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Abstract— We present a method to validate a cognitive model,
based on the cognitive architecture ACT-R, in dynamic human-
automation systems with discrete human input. We are inspired
by the general problem of K-choice games as a proxy for many
decision making applications in dynamical systems. We model
the human as a Markovian controller based on gathered ex-
perimental data, that is, a non-deterministic control input with
known likelihoods of control actions associated with certain
configurations of the state-space. We use reachability analysis
to predict the outcome of the resulting discrete-time stochastic
hybrid system, in which the outcome is defined as a function
of the system trajectory. We suggest that the resulting expected
outcomes can be used to validate the cognitive model against
actual human subject data. We apply our method to a two-
choice game in which the human is tasked with maximizing net
coverage of a robotic swarm that can operate under rendezvous
or deployment dynamics. We validate the corresponding ACT-
R cognitive model generated with the data from eight human
subjects. The novelty of this work is 1) a method to compute
expected outcome in a hybrid dynamical system with a Markov
chain model of the human’s discrete choice, and 2) application
of this method to validation of cognitive models with a database
of actual human subject data.

Index Terms— Reachability analysis, Cognitive models, ACT-
R, Human-in-the-loop systems, Markov controller, Hybrid sys-
tems, Human-automation interaction

I. INTRODUCTION

Human-automation systems are ubiquitous, not only in
commercial products, but also in complex and safety critical
systems, such as power grid distribution systems, trans-
portation systems, and biomedical devices. While extensive
work has been done to assure safety and performance of
fully automated systems, less is known about how to pro-
vide such assurances in human-in-the-loop systems. Indeed,
human-automation interaction is often key for the overall
performance of safety-critical human-automation systems.
Recently, Google announced that 15 out of the 16 accidents
involving Google’s self-driving autonomous car were due to

This material is based upon work supported by the National Science
Foundation. Oishi and Vinod are supported under Grant Number CMMI-
1254990 (CAREER, Oishi) and CNS-1329878. Sycara, Ting, and Lebiere
are supported under Grant Number CNS-1329986. Lewis is supported under
Grant Number CNS-1329762. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.
Abraham Vinod and Meeko Oishi are with Electrical and Computer
Engineering, University of New Mexico, Albuquerque, NM; e-mail:
aby.vinod@gmail.com, oishi@unm.edu (corresponding author)

Yuqing Tang and Katia Sycara are with Robotics Institute, Carnegie Mel-
lon University, Pittsburg, PA; e-mail: {yuqing.tang,katia,cl}@cs.cmu.edu

Christian Lebiere is with Computer Science, Carnegie Mellon University,
Pittsburgh, PA; e-mail: cl@cs.cmu.edu

Michael Lewis is with Information Sciences and Intelligent Systems,
University of Pittsburgh, Pittsburgh, PA; email: ml@sis.pitt.edu

the other human drivers on the road [1]. Predicting expected
behavior of human-automation systems is crucial for assuring
safety as well as for optimizing performance.

A variety of methods have been considered to model the
human in human-automation systems. Early models [2], [3],
[4] for human drivers and pilots were based on transfer
functions gathered from experimental data, and enabled char-
acterization of pilot-induced oscillations and other problem-
atic behaviors. However, in modern cyber-physical systems,
human inputs may include non-trivial combinations of low-
level continuous inputs as well as high-level discrete inputs
(e.g., as in supervisory control schemes) [5], [6]. Recent
investigations have explored models of high-level human
decision making [7], [8], [9] and attention allocation [10]
to facilitate design of decision support systems [11], [12] for
dynamical systems.

An alternative approach makes use of a cognitive archi-
tecture by modeling human behavior according to known
psychological phenomena. Computationally unified theories
of cognition, known as cognitive architectures, have been
developed to implement aspects of cognition that do not
vary across human subjects, including the mechanisms and
structures through which information is processed. They in-
clude limitations on attention and working memory, cognitive
biases driven by the statistics of the environment (e.g., higher
weight given to recent information) as well as statistical
processes driving generalization such as similarity-based
pattern matching. We have chosen ACT-R [13], [14] as our
target cognitive architecture because 1) it has been used to
develop a wide range of cognitive models, 2) it incorporates
both cognitive capabilities and human limitations relevant to
complex system control, and 3) it provides constraints on
human performance through its mechanisms, e.g., memory
retrieval and generalization. Such cognitive models are based
on “first-principles” of human cognition and hence can be
argued to be more general than e.g., experimentally obtained
transfer function models for a specific subject.

