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ABSTRACT 

While numerous studies have linked exposure to ambient fine particulate matter (PM2.5) to 

adverse health outcomes (e.g., asthma, cardiovascular disease), less is known about which 

specific components of PM2.5 drive these associations. Because PM2.5 composition varies 

spatially with sources, characterizing fine-scale variation in constituents is critical to improving 

epidemiological studies on health effects of source-specific PM2.5. One approach for improving 

this characterization may be hybrid models wherein source-specific dispersion covariates are 

integrated into land use regression models (LURs). 

The objective of this dissertation was to develop hybrid dispersion-LUR models for 

PM2.5, black carbon (BC), and steel-related PM2.5 constituents [lead (Pb), manganese (Mn), iron 

(Fe), and zinc (Zn)], by combining concentrations data from spatial saturation monitoring with 

daily Environmental Protection Agency (EPA) regulatory data. These models were used to 

assign residence-based exposure estimates for time windows of interest for two Pittsburgh-area 

epidemiological cohorts. 
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The first epidemiologic study examined associations between one-year pollutant 

exposures and levels of both circulating and lipopolysaccharide (LPS)-stimulated inflammatory 

mediators in the Adult Health and Behavior II (AHAB II) cohort. We found that exposures to 

PM2.5 and BC were associated with higher LPS-stimulated IL-1β, IL-6, and TNF-α. Pb was 

associated with increased stimulated TNF-α (p = 0.02) and IL-1β (p = 0.02), but were 

insignificant after adjusting for multiple comparisons (Bonferroni correction). No pollutant 

exposures were associated with circulating IL-6 or CRP. The second epidemiological study 

explored associations between pollutant exposures and brain morphology indicators (i.e., total 

and cortical gray matter volumes, cortical white matter volume, total white matter surface area, 

mean cortical thickness) from magnetic resonance images of participants in the AHAB II and 

Pittsburgh Imaging Project Cohorts, finding no significant associations. 

These results suggest that, although pollutants were not associated with circulating 

inflammatory mediators or brain morphology in these samples of healthy midlife adults, some 

chronic air pollution exposures may influence immune responsiveness, influencing risk for future 

inflammatory conditions.  Taken together, these results indicate the public health importance of 

better understanding relationships between long-term source-specific PM2.5 and component 

exposures with functional indicators of immune responsiveness and other processes shaping risk 

for future health effects.  
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1.0  INTRODUCTION  

1.1 DISSERTATION OBJECTIVES 

The overall objective of this dissertation was to develop hybrid dispersion-LUR models for 

PM2.5, black carbon (BC), and steel-related PM2.5 constituents [lead (Pb), manganese (Mn), iron 

(Fe), and zinc (Zn)], by combining concentrations data from spatial saturation monitoring with 

daily Environmental Protection Agency (EPA) regulatory data. These models were used to 

assign residence-based exposure estimates for time windows of interest for two Pittsburgh-area 

epidemiological cohorts. The first epidemiologic study examined associations between one-year 

pollutant exposures and levels of both circulating and lipopolysaccharide (LPS)-stimulated 

inflammatory mediators in the Adult Health and Behavior II (AHAB II) cohort. The second 

epidemiological study explored associations between pollutant exposures and brain morphology 

indicators from magnetic resonance images of participants in the AHAB II and Pittsburgh 

Imaging Project Cohorts. Specific goals for each dissertation chapter are as follows: 

Chapter 2: Develop hybrid dispersion LUR models for PM2.5, BC, and steel-related Pb, 

Mn, Fe, and Zn metal constituents for use in epidemiological studies. 

Chapter 3: Examine associations between one-year residence-based pollutant exposures 

with circulating and LPS-stimulated inflammatory mediators in the AHAB II cohort. 
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Hypothesis: Elevated exposures to PM2.5, BC, Pb, Mn, Zn, and Fe will be associated 

with higher levels of circulating inflammatory mediators (Il-6 and CRP), and LPS-stimulated 

production of cytokines (IL-6, IL-1β, and TNF-α). 

Chapter 4: Explore the relationship between one-year pollutant exposures with total and 

cortical gray matter volumes, cortical white matter volume, total white matter surface area, and 

mean cortical thickness measures of brain morphology in AHAB II and PIP cohorts.  

Hypothesis: Higher residence-based exposures to PM2.5, BC, Pb, Mn, Zn, and Fe will be 

associated with reduced structural integrity of the brain in two Pittsburgh cohorts of health 

middle-aged adults. 

The remainder of Chapter 1 includes background information pertaining to Chapters 2-4.  

1.2 BACKGROUND 

1.2.1 Particulate Matter 

Particulate matter is composed of solid and/or liquid particles and composition varies depending 

on factors including location, temperature and emission sources. Depending on these and other 

factors, PM can be composed of acids, metals, and organic compounds including dust and 

allergens. Two commonly measured size fractions of PM are PM10 - coarse particles that have a 

diameter of 10 micrometers or less and PM2.5 - fine particles with a diameter of 2.5 µm or less. 

Examples of PM10 include particles such as pollen and spores while PM2.5 may include 

combustion-related particles such as smoke. (Anderson et al. 2012; Dockery 2009; EPA 2016c). 

PM2.5 enters the lungs through normal breathing and smaller size fractions of PM such as PM2.5 
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can penetrate deep into the lung and certain components may enter the blood stream, leading to a 

wide range of adverse health effects. For the purposes of this dissertation we focus here on 

cardiovascular and central nervous system related effects of PM2.5 (EPA 2016c). 

While PM2.5 composition varies depending on the source, these components may also 

differ in toxicity potentially leading to differences in associated health effects (Bell et al. 2014; 

Franklin et al. 2008). The work in this dissertation focuses on health impacts associated with 

black carbon (BC), lead (Pb), manganese (Mn), iron (Fe), and zinc (Zn), components of PM2.5. 

Black carbon (BC) is a component of PM formed from incomplete combustion of fuels. 

The majority of BC emissions in the United States are from traffic-related sources including 

diesel sources. Other sources include biomass burning, residential heating, and industrial 

emissions (EPA 2016a). BC, similar to total PM2.5, has been associated with numerous health 

effects including hospital admissions, cardiovascular mortality and morbidity (Bell et al. 2014; 

Grahame et al. 2014; Organization 2012). A review by the World Health Organization in 2012 

suggests that BC may be a better indicator of combustion sources compared to  PM2.5 mass 

(Organization 2012). 

Lead is a toxic metal that has both natural and anthropogenic sources. Some of these 

sources include industrial and traffic-related emissions, residual lead from gasoline, and lead 

paint in older homes. Lead paint was banned in the United States in 1978 and lead in gasoline 

was phased out and banned in 1995 but both persist in the environment. Urban soil may be 

contaminated due to paint from older buildings and industrial emissions deposited in soil. Lead 

targets the nervous system which can lead to adverse health effects including learning disabilities 

and behavioral issues. Lead disproportionately affects children because of their developing 

brains (Agency 1996; CDC 2016). In contrast to lead, Mn, Zn, and Fe metal constituents of 
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PM2.5 examined in this dissertation are essential nutrients and toxicity depends on the dose of 

each metal. Pb, Mn, Zn, and Fe all have sources related to steel production and traffic-related 

emissions. In terms of traffic-related sources, Pb, Zn, and Fe had motor vehicle sources, all had 

soil, and dust suspension sources and Mn, Zn, and Fe had brake and tire wear related sources 

(Tunno et al. 2015a). All four of these metals have also been found to target the central nervous 

system (Gorell et al. 1998; Kim et al. 2011; Rouault 2013; Sensi et al. 2009).  

1.2.2 PM2.5 regulation in the United States 

The Environmental Protection Agency (EPA) has set limits for exposure to both PM2.5 and PM10 

as part of the National Ambient Air Quality Standards as part of the Clean Air Act (CAA) 

established in 1970 (Anderson et al. 2012). The EPA sets exposure thresholds for six primary air 

pollutants: carbon monoxide, lead, nitrogen dioxide, ozone, sulfur dioxide, and PM10 and PM2.5. 

Primary and secondary standards were developed for each of these pollutants. Primary standards 

are in place to protect public health, especially sensitive people like children, people with 

asthma, and the elderly. Secondary standards are limits set for protection of public welfare by 

managing reduced visibility, monitoring damage to animals, crops, and vegetation, and 

regulating buildings. Relevant to the research presented in this dissertation, the EPA sets 

exposure thresholds for PM2.5 and airborne Pb. Current standards limit exposure to PM2.5 (three 

year rolling average) at 12 µg/m3 as a primary standard and 15 µg/m3 as a secondary standard. 

Exposure to airborne Pb is not to exceed 0.15 µg/m3 over a three month average as both a 

primary and secondary standard (EPA 2016b). 
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1.2.3 PM2.5, cardiovascular disease, and systemic inflammation 

Inflammation is an immune response to a biological, physical or chemical stimuli (e.g., 

PM2.5) (Germolec et al. 2010). Examples of inflammatory mediators include cytokines and acute-

phase reactants (Pearson et al. 2003). Chronic inflammation may occur due to persistent 

exposure to a stimulus and may contribute to diseases including asthma and cardiovascular 

disease (Germolec et al. 2010). 

Substantial evidence links air pollution, particularly PM2.5 to clinical and 

preclinical endpoints associated with chronic inflammatory conditions associated with 

aging, including cardiovascular morbidity and mortality (Robert D Brook et al. 2010; Dominici 

et al. 2006; Eftim et al. 2008; Gill et al. 2011; Halonen et al. 2009; Miller et al. 2007; Peel et al. 

2005; Peters et al. 2000; Symons et al. 2006).  Systemic inflammation is one possible mediating 

pathway (Robert D Brook et al. 2010; Cosselman et al. 2015; Pope et al. 2004; Thurston et 

al. 2015). Previous studies have found associations between long term exposure to 

PM2.5 and circulating inflammatory markers in cohort studies with both healthy participants 

and potentially vulnerable subpopulations including older, obese, diabetic, and hypertensive 

people (Dubowsky et al. 2006; Zeka et al. 2006). For example, Ostro et al (2014)., found that 

a 10-µg/m3 increase in annual PM2.5 more than doubled the risk of CRP greater than 3 mg/l in 

women who were older diabetics, or smokers (Ostro et al. 2014). While long-term exposure to 

ambient PM2.5 has been positively associated with circulating inflammatory mediators, some 

studies have also found inconsistent or null associations, potentially due to population 

differences in susceptibility or differences in PM2.5 composition (Robert D Brook et al. 2010; 

Roux et al. 2006; Zeka et al. 2006). 

Compared to circulating inflammatory mediators, stimulated inflammatory mediators 

may capture individual differences in the magnitude of immune response following exposure to 
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endotoxin [e.g., lipopolysaccharide (LPS), phytohaemagglutinin (PHA)], possibly indicating 

immune reactivity (Marsland et al. 2002; Marsland et al. 2017b).  In contrast, circulating 

cytokines may reflect an individual’s current condition, such as acute infection. In this sense, 

stimulated cytokine measures may identify under- or over-responsiveness of the immune system 

(Ai et al. 2013). 

1.2.4 PM2.5 and the central nervous system 

The effects of air pollution on the central nervous system have become an emerging area of 

concern and growing evidence suggests a relationship between particulate air pollution 

exposures and adverse neurological outcomes (e.g., cognitive decline, ischemic stroke) (Lisabeth 

et al. 2008; Maheswaran et al. 2014; Ranft et al. 2009; Stafoggia et al. 2014). 

 Air pollution may increase risk for early cognitive decline (Calderon-Garciduenas et 

al. 2011; Chen and Schwartz 2009; Gatto et al. 2013; Loop et al. 2013; Power et al. 2011; 

Ranft et al. 2009; Weuve et al. 2012), possibly through inflammatory mechanisms that may 

adversely affect brain circuits for executive control, memory, and processing speed. In 

particular, fine particles can be inhaled and deposited into the airways and alveolar surfaces, 

entering pulmonary and systemic circulations (R. D. Brook et al. 2010). Second, ensuing 

effects may involve 1) the up-regulation of oxidative and inflammatory mediators, 2) direct 

suppression of cardiac vagal (parasympathetic) nerve traffic, impacting autonomic control 

over the heart, and 3) the down-regulation of nitric oxide synthase, affecting vascular 

resistance, compliance, and endothelial circulatory control (R. D. Brook et al. 2010; Gill et 

al. 2011). PM2.5 may also impact CNS through olfaction by translocation across olfactory 

mucosa and penetration into olfactory bulb neural projection pathways to medial temporal  



lobe regions, leading to cognitive decline and dementia (Calderon-Garciduenas et al. 2010; 

Donaldson et al. 2005; Elder et al. 2006; Tin Tin Win et al. 2006). PM2.5 may also disrupt 

the blood-brain barrier leading to neurotoxicity and neuroinflammation (Calderon-

Garciduenas et al. 2002; Calderon-Garciduenas et al. 2004; Calderon-Garciduenas et al. 

2008a; Calderon-Garciduenas et al. 2008b; Calderon-Garciduenas et al. 2010; Calderon-

Garciduenas et al. 2011; Campbell et al. 2009; Gerlofs-Nijland et al. 2010; Levesque et al. 

2011; van Berlo et al. 2010). 

1.2.5 Air pollution and brain morphology 

Fine particle exposure may also impact the central nervous system possibly by 

mechanisms involving the effects of PM2.5-related inflammation on brain tissue integrity 

(Ranft et al. 2009). Measures of brain morphology (e.g., cortical thickness, gray matter 

volume) have been associated with cognitive decline as well as neurological diseases such as 

Alzheimer’s or Parkinson’s disease (Block et al. 2012; Dickerson and Wolk 2012; Ferreira et al. 

2014; Marsland et al. 2015; Whitwell et al. 2008). 

Most of the epidemiologic literature linking air pollution and brain morphology has 

been performed in children or older adults. For example, some recent studies have 

examined associations between children’s exposure to air pollution at schools with structural 

and functional brain changes from MRI scans. In one study of 263 children in Barcelona, a 

composite air pollution indicator combining indoor and outdoor elemental carbon and NO2 

at schools was developed indicative of traffic-related pollution; no significant associations 

were found with brain structure, however, children with higher pollution exposures had 

lower functional integration and segregation in certain brain networks (Pujol et al. 2016b). 

7
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Another study in the same cohort examined associations between copper (Cu) in PM2.5 

measured in school courtyards with structural and functional brain measures obtained from 

anatomical MRI, diffusion tensor imaging, and functional MRI. Associations were found 

between higher exposures to Cu and poorer motor performance and alterations in basal 

ganglia structure and function (Pujol et al. 2016a). 

A few epidemiological studies have explored relationships between ambient outdoor 

PM2.5 and measures of brain structure in older adults. Wilker et al. (2015), found that a 2-μg/m3 

increase in one-year annual average PM2.5 was associated with a 0.32% decrease in cerebral brain 

volume and 46% higher odds of covert brain infarcts but did not see any associations with 

hippocampal volume or white matter hyperintensity volume (Wilker et al. 2015). Participants in 

this study were in the Framingham Offspring Cohort (n = 943). A long running cohort study 

composed of community dwelling adults in the New England area with no history of dementia or 

stroke. 

