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Abstract— Computational simulation is one of the most im-
portant ways of reproducing the dynamic responses of a Cyber
Physical System using a model of the system. The simulation
discovers areas of differential system performance and allows
linking such performance back to system characteristics. In the
medical domain, patient simulators are used to train physicians
in patient management. One critical question is how to verify
these systems under realistic human (physician) input. This
requires the creation of realistic human models that would be
able to capture human cognitive and decision abilities and lim-
itations. Verification of such an overall physician-patient model
would result in two advantages: (a) since physicians realistically
would not give all possible inputs to the system, verification
could be more efficient and (b) the verification may uncover
areas of poor human performance. In this paper, we describe
our methodology and results in creating a computational model
of human fluid management in critical care, based on human
experiments.

I. INTRODUCTION

Computational simulation is one of the most important
ways of reproducing the dynamic responses of a Cyber
Physical System using a model of the system. The simulation
discovers areas of differential system performance and allows
linking such performance back to system characteristics.
Computational simulations are the most important tools in
trying to design, understand and control complex systems.
One of the most important complex Cyber Physiochemical
Systems is the physiology of the human body. Currently
physicians train on Wizard of Oz virtual patients, man-
nequins, standardized patient or medical serious games for
standardized, repeated practice as well as specific feedback
[1], [2], [3], [4], [5]. High fidelity, physiology based simu-
lations are currently rare but will become more prevalent
since the need for them is being increasingly expressed.
One of the most important challenges in the design and
deployment of such systems is making them amenable to
effective human control. This requirement is complicated
by the nonlinear dynamics of the human body and the
large degree of individual variations in response to diseases
and treatments. Since the attending physicians also have
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individual variations in treatments strategies and styles as
well as cognitive limitations and capabilities, the problem
of creating robust and safe models of the physician-human
body simulations becomes extremely challenging. Formal
and validated models of human and simulation systems,
where the human element is modeled realistically, would
be beneficial not only because these models would provide
guarantees of performance, but also because they may un-
cover parts of the control space where human performance
can deteriorate to unacceptable levels. Cognitive modeling
based on cognitive architectures such as ACT-R [6], [7] has
existed for many years. However, the resulting models are
not in a mathematical form that is amenable to the techniques
of formal verification. One way of meeting this challenge is
to create an analytic model of physician control performance
based on human performance data. Such an analytic model
is cognitively compatible by construction, and because of its
mathematical nature, is in the appropriate form for formal
verification. In the case of a physician control of a patient
simulation, the analytic model can be integrated with the
patient model so that the overall system can be verified.

The paper is organized as follows. Section II presents
the experimental task and the patient simulator. Section III
presents the experimental procedure, Section IV presents the
results of the human experiments and Section V presents the
analytic model and results. Section VI presents conclusions
and future work.

II. EXPERIMENTAL TASK AND APPARATUS

A. Background

The experimental task was for the participants to treat
a simulated patient that had lost large amount of fluid or
blood. Fluid management is done in critical care via the
administration of different types of fluids to replenish lost
fluids and bring the vital signs of the patient back to normal
range. Abnormal conditions can result from loss of blood
(hemorrhagic shock) or fluid (hypovolemic shock). Liquid
solutions administered intravenously (IV) are then required
to reestablish normal cardiovascular operation. Available
solutions are classified as either crystalloids or colloids.
Crystalloid solutions such as Normal Saline (NS) and colloid
solutions such as Albumin can be administered to replace a
simple loss of fluids. When serious internal bleeding occurs,
blood products such as Packed Red Blood Cells (PRBC)
should be given to replace the lost blood.
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Fig. 1: Patient Monitor - The graphical user interface used by subjects to interact with the simulator. On the left side is the “Drug Administration” menu
and on the right side are the vital signs with their corresponding wave forms. PRBC and Albumin are given at a fixed rate (400 ml/min) in a discrete

amount called a bolus. Normal Saline (NS) is given continuously at a rate of infusion that needs to be specified by the participant. Multiple fluids can be
administered at the same time. Once started, the parameter for a fluid administration cannot be changed but it can be canceled.