In this paper, we use the framework of discrete-time
stochastic hybrid systems to model human-in-the-loop cyber-
physical systems [15] with discrete choice, and pose the
question of expected outcome in terms of a stochastic reach-
ability problem. We model the human as a non-deterministic
Markov controller, generated from an ACT-R based cognitive
model. We consider outcomes dependent on the execution
of the hybrid system and formulate a forward reachability
problem to predict expected behavior of the system. The
resulting expected outcome can be compared against actual
human subject data to validate a given cognitive model
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(reduced to a Markov chain controller). We apply this method
to a two-choice game, conducted via Amazon Mechanical
Turk [16], in which the human is tasked with maximizing
net coverage of a robot swarm that can operate under
rendezvous or deployment dynamics. The novelty of this
work is 1) a method to compute expected outcome in a hybrid
dynamical system with a nondeterminsitic Markov controller
that describes the human input, and 2) an application of this
method to validation of an ACT-R generated cognitive model
using a database of actual human subject data.

The paper is organized as follows. We first describe the
mathematical formalism of the human-in-the-loop hybrid
system and formulate the problems to be solved in Section II.
Section III describes the calculation of expected outcome
and its comparison to experimental data for the general K-
choice game model of the system. In Section IV, we apply
this method to a robotic swarm problem and discuss validity
of the cognitive model for this experiment. Lastly, we offer
conclusions and directions for future work in Section V.

II. PROBLEM FORMULATION

The following mathematical notation will be used through-
out the paper. For some m ∈ N and a set S, let Sm denote the
Cartesian product of S taken with itself m times. As in [17],
for a sample space Ω, X is a random variable if X is a Borel-
measurable transformation from Ω to R. The random variable
X is defined on a measurable space {Ω,F(Ω)} where
F(Ω) denotes the sigma-algebra associated with a countable
sample space Ω. When Ω ⊂ Rm, we denote the sigma-
algebra of Ω as B(Ω), the Borel-space associated with Ω.
A probability measure µ may be assigned to the measurable
space to obtain a probability space {Ω,F(Ω), µ}. For a m-
dimensional random vector X = {X1, X2, · · · , Xm} with
Xi defined in {Ω,F(Ω), µ} for 1 ≤ i ≤ m, X is defined
in the product space {Ωm,F(F(Ω)

m
), µp}. Here, µp is the

joint probability of the random variables that make up the
random vector X .

A. Discrete-time stochastic hybrid dynamical systems with
discrete human input

Consider a discrete-time time-invariant hybrid system

q[k + 1] = g(q[k], x[k], uh[k]). (1)
x[k + 1] = f(q[k + 1], x[k], ua[k]) (2)

with discrete state q[k] ∈ Q ⊂ N, continuous state
x[k] ∈ X ⊂ Rn, automation input ua[k] ∈ UA ∈ B(Rp),
and human input uh[k] ∈ UH ∈ F(Nm). Note that the
automation input only affects the continuous state evolution,
and the human input only affects the evolution of the
discrete state. By definition, the discrete dynamics are
propagated before the continuous state dynamics so that
the human input at time k influences x[k + 1]. Further,
the input set UH is a finite set. We require f and g to be
Borel-measurable functions to ensure measurability of the
states, as well as Lipschitz continuity of f . The hybrid state
space is defined as S ,

⋃
q∈Q{q} × X, and πa : S → UA

is the deterministic control policy used by the automation.
The time horizon of interest is N <∞.

The human input is modeled as an event (action) which
causes the discrete state transitions as described by g (1).
We further specify that the human input is modeled using
a Markov chain, hence is defined as a stochastic map,
πh : S → UH , such that

uh[k] = πh(s[k]) (3)

where s[k] = (q[k], x[k]) and uh[k] is defined in the prob-
ability space {UH ,F(UH), P rs[k]}. Here, Prs[k] is defined
using the transition probabilities associated with the Markov
chain modeling the human dependent on s[k]. We denote the
control action sequence of the human and the automation
derived from the control laws πh and πa, respectively, as

uh = {uh[0], · · · , uh[N − 1]} ∈ UN
H , (4)

ua = {ua[0], · · · , ua[N − 1]} ∈ UN
A . (5)

We can equivalently write (1), (2), (3) in standard form as
a discrete-time stochastic hybrid system (DTSHS) [15],

H = (Q,X,UA,UH , Tx, Tq) (6)

with the following elements:
• Q ⊂ N is the finite set of discrete states of the system.
• X ⊂ Rn is the set of continuous states,
S ,

⋃
q∈Q{q} × X.