 Chen et al. (2015) found significant associations between exposure to ambient PM2.5 and 

decreased white matter volume in frontal and temporal lobes and in the corpus callosum of older 

women (Chen et al. 2015). They examined associations between long term exposure to PM2.5 and 

brain volume, using volumetric measures of gray matter and normal-appearing white matter 

in MRI results from participants in the Women’s Health Initiative Memory Cohort (n = 1403). 

All participants were free of dementia. They found that for each inter-quartile range (3.49 

µg/m3) increase in PM2.5, mean white matter volume decreased by 6.23 (± 1.28) cm3 for 

total brain volume. Significant associations were also found between increased PM2.5 with 

decreases in frontal, parietal, and temporal and corpus callosum white matter volume. No 

associations were found with gray matter or hippocampal volume (Chen et al. 2015). 
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1.2.6 Exposure Modeling  

In large cohort studies where personal exposure monitoring is often not possible due to 

financial and time constraints, other methods have been used to predict and assign pollutant 

exposures. Examples include proximity based measurements (e.g., distance to road) (Baccarelli 

et al. 2009; Gauderman et al. 2005) and interpolation (e.g., inverse distance weighting, 

kriging) (Jerrett et al. 2001; Künzli et al. 2005; Stacy et al. 2015). Land use regression (LUR) 

modeling has become a common method for predicting pollutant concentrations. LUR 

models use observed associations between monitored pollution concentrations and GIS-

based pollution source indicators, such as industrial emissions and land use zoning, to 

predict pollutant concentrations at unmonitored locations.  LUR models have been widely 

used to identify key pollution sources, to predict pollutant concentrations, and to assign 

exposure estimates for epidemiological cohorts (Hoek et al. 2008; Jerrett et al. 2005).  For 

cohort exposure estimates that are accurate in space and time, the spatial surfaces produced 

by LUR modeling are often combined with temporally-dense concentration measures, such as 

those provided by the EPA air quality system (AQS) monitors (Johnson et al. 2013; Ross 

et al. 2013). These approaches represent a great improvement over exposure assignments that 

rely solely on the nearest EPA air AQS monitor(s).  

Although many studies have developed land use regression (LUR) models for PM2.5

(Jerrett et al. 2005), relatively few have developed LURs to examine specific constituents. The 

European Study of Cohorts for Air Pollution Effects (ESCAPE) modeled eight components of 

PM2.5, the New York City Community Air Survey (NYCCAS) modeled 15 components of PM2.5, 

and Brokamp et al., developed LUR models for 11 metals in Cincinnati, Ohio (Brokamp et al. 



10 

2016; de Hoogh et al. 2013; Ito et al. 2016). Several LUR models have also been made for 

constituents of different PM fractions (Zhang et al. 2015; Zhang et al. 2014). 

Adding pollutant dispersion covariates into LUR models may improve models by 

incorporating source-specific emissions data particularly relevant for metals components of PM, 

increasing accuracy of exposure estimates near sources. Two spatial models for elemental 

components have incorporated dispersion parameters in a hybrid LUR approach. The Multi-

Ethnic Study of Atherosclerosis modeled four constituents of PM10-2.5 and included the 

CALINE3 line dispersion model as a traffic-related covariate (Zhang et al. 2014). The NYCCAS 

developed a commercial charbroiling variable using the AERMOD dispersion model in 

elemental component models (Ito et al. 2016). To our knowledge, LUR elemental components 

models developed in the ESCAPE study are the only constituent LUR models that have been 

applied to epidemiological health studies to examine potential associations of long term 

elemental components with adverse health effects (e.g., pneumonia and cardiovascular mortality) 

(Fuertes et al. 2014; Hampel et al. 2015; Pedersen et al. 2016; Wang et al. 2014).   

The work presented in this dissertation builds on this literature by developing hybrid 

dispersion LUR models for PM2.5 and BC, Pb, Mn, Fe, and Zn metal constituents in the 

Pittsburgh region. These models were then applied to estimate pollutant exposures at geocoded 

addresses of participants in two retrospective cohorts. Epidemiological studies were done to 

examine associations between one-year pollutant exposures with circulating and LPS-stimulated 

inflammatory mediators and measures of brain morphology. 
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2.0 HYBRID LAND USE REGRESSION MODELS FOR ESTIMATING 

EXPOSURES TO AIRBORNE METALS ACROSS PITTSBURGH 

2.1 ABSTRACT 

Land use regression (LUR) modeling has become a common method for predicting pollutant 

concentrations and assigning exposure estimates in epidemiological studies. However, few LUR 

models have been developed for metal constituents of fine particulate matter (PM2.5) or have 

incorporated source-specific dispersion covariates. We developed hybrid AERMOD LUR 

models for PM2.5, black carbon (BC), and steel-related PM2.5 constituents lead (Pb), manganese 

(Mn), iron (Fe), and zinc (Zn), using fine-scale air pollution data from 36 sites across the 

Pittsburgh area. Models were designed for application to future epidemiological studies, by 

combining spatially saturated monitoring data with daily pollutant concentrations from an 

Environmental Protection Agency (EPA) regulatory monitor. We found that the hybrid LURs 

explained greater variability in PM2.5 (R2 = 0.79) compared to BC (R2 = 0.59) and metal 

constituents (R2 = 0.34 - 0.56). Approximately 70% of variation in PM2.5 was attributable to 

temporal variance, compared to 36% for BC, and 17 - 26% for metals. An AERMOD dispersion 

covariate developed with industrial emissions data for 207 sources was significant in PM2.5 and 

BC models; all metals models contained a steel mill-specific AERMOD term. Other significant 

covariates included industrial land use, commercial and industrial land use, percent impervious 
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surface, and summed railroad length. These models will be used to develop exposure estimates 

for relevant time points of interest in epidemiology studies. 

2.2 INTRODUCTION 

While numerous studies have linked exposure to ambient fine particulate matter (PM2.5) to 

adverse health outcomes (e.g., asthma, cardiovascular disease) (Robert D Brook et al. 2010; 

Guarnieri and Balmes 2014), less is known about which specific components of PM2.5 drive 

these associations. Because PM2.5 composition varies across space, characterizing fine-scale 

intra-urban variation in constituents is critical to improving epidemiological studies aimed 

towards better understanding health effects of key emissions sources (Bell et al. 2007). Although 

many studies have developed land use regression (LUR) models for PM2.5, relatively few have 

developed LURs to examine specific constituents. Because a greater proportion of spatial 

variation in metal constituents may be attributable to a few specific sources than is the case for 

total PM, emissions from these sources may need to be characterized with greater precision. One 

promising approach for improving this characterization may be hybrid models, where source-

specific dispersion covariates are integrated into LURs. 

LUR models have been widely used to identify key sources, to predict pollutant 

concentrations at unmonitored locations, and to assign exposure estimates for epidemiological 

cohorts (Hoek et al. 2008; Jerrett et al. 2005).  For cohort exposure estimates that are accurate in 

space and time, the spatial surfaces produced by LUR modeling are often combined with 

temporally-dense concentration measures, such as those provided by the EPA air quality system 
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(AQS) monitors (Johnson et al. 2013; Ross et al. 2013). These approaches represent a great 

improvement over exposure assignments that rely solely on the nearest EPA AQS monitor(s).  

Few previous studies have developed elemental LUR models for PM2.5 components. The 

European Study of Cohorts for Air Pollution Effects (ESCAPE) modeled eight components of 

PM2.5, the New York City Community Air Survey (NYCCAS) modeled 15 components of PM2.5, 

and Brokamp et al., developed LUR models for 11 metals in Cincinnati, Ohio (Brokamp et al. 

2016; de Hoogh et al. 2013; Ito et al. 2016). Several LUR models have also been made for 

constituents of different PM fractions (Zhang et al. 2015; Zhang et al. 2014). 

Despite the greater influence that one or a few key sources will have on spatial patterns 

when modeling constituents rather than total PM, only two spatial models for elemental 

components have incorporated dispersion parameters in a hybrid LUR approach. The Multi-

Ethnic Study of Atherosclerosis modeled four constituents of PM10-2.5 and included the 

CALINE3 line dispersion model as a traffic-related covariate (Zhang et al. 2014). The NYCCAS 

developed a commercial charbroiling variable using the AERMOD dispersion model in 

elemental component models (Ito et al. 2016). Adding pollutant dispersion covariates into LUR 

models may further improve models by incorporating source-specific emissions data particularly 

relevant for metals components of PM, increasing accuracy of exposure estimates near sources.  

To our knowledge, LUR elemental components models developed in the ESCAPE study 

are the only constituent LUR models that have been applied to epidemiological health studies to 

examine potential associations of long term elemental components with adverse health effects 

(e.g., pneumonia and cardiovascular mortality) (Fuertes et al. 2014; Hampel et al. 2015; Pedersen 

et al. 2016; Wang et al. 2014).  
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We previously found that legacy industrial sources (e.g., Edgar Thomson Steel Works 

and Clairton Coke Works) substantially contribute to spatial variability in both PM2.5 and metal 

constituent concentrations across the Pittsburgh area (ACHD 2011; EPA 2009; Kelly 2007; 

Michanowicz et al. 2016; Shmool et al. 2014; Tunno et al. 2015c). In this study, we developed 

AERMOD hybrid LUR models for PM2.5, black carbon (BC), and lead (Pb), manganese (Mn), 

zinc (Zn), and iron (Fe), metal constituents to develop spatial and temporal exposure estimates 

for retroactive and prospective cohort studies in the greater Pittsburgh area. We created two 

AERMOD Industrial PM2.5 dispersion covariates to develop hybrid models. One was built using 

emissions profiles for 207 sources and the second was created using sources associated with 

Edgar Thomson Steel Works. We then used concentrations from a centrally-located EPA AQS 

monitor to temporally adjust pollutant concentrations to develop exposure estimates that can be 

modified for relevant time points of interest in epidemiology studies. These models will be used 

in future epidemiological studies examining chronic pollutant exposures and health effects.  

2.3 METHODS 

2.3.1 Air Pollution Data 

PM2.5 samples were collected during a spatial-saturation monitoring campaign with 36 sites 

monitored in both summer (June 5 to July 26, 2012) and winter (January 8 to March 10, 2013) as 

detailed previously (Shmool et al. 2014; Tunno et al. 2015c). Briefly, a sampling domain of 

approximately 388 km2 was identified to include urban and rural areas in the greater Pittsburgh 

region, and included major industrial sources in Allegheny County (e.g., steel mill, two coke 
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(coal) works). A stratified random sampling approach was used to systematically choose 

monitoring sites based on cross-stratifications of elevation gradient, traffic density and industrial 

emissions using geographic information systems (GIS) (ArcMap 10.0-10.3, Redlands). A 

background reference site was chosen in Settler’s Cabin Park, west of the city, due to its location 

in the lowest strata classes (high elevation, far from industry, and low traffic density) and 

location upwind in the predominant wind direction (Fig. 1).  

Figure 1. Monitoring locations and site selection strata 
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One-week integrated PM2.5 samples were collected using Harvard Impactors (Air 

Diagnostics and Engineering Inc.) programmed to sample at a rate of 4.0 liters per minute. 

Integrated PM2.5 concentrations were obtained at each site for the first 15 minutes of every hour 

for seven days, and eight sites were sampled per session. The reference site was monitored every 

session, to enable temporal adjustment across sessions. Pollutant concentrations were temporally 

adjusted to account for sampling sites across multiple weeks by dividing the raw concentration 

by the session-specific reference site concentration and then multiplying the result by the average 

concentration for the entire season (Shmool et al. 2014; Tunno et al. 2015c). 

PM2.5 concentrations were calculated from pre- and post-sampling Teflon filter weights and 

black carbon was measured using an EEL43M Smokestain Reflectometer (Diffusion Systems). 

Filters were then analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to 

determine elemental concentrations for 25 elements (Wisconsin State Laboratory of Hygiene). 

2.3.2 Factor Analysis and Source Apportionment 

We used factor analysis to identify spatially correlated suites of constituents associated with key 

urban sources, such as traffic, industry, and long-range transport. Unconstrained factor analysis 

with varimax rotation was performed on 25 PM2.5 elemental constituents plus BC, and a 

previously-developed literature review on source tracers was used to interpret resulting factor 

sources (Tunno et al. 2015a). Temporally-adjusted metal concentrations for summer and winter 

were combined, and analysis was performed using PROC FACTOR in SAS 9.3 (Cary, NC, 

USA) per methods used by Tunno et al., and Clougherty et al (Clougherty et al. 2009; Tunno et 

al. 2015a). Factors explaining at least 5% of the total variance, and constituents with loadings 

greater than or equal to 0.60 on those factors were retained. Factor 3, which included barium 
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(Ba), cesium (Cs), Fe, lanthanum (La), Mn, and Zn, was of particular interest because it 

contained three metals (Fe, Mn, and Zn) previously associated with steel mill emissions 

(Almeida et al. 2015; Pancras et al. 2013; Tunno et al. 2015a). While Pb, also previously 

associated with steel emissions (Almeida et al. 2015; Pancras et al. 2013), did not meet the 0.60 

threshold for any factor, its highest loading was 0.57, also on factor 3. 

2.3.3 GIS-based Covariates 

A wide range of covariates were developed using GIS to capture multiple source categories. 

Methods for covariate creation are described elsewhere (Tunno et al. 2015c). Table 1 includes all 

covariates created and examined in LUR models. Source categories included traffic density 

indicators, transportation indicators, road-specific measures, land use/ built environment, 

industrial emissions, population, and truck, bus, and diesel indicators. Several new covariates 

were also created in addition to covariates developed by Tunno et al (Tunno et al. 2015c). Under 

the industrial emissions source category, mean density of total Pb and Mn emitted per meter 

were developed from EPA National Emissions Inventory (NEI) data (EPA 2011). Three 

covariates were created using data from the 2011 National Land Cover Database (NLCD) 

including percent developed imperviousness, percent medium development, and percent high 

development ((USGS) 2011).  Variables were created for varying buffer sizes around monitoring 

sites, ranging from 50-1000 meters. 
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Table 1. Covariates for LUR modeling 

Adapted from Tunno et al  2015. 

2.3.4 AERMOD Dispersion Covariates 

Two industrial PM2.5 dispersion covariates were developed using AERMOD, a Gaussian plume 

atmospheric dispersion model. These variables were developed with the goal of providing more 

accurate, source-specific emission profiles to explain greater variability in monitored 

concentrations. AERMOD is currently used for regulatory purposes by the EPA to assess 

NAAQS pollutants under the Clean Air Act (EPA 2016b). Both variables were developed using 

emissions data from the Allegheny County Health Department (ACHD) Air Quality/ Pollution 
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Control Program Division emissions inventory, meteorological data (e.g., wind speed, 

temperature) and elevation. Meteorological data used in AERMOD was averaged for 2012 to 

develop an annual average dispersion covariate. Emissions data was used for 207 individual 

point, volume, and area sources. Model processing was done using Lakes Environmental (Lakes 

Environmental Software, Waterloo, ON) version 7.3.0, corresponding to AERMOD version 

11103. More information about this process is detailed by Michanowicz et al (Michanowicz et al. 

2016). Two covariates were developed as follows: 1) AERMOD predicted industrial PM2.5 

emissions using all 207 sources, 2) AERMOD predicted steel mill PM2.5 emissions using 14 

sources from the Edgar Thomson Steel Works. Using AERMOD, PM2.5 concentrations were 

predicted directly at monitoring locations as well as at each centroid of a 100 m2 Cartesian 

receptor grid covering Allegheny County. Average concentrations were determined at 

monitoring point locations and for buffers 50 m-1000 m around sites. 

