle experiment collected data from 1999-2010 and was conducted by an international

collaboration of over 400 physicists and was located at the High Energy Accelerator Re-

5



Figure 3: Feynman diagram of a penguin transition

search Organization (KEK) in Tsukuba, Japan. This experiment operated by accelerating

electrons and positrons to have energies of 8 GeV and 3.5 GeV, respectively, before colliding

them at the interaction point within the Belle detector. These high energy collisions can

result in electron-positron annihilation, creating many unique and interesting particles and

resonances. In particular, the Belle experiment was designed to produce many B and Bs

mesons, allowing their properties to be studied in great depth. This type of experiment is

called a “B-factory” and is acheived by colliding electrons and positrons at the energy of the

Upsilon (Υ) resonances which commonly decay to pairs of B mesons. The Belle experiment

has collected large data samples of the Υ resonances at the (1S) through (5S) energies 2. The

Belle experiment primarily operated at the Υ(4S) resonance (
√
s = 10.58) and collected a

data sample of 703 fb−1 corresponding to 772 million BB̄ pairs. The Belle experiment also

collected a large data sample at the Υ(5S) resonance (
√
s = 10.86). These Υ(5S) resonances

commonly decay into a pair of quantum mechanically entangled Bs mesons. 121.4 fb−1 of

data was collected at the Υ(5S) resonance corresponding to a sample of 6.5 million BsB̄s

pairs.

2These are the first through fifth radially excited states of the Υ resonance
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Figure 4: Schematic diagram of the KEKB accelerator [2]

1.2.1 KEKB

KEKB is the asymmetric collider that accelerated and guided the electrons and positrons

to the interaction region. It consisted of two storage rings that are 3 km in circumference.

The first of these rings is the high energy ring (HER) which contains an electron beam

with energy E = 8.0 GeV and the second is a low energy ring (LER) which contains a

positron beam with energy E = 3.5 GeV. The electrons and positrons are accelerated using

a linear accelerator before being injected into their respective storage rings. A diagram of

the accelerator is shown in Fig. 4. The KEKB accelerator is described in detail in Ref. [2].

1.2.2 The Belle Detector

The Belle detector is a multilayer particle detector located at the interaction point of KEKB.

Because the center-of-mass system of e+e− collisions is not at rest in the detector’s frame
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Table 1: Subdetectors of the Belle detector

Subdetectors

Silicon Vertex Detector (SVD)

Central Drift Chamber (CDC)

Time-of-Flight Detector (TOF)

Aerogel Cherenkov Counter (ACC)

Electromagnetic Calorimeter (ECL)

KL and Muon Detector (KLM)

Extreme Forward Calorimeter (EFC)

of reference, the detector itself was designed to be asymmetric. The detector is permeated

by a uniform 1.5 T magnetic field in the direction of the beam axis causing the trajectories

of charged particles to be helical. Several subdetectors make up the Belle detector. These

subdetectors are listed in order from closest to furthest from the interaction point in Table 1.

These detectors have several functions allowing for the analysis of data from e+e− colli-

sions. The subdetectors reconstruct the trajectories of particles as they traverse the detector.

They also perform measurements to identify the types of the detected particles. The Belle

detector and its subdetectors are described in detail in Ref. [3] and a diagram of the detector

is shown in Fig. 5.

1.3 EXPERIMENTAL TECHNIQUES

1.3.1 Particle Reconstruction

Because Bs mesons have an extremely short lifetime, they decay before they are able to

be detected directly by the innermost subdetectors of the Belle detector. Therefore, in

order to indirectly detect Bs mesons, we must first directly detect the secondary particles
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Figure 5: Schematic diagram of the Belle Detector [3]

created in their decays. After these secondary particles are detected, we are able to infer

the properties of the candidate Bs meson from its daughters. This process is called particle

reconstruction. Because energy and momentum are conserved in particle interactions, we

are able to measure the energy and momentum of a Bs meson candidate by simply adding

the energy and momenta of its daughter particles. In order to determine the mass of the Bs

candidate we can use the relativistic equation (in natural units where c = 1)

m2 = E2 − p2 (1.3)

where E, m, and p are the reconstructed energy, mass, and momentum, respectively, of the

Bs candidate. In order to search for Bs mesons decaying to certain daughter particles, we

must find all instances of the daughter particles of this decay and reconstruct all possible

candidates for the parent particle. Plotting the mass (or other properties) of the Bs candi-

dates shows that candidates that do not come from actual Bs meson decays are randomly

distributed, while candidates that do come for Bs meson decays are distributed closer to the

actual mass of a Bs meson. We exploit these differences in the distributions to statistically

estimate the number of actual Bs mesons in a sample.

