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This study reports data from the Late Cambrian Conasauga Group and overlying Copper Ridge 

Formation of the Central Appalachian region, eastern U.S.A. Geochemical, macro-, and micro-

scale analysis of core material from southeastern Ohio was carried out to constrain the extent of 

oceanic anoxia and to characterize sediment fluxes on the carbonate platform and continental shelf 

of Laurentia contemporaneous with the Steptoean Positive Carbon Isotope Excursion (SPICE), a 

Late Cambrian global marine anoxic event. Carbonate sediments (primarily dolomite) record a 

positive δ13Ccarb excursion starting in the middle Nolichucky Formation, reaching its peak (+4.3) 

at the boundary between the Maynardville and Copper Ridge Formations.  Strontium isotope ratios 

in the dolomitic units are only slightly offset from the expected Cambrian seawater values, 

suggesting minimal post-diagenetic disturbance of isotopic and trace element systematics. 

Elemental ratios within the lower Nolichucky Shale facies, including Th/U, FeT/Al, and Ce/Ce* 

anomalies, suggest an anoxic water column contemporaneous with the start of the δ13Ccarb 

excursion.  Selective leaching of carbonate sediments reveal trends in redox-sensitive trace metals 

(e.g., U, Ni, V) indicative of regional and global marine anoxia during the peak of the Late 

Cambrian SPICE event. 
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1.0  INTRODUCTION 

The occurrence of black shale in the geologic record is largely associated with euxinic and anoxic 

depositional environments, which allow significant organic carbon preservation and associated 

hydrocarbon resources (Berry and Wilde, 1978; Arthur and Sageman, 1994; Ryder et al., 2005; 

Gill et al., 2011; Gautier et al., 2013).  Widespread deposition of black shale facies have been 

interpreted as global oceanic anoxia events (Arthur and Sageman, 1994; Meyer and Kump, 2008), 

that resulted in large perturbations in the biogeochemical cycling of nutrients (C,N, P) and redox-

sensitive elements (Meyer and Kump, 2008; Lyons et al., 2009; Gill et al., 2011; Ozaki et al., 

2011).  Here I report data from the Late Cambrian Conasauga group of the Central Appalachian 

Basin, which has been linked to such a global anoxic event (Glumac and Walker, 1998; Ryder et 

al., 2005; Meyer and Kump, 2008). 

The Conasauga Group is composed of interbedded shale and carbonate sequences 

deposited on the eastern Laurentian passive margin and known to contain economic hydrocarbon 

deposits (Hasson and Haase, 1988b; Glumac and Walker, 2000; Ryder et al., 2005).   Previous 

work on this sequence in the Valley and Ridge province of Tennessee revealed evidence of a 

positive δ13Ccarb excursion (Glumac and Walker, 1998) contemporaneous with a purported global 

event known as the Steptoean Positive Carbon Isotope Excursion, or SPICE (Figure 1.) (Brasier, 

1993; Saltzman et al., 1998; Saltzman et al., 2000a; Kouchinsky et al., 2008; Ahlberg et al., 2009; 

Woods et al., 2011; Ng et al., 2014).  The SPICE event was rapid and persistent (spanning 
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Figure 1: Paleo-reconstruction of Late Cambrian Earth (494 ma). The Steptoean Positive Carbon Isotope Excursion resulted in +4-6‰ increase in δ13Ccarb 

recorded in sedimentary rocks deposited on Gondwana (Australia and China), West Laurentia (USA), East Laurentia (USA),Siberia, and Kazakhstan (Brasier, 

1993; Saltzman et al., 1998; Saltzman et al., 2000a; Kouchinsky et al., 2008; Ahlberg et al., 2009; Woods et al., 2011; Ng et al., 2014). Approximate location of 

figure 2 outlined in red. Modified from Scotese (2012).   
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~4 m.y.).  It is associated with a 4-6‰ increase in δ13Ccarb, as well as positive δ34S and negative 

δ238U excursions, and is bookended by episodes of biological turnover (Saltzman et al., 1998; 

Saltzman et al., 2000a; Kouchinsky et al., 2008; Ahlberg et al., 2009; Gill et al., 2011; Woods et 

al., 2011; Dahl et al., 2014; Gerhardt and Gill, 2016).   

The SPICE is attributed to O2-depleted bottom waters breaching continental shelves (Gill 

et al., 2011) as a result of sea-level rise (Osleger and Read, 1993).  This led to elevated phosphorus 

availability in the water column (Dahl et al., 2014) and spurred productivity and enhanced organic 

carbon (Corg) burial (Berry and Wilde, 1978; Saltzman et al., 2000a; Saltzman and Thomas, 2012; 

Dahl et al., 2014). Anoxia-driven phosphorus availability can only support productivity if there is 

sufficient trace element (e.g., Mo, Fe, V and Ni) bioavailability and nitrogen fixation to facilitate 

organic matter generation (Redfield, 1958; Saltzman, 2005).  A negative feedback in this model is 

that anoxia causes denitrification and a drawdown of trace elements from the water column (Algeo, 

2004; Saltzman, 2005; Brumsack, 2006).   In this study we investigate the distal portion of an 

organic-rich shale unit (the Nolichucky Formation) and adjacent carbonates on the Laurentian 

continental shelf to establish a baseline chemostratigraphy of the Late Cambrian Conasauga Group 

in southeastern Ohio and address the following questions: (1) What was the western (continental-

ward) limit of anoxia and euxinia on the eastern Laurentia continental shelf during SPICE? (2) Is 

there a relationship between the shale facies within the upper Conasauga Group and the increase 

in marine organic matter deposition?  (3) What can the associated carbonate sediments tell us about 

global changes in the oceanic trace element inventories prior to and during SPICE? The event 

could have resulted in dramatic increases in atmospheric pO2 (Saltzman et al., 2011), and 

concomitant changes in ocean chemistry that have been recorded in Late Cambrian platform 

carbonates in other parts of the world (Meyer and Kump, 2008; Gill et al., 2011).   
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A better understanding of the geochemical stratigraphy within the Conasauga Group and 

Copper Ridge Dolomite (Knox Group) will aid in stratigraphic correlation of upper Cambrian 

Laurentian sediments within the Central Appalachian region and expand on oiur knowledge of a 

Cambrian aged petroleum system currently of interest (Ryder et al., 2005).  This study integrates 

stratigraphy, δ13Ccarb and 87Sr/86Sr with trace element data to establish a chemostratigraphy of core 

material sampling the Upper Cambrian Conasauga Group, in the Central Appalachian region prior 

to and during SPICE.   
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2.0  GEOLOGIC SETTING 

2.1 PALEOZOIC ROCKS OF THE CENTRAL APPALACHIAN REGION 

The samples for this study consist of core material from Southeastern Ohio in the Central 