2.3.5 Reference Site and Temporal Adjustment 

While the Settler’s Park background reference site was used as a temporal component in 

previously developed seasonal LUR models, an alternative method was needed that used data 

available for the entire sampling year (summer 2012 to spring 2013) to develop annual models. 

To accomplish this, an EPA AQS monitor maintained by the ACHD was used to adjust for 

temporal variation across sampling weeks. This particular AQS site was chosen for three main 

reasons: 1) its central location within the sampling domain (Fig. 1), 2) quality of data and 

comparable model agreement with the Settler’s reference site, and 3) availability of data 

matching the time period cohort data was collected. Daily PM2.5 data from all PM2.5 reference 

monitors in Allegheny County were downloaded from the EPA air data website (Agency 2017). 
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We chose Allegheny monitor site 420030008 located in Lawrenceville, PA for 2003-2013 based 

on the criteria mentioned above. Preference was given to data from National Ambient Air 

Quality Standard (NAAQS) compliant monitors. One daily monitor in particular was used with 

only 176 missing days over the 10-year period. Concentrations for 141 additional missing days 

were filled with data from other monitors (e.g., speciation monitors) leaving a remaining 35 days 

with missing data. These 35 concentrations were imputed using PROC GLM with daily PM2.5 

concentrations as the dependent variable and year, month, and day of the week as categorical 

variables in SAS v. 9.3 (Cary, NC). 

2.3.6 Land Use Regression Models 

Prior to modeling, pollutant distributions were examined through scatter plots and histograms 

then tested for normality. Pb, Mn, Fe, and Zn concentrations were transformed using the natural 

logarithm due to right-skewed distributions.   

LUR models use observed associations between monitored pollution concentrations and 

GIS-based pollution source indicators, such as industrial emissions and land use zoning, to 

predict pollutant concentrations at unmonitored locations. Pollutant concentrations collected 

from summer 2012 and winter 2013 were combined to create merged mixed models accounting 

for season as a random factor. Modeling was done using SAS v. 9.3 and Snijders/Bosker R2 

values were computed in STATA v. 13. We used GIS-based source indicators and LUR models 

built using a manual forward step-wise process to predict fine-scale PM2.5, BC, Pb, Mn, Fe, and 

Zn concentration estimates with methods adapted from Tunno et al. and Clougherty et al 

(Clougherty et al. 2013; Tunno et al. 2015c).  



21 

Correlations were first tested for non-temporally adjusted metal concentrations versus 

covariates in each source group. The two highest covariates in each source group were retained. 

Scatter plots of these covariates versus pollutant concentrations were examined to make sure that 

predictors captured variability across the entire concentration range. Based on these scatter plots 

several covariates were natural log transformed to improve linearity in metal models, including 

the Lawrenceville temporal term and AERMOD-predicted steel-mill PM2.5 emissions. Covariates 

were then grouped together and run using a random forest automation to determine a covariate 

ranking order using R version 3.1.0 (The R Foundation). Next, LUR models were built starting 

with the temporal covariate built using session specific concentrations from the AQS monitor 

described above. Covariates were then sequentially tested starting with the highest ranked 

covariate from the random forest analysis. The coefficient of determination (R2) was used to 

retain covariates. Covariates with a p-value <.1 were removed at each stage. Next, modification 

of covariates by elevation was tested by examining interaction terms using a binary indicator for 

elevation (low, high, 50%) multiplied by source covariates. Models were then examined for 

collinearity by removing covariates with variance inflation factors greater than 2.0. PM2.5 and 

BC models were built following the methods from Tunno et al. (Tunno et al. 2015c) but tested 

all new covariates built for metal models as well. Spatial R2 values were determined by taking 

out the temporal term and predicting temporally adjusted concentrations using only spatial 

covariates. Using a 100 m grid spread across the sampling domain, pollutant concentrations were 

predicted at the centroid of each grid cell by applying LUR models to the spatial covariate values 

in each grid cell. Concentrations were then smoothed with inverse distance weighting with 100 

nearest neighboring grid cells. Centroids with metal concentrations greater than the highest 
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temporally adjusted concentration measured during the monitoring campaign were capped at this 

concentration.  

2.3.7 Sensitivity Analyses  

Model residuals were assessed using scatter plots and examined for normality and 

heteroskedasticity. Residuals were also mapped using GIS to examine spatial patterns in model 

performance. In order to produce semivariograms and determine any additional spatial trends, 

residuals were mapped against the latitude and longitude of monitoring sites. Twenty percent of 

sites (n=14) were selected randomly in SAS and removed. The LUR model was then tested using 

the remaining sites. All four metal models were also built without natural log transformations to 

compare covariates with ln transformed models. Sensitivity analyses were done with temporal 

data. ACHD data for Pb, Mn, Fe, and Zn (concentrations collected every three days) was tested 

by replacing the PM2.5 temporal term.  

2.3.8 Exposure Assignment for Cohort Participants   

Pollutant exposures will be assigned within a 300 m buffer of each participant’s address by 

computing the mean centroid concentration within each buffer. These exposures will then be 

temporally extrapolated to relevant time points (e.g., 1 year, or 5 years before the date of the 

health outcome of interest). The same reference monitor that was used to temporally adjust the 

LUR models will also be used to develop residence-specific cohort participant exposure 

estimates as follows in Equation 2.1: 



23 

pollutioni = pollution (300 m buffer) - β1* (mean EPA concentration during sampling 

year) + β1* (mean EPA concentration during time point of interest). 

(2.1) 

Where pollutioni is the LUR-derived pollutant-specific exposure estimate corresponding 

to participant i’s address and temporally adjusted to the time point of interest. 

β1 corresponds to the temporal term from the corresponding LUR model. Mean pollutant 

concentrations will be assigned to each participant within a 300 m radial buffer surrounding each 

participant’s geocoded residential location. 

2.4 RESULTS 

2.4.1 Summary Statistics   

Descriptive statistics for temporally adjusted concentrations of monitored PM2.5, BC, Pb, Mn, 

Zn and Fe are shown in Table 2.   



Table 2. Descriptive statistics for temporally adjusted citywide air sampling concentrations 

Summer 2012 Winter 2013 

Pollutant Mean (SD) Min Max Mean (SD) Min Max 

PM2.5 (µg/m3)` 13.9 (2.01) 11.26 22.6 11.3 (2.01) 8.01 18.9 

BC (abs) 1.06 (0.36) 0.61 2.47 0.93 (0.35) 0.50 2.15 

Pb (ng/m3) 3.87 (2.20) 0.11 10.4 4.21 (5.43) 0.56 26.4 

Mn (ng/m3) 5.00 (5.42) 0.17 29.4 9.08 (22.0) 0.40 96.3 

Zn (ng/m3) 23.8 (15.0) 5.22 75.4 39.0 (84.1) 0.71 391.9 

Fe (ng/m3) 110.8 (86.3) 3.41 515.6 260.0 (675.8) 6.03 3661.3 

Adapted from Tunno et al 2015. 

2.4.2 Factor Analysis   

Five distinct factors resulted from this analysis (Fig. 2). Factor 1 includes metals related to 

traffic. Metals aluminum (Al), potassium (K), molybdenum (Mo), antimony (Sb), and strontium 

(Sr) loaded onto this factor. Copper (Cu) almost loaded onto this factor (0.59). Each of these 

metals have been linked to traffic sources. Mo, Sb, Sr, and Cu have been linked more specifically 

to brake and tire wear as well. Factor 2 also consists of components mainly linked to traffic 

sources. Calcium (Ca), cadmium (Cd), cerium (Ce), chromium (Cr), vanadium (V), and 

magnesium (Mg, 0.59) loaded onto factor 2. Ca, Cd, and Mg have been linked to traffic in 

general, Cr to brake/tire wear, and V to fuel and oil sources. Barium (Ba), cesium (Cs), Fe, 

lanthanum (La), Mn, Zn, and Pb (0.57) loaded on factor 3. Fe, Zn, Mn, and Pb have all been 
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linked to steel mill emissions. Factor 4 included arsenic (As) and thallium (Tl) and factor 5 had 

selenium (Se). All of these metals have been associated with coal sources (Tunno et al. 2015a). 

Figure 2. Factor loadings of PM2.5 elemental constituents and BC 
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2.4.3 LUR Models   

Most of the variability in the metal models was explained by spatial covariates. The temporal 

reference contributed to 17-26% of the total variance in metal models compared to 70% in PM2.5 

and 36% in BC as shown in Table 3.  All models contained AERMOD covariates. PM2.5 and BC 

models incorporated the AERMOD predicted industrial PM2.5 emissions covariate while the 

metal models included the steel mill specific AERMOD term in every model. Zn, Fe, and Mn 

models all included percent impervious surface within a 500 m buffer. Summed railroad length 

within a 300 m buffer was in Pb, Mn, and Fe models. In addition to the AERMOD covariate, the 

PM2.5 model also included industrial land use within a 500 m buffer and percent impervious 

surface within a 200 m buffer. Commercial and industrial land use within a 200 m buffer was 

found in the BC model. Spatial R2 values were 0.33 for PM2.5, 0.32 for BC, 0.25 for Pb, 0.47 for 

Mn, 0.36 for Fe, and 0.32 for Zn. Spatial surfaces developed from these models are shown in 

Figure 3. 
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Table 3. LUR model results 

LUR Models 

Pollutant Covariates β 
Seq. 
R2 

PM2.5 (µg/m3) Intercept -2.53 (1.14) -- 

Reference PM2.5 1.08 (0.08)** 0.70 

Industrial land use 500 m 7.40x10-6 (2.45x10-6)* 0.75 
Percent Impervious surface 200 m 0.03 (0.01)* 0.77 
AERMOD predicted industrial PM2.5 emissions 0.50 (0.20)* 0.79 

Pb (ng/m3) Intercept -2.84 (1.11) -- 

Reference PM2.5 1.65 (0.43)* 0.18 
AERMOD steel mill PM2.5  emissions 1000 m 0.26 (0.09)* 0.26 
Sum rail length 300 m 0.00011 (0.000036)* 0.35 

Mn (ng/m3) Intercept -4.42 (1.22) -- 

Reference PM2.5 2.16 (0.47)** 0.20 
AERMOD steel mill PM2.5  emissions 1000 m 0.38 (0.10)** 0.34 
Sum rail length 300m 0.00016 (0.00005)* 0.52 
Percent Impervious surface 500 m 0.01 (0.005)* 0.55 

Fe (ng/m3) Intercept -2.21 (1.21) -- 

Reference PM2.5 2.50 (0.47)** 0.26 
AERMOD steel mill PM2.5  emissions 1000 m 0.32 (0.10)* 0.36 
Sum rail length 300 m 0.00015 (0.000044)* 0.52 
Percent impervious surface 500 m 0.01 (0.005)* 0.55 

Zn (ng/m3) Intercept -1.81 (1.34) -- 

Reference PM2.5 1.71 (0.52)* 0.17 
AERMOD steel mill PM2.5  emissions 1000 m 0.24 (0.11)** 0.26 
Percent impervious surface 500 m 0.02 (0.005)* 0.37 

BC (abs) Intercept -0.55 (0.17) -- 

Reference PM2.5 0.10 (0.01)** 0.36 

Commercial and industrial land use 200 m 7.31x10-6 (1.41 x10-6)* 0.54 

AERMOD predicted industrial PM2.5 emissions 0.11 (0.04)** 0.59 
(*p-value <.05, **p-value<.0001). 
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Figure 3 continued below 
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Figure 3. Hybrid LUR annual pollutant surfaces 

2.4.4 Sensitivity Analyses 

After reviewing semivariograms of model residuals, no additional spatial patterns were found for 

any of the pollutants. When models were re-fit after deleting 20% of sites, all covariates were 

retained with a p-value less than 0.1.  

Compared to the models developed using ln transformed concentrations, models built 

with non-transformed concentrations had considerably higher R2 values. However, the 

distribution of residuals for all non-transformed models were heteroskedastic compared to 

transformed models. All non-transformed models contained the AERMOD-predicted steel mill 

PM2.5 emissions covariate. The Mn and Fe models also included percent impervious surface and 
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industrial land use within a 500 m buffer. Pb and Zn both had industrial land use at 500 m and 

percent of medium developed land within a 500 m buffer.  

Using daily PM2.5 from the AQS monitor performed better in models compared to using 

speciation data collected once every 3 days from the same site (higher R2, lower p-value).   

2.5 DISCUSSION 

Hybrid AERMOD LUR models were developed for PM2.5, BC, Pb, Mn, Zn, and Fe metal 

constituents by combining spatial source-based covariates developed in GIS with industry 

specific PM2.5 dispersion covariates developed using AERMOD. These models were specifically 

designed to assign exposure estimates to participants in cohort studies in Allegheny County 

using an EPA AQS monitor to temporally extrapolate LUR spatial surfaces to cohort specific 

time points. 

Significant covariates found in the metal models were mostly consistent with known Pb, 

Mn, Zn, and Fe sources. All metal models included AERMOD-predicted steel mill PM2.5 

emissions compared to PM2.5 and BC models which incorporated the AERMOD-predicted 

industrial emissions variable containing 207 sources. This corroborates our factor analysis and 

source apportionment results which grouped these metals together and pointed to a “steel 

making” source in the literature. The NYCCAS also included industry (industrial land use) as a 

covariate in their Mn, Fe, and Pb LUR models (Ito et al. 2016). 

Our seasonal models for PM2.5 and BC previously contained a covariate developed from 

inverse distance weighted NEI PM2.5 emissions instead of AERMOD-predicted PM2.5 emissions. 

We found in our seasonal PM2.5 models that AERMOD-predicted industrial PM2.5 emissions 
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increased the accuracy of exposure estimates compared to IDW emissions by incorporating wind 

speed/direction and detailed emission profiles of local industries. This was found near specific 

industrial sources where wind direction and elevation may play a role in transport of pollutants 

from a point source, which is particularly important for the metal models that were heavily 

influenced by specific industrial sources (Michanowicz et al. 2016). AERMOD covariates 

contributed more variability to the metal models compared to PM2.5 and BC. However, PM2.5 and 

BC models also contained industrial land use. Inclusion of the steel-mill related AERMOD 

covariate in all metal models demonstrates the importance of developing accurate source-specific 

covariates for modeling metal constituents.  

Summed railroad length was a significant covariate for Pb, Fe and Mn models. 

Buikowieki et al., found Mn and Fe were emitted from railways in Zurich, Switzerland 

(Bukowiecki et al. 2007). Brokamp et al. found that summed railroad length within a 1000 m 

buffer was significant in their Mn LUR model. Percent impervious surface within a 500 m buffer 

developed from the NLCD (2011) were also significant for Mn, Zn, and Fe models. Brokamp et 

al., included Developed High Intensity area which is an NLCD variable including 80-100% 

impervious surface in Mn and Fe models (Brokamp et al. 2016). 