• UA ∈ B(Rm) is the compact control space for the
automation, with deterministic controller, πa.

• UH ∈ F(Np) is a finite set of choices for the human,
generated using πh (3).

• Tx : S × UA × B(X)→ [0, 1] is an impulse function:

Tx(x|s, ua) = δ
(
x− f

(
g(s, πh(s)), x, πa(s)

))
where δ(y) : R→ {0, 1} is 1 if y = 0 and is 0 other-
wise, since f(·) is a deterministic function.

• Tq : S × UH ×Q→ [0, 1] is a function of the transition
probabilities of πh,

Tq(q|s, uh) = Tq(q|s, πh(s)) = Prs
{
q = g(s, πh(s))}

that captures the effect of human action, thereby “clos-
ing the loop” on the human.

The initial condition s0 = {q[0], x[0]} ∈ S is either known
or may be sampled from a known probability distribution
[15]. Note that restrictions, for example, to disallow human
events under various circumstances, can be modeled in Tq .

For the system (6) with finite time horizon N , the hybrid
time trajectory [18] is defined as a finite sequence of intervals
τ = {Ii}Ti=0, such that 1) Ii = {τi, τi + 1, . . . , τ ′i − 1} for
i < T , 2) τ ′T = N , and 3) τi < τ ′i = τi+1. Since H is time-
invariant, we assume τ0 = 0 without loss of generality. We
denote the length of interval Ii by |Ii|, with ∆τ = {|Ii|}Ti=0.

Example 1: Consider UH = {0, 1, 2}, N = 6 and
ûh = {0, 2, 0, 0, 0, 1}. Then T = 2 and τ = {I0, I1, I2},
with I0 = {0}, I1 = {1, 2, 3, 4}, I2 = {5}, and ∆τ =
{1, 4, 1}.
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The system H models human-automation system with a
series of K-choice games, in which the human takes an
action, modeled as a stochastic map πh(·), at every τi. This
framework is general, however we are primarily interested
in systems in which human actions occur infrequently (|Ii|
is large), as in many semi-autonomous systems under super-
visory control [19].

The hybrid system execution is ξ(·; s0,uh,ua) =
{ξ[1], · · · , ξ[N ]; s0,uh,ua}, where for k ∈ {0, · · · , N},

ξ[k] = (ξq[k], ξx[k]) ∈ S. (7)

Here, ξq[k] is the discrete mode at the kth instant and ξx[k]
is the continuous state at the kth instant. Note that uh is a
N -dimensional random vector defined by (3). We define

ξq(·; s0,uh,ua) , {ξq[1], · · · , ξq[N ]}, (8)

where ξq(·; s0,uh,ua) is a N -dimensional random vector
defined in the probability space {QN ,F(QN ),Ps0}. Here,
Ps0 refers to the joint probability of the discrete states ξq[·]
for a given initial state s0 ∈ S [17]. Similarly,

ξx(·; s0,uh,ua) , {ξx[1], · · · , ξx[N ]}, (9)

and ξx(·; s0,uh,ua) is a N -dimensional random vector
defined in {XN ,B(XN ),Ps0} by (2). From (3), the non-
deterministic control action sequence uh is also defined in
{UN

H ,F(UN
H),Ps0}. For a given initial state s0 and mode

sequence ξq , ξx becomes a deterministic sequence as given
by (2). Further, given a Markov model for the human,
the mode sequence ξq becomes completely determined by
(1), (2), (3). Let ûh be an instantiation of uh = πh(·) that
models the human, i.e, ûh is a sequence of actions taken by
the human. The corresponding trajectory (q,x) with

q = ξq(·; s0, ûh,ua), x = ξx(·; s0, ûh,ua), (10)

has a likelihood of

Ps0

{
ξ(·; s0,uh,ua) = (q,x)

}
= Ps0{πh(·) = ûh} (11)

since g is a deterministic function and

Ps0{πh(·) = ûh} =

N−1∏
n=0

Prŝ[n]

{
ûh[n] = πh(ŝ[n])

}
(12)

=

N−1∏
n=0

Prŝ[n]

{
q̂+[n] = g(ŝ[n], πh(ŝ[n]))

}
.