Appalachian Basin (Figure 2).  The sample interval contain Middle and Late Cambrian 

sedimentary rocks (~497-493 Ma) deposited off the coast of Laurentia, including the Maryville 

Limestone, Nolichucky Shale and Maynardville Limestone Formations of the Conasauga group, 

as well as portions of and the Copper Ridge Formation of the overlying Knox Group. Middle to 

Late Cambrian sedimentation in the Central Appalachian region was influenced by pre-existing 

basement structures and sea level fluctuations during the Sauk II supersequence (Osleger and 

Read, 1993; Read and Repetski, 2012).  The main structural control during deposition was a 

southwest to northeast trending series of steep normal faults known as the Rome Trough.  Seismic 

studies and exploratory wells delineate a northern high wall bounding a basin more than 7,000 m 

below sea-level (Gao et al., 2000; Harris et al., 2004). Clastic sediments deposited within and 

adjacent to the trough were likely supplied by the Laurentia craton (Janssens, 1973; Banjade, 

2011).  Initial faulting started during Early Cambrian rifting and continued through the Middle 

Cambrian (Thomas, 1991; Read and Repetski, 2012), causing significant shifts in sedimentation 

within and outside the boundaries of the Rome Trough (Hasson and Haase, 1988a; Harris et al., 

2004; Read and Repetski, 2012).  Early, Middle and early Late Cambrian 
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 Figure 2: Late Cambrian Paleogeography and Schematic Cross Section of East Laurentia. a) 

Late Cambrian carbonate platform of Eastern Laurentia with delineation of the Kerbel 

Formation, the Rome Trough and the study core location (triangle); b) schematic cross section 

of Paleozoic sedimentation across A-A’ (modified from Blakey 2006).  
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sedimentary rocks thicken southward from the study location into the trough and adjacent 

depocenters and then transition seaward to outer-shelf/slope marine carbonates (Hasson and 

Haase, 1988a; Glumac and Walker, 2000; Read and Repetski, 2012).   Cratonic influence on 

sedimentation during the Late Cambrian increases northward from the study location as evidenced 

by the transition from carbonate-dominated sedimentary rocks at our study site to a clastic-

dominated deltaic sedimentary package known as the Kerbel Formation, which extends northward 

into central Ohio (Figure 2) (Janssens, 1973; Harris et al., 2004).  The Late Cambrian and Lower 

Ordovician Knox Group conformably overlies the carbonate and clastic sequences of the Early to 

lower Late Cambrian time.  The Knox Super-Group represents thick pericratonic successions of 

carbonate resulting from long periods of stable, shallow passive margin sedimentation (Taylor et 

al., 2012).      

2.2 THE CONASAUGA GROUP 

The Conasauga Group is a cyclical package of Middle and Upper Cambrian clastic and carbonate 

sedimentary rocks deposited on the passive margin of Laurentia.  The group represents a 

prograding carbonate ramp and distal intrashelf basin resulting from episodic transgression and 

regression (Hasson and Haase, 1988a; Harris et al., 2004).  The earliest formations of the group, 

the Middle Cambrian Pumpkin Valley Shale, Rutledge Limestone and Rogersville Shale 

Formations, are confined to the Rome Trough.  The Middle Cambrian Maryville Formation is an 

arenaceous limestone occurring both within and outside of the Rome Trough.  The formation is 

thickest within the trough and the adjacent Conasauga intrashelf basin further southward.  The 

limestone grades into the clastic-dominated Eu Claire Formation to the north, toward the Middle 
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Cambrian Laurentia craton (Ryder et al.; Janssens, 1973; Hasson and Haase, 1988a; Harris et al., 

2004). Overlying the Maryville Limestone Formation is the Late Cambrian Nolichucky Formation. 

The Nolichucky Formation, is a clastic-dominated sequence of grey, purple and black shales and 

carbonate.  The Nolichucky Formation resulted from a eustatic rise in sea-level, flooding the 

Maryville limestone platform with prodeltaic sediments from Laurentia (Glumac and Walker, 

2000; Ettensohn, 2008).  The Nolichchucky Formation was deposited within and outside of the 

Rome Trough and has a greater lateral extent than earlier Conasuaga Group sedimentary rocks 

shifts confined to within the Rome Trough (Glumac and Walker, 2000; Harris et al., 2004).  The 

Nolichucky Formation increases in thickness and organic content to south into what is referred to 

as the Conasauga Intrashelf Basin (Hasson and Haase, 1988b; Glumac and Walker, 2000; Read 

and Repetski, 2012) where it is a producing hydrocarbon play (Pashin et al., 2012).  The formation 

contains the end-Marjuman trilobite extinction (Glumac and Walker, 1998; Taylor et al., 2012; 

Gerhardt and Gill, 2016).  The youngest unit within the Conasauga Group is the Maynardville 

Formation.  It is composed of a lower subtidal and an upper peritidal facies that marks the shift to 

Knox-type sedimentation.  The contact between the Maynardville Formation and the overlying 

Copper Ridge Formation coincides with a sea-level lowstand referred to as the Sauk II-III Sub-

regression (Saltzman et al., 2004; Read and Repetski, 2012; Taylor et al., 2012). 
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3.0  MATERIALS AND METHODS 

3.1 SAMPLING 

A core extracted from an exploratory well located in Scioto county, Ohio (Figure 2) provides a 

continuous section that contains the Upper Cambrian SPICE interval based on its correlation with 

other sections in both Eastern and Western Laurentia passive margin sediments (Glumac and 

Walker, 1998; Saltzman et al., 1998; Glumac and Walker, 2000).  Core billets (28 total) were cut 

at 7.5 m intervals over a 106 m section of core (Fig. 3), avoiding sampling of secondary bedding 

structures and with denser sampling every 1.5 m near formation boundaries. The exterior of the 

core billets was cut using a diamond bladed circular saw to remove any possible contaminated 

material. Chips were cut for petrographic analysis, and the remaining sample pieces were washed 

in DI water and ethanol. The cleaned billets were then powdered in a tungsten carbide ball mill for 

4 minutes to a particle size of <20 microns. Four splits were taken for subsequent analysis.  The 

study methodology is summarized in Figure 4.
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Figure 3: Schematic Stratigraphic Section showing sample locations and core descriptions.
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Figure 4:  Flow diagram for analysis of samples in this study. 



                                                                                                               

 12 

 

3.2 CARBONATE EXTRACTION 

A selective leaching method was used to obtain the carbonate-hosted trace element concentrations 

(Tissot and Dauphas, 2015).  The powdered aliquots were added to a 50 ml polypropylene 

centrifuge tube and shaken for 24 hours in ultra-pure water at a 40:1 mass ratio to remove water-

soluble salts.  The H2O solution was removed via pipette and discarded. An equal amount of 1M 

glacial acetic acid (HOAc) was added to the centrifuge tubes and samples were shaken for 24 

hours, centrifuged, and the leachate was pipetted into acid-washed pre-weighed sample bottles.  