B. The Patient Simulator

The patient computational simulation that was used was
created by Dr. Joseph Rinehardt of UC Irvine. The simulator
was designed to investigate acute resuscitation in a variety
of hemorrhage scenarios. It is capable of accurately mod-
eling heart rate (HR), systolic blood pressure (SBP), dias-
tolic blood pressure (DBP), mean arterial pressure (MAP),
cardiac output (CO), and various dynamic parameters of
fluid responsiveness, e.g. pulse pressure variation (PPV),
systolic pressure variation (SVV), or plethysmograph vari-
ability (DeltaPOP) over a wide range of blood volumes. Like
most simulation models, the elements are simplifications of
the true physiology. Despite these simplifications, however,
the simulator aims to faithfully preserve the relationships
between the elements themselves and the final simulator
outputs. Regarding the evolution of dynamic parameters of
fluid responsiveness and their relationship with hemorrhage
and fluid responsiveness status, the simulator uses data from
published studies [8], [9], [10]. The model begins with a
baseline state that includes a height in inches, weight in kilos,
HR, SBP, DBP, central venous pressure (CVP), left ventric-
ular enddiastolic volume (LVEDV), and left-ventricular end-
systolic volume (LVESV). From these starting values, base-
line values for other parameters are calculated. Additionally,
two hidden and randomized parameters, Patient Stability and
Patient Fluctuations influence how rapidly patient physiology
changes in response to a stimulus, e.g. blood loss. The
simulator represents a non-linear complex system that the
participants must control. More details on the simulator,
including the equations and variables used, can be found
in the appendix of [11].

The participants get information about the state of the sim-
ulated patient and perform control actions, namely adminis-
tration of different types of fluids via the patient monitor
interface. (See Fig. 1). The monitor shows HR, SBP, DBP,
MAP, blood oxygenation, and respiration rate of the patient.
The “Drug Administration” menu at the left of the monitor
can be used to select a fluid and display labels showing
current administration and total fluid administered. Please
note that the interface does not show either the rate of fluid
loss or the fluid volume of the patient.

III. EXPERIMENTAL PROCEDURE

Thirty six participants, all students from the Pittsburgh
area were recruited. The experiment consisted of 3 types
of episodes, hemorrhagic, hypovolemic and normal. Each
subject was given 6 experimental scenarios, namely 2 hem-
orrhagic, 2 hypovolemic and 2 normal cases. The trials were
run in 2 blocks, each containing one scenario from each
category. Within each block, the scenarios were permuted.
This gave a total of 36 different scenario orderings. We
ran 36 subjects, each of whom saw a unique order of the
2-block permuted scenarios. The participants were given
background information about the different patient scenarios
and trained for about 10 minutes in the use of the simulator.
Then they were shown a training scenario, specified to be
hemorrhagic, and were allowed to administer fluids and see
the effects of their administration on the simulated patient.
The subjects could see the variation in patient parameters on
the simulation GUI but could not see blood volume (BV),
the parameter being controlled.

IV. HUMAN EXPERIMENT RESULTS

The subject performance metric was normalized root mean
square (RMS) error from baseline of the displayed patient
parameters, namely HR, MAP, and the hidden variable BV.
A main effect of Episode was found for all three dependent
measures (HR F (2, 32) = 70.66, p < .001, MAP F (2, 32) =
43.9, p < .001, BV F ((2, 32) = 8.66, p = .001). Order
effects were noted for HR, F (1, 33) = 17.87, p < .001
and MAP, F (1, 33) = 36.93, p < .001 but not BV. A
significant interaction between Episode×Strategy was found
for all three measures (HR F (4, 66) = 6.6, p < .001, MAP
F (4, 66) = 8.73, p < .001, BV F (4, 66) = 4.69, p =
.002) while Order×Strategy interactions were found for HR,
F (2, 33) = 3.13, p = .057 and BV, F (2, 33) = 3.13, p =
.057 but not MAP. Only MAP showed an Episode×Order
interaction, F (2, 32) = 5.69, p = .008.

