
SECURITY MESSAGES  

OR:  

HOW I LEARNED TO STOP DISREGARDING AND HEED THE WARNING 

 

 

 

 

 

 

by 

David William Eargle 

Bachelor of Science in Information Systems, Brigham Young University, 2013 

Master of Information Systems Management, Brigham Young University, 2013 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

Katz Graduate School of Business in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2017 

 



ii 

 

UNIVERSITY OF PITTSBURGH 

KATZ GRADUATE SCHOOL OF BUSINESS 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

David Eargle 

 

 

 

It was defended on 

April 12, 2017 

and approved by 

Laurie Kirsch, PhD, Professor 

Narayan Ramasubbu, PhD, Associate Professor 

Scott Fraundorf, PhD, Assistant Professor, Department of Psychology 

Anthony Vance, PhD, Associate Professor, Brigham Young University 

Dissertation Advisor: Dennis Galletta, PhD, Professor 

 

 

 



iii 

  

Copyright © by David Eargle 

2017 



iv 

 

Attacks on information security continue to be reported in the media, and result in large losses for 

organizations. While some attacks are the result of sophisticated threats, others can be traced to 

failures by organizational insiders to observe basic security policies such as using caution when 

opening unsolicited email attachments. Faced with the challenges and time demands of everyday 

stressors, security policy compliance can be costly for individuals; security actions require time 

and distract attention from other primary tasks. This costliness can lead individuals to ignore 

prompts to perform security updates, scan their computers for threats, or reboot their computers to 

apply security updates. 

This dissertation contains three studies that address the following overarching research 

question: How can end-user adherence to security messages be better understood and improved, 

and how can theory inform security-message design? First, two complementary studies are 

presented that examine the integration of media naturalness theory into a security message context 

using field study and fMRI designs. Study 1, the field study, unobtrusively captures objective 

measures of attention from Amazon Mechanical Turk users (N=510) as they perform a between-

subjects deception protocol. Study 2, the fMRI study, examines neural activations from a within-

subjects participant design (N=23) in response to different security message designs with 

integrated emotive human facial expressions. Data from studies 1 and 2 show that warnings with 
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integrated facial expressions of threat (fear, disgust) generally elicited greater adherence rates and 

higher evidence of cognition and elaboration than did warnings with integrated neutral facial 

expressions or than did warnings with no integrated facial expressions, supporting our hypotheses. 

Study 3 explores the pattern of risk taking and analysis that users engage in when interacting with 

interruptive security messages. The corroboration of multiple behavioral dependent variables 

suggests that users predominantly use a bimodal risk tradeoff paradigm when interacting with 

interruptive security messages. All three studies address the overarching research question of 

understanding and improving end user adherence to security messages.  

 

Keywords: security messages, threat attention, media naturalness theory, NeuroIS, risk tradeoff, 

heuristic-systematic model 
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1.0  INTRODUCTION 

Attacks on information security continue to be reported in the media, and result in large losses for 

organizations. For example, Target recently reported fourth quarter 2013 profits to fall by $441 

million, or 46% from the same period the previous year (Harris 2014). While some attacks are the 

result of sophisticated threats, others can be traced to failures by organizational insiders (Willison 

and Warkentin 2013) to observe basic security policies such as using caution when opening 

unsolicited email attachments (see the RSA hack, Schneier 2011). Individuals may ignore security 

warnings and fail to perform security updates, scan their computers for threats, or reboot their 

computers to apply security updates. Understanding why individuals ignore security warnings, and 

how to decrease rates of users disregarding warnings, is of paramount importance. 

One view of why warnings are disregarded places the blame squarely on the warning’s 

design for users’ bad security behaviors. In this paradigm, security policy compliance can be costly 

for individuals, who are faced with the challenges and time demands of everyday stressors. 

Security actions require time and distract attention from other primary tasks (Adams and Sasse 

1999; West 2008). The onus is on the design of security warnings to first capture, and then hold, 

attention. That goal met, the warnings then need to effectively educate users about both the threat 

at hand and about the available responses to the threat, with the aim of motivating an informed 

secure choice (Wogalter 2006a). Optionally, warnings can be designed that guide users towards 

choices that the designers consider to be safest (termed "opinionated design", Felt et al. 2015). 

Unfortunately, in the eyes of many, warnings often fail at the basic requirement of garnering 

attention, despite much research exploring and attempting to mitigate poor attention (Anderson et 

al. 2016b).  
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Contrasting sharply with the soft-paternalism approach of blaming the design and guiding 

the user is the following view: users are purely self-interested actors who have little to personally 

gain from complying with security policies, and the way to boost secure behavior is through 

punishment and sanctions. In this view, users conscientiously make risk tradeoff decisions when 

they encounter security warnings, and they get away with as much as they can without getting 

caught. Research that takes this view applies theories from criminology towards tipping the scales 

of the risk tradeoff decision (e.g., D'Arcy et al. 2009; Siponen and Vance 2010). 

Both views of user interactions with security decisions can fit within a framework 

developed by Wogalter called the communication-human information processing model (C-HIP; 

2006a). This framework outlines a process model with stages through which individuals must pass 

before a warning communication can effectively elicit a desired behavior. In this framework, the 

first and most basic requirement is attention – a warning communication must capture and hold an 

individual’s attention. Following this, an individual must comprehend the warning. Then, attitudes 

and beliefs must be in alignment with the individual carrying out the desired behavior. Lastly, an 

individual must be motivated to align with the desired behavior. In C-HIP, if any of these “gates” 

are not successfully passed, the warning communication has failed.  

While C-HIP can apply to warnings from contexts as diverse as road signs or a recorded 

message played at an airport, it also can be applied to an interruptive security message context. 

Security messages aim to draw attention away from a primary task towards themselves, educate a 

user about a threat, and motivate them to behave securely – or at least to make an informed 

decision. If we focus on the view that users pay little attention to security warnings, regardless of 

the content of a security warning, then we focus our efforts on improving warning designs so that 

they have better likelihood of passing the first attention gate in C-HIP. If, on the other hand, we 
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take the view that users make conscientious security decisions each time, then we assume that the 

first attention C-HIP gate is being sufficiently met, and we should instead focus our efforts on 

designing security warnings to the end that they better motivate secure behavior (i.e., with 

sanctions, rewards, etc.). Addressing this problem domain, this dissertation includes three studies 

that fall under the following overarching research question: 

RQ: How can end-user adherence to security messages be improved, and how can theory 

inform security-message design? 

The first two studies in this dissertation are complementary. Using field study and fMRI 

designs, they focus on the design of interruptive security messages, using media naturalness theory 

(Kock 2009) to design security warnings with full images of human facial expressions in an 

attempt to overcome attention hurdles. They are anchored in the research view that “users are not 

the enemy” and that better warning design is the best path to take towards improving secure 

behaviors. Study 3 is then described, which explores the pattern of risk-taking that users engage in 

when interacting with interruptive security messages. The study complements the first two by 

investigating the extent to which it is correct to view users as volitional policy violators as opposed 

to being well-meaning but inattentive. The three studies as a whole will allow us to know which 

stage of the C-HIP model is most salient on which to focus research and design efforts, and under 

which conditions one may become more salient than another. A conclusion follows the three 

studies, highlighting what can be learned from the three studies as a whole.  
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2.0  STUDIES 1 AND 2 – INTEGRATING FACIAL CUES OF THREAT INTO SECURITY 

WARNINGS 

2.1 MOTIVATION 

A pressing reason for poor security behavior is users failing to respond appropriately to security 

messages (Anderson et al. 2016b). Security messages seem to be failing to capture users’ attention. 

Without the basic requirement of user attention, a security message’s components have little to no 

effect towards effectively communicating about a threat and assisting users in making an informed 

choice (Wogalter 2006a). Unfortunately, failing an understanding of the seriousness of security 

threats, users’ default choice is to dismiss the warnings (known as the “dancing pigs” problem, see  

Schneier 2004). This makes sense when considering that security warnings are often interruptive 

to some primary task.  

In a bid to draw attention, security message designs commonly use threat cues such as 

yellow triangles, ominous exclamation marks, or cartoonish faces; yet the warnings still have 

troubling levels of non-adherence. Perhaps this poor security behavior is because the threat cues 

are too abstract (Felt et al. 2015), or perhaps because users become habituated to them and fail to 

give the warnings conscious attention after repeated exposures (Anderson et al. 2015). 

One theoretical approach to boosting engagement with security warnings is offered by 

media naturalness theory, which predicts that the more closely a systems interface maps to natural 

human communication patterns, the more engaging it will be for a user (Kock 2009; Riedl et al. 

2014). Face-to-face communication between humans rates especially high on naturalness. Humans 

are thought to have adapted to this form of communication over centuries of evolution, to the point 
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that human facial expressions can carry vivid environmental cues for an observer. This study 

focuses on facial expressions of threat, including fear and disgust, which are potent cues of danger 

in the immediate environment. Fearful facial expressions indicate threat of physical attack (Gray 

1987), and disgust facial expressions indicate contamination in the environment (Rozin and Fallon 

1987). Furthermore, because of their deeper evolutionary ties, warnings with facial threat cues 

may be more resilient to habituation over repeated exposures. 

This work uses NeuroIS methods to examine user interactions with security warnings. 

NeuroIS methods are apt for use in a security context because reactions such as fear and threat 

processing, which are important for security contexts, are challenging to measure. For example, 

they may be too subtle to rise to a level of consciousness for users to be able to accurately self-

report them (Anderson et al. 2016b; Dimoka et al. 2011). Two studies were used to test several 

hypotheses. The first uses mouse cursor tracking in a field study protocol, and the second uses a 

functional magnetic resonance imaging (fMRI) protocol. Behavioral and perceptual measures 

complement the neural measures for both studies. 

This work informs the design of security messages in practice. It also further extends media 

naturalness theory into the domain of IS research. While other IS research has considered the 

impact of photo-realistic faces vs avatars on trust in an ecommerce setting (Riedl et al. 2014), to 

our knowledge no research has considered the impact of emotive facial expressions in an IS 

context, let alone facial expressions of threat in an IS security context. 



6 

2.2 LITERATURE REVIEW 

2.2.1 Attention to security messages (or the lack thereof) 

A major contributor to security message failure is a simple lack of attention. We define security-

message attention as does the computer-human information processing framework (C-HIP, 

Wogalter 2006a), where attention to a warning message is described as the first behavioral gate a 

user must pass on the way towards adhering to a warning message. If the basic requirement of 

attention to the warning communication is met, then other gates must be passed on the way towards 

effective threat communication and motivation by the warning. The gates following attention 

include comprehending the message and the communicated threat, as well as being motivated to 

comply with the message (see Figure C-1).  

However, in a review of HCI literature, a failure of attention was implicated in poor user 

reactions towards security messages in 22 out of 29 papers (see Anderson et al. 2016b). Some 

laboratory experiments have pointed to the role of habituation in users’ failure to heed warnings 

and security indicators (Dhamija et al. 2006; Good et al. 2005; Schechter et al. 2007; Sharek et al. 

2008; Wu et al. 2006). Egelman et al. (2008) found a significant correlation between recognition 

and disregard of security warnings. Sunshine et al. (2009) observed that participants remembered 

their responses to previous security warnings and applied them to other websites even if the level 

of risk had changed. Felt et al. (2012) found that 42% of participants were not aware of having 

interacted with security permission dialogs before installing an Android app on their devices. 

Similarly, some participants in Sotirakopoulos et al. (2011) study clicked through security 

warnings during a task, and later reported that they had not seen any security warnings (see also 

user account control prompts in Motiee et al. 2010). 
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These laboratory study results reflect those in the field. Akhawe and Felt (2013) found that 

in approximately 50% of the most common type of secure sockets layer (SSL) web browser 

warnings in Google Chrome, users decided to click through in 1.7 seconds or less, a finding that 

“is consistent with the theory of warning fatigue” (Akhawe and Felt 2013, p. 14). Felt et al. (2014) 

found that warning design explained between one-third and one-half of the difference between 

Chrome and Firefox SSL warnings. Bravo-Lillo et al. (2013) conducted a large field experiment 

using Amazon Mechanical Turk in which users were rapidly exposed to Windows operating 

system software installation security confirmation dialog messages (i.e., the “Are you sure you 

want to run this software?” prompt). After a period of 2.5 minutes and a median of 54 exposures 

to the dialog message, only 14% of the participants recognized a change in the content of the 

confirmation dialog in their control (status quo) condition. 

Researchers from industry and academia have tested various interface designs, iterating 

towards solving the problem of low attention to security messages. Felt et al. (2014) and  Felt et 

al. (2015) integrated various visual threat icons, including padlocks, police officers, and cartoon 

criminals. Anderson et al. (2016c) tested a battery of different visual designs for warning messages, 

and from them created a set of designs most resilient to habituation of attention. However, the 

problem of inattention persists, and a fresh approach is called for. 

2.2.2 Media naturalness theory 

Theories from evolutionary psychology can provide fresh insights for IS research on security 

warnings (Kock 2009). Evolutionary psychology is based on Darwin’s theory of evolution (Darwin 

1859) which describes how humans have evolved to have behavioral modules through natural 

selection which increase the overall fitness of the race, which indicates its ability to survive. 
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Considering humans’ communication abilities, for most of the history of mankind the predominant 

form of communication has been face-to-face (see Kock 2009). Therefore, humans should excel 

at this form of communication, having evolved to do so. Media naturalness theory (Kock 2004; 

Kock 2009) is based on this evolutionary communication argument. It proposes that the more 

closely a communication medium aligns with traditional face-to-face human communication 

patterns, the more likely it will invoke a humanoid’s innate evolved communication module. The 

theory defines natural communication by observing five characteristics of face-to-face 

communication: “(1) a high degree of colocation, which would allow the individuals engaged in a 

communication interaction to see and hear each other; (2) a high degree of synchronicity, which 

would allow the individuals to quickly exchange communicative stimuli; (3) the ability to convey 

and observe facial expressions; (4) the ability to convey and observe body language; and (5) the 

ability to convey and listen to speech.” (Kock 2009, p. 407). It measures communication by how 

“natural” it is according to these characteristics and makes predictions on three dependent 

variables: cognitive effort, communication ambiguity, and physiological arousal.  

Media naturalness theory was developed to explain theoretical gaps of its non-evolutionary 

cousin, media richness theory (Daft and Lengel 1986; Daft et al. 1987). There are two main 

differences between the theories: first, a difference in baseline comparison, and second, a 

difference in predicted outcomes. Media naturalness theory anchors itself in the ideal of face-to-

face communication, whereas media richness theory has no such anchor and whose baseline is a 

simple absence of richness. Media naturalness theory’s dependent variables of cognitive effort, 

communication ambiguity and physiological arousal are notably different from media richness’ 

less cognitively-oriented predictions of media choice and task outcome. One of the most important 

results of these differences is that media naturalness theory would predict that if a communication 
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medium is less or more rich than face-to-face, outcomes will suffer, whereas media richness would 

always predict a positive outcome for increased richness. 

2.2.3 Reactions to threat cues  

The human response to emotional stimuli discriminates between specific emotions of the stimuli, 

not simply their valence. For example, fearful and sad stimuli are reacted to differently, despite 

both fear and sadness having negative valence (e.g., Öhman et al. 2001; van Hooff et al. 2013). 

Emotional images triggering threat processing may include images of sharks, spiders, and snakes 

(e.g., Kock et al. 2008; Ohman and Soares 1994). Human reactions to threatening stimuli are 

thought to be an evolutionary module. Supporting the idea of responses to threat cues being an 

evolutionary module is that threat cues are processed automatically. Physiological markers suggest 

evidence of threat processing when individuals observe threatening stimuli even when the stimuli 

are masked – that is, shown for so short a time that individuals cannot report having seen them 

(e.g., fMRI activations in Nomura et al. 2004; skin conductance response [SCR] in Ohman and 

Soares 1994). 

Notably, images of facial expressions of threat have also been used to prompt threat-

processing. The essential elements of a facial expression are the eyebrows, mouth, and eyes 

(Ekman and Friesen 2003), and Lundqvist et al. (2004) ranks the importance of those elements in 

that order. In Öhman et al. (2001), participants were able to identify the presence of a face of threat 

(an angry facial expression) from a crowd of faces more quickly and accurately than of faces 

displaying sadness or happiness. As for neural correlates of processing facial cues of threat, fMRI 

studies most often associate the processing of images of expressions of fear and disgust with 

activations in the amygdala and insula respectively (see Phillips et al. 2004). However, under 
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conditions of partial inattention, disgust images have also been associated with amygdala 

activation (Anderson et al. 2003).  