The HOAc process was then repeated a second time, and the HOAc was added to the same bottles.  

The leachates were then evaporated in an acid-washed PMP beaker and re-dissolved in 2% 

Ultrapure HNO3 for elemental and isotopic analysis. Aliquots were taken from the leachate 

solution for trace and rare earth element analysis by Activation Laboratories Ltd.   

3.3 X-RAY DIFFRACTION 

Powdered samples were homogenized with ~10 % by weight ZnO standard, back-loaded into a 

powder mount, and analyzed on a PANalytical X’Pert Pro diffractometer using Cu Kα radiation.  

The analysis was ran at 40 mA, 45 kV power settings with a 2o θ step size of 0.05 and step time of 

113.73 seconds.  Diffraction patterns and d-spacings were interpreted using Highscore Plus 



                                                                                                               

 13 

software suite.  Mineral quantification was determined using a modification to the mineral 

intensity factor method of by Środoń et al. (2001).   

3.4 MAJOR AND TRACE ELEMENTS 

Approximately two grams of sample, sample duplicates and USGS SGR-1b Standard, were 

analyzed by Activation Laboratories Ltd. Powdered samples were digested using sodium peroxide 

fusions (precluding Na2O and LOI analysis) and analyzed by ICP-MS.  Duplicate sample values 

and analysis of certified standards yield less than 6% error margins on major and trace elements. 

3.5 13C AND 18O ISOTOPE ANALYSIS OF CARBONATE 

Aliquots of powdered, bulk carbonate samples were analyzed at the University of California, Davis 

Stable Isotope Laboratory for δ13C and δ18O isotopic composition.  Samples were roasted at 375°C 

for 30 min in vacuo, then reacted in supersaturated H3PO4 (sp. gr. 1.93) at 90°C using an Isocarb 

common acid bath autocarbonate device.  Reaction time was increased from 12 to 20 minutes to 

ensure total carbonate reaction of dolomitic samples. The resulting CO2 was analyzed by a 

Micromass Optima isotope ratio mass spectrometer (IRMS). Oxygen and carbon isotope values 

are reported in ‰ notation relative to the V-PDB (Vienna Pee Dee Belemnite) standard where: 

δ18O (or δ13C) = [(18O/16O sample / 18O/16O standard) - 1] x 1000 
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The analytical precision for these samples is ±0.047‰ and ±0.038‰ for δ18O and δ13C 

respectively (±1s), based on repeat analyses of a laboratory calcite standard that was previously 

calibrated to NBS-19.   

3.6 87 SR / 86 SR OF CARBONATE LEACHATES 

All strontium prep was performed in a clean lab under a HEPA filtered hood.  Aliquots of the 

leachate containing 2 µg of Sr in HNO3 were dried in a Teflon beaker at 100o C.  The samples 

were re-suspended in 250 µL of ultra-pure 8N HNO3 and processed through microcolumns 

containing 300 µL Sr-Resin®, following the procedure of Wall et al. (2013).  Samples were 

analyzed on Thermo Scientific Neptune Plus double-focusing MC-ICP-MS at the University of 

Pittsburgh.  
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4.0  RESULTS 

4.1 LITHOSTRATIGRAPHY 

The core samples reported here (Figure 3) consist of bulk siliciclastic and carbonate rocks 

deposited on the Eastern Shelf of Laurentia during the Middle to Late Cambrian (~497-494 Ma) 

and represents shallowing from a subtidal to a peritidal and supratidal depositional environments.  

Photomicrographs of the major stratigraphic units are shown in Figure 5.   The majority of primary 

calcite has been replaced by dolomite during burial diagenesis. The Nolichucky, Maynardville 

Formations, and Copper Ridge Formations contain authigenic microcline (Table 1), likely as a 

result of potassium-rich brine migration during the Allegheny Orogeny (Hearn and Sutter, 1985a). 

 The base of the study interval (1685-1591 m) is a dolomitized dismicrite of the Maryville 

Formation (Figure 5e).  Gamma log correlation (not shown) shows a sharp increase in gamma 

A.P.I. at the contact between the Maryville and Nolichucky Formations (Harris et al., 2004).  This 

likely reflects a petrologic transition from the Maryville Formation carbonate to the sand- and 

carbonate-dominated lower facies of the Nolichucky Formation.  This consists of 46 meters of 

interbedded intraclastic carbonate and siliciclastic rocks with a basal intramicrite containing sub-

angular, moderately sorted quartz grains in a fine grained carbonate matrix.  At 1579 m this 

transitions to a clay-dominated glauconitic intrasparite with micrite intraclasts (Figure 5h). 
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Figure 5: Photomicrographs of Study Formation. a,b) Copper Ridge Formation, c) Maynardville Formation pertidal dismicrite, d) 

Maynardville Formation peritidal oolitic biomicrite, e) Maynardville Formation subtidal unsorted biosparite, f) Nolichucky Formation 

intrasparite, g) Nolichucky Formation intrasparite, h) Nolichucky Formation intrasparite,  i) Maryville Formation dismicrite. 
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Table 1: Petrology and mineralogy of study sample set.  Semi-quantitative mineralogy was determined by XRD except where noted. 
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Samples in this interval consist of relatively well sorted, sub-angular quartz grains that are grain 

supported. Interstitial pyrite is present in trace amounts, and the sediments have dolomitic 

carbonate cement.  Clay content starts to decrease at approximately 1554 m and the lithology 

transitions to a sandy-siltstone with small, sub-meter-scale lenses of limestone to the top of the 

section. The Nolichucky Formation is not a homogenous shale unit at this location.  Clastic particle 

sizes range in size from clay to sand, and the unit contains an appreciable amount of carbonate 

both as primary carbonate and as matrix cement. 

 At 1548 m the overlying Maynardville Formation marks a transition from siliciclastic to 

carbonate dominated sedimentation.  The base of the formation (1548 m) consists of peloidal 

biosparite. The sediments are a poorly sorted, sub-horizontally bedded mix of trilobite and 

echinoderm fossils with fragments of micrite interclasts that indicate a moderately agitated shallow 

subtidal environment.  At approximately 1536 m the lithology shifts to a laminated intramicrite, 

then at 1530 meters depth to an oolitic biosparite with abundant brachiopod and trilobite fragments 

and ooid packstone laminae, likely indicative of a high energy shallow ooid shoal.  It is capped 

with a dismicrite and marks the transition from subtidal to intertidal depositional environment.  

 The top of the study interval (1494-1509 m) contains the Copper Ridge Formation, alower 

subdivision of the Knox Group.  In our section it (Figure 5a-b) is a poorly sorted intrasparite 

predominately composed of quartz, calcite, dolomite and authigenic feldspar. 