9



1.3.2 Monte Carlo Simulation

In order to develop and validate the analysis procedures used by the Belle collaboration,

samples of Monte Carlo (MC) data are generated. These MC data samples are obtained

from simulations of the events that occur in the e+e− collisions of KEKB and the detector

response of Belle. The simulations use pseudorandom number generators to determine which

physical processes occur in each e+e− collision and the efficiency and accuracy of the mea-

surements performed by the Belle detector. The likelihood of processes being chosen to occur

in the simulations are determined by previous measurements and theoretical predictions of

the probabilities for these processes. In addition, the probabilities for these processes can

be controlled by the user to ensure certain events occur in these simulations. Analyses com-

monly use two types of simulated MC data samples. In background MC, the probabilities

of processes occuring are determined by previous measurements and theoretical predictions.

In signal MC, the probabilities of simulated processes are set to ensure that the events being

studied are generated. These two simulated data samples are used to quantify the differences

between signal and background distributions and to optimize our analysis techniques.

1.4 THE DECAY

Because the final state products of Bs → η′η are hadrons containing no charm quarks, Bs →

η′η is a charmless hadronic decay. Charmless hadronic decays of B mesons are important

both to understanding CP-violation and flavor mixing in the Standard Model (SM), and to

searching for physics beyond the Standard Model (BSM) [4]. Bs → η′η proceeds primarily

through b→ u transitions, or b→ s transitions. This can be seen in the three representative

Feynman diagrams of the decays Bs → η′η and Bs → η′π0 in Fig. 6. Penguin decays

are sensitive to BSM scenarios including a fourth fermion generation, supersymmetry with

broken R-parity, and a two-Higgs doublet model with flavor changing neutral currents. These

BSM scenarios can affect the branching fraction (and CP asymmetries) of these decays.

The branching fraction of this decay has been predicted using several different methods

10
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Figure 6: Tree level, gluonic penguin, and radiative penguin Feynman diagrams of Bs → η′η

and Bs → η′π0 decays.

including soft collinear effective theory (SCET) [5], perturbative QCD (pQCD) [6], QCD

factorization (QCDF) [7], flavor SU(3) symmetry [8], and flavor U(3) symmetry [9]. These

predictions range from (21.0−41.2)×10−6. This decay has not yet been observed, but could

be within our sensitivity.

In addition, data on Bd,s → ηη, ηη′, η′η′ branching fractions can be used to extract

CP-violating parameters [9]. Of these six decays channels, measurements of the branching

fractions of four of them are needed to make any conclusions. Only the branching fraction

of Bs → η′η′ has been measured so far [10].
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2.0 ANALYSIS STRATEGY SUMMARY

In this analysis, we search for the decay Bs → η′η using the entire Belle data sample of Υ(5S)

on-resonance data. We perform a blind analysis by optimizing our analysis techniques using

only MC samples of signal and background events before applying these techniques to the

real data. We begin by generating a large sample of simulated Bs → η′η signal events. Offi-

cial MC simulations of Belle background processes are used as our background simulations.

We use these samples to first identify several variables that exhibit a separation between sig-

nal and background distributions. These variables are used either in our selection criteria,

background suppression strategy, or final maximum likelihood fit to extract the signal yield

in data. We then optimize our selection criteria for Bs → η′η signal events. Background

events are then further suppressed using a two step process. First, we optimize a Fisher

discriminant [11] using the software package RooKSFW [12]. RooKSFW combines several

variables that provide separation between signal and background into a single discriminating

variable. This variable is then used as one of several input variables to NeuroBayes [13], a

neural network, which also calculates a single discriminating variable used in our selection

criteria. We also use a transformed version of this variable in our maximum likelihood fit.

After further suppressing backgrounds, we use the software package RooFit [14] to model

the distributions of our fitting variables for the signal MC sample and the sidebands of the

background MC sample. These models are then combined and applied to the full background

MC sample to validate our fitting methods and ensure we can use the same method for data.

We then perform ensemble tests to check for biases in our fitting functions. Finally, we

perform a maximum likelihood fit to the data to extract the signal yield.
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After measuring the signal yield, the branching fraction is calculated as:

B(Bs → η′η) =
Nsig

2 ·NB∗s B̄
∗
s
· εB∗s B̄∗s · Bdaughters

(2.1)

where NB∗s B̄
∗
s

is the number of B∗s B̄
∗
s pairs, the factor of 2 is from the two B∗s mesons in

each pair, εB∗s B̄∗s is our reconstruction efficiency, and Bdaughters is the product of the relevant

branching fractions:

Bdaughters = B(η′ → ρ0γ) · B(ρ0 → π+π−) · B(η → γγ) (2.2)
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3.0 MONTE CARLO AND DATA SAMPLES

3.1 SIGNAL MONTE CARLO SAMPLE

We have generated a sample of 100,000 Bs → η′η events in proportion to the cross sections

for B∗s B̄
∗
s , B

∗
s B̄s, and BsB̄s production at Υ(5S) and distributed over Belle data samples 53,

67, 69, and 711 according to data statistics. We have also generated samples of 100,000

Bs → η′η events for each of B∗s B̄
∗
s , B

∗
s B̄s, and BsB̄s individually. We use EvtGen [15] to

generate events and GEANT4 [16] to simulate the detector response.