We hasten to emphasize that processing threat signals does not necessitate experiencing 

fear. Threat processing would only lead to the emotion of fear if (1) a legitimate threat to one’s 

safety is perceived and if (2) the threat is deemed immitigable. See the “psychological level” 

column in Figure 1 for an illustration of the process leading up to the emotion of fear, where fear 

is represented in the figure by the autonomic response stage late in the psychophysiological level. 

Therefore, potent threat signals integrated into a security message context should prompt low-level 

neural emotional threat information processing, i.e. threat attention. However, the threat signals 

will not necessarily cause palatable fear in computer users because of low perceived relevance of 

the threat to one’s physical well-being. Fear is typically reserved for perceived threats to one’s 

physical safety, whereas security warnings relate to threats to data or information. (Johnston et al. 

2015). To the degree that this low likelihood of fear is true, there should be lower danger of user 

emotional burnout from feeling fear every time they are exposed to an evolutionary-threat-cue-

integrated security message. Users are also not likely to enter fight-or-flight state (Cannon 1932) 

and make automatic, perhaps unwise responses to the security messages. Furthermore, the 

increased threat attention should not preclude future reasoned judgement and action by users. We 

note that we chose to use a human facial expression over “scary” images such as ones of snakes, 

spiders, and monsters, because frightening images aim to evoke fear and attendant fight-or-flight 

responses, while our goal is to only trigger early-stage threat attention while explicitly avoiding 

automatic, mindless fight-or-flight reactions. 
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Figure 1. A cognitive neurobiological information-processing model of fear and anxiety. Adapted from 

Hofmann et al. (2012) 

 

While previous research has investigated the effects of integrating faces with eyes into 

browser security warnings (Felt et al. 2015), the set of studies presented in this dissertation are the 

first to integrate a full human facial expression. Full human facial expressions should be much 

more potent than the tiny faces with eyes used in the aforementioned study. Thus, these studies 

stand to make a novel contribution to both research and practice. 

2.3 HYPOTHESES 

Our first hypothesis tests for the effect of including novel stimuli into warning messages. Amer 

and Maris (2007) describe how any dramatic change to a warning design is likely to refresh 

attention and processing of the image. This can be explained by habituation theory (Rankin et al. 

2009). Habituation theory explains that repeated viewing of a stimulus will lead to increasingly 

attenuated attention, while a change in the stimulus can lead to sensitization and renewed attention. 
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Given that study participants will begin our studies already in a potential state of warning fatigue 

(Akhawe and Felt 2013) from already having been exposed to security warnings in their typical 

computer work, seeing a security warning with an unfamiliar element such as an integrated facial 

expression of any variety should lead to sensitization and renewed attention. 

H1: Warnings with any integrated facial expression will elicit greater levels of attention 

and elaboration than will security messages without any integrated face. 

Our second hypothesis considers the difference between abstract threat cues and natural 

ones such as threatening facial cues. Security messages commonly contain symbols and cues of 

threat, including red colors, stop signs, and bolded words such as “warning!” punctuated by 

exclamation marks. These are intended to boost attention and threat processing. However, media 

naturalness theory (Kock 2009) would suggest that more natural communication stimuli, such as 

facial cues, will more effectively prompt threat attention than will abstract cues. This is predicted 

because one of the earliest forms of communication that humans are thought to have developed is 

face-to-face communication.  

H2: Warnings with threat facial cues will elicit greater levels of attention and elaboration 

than will security messages with other types of facial cues (e.g., neutral expressions). 

The third hypothesis contrasts fear and disgust facial threat cues to determine which of 

these more-natural stimuli fits best in a security-message context. Anderson et al. (2003) compared 

the effects of fearful and disgusted facial cues on brain activations. In the study, fearful facial 

expressions were associated with equivalent levels of amygdala response under conditions of 

attention and inattention. This suggests that the effect of observing fearful facial expressions is 

independent of conscious visual attention. However, facial cues of disgust were dependent on 

attention. Under conditions of inattention, disgust facial expressions were associated with greater 

amygdala activations compared to conditions of attention. Because a face in a security message 
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will likely not be the most prominent component of the message (any of the other message 

components could also draw visual attention), we predict that integrated facial expressions will 

not be exclusively attended to. Therefore, they should trigger threat attention patterns, including 

amygdala activations, similar to the ones seen in the right amygdala for unattended-to stimuli in 

Anderson et al. (2003).  

Furthermore, we predict differences between the two based on the mechanisms behind 

experiencing the associated emotions. Fear is thought to lead to immediate threat avoidance, but 

only when the threat is imminent. Experiencing disgust, conversely, leads to threat avoidance 

regardless of the immediacy of the threat (see Morales et al. 2012 for a review). While we do not 

expect that participants who observe facial expressions of these emotions will lead to them 

experiencing the same emotion in our security message context, it is possible that there are subtle 

differences in the low-level and early threat processing that occurs when exploring potential threats 

(see Hofmann et al. 2012 for a psychological process model of threat processing). Information 

security threats often report threats that will not be manifest until some future time, not necessarily 

immediately. For example, it is not uncommon for ransomware to take some time after the initial 

point of infection before calling home to its command-and-control server and launching the attack, 

leading to a considerable delay after a poor security choice before a user is aware that something 

is wrong (Mourad 2015). In other cases, organizations have had their systems infiltrated for months 

or years by advanced persistent threats before becoming aware of them (e.g., Tom 2016). Given 

these kinds of malware behaviors, it is understandable that computer users may perceive that a 

warned-of threat is not immediate, and therefore may instead freeze if they experience fear, or 

discount the threat based on its perceived temporal distance (Malhotra et al. 2002). Disgust effects 
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should still prompt attention despite any perceived temporal distance of the information security 

threat. 

H3: Disgust facial expressions integrated into security messages will elicit greater levels 

of attention and elaboration than will fearful facial expressions. 

The face cues should still be effective as long as the faces maintain distinguishable 

elements such as eyes, eyebrows, nose, and mouth. One method of altering a photograph is to 

‘posterize’ it, or to bin colors using an adaptive threshold to make it more amenable for printing. 

This has the effect of making a picture seem more cartoonish, or hand-drawn. This adaptability of 

the faces’ stylistic appearance will help warning interface designers have more freedom in their 

artistic expression of the faces, so as to fit company style guidelines. We summarize this practice-

motivated hypothesis as follows: 

H4: The application of a visual artistic image filter to a facial expression will lead to 

negligible drops in levels of associated attention and elaboration, so long as key facial 

elements for threat (e.g., eyebrows, mouth, eyes: Öhman et al. 2001) remain discernible in 

the facial expression. 

We also consider how resilient to habituation the different threat cues will be. Users’ 

attention has been shown to attenuate rapidly when new visual stimuli are integrated into security 

warning designs (Anderson et al. 2016b). However, facial signals are thought to have deep 

evolutionary ties. These deep ties may be more likely to consistently activate low-level neural 

emotional threat information processing (e.g., amygdala activation). While Breiter et al. (1996) 

shows that reactions to fearful facial expressions do decrease with over repeated impressions, there 

still remained significant amygdalar response even after repeated exposures. In our context, we 

explain this greater predicted resilience to threat facial cues as an innate response to natural stimuli. 

Abstract threat cues such as triangles and exclamation points are less likely to trigger innate 
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responses, given that they do not have linkages to evolutionary modules as facial expressions do. 

Furthermore, facial signals in an IS context can be portrayed by different actors for each 

impression. Differing faces should be noticed by users, considering that humans are generally 

highly skilled at discriminating between faces, even more so than compared to discriminating 

among other classes of similar objects (such as cars, animals, etc.) (Gauthier et al. 2000). This 

polymorphism of the precise appearance of the facial signal could help to combat habituation 

compared to static warning symbols (Anderson et al. 2016c). Therefore, for several of our 

hypotheses, we propose complimentary habituation counterpart sub-hypotheses. 

H1–4*: Security messages with integrated facial signals of threat will be more resilient to 

habituation over repeated exposures than will security messages with more abstract threat 

cues. 

2.4 INSTRUMENTS 

Studies 1 and 2 used instruments from a common set of security warnings with integrated facial 

expressions that we developed. To make these instruments, we started with a set of 120 facial 

expressions randomly extracted from an emotion-validated bank of color images of actors faces 

displaying different emotions (Ebner et al. 2010). As is commonly done in neuroscience protocols 

using facial stimuli, we took an oval crop of the actor’s face, with the hair line and the chin as the 

upper and lower vertical limits, and up to but excluding the ears as the horizontal limits (e.g., 

Anderson et al. 2003). Then, we created two new sets from these cropped filters: one which 

desaturated the colors down to 47%, and another which “posterized” the image using an adaptive 

spatial threshold. We then integrated these facial expressions into a modified Chrome malware 

warning, from build 51.0.2704.63 m (original displayed in Figure C-2). The location of the heading 
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text, body text, and buttons was kept consistent with the base Chrome warning in order to control 

for warning component novelty. We opted to retain the whole text of the Chrome malware source 

image to increase external validity and warning realism. We shifted the body text a small amount 

towards the right to make room for our face image on the left, in keeping with past Chrome warning 

designs that have had images on the left of the body text (Felt et al. 2014). Our control (blank) 

security warning alongside a sample of facial-expression-integrated warnings is displayed in 

Figure 2.  

 
Figure 2. From left to right and top to bottom, (1) our blank, adapted Chrome malware warning, followed by 

security warnings integrated with (2) a desaturated neutral expression, (3) a disgusted desaturated expression, 

and (4) a posterized fearful expression. 
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2.5 STUDY 1 – FIELD STUDY 

We used a field study with a between-subjects repeated-measures design. We recruited 550 

participants from the United States using Amazon’s Mechanical Turk platform. Of the 510 

participants whose data were used in the analysis, there were 314 males, 196 females, and ages 

ranged from 19–69 (x̅ ~= 32). Data from Mechanical Turk has been found to be as reliable as data 

from other U.S. survey panels (Steelman et al. 2014), and more importantly, they are likely to be 

using their own computers, raising their sense of perceived risk (c.f. Boss et al. 2015; Vance et al. 

2014). 

Participants were directed to a server under our control running our experiment codebase, 

built on the psiTurk framework (McDonnell et al. 2012), where they were randomly assigned to 

one of seven treatment groups from the following design: face emotive expression (fear, disgust, 

neutral) 𝑓𝑢𝑙𝑙𝑦 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 𝑤𝑖𝑡ℎ image filter (desaturated, posterized) + control (no face). This design 

is graphically displayed in Figure 3. For each warning impression excepting for participants in 

control condition, participants saw a security warning with an integrated facial expression that was 

randomly selected from the associated set of actor images for the assigned treatment group. 

 Emotion   

Filter 

Fear + 

Realistic 

Disgust + 

Realistic 

Neutral + 

Realistic 
+ 

Control  

(no face) 

Fear + 

Posterized 

Disgust + 

Posterized 

Neutral + 

Posterized 
  

 

Figure 3. Experimental design for Study 1 

We used an IRB-approved deception protocol. The pretense was that participants were 

performing an image classification task, when in reality, we were interested in users’ behaviors 

when they were presented with interruptive security messages. The image classification ruse and 

the security warning presentation are described below.  



18 

Participants performed a modified version of the image classification task described in 

Vance et al. (2014). In our task, participants were told that they would classify a series of images 

in order to help test a computer classification algorithm. It was explained that a series of live, 

external websites would be loaded into a frame in the center of the webpage (i.e., an iframe HTML 

element). For each page load, participants were asked to classify whether the image was a 

photograph of Batman or an artist’s rendering. On top of a $1.25 base payment, participants were 

offered an additional $1.25 performance-based bonus payment. Each incorrect classification 

resulted in a “penalty” decrease in their bonus payment. Furthermore, to encourage attention to the 

task, we warned that too many incorrect responses would result in their work being rejected with 

forfeiture of any payment. Participants’ current bonus status was depicted with an animated and 

labeled bar beneath the central iframe. Participants were encouraged to move quickly, limiting 

them to a maximum of 10 seconds for each classification. A timeout resulted in the classification 

being marked as “incorrect.” After a 4-image practice round, participants classified 75 images. See 

Figure 4 for an example screenshot of the image classification protocol. 

Five times during the main task, the page load within the central window was interrupted 

with a browser security warning drawn from the appropriate set for the participant’s treatment 

group. The warning, based on Google Chrome malware warning build 51.0.2704.63 m, signaled 

that continuing to load the page would result in the visitor’s computer becoming infected with 

malicious software (“malware”). The warning had a button allowing the user to proceed past the 

warning to the website (see Figure 5). Participants were required to use the Google Chrome 

browser to perform the experiment so that our warning design would seem more natural. We reason 

that users’ familiarity (or lack of familiarity) with the Google Chrome browser and with its typical 

malware security warnings would likely be randomly distributed across treatment groups. 
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If, while a security warning was shown, participants made a guess about whether the image 

on the unseen screen was real or animated, they risked being marked wrong. Because each 

incorrect classification decreased the bonus earned and increased the likelihood of a participant’s 

work being rejected, participants were financially motivated to ignore the warning. 

To treat all participants fairly, at the end of the task, we presented a message saying “some 

errors were detected during the experiment,” and we increased the bonus-earned amount to reflect 

the amount that would be earned by the lowest penalty group. We also credited back any 

markdowns that participants endured because of timeouts or incorrect classifications that occurred 

while a security warning was displayed. 

In a post-task survey, participants were asked various questions, including items about their 

information security concerns and perceptions, whether they noticed the security warnings and the 

integrated facial expressions, and whether the warnings appeared realistic. A debriefing followed. 

Despite the seeming complexity of the protocol, data from this study, presented in the 

following sections, indicated that users did notice the embedded warnings, and that they perceived 

that the warnings were both real and concerning (c.f. Vance et al. 2014). 

  
Figure 4. Example of image classification task 

demonstrating loaded page window and task control 

panel (adapted from Vance et al. 2014). 

Figure 5. The security warning as it appeared to 

participants. Based on the Google Chrome malware 

warning, from build version 51.0.2704.63 m 



20 

2.5.1 Metrics 

We consider various markers of security behaviors and cognition. From one view, the end goal of 

presenting a warning message in any context is for the message recipient to adhere to the warning 

(Wogalter 2006b). An intermediary aim is for the message recipient to carefully consider the 

warning and make an informed choice as to the risks involved, whether or not that choice involves 

distancing or approaching the warned-of threat (Wogalter 2006a). We test for both. First, we test 

for differences in actual security message adherence (choosing to load the site despite the warning) 

among treatment groups – i.e., did participant choose to continue to load the site despite being 

warned that it contained malware.  

Second, we test for differences in reaction time among treatment groups. Reaction time, a 

form of mental chronology, is a commonly-used metric for cognitive effort (Jensen 2006). We 

measure reaction time from when a security warning first appears to when a security choice is 

made (i.e., when the warning disappears). 

Third, we test for differences in cognitive engagement by examining two mouse-cursor 

movement statistics: (1) click latency, and (2) time idle. Both of these measures are markers of 

cognitive processes such as elaboration and uncertainty (Hibbeln et al. 2016; Jenkins et al. 2016). 

Click latency was considered for the first button click that occurred for a given warning impression. 

Time idle was measured in milliseconds (ms), and was accrued whenever the mouse remained 

unmoved for greater than 200 ms for a given warning impression. For click latency, higher latency 

is associated with greater cognitive processing and uncertainty. Greater time idle is likewise 

positively associated with elaboration and uncertainty. 
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2.5.2 Analysis and Results 

We next report the analysis and results for tests of the main effects of face emotion, and also for 

face filter. Given our sample size of 510 participants, at most 4 treatment groups (4 groups for the 

face emotion main effect, and 3 groups for the filter main effect), and a high expected correlation 

among the 5 repeated measures (.95), G*Power 3.1.9.2 reports that we have sufficient statistical 

power to detect, at least, a medium-small effect size (f <= ~0.18).  

Although we had data for five security warning impressions per participant, a post-hoc 

visual analysis of Loess curves for temporal variables such as reaction time suggested that an 

inflection point existed around the fourth warning impression (e.g., see Figure 6). An examination 

of participants’ free-responses from the survey data suggested that after about four impressions, 

participants began to suspect the deception in the study. Using this to explain the inflection point, 

we therefore consider no more than four warning impressions in our analyses.  

 
Figure 6. A demonstration of the inflection point that 

occurred around the fourth warning impression for each 

participant, which led us to only consider, at most, the first 

four warning impressions for each participant. 
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All continuous dependent variables (e.g., reaction times, mouse cursor click latency, and 

mouse cursor time idle) in models testing effects across time were natural-log-transformed to 

remedy non-normality of residuals and heteroskedasticity. For these tests, the main effect of 

number of warnings seen was always significantly negative. However, this effect on its own is not 

of interest to our research question, so we do not report the effect of time except when it is included 

in an interaction with treatment group levels. 