4.2 MINERALOGY 

XRD results are summarized in Table 1.  The presumed protolith limestone was partially or 

completely replaced by dolomite.  X-ray diffraction reveals minor amounts of microcline in the 
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Nolichucky, Maynardville and Copper Ridge Formations.  However, only the Copper Ridge 

Dolomite contained visible subhedral microcline in thin section (Fig. 5a).  It is likely that the larger 

microcline is of detrital origin, being visible only in the lowstand (Sauk II-III sub-regression) 

sediments.  Other feldspars detected by XRD are more likely of authigenic origin and 

contemporaneous to those found in other mid-continent Cambro-Ordovician carbonate sediments 

associated with a potassium metasomatic event during the Permian (Hearn and Sutter, 1985b).   

The Maryville Formation consists of fine grained dolomite and lenses of sparry dolomite in birds-

eye structures (Figure 5i).  At approximately 1590 m , the formation contains cross-cutting pyrite-

hosting carbonate veins (not shown).The lower Nolichucky Formation (not shown) is composed 

of dolomite and detrital quartz.  At approximately 1575 m (Figure 5h) the clay content increases 

significantly, with minor amounts of glauconite in the shale-rich facies.  Small, cubic opaque 

minerals, likely pyrite, can be seen in thin section (Figure 5g-h).  Clay content generally decreases 

as up section to ~1560 m.  The upper Nolichucky Formation is composed of generally well sorted 

quartz grains and dolomitic cement (Figure 5f). The Maynardville Formation is composed of 

calcite and dolomite with increasing quartz content up section, with the exception of a calcite 

dominant fossiliferous zone at 1530 m (Figure 5d). 

4.3 MAJOR AND TRACE ELEMENTS 

Whole rock major element oxide percentages are summarized in Table 2.  SiO2 and Al2O3 

concentrations are highest in the Nolichucky samples and in general decrease through the 

Maynardville Formation and with a slight increase in in the Copper Ridge Formation (Figure 6). 

MgO and CaO are highest in the Maryville Formation and within the carbonate facies of the other 
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units.  MgO/CaO ratios are consistent with stoichiometric dolomite with the exception of higher 

Mg and Al content in the clastic-rich dolomite cemented facies of the Nolichucky Formation 

(~1570 m)  and a lower MgO/CaO at ~1550m, within the Maynardville. The increased Mg and Al 

content within the Nolichucky Formation is due to the presence of  Mg-rich alumnosilicates, 

whereas the decrease is likely associated with calcite in primary fossil assemblages.  Al2O3 

increases from 1585 m within the lower Nolichucky Formation to and then begins to decrease at 

~ 1570 m.  SiO2 increases coeval to the start of Nolichucky Formation deposition to ~1554 meters 

depth and decreases at the contact between the carbonate dominated Maynardville Formation.   

 Whole rock trace element data are summarized in Table 3. Trace metals, U, Fe, Cu and V 

are highest within the clastic facies of the Nolichucky Formation and subtidal Maynardville 

Formation facies.  Mn concentrations are elevated in the carbonate facies within and below the 

subtidal Maynardville Formation facies.  The lowest Mn value is within Nolichucky Formation at 

~1554 m depth.  

 Carbonate geochemistry (based on acetic acid leaches) is summarized in Table 4. The 

carbonate portions contain significant concentrations of Mn (353-3470 mg kg-1) and Fe (1.9- 43.6 

mg kg-1).  Al and Si concentrations are highest (2820 and 5210 mg kg-1 respectively) in the shale 

facies of the Nolichucky Formation.  Si and Al concentrations this high within carbonate 
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Table 2: Whole rock major element oxide concentrations in percent for the sample interval.  Note data is missing Na values and LOI 

due to Na2O2fusion.  Samples were analyzed on ICP-MS 
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Figure 6: Whole rock major element concentrations (wt%) for samples in this study. 
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Table 3: Whole rock trace element concentrations (mg/kg) of bulk powdered samples were measured by ICP-MS.  Note data is missing LOI due to Na2O2fusion. 
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Table 4:  Major and trace element geochemistry of carbonate fraction derived from 1N acetic acid leach.  All analytes were measured by ICP-MS 
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leaches could indicate partial (~0.5%) leaching of aluminosilicates during the selective acetic acid 

leach. In the Maryville and Copper Ridge Formations, molar Ca/Mg ratios of the carbonate leaches 

(~1.1) are within the range of stoichiometric dolomite.  The ratios are elevated within the 

Nolichucky Formation (1.3-1.6) and highest (13.8) within a fossiliferous section within the upper 

Maynardville Formation.  Trace metals U, Fe, V and Ni are highest with in the Nolichucky 

Formation and decrease to the lowest concentrations in the Copper Ridge Formation (Figure 7). 

 Whole rock and carbonate rare earth element (REE) concentrations are summarized in 

Tables 5 and 6 respectively.  Whole rock and carbonate concentrations normalized to the North 

American Shale Composite (NASC) (Gromet et al., 1984) are plotted in Figure 8.  Whole rock rare 

earth elements of the clastic-rich Nolichucky Formation plot near NASC values (Fig. 8a). The 

carbonate facies whole rock samples plot below NASC values, with the exception of one sample 

within the subtidal Maynardville Formation, which is also enriched in light and middle REE.  All 

samples exhibit a slightly depletion in heavy rare earth elements (HREE). Rare earth element 

concentrations in carbonate extracted from the Nolichucky Formation are equal to or higher than 

those of NASC and have elevated MREE concentrations (Fig. 8b).   Samples of limestone and 

dolomite from the Maryville, Maynardville and Copper Ridge Formations have similar patterns 

and concentrations as the whole rock samples, with the exception of sample 0715ARIS5060 taken 

at the base of the Maynardville Formation.  This is a carbonate sample with the highest ΣREE 

concentration of all whole rock samples (Figure 8a); however, ΣREE and NASC-normalized plots 

of the leached carbonate fraction is similar to the other carbonate units.  The sample also contains 

the highest Mn, S, and Pb whole-rock concentrations. A possible explanation for the anomalously 

high values in this sample is that it contains Mn-oxide coated intraclasts (Figure 9) that were 

reworked into oxygen-depleted sediments.  This would have 
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Figure 7: Concentrations of Fe, Mn, U, Ni, and V in the leached carbonate fraction.  Note that concentrations are plotted 

on a logarithmic scale. 

 



                                                                                                               

 27 

Table 5: Bulk whole rock rare earth element concentrations (mg/kg).  All analytes measured on ICP-MS. 
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Table 6: Carbonate hosted rare earth element concentrations (mg/kg).   Concentrations were derived from a selective 1N acetic acid leach. All analytes measured 

on ICP-MS. 
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Figure 8: NASC-normalized rare earth element concentrations in a) whole rock samples and b) carbonate 

leached with acetic acid. 