=

N−1∏
n=0

Tq(q̂[n+ 1], q̂[n], x̂[n], πh(ŝ[n])).

where x = {x̂[1], · · · , x̂[N ]}, q = {q̂[1], · · · , q̂[N ]} and
q̂+[n] = q̂[n + 1]. We discuss computing these probability
measures in Subsection II-B.

We define a performance metric as a Borel-measurable
reward function, r : SN+1 → R, which assigns a reward to
every system execution. We also define a specific reward

function, R : S × UN
H → R, which captures the reward at-

tainable from s0 ∈ S for the human action sequence uh.
Since ua is a known, deterministic automation control policy,

R(s0,uh) = r(s0, ξ(·; s0,uh,ua)). (13)

From (13), R(s0,uh) is a random variable defined in the
probability space {R,B(R),Ps0}, induced from the proba-
bility space defined for uh.

For the reward defined in (13), we define a trial of the K-
choice game as an execution ofH (6) in which the participant
is presented with s0, and the participant provides a strategy
ûh to maximize R(s0, ûh). We define an experiment as a
collection of consecutive trials, and define training to be a
series of trials completed prior to the experiment (so that
the user is presumed to be fully trained at the start of the
experiment). At the beginning of each trial, H is initialized
from a hybrid state associated with the trial.

B. Cognitive models and the Markov controller

The cognitive model is implemented in a neurally-inspired
cognitive architecture, ACT-R, via instance-based learning
(IBL). Decisions in IBL are made primarily based on expe-
riences of a task and its associated reward function. These
experiences are stored as “chunks” of ACT-R’s declarative
memory, with each chunk corresponding to a relevant ex-
perience. Instance chunks typically contain a description of
the context s[k] ∈ S in which each decision is made, the
decision itself, and the outcome of that decision. Important
features F (s[k]) of the system influencing the decision are
identified by the modeler to minimally express the context.
For example, when dealing with the robot swarms, the
features F (s[k]) could be the centroid and the dispersion
of the initial swarm configuration [20].

The cognitive model ACT-R is initialized using prototyp-
ical parameters from human psychology that are represen-
tative of a typical response to the first trial in training. For
every trial, ACT-R is provided with the same information
presented to a human participant. The cognitive model ex-
tracts the features, then estimates the reward function (13)
using ACT-R’s blending mechanism [21]. The estimation
is performed by partially matching the given features with
the chunks representing instances stored in the ACT-R’s
declarative memory. The partial matching approach uses a
linear similarity-based pattern matching function between the
features and the activation of retrieval functions of ACT-
R declarative memory based on recency and noise. The
model then selects the decision that produces the largest
reward. Finally, ACT-R compares the resulting reward to an
internally generated estimate for these values and creates a
new instance for the analyzed set of values for the features.
This process is repeated for every trial faced by ACT-R
similar to the experiments with the human. In short, ACT-
R models a typical human who aims to maximize a reward
function for a system given by (1), (2).

We create the Markov model of the human from simulated
data gathered from ACT-R completing each experiment M
times, where M is typically a large number (e.g., we used
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M = 1000 in the robotic swarm game). The inherent
stochasticity in ACT-R means that when faced with the
same configuration, ACT-R may choose different actions in
different trials. We denote the actions of ACT-R by u−h ∈
UH . We define the likelihood of ACT-R choosing a specific
decision uh = ûh for a given trial with state s[k] as

Prs[k] {uh = ûh} =
∑
j∈UH

Prs[k]

{
uh = ûh

∣∣u−h = j
}

× Prs[k]

{
u−h = j

}
. (14)

The prior likelihood Prs[k]

{
u−h = j

}
, j ∈ UH , is simply

the relatively frequency of action j in the M experiments.
The conditioned likelihood Prs[k]

{
uh = ûh

∣∣u−h = j
}

is the
relative frequency of action ûh when preceded by action j in
the previous trial. Both of these expressions characterize the
Markov chain associated with state s[k] and are computed
via batch processing of the data from the M experiments
completed by ACT-R. Note that the Markov model is devel-
oped independently of the experiments involving the human
participants.

Substituting (14) into (11) and (12), we obtain the proba-
bility of every trajectory (q,x) of (6) and Ps0 {πh(·) = ûh}.

C. Problem statement

The following two problems are addressed in this paper.
Problem 1: Given a discrete-time stochastic hybrid sys-

tem H (6) with discrete human input captured by a Markov
model (3), and a performance metric R (13), find the
expected performance of the system for a typical human
subject.