To determine whether to include covariates in our analyses, we tested for whether several 

items were predicted by the emotion or filter treatment groups. The potential covariates that we 

tested were participant age, gender, preferred operating system, preferred browser, task 

performance accuracy, and whether English was their first language. We ran separate ANOVAs 

for each potential covariate with Type 2 errors on linear models, each including the emotion effect, 

the filter effect, and their interaction as independent variables. None of the omnibus F tests from 

any of these tests were significant at an alpha level of .05, so no covariates were included in any 

analyses. However, a few of the covariates showed overall significance at an alpha level of .10. 

Filter treatment group was predictive of English-as-a-first-language (p = .080). Also, emotion 

treatment group was predictive of preferred operating system (OS) (p = .066), and of task 

performance accuracy (p = .082). Given this, we describe how the pattern of differences for each 

test is impacted when the associated covariates are controlled for.  

Because our task employed repeated measures on a binary dependent variable (whether or 

not the warning was dismissed), as a preliminary analysis we explored the ratio of ignored 

warnings for each participant and for each treatment group. This exploration is included in 

Appendix B, and it shows that the majority of participants (80%) were perfectly consistent across 

warning exposures in whether they ignored or heeded the warning. The likelihood of perfect 



23 

consistency was not dependent on the assigned emotion or filter treatment group. Because this 

finding was not dependent on treatment group, a discussion of it will be postponed until section 

“4.0 – Final Discussion and Conclusions”. 

Because all comparisons tested a priori hypotheses, no corrections for multiple 

comparisons were made. One-tailed p-values are reported where appropriate.   

2.5.2.1 Face emotion.  We first tested for the impact of the emotion of the integrated facial 

expression. Each test averages across the different filter factor levels, and compares the responses 

to the control warning, which had no face. 

Warning adherence rates. We tested for differences on proportions of warnings ignored for first 

exposures only between treatment groups. An overall difference among proportions was found, 

𝜒2(𝑑𝑓 = 4) = 9.908, 𝑝 = .042. By rank order, blank warnings were the most likely to be ignored, 

followed by neutral, fear, and then disgust warnings (see Table 1). However, pairwise contrasts 

from a logistic regression model predicting whether the first warning was ignored by treatment 

group only found significant differences between blank and disgust warnings (one-tailed p=.043). 

This pattern of differences holds when controlling for task performance accuracy and for preferred 

OS, with the exception that the difference between blank and disgust warnings falls into marginal 

significance (one-tailed p = .064).  

 

Table 1. Proportion that ignored first warning by emotion treatment 

Condition n 

Proportion that 

ignored first warning 

 

Blank 63 52.1% 

Neutral 130 46.3% 

Fear 134 43.2% 

Disgust 122 39.7% 

 

39.7%

43.2%

46.3%

52.1%

Disgust

Fear

Neutral

Blank



24 

Reaction Time. We tested for differences on reaction times among emotion treatment groups, 

averaging across filter conditions using a linear mixed model with logit link using the first four 

warning impressions per participant. Emotion condition and impression order were specified as 

fixed effects, and a random effect was included for each participant to account for repeated 

measures. An omnibus ANOVA with Type 2 sum of squares1 found differences in reaction times 

among emotion condition groups (𝜒2(𝑑𝑓 = 3) = 9.892, 𝑝 = .020), the number of warnings seen 

(𝜒2(𝑑𝑓 = 1) = 1667.43, 𝑝 < .001), and the interaction between the two (𝜒2(𝑑𝑓 = 3) =

7.95, 𝑝 = .047). Follow-up contrasts for the main effect of emotion averaged across number of 

warnings seen found that participants in disgust, fear, and neutral conditions had longer reaction 

times than did the blank condition (one-tailed p = .005, p = .002, and p = .038 respectively), but 

the test also found that warnings with faces did not have statistically significant differences from 

one another for reaction times. This pattern of differences holds when controlling for task 

performance accuracy and for preferred OS. 

                                                 

1 It is worth noting that when we performed the omnibus ANOVA with Type 3 sum of squares, 

the main effect of emotion treatment group was washed out by the interaction effect. This is 

understandable, given that Type 3 sum of squares tests for main effects in the presence of 

interaction effects, while Type 2 removes the interaction effects. We opt for Type 2 given that we 

have separate hypotheses for the main effects and for the slopes.  
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Figure 7. Loess curve plotting reaction times across 

warning impressions by emotion treatment group. 

Data points are horizontally dodged to aid in density 

visualization. 

 

As for differences in slopes over time among emotion treatment groups, blank had a steeper 

downward slope than did fear or neutral conditions (one-tailed p = .030 and p=.006 respectively), 

but was not significantly different from disgust’s slope. Disgust had a steeper downwards slope 

than did neutral, (one-tailed p=.028), but fear was not significantly different from neutral. Slopes 

for disgust and fear were not statistically significantly different from one another. (See Figure 7). 

Mouse-Cursor: Click latency. An analysis of mouse cursor click latency was performed for only 

first warning impressions, and for only those who chose to ignore the warning (see Table 2 for 

resultant n distributions). Significant differences were found among treatment groups, 𝐹(3,206) =

4.712, 𝑝 = .003. Pairwise contrasts of parameter estimates from a linear model found that disgust 

and fear had longer click latencies than did blank warnings (both one-tailed p’s < .001), and that 

neutral warnings had longer click latencies than blank (one-tailed p = .041). Click latencies for 

disgust and fear did not differ from one another (p=.934), but disgust and fear were each longer 

than neutral (one-tailed p=.033 and p=.036 respectively). When preferred operating system and 
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task performance accuracy are controlled for, the partial effect of emotion treatment group 

becomes much smaller; only disgust and fear are significantly different from blank (one-tailed p = 

.013 and p = .009 respectively), and no other statistically significant differences are seen. 

Interestingly, users who prefer the Mac OS have shorter clicking durations than do users who 

prefer the Windows operating system (p < .0001). 

 

Table 2. Sample size distributions for the mouse cursor tests.  

 Mouse cursor test n 

Emotion condition 

Click latency  

(first impression 

only) 

Time idle  

(first four 

impressions) 

Blank 34 335 

Neutral 66 698 

Fear 53 666 

Disgust 57 694 
* Only the impressions where participants chose to ignore the warning 

were selected. DV values of 0 were removed because of incompatibility 

with the log transformation. 

 

 
Figure 8. Click latency among emotion treatment 

groups for only the first warning impression for 

those who ignored the warning. 
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Mouse-Cursor: Time Idle. For the test of the impact of emotion condition on mouse cursor idle 

time, we report the results from a test of the first four impressions. Significant differences were 

found among emotion treatment groups, but the interaction effect of emotion condition and 

warning impression order was not significant (𝜒2(𝑑𝑓 = 3) = 10.243, 𝑝 = .017 and 𝜒2(𝑑𝑓 =

3) = 4.105, 𝑝 = .250 respectively, see Table 2 for n). Pairwise contrasts of emotion condition 

parameter estimates from a linear mixed model accounting for repeated measures were examined. 

Blank warnings had significantly less idle times averaged across warning exposure order than 

disgust, fear, and neutral warnings (one-tailed p < .001, p=.013, p=.018 respectively). Disgust 

warnings had longer idle times than did fear or neutral warnings, (one-tailed p = .042 and p= .025 

respectively), but no differences were observed between fear and neutral warnings (one-tailed 

p=.424). See Figure 9. This pattern of differences holds when controlling for task performance 

accuracy and for preferred OS. 

 
Figure 9. Mouse cursor idle times over time for 

each emotion condition. 

Survey. All participants reported that they noticed the warnings. We tested for differences in self-

reported levels of warning realism and concern felt over the warning among emotion treatment 

groups. On a scale of 1 to 10, blank warnings were reported to seem more realistic than any of the 
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warnings with integrated facial expressions (all p’s < .0001), but there were no differences 

observed among the different kinds of faces. No differences were observed among reported levels 

of concern felt when exposed to a security warning among any of the emotion treatment groups, 

including the blank group. See Figure 10. This pattern of differences holds when controlling for 

task performance accuracy and for preferred OS. 

No differences were observed among emotion treatment groups for self-reported measures 

of perceived risk, threat susceptibility, threat severity, or fear, whether or not task performance 

accuracy and preferred OS were controlled for (all contrast families Bonferroni-adjusted). Raw 

(unadjusted) means among emotion treatment groups are displayed in Figure 11. 

 

 
 

Figure 10. Differences in self-reported levels of 

warning realism and concern felt over the warning 

among emotion treatment groups. Note: practical 

effects may be smaller than they appear – y-axis is 

scaled to the data range for this and several future 

graphs.  

Figure 11. Unadjusted means among emotion factor 

levels for four variables: PR (perceived risk), SUS 

(threat susceptibility), SEV (threat severity), and 

FEAR (fear of threat). 

 

2.5.2.2 Image filter. We next tested for the impact of image filter. In these analyses and figures 

“desat” refers to “desaturated”, or in other words, to the photo-realistic face images with toned-
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down coloration. “Posterized” refers to the cartoonized versions of the images. Each test averages 

across the different emotion conditions for each filter, and compares the responses to the control 

warning, which had no face. Therefore, the three levels for the filter tests were “desat”, 

“posterized”, and “blank”. 

Warning adherence rates. A linear mixed model with empirical logit link with a fixed effect for 

filter levels, order of warning seen, an interaction between the two, plus a random effect for each 

participant, was fitted to the data. A marginal difference was found among the slopes of filter levels 

on whether the warning was ignored, 𝜒2(𝑑𝑓 = 2) = 4.689, 𝑝 = .096. Pairwise contrasts reveal 

that participants who saw either desaturated or posterized images became more likely to ignore the 

warning over time, approaching the flat-line probability of ignoring that participants in the blank 

condition showed (slope of desat vs. blank p =.016 and posterized vs. blank p = .007). No 

differences in slopes were observed between desat and posterized groups. See Figure 12. No 

differences among filter treatment groups for marginal means were observed. The same pattern of 

differences is observed when controlling for English-as-first-language. 

 
Figure 12. Plot of parameter estimates from linear 

mixed model with logit link, with dv converted to 

probabilities. 
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Reaction Time. A linear mixed model testing response times among filter factor levels found 

marginal significance for the interaction effect of filter and number of warnings seen 

(𝜒2(𝑑𝑓 = 2) = 5.880, 𝑝 = .053), as well as significance for the main effect of filter 

(𝜒2(𝑑𝑓 = 2) = 8.017, 𝑝 = .018). Pairwise comparisons of the trend over time among filter levels 

found that posterized warnings had less steep downward slopes than blank warnings (p = .018), 

but no significant differences were found between posterized warnings and desaturated warnings 

(p = .198). No differences in slopes were observed between blank and desaturated warnings 

(p = .148). As for the main effect of filter averaged across time, blank warnings had quicker 

reaction times than either desat or posterized warnings (p = .006 and p = .018 respectively), but no 

differences were observed between desat and posterized warnings (p = .567). The same pattern of 

differences was observed for main effects and for slopes when English-as-first-language was 

controlled for.  

 
Figure 13. Loess curve of reaction times among filter 

factor levels across time. Data points are dodged 

horizontally to aid in density visualization. 

 

Mouse-Cursor: Click latency. The effect of filter treatment on click latency across time was 

examined. Significant differences were found among the main effect of different filter levels, 
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𝜒2(𝑑𝑓 = 2) = 7.400, 𝑝 = .025. Posterized warnings had higher click latency than did either 

blank or desaturated ones (p=.023 and p=.032 respectively), but no difference was observed 

between blank and desaturated warnings (p=.453). See Figure 14. The same pattern of differences 

was observed when controlling for English-as-first-language. 

 
Figure 14. Loess curve of click latency over time among 

filter group levels. 

 

Mouse-Cursor: Time Idle. The effect of filter treatment on mouse cursor time idle across time 

was examined. Significant differences were found among the main effect of different filter levels, 

𝜒2(𝑑𝑓 = 2) = 10.100, 𝑝 = .006. Blank warnings had less time idle than either posterized or 

desaturated warnings (p=.003 and p=.022 respectively), but no differences were observed between 

desaturated and posterized warnings (p=.312). See Figure 15. The same pattern of differences was 

observed when controlling for English-as-first-language. 
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Figure 15. Loess curve of mouse cursor time idle 

over time among filter treatment groups. 

 

Survey. While no differences were found between desaturated and posterized filter groups on 

survey responses for reported warning concern or realism, differences were found on aggregated 

protection motivation theory items (Johnston and Warkentin 2010) and fear items (Osman et al. 

1994). Specifically, participants who saw desaturated face warnings reported higher perceived 

information security risk than did participants in either the posterized or in the blank treatment 

groups (p = .037 and p = .062 respectively). Also, participants who saw desaturated warnings 

reported higher threat severity than did participants in the posterized treatment group (p = .022). 

No differences were observed among filter treatment groups on reported threat susceptibility or 

information security-related fear. See Figure 16 and Table 3. The same pattern of differences 

appears when controlling for English-as-first-language. The differences among filter levels for 

perceived risk fall out of significance when applying a Bonferroni correction, whether English-as-

first-language is controlled for or not.
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 Table 3. Summaries for perceived risk survey items among filter treatment groups 

 Aggregated survey item means (std. dev.) 

Filter Condition Perceived Risk Threat Severity 

Threat 

Susceptibility 

Fear of 

Malware 

Blank 5.44 (1.45) 5.04 (1.53) 4.17 (1.41) 3.55 (1.22) 

Desaturated 5.75 (1.02) 5.15 (1.54) 4.05 (1.52) 3.65 (1.13) 

Filter 5.51 (1.27) 4.81 (1.63) 4.05 (1.51) 3.54 (1.23) 

Grand Mean 5.61 (1.20) 4.99 (1.58) 4.07 (1.50) 3.59 (1.19) 

  

 
Figure 16. Self-reported risk perception items. PR 

= perceived risk of malware, SUS = susceptibility 

to malware, SEV = malware severity, FEAR = fear 

about getting malware. Ovals highlight statistically 

significant differences (p’s < .10). Scores are 

aggregates of items from Johnston & Warkentin 

(2010) and Osman et al. (1994). 

 

2.5.3 Discussion 

The field study’s design and various measures allow us to answer several questions. First, they 

allow us to examine the overall and differential impact of the kind of facial expression on markers 

of elaboration and uncertainty. Second, they allow us to compare the effects of different 

stylizations of the facial expressions. Third, we can investigate the endurance of these effects over 
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repeated exposures. A summary of the findings for each hypothesis across each dependent measure 

is displayed in Table 4. 

 

Table 4. Summary of hypothesis tests for Study 1 for each dependent variable 

Hypothesis Contrast Analysis type S
u

p
p

o
rt

ed
*
 

Notes 

H1 – Overall 
effect of face 

Blank 

< neutral 

Warning adherence N 
Δ11.8% in the predicted direction, but insufficient statistical power 

to detect significance (p=.418). 

RT N 4-warning marginal mean response ratio = 0.915, p=.286.  

M: Click latency Y 
1st only. Marginally supported, response ratio = -0.805, one-tailed 

p = .041. 

M: Time Idle Y 4-warning marginal mean response ratio = .859, one-tailed p = .018 

< fear 

Warning adherence N 
Δ14.9% in the predicted direction, but insufficient statistical power 

to detect significance (one-tailed p=.107). 

RT Y 
4-warning marginal mean response ratio = 0.862, one-tailed 
p=.009. 

M: Click latency Y 1st only. Supported, response ratio = 0.664, one-tailed p < .001 

M: Time Idle Y 
4-warning marginal mean response ratio = 0.849, one-tailed 

p=.013. 

< disgust 

Warning adherence Y Δ18.4% in the predicted direction, one-tailed p = .043. 

RT Y 4-warning marginal mean response ratio = 0.876, p=.022. 

M: Click latency Y 1st only. Supported, marginal mean = .657, one-tailed p < .001 

M: Time Idle Y 4-warning marginal mean response ratio = 0.763, p < .001. 

H2 – Overall 
effect of 

threat face  

Neutral 

< fear 

Warning adherence N 
Δ3.3% in the predicted direction, but insufficient statistical power 

to detect significance (p=.593). 

RT N 4-warning marginal mean response ratio = 1.060, p=.478. 

M: Click latency Y 
1st only. Marginally supported, response ratio = 1.213, one-tailed p 

= .036 

M: Time Idle N 4-warning marginal mean response ratio = 1.011, p = .848. 

< disgust 

Warning adherence N 
Δ6.6% in the predicted direction, but insufficient statistical power 

to detect significance (p=.259). 

RT N 4-warning marginal mean response ratio = 1.044, p=.714. 

M: Click latency Y 
1st only. Marginally supported, response ratio = 1.224, one-tailed p 

= .033 

M: Time Idle Y 
4-warning marginal mean response ratio = 1.125, one-tailed p = 

.025. 

