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ABSTRACT 

Phase I clinical trial based on toxicity probability intervals is a new class of dose-finding designs 

characterized by integrating the concept of intervals, instead of point estimates, in detection of the 

maximum tolerated dose. The purpose of this article is to explore and compare the performance of 

three novel designs including the two-parameter logistic regression model with categorized 

posterior probability design (LRcat), the modified toxicity probability interval design (mTPI) and 

the Bayesian optimal interval design (BOIN). A thorough numeric study with eight potential 

scenarios was conducted to examine critical operating characteristics. Robustness of the novel 

designs to the change in the target interval width and mis-specified priors was investigated in a 

sensitivity analysis following the simulation study. In addition, we also retrospectively analyzed a 

recent cancer phase I clinical trial to explore the performance of these designs in real-world 

application 

The results of our analysis showed that interval-based designs perform comparably to a 

traditional CRM design using posterior mean to define MTD in most scenarios. LRcat is more 

flexible than CRM and demonstrates robustness to the varying target toxicity interval. BOIN is 

safer than other designs and allocates less patients to overly-toxic levels. mTPI is more likely to 

allocate patients to suboptimal doses when the true MTD resides at the lowest/highest doses and 

performs poorly when the target interval is asymmetric.  
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PUBLIC HEALTH SIGNIFICANCE 

Phase I cancer clinical trials are the indispensable step for the development of anticancer therapies. 

With the widespread application of phase I clinical trials, researchers and clinical investigators 

need up-to-date information about newly-developed phase I clinical trial methods. By providing 

the comparison result for a group of innovative phase I trial designs, our study facilitates choice 

of dose-finding method and leads to more efficient and ethical drug development to conquer cancer 

epidemic.  
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1.0  INTRODUCTION 

Phase I clinical trials serve as a vital part and generally the first-in-human studies in translating 

laboratory research into clinical practice. A phase I clinical trial in oncology aims to identify the 

maximum tolerated dose (MTD). For cytotoxic anticancer agents, the rationale of using MTD as 

the primary endpoint based on the assumption: the treatment efficacy increases monotonically with 

the probability of toxicity [1]. Therefore, by determining the MTD, oncological phase I clinical 

trials provide the most efficacious dose of a treatment with acceptable side effects. In 1997, the 

American Society of Clinical Oncology (ASCO) published a policy statement on the centrality of 

phase I clinical trials to the process of discovering anticancer agents and brought up the prosperity 

in the development and application of early-phase cancer trials [2]. 

Numerous dose-finding designs for phase I clinical trials have been invented over the past 

few decades. Most of these designs fall into one of the two major categories:  algorithmic (rule-

based) designs or model-based designs. Algorithmic designs are guided by predetermined rules 

and the dose limiting toxicity (DLT) information obtained from the last cohort of patients in the 

trial, whereas model-based designs use explicit parametric models and cumulative DLT 

information throughout the trial. Examples of algorithmic designs include: the traditional “3+3” 

design and its variations [3], the accelerated titration design proposed by Simon et al, Ivanova’s 

up-and-down design [4], among others. The most representative model-based designs include the 

continual reassessment method (CRM) [5] and its extensions, and the dose escalation with 

overdose control (EWOC) design [6].  
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Rule-based designs are well-recognized for their simplicity and transparency in 

application, but their slow convergence to the true MTD and lack of a prespecified target toxicity 

rate are indisputable drawbacks. On the other hand, model-based designs are praised for more 

rapid dose escalation and a complete use of cumulative trial information, but are frequently 

criticized for aggressiveness, ambiguous prior specifications and complex computations [7]. 

Confronted with the trade-offs between the two bodies of designs, researchers resort to seeking 

new designs that are more flexible, utilize more information, and yet do not compromise good 

operating characteristic and simplicity.  

During the past decade, clinical researchers have witnessed the development of a new class 

of designs that utilize toxicity probability intervals, instead of a single point estimate, to determine 

the MTD. Ji et al. proposed a dose-finding method named toxicity posterior intervals (TPI) design.  

This design partitions beta posterior distributions for the toxicity probabilities of the current dose 

into three intervals. The toxicity intervals are labeled as high, acceptable, and low toxicity, each 

associated with the corresponding dose-assignment decision for future patients [9]. TPI design was 

further extended to a modified toxicity probability interval (mTPI) design, which depends the 

decision rules on maximizing unit probability mass (UPM) of the intervals [10]. Following in the 

footsteps of Ji and his colleagues, Yuan et al. proposed the Bayesian optimal interval (BOIN) in 

2016. The design derives the boundaries of the target toxicity probability interval from a Bayesian 

decision making process rather than solely relying on a physician’s judgement. Like the mTPI 

design, dose assignments in the BOIN design is determined by the location of the current toxicity 

rate with respect to the interval boundaries [11]. Meanwhile, Neuenschwander et al. introduced a 

design that is similar to TPI but inherits many features of a CRM procedure. The design, referred 

to as LRcat in the paper, adopts a two-parameter logistic model to obtain the posterior distribution 
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of toxicity probability. After each experiment, the posterior distributions are summarized for each 

dose by the probability of four categories: under-dosing, target, excessive toxicity, unacceptable 

toxicity. Then the next dose is recommended as the dose which has the maximum probability of 

target interval [11]. As is in the case with CRM design, LRcat design has a “jumping” nature in 

dose assignment. A variation of LRcat design (LRcat25) guides dose selection by maximizing the 

probability of target interval while controlling the risk of overdosing at 25%. Details about these 

innovative designs will be further discussed in Section 2.  