3.2 BACKGROUND MONTE CARLO SAMPLE

We use 4 streams of generic Υ(5S) MC to study background events. Each stream corresponds

to an integrated luminosity of 121.4 fb−1 of Υ(5S) on-resonance data. This is equivalent to

the full Belle data sample. The dominant source of background in these decay channels is

light-quark continuum events (uū, dd̄, ss̄, and cc̄).

3.3 DATA SAMPLE

In this analysis, we use the entire 121.4 fb−1 of Υ(5S) on-resonance data. This dataset

corresponds to (6.53± 0.66)× 106 BsB̄s pairs. It was collected by the Belle detector at the

1The Belle data sample consists of 73 experiments, each run under slightly different conditions. These 4
experiments were taken at the Υ(5S) resonance.
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KEKB collider from asymmetric energy e+e− collisions with
√
s = 10.86 GeV.
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4.0 SELECTION CRITERIA

4.1 PHOTON (γ) SELECTION

Photons deposit energy in the ECL by first undergoing a conversion into an electron-positron

pair (i.e. pair production process) followed by repeated bremsstrahlung and pair production

until the entire energy of the photon is absorbed. These events lead to a “shower” of

electrons, positrons, and photons in the detectors until the particles have low enough energy

to excite the calorimeter material. These energy deposits in the crystals of the ECL are used

to reconstruct photons in data. All photons are required to have energy greater than 100

MeV.

4.2 PION (π±) SELECTION

The drift chamber is filled with a gas mixture with so-called field and sensitive wires strung

through its volume. Groups of wires are arranged in cells with large electric field gradient.

Charged particles traversing the CDC ionize the gas, the ionized electrons are drawn to

sensitive wires (located at the center of the cells). When the ionized electrons reach the

wires they create a current which can be measured. Digitized response of the detector to this

current is generally reffered to as a hit. As the particle continues through the drift chamber,

it creates a trail of ionization which is responsible for many hits in the drift chamber cells.

These hits can be used to reconstruct the trajectory taken by the particle. Because charged

particles in a magnetic field follow helical trajectories, measuring the curvature of the tracks

allows the momentum of the particle to be estimated.

16



We require pion candidates to satisfy dr < 0.2 cm and |dz | < 4 cm, where dr and dz

are defined as the distances from the interaction point to the point of closest approach in

the radial and beam axis directions respectively. We also require pion candidates to have

transverse momentum pT > 100 MeV. In addition, pion candidates must satisfy RK,π < 0.6,

where RK,π is the “Kaon identification variable” defined as the likelihood ratio of the charged

track being produced by a kaon vs a pion.

4.3 RHO (ρ0) SELECTION

We reconstruct ρ0 meson candidates using the decay channel ρ0 → π+π−. This decay has

a branching fraction of B(ρ0 → π+π−) = 0.998. These ρ0 meson candidates are required to

have an invariant mass between 0.435 and 1.005 GeV.

4.4 ETA (η) SELECTION

We reconstruct η meson candidates using the decay channel η → γγ. This decay has a

branching fraction of B(η → γγ) = 0.394. These η meson candidates are required to have

an invariant mass between 0.47 GeV and 0.57 GeV. After reconstruction, we perform a mass

fit to our η candidates, constraining them to their nominal mass of 0.548 GeV.

4.5 ETA PRIME (η′) SELECTION

We reconstruct η′ meson candidates using the decay channel η′ → ρ0γ. This decay has a

branching fraction of B(η′ → ρ0γ) = 0.291. These η′ meson candidates are required to have

an invariant mass between 0.92 GeV and 0.98 GeV. The distribution of η′ candidate invariant

masses in both signal and background MC are shown in Fig. 7. All plots with distributions
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Figure 7: Distributions of Mρ0γ for signal (blue) and background (red) MC

of signal and background on the same axes are shown with the number of events normalized

to the number of events in background MC.