Figure 9: Plane polarized photomicrographs of sample 0714ARIS5060. a) sparry dolomite and 

oxide rimmed micrite intraclast; b) sparry filled laminoid fenestrate texture. 
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resulted in higher ΣREE and partial oxidation of any sulfide that was present (Aller and Rude, 

1988; Öztürk, 1995; Dong et al., 2000; Schippers and Jørgensen, 2001).   

 The REE patterns of carbonate leached from the Nolichucky and Copper Ridge Formations 

(Figure 8b) exhibit a positive cerium anomaly ([Ce/Ce*]SN), calculated after the method of Bau 

and Dulski (1996) where 

 

   (Ce/Ce*)SN = CeSN / (0.5LaSN + 0.5PrSN) 

 

and SN indicates shale-normalized values. Positive (Ce/Ce*)SN ratios can result from anomalous 

La enrichment.  A solution to this is to plot the (Ce/Ce*)SN versus (Pr/Pr*)SN, where: 

 

   (Pr/Pr*)SN = PrSN/(0.5CeSN + 0.5NdSN) 

 

A true positive Ce anomaly plots as (Ce/Ce*)SN >1 and  (Pr/Pr*)SN < 1.  The positive (Ce/Ce*)SN 

occurring within the Nolichucky Formation and Copper Ridge Formation are shown in Figure 10.  

 Figure 11 shows the variance of U and Mn between the whole rock and carbonate fractions. 

Whole rock U concentrations fluctuate within the sample interval, first peaking within the clastic 

rich facies of the upper Nolichucky Formation and then again within the Maynardville Formation 

at ~1560 meters. The U concentrations within the carbonate fraction show a different trend than 

those of the whole rock.  Carbonate-hosted U peaks at 1.39 mg kg-1 at 1561 m and then continually 

drops to 0.03 mg kg-1 at the top of our study interval. Whole rock Mn concentrations have a range 

of 532 to 740 mg kg-1 within the Nolichucky Formation with a large 
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Figure 10: NASC normalized true Ce/Ce* anomaly plotted versus Pr/Pr* after 

Bau and Dulski, (1996).  Samples plotted in the upper left hand segment are 

true Ce/Ce* anomalies. 
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Figure 11: Variations in U and Mn in whole rock and carbonate samples as a function of depth. a) Uranium concentrations in both whole rock and 

carbonate are low; U in the carbonate shows a systematic decrease upward (with the exception of the Nolichucky Formation sample at 1560 m), while 

the whole rock is more variable. b) Manganese concentrations are significantly elevated in the carbonate over the interval of 166-1550 m.  The 

Nolichucky Formation is highlighted in grey. 
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increase at 1542 m (sample 0715ARIS5060) and then decrease to a range of 314 to 250 mg kg-1 

for during the upper Maynardville and Copper Ridge Formations.  The Mn concentrations within 

the carbonate fraction are significantly elevated (1066 to 3471 mg kg-1) within the Nolichucky 

Formation and lower subtidal facies within the Maynardville Formations relative to the whole rock 

compositions. 

4.4 STABLE ISOTOPES 

The δ13 C and δ18 O values are reported in Table 7.  A slight positive δ13 C trend starts in the 

Maryville Formation and into the basal dolomite portion of the Nolichucky Formation with values 

ranging from -1.25 to -0.97‰   A more rapid δ13 C excursion starts at ~1585 meters depth (-0.97‰) 

up to 1563 m (0.56‰).  The next sample at 1551 m is -0.3‰, showing a slight negative excursion 

and then continuing with a positive δ13 C excursion to a maximum value of 4.03‰ at the contact 

between the Maynardville Formation and the Copper Ridge Formation.  The excursion then 

decreases slightly to 2.94‰ at the top of the study interval.   

 δ18O values were calculated relative to the V-PDB standard, and fell within a range of  

6.74‰ in the fossiliferous section of the Maynardville Formation to  5.07‰ in the Nolichucky 

Formation.  These values are significantly lower than the range of values (9.34 to  5.99‰) 

measured in the Conasauga Group from outcrops in the Tennessee Valley and Ridge Province.  

This variation is likely the result of diagenetic alteration when the primary calcite was replaced by 

dolomite. 
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Table 7: δ
13

C, δ
18

O, measured and age corrected 
87/86

Sr of carbonate. δ
13

C and δ
18

O values 

were measured via IRMS and reported permil relative to V-PDB. 
87/86

Sr was values were 

measured on MC-ICP-MS.  Age corrected 
87/86

Sr values were calculated using 497 ma. 
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4.5 STRONTIUM ISOTOPE STRATIGRAPHY 

Measured carbonate (acetic acid leachate) 87Sr/ 86Sr values (Table 7) were corrected for decay of 

rubidium since the Late Cambrian (494 Ma.) based on the carbonate Rb and Sr data (Table 4).  The 

87Sr/ 86Sr values in the carbonate units fall near, but slightly above, expected values for Cambrian 

seawater (e.g., Montanez et al., 1996). The values from carbonate cement extracted from the 

Nolichucky Formation samples ARIS5150, 0715ARIS5120 and 0715ARIS5080 are considerably 

more radiogenic than the underlying and overlying carbonate. 
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5.0  DISCUSSION 

5.1 DIAGENESIS AND GEOCHEMICAL PRESERVATION 

5.1.1 Late Cambrian seawater carbon and strontium signals 

Much of the carbonate in the samples used in this study has undergone some degree of secondary 

replacement by dolomite during the initial shallow burial of the sediments.  The presence of 

authigenic microcline within the samples also suggests potassium-rich brine migration and perhaps 

metasomatism during the Alleghanian Orogeny (Hearn and Sutter, 1985a). Transport and diffusion 

characteristics on the system (e.g., porosity, permeability, and reactive surface area) can 

significantly affect trace element and isotopic signatures (Jonas et al., 2017). The degree to which 

marine carbonate preserves its original seawater Sr isotope composition can be used to assess the 

degree of alteration in carbonate samples used in carbon isotope studies (Derry et al., 1992).  

Samples taken from the Maryville, Maynardville and Copper Ridge Formations are slightly more 

radiogenic (Figure 12) than previously recorded values (87Sr/86Sr = 0.70917- 0.70930) of coeval 

Upper Cambrian marine carbonate strata (Montañez et al., 1996; Denison et al., 1998).  The age-

corrected value for our Copper Ridge Formation samples (0.70957-0.70927) are close to those 

reported in coeval rocks from the Great Basin (Saltzman et al., 1995). This implies that the 

carbonate trace element signatures can be interpreted primarily as Late Cambrian 
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Figure 12: δ
13

C values of the study samples (black circles) plotted with depth-adjusted values of Glumac and Walker (1998) in red. Blue 

circles are age corrected 
87

Sr/
86

Sr isotope ratios measured in leached carbonate of our sample set.  Shaded line (grey) is depth-adjusted 

average Late Cambrian seawater (Montanez et al,. 1996)   
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seawater proxies without significant influence from diagenetic overprinting or later fluid flow 

events.  The 87Sr/86Sr values measured in carbonate extracted from the Nolichucky Formation are 

much too radiogenic to reflect Late Cambrian seawater; these likely recorded the signal of 

carbonate precipitated out of shale pore waters that had previously reacted with Rb-rich 

aluminosilicates.       