Our study will focus on the newly-developed interval-based designs mentioned above. The 

primary objective of this article is to explore the operating characteristics of LRcat /LRcat25, mTPI 

and BOIN relative to the CRM in numerical study with various potential scenarios. We would like 

to see how robust are the three designs to a varying target interval width, and how sensitive is 

LRcat, comparing to CRM, to a mis-specified prior. In addition, we applied a post-hoc dose-

escalation analysis using the real-life data from a recent cancer clinical trial to further investigate 

the application of these innovative designs. This study is innovative as no head-to-head 

comparison of these three designs, to our best knowledge, has been carried out ever before.  

Starting in Section 2, we provide an overview of newly developed statistical designs for 

phase I cancer trial, LRcat, mTPI and BOIN. Section 3 presents the simulation study and the 

sensitivity analysis. In Section 4, a recent cancer phase I clinical trial will be reanalyzed via each 

of the novel designs. Finally, a discussion about practical implications of these designs will be 

given in Section 6.  
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2.0  PHASE I CLINICAL TRIAL DESIGNS BASED ON TOXICITY POSTERIOR 
INTERVALS 

Researchers hold different opinions about optimalizing phase I clinical trial designs. 

Neuenswander suggested that plausible dose recommendations should use more informative 

posterior summaries and more flexible models [11]. He proposed the LRcat design, rendering it 

an extension of the CRM design to incorporate posterior intervals for the probabilities of DLT. 

However, from the perspective of application, designs that are easy to understand and implement 

for investigators are more favorable. This rationale leads to the development of mTPI and BOIN. 

2.1 LRCAT DESIGN 

Suppose a trial has J doses and we aim at identifying the MTD from a set of doses 𝑑𝑑1 < 𝑑𝑑2 < ⋯ <

𝑑𝑑𝐽𝐽. The probability of a DLT at dose d is denoted as 𝜋𝜋𝜃𝜃(𝑑𝑑) and is described by the logistic model: 

logit[𝜋𝜋𝜃𝜃(𝑑𝑑𝑖𝑖;  𝛼𝛼,𝛽𝛽)] = log𝛼𝛼 + 𝛽𝛽 ∙ log(𝑑𝑑𝑖𝑖 𝑑𝑑∗⁄ )                           (1) 

where 𝛼𝛼,𝛽𝛽 > 0, and 𝑑𝑑∗ is a reference dose allowing  log(𝛼𝛼) to be the log-odds of toxicity 

when 𝑑𝑑𝑖𝑖 = 𝑑𝑑∗ . A bivariate normal prior for (log𝛼𝛼, log𝛽𝛽) is assumed: 

log(𝜽𝜽) = �log𝛼𝛼
log𝛽𝛽�  ~ 𝐵𝐵𝐵𝐵𝐵𝐵��

𝜇𝜇1
𝜇𝜇2� ,𝜮𝜮� , 𝜮𝜮 = � 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2

𝜌𝜌𝜎𝜎1𝜎𝜎2 𝜎𝜎22
� 

Neuenschwander postulated that placing a bivariate lognormal prior on the two parameters 

makes the model more flexible than a one-parameter power or logistic model commonly used in 

CRM design. An noninformative prior distribution for LRcat could be derived by matching 

quantiles with a minimally informative beta distribution as defined in [11]. Neuenschwander et al.  

also recommended the use of informative priors whenever is available.  
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The posterior distribution is then 

𝑓𝑓(𝛼𝛼,𝛽𝛽|𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) ∝ 𝑓𝑓(𝛼𝛼,𝛽𝛽)𝐿𝐿(𝛼𝛼,𝛽𝛽;𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) 

where 𝑓𝑓(𝛼𝛼,𝛽𝛽)  is the joint prior distribution and 𝐿𝐿(𝛼𝛼,𝛽𝛽;𝑦𝑦1, … ,𝑦𝑦𝑛𝑛)  is the likelihood 

function. 