4.6 BS MESON SELECTION

We reconstruct Bs meson candidates using the decay channel Bs → η′η. We define two

variables – the beam-constrained mass (Mbc) and the energy difference (∆E) – to select our

Bs meson candidates. The beam constrained mass is the mass of the Bs meson calculated

by replacing the energy of the Bs meson with that of the beam:

Mbc =
√
E2
beam − p2

Bs
(4.1)

The energy difference is the difference between the energy of the beam and the Bs meson:

∆E = EBs − Ebeam (4.2)
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Figure 8: Distribution of ∆E before (blue) and after (red) mass constraint of η

In these definitions, Ebeam is defined as the center of mass energy of the e+e− system divided

by two the beam energy, EBs is the energy of the Bs candidate, and pBs is the momentum of

the Bs candidate. All quantities are calculated in the center of mass rest frame of the Υ(5S).

These variables are used due to their improved resolution compared to the mass and energy

of the Bs meson candidate. This is because the energy of the beam can be more accurately

measured than the energy of the Bs meson candidate. The effect of our mass constraint of

η candidates on ∆E is shown in Fig. 8. The distributions of Mbc and ∆E for Bs candidates

in both signal and background MC are shown in Fig. 10. The selection criteria used for

choosing Bs candidates are summarized in Table 2.
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Table 2: Selection criteria for Bs → η′η

Particle Criteria

γ E > 100 MeV

π±

dr < 0.2 cm

|dz| < 4 cm

pT > 100 MeV/c

RK,π < 0.6

ρ0 0.435 GeV/c2 < Mπ+π− < 1.005 GeV/c2

η 0.47 GeV/c2 < Mγγ < 0.57 GeV/c2

η′ 0.92 GeV/c2 < Mρ0γ < 0.98 GeV/c2

Bs

Mbc > 5.3 GeV/c2

-0.4 GeV < ∆E < 0.3 GeV
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5.0 BACKGROUND SUPPRESSION

The primary source of background events for charmless hadronic decays such as Bs → η′η is

continuum background events from light quark production (e+e− → qq̄ where q = u, d, s, c).

The light quarks in continuum events have large momenta, causing these events to have a

“jet-like” shape, while BsB̄s events are distributed isotropically. This difference is illustrated

in Fig. 11. Because of this, we are able to separate qq̄ events from BsB̄s events using variables

that describe the shape of the event. These variables are described in the next section.

Figure 11: Diagrams showing the topological differences between continuum background

(left) and signal B (right) events
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5.1 BACKGROUND SUPPRESSION VARIABLES

1. | cos(θthrust)|: θthrust is the angle between the thrust axis of the detected particles from

the Bs decay and the thrust axis of all other particles detected in the event. The thrust

axis is defined as the axis on which the projections of the momenta of the particles

has the greatest magnitude. Because of the spherical shape of BsB̄s events, these axes

will be randomly distributed and | cos(θthrust)| should have a uniform distribution, while

continuum events will peak near | cos(θthrust)| = 1.

2. | cos(θbt)|: θbt is the angle between the thrust axis of the detected particles from the Bs

decay and the beam axis. Because of the spins and large initial momenta of the quarks

in continuum events, continuum events are more likely to be aligned with the beam axis.

3. R2: The lth order Fox-Wolfram moment [17] is defined as

Hl =
∑
i,j

|pi| |pj|
E2

vis

Pl(cos θij) , (5.1)

where θij is the opening angle between particles i and j, Evis is the total visible energy

of the event, and Pl are the Legendre Polynomials.

R2 is defined as the ratio of the second to the zeroeth order Fox-Wolfram moments:

R2 =
H2

H0

(5.2)

This variable describes the shape of the events and has a range from 0 to 1. Events with

more spherical shapes have a value of R2 closer to 0, while events with a “jet-like” shape

have a value of R2 closer to 1. This allows us to separate spherical BsB̄s events from

jet-like continuum events.

4. Kakuno-Super-Fox-Wolfram (KSFW) moments [12]:

KSFW moments are modified versions of the Fox-Wolfram moments that utilize thrust

axes and the separate tracks of the signal and other B meson.

• Rso
l
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The Rso
l ’s are moments associated with the signal (“s”) Bs meson and the other

(“o”) Bs meson in the event and are defined as:

Rso
l ≡

(αc)l(Hcharged)sol + (αn)l(Hneutral)
so
l + (αc)l(Hmissing)sol

Ebeam −∆E
(5.3)

Rso
l ’s are composed of three components, “charged,” “neutral,” and “missing en-

ergy”.