We found lower R2 values for metal constituent models compared to total PM2.5. One 

reason for this could be because less variability was explained by the temporal term in the metal 

models. Another possibility could be due to our monitoring design which included sites “near” or 

“far” from industry based on IDW NEI pollutant emissions but did not include a range of 

distances from industrial locations.  
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2.5.1 Limitations 

While we developed annual average models, sampling was not completed in fall or spring 

seasons. However, many of the spatial covariates were developed from source data averaged 

over one or several years. Spatial surfaces were also temporally adjusted using data for the entire 

monitoring year from the EPA AQS monitor. Models will be temporally extrapolated for use in 

cohort studies using this same AQS site. A limitation of LUR models is that the analysis is based 

on associations and LUR model results cannot establish causation between source covariates and 

pollutants. 

2.5.2 Strengths 

The PM2.5 concentrations used for this analysis were obtained from two seasons of data from 36 

sites and modeled to generate concentrations for every 100 m grid cell within the sampling 

domain. This provided a much higher spatial resolution compared to the established EPA AQS 

monitoring network locations within the county. In addition, our hybrid AERMOD LUR models 

may be more accurate by incorporating meteorology and topography into AERMOD covariates. 

The AQS monitor used to adjust the models also contributed to high temporal resolution 

providing daily concentrations. 
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3.0  LONG-TERM AMBIENT AIR POLLUTION EXPOSURES AND CIRCULATING 

AND STIMULATED INFLAMMATORY MEDIATORS IN A COHORT OF MIDLIFE 

ADULTS 

3.1 ABSTRACT 

While long term exposure to ambient air pollution has been found to impact the immune system 

through systemic inflammation, it is unclear whether chronic pollutant exposures are associated 

with endotoxin stimulated inflammatory mediators. We examined associations between chronic 

exposures to outdoor air pollution and levels of both circulating and lipopolysaccharide (LPS) 

stimulated inflammatory mediators in a cohort of healthy adults. Circulating levels of 

Interleukin-6 (IL-6), C-reactive protein (CRP) (n=392), and LPS-stimulated production of 

Interleukin-1β (IL-1β), IL-6, and Tumor Necrosis Factor-α (TNF-α) were measured in blood 

samples collected from 379 participants in the Adult Health and Behavior II cohort. Spatial air 

pollution exposure models developed for fine particulate matter (PM2.5), black carbon (BC), and 

lead (Pb), manganese (Mn), zinc (Zn), and iron (Fe) metal constituents of PM2.5 were used to 

assign pollutant exposures at participant’s geocoded addresses. Associations between pollutant 

exposures with circulating and stimulated inflammatory mediators were examined using linear 

regression models adjusting for age, sex, race, smoking status, body mass index (BMI), and 

years of education. Exposure to PM2.5 and BC were associated with higher LPS-stimulated IL-
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1β, IL-6, and TNF-α. Pb was associated with increased stimulated TNF-α (p=0.02) and IL-1β 

(p=0.02), but were insignificant after applying a Bonferroni correction for multiple comparisons. 

No pollutant exposures were associated with circulating levels of IL-6 or CRP. Exposure to 

PM2.5 and BC was associated with increased LPS-stimulated pro-inflammatory cytokine 

production in a cohort of middle-aged adults. These results suggest that some chronic air 

pollution exposures may influence the responsiveness of the immune system, possibly increasing 

risk for future inflammatory conditions.    

3.2 INTRODUCTION 

Exposure to fine particulate matter (PM2.5) has been consistently associated with increased 

cardiovascular morbidity and mortality and systemic inflammation is one possible mediating 

pathway (Robert D Brook et al. 2010; Cosselman et al. 2015; Pope et al. 2004; Thurston et al. 

2015). While studies have found associations between long term exposure to PM2.5 and 

circulating inflammatory markers [e.g., Interleukin-6 (IL-6), C-reactive protein (CRP)] 

(Dubowsky et al. 2006; Hampel et al. 2015; Hoffmann et al. 2009; Ostro et al. 2014), little is 

known about how chronic PM2.5 exposures may impact immune competence.  While long-term 

exposure to ambient PM2.5 has been positively associated with circulating inflammatory 

mediators, some studies have also found inconsistent or null associations, potentially due to 

population differences in susceptibility or differences in PM2.5 composition (Robert D Brook et 

al. 2010; Roux et al. 2006; Zeka et al. 2006). These results indicate the need for more research 

examining associations between long-term PM2.5 exposures with cohorts of different ages and 

health status.  
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Compared to circulating inflammatory mediators, stimulated inflammatory mediators 

may provide an indicator of immune response, as they capture individual differences in the 

magnitude of immune response following exposure to endotoxin [e.g., lipopolysaccharide (LPS), 

phytohaemagglutinin (PHA)], possibly indicating immune reactivity (Marsland et al. 2002; 

Marsland et al. 2017b).  Circulating cytokines may reflect an individual’s current condition, such 

as acute infection. In this sense, stimulated cytokine measures may identify under- or over-

responsiveness of the immune system (Ai et al. 2013).  Better understanding how chronic PM2.5 

exposures relate to stimulated cytokine levels may indicate whether and how air pollution 

exposures may be associated immune response.  

Only a few studies have explored the association of environmental pollutants with 

stimulated cytokine production. To date, results have been mixed. For example, Grosse et al. 

found that induced iron oxide nanoparticles suppressed the ability of LPS to induce a stimulated 

inflammatory response in monocytes, while Kronborg et al., found that exposing isolated human 

cells to polybrominated diphenyl ether (DE-71) flame retardants in vitro, followed by LPS 

stimulation, exhibited increased production of cytokines including IL-6, IL-1β and TNF-α 

(Grosse et al. 2016; Kronborg et al. 2016).  

PM2.5 constituents may differ in toxicity (Bell et al. 2014; Franklin et al. 2008), and some 

prior studies have identified a heightened effect of steel-related metals components on 

inflammation (Ghio and Devlin 2001). In Pittsburgh, we previously identified elevated 

concentrations of Pb, Mn, Fe, and Zn related to steel mill emissions, and developed hybrid land 

use regression models predicting concentrations of each across the urban area (Tripathy et al. 

2017). Here, we associate annual-average residence-based exposures to ambient PM2.5 and 

metals components with circulating and stimulated levels of proinflammatory mediators among 
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middle-aged adults in the AHAB-II cohort. We hypothesized that elevated exposures to PM2.5, 

BC, Pb, Mn, Zn, and Fe would be associated with higher levels of circulating inflammatory 

mediators (Il-6 and CRP), and LPS-stimulated production of cytokines (IL-6, IL-1β, and TNF-α). 

3.3 METHODS 

3.3.1 AHAB-II Cohort    

AHAB-II is a cohort study of healthy middle-aged adults in Western Pennsylvania. It was 

developed to identify neural and bio-behavioral correlates of physical and mental health in 

midlife. Cohort participants were recruited between March 2008 and October 2011 through mass 

mailings of invitation letters to individuals randomly selected from voter registration and other 

public domain lists. Individuals eligible for AHAB-II were aged 30–54 years, were working at 

least 25 h per week outside of the home, and spoke English as their first language. Individuals 

were further excluded if they: (a) had a history of cardiovascular disease, schizophrenia or 

bipolar disorder, chronic hepatitis, renal failure, major neurological disorder, chronic lung 

disease, or stage 2 hypertension (SBP/DBP ≥ 160/100); (b) consumed ⩾ 5 alcoholic drinks 3–4 

times (> approximately 201 g of alcohol) per week; (c) took fish-oil supplements, took 

prescribed insulin or glucocorticoid, anti-arrhythmic, antihypertensive, lipid-lowering, 

psychotropic, or prescription weight-loss medications; (e) were pregnant; (f) had less than 8th 

grade reading skills; or (g) were shift workers. Finally, all participants were screened for prior 

and current DSM-IV Axis-I disorders using the Mini International Neuropsychiatric Interview 

(MINI) (Sheehan et al. 1998). The University of Pittsburgh Institutional Board approved the 



37 

study; all participants provided informed consent in accordance with its regulations and were 

remunerated for their participation (Marsland et al. 2017a). 

3.3.2 Circulating Inflammatory Mediators    

Blood samples were taken from participants to determine levels of circulating IL-6 and C-

reactive protein from 2008-2011.  Plasma levels of IL-6 and CRP were assessed from blood 

samples drawn between 7:30AM and 12:35PM (M = 9:16 ± 0:54 min). Prior to the blood draw, 

participants were asked to fast for 8 h, avoid vigorous exercise for 12 h and alcohol for 24 h, and 

refrain from using tobacco products that morning. The blood draw was rescheduled if the 

participant reported symptoms of acute infection or use of antibiotics or antivirals in the previous 

2 weeks. At the blood draw visit, a registered nurse completed a medical history and medication 

use interview and obtained measurements of height and weight to determine body mass index 

(BMI in kg/m2). The nurse also drew a 40 cc blood sample. Plasma samples were collected from 

citrated tubes, frozen at −80 °C until analysis in batches. IL-6 levels were determined in 

duplicate by high sensitivity quantitative sandwich enzyme immunoassay kit (R & D Systems, 

Minneapolis, MN, standard range = 0.156–10 pg/mL) run per manufacturer’s directions. CRP 

was measured at the University of Vermont’s Laboratory of Clinical Biochemistry Research with 

the BNII nephelometer from Dade Behring utilizing a particle enhanced immunonephelometric 

assay. Average inter- and intra-assay coefficients of variation were <10% for both IL-6 and CRP 

(Marsland et al. 2017a). 
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3.3.3 Stimulated Cytokines    

Whole blood was collected in citrate-treated vacutainer tubes and stimulated with LPS (serotype 

026:B6, Sigma) at a final concentration of 2.5 ug/ml under sterile conditions and incubated at 

37°C with 5.0% CO2 for 24 hours. The tubes were then centrifuged at 1000g for 10 minutes and 

the plasma was frozen at -80°C until the completion of the study. 

Samples were assayed in one batch using a multiplex analysis system. Multiplex bead 

kits (Biosource, Camarillo, CA), based on the principle of solid phase sandwich immunoassays, 

were employed and stimulated levels of IL-6, IL-1β, and TNF-α were determined using Bio-Plex 

Manager Software (Bio-rad Corporation, Hercules, CA), interpolating from the standard curve 

(Logisitc-5PL curve fit). Pooled plasma controls were included on all plates to determine assay 

reliability. Inter- and intra- assay coefficients of variability were less than 10%. Stimulated 

cytokine production was quantified by subtracting cytokine levels in unstimulated samples from 

the stimulated levels (Prather et al. 2007). 

3.3.4 Air Pollution Data  

Pollutant concentrations were measured during a multi-pollutant monitoring campaign in 

Allegheny County previously described (Shmool et al. 2014; Tunno et al. 2015c). Our sampling 

domain, including both urban and suburban areas in the greater Pittsburgh region, was 

determined using geographic information systems (GIS) (ArcMap 10.0-10.3, Redlands), to 

capture major industrial sources in Allegheny county (e.g., steel mill, coke works).  A stratified 

random sampling design was used to select 36 monitoring sites based on cross-stratified classes 

of elevation, traffic density, and industrial emissions. Monitoring was completed during summer 
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(June-July) 2012, and the same sites were repeated in winter (January-March) 2013. PM2.5 

samples were collected using Harvard Impactors (Air Diagnostics and Engineering Inc.) at 4.0 

liters per minute. Integrated PM2.5 concentrations were obtained at each site for the first 15 

minutes of every hour for 7 days. Eight sites were sampled per session. PM2.5 concentrations 

were calculated based on gravimetric analysis of Teflon filters before and after sampling, and 

black carbon was measured using an EEL43M Smokestain Reflectometer (Diffusion Systems). 

Elemental concentrations were determined using inductively-coupled plasma mass spectrometry 

(ICP-MS) (Wisconsin State Laboratory of Hygiene) (Shmool et al. 2014; Tunno et al. 2015c). 

3.3.5 Hybrid LUR Models 

To estimate average one-year air pollution exposures at the homes of each AHAB II participant, 

we used previously-developed hybrid LUR models for PM2.5, BC, Pb, Mn, Fe, and Zn. Model 

development is detailed elsewhere (Tripathy et al. 2017; Tunno et al. 2015c). Briefly, covariates 

were created using GIS to capture a variety of potential pollutant sources - including traffic 

density indicators, transportation indicators, road-specific measures, land use/built environment, 

industrial emissions, population, and truck, bus, and diesel indicators (Tunno et al. 2015c) - 

across locations.  Following our hybrid AERMOD-LUR modeling approach, detailed in 

Michanowicz et al. 2016 (Michanowicz et al. 2016), two additional covariates were developed 

using the AERMOD atmospheric dispersion model. One dispersion variable was built using 

emissions profiles for 207 sources (AERMOD-predicted industrial PM2.5 emissions), A second 

was developed using only the 14 point source profiles associated with the Edgar Thomson Steel 

Works (AERMOD-predicted steel mill PM2.5 emissions).  
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Hybrid LUR models were built using a manual forward step-wise approach combined 

with random forest analyses using SAS version 9.3 (Cary, NC) and R version 3.1.0 to select 

covariates that contributed the most to variability in pollutant concentrations. In addition to 

spatial covariates, a temporal term was incorporated into models using daily concentrations from 

an Environmental Protection Agency (EPA) Air Quality System (AQS) maintained by the 

Allegheny County Health Department (ACHD) centrally located within the sampling domain. 

These models were used to predict pollutant concentrations across the monitoring domain using 

source layers in GIS. Model predictions were then spatially extrapolated outside of the original 

sampling domain to include all of Allegheny County where most AHAB-II participants lived 

(Tripathy et al. 2017). 

3.3.6 Geocoding  

AHAB-II participant addresses were geocoded using a  three-tiered system in GIS, following 

methods we have used successfully in other cities as shown in Figure 1 (Shmool et al. 2016). 

Briefly, addresses were first run through a U.S. Postal Service reference dataset using ZP4™ 

address standardization software (Semaphore Corporation, Monterey, CA). Incomplete 

addresses, P.O. Box numbers, and addresses outside of Allegheny County were excluded. We 

first attempted to match addresses using an address point based locator, unmatched addresses 

were then matched via a parcel centroid locator. Finally, any remaining addresses were matched 

using a street network locator. Buffers were created 300 m around geocoded addresses in 

preparation for exposure assignment. Participants with unmatched addresses or 300 m buffers 

that were not completely contained within the Allegheny County boundary were excluded.   
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3.3.7 Exposure Assignment   

PM2.5, BC, Pb, Mn, Fe, and Zn exposure estimates were assigned using pollutant LUR surfaces. 

Mean concentration estimates were assigned within a 300 m buffer of geocoded addresses. These 

exposures were then temporally extrapolated to a 1 year average predicted concentration prior to 

the date of participant blood draw. This was done using the same AQS monitoring data used 

during the LUR modeling process using the procedure by Tripathy et al. 2017 (Tripathy et al. 

2017). 

3.3.8 Statistical Analysis   

IL-6, CRP, and stimulated IL-6, IL-1β, and TNF-α were tested for normality with PROC 

UNIVARIATE and examination of histogram distributions. Each exposure-outcome relationship 

was tested for linearity by reviewing scatter plots of exposures versus outcomes. Bivariate linear 

regression models were run for each pollutant by each inflammatory marker. Next, pollutants 

were tested in a second model adjusting for age, sex, race, smoking status (current, former, 

never), body mass index (BMI), and education (years) as potential confounders. Potential 

interaction of pollutants by sex was also tested. Statistical analyses were generated using SAS 

versions 9.3-9.4 (Cary, NC) and scatter plots were displayed using STATA version 13.0 

(StataCorp, TX). 
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3.3.9 Sensitivity Analyses   

Bivariate linear regression models and linear regression models adjusting for confounders were 

run again excluding participants that did not live within the original monitoring domain to ensure 

results were not due to misclassification by sources that may not have been represented in the 

original sampling domain.  