A. Episodes

For HR and MAP there were differences between each
of the episode types: HR F (2, 32) = 98.7, p < .001, with
contrasts (p < .001) found between each of the scenario
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Fig. 2: (a) RMS error for blood volume, heart rate, and mean arterial pressure for hypovolemic or hemorrhagic shock and normal episodes. Note that
errors on displayed parameters (HR & MAP) decrease between shock and normal conditions while the inferred parameter, BV, increases for normal

scenarios. (b) RMS errors by episode, measure, and strategy. Note the poor performance of Type I users on regulating blood volume.

(a) (b)

Fig. 3: Subjects are classified as Type I and Type II by strategy. (a) One trial for a typical Type I subject. (b) The same trial for a typical Type II subject.
Note that Type I subjects are more prone to administration of large amount of fluids at the same time, and apply frequent intervention, while Type II

subjects are more conservative. Mixed Type subjects act like Type I in some scenarios (especially normal scenarios) and act like Type II in other scenarios

types. Similar results held for MAP F (2, 31) = 57.7, p <
.001 with contrasts (p < .001) again found between each
of the scenario types. For blood volume, F (2, 32) = 9.58,
p = .001, however, contrasts showed no difference between
conditions with blood loss (hypovolemia and hemorrhagic
shock) although both (hypovolemia p = .014, hemorrhagic
p < .001) differed from the normal condition.

B. Order

RMS error was reduced for MAP, F (1, 33) = 46.93, p <
.001, between first and second encounters with an episode
type. Significant improvements were observed within each
episode type. While there was no overall order effect for
HR, significant reductions were found within each scenario
type although the Episode×Order interaction did not reach
significance. No order effect overall or within scenario type
was found for BV.

C. User Strategy

Since the task is basically a control task, we decided to
study the effectiveness of the subjects’ control strategies with
respect to their effect on visible (heart rate and mean arterial
pressure) and non-visible but important (blood volume) pa-
rameters. Subjects were categorized by their strategies. Type
I subjects are more aggressive in terms of intervention. In
contrast, Type II subjects are more conservative, they only
do intervention for less a half of time and seldom administer
large amount of fluids. We also observe subjects that act like
Type I in some cases (especially normal cases), and like Type
II in others. These subjects are categorized as Mixed Type. In
particular, the classification was based on (a) the total length
of gap between administrations, i.e., the total amount of time
that the subject is not giving significant amount of fluid
(<= 100 ml/min), and (b) the amount of time that subject
is giving large amount of fluid (twice the rate of bolus). If a



Fig. 4: Subject performance for hypovolemic or hemorrhagic shock and normal episodes where each episode is evaluated based on blood volume (BV),
heart rate (HR) and mean arterial pressure (MAP) in two-time split.

subject is giving significant amount of fluids for less than 1/2
of time in the simulation, and giving large amount of fluids
for less than 1/4 of time, then the subject is labeled Type
II for that scenario. Each subject is classified based on the
number of Type I and Type II scenario they score. One trial
for a typical Type I subject, and a typical Type II subject
is shown in Fig. 3. The Type I subject shown in Fig. 3a
gives interventions throughout the trial and administers large
amount of fluids for considerable time. The Type II subject,
however, only administers relatively small amount of fluids
for two times.

A main effect for user strategy was found for all three
measures BV F (2, 32) = 8.66, p = .001, HR F (2, 32) =
70.66, p < .001, MAP F (2, 32) = 43.9, p < .001.
Examining the effect of user strategy within episode types,
however, found no effect for HR or MAP in hypovolemic
episodes while pairwise comparisons of error in BV found
differences favoring Type II p = .012 and Mixed p = .025
strategies over Type I. A more complex pattern of effects
was found for hemorrhagic and normal episodes with Type
II users doing less well than others in managing HR (Type
II > Mixed p = .001 or Type I p = .01) and MAP (Type II
error > Mixed p = .018) in hemorrhagic episodes but better
in normal episodes (HR Type I > Type II p = .004 or Mixed
p = .024, MAP Type I error > Mixed p = .018 > Type II
p = .016). Type II users did better in managing BV in both
these conditions with comparisons showing Type 1 > Type
II p = .029 or Mixed p = .04 for hemorrhagic episodes and
Type I > Type II p < .001 or Mixed p = .016 in the normal
condition.