H3 – disgust 
vs fear face 

Disgust > fear 

Warning adherence N 
Δ3.5% in the predicted direction, but insufficient statistical power 
to detect significance (p=.553). 

RT N 4-warning marginal mean response ratio = 0.985, p=.983. 

M: Click latency N 1st only. Not supported, response ratio = 1.009, p = .934 

M: Time Idle Y 
4-warning marginal mean response ratio = 1.112, one-tailed p = 

.042. 

H4 – Filters Realistic 
= 

Posterized 

Warning adherence Y No difference, p = .690. 

RT Y 4-warning marginal mean response ratio = 1.020, p=.577. 

M: Click latency Y 

Supported, posterized not less than realistic. (In fact, they were 

greater than realistic.) Encouraging for practitioners. 4-warning 
marginal mean response ratio = 0.772, p = .032. 

M: Time Idle Y 4-warning marginal mean response ratio = 0.948, p=.312. 

*For “supported” column, “Y”= Supported, N=”Not supported”. 

“M:” indicates “mouse” statistic. 

“RT” = reaction time. 
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2.5.3.1 Face emotion 

A comparison of warnings with faces against the standard warning with no integrated facial 

expression generally showed that some face, represented by the warnings with integrated neutral 

expressions, was better than no face. We would expect such findings if we had integrated any 

novel and noteworthy stimulus into the warnings – novelty garners visual attention (Amer and 

Maris 2007). This was seen in warning adherence rates, where first-impression blank warnings 

had nearly 59% ignore rates, whereas the next-highest rank of ignoring was the neutral face 

treatment, with about 46% first-impressions ignored. Click latency also found that warnings with 

neutral faces showed marginally greater evidence of uncertainty and elaboration than did blank 

warnings. Mouse movement idle time was also lowest for blank warnings than for any of the 

warning variations with faces. However, reaction times to neutral warnings averaged across 

exposures were no different from reactions to blank warnings – although blank warnings had 

steeper downward slopes for reaction times than did warnings with neutral expressions. Thus, H1 

is supported, with significant differences being found in 75% of the tests. 

The more important question of interest to our study is whether the facial expressions of 

threat elicited greater threat attention and more secure behavior than did neutral expressions, 

Table 5. Summary of hypothesis testing across Study 1 

Hypothesis Contrast 

# 

Supported 

  Y N 

H1 – Overall effect of face Blank < [neutral, fear, disgust] 9 3 

H2 – Overall effect of threat face  Neutral < [fear, disgust] 3 5 

H3 – disgust vs fear face Disgust > fear 1 4 

H4 – Filters Realistic = Posterized 4 0 
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compared to blank warnings. Several dependent measures suggest that this holds true. Warning 

ignore rates were higher for both fear (43.2%) and disgust (39.7%) expression integrated warnings 

than for neutral-expression-integrated warnings (46.3%). For reaction times, participants in the 

disgust and fear groups had longer reaction times averaged across time than did participants in the 

blank treatment group, while participants in the neutral expression group did not have longer 

reaction times compared to the control group. For click latency, participants in the disgust and fear 

treatment groups had marginally longer latencies than did users in the neutral group. And for idle 

mouse cursor times, participants in the disgust group had greater idle times than did neutral 

participants. However, no difference was found on idle times between the fear and neutral groups. 

These findings across multiple measures give support to the notion that not just any facial 

expression can be integrated into a warning – threat faces appear to elicit greater threat attention 

and secure behavior in a security message context than do neutral faces. In summary, H2 finds 

some support, with 37.5% of the tests showing statistically significant differences. 

We also can test for differences in performance between kinds of threat faces integrated 

into security messages. The findings here are not as clear, although they tend towards the 

conclusion that there is little to no difference between disgust and fear facial expressions. While 

participants in the disgust group had 3% lower warning ignore rates than did participants in the 

fear group, and while they had marginally greater mouse cursor idle times than did participants in 

the fear group, no differences were observed between fear and disgust treatment groups on reaction 

times or click latency. In summary, there is the possibility that disgust warnings elicit better 

security behavior than do fear warnings in a security message context, but the effect is small and 

was not detected by this study. In summary, H3 is supported by only 25% of the tests. 
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We also hypothesized differences in the endurability of the facial expression treatments 

over time. However, in hindsight, performing an experiment may have precluded the ability to test 

this in an ideal context. While our warning impressions were separated by at least 10 regular image 

classifications, the warnings still would have appeared at a greater frequency than would be typical 

in everyday computing, and habituation rates to repeated stimuli depend heavily on the interval 

between exposures (Rankin et al. 2009, characteristic #4). As for our measures, warning adherence 

rates did not differ largely from what was reported for first-impressions only when we included 

more than one warning impression per participant, largely because the correlation between 

repeated measures for each participant was very high. However, other non-binary measures had 

more variance within-subject. Reaction times for fear and neutral emotion treatment groups were 

less subject to attenuation than were reaction times to blank warnings. While the slope for disgust 

warnings did not differ from that of blank warnings, it was trending towards being less steep (see 

Figure 7). Differences among emotion treatment groups on click latencies fell out of significance 

when multiple impressions per participant were considered. Similarly, differences in slopes of 

mouse cursor idling time were not found among emotion treatment groups. This suggests that once 

participants made a decision in the context of the image classification task, that making that 

decision again did not impact their click latencies or idle time. This conflicts with the findings in 

Authors (2016) in which differences in slope were observed between treatment groups over 

repeated security decisions within one study, although in that study, participants may have 

perceived greater differences between their security decisions since each one was hosted on a 

different website, and thus participants had more information on which to base security decisions. 

Thus, the supplemental hypotheses about differences in slope are not supported with data from our 

protocol. We call for future research to find more efficient ways to test these hypotheses.  
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The survey data indicated that participants perceive warnings without integrated facial 

expressions to be more realistic than ones with integrated facial expressions. This was somewhat 

expected, given that our facial expression integration did not meet Google’s design guidelines. 

This would be remedied were a warning design to go through an organization’s official design 

review process. However, no differences were found between emotion treatment groups on the 

concern they felt when they encountered a warning. This is interesting – despite lower realism, 

concern was unaffected. We concede that concern following a suspected fake warning may not be 

the same as concern following perceived legitimate warnings. However, our objective measures 

suggest that users may be more concerned than they realize. This highlights the importance of 

measuring security behavior such as reactions to security messages using measures that are less 

subject to biases and that can capture subtle reactions that users may not be aware of (Dimoka et 

al. 2011).  

While the follow-up contrasts on actual adherence choices only found a significant 

difference between the blank (58.7% ignored) and the disgust (39.7% ignored) warnings, we 

observe that the differences were trending in the predicted direction, with disgust and fear showing 

the highest warning adherence rates, followed by neutral, and then blank warnings. If we had a 

larger sample size, we expect that these differences would become statistically significant. As 

illustrated in Wogalter’s C-HIP model (Wogalter 2006a), warning adherence behavior is a multi-

gated process. We only expected our face treatments to increase threat attention to the warnings, 

and our other measures suggest that this goal was met. After attention is garnered, other elements 

of the warning and of the user will impact warning comprehension, user security attitudes, and 

motivation to adhere. Increasing threat attention through incorporating facial cues therefore 

encourages users to be more thoughtful in their decision, but may have a small effect on the more-
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distant actual behavioral outcome. We call for more research to address the remaining steps 

towards improving secure end-user behavior. 

2.5.3.2 Face Filter 

We now explore the differences on user behaviors between photo-realistic (desaturated) and 

posterized filtered versions of the face images, averaged across face emotions. For reaction times, 

desaturated warnings had steeper downward slopes compared to those of posterized warnings. A 

similar pattern was seen for click latencies – posterized warnings elicited longer click latencies 

compared to realistic warnings. However, no difference in mouse cursor idling was observed 

between desaturated and posterized warnings, and no differences were observed in actual security 

choice either. We had hypothesized that posterized images would perform no differently than 

photo-realistic images on invoking security attention – or, at worst, that they would only slightly 

underperform in these areas. Instead, we see that the opposite may be true – posterizing the images 

improves attention.  

Further follow-up analyses can compare posterized to photo-realistic images for only threat 

faces to see if the positive impact holds when neutral faces are excluded, but we expect that this 

would only amplify the strength of the relationships already found. Furthermore, we reason that 

posterizing the images had the unexpected impact of making them more interesting to look at than 

a photo-realistic face. Follow-up work can involve hiring an artist to create hand-drawn versions 

of the faces that are more equally interesting to look at compared to the photo-realistic ones, and 

the tests can be rerun. We expect that were this done, the differences between posterized and photo-

realistic images would drop into insignificance. From a practitioner’s standpoint, this would mean 

that hand-drawn facial images would have the same positive effect as would photo-realistic ones, 

as long as the essential facial elements were discernible (eyebrows, mouth, eyes). Thus, while H4 
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was contraindicated, we find support for the practitioner spirit of H4, which was to ensure that 

photo-realism is not required to elicit the same threat attentional effects. 

2.5.3.3 Survey perceptions 

We also examined differences on self-reported perceptions of security risk and fear between 

emotion treatment groups and between filter treatment groups. Significant difference in these 

measures were only found among comparisons for image filter treatment groups. Specifically, 

photo-realistic images elicited higher reports of perceived risk and malware threat severity than 

did posterized images. This could be because the photo-realistic threat images connect more deeply 

with the human psyche, in turn prompting users to elaborate over the warnings they saw more 

carefully. And as Vance et al. (2014) showed, recent information security events can raise users’ 

security risk perceptions. It is possible that the effects of the treatments are amplified for threat 

faces compared to neutral faces. However, follow-up analyses, testing for an interaction between 

the face emotion and the face filter, found no significant differences. 

We also note the lower-than-hoped-for overall reported levels of threat susceptibility and 

malware fear. The grand means for threat susceptibility and fear of malware were only 4.07 (1.5 

SD) and 3.59 (1.19 SD) on 7-point Likert scales. The modest reported levels for threat 

susceptibility are consistent with other recent literature, which has found that users, by default, do 

not feel particularly susceptible to or raw emotional fear about information security threats (Boss 

et al. 2015), given their low relevance to one’s physical safety (e.g., Johnston et al. 2015). We call 

for future research to inform security message design in a way that will increase users’ perceptions 

of threat susceptibility. 
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2.6 STUDY 2 – FMRI 

Study 2’s fMRI protocol allowed us to assess whether exposure to security message variations 

prompted differential threat processing attention as opposed to simple visual attention. In Study 

2, we test all of the hypotheses except for the ones relating to differences in attenuation over time 

between design cells, due to limitations in the length of time that we could keep participants in the 

MRI scanner. Early-stage threat processing is thought to occur in the amygdala region of the brain, 

with later stages showing activity in the hippocampus and lateral cortex (Hofmann et al. 2012) 

(see Figure 17).  

 
Figure 17. A cognitive neurobiological information-processing model of fear and anxiety. Adapted from 

Hofmann et al. (2012) 

 

2.6.1 Design 

We drew our security warning stimuli from the same set that was used for Study 1. After a 5-

participant pilot study, we analyzed scan and behavioral data from 23 participants. In our repeated-

measures design, each participant saw the same set of 240 unique warnings with integrated facial 

expressions plus 20 images with no integrated facial expression in a randomized order which were 
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used as a baseline in the fMRI analysis. The 240 images were drawn from a 3x2 design that fully 

crossed an emotion factor (fear, disgust, neutral) with an image filter factor (posterized, photo-

realistic). Each stimulus was presented for 3 seconds with a .5 second break in between (see 

Appendix A, Figure A1). Participants were instructed to self-report whether each warning captured 

their attention (yes/no) using an MRI-compatible button box. Dependent variables included 

recorded brain activity, binary self-reported attention, and reaction time (see Appendix A). 

2.6.2 Analysis and Results 

Individual-level regressions predicting activations across the whole brain were first performed. In 

addition to including parameters for the emotion effect and image filter, these regression models 

also controlled for face actor age group and gender. The individual-level parameter estimates were 

then entered into a group-level analysis to obtain the result shown in Figure 18. After a spatial 

extent threshold of 24 voxels was applied to the group-level analysis to correct for multiple 

comparisons, only the right amygdala and two clusters within the cerebellum were identified as 

having significant differences in signal response among factor levels. Only the activations for the 

right amygdala were extracted – the two cerebellum clusters were not considered in our follow-up 

contrasts because the scanner field of focus did not capture data for these outlying regions for all 

participants. Follow-up contrasts for the emotion and factor levels were performed by extracting 

the individual-level parameter estimates for the right amygdala for each design cell. The fMRI 

parameter estimates were analyzed using the lmer function from the lme4 R package v1.1.12, 

which allowed us to control for repeated measures using a random intercept for each participant. 

Reaction time was also analyzed using a linear mixed model with random intercept per subject. 

Contrasts for emotion factor levels and filter factor levels within the right amygdala were 
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performed. glmer, also from the lme4 package, was used to analyze self-reported attention by 

fitting a general linear model with a logit link and a random intercept for each participant. 

  
Figure 18. Main effect of emotion in right amygdala, showing, 

from left to right, coronal and sagittal cuts. Activation 

threshold set at p < .05 

 

Because all comparisons tested a priori hypotheses, no corrections for multiple 

comparisons were made. One-tailed p-values are reported where appropriate.   

 

2.6.2.1 Face emotion 

Right amygdala activations. The right amygdala showed a significant main effect for the emotion 

factor (see Table 6). Follow-up analyses comparing the extracted parameter estimates among 

emotion factor levels for each participant for this region indicated that activations for disgust and 

neutral warnings did not significantly differ from one another. However, disgust and neutral 

warnings showed higher right amygdala signal responses compared to fear face warnings, (p = 

.047 and p = 0.027 respectively). Furthermore, only fear significantly differed from activations to 

warnings with no faces (see Figure 19 and also confidence intervals in Table 7).  

Table 6. Main effect of emotion by region of interest 

  Coordinates Main Effect Stimulus 

Region #Voxels X y Z 𝝌𝟐(𝟑)* p 

R. Amygdala 24 -22.0 2.0 -14.9 14.21 .003 

Analysis of deviance obtained from a linear mixed model including emotion as a fixed factor 

and participant_id as a random intercept. 
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Table 7. Least-squares means and 90% confidence intervals 

for right amygdala activations among emotion factor levels 

compared against warnings with no faces (baseline).  

Emotion LS Mean (SE)  Df 90% CI 

Disgust 0.088 (0.085) 537 [-0.051,0.228] 

Fear -0.144 (0.085) 537 [-0.284, -0.004] 

Neutral 0.106 (0.085) 537 [-0.034,0.245] 

Reaction times. An analysis of the reaction time data averaged over repeated exposures showed 

that participants took more time to respond to warnings with integrated fear and disgust 

expressions than they did for either neutral or blank images (see Figure 20, all contrast p’s < .0001). 

Neutral images also had longer reaction times than did blank warnings (p < .0001). As for trends 

over time, blank warnings had the most precipitous drop in reaction times compared to any other 

emotion factor level (all p’s < .0001). Reaction times to disgust warnings also had a steeper drop 

than did fear (one-tailed p = .016). Disgust warnings also had steeper drops in reaction times over 

repeated impressions than did neutral warnings, (one-tailed p = .041). 

Self-reported attention. The logit regression of the self-reported attention lines up closely with the 

reaction time data – participants were more likely to say that warnings with fear and disgust 

expressions captured their attention more than neutral or blank ones, and that neutral warnings 

captured their attention more than did blank ones (see Figure 21, all contrast p’s < .001). There 

was no significant difference between disgust and fear factor levels for reaction times or for 

predicted probability intercepts. 
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Figure 19. MRI activations for 

levels of emotion compared to 

faceless warning stimuli (±sem). 

Figure 20. Loess smoothing line of 

reaction time in milliseconds over 

repeated exposures by emotion 

level. 

Figure 21. Probabilities of 

responding that stimulus 

captured attention over time 

among stimulus emotion levels. 

2.6.2.2 Image Filter 

As predicted, a whole-brain analysis did not identify a significant main effect for the filter factor 

level on the right amygdala. Regardless, we extracted the individual parameter estimates for the 

region identified by the emotion main effect in order to assess any trends between filter factor 

levels that might become significant with a more powerful design. Comparisons of filter factor 

levels averaged across emotion factor levels were largely as expected. There were no significant 

differences in fMRI signal for right amygdala activation between the two filter levels (p = .467), 

although signal response to posterized security warnings trended towards lower activation 

compared to photo-realistic security warnings (see Figure 22 and Table 8). Once again, neither 

filter factor level differed significantly from 0, meaning that right amygdala activations to these 

stimuli were not significantly different from blank warnings (the baseline – see Table 8). Reaction 

times averaged across repeated exposures between the two filter factor levels were not significantly 

different (see Figure 23). However, participants were more likely to report that posterized faces 

captured their attention than did photo-realistic ones – ∆ log(odds) = 0.358, p < .0001 (see Figure 

24). 
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Table 8. Least-squares means and 95% confidence intervals for 

right amygdala activations among filter factor levels compared 

against warnings with no faces (baseline).  