3.4 RESULTS 

3.4.1 AHAB II Sample Size   

The original AHAB II dataset contained 490 participants. Twenty-nine participants were 

excluded due to incomplete addresses, P.O. Box numbers, and addresses outside of Allegheny 

County as shown in Figure 4. Remaining addresses were geocoded using the composite locator 

resulting in 4 unmatched addresses (n=463) and 2 additional addresses were excluded with 300 

m buffers extending outside of Allegheny County. Exposures were assigned at 461 geocoded 

locations using our hybrid LUR pollutant exposure surfaces. 

A separate sample size was determined for circulating cytokines and stimulated cytokines 

due to missing inflammatory outcome data resulting in 393 participants with circulating cytokine 

data and 379 with stimulated cytokine data. One additional participant was excluded from the 

circulating cytokine sample due to missing data on smoking status. Participant geocoded 

addresses are shown in Figure 4. 
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Figure 4. Geocoded addresses for AHAB II participants with valid circulating IL-6 and CRP 
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Figure 5. Geocoded addresses for AHAB II participants with valid stimulated cytokines 
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Figure 6. AHAB II participant exclusions and geocoding methodology 
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3.4.2 Sample Characteristics 

As shown in Table 4 and Table 5, sample characteristics were similar for participants with valid 

circulating cytokines (n=392) compared to participants with valid stimulated cytokine data 

(n=379). AHAB II had slightly more women than men and the average age was approximately 

43 years. Participants were predominately white and had completed college on average. Most 

participants had never smoked. 

Table 4. AHAB II Participant Characteristics: Circulating Cytokines 

Sample characteristics mean (SD) or % 5% 95% 

Sex (%) 48% male, 52% female 

Age (years) 43.1 (7.2) 31 53 

Race (%) 81.7% white, 16.3% black, 2.0% other 

Education (years) 16.9 (2.9) 12 23 

BMI (kg/m2) 27.2 (5.1) 19.9 36.2 

Smoking status 20.4% former, 16.6% current, 63% never 

Table 5. AHAB II Participant Characteristics: Stimulated Cytokines 

Sample characteristics mean (SD) or % 5% 95% 

Sex (%) 46.4% male, 53.6% female 

Age (years) 42.8 (7.4) 31 53 

Race (%) 82.3% white, 15% black, 2.7% other 

Education (years) 17.0 (2.9) 12 23 

BMI (kg/m2) 26.9 (5.3) 19.9 36.7 

Smoking status 21.1% former, 14.5% current, 64.4% never 
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3.4.3 Statistical Analysis  

Natural-log transformation was applied to all outcome variables to correct skewed distributions. 

Scatter plots were made for each pollutant versus outcome to assess linearity (Fig. 5-9). Pb, Mn, 

Zn, and Fe exposures were transformed using the natural log to improve linear fit.  
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Pollutant exposures, confounders, and outcomes are summarized in Tables 6-8. Average 

pollutant exposures were similar between participants with valid circulating cytokines and 

participants with valid stimulated cytokines, as shown in Table 6 and Table 7.  

Table 6. AHAB II 1-year residential pollutant exposure estimates: circulating cytokines (n=392) 

Exposure estimates mean (SD) 5% 95% 

PM2.5 (µg/m3) 13.0 (1.35) 11.3 15.7 

BC (abs) 0.95 (0.15) 0.75 1.23 

Pb (ng/m3) 2.84 (0.63) 2.06 4.06 

Mn (ng/m3) 2.95 (1.32) 1.60 5.00 

Fe (ng/m3) 65.3 (26.9) 37.9 110.1 

Zn (ng/m3) 17.6 (5.57) 9.81 27.1 

Table 7. AHAB II 1-year residential pollutant exposure estimates: stimulated cytokines (n=379) 

Exposure estimates mean (SD) 5% 95% 

PM2.5 (µg/m3) 13.1 (1.41) 11.3 15.9 

BC (abs) 0.97 (0.15) 0.76 1.24 

Pb (ng/m3) 2.83 (0.63) 2.05 4.03 

Mn (ng/m3) 2.95 (1.33) 1.60 4.99 

Fe (ng/m3) 65.1 (27.0) 37.0 110.1 

Zn (ng/m3) 17.6 (5.65) 9.71 27.1 

Table 8. AHAB II outcomes 

Inflammatory marker n mean (SD) 5% 95% 

Il-6 (pg/ml) 392 1.14 (0.94) 0.39 2.51 

CRP (ng/ml) 392 1.67 (1.93) 0.21 5.87 

stimulated Il-6 (pg/ml) 379 52415.6 (35648.9) 19371.4 116938.1 

stimulated Il-1β (pg/ml) 379 12322.4 (7632.6) 3528.5 27943.1 

stimulated tnf-α (pg/ml) 379 7319.1 (6071.8) 808.3 18570.1 
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Results from bivariate linear regression models are shown in Tables 9-10. We found 

significant positive associations (p < 0.05) of exposure to PM2.5 and BC with all stimulated 

cytokines. Pb was significantly associated with higher stimulated production of IL-1β and TNF-

α, and Mn with TNF-α production. Associations of Pb with IL-1β and Mn with TNF-α did not 

withstand Bonferroni correction for multiple testing (p < 0.008). No significant associations were 

found among pollutants with circulating IL-6 or CRP. 

Table 9. Bivariate linear regression models for inflammatory markers by pollutant including intercept (β), 
standard error (SE) and p-value: circulating cytokines 

IL-6 CRP 

pollutant β (SE) p-value β (SE) p-value

PM2.5 -0.02 (0.02) 0.36 -0.04 (0.04) 0.27 

BC -0.25 (0.21) 0.24 -0.19 (0.34) 0.57 

Mn  0.02 (0.09) 0.85  0.11 (0.14) 0.41 

Pb  0.01 (0.16) 0.93  0.31 (0.26) 0.25 

Fe  0.02 (0.09) 0.79  0.15 (0.15) 0.31 

Zn 0.03 (0.10) 0.74 0.08 (0.16) 0.63 

Table 10. Bivariate linear regression models for inflammatory markers by pollutant including intercept (β), 
standard error (SE) and p-value: stimulated cytokines 

IL-1β IL-6 Tnf-α 

pollutant β (SE) p-value β (SE) p-value β (SE) p-value

PM2.5 0.16 (0.02) <.0001** 0.07 (0.02) 0.0007* 0.28 (0.03) <.0001** 

BC 1.18 (0.21) <.0001** 0.62 (0.20) 0.002* 2.21 (0.33) <.0001** 

Mn 0.12 (0.09) 0.18 0.003 (0.08) 0.97 0.30 (0.14) 0.04* 

Pb 0.42 (0.17) 0.01* 0.04 (0.16) 0.81 0.75 (0.27) 0.006* 

Fe -0.01 (0.10) 0.88 -0.06 (0.09) 0.47 0.08 (0.15) 0.59 

Zn 0.02 (0.10) 0.87 0.008 (0.09) 0.93 0.13 (0.16) 0.41 

*p<.05  **p<.0001
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Fully-adjusted model results are shown in Tables 11-13. After adjusting for age, sex, race, 

smoking status, and BMI, significant positive associations were found for PM2.5 and BC with all 

stimulated cytokine concentrations. Significant associations were also found for Pb with IL-1β 

(p=0.02) and TNF-α (p=0.02) in fully-adjusted models, before accounting for multiple 

comparison. Applying a Bonferroni correction to account for multiple comparisons produced…. 

(p<0.008). There were no significant interactions by sex. 



55 

 

 

 

Table 11. Linear regression model results for stimulated cytokines by pollutants adjusting for BMI, education, sex, age, race, and smoking status: IL-1β 
 

 PM2.5 BC Pb Mn Fe Zn 

Parameter β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) 

Intercept  7.53 (0.44)**  8.46 (0.39)**  9.12 (0.39)**  9.41 (0.40)**  9.54 (0.53)**  9.38 (0.44)** 

Pollutant   0.16 (0.02)**  1.11 (0.21)**  0.4 (0.17)*  0.12 (0.09) -0.004 (0.10)  0.05 (0.10) 

BMI  0.001 (0.006)  0.001 (0.006) -0.0003 (0.007) -0.0009 (0.007) -0.001 (0.01) -0.001 (0.01) 

Education  0.008 (0.01)  0.01 (0.010  0.02 (0.01)  0.02 (0.01)  0.02 (0.01)  0.02 (0.01) 

Age -0.01 (0.004)* -0.01 (0.005)* -0.01 (0.005)* -0.01 (0.005)* -0.01 (0.005)* -0.01 (0.005)* 

Sex -0.02 (0.06) -0.04 (0.07) -0.04 (0.07) -0.04 (0.07) -0.04 (0.07) -0.04 (0.07) 

Race (black)  0.03 (0.09)  0.01 (0.10)  0.03 (0.10)  0.04 (0.10)  0.05 (0.10)  0.05 (0.10) 

Race (other) -0.1 (0.20) -0.05 (0.20) -0.06 (0.21) -0.01 (0.21)  0.02 (0.21)  0.02 (0.21) 

Race (white)  0  0  0  0  0  0 

Smoking (former)  0.01 (0.08)  0.02 (0.08)  0.01 (0.08)  0.02 (0.08)  0.03 (0.09)  0.03 (0.09) 

Smoking (current)  0.06 (0.09)  0.05 (0.10)  0.04 (0.10)  0.05 (0.10)  0.05 (0.10)  0.05 (0.10) 

Smoking (never)  0  0  0  0  0  0 

 *p<.05  **p<.0001 
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Table 12. Linear regression model results for stimulated cytokines by pollutants adjusting for BMI, education, sex, age, race, and smoking status: IL-6 
 

 PM2.5 BC Pb Mn Fe Zn 

Parameter β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) 

Intercept  9.6 (0.41)**  9.97 (0.36)**  10.53 (0.35)**  10.54 (0.32)**  10.78 (0.47)**  10.45 (0.39)** 

Pollutant  0.08 (0.02)*  0.61 (0.19)*  0.02 (0.15)  0.009 (0.08) -0.06 (0.09)  0.04 (0.09) 

BMI  0.009 (0.006)  0.009 (0.006)  0.007 (0.006)  0.007 (0.006)  0.007 (0.006)  0.007 (0.006) 

Education  0.004 (0.01)  0.007 (0.01)  0.01 (0.01)  0.01 (0.01)  0.01 (0.01)  0.01 (0.01) 

Age -0.008 (0.004) -0.008 (0.004)* -0.009 (0.004)* -0.009 (0.004)* -0.009 (0.004) -0.009 (0.004)* 

Sex  0.29 (0.06)**  0.28 (0.06)**  0.28 (0.06)**  0.28 (0.06)**  0.28 (0.06)**  0.28 (0.06)** 

Race (black) -0.02 (0.09) -0.03 (0.09) -0.01 (0.09) -0.01 (0.09) -0.01 (0.09) -0.01 (0.09) 

Race (other) -0.12 (0.18) -0.10 (0.18) -0.06 (0.19) -0.06 (0.19) -0.04 (0.19) -0.06 (0.19) 

Race (white)  0  0  0  0  0  0 

Smoking (former)  0.005 (0.07)  0.009 (0.07)  0.01 (0.08)  0.01 (0.08)  0.01 (0.08)  0.01 (0.08) 

Smoking (current)  0.16(0.09)  0.15 (0.09)  0.16 (0.09)  0.16 (0.09)  0.16 (0.09)  0.16 (0.09) 

Smoking (never)  0  0  0  0   0  0 

*p<.05  **p<.0001 
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Table 13. Linear regression model results for stimulated cytokines by pollutants adjusting for BMI, education, sex, age, race, and smoking status: TNF-α 
 

 PM2.5 BC Pb Mn Fe Zn 

Parameter β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) 

Intercept  5.71 (0.68)**  7.25 (0.61)**  8.56 (0.61)**  8.95 (0.56)**  8.89 (0.83)**  8.71 (0.69)** 

Pollutant   0.28 (0.035)**  2.06 (0.33)**  0.65 (0.27)*  0.26 (0.14)  0.08 (0.15)  0.19 (0.16) 

BMI -0.01 (0.01) -0.01 (0.01) -0.01 (0.01) -0.02 (0.01) -0.02 (0.01) -0.02 (0.02) 

ducation  0.003 (0.02)  0.01 (0.02)  0.02 (0.02)  0.03 (0.02)  0.03 (0.02)  0.03 (0.02) 

Age -0.02 (0.007)* -0.02 (0.007)* -0.02 (0.007)* -0.02 (0.007)* -0.02 (0.007)* -0.02 (0.007)* 

Sex  0.19 (0.10)  0.15 (0.10)  0.14 (0.11)  0.15 (0.11)  0.15 (0.11)  0.15 (0.11) 

Race (black)  0.33 (0.14)*  0.30 (0.15)*  0.33 (0.15)*  0.35 (0.15)*  0.35 (0.15)*  0.35 (0.33)* 

Race (other)  0.01 (0.31)  0.09 (0.31)  0.10 (0.33)  0.15 (0.33)  0.21 (0.33)  0.23 (0.33) 

Race (white)  0  0  0  0  0  0 

Smoking (former)  0.01 (0.12)  0.026 (0.13)  0.02 (0.13)  0.03 (0.13)  0.04 (0.13)  0.04 (0.13) 

Smoking (current)  0.03 (0.14)  0.01 (0.15)  0.009 (0.15)  0.02 (0.15)  0.02 (0.16)  0.03 (0.15) 

Smoking (never)  0  0  0  0  0  0  

*p<.05  **p<.0001 
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3.4.4 Sensitivity Analyses   

The bivariate regression association between Mn with TNF-α and the adjusted model association 

of Pb with IL-1β and TNF-α did not reach statistical significance after excluding participants that 

did not live within the original air pollution monitoring domain. 

3.5 DISCUSSIONS 

We found that chronic air pollution exposures were associated with higher production of pro-

inflammatory cytokines in response to ex vivo stimulation with endotoxin. In contrast, there was 

no association of pollutant exposures with circulating levels of inflammatory mediators. PM2.5, 

and BC exposure associated positively with LPS-stimulated IL-6, IL-1β, and TNF-α among a 

cohort of adults living in Allegheny County, PA. Pb was associated with stimulated TNF-α, and 

IL-1β, although neither association was significant after adjustment for multiple comparisons.  

Our results suggest that chronic air pollution exposures may influence the magnitude of 

inflammatory response to endotoxin. While stimulated cytokine measures are in direct response 

to endotoxin, individual differences in the magnitude of response may also predict future 

cardiovascular risk (Marsland et al. 2017b). For example, Brydon et al., found that the magnitude 

of stimulated Il-6 predicted ambulatory blood pressure three years after measurement (Brydon 

and Steptoe 2005). Individuals with larger increases in LPS-stimulated inflammatory mediators 

may also be prone to increases in mediators of systemic inflammation (Lockwood et al. 2016).  



59 

We did not find significant associations between pollutant exposures with IL-6 or CRP. 