For l = 1 and 3,

(Hcharged)sol ≡
∑
i

∑
j

βsol QiQj|~pj|Pl(cos θij), (5.4)

(Hneutral)
so
l = Hmissing = 0 (5.5)

For l = 0, 2, and 4,

(Hcharged,neutral,missing)sol ≡
∑
i

∑
j

βsol |~pj|Pl(cos θij) (5.6)

The index i iterates over the tracks of the signal candidate and the index j iterates

over the same category (charged, neutral, or missing) of tracks of the other Bs meson.

Qi is the charge of particle i. In these equations, α and β are Fisher coefficients.

This gives 11 Rso
l parameters.

• Roo
l

The Roo
l ’s are moments associated with both particles coming from the other Bs

meson in the event.

For l = 1, 3

Roo
l ≡

∑
j

∑
k β

oo
l QjQk|pj||pk|Pl(cos θjk)

(Ebeam −∆E)2
(5.7)

For l = 0, 2, 4

Roo
l ≡

∑
j

∑
k β

oo
l |pj||pk|Pl(cos θjk)

(Ebeam −∆E)2
(5.8)

In these equations, the indices j and k iterate over the tracks not associated with

the Bs signal candidate. This gives five Roo
l parameters
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Figure 12: Distribution of | cos(θthrust)| for signal (blue) and background (red) MC

•
∑Nt

n=1 |pt,n|

This is the sum of transverse momenta of all visible particles in an event.

• mm2

mm2 is the missing mass squared defined as:

mm2 ≡ (EΥ(5S) −
∑
i

Ei)
2 −

∑
i

|pi|2 (5.9)

This method has a total of 18 parameters.

The distributions of these background suppressing variables are shown in Fig. 12, 13,

and 14 with signal distributions in blue and background distributions in red. Again, all

plots with distributions of signal and background on the same axes are shown with the

number of events normalized to the number of events in background MC. All distributions

exhibit some separation between signal and background events.
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Figure 13: Distribution of | cos(θbt)| for signal (blue) and background (red) MC
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Figure 15: Distribution of LR for signal (blue) and background (red) MC

5.2 BACKGROUND SUPPRESSION STRATEGY

5.2.1 Likelihood Ratio and RooKSFW

In order to suppress continuum backgrounds, we first compute a likelihood ratio using the

program RooKSFW. RooKSFW optimizes a Fischer discriminant using the 18 KSFW Mo-

ments described in the previous section as discriminating variables. This program then

creates a likelihood ratio defined as LR = Ps

Ps+Pb
where Ps is the probability of the event

being a signal event and Pb is the probability of the event being a background event. This

ratio peaks at 1 for signal events and 0 for background events. One stream of generic MC

background and our MC sample of Bs → η′η events are used to calculate the likelihood

ratio. Fig. 15 shows the distribution of LR, which is used as an input to a neural network

described in the following section.
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5.2.2 NeuroBayes

We then use NeuroBayes to further suppress background events. NeuroBayes is a neural

network package designed for classification problems, which uses a multivariate method based

on Bayes’ Theorem. NeuroBayes takes input variables and provides separation between signal

and background events. By taking all input variables and their correlations into account for

each event, NeuroBayes computes a single discriminating variable (NN) with a value between

−1 and 1. Events with an NN value closer to −1 are more likely to be background events

while events with an NN value closer to 1 are more likely to be signal events.

Events which pass our selection criteria described in Table 2 are input to NeuroBayes.

We use four input variables: LR, | cos(θthrust)|, | cos(θbt)|, and R2. The use of NeuroBayes is

separated into two steps. First, the network is trained using signal and background samples.

Because this optimization requires similar numbers of signal and background events, we use

our MC sample of Bs → η′η signal events and 1/10 of the events in one stream of generic MC

background. We then validate the training of our neural net using independent samples of

both signal and background MC. Within statistical uncertainties, these independent samples

give the same results as our training sample and indicate that the neural net has not been

overtrained. The results of these training and validation steps are shown in Fig. 16.

The distribution of NN is shown in Fig. 16. We add an additional selection criterion by

requiring NNmin > 0.6. Fig. 17 shows the signal purity and background rejection for several

values of NNmin. By requiring NNmin > 0.6, we are able to remove 96% of background

events while retaining 76% of signal events. Because of the large peaks at −1 and 1, this

distribution is difficult to fit using simple functions. In order to include this variable in our

multidimensional fit, we define a new variable NB ′:

NB ′ = log
NN − NNmin

NNmax − NN
(5.10)

where we set NNmin = 0.6 and NNmax = 0.998. NNmin = 0.6 is given by our selection

criteria on NN and is used to reject continuum background events. NNmax = 0.998 is given

by the maximum value of NN obtained from our sample of signal MC decays and is used to

ensure the distribution is symmetric (i.e. at larger values of NNmax the distribution becomes
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Figure 16: Distribution of NN for signal (blue) and background (red) MC