 The δ13Ccarb excursion reported in this study was determined on both bulk carbonate and 

carbonate cement from a variety of depositional environments.  As interpreted from the 87Sr/86Sr 

values, dolomicrite within the shale-dominated sections of the Nolichucky Formation were likely 

precipitated from pore-water bicarbonate.  There is potential to decrease δ13Ccarb values through 

organic-matter degradation via microbially mediated reduction, methanogenesis, and thermal 

decarboxylation during burial diagenesis (Claypool and Kaplan, 1974; Irwin et al., 1977; Saltzman 

and Thomas, 2012).  The influence of such processes could result in a decrease in the δ13Ccarb 

excursion, and the short, negative excursion within the upper Nolichucky Formation (1554 m) 

could be the result of such processes.  However the persistent positive 13Ccarb values similar those 

found within the overlying carbonate and other formations where SPICE has been documented  

likely indicate the dolomicrite within the shale facies precipitated relatively early in its diagenetic 

history and maintains the Late Cambrian seawater δ13C. 

5.1.2 Trace element signatures in carbonate 

Carbonate dissolution in dilute acetic acid has in some cases resulted in leaching of trace elements 

from detrital material and Fe-Mn oxides (Zhang et al., 2015; Tostevin et al., 2016). Partial leaching 

of Fe-Mn oxides and silicate (mostly clays) can mask primitive seawater signals (Bau, 1999; 
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Shields and Webb, 2004; Ling et al., 2013).  Any correlation of Mn, Fe or Al with the REE can be 

recognized using simple regression analysis between the elemental constituents in the bulk rock 

and resulting contaminant (Fig. 13).  There is no appreciable correlation between Mn and Al 

concentrations in the bulk rock data (Fig. 13a), which suggests that the Mn concentrations are not 

hosted in aluminosilicates.  The moderate correlation between Fe and Al (Fig. 13b) within the 

Nolichucky Formation in the whole rock data is likely due to the presence of glauconite (Fig. 5h) 

. There is no apparent correlation between Mn and Fe concentrations in the bulk rock (Fig. 13c) 

implying Fe-Mn oxides are sparse or absent.   The lack of correlation between bulk rock Mn 

concentration and iron or total REE of the carbonate (Fig. 13d) show no apparent correlation.  Mn 

oxyhydroxides are known to scavenge REE from seawater and any partial dissolution would 

dramatically influence the total REE abundance and subsequent pattern. There a correlation 

between carbonate hosted Mn and ΣREEcarb (Fig. 13e), primarily in carbonate within the 

Nolichucky Formation, which has been shown to be diagenetic rather than primary.  Mn 

oxyhydroxides are known to preferentially scavenge Ce from the water column in oxidizing 

conditions (Alibo and Nozaki, 1999; Ling et al., 2013; Tostevin et al., 2016).  The absence of 

correlation between Ce/Ce* and whole rock Mn or Al concentrations (Fig. 13f-g) argues against 

release of REE by partial leaching of Mn-oxides.  There could be an influence on the carbonate 

REE signature in sections with high amounts of clay, particularly in the Nolichucky Formation   

(Fig. 13h).
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Figure 13a-h: Regression analysis of common geochemical contaminant signatures.  (a-b): Whole rock Mn mg kg
-1

 and Fe % plotted versus whole 

rock Al%; (c): Whole rock Fe% versus whole rock Mn mg kg
-1

.;(d): whole rock Mn mg kg
-1 

vs ΣREE of  carbonate; (e): Mn mg kg
-1

 vs. ΣREE mg 

kg
-1

 of the carbonate.  Carbonate Ce/Ce* plotted versus (f) whole rock Mn mg kg
-1

 and (g) whole rock Al% (h): Carbonate ΣREE plotted versus 

whole rock Al%. 
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5.2 CARBON ISOTOPE CHEMOSTRATIGRAPHY AND CORRELATION 

The sample interval shows a δ13Ccarb excursion comparable in magnitude to other correlative δ13C 

excursions around the globe (Saltzman et al., 1998; Saltzman et al., 2000b; Kouchinsky et al., 

2008; Ahlberg et al., 2009; Woods et al., 2011).  The robustness of the δ13Ccarb excursion measured 

in this study seems to be relatively unaffected by mineralogical and digenetic alteration, having a 

continuous positive progression through both biogenic and matrix cement carbonate.  There is a 

small facies influence on the positive δ13Ccarb excursion in our samples within upper clastic-

dominated Nolichucky Formation. However, positive δ13Ccarb values persist through siliciclastic-

dominant subtidal, intertidal and finally supratidal facies. In addition, it conforms well to δ13Ccarb 

values measured in the Conasauga Group ~200 miles south, on the other side of the Rome Trough 

(Fig. 12) (Hasson and Haase, 1988b; Glumac and Walker, 1998; Glumac and Mutti, 2007).     

 Comparison of our curve and δ13Ccarb values taken in coeval strata sampled in the southern 

Appalachian basin (Glumac and Walker, 1998) shows similar maximum values (~4-5‰) at the 

contact between the Maynardville and Copper Ridge Formations.  The C isotope excursion is 

observed at both sites over a burial depth of ~100 m (Fig 12).  However, δ13Ccarb in the carbonate 

fraction within the Nolichucky Formation shale at our site is lower (-0.27 to +0.98‰) than to those 

reported south of the Rome Trough for similar dolomicrite (0.116 to 1.37; Glumac and Walker 

1998).   Although Late Cambrian terrestrial systems lacked contributions from vascular plants, 

sediment loads and salinity differences could have played a role in localized δ13C fractionation 
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 It is likely that the variation observed in our samples reflects closer proximity to Laurentian 

deltaic sediments than those studied at the southern site (Fig. 2) (Janssens, 1973).  It is notable that 

despite mixed sediment sources and basin proximity, the Late Cambrian C isotope excursions at 

both Appalachian sites are comparable in magnitude to other SPICE related δ13Ccarb excursions 

around the globe (Saltzman et al., 2000a; Kouchinsky et al., 2008; Ahlberg et al., 2009; Gill et al., 

2011; Woods et al., 2011; Ng et al., 2014). 