Filter LS Mean (SE)  Df 90% CI 

Photo-realistic -0.016 (0.176) 24.74 [-0.378,0.347] 

Desaturated -0.144 (0.085) 24.83 [-0.440,0.285] 

 

   
Figure 22. MRI activation betas 

for levels of filter. No significant 

difference between levels. 

Figure 23. Predicting reaction 

time over multiple exposures by 

filter level. 

Figure 24. Predicting probability 

of attentional self-report by filter. 

2.6.3 Discussion 

We now discuss the results of study 2 from the perspective of each of the hypotheses. A summary 

of the findings is presented in Table 9. 

2.6.3.1 Regions of Interest 

Relying on previous literature and on models of threat processing, we expected to find differential 

activations within two ROIs – the amygdala and the insular cortex (Anderson et al. 2003; Hofmann 

et al. 2012) (see Figure 17). Our whole-brain analyses for the emotion factor did point to the right 

amygdala, but not the insular cortex. This may suggest that for small effect sizes such as the ones 

our protocol was likely to elicit, the amygdala is more sensitive than is the insular cortex. Or, the 

lack of activation on the insular cortex signal response levels could suggest that our participants 

never moved beyond the “perception of potential threat” phase to the “detection of threat” phase. 
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This is desirable – as we stated before, it is not desirable to push users into a state of emotive fear 

or high stress every time they interact with a security warning. The “perception of potential threat” 

phase alone should foster threat attention, which should in turn lead to closer engagement with the 

security warning (see Figure 1). 

 

Table 9. Summary of hypothesis tests for Study 2 for each dependent variable 

Hypothesis Contrast 

Analysis 

type S
u

p
p

o
rt

ed
*
 

Notes 

H1 – 

Overall 

effect of 

face 

Blank 

< neutral 

fMRI – 

right 

amygdala 

N 
Greater than baseline but not statistically significantly so. BOLD 

response = 0.111, 90% CI = [-0.033, 0.255] 

RT Y Supported, ∆ = 985 ms, t=8.938, p < .0001 

Self-report Y Supported. ∆ log(odds) = -1.047, p < .0001 

< fear 

fMRI – 

right 

amygdala 

N 
Contraindicated. Fear was less than baseline. BOLD response = 

–0.162, 90% CI = [–0.305, –0.019] 

RT Y Supported, ∆ = 1098 ms, t = 9.935, p < .0001. 

Self-report Y Supported. ∆ log(odds) = 2.512, z = 16.261, p < .001 

< disgust 

fMRI – 

right 

amygdala 

N 
Greater than baseline but not statistically significant so. BOLD 

response = 0.082, 90% CI = [-0.060, 0.224] 

RT Y Supported, ∆ = 1087, t=9.837, p < .001 

Self-report Y Supported. ∆ log(odds) = 2.466, z = 15.917, p < .001. 

H2 – 

Overall 

effect of 

threat face  

Neutral 

< fear 

fMRI – 

right 

amygdala 

N 
Contraindicated. Fear less than neutral. ∆ BOLD response = –

0.273, t=-2.222, p=.027. 

RT Y Supported, ∆ = 112 ms, t = 6.514, p < .001. 

Self-report Y Supported. ∆ log(odds) = 1.464, z = 16.486, p < .001. 

< disgust 

fMRI – 

right 

amygdala 

N 
No significant difference. ∆ BOLD response = -0.029, t=-0.240, 

p=.811. 

RT Y Supported, ∆ = 101.59 ms, t=5.828, p < .001 

Self-report Y Supported. ∆ log(odds) = 1.419, z = 15.839, p < .001. 

H3 – 

disgust vs 

fear face 

Disgust > fear 

fMRI – 

right 

amygdala 

Y 
Supported, predicted direction. ∆ BOLD response = 0.244, 

t=1.994, p=.047. 

RT N Not supported. ∆ = -10.54 ms, t= -0.572, p=.567. 

Self-report N 
Not supported. No difference in means. Delta log(odds) = -0.046, 

z=-0.498, p=.619. 

H4 – filters Realistic 
= 

Posterized 

fMRI – 

right 

amygdala 

Y 
Supported, no difference. ∆ BOLD response = 0.062, t=0.728, 

p=.467. 

RT Y 

Supported. No statistically significant difference between 

reaction times to realistic or posterized stimuli. ∆ = 8.276 ms, 

t=0.606, p=.545. 

Self-report N Not supported. ∆ log(odds) = 0.3578232, z=5.108. p < .0001. 

*For “supported” column, “Y”= Supported, N=”Not supported”. 

“RT” = reaction time. 
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2.6.3.2 Face Emotion 

Fear’s low activations in Study 2 may be explained by post-study interviews from an fMRI pilot 

study, which suggested that the fear faces appeared humorous to some subjects. This was an 

interesting finding because the emotional valence of the photo set we used had been pre-validated 

(Ebner et al. 2010). Furthering the mystery, standalone fearful facial expressions have been found 

to consistently elicit right-amygdala activations in other fMRI studies (e.g., Anderson et al. 2003). 

It is possible that the fearful facial expressions invoked a different response than is typical once 

they were interjected into our security message instrument. However, after we applied the oval 

crop and desaturation after the fMRI pilot2, participants no longer reported that the fearful faces 

appeared humorous. An alternative explanation for the lower right amygdala activations for fearful 

facial expressions is that the fearful facial expressions interact with low-level threat concern that 

participants feel even when exposed to blank information security warnings with their default 

threat cues (e.g., the color red and the red stop-sign ‘X’ symbol). It is possible that when a fearful 

facial expression is interjected into this context, it serves as a social confirmation that the threat is 

legitimate, calming any uncertainty users may have otherwise felt in the absence of the social cue 

afforded by observing the reaction of another. Discrediting this proposition, however, is the 

                                                 

2 Chronologically, the fMRI pilot was performed before the field study, which led us to use oval 

crop images for the field study as well as for the fMRI study. 

Table 10. Summary of hypothesis testing for Study 2 

Hypothesis Contrast Summary 

  YY N 

H1 – Overall effect of face Blank < [neutral, fear, disgust] 6 3 

H2 – Overall effect of threat face  Neutral < [fear, disgust] 4 2 

H3 – Disgust vs fear face Disgust > fear 1 2 

H4 – Filters Realistic = Posterized 2 1 
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findings of Study 1, which showed that, in a realistic field study, security warnings with integrated 

fearful facial expressions were often just as effective as disgust facial expressions at prompting 

secure behaviors. Further discrediting this theory is that, if the calming effect were true, we might 

expect a similar outcome from exposures to security warnings with disgust facial expressions. 

The longer reaction times for warnings with integrated facial expressions of threat 

compared against neutral-expression-integrated warnings and compared against blank warnings 

suggests that threat-face-integrated warnings elicit greater elaboration over the security warnings, 

supporting H2. Neutral warnings also had longer reaction times than did blank warnings, 

supporting H1. However, no differences were found in response times between fearful and disgust 

factor levels, which suggests that the effect is not discriminatory between threat face type. This 

weakens H3.  

2.6.3.3 Face Filter 

We predicted that warnings with integrated photo-realistic faces would show either no difference 

compared to ones in integrated posterized faces as long as the essential facial elements were 

discernible (eyebrows, mouth, eyes). Or, that if there were differences, posterization would draw 

slightly less threat attention than would photo-realism. As with Study 1, the practical intention of 

this prediction was largely supported. No significant differences were found on right amygdala 

activation or on response times between photo-realistic and posterized warnings. However, 

participants were more likely to report that posterized images captured their attention than did 

photo-realistic ones. Also, the difference in right amygdala activation trended towards photo-

realistic images eliciting greater threat attention compared to posterized images, although this 

difference was small.  Thus, as in Study 1, we find support for the notion of H4, in that posterizing 
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a facial expression does not substantially negatively impact its performance on prompting threat 

attention compared to photo-realistic faces in warnings.  

2.6.3.4 Limitations and Future Research 

The fMRI design has limitations: The intervention inside the fMRI machine lacked external 

validity because of the absence of an actual threat. Furthermore, each participant saw 240 warning 

images with integrated facial expressions + 20 warnings without facial expressions over the course 

of about 20 minutes. While such repetition was necessary in order to simultaneously test emotion 

and filter factor levels while controlling for actor age and gender, this hampered the 

generalizability of the protocol. Whereas other studies have studied reactions to images of security 

messages using an fMRI protocol, those studies varied the base warning template on which their 

treatments were imposed (i.e., software installation warnings, browser warnings, macro warnings). 

Contrastingly, in our study, participants saw warning stimuli variations based on only one type of 

security warning (the Chrome malware warning) for every security warning they were exposed to 

during our protocol. This high level of visual similarity between all stimuli may have led to high 

levels of habituation despite the different integrated facial expressions, effectively overwhelming 

any true differences that differential emotive faces integrated into security messages would invoke 

(see Rankin et al. 2009, Characteristic #7). Further supporting the notion that the effects may have 

been overwhelmed is found in comparing the results of Study 2 to the between-subjects limited-

warning-exposure design of Study 1.  

We also note that, more often than not, the levels for the emotion and filter factors were 

not found to elicit significantly different activations compared to the baseline. In hindsight, this 

may be due to the fact that the ratio of baseline warning images to warnings with faces was 1:12. 

This low relative frequency for the baseline may have led to the “oddball effect” (Squires et al. 
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1975), which describes how attention is much more likely not when exposed to an infrequent 

stimulus, not necessarily because of the inherent characteristics of a stimulus, but only because the 

stimulus’s occurrence is rare. We suspect that if our ratio of baseline warning images to warning 

images with faces were more balanced, then the confidence intervals for the factor levels’ least-

squared means would have been more likely to differ from zero. This would have led to the fMRI 

data supporting our first hypothesis – namely, that warnings with faces are more likely to garner 

attention than are warnings without faces.  

One suggestion for future research to increase power without having to expose participants 

to so many trials is to decrease the repetition time (TR) used during scanning. The TR time is a 

measure of the interval between successive whole-brain captures that the scanner can take. The 

lower the TR, the faster the capture. The configuration of the scanner we used could at best lower 

the TR to 2 seconds. We reasoned that an event such as threat attention to a security message 

would not last longer than the span of one TR, especially given the finding that many warnings are 

responded do within 3 seconds or less in the field (Akhawe and Felt 2013). Therefore, we were 

only able to acquire one sample per warning shown. It is possible, however, to drop the TR to 

much lower levels. If a TR of 0.5 seconds could be achieved, for example, then at least four 

samples could be obtained for each warning exposure, quartering the number of warnings that 

participants would need to see in order to achieve the same statistical power that we had in our 

protocol, and likely substantially reducing the effects of attenuation and habituation. If the TR 

were dropped to a sufficiently low number (such as 0.5 seconds with 5 samples per warning 

impression), and if the baseline stimulus were not a security warning, and if sufficient funding 

were obtained to run a between-subjects design, then it is possible that each participant would only 

need to see, at minimum, 2 warnings (which would provide 10 samples – the minimum 
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recommendation requirement per cell for fMRI studies). If only 2 warnings were required, then 

the doors open wide for new interruptive security message protocols that are significantly more 

realistic and less susceptible to within-study stimuli attenuation. Thus, power would be 

substantially improved. 

2.7 STUDY 1 AND 2 – GENERAL DISCUSSION 

While the discussion subsections specific to studies 1 and 2 examine the particulars of those studies 

in detail, this discussion section touches on points that overarch the two studies. Table 4 and Table 

9 provide hypothesis support summaries for studies 1 and 2 respectively, and Table 11 gives an 

overview of support for the hypotheses across both studies. 

Table 11. Summary of hypothesis testing across Studies 1 and 2 

Hypothesis Contrast 

Summary 

 Y N 

H1 – Overall effect of face Blank < [neutral, fear, disgust] 
Study 1 9 3 

Study 2 6 3 

H2 – Overall effect of threat face  Neutral < [fear, disgust] 
Study 1 3 5 

Study 2 4 2 

H3 – disgust vs fear face Disgust > fear 
Study 1 1 4 

Study 2 1 2 

H4 – Filters Realistic = Posterized 
Study 1 4 0 

Study 2 2 1 

 

Hypothesis 1 found moderately strong support across both studies (75% and 66% of tests 

supported, respectively). This follows the findings of Amer and Maris (2007) where the 

introduction of any new stimulus, in this case any facial expression, will renew attention to security 

messages.  
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Hypothesis 2 found some support in Study 1 (37.5% of tests supported) and also in Study 

2 (66% of tests supported). The lower support in Study 1 is likely due to that study’s insufficient 

power to detect the small effect size. The effect size for Study 2 was larger likely because 

participants were not as distracted during this protocol. For example, they were not distracted by 

a bonus loss or by concern for their computer’s safety. 

Hypothesis 3 did not find strong support in either study (20% and 33% of tests supported 

respectively). This is surprising, given that differential activations were previously observed 

between exposures to fear and disgust facial expressions in another study context (Anderson et al. 

2003), and because experiencing disgust includes less uncertainty than does feeling fear (Morales 

et al. 2012). In retrospect, the differential prediction of uncertainty between fear and disgust 

emotions requires that an individual actually experience that emotion, rather than merely engaging 

in low-level neural precursors (Hofmann et al. 2012). We may conclude from this that participants 

did not reach the state of experiencing disgust or fear themselves. 

Hypothesis 4 was supported by both studies (100% and 66% tests supported, respectively), 

in that posterizing a security-message-integrated facial expression did not diminish its likelihood 

of eliciting secure behaviors such as adherence and attention. In fact, posterizing a facial 

expression often elicited higher levels of attention markers (while no differences were observed 

on adherence). The solarized effect of the face posterization may have been more visually 

interesting for participants. We note that even for the posterized warnings, threat faces elicited 

higher attention marker levels than did neutral faces. We anticipate that more benign 

cartoonization, such as facial expression line drawings, would still show the patterns of activations 

that we observed. 
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Besides the direct contribution provided by the hypothesis tests, these studies also 

contribute peripherally to the conversation on differences between lab and field studies for human-

computer interaction information security contexts. Study 1 used a realistic field context, while 

Study 2 (fMRI) used a lab context. Lab contexts introduce several challenges to the reliability of 

security studies because of the security-specific biases that they introduce, such as feeling 

irrational protection from security threats because of being in a physical lab and because of the 

proximity to research personnel (Sotirakopoulos et al. 2011). It is interesting that the behavioral 

dependent variables from Study 2, including reaction times and self-reported attention, still 

supported our hypotheses, despite these biases (see Table 9). These behavioral measures were also 

supportive of the same hypotheses in the much more ecologically valid field study setting of Study 

1. 

2.7.1 Limitations and Future Research 

One of the driving limitations of studies 1 and 2 is that their protocols did not afford the opportunity 

to test the attenuation rates of face-integrated security warnings over repeated exposures. As 

Rankin et al. (2009) observes, habituation rates to a stimuli are dependent on the length of time 

between the stimuli presentations. Exposing users to multiple security warnings within a short time 

period is probably not similar to rates at which users typically see warnings of the same type, let 

alone of different types. To test the habituation rates ideally, a longitudinal protocol could be 

employed that would present warnings to users separated by days or weeks. Such a protocol is 

fraught with difficulty, however, because unless an omniscient tool were installed on users’ 

computers, it would be impossible to know what other kinds of real warnings (warnings not 

presented by the research software) participants were exposed to during the timeframe. Knowing 
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all of the different types of security messages that users would see would help control for 

generalized habituation rates, which occurs when being exposed to stimuli from the same class 

(i.e., security messages from two different software suites with entirely different visual design) 

impacts a habituation process to security messages in general. This variance could be addressed 

by delegating the issue of generalized security message habituation to random assignment in a 

mixed between-subjects design with repeated measures, such as was used in the protocol of study 

2. One software could be focused on, such as malware warnings presented by one particular 

browser. Participants could be instructed to use a browser version that had had experimental code 

injected into it by the experimenters, such as could be done with Chromium. If full control were 

had over such a browser, then it would be possible to know each legitimate security warning that 

was presented during the study, as well as feigned ones. Conversely, the browser could only present 

security messages for legitimate threats, varying the presentation of the message between groups. 

Participants could be instructed to perform some task that would make it more likely that they 

would encounter legitimate warnings, institutional review boards allowing. Such a design would 

rate very highly on realism, and internal validity would be fairly well controlled for considering 

the typical history threat inherent in longitudinal designs. 