Figure 17: Plot of the signal purity vs signal efficiency for several values of NNmin

asymmetric). This function transforms our NN variable for both signal and background

events to a more Gaussian-like shape shown in Fig. 18.
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Figure 18: Distributions of NB′ for signal (blue) and background (red) MC
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6.0 BEST CANDIDATE SELECTION

After applying all selection criteria and background suppression, 15% of signal events contain

multiple Bs candidates. The number of candidates per event before best candidate selection

is shown in Fig. 19. For these events, we define a variable χ2 = χ2
η + χ2

π+π− where χ2
η and

χ2
π+π− are the χ2 of the mass of the η candidate defined as:

χ2
η =

(mγγ −mη

σγγ

)2

(6.1)

and the χ2 of the vertices of the π± candidates which is the distance between the tracks

of the pions and the presumed vertex in units of standard deviations. However, using this

method, we find that in a significant number of events, multiple candidates have equal χ2.
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Figure 19: Number of candidates per event before best candidate selection

31



This occurs because multiple candidates have daughter η candidates reconstructed from

the same photons and ρ0 candidates reconstructed from the same pions. In these cases,

the Bs candidates only differ by the photon coming from the η′ decay η′ → ρ0γ. Out of

these candidates, we choose the candidate whose photon from this decay has the greatest

energy. Based on MC simulations, this best candidate selection method chooses the correct

Bs candidate 96% of the time.
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7.0 FITTING

In order to extract the signal yield, we use RooFit to perform a four-dimensional (4D)

extended unbinned maximum likelihood fit to the variables Mbc, ∆E, NB ′, and Mη′ . The

likelihood is defined as

L = eNsig+Nbkg

N∏
i=1

(
NsigPsig(M i

bc,∆E
i, NB′i,M i

η′) +NbkgPbkg(M i
bc,∆E

i, NB′i,M i
η′)

)
(7.1)

where N is the total number of events, Nsig is the total number of signal events, and Nbkg

is the total number of background events. We allow N , Nsig, and Nbkg to float in our fit

while holding all other fitting parameters constant. Psig and Pbkg are the probability density

functions (PDF) of the signal and background components of our fitting functions. The

PDFs are factorized as

Psig,bkg(Mbc,∆E,NB
′,Mη′) = Psig,bkg(Mbc) ·Psig,bkg(∆E) ·Psig,bkg(NB′) ·Psig,bkg(Mη′) (7.2)

7.1 CORRELATIONS BETWEEN FITTING VARIABLES

In order to factorize our PDF as shown in Equation 7.2 our variables must be uncorrelated.

Two dimensional distributions of all combinations of our fitting variables are shown in Fig. 20

for signal MC and in Fig. 21 for background MC. These distributions show no significant

correlations between our fitting variables. Possible small correlations ignored in our approx-

imations of Psig,bkg(Mbc,∆E,NB
′,Mη′) will be included in the systematic uncertainties.
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Figure 20: 2D distributions showing no significant correlations between our fitting variables

in signal MC.

7.2 SIGNAL PDFS

We fit the signal distributions of four variables – Mbc, ∆E , NB ′, and Mη′ – in our signal

MC sample. The distributions of Mbc, ∆E, and NB ′, in signal MC are described by the
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Figure 21: 2D distributions showing no significant correlations between our fitting variables

in background MC.

sum of a Gaussian and a Crystal Ball function. The Crystal Ball function is a piecewise

function which consists of a Gaussian above a certain threshold and a power law below the

same threshold. The distribution of Mη′ in signal MC is described by the sum of a Crystal

Ball function and a first order Chebychev polynomial (a straight line). These PDFs are
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Table 3: Fitting functions for signal distributions

Fitting Variable Signal Fitting Functions

Mbc

Gaussian

Crystal Ball

∆E
Gaussian

Crystal Ball

NB ′
Gaussian

Crystal Ball

Mη′

Chebychev Polynomial (First Order)

Crystal Ball

summarized in Table 3. When fitting, the means of the Gaussians and Crystal Balls for the

signal distributions of Mbc, ∆E, and NB ′ are required to be the same value. In addition,

when fitting the signal distribution for Mη′ , we fix the mean to the nominal mass of η′

(0.958 GeV). All other parameters of the signal distributions are allowed to float in the fit.

When performing the maximum likelihood fit to the real data, the paramaters of our fitting

functions are fixed to the values obtained in these fits. The distributions and fitted functions

are plotted and shown in Fig. 22.