For BV measurement, Type I is always worse in the
second half than the first. Type II is better in the second half
only in the hypovolemic cases, because they overcome the
initial deficit and then stop. Mixed Type subjects are usually
between Type I and Type II, except in the hypovolemic cases,
where they are comparable to Type II.For the other measures
(HR and MAP), there is a strong effect of episodes. For
normal cases, Type II is still better than Type I (and Mixed
Type in the middle) because they start in balance and Type II
is better at staying there while Type I over-administers. For
hemorrhagic cases, Type II is worse than Type I because Type
I is better at aggressively addressing the initial deficit and
continuing to administer fluid to combat the bleeding. For
hypovolemic cases, all types are much better in the second
half because they have addressed the initial deficit. Type I is
relatively worse in the second half though because of their
over-correction.

The strategies taken by Type I and II subjects reveal
differences in their internal model of the simulated patient
when they are taking the experiments. Although in terms
of visible parameters, i.e. vital sign(s), all type subjects
are doing comparably well, for blood volume measurement
which is more relevant in fluid management tasks, Type II
subjects achieve significantly better performance than Type I
subjects. In an experiment with a limited number of medical
Fellows, we observed that (a) the Fellows acted like subjects
of Type II, (b) they intervened a bit later than the naive
subjects, and (c) their intervention resulted in a smoother
trajectory of the vital signs being brought to the normal range
for the patient. One of the reasons is that the inner model of



practitioners is much more sophisticated and therefore they
are more conservative in terms of interventions.

V. NEURAL NETWORK MODEL

Modeling of the Cyber Physical System in critical care
scenario is a challenging task in two respects. First, the
human body, by its nature, is an extremely complex system
with nonlinear dynamics and numerous parameters that vary
among individuals. Second, the decision process for physi-
cians to give treatment is highly complicated with individual
variations as well as cognitive limitations.

Recurrent Neural Networks (RNN) is a natural generaliza-
tion of feedforward neural networks to sequences. In recent
research, RNNs have been proven to work in various se-
quence prediction tasks such as language translation, speech
recognition and image captioning [12], [13], [14], [15]. The
capacity of recurrent neural networks in sequence prediction
for complicated nonlinear dynamic system can be utilized
to model our critical care Cyber Physical System, consisting
of the patient model and the physician control actions for
patient fluid management. Moreover, since recurrent neural
networks are built using weights and activations, which is
in an explicit mathematical form, it is amenable for further
verification of the Cyber Physical System. In this section,
we will introduce our preliminary RNN, or more specifically,
Long Short Term Memory (LSTM) RNN architecture [16]
for modeling the critical care system.

A. Long Short Term Memory (LSTM) Model

We define states x of our model at time step t as st, which
consists of the Heart Rate (HR), Mean Arterial Pressure
(MAP), Hemoglobin (HgB), and Blood Volume (BV) at
that time. We also define actions a at time step t as at,
consisting of amount of fluids and Packed Red Blood Cell
(PRBC) given per minutes at time step t. Note that we merge
the administration of Normal Saline and Albumin as fluids,
since we do not clearly differentiate these two fluids both in
experiments and in practice in our scenarios.

Given a sequence x = {x1, . . . , xT } of states, a stan-
dard RNN computes the hidden vector sequence h =
{h1, . . . , hT } and output sequence y = {y1, . . . , yT } by
iterating the following equations from t = 1 to T ,

ht = H(Wxhxt +Whhht−1 + bh)

yt = Whyht + by
(1)

where the W terms denote weight matrices, the b term
denotes bias vectors and H is the hidden layer function.