We focus in particular on a class of reward functions that
are functions of the forward reach tube because they provide
a simplified solution to Problem 1. Once we have computed
expected performance, we can pose the following validation
problem for a given cognitive model.

Problem 2: Determine the validity of a cognitive model
by comparing expected outcome using the cognitive model
(Problem 1) with actual outcome from human subject exper-
iments.

III. COMPUTING EXPECTED OUTCOME VIA FORWARD
REACHABILITY

A. Expected outcome

The performance for a typical human operator can be
defined in terms of the expectation of the reward function
(13)

Es0 [R(s0, πh(·))] =
∑

ûh∈UN
H

[
Ps0

{
πh(·) = ûh

}
× r

(
s0, ξ(·; s0, ûh,ua)

)]
. (15)

While equation (15) theoretically solves Problem 1 for any
R(·) that is a function of the system execution, numerical
computation may be challenging for the most general case.

We consider the specific case when the reward function
is restricted to be a function of the forward reach tube for a
known human input,

R(N,S0, ûh) = J
(
ReachTube(N,S0, ûh)

)
(16)

where S0 ⊆ S is a set of initial configurations,
J : B(S)→ R is a set function defined on S, and the forward
reach tube

ReachTube(t,S0, ûh) =
⋃

0≤k≤t

Reach(k,S0, ûh) ⊆ S

(17)

is the union of forward reach sets over all time steps until
t ≤ N . The forward reach set, Reach(k,S0, ûh), consists of
those states that can be reached at exactly time k,

Reach(k,S0, ûh) = {y ∈ S : ∃s0 ∈ I, s.t.
ξ(k; s0, ûh,ua) = y} ⊆ S (18)

with Reach(0,S0, ûh) = S0.
While computation of (17), (18) is, in general nontrivial

because all instantiations of ξq must be explored, the particu-
lar form of hybrid system we consider lends itself to realistic
computation in specific cases.

First, we note that in the trivial case in which the initial
set I is a singleton, computing (18) can be accomplished
through simulation. Second, we can exploit the fact that in
many systems, human input may occur infrequently.

Since the stochasticity in (6) is due solely to the human
input, we consider portions of the trajectories (7) that result
from a single human action, that is, that start when one
human action occurs and end when the next human input
occurs. For Ii ∈ τ , let vh(Ii) = {v, 0, 0, · · · , 0} ∈ U|Ii|h be
an input sequence of length |Ii| with some non-zero human
input v ∈ UH and uh = 0 indicating that no human input
occurs. Hence characterizing the reach set and reach tube
between human-triggered events becomes a deterministic
reachability problem that can exploit efficient computational
tools [22], [23], [24], [25], [26] for certain classes of
dynamics and initial sets.

For ease of notation, we define

Reachauto(|Ii|,S0, v) = Reach(|Ii|,S0,vh(Ii)),
(19)

ReachTubeauto(|Ii|,S0, v) = ReachTube(|Ii|,S0,vh(Ii)).
(20)

B. Computing forward reach tube for systems with infrequent
human actions

The forward reach tube ReachTube(·) for DTSHS (6)
with infrequent human inputs can be computed using Algo-
rithm 1. For a given human action sequence ûh, Algorithm 1
splits the execution of the hybrid system into segments
in which the evolution occurs only under the action of
automation. The deterministic reach tubes ReachTubeauto(·)
in these segments can be computed efficiently using existing
tools for deterministic reachability, and ReachTube(·) is
computed by combining ReachTubeauto(·) using (17).
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Algorithm 1 Computing the reach tube (17) for DTSHS with
discrete human input (6) and occasional events

Input: S0 ⊆ S, ∆τ , ûh, ReachTubeauto(dt,S0, v)
Output: RTube – the forward reach tube as defined in (17)

1: procedure REACHTUBECOMPUTE(S0, ûh,∆τ )
2: i← 0 . Initialize iteration variables
3: RTube← ∅
4: RSi ← S0

5: while i ≤ T do
6: RTi ← ReachTubeauto(|Ii|, RSi, ûh[τi]) . (20)
7: RTube← RTube ∪RTi . (17)
8: RSi+1 ← Reachauto(|Ii|, RSi, ûh[τi]) . (19)
9: i← i+ 1

10: end while
11: end procedure

To demonstrate the use of Algorithm 1, consider Ex-
ample 1. Recall that the hybrid time trajectory is τ =
{[0], [1, 2, 3, 4], [5]} and the durations of the intervals is
∆τ = {1, 4, 1}. From (17), we compute the corresponding
reach tube as ReachTube(6,S0, ûh) = ∪0≤i≤2RTi with

RT0 = ReachTubeauto(1,S0, 0), (21)
RT1 = ReachTubeauto(4, RS0, 2) (22)
RT2 = ReachTubeauto(1, RS1, 1) (23)

The terminal reach sets of the first two time intervals
are RS0 and RS1, with RS0 = Reachauto(1,S0, 0) and
RS1 = Reachauto(4, RS0, 2).