7.3 BACKGROUND PDFS

We fit the background distributions of four variables – Mbc ,∆E, NB ′, and Mη′ – first using

the sidebands of our background MC sample. The distribution of Mbc in background MC is
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Figure 22: Projections of 4D maximum likelihood fit to the signal MC sample

described using an ARGUS function defined as:

PARGUS (Mbc;α,Ebeam) = Mbc

√
1−

(
Mbc

Ebeam

)2

e−α(1−(Mbc/Ebeam)2) (7.3)

where the parameter α defines the shape of the distribution and Ebeam is the cutoff. The

distribution of ∆E is described using a second order Chebychev polynomial (a parabola).

The distribution of NB ′ is described using a Gaussian. The distribution of Mη′ in background

MC is described by a first order Chebychev polynomial. These PDFs are summarized in

Table 4. All parameters of the background distributions are allowed to float in the fit. We

then fix all parameters to the values obtained in the fit to the sidebands of our background

MC sample and perform a fit to our entire background MC sample including the signal

region. This fit is shown in Fig. 23.

Because our fit to sideband MC can be applied to the full MC sample as shown above, we

use the same procedure when performing a maximum likelihood fit to the Belle data sample.
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Table 4: Fitting functions for background distributions

Fitting Variable Signal Fitting Functions

Mbc ARGUS

∆E Chebychev Polynomial (Second Order)

NB ′ Gaussian

Mη′ Chebychev Polynomial (First Order)
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Figure 23: Projections of 4D maximum likelihood fit to the full background MC sample

The results of our maximum likelihood fit to sideband data are shown in Fig. 24. Again all

parameters are floated in this fit and the values obtained for the parameters will be fixed in

the fit to the full data sample.
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Figure 24: Projections of 4D maximum likelihood fit to the sidebands of the Belle data

sample

7.4 SIGNAL EFFICIENCY AND EXPECTED BACKGROUND

By performing maximum likelihood fits to our signal MC distributions we are able to extract

the signal yield from our signal MC sample. This MC sample consisted of 100,000 signal

MC events and our 4D fit returns a value of Nsig = 23, 439. This indicates an efficiency of

ε = 23.4% for our signal MC events.

By performing maximum likelihood fits to our background MC distributions we are able

to extract the number of expected background events in our data sample. We are able

to improve this approximation by comparing the number of background events in our MC

sidebands to the full MC sample. This ratio is then used to estimate the number of events

in the full Belle data sample from its sidebands. Using this approximation we expect 5,500

background events in the full Belle data sample.
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7.5 ENSEMBLE TESTS

We perform so-called “ensemble tests” in order to test our fitting model for possible biases

and estimate its associated systematic errors. These ensemble tests use generated toy MC

experiments to test the validity of the model. In each toy MC experiment, we generate a

number of signal events, N gen
sig , and a number of background events, N gen

bkg . These events are

generated based only on the PDF lineshapes of our fitting functions for signal and back-

ground. In order to accurately estimate systematic errors, these values must be statistically

similar to the numbers of events expected in the real data. The generated events are then

fit using a sum of our multidimensional PDFs for signal and background events multiplied

by N fit
sig and N fit

bkg:

Dboth(Mbc,∆E,NB
′,Mη′) = N fit

sigPsig(Mbc,∆E,NB
′,Mη′) +N fit

bkgPbkg(Mbc,∆E,NB
′,Mη′)

(7.4)

This process is repeated 1,000 times for varying values of N gen
sig and a constant value of N gen

bkg

equal to the expected number of background events in the real data sample (5,500). For

each ensemble test consisting of 1,000 toy MC studies, we plot histograms of the extracted

number of signal events (N fit
sig ), the error on the extracted number of signal events (σfitsig),

and the pull (P). Where the pull is defined as the number of standard deviations the fitted

number of events is from the generated number of events:

P =
N fit
sig −N

gen
sig

σfitsig
(7.5)

In the case where our fitting parameter (N fit
sig ) is unbiased, we expect the pull distribution

to be a Gaussian with a mean of zero and a standard deviation of one. We also plot the

the negative log likelihood, − lnL, of toy MC experiments. Several ensemble tests are

performed and the distributions described above are plotted in Fig. 25. These distributions

show unbiased fits with a large number of signal events, however, when Nsig is small, we

see an asymmetry in the pull distributions indicating a bias. This bias is expected due to
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the small number of events in the signal region. This bias occurs only with a small value of

Nsig. Therefore, we use a frequentist method to determine an upper limit on the branching

fraction in the case where our fit extracts a small value for Nsig. A frequentist approach

using confidence intervals accounts for this bias.