Several factors may have influenced these results. While we examined associations not only with 

PM2.5 but also with BC, Pb, Mn, Zn, and Fe components, a different source of PM2.5 could be 

associated with systemic inflammation. For example, Zeka et al., (2006) found significant 

positive associations between traffic-related particles with inflammatory markers but not with 

PM2.5 or sulphates (Zeka et al. 2006). Duration of the pollutant exposures and population 

susceptibility may also influence associations (Robert D Brook et al. 2010). While positive 

associations have been found between pollutant exposures with markers of systemic 

inflammation in healthy cohorts, studies have also found associations in potentially vulnerable 

subpopulations including older, obese, diabetic, and hypertensive people (Dubowsky et al. 2006; 

Zeka et al. 2006). For example, Ostro et al (2014)., found that a 10-µg/m3 increase in annual 

PM2.5 more than doubled the risk of CRP greater than 3 mg/l in  women who were older 

diabetics, or smokers (Ostro et al. 2014). One reason for the lack of association between 

pollutants with circulating inflammatory mediators in this study, could be because AHAB II is 

composed of relatively healthy, middle-aged participants, with no history of clinical 

cardiovascular disease, angina, or claudication, and taking no cardiovascular medications 

3.5.1 Strengths and Limitations 

A clear limitation of this study is its cross-sectional design. Having inflammatory mediator data 

at multiple time points would allow us to disentangle relevant exposure windows, and to 

examine changes in both pollutant exposures and cytokine levels over time, within and between 

participants.  
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 Another limitation was that we needed to spatially extrapolate predicted pollutant 

concentrations outside of the original monitoring domain to include all of Allegheny County. 

Sensitivity analyses including only those participants within the original sampling domain, 

however, revealed comparable results, with the exception that associations for Pb with stimulated 

cytokines became non-significant after adjusting for multiple comparisons.  

In addition, we also needed to temporally adjust predicted pollutant concentrations, 

because our air monitoring campaign and participant blood draws were performed at two 

different points in time. However, using regulatory data from the ACHD AQS monitor provided 

daily temporal resolution, improving the accuracy of spatio-temporal exposure estimates. While 

associations with inflammatory markers were tested using only one-year exposure estimates, 

correlations between 1- and 5-year participant-specific pollutant exposure estimates were highly 

correlated (r > 0.90 for all pollutants), indicating stable exposure contrast across the cohort over 

time.  

Though PM2.5 and BC exposures were significantly associated with all stimulated 

cytokine concentrations, metal constituent exposures were either insignificant or became 

insignificant after adjusting for multiple comparisons. One explanation could be that relatively 

few AHAB II participants lived in close proximity to the Edgar Thomson Steel Works (one 

participant lived within a mile of it), and thus more participants may have been exposed to other 

sources of PM2.5, such as traffic-related sources.  

AHAB-II was a predominately white, relatively healthy, and well-educated cohort, and 

thus results may not be generalizable to other populations. There is a need for future studies 

examining the impact of pollutants on stimulated cytokines among more diverse populations 
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from a variety of different locations in order to assess generalizability, particularly among 

vulnerable subgroups including older populations. 

3.6 CONCLUSIONS 

The goal of this study was to examine whether chronic exposure to ambient outdoor air pollution 

altered systemic inflammation and/ or magnitude of inflammatory response to endotoxin. We 

found that one-year outdoor residential exposures to PM2.5 and BC were associated with 

significant increases in concentrations of LPS-stimulated production of IL-6, IL-1β, and TNF-α, 

in a cohort of healthy middle-aged adults living in the Pittsburgh area.  We found no significant 

associations between pollutant concentrations and circulating IL-6 or CRP. Results of this study 

suggest that chronic exposure to pollution may prime the innate immune system to be more 

reactive, increasing inflammatory responses to immune stimulation. It is possible that this 

provides a pathway connecting exposure to pollution to increased risk for inflammatory diseases, 

including allergies, asthma and CVD. Further research is needed, using longitudinal cohorts, and 

examining associations across more diverse populations, geographic locations, and source 

mixtures.  
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4.0  OUTDOOR AIR POLLUTION AND BRAIN MORPHOLOGY IN THE ADULT 

HEALTH BEHAVIOR II AND PITTSBURGH IMAGING PROJECT COHORTS 

4.1 ABSTRACT 

Exposure to ambient fine particulate matter (PM2.5) has been associated with adverse 

neurological outcomes (e.g., cognitive decline), possibly mediated through systemic 

inflammation, disruption of the blood brain barrier, or translocation via olfactory mucosa. A few 

recent studies have also linked PM2.5 to indicators of brain morphology, although little is known 

about which components of PM2.5 may drive these associations. We examined relationships 

between ambient exposures to PM2.5 and multiple components [i.e., black carbon (BC), lead (Pb), 

manganese (Mn), iron (Fe), zinc (Zn)] with measures of brain morphology [i.e., total and cortical 

gray matter volumes, cortical white matter volume, total white matter surface area, mean cortical 

thickness] from magnetic resonance images (MRIs) of participants in the Adult Health Behavior 

II and Pittsburgh Imaging Project Cohorts (n = 702). Annual average pollutant exposure 

estimates were assigned for the 300 m buffer around each participant’s address using hybrid land 

use regression models. Linear regression models were developed to examine associations 

between pollutant exposures and brain morphology measures, adjusting for intracranial volume, 

age, sex, race, education, and smoking status. No significant associations were found between 

PM2.5, BC, or metal constituent exposures with any of the brain morphology outcomes. Both 
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AHAB II and PIP cohorts include relatively healthy middle aged participants. While we did not 

find associations between pollutant exposures and measures of brain morphology, examining 

associations in these same adults later in life, in older cohorts, or using more refined measures of 

brain morphology (e.g., voxel analysis) may provide greater insights into potential associations.  

4.2 INTRODUCTION 

Growing evidence suggests a relationship between particulate air pollution exposures and 

adverse neurological outcomes (e.g., cognitive decline, ischemic stroke) (Lisabeth et al. 2008; 

Maheswaran et al. 2014; Ranft et al. 2009; Stafoggia et al. 2014), potentially mediated through 

systemic inflammation, disruption of the blood-brain barrier (Calderon-Garciduenas et al. 

2008a; Calderon-Garciduenas et al. 2008b), translocation via olfactory mucosa (Ajmani et 

al. 2016; Maher et al. 2016), or other mechanisms (Robert D Brook et al. 2010; Calderón-

Garcidueñas et al. 2010; Costa et al. 2014; Genc et al. 2012; Peters et al. 2006). These effects 

likely vary by PM2.5 composition, and the literature linking metals exposures to adverse 

neurological outcomes suggests that urban airborne metals [e.g., lead (Pb), manganese (Mn), iron 

(Fe), zinc (Zn)] may be critical components of PM2.5 impacting this effect (Finkelstein and Jerrett 

2007; Lucchini et al. 2012; White et al. 2007).  

Fine particle exposure may engender early cognitive decline, possibly by mechanisms 

involving the effects of PM2.5-related inflammation on brain tissue integrity (Ranft et al. 2009). 

Measures of brain morphology (e.g., cortical thickness, gray matter volume) have been 

associated with cognitive decline as well as neurological diseases such as Alzheimer’s or 

Parkinson’s disease (Block et al. 2012; Dickerson and Wolk 2012; Ferreira et al. 2014; Marsland 
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et al. 2015; Whitwell et al. 2008). Although the relationship between brain morphology and 

neurological outcomes is complex, better understanding potential effects of air pollution on brain 

morphology may help to elucidate pollutant impacts on neurological outcomes, and suggest 

opportunities for intervention towards preventing neurocognitive decline (Genc et al. 2012).  

In occupational settings, high airborne metals concentrations have been associated with 

brain structure; for example, welders chronically exposed to Mn have shown significantly 

decreased globus pallidus and cerebellar brain regions, compared to age-matched controls 

(Chang et al. 2013). In animal models, exposures to individual metals (e.g., Fe, Pb, Mn, Zn) and 

metals mixtures (Wright and Baccarelli 2007) have been shown to induce neurotoxic effects, 

including impacts on specific brain regions (Lucchini et al. 2012). For example, Pb exposures 

have been linked to altered hippocampal morphology in mice (Verina et al. 2007).  

To date, most of the epidemiologic literature linking air pollution and brain morphology 

has been performed in children or older adults. For example, some recent studies have examined 

associations between children’s exposure to air pollution at schools with structural and functional 

brain changes from MRI scans. In one study of 263 children in Barcelona, a composite air 

pollution indicator combining indoor and outdoor elemental carbon and NO2 at schools was 

developed indicative of traffic-related pollution; no significant associations were found with 

brain structure, however, children with higher pollution exposures had lower functional 

integration and segregation in certain brain networks (Pujol et al. 2016b). Another study in the 

same cohort examined associations between copper (Cu) in PM2.5 measured in school courtyards 

with structural and functional brain measures obtained from anatomical MRI, diffusion tensor 

imaging, and functional MRI. Associations were found between higher exposures to Cu and 
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poorer motor performance and alterations in basal ganglia structure and function (Pujol et al. 

2016a). 

A few epidemiological studies have explored relationships between ambient outdoor 

PM2.5 and measures of brain structure in older adults. Wilker et al. (2015), found that a 2-μg/m3 

increase in one-year annual average PM2.5 was associated with a 0.32% decrease in cerebral 

brain volume and 46% higher odds of covert brain infarcts (Wilker et al. 2015). Chen et al. 

(2015) found significant associations between exposure to ambient PM2.5 and decreased white 

matter volume in frontal and temporal lobes and in the corpus callosum of older women (Chen et 

al. 2015).  

PM2.5 composition varies by pollutant source, and therefore epidemiologic studies of 

metals components may require finer-scale source-specific exposure assessment than is needed 

for PM. Previous studies have developed land use regression (LUR) models for metal 

constituents of PM2.5 from multi-pollutant monitoring campaigns (de Hoogh et al. 2013; Zhang et 

al. 2015), though few have yet applied these metals LURs in epidemiological studies (Fuertes et 

al. 2014; Wang et al. 2014).  

We aimed to contribute to this literature by applying fine-scale spatial models for PM2.5 

and metals constituents to examine associations between spatially-varying airborne metals and 

measures of brain structure in healthy adults. Pittsburgh, PA is a city with legacy industry (e.g., 

steel mills, coke works) and, consequently, relatively high airborne metals concentrations with 

substantial intra-urban variation (Tunno et al. 2015a). We applied previously-developed hybrid 

LUR models (Tripathy et al. 2017), to distinguish associations between multiple source-specific 

airborne metals and a broad suite of brain morphology measures. We hypothesized that higher 

residence-based exposures to PM2.5, BC, Pb, Mn, Zn, and Fe would be associated with reduced 
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structural integrity of the brain in two Pittsburgh cohorts of health middle-aged adults. Observed 

associations may have implications for pollution effects on brain-based functional outcomes 

including early cognitive decline and neurological disorders. 

4.3 METHODS 

4.3.1 AHAB-II and PIP Cohorts    

AHAB-II and PIP are prospective cohorts of healthy middle-aged adults in Western 

Pennsylvania, developed to identify neural and bio-behavioral predictors of physical and mental 

health in midlife. AHAB II Participants were recruited between March 2008 and October 2011 

through mass mailings of invitation letters to individuals randomly selected from voter 

registration and other public domain lists. Individuals eligible for AHAB-II were aged 30–

54 years, were working at least 25 h per week outside of the home, and spoke English as their 

first language. Individuals were further excluded if they: (a) had a history of cardiovascular 

disease, schizophrenia or bipolar disorder, chronic hepatitis, renal failure, major neurological 

disorder, chronic lung disease, or stage 2 hypertension (SBP/DBP ≥ 160/100); (b) consumed ⩾ 5 

alcoholic drinks 3–4 times (> approximately 201 g of alcohol) per week; (c) took fish-oil 

supplements, took prescribed insulin or glucocorticoid, anti-arrhythmic, antihypertensive, lipid-

lowering, psychotropic, or prescription weight-loss medications; (e) were pregnant; (f) had less 

than 8th grade reading skills; or (g) were shift workers. Finally, all participants were screened for 

prior and current DSM-IV Axis-I disorders using the Mini International Neuropsychiatric 

Interview (MINI) (Sheehan et al. 1998). The University of Pittsburgh Institutional Board 
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approved the study; all participants provided informed consent in accordance with its regulations 

and were remunerated for their participation (Marsland et al. 2017a). PIP had comparable 

requirements, except for the employment, fish oil, and shift work criteria (Jennings et al. 2015). 

Here, data was combined from both cohorts to increase sample size, and participant 

characteristics in Table 14 indicate similar characteristics.  

 

Table 14. Cohort participant characteristics 

 AHABII (n=394)   PIP (n=308)   
mean (SD) or % 5th 

Percentile 
95th 

Percentile 
mean (SD) or % 5th 

Percentile 
95th 

Percentile 
Sex (%) 47.2% male 

52.8% female 
  51.6% male 

48.4% female 
  

Race (%) 82.5% white 
15.0% black 
2.5% other 

  68.5% white 
24.5% black 
6.8% other  

  

Age  
(years) 

42.9 (7.4) 31 53 40.5 (6.3) 31 49 

Education  
(years) 

16.9 (2.8) 12 22 16.6 (3.4) 12 24 

Smoking 
status 

63.5% never 
21.1% former 
15.5% current 

  61.7% never 
20.1% former 
18.2% current 

  

 

MRIs were performed for AHAB-II participants from 2008-2011, and for PIP 

participants from 2011-2014, to assess cortical and subcortical brain morphology. 

4.3.2 MR Image Acquisition and Processing    

MRI scans were collected on a 3T Trio TIM whole-body scanner. FreeSurfer software version 

5.3.0 (http://surfer.nmr.mgh.harvard.edu) was used to compute cortical and subcortical 

volumetric data, total cortical surface area, and mean cortical thickness (Fischl and Dale 2000).  
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4.3.3 Air Pollution Data 

Pollutant concentrations were measured during a previously-described multi-pollutant 

monitoring campaign in Allegheny County (Shmool et al. 2014; Tunno et al. 2015c). Our 

sampling domain, including both urban and suburban areas in greater Pittsburgh, was identified 

using geographic information systems (GIS) ESRI ArcMap software version10.3 (Redlands, 

CA), to capture the urban area and major industrial sources in Allegheny county (e.g., steel mill, 

coke works).  Cross-stratified random sampling was used to select 36 monitoring sites based on 

elevation, traffic density, and emissions-weighted inverse distance to industry. The same sites 

were monitored during summer (June-July) 2012 and winter (January-March) 2013. PM2.5 

samples were collected using Harvard Impactors (Air Diagnostics and Engineering Inc.) at 4.0 

liters per minute. Integrated PM2.5 samples were obtained at each site for the first 15 minutes of 

every hour for 7 days. Eight sites were sampled per session. PM2.5 concentrations were calculated 

based on gravimetric analysis of Teflon filters before and after sampling, and black carbon 

estimated using an EEL43M Smokestain Reflectometer (Diffusion Systems). Elemental 

concentrations were determined using inductively-coupled plasma mass spectrometry (ICP-MS) 

(Wisconsin State Laboratory of Hygiene) (Shmool et al. 2014; Tunno et al. 2015c). 