We now have all elements necessary for Problem 1, as well
as computationally tractable solutions in some cases. The
Markov controller for the human (3) is constructed from the
cognitive model, and the corresponding reward function (16)
is based on the forward reachability tube (computed using
Algorithm 1). Hence the expected outcome can be computed
for the cognitive model using (15), solving Problem 1.

C. Discussion regarding the assumptions used

For K-choice problems, Algorithm 1 and (15) solves
Problem 1 under the assumption of 1) structure in the reward
function, and 2) infrequent inputs from the human.

The reward function for the K-choice game is assumed to
be a function of the reachable sets, as this allows for a simple
solution to Problem 1. This assumption is fairly weak since
the reach sets and tubes capture the execution of the system
(6), and the reward functions are typically functions of the
execution of the hybrid system. However, reward functions
based on the safety of the system cannot be accommodated
in this formulation since forward reachability analysis can
not guarantee safety [27].

The assumption of infrequent human inputs allows us to
solve Problem 1 using the existing tools in the literature
for deterministic reachability analysis via Algorithm 1 and
the computation of expected outcome using (15). Frequent
human inputs would require validation based on stochas-

Fig. 1: User interface for the robotic swarm
experiment [20].

tic reachability analysis which is computationally expen-
sive [15].

D. Validation of the cognitive model

We solve Problem 2 by comparing the expected outcome
(15) with the experimental mean of the rewards obtained
during human trials,

ExpMean[R(s0, πh(·))] =
1

Nobs

Nobs∑
i=1

R(s0, πh(·)) (24)

where Nobs is the number of human participants. For each
trial of the experiment, we analyze the difference

ε(s0) , Es0 [R(s0, πh(·))]− ExpMean[R(s0, πh(·))]. (25)

The validation of the cognitive model is done by computing
the mean (bias), the variance, and the maximum absolute
value of ε(·) over all initial configurations in the experiment.
We also evaluate whether the expected outcome predicted
by ACT-R is dissimilar to the expected outcome observed
with human participants. This is evaluated via the Student’s
T-test, to assess the accuracy of the null hypothesis that
the difference between expected outcomes (for experiments
conducted by ACT-R or by the set of human subjects)
is statistically significant. Evaluating whether these derived
metrics are within the specifications of the problem com-
pletes the validation.

IV. ROBOTIC SWARM TWO-CHOICE GAME

A. Experimental Setup

The robotic swarm two-choice game involves a swarm of
twenty simulated point-mass robots [20]. The human controls
the swarm indirectly by choosing between two strategies,
which correspond to different robot dynamics: rendezvous
or deploy. The rendezvous strategy causes the robots to
converge to a common location, and the deploy strategy
causes the robots to diverge to different locations in the
game space. The simulated environment also contains a set of
twenty fixed obstacles. Each robot has an associated sensing
area, that is, a circular area (due to omni-directional sensors)
that the robot can ‘cover’. The participant’s goal in each trial
is to select the strategy that maximizes the accumulated area
sensed. The only information that the participant has to make
this decision is the initial configuration of the robots and
obstacles. Additional details can be found in [20].
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(a) (b) (c)

Fig. 2: (a) Initial configuration x[0] of the robot swarm (without obstacles). (b) Obstacle-free simulation from x[0] for
q[0] = Rendezvous. (c) Obstacle-free simulation from x[0] for q[0] = Deploy, with centroidal Voronoi tessellation of x[N ].

The game interface is shown in Figure 1. Each participant
was presented with sixty trials. In each trial, the participant
was shown the initial configuration and was asked to choose
between the two strategies. In the first 10 trials (training
trials), the outcomes using both the strategies were shown. In
the remaining 50 trials, the participants were only shown the
outcome for the strategy they selected. The configurations
were chosen randomly. For the validation of the cognitive
model, we ignore the configurations during training, as we
are interested in comparing the cognitive model’s perfor-
mance to that of a typical trained human. A total of 50
subjects were recruited; 10 completed at least 15 trials of the
experiment, while 8 completed all 50 trials in the experiment.