 It is believed that positive δ13C excursions are caused by the removal isotopically light 12C 

during increased organic matter deposition and preservation, or by the weathering of heavy δ13C 

hosted rocks (such as carbonate) (Saltzman and Thomas, 2012).  The positive δ13Ccarb excursion 

in this study coincides with a global increase in sea level, referred to as the Sauk Transgression in 

Laurentia (Glumac and Walker, 2000; Saltzman et al., 2004).  Transgressions of this magnitude 

resulted in epeiric seas, reducing the amount of surface area exposed to weathering, thus mitigating 

any weathering-related heavy carbon fluxes in the ocean.  Also, mantle- and lithosphere-derived 

carbon emitted via volcanoes would have been isotopically light (-5‰) and have a net negative 

influence on the isotope trend (Saltzman and Thomas, 2012).  

 There has also been speculation about anomalous δ13C excursions resulting from 

mineralogical changes during diagenesis (Railsback et al., 2003; Saltzman and Thomas, 2012; 

Fantle and Higgins, 2014).  The SPICE is a global phenomenon of nearly equal magnitude, 

recorded in multiple sedimentary environments.  Synchronous diagenetic alteration on a global 

scale is considered to be highly unlikely.  Therefore, we interpret the positive δ13Ccarb trend as the 

result of the removal of isotopically light 12C with increased organic carbon burial and preservation 

(Kump and Arthur, 1999; Saltzman and Thomas, 2012). 
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5.3 TRACE ELEMENT CYLCE DISRUPTIONS DUE TO SPICE 

5.3.1 Evidence of anoxia on Laurentian passive margin? 

Discerning the paleoredox conditions of ancient marine carbonate and siliciclastic sediments 

requires a multiproxy approach (Jones and Manning, 1994; Tribovillard et al., 2006; Schröder and 

Grotzinger, 2007; Azmy et al., 2015). Iron concentrations are widely used in the study of redox 

systems and have been proven a reliable indicator of anoxic and euxinic conditions in both modern 

and ancient systems (Lyons and Severmann, 2006).  One mechanism for Fe transfer driven by 

redox changes involves Fe(II) being decoupled and mobilized from detrital material on the shallow 

shelf  and redeposited in a deeper euxinic basin as syngenetic pyrite (Canfield and Teske, 1996; 

Raiswell and Canfield, 1998; Lyons and Severmann, 2006).  The ratio of total Fe (FeT = Fe2+ + 

Fe3+) to Al is a useful proxy for determining the enrichment in reactive Fe relative to Fe in the 

clastic portion of the sediments.  Broadly, FeT/Al mass ratios >0.5 (average crustal value; Taylor 

and McLennan, 1985) suggest anoxic depositional conditions.   The FeT/Al ratios in the samples 

reported here display alternating oxic and anoxic signals within the subtidal Nolichucky Formation 

and up through the lower, peritidal facies within the Maynardville Formation (Fig. 14).  The 

highest FeT/Al ratio (5.9) was recorded at ~1542 m (sample 0715ARIS5060) within the lower 

Maynardville Formation. Figure 9 is a photomicrograph taken of the sample showing abundant 

bioclasts and oxide rimmed micrite intraclasts that likely



                                                                                                               

 44 

Figure 14: Fe
T
/Al and Th/U mol of whole rock samples. Carbonate  U, Ni, V and ΣREE  are concentrations plotted on 

logarithmic scale with depth and stratigraphy.  The SPICE interval within our sample set is highlighted in yellow. The 

Nolichucky Formation is highlighted in grey.  Overlap of Fe
T
/Al and Th/U values that indicate anoxic conditions is 

highlighted in red. 
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 concentrated iron and manganese in the sample as discussed in section 4.3.  The Maynardville 

Formation marks the transition to an oxic supratidal environment and the anomalously high FeT/Al 

ratios in the lower half of the section likely result from biological and physical reworking, which 

can concentrate labile iron within the sediments (Lyons and Severmann, 2006). The second and 

third highest values (3.65 and 1.33) were found in succession in the lower Nolichucky Formation.  

The FeT/Al ratios within the deeper Nolichucky Formation shows strong evidence of an anoxic 

water column contemporaneous to the start of SPICE at our sample location.   

 The ratio of Th/U can be a useful paleoredox proxy in siliciclastic sediments, given that 

U6+ in the soluble uranyl carbonate ion (UVIO2
2+) is reduced to insoluble U4+ in suboxic and anoxic 

conditions (Wignall and Twitchett, 1996).  Ratios of Th/U <2 imply accumulation of U in the 

sediments under anoxic conditions (Wignall and Twitchett, 1996). Th/U molar ratios in the 

Nolichucky Shale are plotted with depth in Figure 14. Ratios fall within the anoxic range 

contemporaneous to the sedimentation shift from the Maryville Formation to the lower facies of 

the Nolichucky Formation (1583 – 1576 m).  This interval precedes the start of the δ13Ccarb 

excursion (SPICE) in our sample set.  A subsequent increase in Th/U suggests more oxic 

conditions from 1576 m to the contact between the Nolichucky and Maynardville Formations.   

Deposition of this sequence in an oxygenated environment could have resulted from shallowing 

of the study area during the Sauk II-III Sub-regression. 

5.3.2 Regional and global oceanic trace element fluctuations during SPICE 

Persistent anoxia similar to that associated with SPICE could lead to a global drawdown in 

seawater trace element inventories (Anbar and Knoll, 2002; Saito et al., 2003; Algeo, 2004).  Many 

redox-sensitive trace elements exhibit a higher rate of transfer from seawater and accumulation in 
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the underlying sediments in reducing conditions, and because of this phenomenon, oceanic trace 

element residence times and concentrations were shorter during large-scale ocean anoxia in the 

Paleozoic than in modern oxygenated seawater (Algeo, 2004).  The Alum Formation of Sweden 

consists of organic rich shales spanning the Middle to Late Cambrian and contains a positive 

δ13Corg excursion and a decline in Mo concentrations concomitant with the progression of SPICE 

(Gill et al., 2011).  Molybdenum concentrations within our study samples were below analytical 

detection limit and well below those measured within the coeval Alum Formation of Sweden (Gill 

et al., 2011).  However, our samples show an upward decline in U and Ni concentrations, with an 

exception at 1560 m, within the leached carbonate fraction beginning with the deposition of the 

Nolichucky Formation (Figs. 11, 14). 

 A similar trend can be interpreted by the behavior of Mn in the study samples. Mn2+ and 

MnCl+ are the main species in seawater, and these species are thermodynamically unstable in 

oxygenated surface waters and precipitate out as Mn-oxyhydroxides.  Beneath the oxic-anoxic 

chemocline, Mn-oxyhydroxides undergo reductive dissociation, mobilizing soluble Mn2+ 

(Tribovillard et al., 2006).  The Mn2+ is not readily immobilized in sulfide phases, so upward or 

downward diffusion can occur (Tribovillard et al., 2006). Whole rock Mn concentrations are 

relatively stable except for a decrease in concentration between ~1565 to 1554 m depth (Fig. 11).  