One might argue that the practical significance of the effect sizes for the different 

treatments is relatively small – that a difference of a few milliseconds is negligible. The following 

counterarguments are offered: (1) Any difference in markers of cognition may make a difference 

in an individual not succumbing to an information security threat and suffering the accompanying 

stress and other fallout from the incident. (2) Our treatments only aimed to impact the very earliest 

stage of warning processing according to the Wogalter (2006a) communication-human 

information processing model (see Figure C-1), and a security warning is a careful orchestration 
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of many components, all of which contribute towards influencing whether a user heeds a security 

warning. In summary, the incremental value of our security warning treatments is of high value 

even if it makes a difference for only one user (of course, we expect the number of users benefitting 

to be much higher than one). 

The study design also afforded the opportunity to test for an interaction between the 

emotion and filter factors. We surmised, post-hoc, that it is possible that the effects of the 

treatments are amplified for threat faces compared to neutral faces. However, follow-up analyses 

testing for an interaction between the face emotion and the face filter found no significant 

differences. 

 

2.8 STUDIES 1 AND 2 – CONCLUSION 

The two studies presented in this section tested the integration of human facial expressions into 

interruptive security messages, with the aim of improving end user security behaviors, including 

attention to the warnings. They corroborated multiple dependent variables, including self-report, 

reaction times, mouse-cursor movements, and fMRI data, to test the hypotheses. These were tested 

in a lab setting and in a field study with participants using their own computers. All dependent 

variables excepting the fMRI data support the integration of facial expressions of threat into 

interruptive security messages for improving security behaviors. An improved fMRI protocol is 

described which would more closely map to typical security message decision contexts. Lastly, 

tests suggested that making artistic renderings of the faces did not negatively impact the 

performance of the warnings on eliciting desirable security behavior outcomes. Theory has 
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benefitted from the extension of media naturalness theory into an information security context, 

and practitioners can benefit from the security warning design guidance that these studies afford. 

Future research can further test the efficacy of these interventions over repeated exposures in a 

longitudinal study spanning days or weeks. 
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3.0  STUDY 3 – APPLYING RISK TRADEOFF PARADIGMS TO EXPLAIN USER 

INTERACTIONS WITH INTERRUPTIVE SECURITY MESSAGES 

3.1 MOTIVATION 

While the first two studies have argued that attention to security messages is essential for 

purposeful adherence by end users, this study highlights that motivation to adhere is also 

important. Even if attention to a security message is present, attention absent motivation will, in 

the end, be more likely to result in non-compliance (Wogalter 2006a). Focusing on message 

motivation assumes that attention to the message is already in place, which is why this study 

follows the first two.  

Information security research has explored why individuals violate security policies and 

fall victim to attacks. Some studies make an underlying assumption that users make active risk-

taking assessments for every security decision, prompted by security messages (Boss et al. 2015; 

Johnston et al. 2015). A “lazy user” perspective depicts security as an unnecessary burden that 

should be bypassed if possible. Many studies use deterrence theory, testing the efficacy of using 

sanctions to influence security-related decision making (e.g., D'Arcy and Herath 2011; Johnston 

et al. 2015). Another camp takes the position that “users are not the enemy” (Adams and Sasse 

1999), eschewing criminology-inspired sanctioning deterrence, and attributing security 

misbehavior largely to inattention and habituation (Anderson et al. 2016a; Anderson et al. 2016c). 

In this view, if a security message is ignored, the design of the interface is to blame. We question 

how these two stances coexist – purposeful risk-taking security decision making does not seem 

congruous with inattentive dismissal of security messages. 
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The purpose of this study is to attempt to reconcile the differences between the two camps 

of research on user interactions with security messages. In our study, we employ a between-

subjects repeated-measures field study using Amazon Mechanical Turk with 510 subjects. In our 

design, we influence the risk-taking tradeoff by varying the value of adhering to security messages. 

Corroborating several dependent variables, including security choice, reaction times, and mouse-

cursor movements measures, we discover an interesting bimodal pattern where attention is not 

dependent on risk tradeoff levels, but where warning adherence is dependent on the risk tradeoff 

levels. The findings suggest that participants make security decisions ahead of time, with the 

decisions being dependent on the risk tradeoff values. 

3.2 LITERATURE REVIEW AND HYPOTHESES 

3.2.1 Security message inattention 

As discussed in the literature review for Studies 1 and 2, a major contributor to security message 

failure is a basic lack of attention to the message (e.g., Anderson et al. 2016b; Bravo-Lillo et al. 

2014; Schechter et al. 2007). Drawing on the attention findings presented earlier, one possible 

pattern is that users rarely engage in risk-taking assessments when interacting with security 

messages, regardless of varying levels of tradeoff in the risk-taking decision. This would suggest 

that users are habituated to the messages, and are performing automatic, learned responses when 

encountering new ones. If this is true, then research should focus mainly on fostering attention to 

the messages, so as to increase the likelihood that users will engage with the messages and make 

meaningful choices. 
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H1: There will be no difference in markers of cognition between varying risk-taking 

tradeoff levels (i.e., there will be consistently low attention and low warning adherence). 

3.2.2 Risk tradeoffs 

Risk has been studied in an information security context typically through the lens of protection 

motivation theory (Rogers 1983), wherein the constructs of threat severity and threat susceptibility 

essentially represent the security threat’s risk levels (Boss et al. 2015; Johnston et al. 2015; 

Johnston and Warkentin 2010). Individual differences in risk perceptions have also been used to 

predict security message disregard (Vance et al. 2014). 

In this study, we consider a different facet of information security risk -- the risk tradeoff 

associated with adhering to the security message. Inherent in the idea of risk is that there is 

something to be gained from taking the risk. In the finance literature, risk tradeoff is quantifiable 

as the potential return on investment, with willingness to accept the risk being a function of the 

magnitude of the return (Ghysels et al. 2005). This same concept of risk-taking behavior being 

positively associated with the potential gains or loss-avoidance involved has also been described 

in the behavioral economics literature (e.g., Kahneman and Tversky 1979).  

Risk-tradeoff applies to the context of information security messages in that one risks a 

security threat in exchange for some benefit. Guo et al. (2011) captures the motivation to 

intentionally violate organizational information security policies with their "relative advantage for 

job performance [from violating a policy]" measure. Interruptive security messages often block or 

hinder users from completing their primary tasks (Jenkins et al. 2016). Observance of the security 

policy adds stress and requires more effort to complete the primary task. Failing to complete the 

task or taking longer to complete it may lead to poor employee performance evaluations. Users, 
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perceiving this, may be motivated to disregard security policy and ignore security messages 

(Lowry and Moody 2015). To capture these tradeoffs, we will vary the “penalties” associated with 

heeding the message, while holding constant security threat severity and susceptibility. 

We use the risk-taking paradigm to propose the first component of an alternative to H1, 

wherein users nearly always engage in risk-taking assessments when encountering security 

messages, with the likelihood of security message adherence depends on the tradeoff weights. This 

view assumes that attention is sufficiently present to prompt risk-tradeoff appraisals, and supports 

studying the impact of levels of perceived risk on users’ security message risk-taking assessments. 

The existence of the tradeoff assessments can be discerned if lower rates of adherence are present 

as the tradeoff scale is increasingly tipped towards heeding a message being the more penalizing 

choice (i.e., the choice with greater tradeoff), holding risk constant. 

H2a: The relationship between the balance of risk-taking and adherence to interruptive 

security warnings will be strictly monotonic: e.g., security message heedance will always 

decrease as heedance increasingly becomes the more penalizing choice. 

3.2.3 Cognitive elaboration as a function of risk-tradeoff balance 

We now develop a second component to the alternative to H1. Whereas H2a focused on patterns 

of adherence, this component of H2 pertains to the degree of attention to (elaboration over) an 

interruptive security warning, dependent on the balance of the between risks and benefits. This 

hypothesis component draws from principles of the heuristic-systematic model of information 

processing (HSM, Chen and Chaiken 1999) to predict whether a user will cognitively engage with 

a security warning. HSM, a theory of persuasion, finds early expression in the script concept 

(Abelson 1981). The script concept asserts that an individual will follow a “script” and grant small 
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requests without cognitive elaboration, as long as a reason is given. Individuals will be likely to 

perform this script unless (1) the script is broken by not providing a reason or if (2) the request is 

large, in which case they will elaborate over the request and the reason before deciding whether to 

accept it.  

We predict that the perceived risks involved will impact whether or not a user elaborates 

over a security-message decision. To our knowledge, while HSM has been evaluated in a risk 

judgement paradigm (Trumbo 2002), the impact of the balance of the risk tradeoff has not been 

examined in an HSM frame. We will manipulate the risks involved for heeding the warning. If the 

script theory concept or HSM elaboration prediction holds, we expect to see a bimodal distribution 

of behavior across risk levels, where after a certain threshold of risk tradeoff for adhering to the 

message is surpassed, elaboration will be much less likely. From the habituation-theory lens, the 

scripted behavior would be to rely on memory, which would result in little scrutiny of the at-hand 

security message (c.f. Böhme and Köpsell 2010; Sunshine et al. 2009). The tradeoff behavior will 

involve whatever task was interrupted by the security message. If adhering to the message will not 

adversely impact the interrupted task, then the risk-benefit balance will be more balanced, and 

elaboration over the decision should be more likely to occur. In summary, we posit that if users 

perceive that the benefits of heeding a warning are close to the accompanying losses (e.g., time 

lost or inability to complete an objective), then they will more carefully consider the risk tradeoff 

before making a decision. However, if the tradeoff choice is clear, then users will be less likely to 

engage in elaboration, and instead their behavior will more closely follow patterns of lower 

attention and automatic choices. 

H2b: The pattern of attention to interruptive security warnings will be bimodal: the risk 

decision will either be elaborated over or not, depending on how (un)balanced the risk-

benefit balance is. 
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3.3 RESEARCH DESIGN 

We used the same deception protocol that was described in Study 2. On top of a $1.25 base 

payment, participants were offered an additional $1.25 performance-based bonus payment. Each 

incorrect classification results in a “penalty” decrease in their bonus payment, with the penalty 

amount depending on a participant’s randomly assigned treatment group. Four penalty level 

treatment groups were used: 1, 5, 10, and 25 cents. We chose these increments because they 

mapped naturally to U.S. coinage so that the penalty would have high salience (i.e., high tangibility 

or ability to visualize, compared to $1.57 vs $1.92 vs. $3.24, which would take greater visualizing 

effort for users to compare). Dependent measures tested were the same ones as collected for Study 

2: warning choice, reaction time, and mouse-cursor movement measures. 

3.4 ANALYSIS AND RESULTS 

As in Study 1, with our sample size of 510 participants, G*Power 3.1.9.2 reports that with four 

treatment groups (one for each amount level) and a high expected correlation among the repeated 

measures (.95), we have sufficient statistical power to detect, at least, a medium-small effect size. 

Following the findings from Study 1 about participants suspecting deception after the fourth 

warning, we only included up to four warning impressions for each participant in any analysis. All 

continuous dependent variables (e.g., reaction times, mouse cursor click latency, and mouse cursor 

time idle) in models testing effects across time were natural-log-transformed to remedy non-

normality of residuals and heteroskedasticity. 



64 

To determine whether to include covariates in our analyses, we tested whether several 

items were predicted by the emotion or filter treatment. The potential covariates that we tested 

were participant age, gender, preferred operating system, preferred browser, task performance 

accuracy, and whether English was their first language. We ran separate ANOVAs for each 

potential covariate with Type 2 errors on linear models, each including the emotion effect, the 

filter effect, and their interaction as independent variables. None of the omnibus F tests from any 

of these tests were significant at an alpha level of .05, so no covariates were included in any 

analyses. None of the omnibus F tests were statistically significant even when the alpha level was 

relaxed to .10. 

The exploration of the pattern of ratio of warnings ignored over time for each participant 

presented in Appendix B is also relevant to this study. Again, the exploration shows that the 

majority of participants (80%) were perfectly consistent across warning exposures in whether they 

ignored or heeded the warning. As in study 1, the likelihood of perfect consistency was not 

dependent on the assigned treatment group (in this case, the assigned penalty level). Because 

perfect behavioral consistency was not dependent on penalty treatment group, a discussion of it 

will be postponed until section “4.0 – Final Discussion and Conclusions”. 

3.4.1 Warning adherence rates 

To test for differences in adherence rates (whether a participant ignored a warning), we 

performed an empirical logit analysis (Barr 2008). We specified a fixed effect for treatment group, 

a fixed effect for the number of warnings seen, an interact effect between these two fixed effects, 

and a random intercept for each participant. The interaction effect between number of warnings 

seen and penalty group (the slope) was not statistically significant, 𝑊𝑎𝑙𝑑 𝜒2(3) = 7.537, 𝑝 =
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.057. An ANOVA found significant differences among treatment groups on whether the warning 

was ignored, 𝑊𝑎𝑙𝑑 𝜒2(3) = 23.308, 𝑝 < .001. Averaged across warning exposures, participants 

in the 1-cent penalty treatment group were not significantly more likely to ignore warnings than 

were participants in the 5-cent penalty group (∆𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 10%, 𝑝 = .128). But, participants 

in the 1-cent treatment group were 14% less likely to ignore warnings than were participants in the 

10-cent and the 25-cent treatment groups (p’s < .0001). Participants in the 5-cent treatment group 

were 12% less likely to warnings than were participants in either the 10-cent or 25-cent treatment 

groups (p = .011 and p=.014 respectively). Participants in the 10-cent treatment group were just as 

likely to ignore warnings than were participants in the 25-cent treatment group (p=.958) 50% 5-

cent penalty treatment group were 32% less likely to ignore the warning than were participants in 

the 10-cent penalty treatment group (p= .001), and 39% less likely to ignore the warning than 

participants in the 25-cent penalty treatment group (p <  .001) (see Figure 25 and Table 12).  

 
Figure 25. Empirical logit comparing probabilities 

of ignoring warnings across exposures for each 

penalty treatment group. 
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Table 12. Log odds and pairwise comparisons (alpha < 

.05) of empirical logit analysis predicting warning 

adherence 

Penalty 

treatment 

group 

(cents) 

log 

odds SE df 

Pairwise 

comparison 

group 

1 -0.188 0.0888 497.47 1 

5 0.002 0.0872 499.66 1 

10 0.321 0.090 497.04 2 

25 0.314 0.091 497.02 2 

3.4.2 Reaction time. 

We tested for the impact of treatment group on a log transformation of reaction time using a linear 

mixed model with random intercept for each participant, along with fixed effects for treatment 

condition, number of warnings seen, plus an interaction between the fixed effects. However, 

neither the omnibus test for the interaction effect nor for the main effect found significant 

differences (𝜒2(3) = 3.324, 𝑝 =  .334 and 𝜒2(3) = 4.635, 𝑝 = .201 respectively) (see Figure 

26). 

 
Figure 26. Untransformed reaction time (in milliseconds) 

plotted across time for each penalty treatment group. 
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3.4.3 Mouse cursor measures 

While we had many mouse cursor measures available to test, we only present the two that were 

analyzed in Study 1, for the sake of symmetry between the two studies. We explored other mouse 

cursor measures not reported below and found similar result patterns for the penalty treatment 

group factor, for first-impression-only and for first-four impression analyses. 

3.4.3.1 Mouse-cursor: Click latency 

We first performed analyses on the log-transformed transformation of the click latency measure. 

For our first analysis of this dependent variable, we only considered the mean difference between 

treatment groups for the first warning exposure for each participant. However, no significant 

differences were found among penalty treatment group levels in the omnibus test, 𝐹(3,205) =

0.441, 𝑝 = .724. We also tested a model that included the first four warnings for each participant. 

This model had an interaction effect for the number of warnings seen with the penalty treatment 

group, a fixed effect for the penalty treatment group, as well as a random intercept for each 

participant. However, neither the interaction effect nor the main effect was significant in this 

model, either (𝜒2(3) = 2.638, 𝑝 = .451 and 𝜒2(3) = 3.541, 𝑝 = .315 respectively) (see Figure 

27 and Figure 28).  
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Figure 27. Click mean latency for first warning 

impressions only. 

Figure 28. Click mean latencies for each penalty 

treatment group for the first four warning 

impressions. 

3.4.3.2 Mouse-Cursor: Time Idle 

We followed the same approach for the mouse-cursor time idle measure as we did for the click 

latency measure. We first performed analyses on the log-transformed transformation of the click 

latency measure. For our first analysis of this dependent variable, we only considered the mean 

difference between treatment groups for the first warning exposure for each participant. However, 

no significant differences were found among penalty treatment group levels in the omnibus test, 

𝐹(3,205) = 0.536, 𝑝 = .658. We also tested a model that included the first four warnings for each 

participant. This model had an interaction effect for the number of warnings seen with the penalty 

treatment group, a fixed effect for the penalty treatment group, as well as a random intercept for 

each participant. However, neither the interaction effect nor the main effect was significant in this 

model, either (𝜒2(3) = 1.724, 𝑝 = .632 and 𝜒2(3) = 1.696, 𝑝 = .638 respectively) (see Figure 

29 and Figure 30). 
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Figure 29. Time idle for first warning impressions 

only. 