B. Hybrid human-in-the-loop system

We model the human-swarm system as the tuple
H = (Q,X,UA,UH , Tx, Tq), with
• Q = {Rendezvous,Deploy},
• X = A20, with A = [−150, 150]2 the simulated envi-

ronment with 20 robots and the initial configuration
denoted as x[0] ∈ X,

• UA ∈ B(R40), with feedback-based controller
πa : S → UA,

• UH = {Dep,Rend} that corresponds to selection of de-
ploy or rendezvous, with the human’s choice described
by πh : X→ UH ,

• Tq(q|s) = δ(q − g(πh(x[0]))) where g(·) : UH → Q
is Rendezvous if πh(x[0]) = Rend and is Deploy
otherwise (and q[k] = q[1] ∀k ≥ 1),

• Tx : S × UA × B(X)→ [0, 1], described by

Tx(x|(q, x′), ua) = δ
(
x− f(q[1], x′, πa(q[1], x′))

)
.

We denote the time horizon by N , and for a given an
initial configuration x[0], denote the initial hybrid state as
s0 = {q[0], x[0]}. Note that Tq permits human input only
at the start of the trial; once the participant has made this
one decision, no further human input is allowed. Therefore,
πh(·) is a random variable and Ps0{·} = Prs[0]{·} by (12).
The index set of the robots is Γ = {1, 2, · · · , 20} and O ∈ X
is the set of the locations of the obstacles.

We define the position of the ith robot as
pi[k] = [xi[k] yi[k]]

> ∈ A and the continuous state of
the swarm system as x[k] ,

[
p1[k],p2[k], · · · ,p20[k]

]
∈ X.

The dynamics for the ith robot in Deploy mode are

pi[k + 1] = fnl,i(Deploy, x[k]) (26)

= pi[k] + α1(ci[k]− pi[k])

+ α2

∑
pobs∈O

pi[k]− pobs[k]

‖pi[k]− pobs[k]‖2
(27)

with ci[k] ∈ A the centroid of the Voronoi cell associated
with ith robot [28]. The dynamics in Rendezvous mode are

pi[k + 1] = fnl,i(Rendezvous, x[k]) (28)

= pi[k] +
α3

20

 ∑
j∈(Γ\{i})

(pj [k]− pi[k])


+ α4

∑
pobs∈O

pi[k]− pobs[k]

‖pi[k]− pobs[k]‖2
(29)

with controller gains α = {α1, α2, α3, α4} ∈ R4. However,
since obstacle locations are shown to not influence the
participant’s mode selection [20], for the purpose of our
analysis, we ignore the obstacles (by setting α2 = α4 = 0)
to obtain the simplified dynamics

f i(Deploy, x[k]) = pi[k] + α1(ci[k]− pi[k]) (30)
f i(Rendezvous, x[k]) = pi[k]

+
α3

20

 ∑
j∈(Γ\{i})

(pj [k]− pi[k])


(31)

where f i : Q× X→ A and i ∈ [1, 20]. Note that ci[k]
makes f nonlinear in Deploy mode. Figure 2 shows the evo-
lution of the system under Deploy and Rendezvous modes,
generated using MPT [23], for a fixed initial condition.

A cognitive model was constructed using ACT-R. Two
features, distance of the centroid of the initial position
of the robots from the center of A (eccentricity), and its
dispersion (sum of squares of the robot’s distance from

3344



centroid), characterize the initial configuration of the robots
in each trial [20]. The cognitive model was developed as
in Section II-B, then subjected to 60 trials, just as human
participants (the first 10 trials constitute training ([20, Figure
4]); the remaining 50 trials constitute the experiment). ACT-
R’s blending mechanism is used to estimate the area coverage
under either strategies [21] for each of these trials; the
strategy with maximum accumulated coverage is selected.
The model receives feedback from the environment (just as
human participants) and uses it to update its estimates. Upon
completion of a trial, the representation of the problem is
added as a new chunk in ACT-R’s declarative memory.

A Markov controller πh(x[0]) was then abstracted from
the cognitive model. The controller is dependent on the two
features, rather than the swarm state. The possible values
that the features can take was partitioned according to a
sufficiently fine grid, so that 27 of the 50 configurations
were distinct, meaning that they mapped to the different
cells of the partition. The Markov chain associated with
the cell corresponding to x[0] characterizes the likelihood
of the action taken by ACT-R through (14). The conditional
and the prior probabilities in (14) were defined for the trials
with non-distinct eccentricity and dispersion using data from
M = 1000 repetitions of the experiment.