However, instead of a single hidden unit for a standard
RNN model, a LSTM unit [16] consists of four parts, input
gate, forget gate, output gate and cell. For a LSTM model,
the hidden layer function H is the following composite
function,

it = sigm(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = sigm(Wxfxt +Whfht−1 +Wcf ct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = sigm(Wxoxt +Whoht−1 +Wcoct−1 + bo)

ht = ottanh(ct)

(2)

where i, f, o, c represents input gate, forget gate, output gate
and cell respectively. This structure helps LSTM models to
avoid the long-term dependency problem and increase their
capability to predict sequences.

The Cyber Physical System consists of two separate
models, (a) the patient model that describes how the human
body reacts to blood loss and fluid administration, and (b)
the subject model that predicts subject decision of fluid
management. For the patient model, the goal is to predict
states at current time step st, based on previous states and
actions. Similarly, for the subject model, we want to predict
the action at current time step at, based on current and
previous states, and previous actions. The LSTM model is
trained on a sequence of states xt = (st, at−1) and outputs
yt = at. These LSTM models can be used for analysis on
the viability and reachable set in the Cyber Physical System,
and therefore determining safe actions and safe patient status
in verification of the system.

B. Preliminary Results

Our preliminary model consists of one single-layer LSTM
model for patient and one for subject. We split subject data
into two halves. The model is trained on data of all subjects
for three scenarios, and is tested on subject data for the other
three scenarios. Since the scenarios need time to set up, data
for the first 10 seconds of each scenario (when simulation is
initializing) are removed from training and testing sequences.
The model does one-step prediction based on states (HR,
MAP, BV, HgB, etc) and actions that were performed in the
last 20 steps (40 seconds) of subject data.

The average prediction errors over all subjects for HR,
MAP, HgB and BV are 5.9 bps, 3.9 mmHg, 0.4 g/dL, and
0.1 L respectively, all of which are less than 10% of subjects
baselines. The average prediction errors for fluids and PRBC
administration are 35.5 ml/min and 16.4 ml/min, respectively,
which are significantly less than the slowest drip of 100
ml/min. Model prediction and ground truth for the subject
and scenario depicted in Fig. 3b are shown in Fig. 5. The
single layer LSTM model achieves decent performance in
one-step prediction, despite some offset on vital signs. Since
the training set is relatively small, the LSTM model might
easily overfit to the baselines of the first three scenarios, and
therefore cause the offset on vital signs.

C. Discussion

Although neural network models do not explicitly encode
probability distribution over output, there has recently been
research about representing uncertainty for neural network
models. For example, Gal and Ghahramani [17] create a
model of dropout1 Such uncertainty measurement can help
the Cyber Physical System model to reflect possible circum-
stances during critical care, and increase the performance
and safety of the overall system.

Besides introducing uncertainty measurement into the cur-
rent model, there are a few directions for future work. One of

1A technique that temporarily removes randomly selected units from a
neural network, along with all its incoming and outgoing connections.



Fig. 5: LSTM model prediction for vital signs and actions for the experiment trial in Fig. 3b. The single layer LSTM model achieves decent performance
in one-step prediction, despite some offset on vital signs. The average prediction errors over all subjects for HR, MAP, HgB and BV are 5.9 bps, 3.9

mmHg, 0.4 g/dL, and 0.1 L respectively, and for fluids and PRBC administration 35.5 ml/min and 16.4 ml/min, respectively.

the directions is to increase the number of layers in current
LSTM model, since the literature shows that deep LSTM
models can out-perform shallow LSTM models [13], [15].
A deeper LSTM model may improve performance for one-
step predictions and other more complicated tasks such as
multi-step predictions.

VI. CONCLUSION

In this paper we presented a methodology and preliminary
results for creating an analytic model of fluid management
for various types of shock (hemorrhagic and hypovolemic)
based on results from human performance on the task.
Creating an analytic model that captures realistic human
behavior is the first step to the development of a model of
fluid management in critical care consisting of a simulated
patient and a physician that can be formally verified. In future
work we plan to run a large number of Medical Fellows as
experimental participants, further refine the neural network
model and also proceed with the formal verification of the
overall model.
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