Figure 30. Time idle for each penalty treatment 

group across for the first four warning impressions. 

3.4.4 Survey results 

When participants were asked whether they noticed a bonus penalty for each incorrect response, 

500 reported “yes”, while 10 reported “no”.  Conflictingly, 8 of the 10 participants who reported 

not noticing the bonus penalty also reported having at least some concern about the bonus status 

bar. Despite these oddities, all participants were retained in the analysis to provide “a more robust 

testing of the hypotheses” (Straub et al. 2004, p. 408). 

ANOVAs were performed on three survey items to test for differences among groups. The 

items measured warning concern, penalty concern, and concern over the bonus status. Warning 

concern and penalty concern were measured on a scale of 1 (“not at all concerned”) to 11 

(“extremely concerned”). Bonus status was on a scale of 1 (“Never”) to 5 (“Very often”). Items 

were measured with the following questions: For warning concern, “how concerned did the 

warning make you feel?”; for penalty concern, “How concerned did the bonus penalty make you 

feel?”; for bonus status: “How often did you check the bonus status bar?”  
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No differences were observed among responses to warning concern or bonus status concern 

(𝐹(3,506) = 2.187, 𝑝 = .089 and 𝐹(3,506) = 1.71, 𝑝 = .164 respectively). As would be 

expected, differences were observed among concern over the penalty (𝐹(3,506) = 11.82, 𝑝 <

.0001. Participants in the 1-cent penalty group reported lower concern over the penalty than did 

participants in any other group (all p’s < .0001, Bonferroni-adjusted). No other differences among 

treatment groups on penalty concern were observed, although an expected upwards trend is 

observed (see Figure 31 and Figure 32).  

We also tested for differences among reports of perceived malware risk, malware threat 

severity, threat susceptibility, and malware fear. Differences were observed among penalty 

treatment groups for reports of perceived threat severity (𝐹(3,506) = 3.322, 𝑝 = .020). 

Participants in the 1-cent penalty group reported marginally higher perceived threat severity than 

did participants in the 10-cent penalty group (p = .068, Bonferroni-adjusted). Participants in the 5-

cent penalty group also reported higher perceived threat severity than did participants in the 10-

cent penalty group (p = .033, Bonferroni-adjusted). No differences were observed among penalty 

treatment groups for perceived risk (𝐹(3,506) = 0.800, 𝑝 = .495), threat susceptibility 

(𝐹(3,506) = 1.549, 𝑝 = .201), or fear of security threats (𝐹(3,506) = 0.878, 𝑝 = .452) (see 

Figure 33). 



71 

  

Figure 31. Self-reported values for two “concern” 

items, scale of 1 (“not at all concerned”) to 11 

(“extremely concerned”). 

Figure 32. Self-report for “How often did you check 

the bonus status bar?”, scale of 1 (“Never”) to 5 

(“Very often”). 

 

 

Figure 33. Unadjusted means for four self-reported 

measures for each penalty treatment group. The variables 

are perceived risk (PR), malware threat susceptibility 

(SUS), malware threat severity (SEV), and fear of 

malware (FEAR). 
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3.5 STUDY 3 – DISCUSSION 

We tested for differences on various outcomes: (1) actual adherence rates, (2) reaction times, and 

two mouse cursor movement statistics: (3) click latencies and (4) time idle. Our hypotheses were 

informed by competing bodies of literature. The view that users are desensitized to warnings and 

that they do not consider underlying risks informed H1, while H2a and H2b were based on the 

assumption that users engage in meaningful threat assessments for each security decision.  

In our results for actual adherence rates, participants who were only penalized 1 or 5 cents 

per incorrect answer were much less likely to ignore the warning than were participants were 

penalized either 10 or 25 cents per incorrect response. This was expected – a penalty of 10 cents 

and 25 cents represented losses of 8% and 20% of the available $1.25 bonus that participants stood 

to earn, respectively. Using a risk tradeoff paradigm, participants appeared to be more likely to 

trade anywhere 4% or less of their bonus to avoid a security risk than they were to trade anywhere 

above 12.5%. One interesting observation is that there were no observed differences in adherence 

rates between the 10-cent and 25-cent treatment groups, or between the 1-cent and 5-cent treatment 

groups. This suggests that the risk-analysis tradeoff in which individuals engage is not necessarily 

strictly monotonic, but rather, that it is modal. This conflicts with a strict interpretation of H2a, 

which predicted that adherence rates would always change with a change in penalty levels. 

However, one alternative interpretation of our findings is that the change in adherence rates 

reached nearly asymptotic levels along a very steep curve at the level of the 10-cent penalty group. 

Supporting this interpretation, differences, albeit statistically insignificant ones, were observed 

between the 1-cent and 5-cent penalty groups (see Figure 25). With this interpretation and with the 

asymptote assumption, H2a is supported.  
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In this study, an 8% penalty – a mere increase of 4 percentage points over the next-lowest 

treatment group – was sufficient to substantially boost the rates of security warning disregard (the 

10-cent treatment group was 32% more likely to disregard the warning than was the 5-cent group, 

see Figure 25). These results may generalize to the workplace: individuals at work may engage in 

these risk-taking tradeoffs when they are interrupted by security messages. Time lost through 

adhering to the security warning and finding a workaround may result in negative outcomes such 

as missing a work deadline. Depending on the weight of these negative outcomes compared to the 

perceived benefits of avoiding the security threat, similar warning adherence patterns as seen in 

our study may be observed in the workplace. 

Compared to the adherence findings, our outcome measures indicative of attention and 

cognitive processing – namely, reaction times and mouse cursor click latency and time idle – 

showed different result patterns. No significant differences among penalty treatment groups were 

observed for any of the cognitive processing dependent variables. Unlike the findings for 

adherence rates, this lends support to the H1 – that participants do not attend to and elaborate over 

the warning regardless of the risk tradeoff values. However, when we consider the adherence rates 

findings vis-à-vis the attention findings, we make a striking observation. Users made security 

choices following a risk-tradeoff paradigm, but required no differential time to analyze those 

tradeoffs in the moment. They must have made the decision ahead of time. Put another way, users 

appeared to already have values in mind for their system’s security and for continuing the task at 

hand. They did not require time to analyze, value, and weigh the tradeoff decisions in the moment. 

Thus H1 finds support in that participants did not differentially make risk-tradeoff assessments 

when in the moment of being exposed to the warning (rejecting H2b), but H2a finds support in 

that users acted differentially between treatment groups in their adherence, apparently following 
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pre-determined mental models of information security risk values. Hence, users do not 

indiscriminately disregard all security warnings (supporting H2a over H1), but they also do not 

attend closely give the decision differential attention in the moment despite varying risk tradeoff 

levels (supporting H1 over H2b). This leaves us with an unexpected takeaway for our comparison 

of the two conflicting literature streams that informed H1 and H2a-b. The view that users are 

habituated to messages, and that their attention to them does not depend on the content or context 

of the warning, finds support from the findings that backed H1. Meanwhile, simultaneously, the 

view that users’ behavior is indeed impacted by risk tradeoffs was supported by the findings that 

backed H2a. The main issue is that while attention may be low, discriminatory security choices 

are still made, albeit in the form of pre-made decisions, and not in-situ ones. 

The survey results showed that participants in the 1-cent penalty group had only moderate 

concern about the penalty, while participants in any of the higher penalty treatment groups had 

greatly amplified concern compared to the 1-cent group. Concern with the penalty was not 

correlated with self-reported concern for the security warning, although we know that participants 

in the higher penalty groups were more likely to ignore the warning. It is surprising that penalty 

concern and warning concern did not correlate – we would have thought that concern over the 

penalty should have been closely related to concern over the warning, because the appearance of 

the warning threatened a participant’s reward.  It is possible that participants interpreted the 

question about concern for the warning to be asking about how worried they were about actually 

receiving malware on their machine. With this interpretation, the penalty level and penalty concern 

would not correlate with warning concern. No differences were observed among penalty treatment 

groups on warning concern – all participants reported moderate levels of concern for the warning, 

reporting a concern level of about 6.5 out of 11. This warning concern level appears to have been 
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high enough for participants to take the warning seriously, as evidenced by about 50% of 

participants choosing to heed the warning (with the actual heedance rate depending on penalty 

treatment group).  

Survey responses to measures of perceived risk, threat susceptibility, threat severity, and 

fear of threat showed an interesting inflection point at the 10-cent penalty group mark. While many 

of the variables do not show significant differences among penalty group levels, the inflection 

point is apparent from a visual inspection (see Figure 33). We are unsure why it would be that 10-

cents is a low mark. It is possible that participants responded differently to denominations ending 

in a 0 compared to ones ending in a 5, although we know of no theory to support this argument. 

Or perhaps participants had a visualization of the actual size of the coin, and measured the threat 

this way. A dime is the smallest coin, so it may have elicited the lowest threat and fear appraisals. 

Future research with larger budgets can control for penalty denomination size by using different 

penalty level denominations that come from bills (e.g., $1, $5, $10, etc.). However, using such 

high denominations may be unethical – payments to Amazon Mechanical Turk workers tend to be 

lower than the U.S. federal minimum wage (Hitlin 2016), so a task with a $10+ potential reward 

would be overwhelming. By comparison, our task offered up to $2.50, an equivalent about $12 per 

hour. Even with this amount, we received complaints that the amount was so high that some 

participants felt great emotional distress each time they lost some of their bonus, or when they felt 

that they had to return the task to avoid risk of being rejected. Said one worker, because she had 

to return our $2.50 task, she no longer would be able to afford a meal of rice and beans for her 

children. Perhaps a task could be used where the bonus-earned displayed on the screen would not 

directly map to what participants would receive in actual payment at the end of the task. However, 

this would hinder the generalizability of the risk tradeoff amounts that participants used. 



76 

The slopes for warning adherence showed an upwards trend; over repeated warning 

exposures, users became more likely to ignore the warning. This may be evidence of a learning 

effect. By the second warning exposure, users may have decided that the warning was “crying 

wolf” (Sunshine et al. 2009); nothing bad appeared to happen after the first warning, so confidence 

in future warnings may have dropped. A loss of trust such as this would be unfortunate. While 

older strands of malware were noisy and had graffiti or destruction as their primary aim(Ducklin 

2016), modern malware may install itself silently and enslave the computer into a botnet or steal 

login passwords, unbeknownst to the user (Goodin 2017). Or only make itself known after 

encrypting important files on the device (ransomware) (Krebs 2016). Because of such threats, 

subsequent malware warnings should be taken just as seriously as the first ones. Research is needed 

for best ways to educate users about such threats, and for how to avoid the loss in credibility that 

appears to be such a common issue. 

A greater number of treatment groups would be necessary to determine the number of 

modes for interruptive security warning risk-taking decisions. For situations where the tradeoff 

quantification is less immediately quantifiable than our money-penalty operationalization, a model 

would be useful to describe what perceptual factors best predict the tradeoff values that participants 

use when they engage in evaluation of the security message risk-taking tradeoff. Such a model 

could build on the information security policy violation intention models already in existence (e.g., 

D'Arcy and Herath 2011). Organizations can modify their incentive structures to decrease the 

tradeoff amount that organizational insiders discern when considering whether to adhere to a 

warning, perhaps through threat of sanctions for non-security-message adherence (D'Arcy and 

Herath 2011; Johnston et al. 2015), or through rewards for good security hygiene. Security 
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message design can also aim to boost perceptions of threat severity and susceptibility, which may 

also tip the risk-tradeoff decision further. 

3.6 STUDY 3 – CONCLUSION 

This study has investigated a gap in information security literature between assumptions of high 

and low user attention and adherence to interruptive security messages. Using an interruptive 

security message context, the corroboration of multiple dependent variables from a field study 

supported the existence of users behaving under a bimodal risk tradeoff paradigm, where security 

message adherence was dependent on the risk tradeoff balance between the perceived information 

threat and the losses involved in not being able to perform the interrupted task. Users who were 

penalized 1 or 5 cents from a bonus payment for heeding an interruptive security warning were 

more likely to ignore that warning than were participants who were penalized 10 or 25 cents. 

While, simultaneously, users did not show differential levels of elaboration over security warnings 

regardless of how much money they lost from their available bonus. This lack of differential 

elaboration was evident in reaction time data as well as in data from two mouse cursor measures 

– click latency and movement idle time. A likely explanation for the findings is that users rely on 

predetermined mental models of information security valuation and risk. Future research should 

be performed to further investigate users’ risk perceptions when interacting with interruptive 

security messages, including how to manipulate these perceptions, and how deterrence approaches 

such as sanctioning apply to the context of interruptive security messages. 
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4.0  FINAL DISCUSSION AND CONCLUSIONS 

We now reflect on what has been learned across all three studies presented in this dissertation. The 

overarching theme was to both better understand and also to improve outcomes of user interactions 

with interruptive security messages. The first two studies sought to influence users’ elaboration 

over and attention to interruptive security messages through manipulating the design of warnings. 

To this end, media naturalness theory informed the integration of human facial expressions of 

threat into internet browser malware warnings. A field study and an fMRI study were both 

performed in a bid to corroborate the findings and gain both internal and external validity. The 

field study showed that integrating facial expressions of threat may indeed improve user attention 

to interruptive security messages, despite small practical effect sizes. Applying an image filter to 

the facial expressions that “posterized” or “cartoonized” the expression did not decrease the 

potency of those messages for garnering user elaboration compared to warnings with photo-

realistic (unfiltered) integrated facial expressions. The survey revealed generally low perceived 

threat susceptibility to and fear caused by security messages across all emotion and filter treatment 

groups, while perceived threat severity and general perceived risk were reported to be generally 

high. The low perceived susceptibility and fear suggest a possible troubling invincibility complex 

under which users may be operating. Also, while self-reported warning realism was lower for face-

integrated warnings, participants reported equal concern over the warnings regardless of whether 

they had integrated facial expressions. These last survey findings, coupled with objective 

behavioral measures, suggest that users considered the warnings to be real enough to warrant 

increased attention if they had integrated facial cues of threat. 
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The third study investigated contrasting stances of information security research, with one 

holding that users respond automatically and consistently poorly to security warnings regardless 

of the balance of the underlying risks. The other stance assumes that users always engage in risk-

taking assessments, and that the balance of the risk tradeoff has a strong and conscious impact on 

users’ security decisions. To investigate this, the third study held the warning design constant, and 

instead varied risk tradeoff values for the interruptive security warning decisions. This was done 

by manipulating the monetary penalty tradeoff for users to stay safe and heed the warning. This 

study showed interesting results – while the amount of the monetary tradeoff had a strong impact 

on user’s security decisions, no evidence of differential elaboration over the interruptive security 

warning risk-taking moment was observed. These findings suggest that while users may be 

responding automatically to warnings without updating mental models for each exposure, they are 

not consistently choosing to disregard – instead, the value of disregarding an interruptive security 

warning (one of the risk tradeoff values) is predictive of actual warning disregard. Study 3 calls 

for more research into valuating the mental models that users employ when interacting with 

interruptive security warnings specifically, and for ways to predict and influence the tipping point 

for when users will begin to heed or disregard an interruptive warning. 

Studies 1 and 3 demonstrated measuring actual user security behaviors via a deception 

protocol. Both binary decisions (heed/disregard) as well as unobtrusive and objective mouse cursor 

measures of elaboration and attention were examined. These studies answer the call of Crossler et 

al. (2013) to capture objective measures of information security behaviors. They also highlight the 

challenge of measuring habituation to the warnings over a short timeframe, given rapid habituation 

rates when intervals between stimuli are short (Rankin et al. 2009). Study 2 followed the example 

of other recent NeuroIS security studies in that it corroborates data collected via high-resolution 
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techniques such as fMRI alongside externally valid field study findings (e.g., Anderson et al. 

2016c). The three studies in this dissertation seek to be an example for other behavioral information 

security studies in approaching information security research questions via mixed methods, 

including NeuroIS. 

One might propose an alternative interpretation of the hypotheses in studies 1 and 3 related 

to response times. Whereas we proposed that longer response times are evidence of greater 

elaboration and attention to the security warning, an alternative interpretation could be that quicker 

response times are evidence of greater problem-solving ease. With this alternative interpretation, 

quicker response times would be more desirable than longer ones. We would counter this 

interpretation by referencing Akhawe and Felt (2013), who found that, in their field study, “47% 

of users who clicked through the warning made the decision within 1.5s, whereas 47% of users 

who left the page did so within 3.5s. We interpret this to mean that users who click through the 

warning often do so after less consideration.” Rewording this, the status quo is that users who 

ignore warnings do so quickly, with hardly enough time for any meaningful “problem solving” to 

be engaged with. Reading and pondering the warning takes a minimum threshold of time, and 

given the short timespan ranges within which our data falls (<5 seconds), we argue that our 

hypotheses’ assumption of longer reaction times being indicative of greater elaboration is 

appropriate.  