7.6 CONFIDENCE INTERVALS AND SENSITIVITY ESTIMATE

We perform ensemble tests to create the 90% confidence belt for a frequentist approach. We

use similar number of N gen
bkg as expected in data and vary N gen

sig from 0 to 70 events. The

lower bounds of the 90% confidence belt are given by the fitted number of signal events N fit
sig

for which 5% of the results are less than this value. The upper bounds of the 90% confidence

belt are given by the fitted number of signal events N fit
sig for which 5% of the results are

greater than this value. This confidence belt is shown in Fig. 26. After performing a fit to

the full data sample, this confidence belt will be used to either set an upper limit on the

branching fraction or to claim a discovery of the decay.

After creating this confidence belt, we estimate the upper limit on the branching fraction

of this decay in the absence of signal. We perform a maximum likelihood fit to all four streams

of background MC and average the result to correspond to the statistics in data. There is an

average signal yield of 5.4 events in the four streams of background MC. Using our confidence

belt in Fig. 26, we determine the 95% upper limit on the number of signal events is 26 events.

Using Equation 2.1, we calculate the upper limit on the branching fraction in the absence of

signal to be B(Bs → η′η) = 7.6× 10−5.

7.7 PRELIMINARY FIT TO 15% OF THE DATA SAMPLE

We use RooFit to perform a 4D extended unbinned maximum likelihood fit to the data

recorded by Belle experiment 53. This sample corresponds to 15% of the entire Belle data

sample. In order to perform this fit, we first perform a 4D fit to the sidebands of the data
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sample using only background PDFs and floating all parameters. The results of this fit is

shown in Fig. 27. After performing this fit, we fix all PDF parameters to the values obtained

in the fits except for Nsig and Nbkg which are allowed to float. We then fit the partial data

sample including the signal region and obtain a signal yield of Nsig = 2.6± 4.0 events where

4.0 is the statistical error on our measurement. The results of this fit projected to all four

fitting variables are shown in Fig. 28. In this projection, we require all events to be in

the signal region of the other three fitting variables. This greatly reduces the number of

background events as most background comes from the contributions of sidebands.

7.8 UPPER LIMIT ESTIMATION FOR 15% OF THE DATA SAMPLE

Using the methods described in Section 7.6, we construct a confidence belt for the experiment

53 data sample. After creating this confidence belt, we estimate the upper limit on the

branching fraction of this decay based on the results for the experiment 53 data sample. The

signal yield is 2.6 events and by using the confidence belt in Fig. 29, we determine the 95%

upper limit on the number of signal events to be 16 events. Using Equation 2.1, we calculate

the upper limit on the branching fraction from experiment 53 data to be B(Bs → η′η) =

2.7× 10−4. This result is consistent with the estimate of the branching fraction upper limit

of 7.6× 10−5 from the full background MC sample.
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Figure 25: Results of ensemble tests with Nsig = 0 (top), Nsig = 10 (middle) and Nsig = 25

(bottom)
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Figure 26: 95% Confidence belt for the full data sample
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Figure 27: Projections of the 4D maximum likelihood fit to the sidebands of 15% of the Belle

experiment 53 data sample
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Figure 28: Projections of the 4D maximum likelihood fit to 15% of the Belle experiment 53

data sample
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Figure 29: 95% Confidence belt for the experiment 53 data sample
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8.0 OUTLOOK AND CONCLUSIONS

In this analysis we search for the decay Bs → η′η. By reconstructing Bs candidates using

the decay channels η′ → ρ0γ and η → γγ, optimizing our selection criteria and background

suppression techniques on MC, and performing a 4D maximum likelihood fit to 15% of the

Belle data sample, we extract a signal yield of Nsig = 2.6± 4.0 events. This fit indicates no

evidence of Bs → η′η decays in our data sample.

In the near future, we will perform a fit to the full Belle data sample to estimate the

signal yield. We will use this measurement to either measure or set an upper limit on the

branching fraction of Bs → η′η. Studies of systematic uncertainties must then be performed

to determine the consistency of the measured branching fraction with its theoretical predic-

tion. If this measurement disagrees with the Standard Model prediction, this result would

suggest BSM physics. However, if this measurement agrees with the Standard Model pre-

diction, it could still be used to constrain the possible effects of NP or to rule out specific

models.

In order to improve our analysis, we could reconstruct multiple channels of η′ and η

decays. While η′ → ρ0γ and η → γγ have the largest branching fraction of Bs → η′η decays

at B = 0.114, there are five more decay channels of η and η′ with B > 0.05. Including these

decay channels in our analysis will improve our sensitivity to this decay.

In addition, because Bs → η′π0 can have the same final state, we could extend this

analysis to also include a search for this decay. However, the predicted branching fraction

in the Standard Model is significantly smaller and a discovery would be much less likely.
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