C. Computation of expected outcome and validation of the
cognitive model

The performance metric of interest is the accumulated area
coverage. Unlike the typical area coverage metric (see [28,
Equation 2.3.1]), accumulated area coverage is the net area
covered throughout the entire system execution (not just at
a given instant) and depends on the initial configuration as
well as the strategy chosen by the human. We define the
performance metric as

R(s0, uh) =
m(SensedS(s0, uh))

m(A)
(32)

with uh = πh(s0) and Lebesgue measure m(·). The set of
states sensed by the swarm SensedS(s0, uh) ⊆ A is

SensedS(s0, uh) = {p ∈ A : ∃h ∈ ReachTube(N, s0,uh)

s.t. ‖p− h‖2 ≤ cs} (33)

with uh = [uh, 0, . . . , 0] ∈ UN
H and omni-directional sensor

radius cs > 0. Using Algorithm 1, the forward reach tube
is ReachTube(N, s0,uh) = ReachTubeauto(|I0|, s0, uh)
with |I0| = N . We calculate ReachTubeauto(N, s0, uh)
via simulation since only a single initial configuration is
considered. The expected outcome (15) for a trial with initial
configuration x[0] and initial hybrid state s0 = (q[0], x[0]) is

Es0 [R(·)] =
∑

ûh∈UH

Ps0{πh(x[0]) = ûh}R
(
s0, ûh). (34)

Figure 3 shows that the model simulates the typical human
performance well, with |ε(·)| ≤ 0.01. The bias, variance, and
maximum absolute difference of ε(·) characterize relevant
properties of the cognitive model: unbiasedness, mean square
error, and the magnitude of error in the outliers, respectively.

Fig. 3: Histogram of the prediction error ε(·) (25). Most
configurations (39 out of 50) have |ε(·)| ≤ 0.01.

Mean (Bias) Variance
Maximum Student’s
absolute T-test

difference (p-value)
1.06× 10−4 8.82× 10−5 0.028 0.9801

TABLE I: Statistical characterization of prediction error
ε(·) (25) across 50 configurations with 8 participants.

The bias and variance of ε(·) across the configurations tested
is quite small (Table I), indicating that that the cognitive
model is unbiased with respect to the configurations con-
sidered and has negligible mean square error. The T-test
between the experimental and predicted performance test
showed that the null hypothesis (“means are equal”) cannot
be rejected (see Table I). While these metrics and the statisti-
cal test confirms that the validity of the cognitive model, the
maximum absolute difference of approximately 0.028 points
to the presence of certain configurations where the cognitive
model may not predict the typical human performance within
the tolerance limits. For these configurations, the features
used may not be sufficient for the cognitive model to discern
the optimal strategy.

We additionally investigated the possibility that our results
may be influenced by configuration properties, namely, the
distinctiveness of the outcomes under each strategy. We
evaluate the possible correlation between the difference in
reward under both strategies with the prediction error in
Figure 4. With the coefficient of determination (R-squared)
of 0.0034, no significant correlation exists. (Prototypical
scenarios in Figures 4b and 4c show configurations with
high and low error in prediction (25), respectively.) To the
contrary, we suggest that configurations with many robots
near the boundary of the environment are responsible for the
outlier results.

V. CONCLUSIONS AND FUTURE WORK

We model human-automation systems as discrete-time
stochastic hybrid systems with stochastic discrete human
inputs. We suggest a method to compute the expected
outcome for reward functions based on reachable sets, and
apply this method to the validation of a cognitive model for a
robotic swarm problem. Our method is most computationally
tractable for experiments with systems with LTI dynamics
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(a)

(b)

(c)

Fig. 4: (a) No significant correlation exists between prediction error ε(·) (25) and the difference in reward under both
strategies (R-squared value is 0.0034). (b) Configuration with largest |ε(·)|. (c) Configuration with smallest |ε(·)|.

and infrequent actions, which are modeled as a series of K-
choice games.

In future work, we plan to consider reward functions
requiring safety (viability) and safety with guarantees (reach-
avoid), and to use the reachable set calculations to predict
conflicts in collaborative human-automation systems. We
also plan to identify additional features that could further
reduce the prediction error.
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