4.3.4 Hybrid LUR models 

To estimate one-year average air pollution exposures at the homes of each cohort participant, we 

used previously-developed hybrid LUR models for PM2.5, BC, Pb, Mn, Fe, and Zn. Model 

development is detailed elsewhere (Tripathy et al. 2017; Tunno et al. 2015c). Briefly, covariates 

were created using GIS to capture a variety of potential pollutant sources - including traffic 
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density indicators, transportation indicators, road-specific measures, land use/ built environment 

characteristics, industrial emissions, population, and truck, bus, and diesel indicators (Tunno et 

al. 2015c) - across locations.  Following our hybrid AERMOD-LUR modeling approach, 

detailed in Michanowicz et al. (2016) (Michanowicz et al. 2016), two additional covariates were 

developed using the AERMOD atmospheric dispersion model; one dispersion variable was built 

using emissions profiles for 207 sources (AERMOD-predicted industrial PM2.5 emissions). A 

second was developed using only the 14 point source profiles located within Edgar Thomson 

Steel Works (AERMOD-predicted steel mill PM2.5 emissions). Both of these covariates included 

additional temporal components (e.g., meteorology, wind speed) averaged for 2012. 

Hybrid LUR models were built using a manual forward step-wise approach combined 

with random forest analyses to determine covariate ranking order. This method was implemented 

to select covariates that most strongly correlated with variability in pollutant concentrations. A 

temporal term was incorporated into models using daily concentrations from an Environmental 

Protection Agency (EPA) Air Quality System (AQS) maintained by the Allegheny County 

Health Department (ACHD) centrally located within the sampling domain. These models were 

used to predict pollutant concentrations across the monitoring domain using source layers in GIS. 

Model predictions were then spatially extrapolated outside of the original sampling domain to 

include all of Allegheny County, and the majority of cohort participants lived (Tripathy et al. 

2017). Analyses were implemented in SAS version 9.3 (Cary, NC) and R version 3.1.0. 

4.3.5 Geocoding 

Cohort participant addresses were geocoded using a  three-tiered system in GIS, following 

methods we have previously developed and validated (Fig. 10-11) (Shmool et al. 2016). Briefly, 
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we standardized addresses using the U.S. Postal Service reference dataset in ZP4™ software 

(Semaphore Corporation, Monterey, CA). Incomplete addresses, P.O. Box numbers, and 

addresses outside of Allegheny County were excluded. We first attempted to match addresses 

using 2015 Allegheny County address points, unmatched addresses were then matched via 

Allegheny County 2014 tax parcel centroids. Finally, any remaining addresses were matched 

using Streetmap for ArcPad 10.2 (North America Tom Tom 2013). Participants with unmatched 

addresses, or for whom a 300 m buffer around residence was not completely contained within 

Allegheny County, were excluded. 
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Figure 12. AHAB II cohort participant exclusions and geocoding methodology 
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Figure 13. PIP cohort participant exclusions and geocoding methodology 
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4.3.6 Exposure Assignment   

PM2.5, BC, Pb, Mn, Fe, and Zn spatial exposure estimates were assigned by averaging 

concentrations from the pollutant LUR surfaces within the 300 m buffer around each geocoded 

address. We have found this buffer distance effective in our prior work and validated elsewhere 

(Ross et al. 2013). Hybrid LUR exposure estimates were then temporally extrapolated to produce 

exposure estimates for one year prior to MRI date for each participant. The AQS regulatory 

monitoring data, to create average exposure estimates for one year prior to the date of each 

participant MRI, using the procedure we have previously developed (Tripathy et al. 2017). 

4.3.7 Statistical Analysis   

Brain morphology measures were tested for normality using histograms, and scatter plots and 

raw correlations for each combination of exposures and outcomes were tested for significance 

and linearity. Linear regression models were developed for each outcome-exposure relationship 

adjusting only for intracranial volume (Whitwell et al. 2001). Multivariable regression models 

were then developed also adjusting for age, sex, race, smoking status (former, current, never) and 

education attainment (years). Statistics were generated using SAS 9.4 (Cary, NC). Two 

additional analyses were performed using fully adjust models: 1) stratifying by sex and 2) 

dichotomizing by median age (43 years). 
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4.4 RESULTS 

4.4.1 Sample Size 

The original AHAB II dataset contained 490 participants. Twenty-nine participants were 

excluded due to incomplete addresses, P.O. Box numbers, and addresses outside of Allegheny 

County as shown in Figure 10. Remaining addresses were geocoded using the composite locator, 

resulting in four unmatched addresses (n = 463). Two addresses were excluded with 300 m 

buffers extending outside of Allegheny County. Exposures were assigned for 461 geocoded 

locations using our hybrid LUR pollutant exposure surfaces. An additional 39 participants who 

had participated in both studies were excluded from the AHAB II cohort only. Twenty-seven 

participants were excluded for missing MRI data, and one participant was excluded lacking 

information on smoking status, resulting in a final AHAB II dataset of 394 participants. The PIP 

dataset originally included 331 participants; 311 were successfully geocoded, and three 

participants were excluded due to lacking MRI data (n = 308). Geocoded addresses for our final 

dataset of 702 cohort participants are shown in Figure 12.  
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Figure 14. Cohort participant geocoded addresses 
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4.4.2 Statistical Analysis 

Scatter plots were made for each pollutant versus outcome to assess linearity (Figures 13-17). 
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Figure 15. Scatter plots for pollutants versus total gray matter volume 
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Figure 16. Scatter plots for pollutants versus cortical gray matter volume 
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Figure 17. Scatter plots for pollutants versus cortical white matter volume 
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Figure 18. Scatter plots for pollutants versus total white surface area 
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Figure 19. Scatter plots for pollutants versus mean cortical thickness 
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Pb, Mn, Zn, and Fe exposures were transformed using the natural logarithm to improve linear fit. 

Pollutant exposures, confounders, and outcomes are summarized in Tables 14-16.  

 

 

Table 15. Cohort exposures 

 

 

 

 

 

Table 16. Cohort outcomes 

 mean (SD) 5% 95% 
Total Gray Matter Volume (mm2) 654,051.3 (69,965.9) 540,234.0 764,941.0 
Cortical Gray Matter Volume (mm2) 467,109.2 (52,792.7) 380,168.0 554,544.0 
Cortical White Matter Volume (mm2) 485,852.8 (59,491.5) 390,608.0 589,199.0 
Total White Matter Surface Area (mm2) 169,628.9 (17,344.5) 142,241.0 199,873.0 
Mean Cortical Thickness (mm) 2.5 (0.1) 2.3 2.7 

 

 

 

 

 

 

 

 

Pollutant mean (SD) 5% 95% 
PM2.5 (µg/m3) 12.2 (1.5) 9.0 15.0 
Pb (ng/m3) 2.8 (0.69) 2.0 4.1 
Mn (ng/m3) 2.9 (1.4) 1.4 5.0 
Fe (ng/m3) 66.5 (28.4) 37.7 112.9 
Zn (ng/m3) 17.7 (5.7) 9.7 27.1 
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The mean participant PM2.5 exposure estimate (12.2 µg/m3) was at the EPA National Ambient 

Air Quality Standard (NAAQS) threshold of 12 µg/m3 for annual average exposure (based on a 

three year average) (EPA 2016b). Table 17 shows Pearson correlations between pollutants. PM2.5 

and BC were highly correlated (0.85) and correlations between PM2.5 with the metals ranged 

from 0.30 – 0.45. 

 

Table 17. Pearson correlations between pollutant exposures 

 
PM2.5 BC Pb Mn Zn Fe 

PM2.5 1.00 0.85 0.40 0.43 0.45 0.30 
BC 0.85 1.00 0.42 0.42 0.45 0.32 
Pb 0.40 0.42 1.00 0.91 0.45 0.85 
Mn 0.43 0.42 0.91 1.00 0.67 0.98 
Zn 0.45 0.45 0.45 0.67 1.00 0.69 
Fe 0.30 0.32 0.85 0.98 0.69 1.00 

 

Results from linear regression models adjusting for intracranial volume are shown in 

Table 18. We found no significant associations between any of the pollutants and brain outcomes 

(p < 0.05).  
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Table 18. Linear regression models adjusting for ICV: exposures vs. outcomes 

Brain Morphology Outcomes Pollutant 
PM2.5 BC Mn Pb Fe Zn 

Total Gray Matter Volume       
β (SE) 1018.4 (1055.9) -14.7 (9494.7) -3184.5 (3932.5) -5618.1 (7427.2) -5200.7 (4594.4) -8160.5 (4853.6) 
p-value 0.34 0.99 0.42 0.45 0.26 0.09 
Cortical Gray Matter Volume       
β (SE) 234.3 (848.5) -6589.0 (7620.7) -2966.0 (3157.5) -4960.7 (5963.9) -4373.2 (3689.2) -6938.5 (3896.8) 
p-value 0.78 0.39 0.35 0.41 0.24 0.08 
Cortical White Matter Volume       
β (SE) 1047.9 (986.6) 4341.9 (8870.9) -243.7 (3676.4) -3861.6 (6941.7) -2064.8 (4296.5) 327.3 (4544.7) 
p-value 0.29 0.62 0.95 0.58 0.63 0.94 
Total White Surface Area        
β (SE) 11.6 (298.7) -406.1 (2683.9) -826.9 (1111.7) -2611.4 (2098.1) -1138.9 (1299.2) -643.4 (1374.6) 
p-value 0.97 0.88 0.46 0.21 0.38 0.64 
Mean Cortical Thickness       
β (SE) 0.0005 (0.002) -0.03 (0.02) -0.002 (0.009) 0.01 (0.02) -0.004 (0.01) -0.02 (0.01) 
p-value 0.84 0.20 0.81 0.55 0.71 0.06 
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Fully-adjusted model results are shown in Tables 19-23. After adjusting for intracranial 

volume, age, sex, race, and smoking status. No significant associations were found between any 

pollutants with brain morphology measures. No significant results were found after stratifying by 

sex or stratifying by median age. 
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Table 19. Fully adjusted linear regression model results for total gray matter volume 

 PM2.5 BC 
Parameter β (SE) β (SE) 
Intercept 478761.1 (17967.7)** 533279.5 (19892.2)** 
Pollutant  651.9 (914.0) -920.2 (8156.9) 
Age -2047.3 (200.4)** -2047.6 (200.5)** 
Sex 23681.9 (4008.3)** -23439.0 (4001.7)** 
Education 987.6 (505.9) 1044.3 (504.6)* 
ICV 0.17 (0.008)** 0.17 (0.008)** 
Race (black) -26493.7 (3783.5)** -26535.3 (3786.1)** 
Race (other) -21561.2 (6906.9)* -21619.8 (6909.6)* 
Race (white) 0 0 
Smoking (former) 229.6 (3564.9) 330.6 (3565.1) 
Smoking (current) -13372.9 (4023.4)* -13320.1 (4025.2)* 
Smoking (never) 0 0 

 Pb Mn Fe Zn 
Parameter β (SE) β (SE) β (SE) β (SE) 
Intercept 486376.2 (16129.8)** 486095.90 (15375.10)** 492305.4 (22308.7)** 494112.8 (18939.9)** 
Pollutant  -748.9 (6369.3) -453.64 (3388.38) -1594.9 (3970.9) -3085.8 (4200.1) 
Age -2047.6 (200.5)** -2048.41 (200.64)** -2051.3 (200.7)** -2051.8 (200.5)** 
Sex 23444.7 (3999.2)** 23443.76 (3999.35)** 23438.9 (3997.5)** 23406.9 (3996.7)** 
Education 1040.1 (501.5)* 1040.40 (501.54)* 1038.9 (501.1)* 1048.6 (501.2)* 
ICV 0.17 (0.008)** 0.17 (0.008)** 0.17 (0.008)** 0.17 (0.008)** 
Race (black) -26523.5 (3790.3)** -26504.12 (3798.95)** -26390.7 (3804.2)** -26181.3 (3815.6)** 
Race (other) -21576.6 (6914.9)* -21547.60 (6924.83)* -21378.6 (6932.4)* -21287.0 (6920.4)* 
Race (white) 0 0 0 0 
Smoking (former) 346.7 (3571.0) 346.48 (3569.34) 382.2 (3566.9) 372.6 (3563.3) 
Smoking (current) -13305.8 (4029.2)* -13292.40 (4033.64)* -13219.9 (4033.1)* -13153.5 (4029.9)* 
Smoking (never) 0 0 0 0 

*p<.05  **p<.0001 
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Table 20. Fully adjusted linear regression model results for cortical gray matter volume  

 PM2.5 BC 
Parameter β (SE) β (SE) 
Intercept 346864.8 (14779.6)** 375006.3 (16341.2)** 
Pollutant  -192.8 (751.8) -7867.6 (6700.8) 
Age -1593.4 (164.9)** -1595.2 (164.7)** 
Sex 12253.1 (3297.1)* -12143.8 (3287.4)* 
Education 797.9 (416.1) 840.0 (414.5)* 
ICV 0.13 (0.007)** 0.13 (0.006)** 
Race (black) -22128.1 (3112.2)** -21993.9 (3110.2)** 
Race (other) -15081.2 (5681.4)* -15148.8 (5676.1)* 
Race (white) 0 0 
Smoking (former) 87.4 (2932.4) 149.6 (2928.7) 
Smoking (current) -9579.7 (3309.5)* -9517.2 (3306.6)* 
Smoking (never) 0 0 

 Pb Mn Fe Zn 
Parameter β (SE) β (SE) β (SE) β (SE) 
Intercept 346057.8 (13262.9)** 345585.3 (12642.1)** 351070.5 (18343.7)** 352744.8 (15572.3)** 
Pollutant  -1403.9 (5237.2) -912.7 (2786.1) -1514.1 (3265.2) -2914.3 (3453.3) 
Age -1593.7 (164.9)** -1595.4 (164.9)** -1597.1 (165.0)** -1597.5 (164.9)** 
Sex 12291.1 (3288.7)* 12287.2 (3288.4)* 12299.3 (3287.03)* 12269.3 (3286.1)* 
Education 787.5 (412.4) 788.5 (412.4) 784.3 (412.0) 793.3 (412.1) 
ICV 0.13 (0.007)** 0.13 (0.006)** 0.13 (0.006)** 0.13 (0.006)** 
Race (black) -22063.8 (3116.6)** -22021.3 (3123.7)** -21961.4 (3128.04)** -21764.3 (3137.2)** 
Race (other) -15003.8 (5685.9)* -14940.7 (5693.9)* -14846.8 (5700.2)* -14761.5 (5689.9)* 
Race (white) 0 0 0 0 
Smoking (former) 110.2 (2936.3) 113.5 (2934.9) 119.4 (2932.9) 110.2 (2929.7) 
Smoking (current) -9549.5 (3313.1)* -9519.2 (3316.6)* -9489.3 (3316.3)* -9427.1 (3313.4)* 
Smoking (never) 0 0 0 0 

*p<.05  **p<.0001 
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Table 21. Fully adjusted linear regression model results for cortical white matter volume  

 PM2.5 BC 
Parameter β (SE) β (SE) 
Intercept 271078.6 (19409.8)** 286706.5 (21487.1)** 
Pollutant  692.3 (987.4) 2776.9 (8810.9) 
Age -570.2 (216.5)* -569.7 (216.6)* 
Sex 5341.9 (4330.1) -5167.6 (4322.6) 
Education 824.9 (546.5) 857.9 (545.1) 
ICV 0.16 (0.009)** 0.16 (0.009)** 
Race (black) -10129.4 (4087.2)* -10229.8 (4089.6)* 
Race (other) -7425.7 (7461.3) -7448.7 (7463.6) 
Race (white) 0 0 
Smoking (former) 2578.9 (3851.0) 2643.7 (3850.9) 
Smoking (current) -5240.8 (4346.4) -5220.7 (4347.9) 
Smoking (never) 0 0 