We note an ethics concern that arose during our data collection. When designing our 

protocol, we were concerned that some participants would game the task by starting the main task, 

and then switching to a different task while allowing our task to run in the background. With this 

method, each image would time out after 10 seconds, and they would end up with an accuracy of 

0%. This would lead them to lose all of their bonus payment. But, they would still earn their base 
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payment, ostensibly while simultaneously working on another task. To guard against this kind of 

gaming, we warned participants that if their performance accuracy was too slow, we would reject 

their submission. Participants later complained to us that the threat of rejection was too harsh – 

they became worried when our security warnings appeared, because they had to choose between 

their computer’s security and a risk of rejection. A rejection means more than a loss of payment to 

an Amazon Mechanical Turk worker – it is also a bad mark on their overall approval rating. Too 

many bad marks can mean that they become disqualified from doing higher-paying tasks. So, some 

participants felt that we were asking them to not just risk a few cents per warning, but rather, that 

we were asking them to risk their livelihoods. We reported this adverse unexpected situation to 

our institutional review board. For future data collection using this protocol, we will not threaten 

to reject tasks with accuracy levels that are too low. We feel that the per-warning money risk is 

sufficient to simulate a risk tradeoff scenario. It is not every day that a user has to choose between 

complying with a security policy and losing their job (although such a draconian scenario is not 

outside the realm of possibility!). In all, we noticed that 63 participants quit the task before 

finishing, compared to 555 participants who completed the task. A substantial number of these 

dropouts could have been participants not wanting to risk their approval rating or the security of 

their system. We do not have dropout rates to compare ours against, but we imagine that our 

dropout rate would fall on the high side. Instances of dropping out appear to be randomly 

distributed across treatments. Any participant who dropped out who contacted us with a concern 

was debriefed and paid in full for their time worked. We will monitor dropout rates for future tasks 

to discern if users are feeling similar unnecessary pressure.  

Because studies 1 and 3 used a repeated-measures design, we were able to explore the 

degree of users’ consistency in how they respond to security warnings. Would users always do the 
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same thing regardless of how many warnings they saw, or would they vary their responses? Our 

exploration in Appendix B shows that the majority of participants – 80% – were perfectly 

consistent across warning exposures in whether they ignored or heeded the warning. The 

remaining 20% were spread fairly evenly between the two poles of “always ignored” and “always 

heeded.” This trend of perfect consistency is interesting. It does not appear that any of our 

treatments from studies 1 or 3 impacted whether a participant would be perfectly consistent in how 

they responded to warnings. We did see, however, that some of our treatments impacted whether 

participants would always heed versus ignore the warnings. We are left to wonder how quickly 

users form mental models about how they are going to respond to a security warning.  

Also, it is unknown just how set users are in these mental models – can a different security 

message design easily move users from one perfectly-consistent pole to another? What differences 

are there in people who change their responses across multiple impressions? Perhaps some felt 

remorse about an early “ignore” choice and sought to not expose themselves to any further risk on 

future impressions. This would be evidence of users engaging in context updating for each warning 

impression. Or perhaps some of those users heeded an early warning, after which they quickly 

became fatigued by their security posture, and gave up on behaving securely when they 

encountered future warnings. And what goes on in the minds of users who show perfect 

consistency in their warning choices? Perhaps the overriding desire was to avoid cognitive 

dissonance, so they matched their first choice in all future choices. Potentially more likely, the 

warning context of subsequent warnings matched the context of the first warning so closely that 

no additional information had been provided that would require users to update their mental 

models and change their behavior. We did notice a sharp decline in response times across multiple 

warning exposures. A more qualitative experimental design would be needed to tease out the 
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thought processes between users with and without perfect consistency. Predictors could be 

identified that would classify a user as likely to be perfectly consistent or not. 

As described in the Introduction, all studies touched on different stages of Wogalter’s C-

HIP model (2006a) (see Figure C-1). Theoretically, individuals process warnings in stages, or 

“gates” which must be passed before a warning can successfully prompt a desired behavior. The 

first two studies were motivated by research that shows that the very first requirement of the C-

HIP model, attention to the warning, is oftentimes found wanting (Anderson et al. 2016b). The C-

HIP model suggests that it is not worthwhile to focus on any behavioral gate beyond any failed 

gate. That is, attention must be resolved before motivation can be addressed. However, study 3 

demonstrated that for an interruptive security message context, attention was sufficiently present 

for a motivation-focused treatment to be impactful. In study 3, the monetary penalties were 

predominantly motivational factors, not attentional ones. Study 3 did not find evidence of the 

motivational treatment differentially impacting attention. But the findings from study 3 suggest 

that users make decisions that drive their security choices ahead of time. Again, when the findings 

of all three studies are considered together, the lesson is that while manipulating the attention gate 

can still have an impact on users’ choices, a manipulation of the motivational factor can have a yet 

stronger one, which means that attention to the interruptive security warnings must be at least 

somewhat present. This speaks hope against the fear that users mindlessly respond to all messages. 

There is at least some thought given, albeit the thought may not be given in situ. Ideally, users 

would carefully consider each security decision, so a focus on C-HIP’s attention gate to drive up 

engagement with each security decision is still warranted. A better understanding of the C-HIP 

motivational gate as it relates to an interruptive security message context is also called for. 
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The slopes for reaction times over repeated warning exposures in all three studies, but 

especially in studies 1 and 3. were not linear – they were curvilinear, and they appeared to be 

approaching an asymptote. This observation is consistent with the theory of habituation (Rankin 

et al. 2009), which consistently shows responses to repeated stimuli trending towards and 

eventually reaching an asymptote. Eventually, reactions such as reaction time to a stimulus cannot 

get any weaker, and elaboration over a stimulus bottoms out. Given enough rest before the next 

exposure to a stimulus, a response will “recover”, but not necessarily back up to its original high 

mark. What is interesting from habituation theory is that even once the asymptote is reached for a 

given stimulus, continued exposure to the stimulus will have a negative impact on the subsequent 

recovery, such that the recovery height will be even lower. That is to say, even after responses 

have appeared to stagnate, habituation still occurs for repeated stimulus exposure. We expected no 

differently, and found no differently, for our interruptive security message context. 

One troubling observation from studies 1 and 3 should be noted. The Chrome warning 

stated that “the site ahead contains malware.” There was no uncertainty communicated in the 

warning about the presence of the malware. That is to say, the warning did not say “the site ahead 

might contain malware”, but rather, that the site ahead unequivocally did contain malware. Yet 

averaged across all treatments, over 50% of warnings were ignored. This troubling behavior 

happened despite the fact that participants used their own computers, outside of any lab setting 

where they might feel artificial protection due to being in a lab environment (Sotirakopoulos et al. 

2011). Why could this be? Perhaps users mistook the warning for an older all-red version of 

Chrome’s SSL warnings (which now has a white background to differentiate it from malware 

warnings), which warned of a commonly much less severe threat with higher uncertainty about 

whether the site ahead was dangerous. This explanation is possible. However, several participants, 
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unprompted, offered explanations for their own poor security behavior in the free response section 

of the post-task survey. Reasons for ignoring the warning included ideas such as the following: “I 

know that Chrome protects me from malware (there was something about that in the settings),” 

“my antivirus protects me from threats,” “I use a Mac so I am safe,” and “Chrome gives these 

kinds of warnings all the time and it’s never serious.” Underlying these responses is a troublesome 

trend: mistrust of the browser warning, and potentially misplaced trust in users’ own judgement 

and secondary protections. Malware can be written for Macs (2016); antivirus doesn’t catch all 

malware (malware writers use sites like virustotal.com to test their strain against up-to-date 

antivirus definitions) (Ducklin 2015); Chrome malware warnings have extremely high accuracy 

(the true positive rate is so high the normal warning does not have a “Proceed anyway” button that 

allows users to bypass the warning). Practitioners and researchers need to work towards increasing 

users’ trust – or restoring trust – in browser security warnings such as malware warnings.  We also 

need to work towards better understanding security warning mistrust and its facets. 

In all, the three studies represent important steps towards better understanding and 

improving user interactions with interruptive security messages. All three address the domain of 

basic attention to and elaboration over the warnings – the very first step on the way towards 

warning compliance (Wogalter 2006a) – whether through manipulating the design or by 

questioning whether various risk tradeoff values influence in situ warning elaboration. More 

research is yet needed to understand and solve the problem of low attention. May it come soon, so 

that fewer users will inappropriately dismiss warnings, lest one such seemingly inconsequential 

error lead to the next high-profile organizational disaster.  
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APPENDIX A 

FMRI TECHNICAL DETAILS FOR STUDY 2 

A.1 EQUIPMENT 

MRI scanning took place at a university MRI research facility with the use of a Siemens 3T Tim- 

Trio scanner. For each scanned participant, we collected a high-resolution structural MRI scan for 

functional localization in addition to a series of functional scans to track brain activity during the 

performance of the various tasks. Structural images were acquired with a T1-weighted 

magnetization-prepared rapid acquisition including a gradient-echo (MP-RAGE) sequence with 

the following parameters: TE = 2.26 ms, flip angle = 9°, slices = 176, slice thickness = 1.0 mm, 

matrix size = 256 × 215, and voxel size = 1 mm × 0.98 mm × 0.98 mm. Functional scans were 

acquired with a gradient-echo, echo-planar, T2*-weighted pulse sequence with the following 

parameters: TR = 2000 ms, TE = 28 ms, flip angle = 90°, slices = 40, slice thickness = 3.0 mm (no 

skip), matrix size = 64 × 64, and voxel size = 3.44 mm × 3.44 mm × 3 mm. 

A.2 PROTOCOL 

Participants were given a verbal briefing about the MRI procedures and the task, and were then 

situated supine in the scanner. Visual stimuli were viewed using a mirror attached to the head coil 
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reflecting a large monitor outside the scanner that was configured to display images in reverse so 

that they appeared normal when viewed through the mirror. We first performed a 10-second 

localizer scan, followed by a 7-minute structural scan. Following these, we started the 

experimental task (see Figure A1). We used E-Prime software to display the stimuli and 

synchronize the display events and scanner software. Total time in the scanner was 55 minutes. 

 
Figure A-1 – Graphical representation of fMRI experimental procedure for Study 2. 

ISI = Interstimulus interval 

 

A.3 ANALYSIS 

MRI data were analyzed with the Analysis of Functional Images (AFNI) suite of programs (Cox 

1996). Briefly, functional data were slice-time corrected to account for differences in acquisition 

time for different slices of each volume; then, each volume was registered with the middle volume 

of each run to account for low-frequency motion. Data from each run were aligned to the run 
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nearest in time to the acquisition of the structural scan. The structural scan was then co-registered 

to the functional scans. As in previous studies (e.g., Motley and Kirwan 2012), spatial 

normalization was accomplished by first warping the structural scan to the Talairach atlas 

(Talairach and Tournoux 1988) followed by warping to a template brain with Advanced 

Neuroimaging Tools (ANTs). The ANTs transformation resampled all voxel dimensions to 3mm 

x 3mm x 3mm. For the single-subject ("first level") analyses, we performed multiple regression of 

the form y=β0+β1x1+β2x2…βnxn+ε, where "y" is the observed fMRI timecourse for each voxel 

and each "x" term is a vector regressor representing either conditions of interest (e.g., stimulus 

type or repetition number) or a nuisance regressor (e.g., motion or scanner drift). We created 

separate behavioral regressors coding for each cell in the fully-crossed factorial design: emotion 

(disgust, fear, neutral), filter (photo-realistic, posterized), gender (young, old), and age (young, 

old), giving us a total of 24 task regressors, in addition to nuisance variables coding for motion (3 

rotations and 3 directions of translation) and scanner drift (4 polynomial regressors for both of the 

scan runs). The security malware image without integrated facial expressions, shown 20 times, 

served as the implicit baseline for the regression analysis (see "Study 2 – Design"). Stimulus events 

were modeled using a stick function convolved with the canonical hemodynamic response. 

Resulting parameter estimates (beta values) were blurred with a 5-mm FWHM Gaussian kernel. 

Parameter estimates for the conditions of interest were then entered into group-level analyses, such 

as ANOVAs or t-tests (see "Study 2 – Analysis and Results " for detailed descriptions of group-

level analyses), which were used to determine functional regions of interest (ROIs). Once 

functional ROIs were identified, we extracted mean parameter estimates within each ROI for 

further investigation in order to characterize the direction and strength of interactions and other 
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effects. All whole-brain voxel-wise tests were corrected for multiple comparisons using a spatial 

extent threshold of 24 contiguous voxels (648 mm3).   

Two linear mixed model regression analyses were conducted on the extracted betas. In the 

first, our face-integrated warnings were grouped by the displayed emotion. In the second, the face-

integrated warnings were grouped by image filter. 
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APPENDIX B 

EXPLORATION OF WARNING ADHERENCE TRENDS 

Because our field study task employed repeated measures on a binary dependent variable (whether 

or not the warning was dismissed), as a preliminary analysis we explored the ratio of ignored 

warnings for each participant and for each treatment group. We first calculated the ratio of 

warnings ignored for each participant, and then we set a dummy variable marking whether a 

participant was perfectly consistent in their warning behavior (whether their perfect consistency 

was to always ignore or always heed). An ANOVA did not find any significant differences for the 

ratio ignored averaged across exposures among Study 1’s emotion treatment groups 

(F(3,499)=1.641, p=.179) or among filter treatment groups (F(2,500)=1.058, p=.348), or among 

Study 2’s penalty treatment groups (F(3,499)=1.641, p=.179), so only the overall differences are 

reported in Figure B-1 and Table B-1. We note that, for 503 participants, many participants either 

ignored all of them (n=193), or heeded all of them (n=230), totaling 423 participants and leaving 

80 who showed differential behavior. Of the remaining 80, 37 ignored 3 out of 4 warnings, 20 

ignored 2 out of 4 warnings, and 15 ignored 1 out of 5 warnings. We cannot say whether the 

participants who showed the polarized behavior (all or nothing) always behave this way when they 

encounter security warnings, or if their behavior was particular to our experimental manipulations. 

But the lack of significance among treatment groups for the overall rate of warnings ignored may 

suggest that these trends reflect participants’ everyday behavior, regardless of the warning design. 

Interesting is the observation that differences were observed in the predicted direction among 
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treatment groups when only considering the first warning impression. This finding highlights the 

quick habituation rates that likely occurred because of the number of repeated measures over such 

a short time frame, and emphasizes the need for improved experimental designs that can better test 

habituation rates to security warnings with more realistic gaps between warning impressions (such 

as a one week gap). 

 
Figure B-1. Overall trends of ratio of warnings ignored. 

 

Table B-1. Overall trends of ratio of 

warnings ignored. 

Ratio ignored n 

0 193 

0.25 15 

0.333333 4 

0.5 20 

0.666667 4 

0.75 37 

1 230 

Total 503 
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APPENDIX C 

SUPPLEMENTARY FIGURES 

 

Figure C-1. Communication-Human Information 

Processing Model (adapted from Wogalter 2006a) 
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Figure C-2. Google Chrome browser malware warning, build 51.0.2704.63 m 

 

   
Figure C-3. Examples of validated emotive facial expressions from FACES database – 182 actors (Ebner, 

Riediger & Lindenberger, 2010). From this set, we randomly selection 120 actor. Then we applied an oval 

crop, and we made a “desaturated” copy and a “posterized” copy 
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Figure C-4. We integrated the faces into our modification of the Google Chrome malware warning. From 

left to right, top to bottom, (a) blank template, (b) neutral-desaturated warning, (c) disgust-desaturated 

warning, (d) fear-posterized warning. 

 

 
Figure C-5. Study 1 protocol – welcome screen 
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Figure C-6. Study 1 protocol – external page load test instructions 
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Figure C-7. Study 1 protocol – external page load test 
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Figure C-8. Study 1 protocol – instructions 
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Figure C-9. Study 1 protocol – Main task, before beginning 

 

 
Figure C-10. Study 1 protocol – Main task, an image to classify 
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Figure C-11. Study 1 protocol – Main task, feedback and loading icon 

 

 
Figure C-12. Study 1 protocol – Main task, a second image to classify 
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Figure C-13. Study 1 protocol – Main task, feedback for incorrect classification 

 

 
Figure C-14. Study 1 protocol – Main task, an interruptive warning 
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Figure C-15. Study 1 protocol – Main task follow-up  

 



110 

 
Figure C-16. Study 1 protocol – Embedded Qualtrics survey 
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