During that interval, Mn concentrations in carbonate fraction increase significantly.  This suggests 

that Mn may have undergone reductive mobilization as soluble Mn2+.  Any Mn2+ that didn’t escape 

the sediment column could have been trapped in the authigenic carbonate minerals forming at the 

time.  If these sediments were deposited under oxic conditions, we would expect to see 

accumulation of Mn in the whole rock sediments and a drawdown in the carbonate fraction as 

insoluble Fe-Mn oxyhydroxides precipitated out of the water column and sedimentary porewaters.  
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The behavior of Mn whole rock and carbonate fractions suggest a local reducing environment 

during or shortly after deposition. 

 An important implication of trace element drawdowns from black shale deposition is the 

bioavailability of limiting nutrients and its effects on biologic evolution. The transition metals V, 

Ni, Mo and Fe are vital to the biochemical processes related to nitrogen fixation and organic 

productivity, and have been linked to eukaryote development during the late Proterozoic (Anbar 

and Knoll, 2002).  Dissolved Ni is incorporated into organic matter through organo-metallic bonds 

and transferred to the sediment column through deposition of organic matter and sulfide 

mineralization. Nickel can be remobilized in during organic matter decay and recycled back into 

the water column (Tribovillard et al., 2006).  However, Ni and other trace metals can accumulate 

in sediments during enhanced organic matter deposition and preservation in anoxic black shale 

facies, such as that postulated during the SPICE.  Longer periods of ocean anoxia can lead to a 

drawdown of dissolved Ni and other trace metals due to their immobilization in sedimentary 

sulfide minerals (Algeo, 2004; Tribovillard et al., 2006).  Our samples show an upward decline in 

Ni and Fe concentrations (Figs. 7,14) within the leached carbonate fraction coeval with the 

progression of the positive δ13Ccarb excursion.  Remobilization of trace elements during diagenesis 

or Alleghenian metasomatism is possible and values within Nolichucky Formation carbonate may 

be affected by interaction with the clastic component. Nonetheless, the continued reduction within 

the overlying carbonate units could indicate a drawdown in dissolved trace metals in the Late 

Cambrian oceans as Ni is removed through production of organic matter and then immobilized in 

a euxinic basin proximal to our study location (Algeo, 2004).  Perturbations to trace element 

bioavailability may have had an effect on nutrient fluxes within the marine system, and possibly 
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influenced productivity in the post-SPICE oceans (Anbar and Knoll, 2002; Anbar, 2008; 

Brennecka et al., 2011). 

5.3.3 Late Cambrian seawater rare earth element chemistry 

Whole rock REE concentrations normalized to the North American Shale Composite (NASC) 

display patterns broadly consistent with an upper crustal source (Fig. 8a). REE patterns in the 

carbonate units (Maryville and Maynardville Limestone and Copper Ridge Dolomite; Fig. 8b),  are 

similar to those of their associated whole rocks, and do not resemble NASC-normalized modern 

seawater (Webb and Kamber, 2000), which is depleted in light rare earth elements and displays a 

negative Ce anomaly (Bau and Dulski, 1996). There is debate regarding the extent to which 

seawater REE composition has changed through time (Webb and Kamber, 2000; Nothdurft et al., 

2004; Shields and Webb, 2004; Meyer et al., 2012).  Reduced LREE and Ce depletion could be 

associated with dolomitization during early diagenesis if there were reducing porewaters 

(Nothdurft et al., 2004).   

 The REE pattern of carbonate leached from the Nolichucky and Copper Ridge Formations 

(Fig. 8b) exhibit a positive (Ce/Ce*)SN anomaly (Fig. 10).  Cerium is preferentially scavenged from 

seawater during the formation of Fe-Mn oxides in an oxygenated water column.  This leaves 

oxygenated seawater with a negative Ce/Ce* anomaly. Cerium is released in anoxic sediments by 

reductive dissolution of the oxides across the oxic/anoxic boundary, or in the presence of reducing 

pore waters during early diagenesis (Alibo and Nozaki, 1999; Bau, 1999; Abanda and Hannigan, 

2006; Ling et al., 2013). 
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6.0  CONCLUSION 

Core samples from the Conasauga Group and overlying Knox Supergroup of the Central 

Appalachian basin preserve Late Cambrian seawater geochemical proxies in both carbonate and 

clastic sediments. The paleogeographic location of the samples suggests deposition on the shallow, 

craton-ward side of a deep extensional basin off Laurentia, making the sedimentary environment 

highly influenced by Iapetus Ocean sea-level fluctuations during the Sauk II-III Super-sequence.  

Strontium isotopes in carbonate sequences yield values near those expected for Late Cambrian 

seawater, despite dolomitization and possible metasomatic fluxes of K-bearing fluids. Carbonate 

cement in the shale units of the Nolichucky Formation show evidence of interaction with a high-

Rb clastic component. 

 A trend of upward increasing δ13Ccarb can be attributed to the Steptoean Positive Carbon 

Isotope Excursion (SPICE), and it is comparable in magnitude to δ13C excursions recorded in other 

parts of Laurentia (Glumac and Walker, 1998; Saltzman et al., 1998). The correlation of FeT/Al, 

Th/U and positive Ce/Ce* within shales of the Nolichucky Formation immediately preceding 

SPICE strongly suggests an initial anoxic water column (Wignall and Twitchett, 1996; Lyons and 

Severmann, 2006; Tribovillard et al., 2006; Schröder and Grotzinger, 2007; Tostevin et al., 2016) 

just prior to the onset of the SPICE. This was followed by a sea level fall resulting in a more oxic 

depositional environment.  A temporal decrease in carbonate hosted U concentrations up through 

the Nolichucky Formation and into the overlying Maynardville and Copper Ridge Formations 

contemporaneous with the SPICE could indicate a global drawdown in soluble trace metals in 

response to extensive black shale deposition. Our sample has low TOC content (<0.5%), however 

decreasing trends in Ni and ΣREE measured in the leached carbonate portion could signal a 
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regional drawdown of soluble concentrations as a result of black shale deposition deeper in the 

Rome Trough and adjacent Conasauga intrashelf basin.    
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7.0  SUMMARY 

1) The data suggest anoxic conditions were present on the shallow continental shelf of Laurentia 

pencontemporaneous to the start of a positive δ13Ccarb excursion at the study site.  

2) Upward decreasing trends in Ni and ΣREE concentrations within the carbonate can be 

interpreted as occurring as the result of a seawater-drawdown in response to regional organic rich 

shale deposition, despite the low (<0.5%) TOC content within our sample set.  

 3) A temporal decrease in U measured in leached carbonate is interpreted as a drawdown in Late 

Cambrian Ocean concentrations in response to global deposition of black shale contemporaneous 

to SPICE. 
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