 Pb Mn Fe Zn 
Parameter β (SE) β (SE) β (SE) β (SE) 
Intercept 280749.6 (17422.6)** 277841.5 (16608.6)** 280501.8 (24101.5)** 271722.0 (20463.3)** 
Pollutant  -2578.2 (6879.8) 724.2 (3660.2) -494.5 (4290.1) 2473.5 (4537.9) 
Age -570.9 (216.6)* -568.7 (216.7)* -571.5 (216.8)* -566.8 (216.6)* 
Sex 5054.6 (4320.2) 5130.9 (4320.2) 5099.3 (4318.8) 5147.9 (4318.2) 
Education 886.3 (541.7)  873.8 (541.8) 878.5 (541.4) 869.4 (541.5) 
ICV 0.16 (0.009)** 0.16 (0.009)** 0.16 (0.009)** 0.16 (0.009)** 
Race (black) -10100.2 (4094.1)* -10260.0 (4103.7)* -10139.1 (4109.9)* -10483.1 (4122.5)* 
Race (other) -7362.2 (7469.1) -7577.7 (7480.4) -7405.9 (7489.4) -7736.8 (7477.1) 
Race (white) 0 0 0 0 
Smoking (former) 2766.3 (3857.3) 2633.1 (3855.7) 2694.4 (3853.5) 2633.1 (3849.9) 
Smoking (current) -5114.6 (4352.1) -5252.4 (4357.3) -5160.3 (4357.2) -5334.7 (4354.1) 
Smoking (never) 0 0 0 0 

*p<.05  **p<.0001 
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Table 22. Fully adjusted linear regression model results for total white surface area 

 PM2.5 BC 
Parameter β (SE) β (SE) 
Intercept 128049.0 (5623.4)** 136820.4 (6223.4)** 
Pollutant  -52.7 (286.1) -583.5 (2551.9) 
Age -405.3 (62.7)** -405.4 (62.7)** 
Sex 4442.5 (1254.5)* -4447.4 (1251.9)* 
Education 205.9 (158.3) 206.2 (157.9) 
ICV 0.04 (0.002)** 0.04 (0.002)** 
Race (black) -4867.9 (1184.1)** -4854.7 (1184.5)** 
Race (other) -3695.2 (2161.7) -3697.3 (2161.7) 
Race (white) 0 0 
Smoking (former) 835.7 (1115.7) 834.9 (1115.4) 
Smoking (current) -837.5 (1259.2) -835.5 (1259.3) 
Smoking (never) 0 0 

 Pb Mn Fe Zn 
Parameter β (SE) β (SE) β (SE) β (SE) 
Intercept 129189.1 (5043.2)** 127889.5 (4809.7)** 130265.1 (6978.9)** 127077.5 (5927.9)** 
Pollutant  -1913.9 (1991.4) -473.1 (1059.9) -671.8 (1242.3) 150.5 (1314.6) 
Age -405.7 (62.7)** -406.3 (62.8)** -406.9 (62.8)** -405.1 (62.8)** 
Sex 4422.5 (1250.5)* 4443.9 (1251.1)* 4451.7 (1250.6)* 4463.0 (1250.9)* 
Education 208.1 (156.8) 204.8 (156.9) 202.5 (156.8) 201.4 (156.9) 
ICV 0.04 (0.002)** 0.04 (0.002)** 0.04 (0.002)** 0.04 (0.002)** 
Race (black) -4798.1 (1185.1)** -4816.6 (1188.4)** -4796.8 (1190.1)** -4881.4 (1194.2)** 
Race (other) -3605.4 (2162.0) -3625.9 (2166.3) -3593.6 (2168.7) -3706.9 (2165.9) 
Race (white) 0 0 0 0 
Smoking (former) 896.0 (1116.5) 855.8 (1116.6) 854.5 (1115.9) 825.8 (1115.3) 
Smoking (current) -782.1 (1259.8) -802.9 (1261.8) -795.2 (1261.7) -849.6 (1261.3) 
Smoking (never) 0 0 0 0 

*p<.05  **p<.0001 
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Table 23. Fully adjusted linear regression model results for mean cortical thickness  

 PM2.5 BC 
Parameter β (SE) β (SE) 
Intercept 2.5 (0.05)** 2.5 (0.05)** 
Pollutant  -0.0005 (0.002) -0.03(0.02) 
Age -0.003 (0.0005)** -0.003 (0.0005)** 
Sex 0.001 (0.01) -0.0007 (0.01) 
Education 0.0009 (0.001) 0.001 (0.001) 
ICV 8.3E-08 (2E-08)** 8.4E-08 (2E-08)** 
Race (black) -0.03 (0.01)* -0.03 (0.01)* 
Race (other) -0.02 (0.02) -0.02 (0.02) 
Race (white) 0 0 
Smoking (former) -0.008 (0.009) -0.008 (0.009) 
Smoking (current) -0.03 (0.01)* -0.03(0.01)* 
Smoking (never) 0 0 

     Pb Mn Fe Zn 
Parameter β (SE) β (SE) β (SE) β (SE) 
Intercept 2.5 (0.04)** 2.5 (0.04)** 2.5 (0.06)** 2.5 (0.05)** 
Pollutant  0.02 (0.02) 0.001 (0.009) 0.001 (0.01) -0.01 (0.01) 
Age -0.003 (0.0005)** -0.003 (0.0005)** -0.003 (0.0005)** -0.003 (0.0005)** 
Sex 0.002 (0.01) 0.001 (0.01) 0.001 (0.01) 0.001 (0.01) 
Education 0.0008 (0.001) 0.0009 (0.001) 0.0009 (0.001) 0.0009 (0.001) 
ICV 8.3E-08 (2E-08)** 8.3E-08 (2E-08)** 8.3E-08 (2E-08)** 8.4E-08 (2E-08)** 
Race (black) -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)* 
Race (other) -0.02 (0.02) -0.02 (0.02) -0.02 (0.02) -0.01 (0.02) 
Race (white) 0 0 0 0 
Smoking (former) -0.009 (0.009) -0.008 (0.009) -0.008 (0.009) -0.008 (0.009) 
Smoking (current) -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)* -0.03 (0.01)* 
Smoking (never) 0 0 0 0 

*p<.05  **p<.0001 
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4.5 DISCUSSION 

We found no significant associations between annual average PM2.5, BC, Pb, Mn, Fe, or Zn 

exposures with participant brain morphology measures of total gray matter volume, cortical gray 

matter volume, total white matter surface area, and mean cortical thickness. 

Some of these results are consistent with prior studies. The two previous studies that 

found significant associations between predicted PM2.5 exposures with indicators of brain 

morphology. Wilker et al., studied participants in the Framingham Offspring Cohort (n = 943) – 

composed of community dwelling adults in the New England area with no history of dementia or 

stroke. The age of participants at the time of MRIs was higher in their study than ours [median = 

68 years vs. 43 years in our study]. (They considered total cerebral brain volume, hippocampal 

volume, white matter hyperintensity volume, and covert brain infarcts, and hypothesized that 

higher long-term exposure to ambient air pollution would be associated with subclinical damage 

as indicated by smaller total cerebral brain volume and hippocampal volume , larger white matter 

hyperintensity volume, and higher odds of covert brain infarcts While they found that a 2-

μg/m3 increase in PM2.5 was associated with 0.32% smaller total cerebral brain volume and 46% 

higher odds of having covert brain infarcts, they did not see any associations for hippocampal 

volume or white matter hyperintensity volume (Wilker et al. 2015).  

Chen et al. (2015) examined associations between long term exposure to PM2.5 and brain 

volume, using volumetric measures of gray matter and normal-appearing white matter in MRI 

results from participants in the Women’s Health Initiative Memory Cohort (n = 1403). All 

participants we free of dementia, but this was also a much older cohort than ours (range = 71 to 
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89 years). They found that for each inter-quartile range (3.49 µg/m3) increase in PM2.5, mean 

white matter volume decreased by 6.23 (± 1.28) cm3 for total brain volume. Significant 

associations were also found between increased PM2.5 with decreases in frontal, parietal, and 

temporal and corpus callosum white matter volume. No associations were found with gray matter 

or hippocampal volume (Chen et al. 2015).  

In comparison to these two studies, our cohort participants were much younger (mean = 

43 years (range = 30 to 54).  As a result, it is highly possible that our participants have not yet 

developed the premature aging or damage to brain structures that may be associated with longer-

term exposures to airborne metals. Following up with participants later in life may be beneficial 

to examine potential changes in brain morphology measures across the lifespan. 

4.5.1 Strengths and Limitations 

While this was a cross-sectional study, we were able to assign retrospective pollutant exposure 

estimates for one year prior to participant MRIs. Having MRI data at multiple time points would 

allow us to further examine relationships between long term pollutant exposure estimates with 

changes in brain morphology measures. In addition, we only had addresses for participants at the 

time of each study, so we were not able to account for participants that moved during that year. 

Along with temporally adjusting models using regulatory monitoring data, they were also 

spatially extrapolated outside of the sampling domain to encompass all of Allegheny County. 

This assumes stationary spatial surfaces/covariates. There may be different source-concentration 

relationships outside of this domain that we were unable to capture in our monitoring campaign 

resulting in exposure misclassification. One of the key covariates in our hybrid metal LUR 

models was AERMOD-predicted PM2.5 emissions from the Edgar Thomson Steel Works within 
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our sampling domain. While cohort addresses appear to be well distributed spatially (Figure 12), 

only two participants lived within a one-mile radius of the steel mill. 

4.6 CONCLUSIONS 

We explored associations between annual-average ambient PM2.5, BC, and Pb, Mn, Fe, and Zn 

metal constituent exposures with brain morphology measures of total and cortical gray matter 

volume, cortical white matter volume, total white matter surface area, and mean cortical 

thickness from MRIs of 702 participants in two Pittsburgh-based cohorts of mid-life adults. We 

found no significant associations between pollutant exposures and any of the brain morphology 

indicators. Further study is needed to examine effects of chronic air pollution and airborne 

metals exposures in older or more vulnerable populations.  
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5.0  OVERALL SUMMARY AND PUBLIC HEALTH SIGNIFICANCE  

We developed hybrid dispersion-LUR models for PM2.5, black carbon (BC), and steel-related 

PM2.5 constituents [lead (Pb), manganese (Mn), iron (Fe), and zinc (Zn)] and applied them to 

assign residence-based exposure estimates for time windows of interest for two Pittsburgh-area 

epidemiological cohorts. Specific objectives, hypotheses, and conclusions are listed below 

followed by public health significance, strengths and limitations.  

Chapter 2: Develop hybrid dispersion LUR models for PM2.5, BC, and steel-related Pb, 

Mn, Fe, and Zn metal constituents for use in epidemiological studies. 

Conclusions: We found that the hybrid LURs explained greater variability in PM2.5 (R2 = 

0.79) compared to BC (R2 = 0.59) and metal constituents (R2 = 0.34 - 0.56). Approximately 70% 

of variation in PM2.5 was attributable to temporal variance, compared to 36% for BC, and 17 - 

26% for metals. Dispersion covariates were included in all models. A dispersion covariate 

developed with PM2.5 industrial emissions data for 207 sources was significant in PM2.5 and BC 

models while all metals models contained a steel mill-specific PM2.5 emissions term. 

Chapter 3: Examine associations between one-year residence-based pollutant exposures 

with circulating and LPS-stimulated inflammatory mediators in the AHAB II cohort. 

Hypothesis: Elevated exposures to PM2.5, BC, Pb, Mn, Zn, and Fe will be associated 

with higher levels of circulating inflammatory mediators (Il-6 and CRP), and LPS-stimulated 

production of cytokines (IL-6, IL-1β, and TNF-α). 
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Conclusions: Exposure to PM2.5 and BC was associated with increased LPS-stimulated 

pro-inflammatory cytokine production in a cohort of middle-aged adults. These results suggest 

that some chronic air pollution exposures may influence the responsiveness of the immune 

system, possibly increasing risk for future inflammatory conditions.    

Chapter 4: Explore the relationship between one-year pollutant exposures with total and 

cortical gray matter volumes, cortical white matter volume, total white matter surface area, and 

mean cortical thickness measures of brain morphology in AHAB II and PIP cohorts. 

Hypothesis: Higher residence-based exposures to PM2.5, BC, Pb, Mn, Zn, and Fe will be 

associated with reduced structural integrity of the brain in two Pittsburgh cohorts of health 

middle-aged adults. 

Conclusions: No significant associations were found between PM2.5, BC, or metal 

constituent exposures with any of the brain morphology outcomes.  

 

Overall, the results of this dissertation indicate the public health importance of better 

understanding relationships between long-term source-specific PM2.5 and component exposures 

with health outcomes including associations with circulating and stimulated inflammatory 

mediators and measures of brain morphology.  

5.1.1 Strengths and Limitations 

Using hybrid LUR models to assign pollutant exposures in cohort studies offers an 

improvement over exposure assignments that rely solely on the nearest EPA air quality system 

(AQS) monitor(s) and are more cost effective compared to personal monitoring. One limitation 

of LUR models is that the analysis is based on associations and LUR model results cannot 
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establish causation between source covariates and pollutants. The PM2.5 concentrations used for 

this analysis were obtained from two seasons of data from 36 sites in the greater Pittsburgh 

region. This provided a much higher spatial resolution compared to the established EPA AQS 

monitoring network locations within the county. In addition, our hybrid LUR models may have 

improved accuracy by incorporating meteorology and topography into AERMOD covariates. 

The AQS monitor used to temporally adjust the models also contributed to high temporal 

resolution providing daily concentrations. 

While both epidemiological studies presented in Chapter 3 and 4 used a cross-sectional 

study design, we were able to assign retrospective pollutant exposure estimates for one year prior 

to participant blood draws or MRIs. Having outcome data at multiple time points would allow us 

to further examine relationships between long term pollutant exposure estimates with circulating 

and stimulated inflammatory mediators and brain morphology measures. In addition, we only 

had addresses for participants at the time of each study, so we were not able to account for 

participants that moved during that year. Along with temporally adjusting models using 

regulatory monitoring data, they were also spatially extrapolated outside of the sampling domain 

to encompass all of Allegheny County. This assumes stationary spatial surfaces/covariates. There 

may be different source-concentration relationships outside of this domain that we were unable 

to capture in our monitoring campaign resulting in exposure misclassification. Using data 

collected in AHAB II and PIP cohorts provided the unique opportunity to study relatively 

healthy middle-aged adults in Allegheny County and allowed us to study emerging health 

outcomes of interest with predicted air pollutant exposures. 
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The hybrid LUR models developed for to PM2.5, BC, Pb, Mn, Zn, and Fe described in 

this dissertation will continue to be used in prospective and retrospective cohort studies in 

Allegheny County.  

 

 



97 

APPENDIX: MISSING PM2.5 CONCENTRATIONS ACHD AQS LAWRENCEVILLE 

MONITOR 

Figure 20. Missing daily PM2.5 concentrations from ACHD Lawrenceville AQS station from 2003-2013 
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