A Gibbs sampling procedure is then applied to elicit posterior samples of (𝛼𝛼,𝛽𝛽), and the 

posterior distribution of DLT at each dose level is obtained from the inversed model function (1) 

𝜋𝜋𝜃𝜃(𝑑𝑑𝑖𝑖;  𝛼𝛼,𝛽𝛽) =
exp (log𝛼𝛼 + 𝛽𝛽 ∙ log(𝑑𝑑 𝑑𝑑∗⁄ ))

1 + exp (log𝛼𝛼 + 𝛽𝛽 ∙ log(𝑑𝑑 𝑑𝑑∗⁄ ))
 

Next, the computed posterior distribution of 𝜋𝜋𝜃𝜃(𝑑𝑑𝑖𝑖)  is partitioned by three cutpoints 

(0.20, 0.35, 0.60) and is summarized into 

Under-dosing 𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0,  0.20]}  
Targeted toxicity 𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.20,  0.35]}  
Excessive toxicity 𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.35,  0.60]}  
Unacceptable toxicity 𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.60,  1.00]}  

These intervals are subject to change based on the specific setting of the study [12]. The 

dose recommended for the next cohort of patients is the dose that has a maximal posterior 

probability for the target interval. Figure 1 shows a flow chart illustrating the dose escalation 

scheme of LRcat design. 

There are two variations of LRcat design. LRcat25 takes patient safety as the primary 

concern and enforces an overdose control on excessive and unacceptable toxicity intervals. The 

probability of the last two toxicity intervals are required to be less than 0.25.  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 𝑓𝑓𝑑𝑑𝑓𝑓 𝑠𝑠𝑎𝑎𝑠𝑠ℎ 𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠 𝑠𝑠. 𝑠𝑠.    

𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.35,  0.60]} + 𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.60,  1.00]} < 0.25 
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This criteria is similar to the escalation with overdose control (EWOC) design introduced 

by Babb and his colleagues which restricts the predicted proportion of patients who receive an 

overdose to a feasibility bound [6]. 

Another variation adapts a fully Bayesian decision analytic approach using a formal loss 

function: 

 

where 𝑠𝑠𝑘𝑘 represents the distance of the corresponding interval from the true MTD. The 

optimal decision is the one that minimizes the corresponding Bayes risk: 𝐵𝐵𝑎𝑎𝑦𝑦𝑠𝑠𝑠𝑠 𝑓𝑓𝑝𝑝𝑠𝑠𝑟𝑟 =

𝑠𝑠1𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0,  0.20]} +  𝑠𝑠2𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.20,  0.35]} +  𝑠𝑠3𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.35,  0.60]} + 

𝑠𝑠4𝑃𝑃{𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.60,  1.00]} [11]. The original LRcat design has an implicit 1-0-1-1 loss function. 

If a more conservative dose escalation design is sought, loss functions like 1-0-1-2 and 1-0-2-4 

could lower the risk of selecting doses that are too toxic. 

2.2 MTPI DESIGN 

Let 𝑝𝑝𝑇𝑇 denote the target toxicity probability and 𝑝𝑝𝑖𝑖 the toxicity probability for dose 𝑝𝑝 = 1, … , 𝐽𝐽. An 

equivalence interval (EI), [𝑝𝑝𝑇𝑇 − 𝜖𝜖1,𝑝𝑝𝑇𝑇 + 𝜖𝜖2] , is defined. The width of EI depends on the 

phycisian’s judgement. Any dose included in the EI is considered potential candidate for the true 

MTD.  𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑖𝑖 represent number of patients treated and number of patients experiencing toxicity at 

dose 𝑝𝑝 respectively. 𝑥𝑥’s are assumed to follow a binomial distribution 

𝑓𝑓(𝑥𝑥;  𝑝𝑝, 𝑝𝑝) = �𝑝𝑝𝑥𝑥� 𝑝𝑝
𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥 

𝑠𝑠1    𝑝𝑝𝑓𝑓 𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0,  0.20]  

𝑠𝑠2    𝑝𝑝𝑓𝑓 𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.20,  0.35] 

𝑠𝑠3    𝑝𝑝𝑓𝑓 𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.35,  0.60] 

𝑠𝑠4    𝑝𝑝𝑓𝑓 𝜋𝜋𝜃𝜃(𝑑𝑑) ∈ (0.60,  1.00]  

𝐿𝐿(𝜃𝜃, 𝑑𝑑) = 
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 And the likelihood function is derived as 

𝑠𝑠(𝑥𝑥𝑖𝑖|𝑝𝑝𝑖𝑖) ∝�𝑝𝑝𝑖𝑖
𝑥𝑥𝑖𝑖

𝐽𝐽

𝑖𝑖=1

(1 − 𝑝𝑝𝑖𝑖)𝑛𝑛𝑖𝑖−𝑥𝑥𝑖𝑖 

A vague conjugate beta prior is assumed: 𝑝𝑝𝑖𝑖 ~ 𝑝𝑝. 𝑝𝑝.𝑑𝑑.𝐵𝐵𝑠𝑠𝑠𝑠𝑎𝑎(1, 1). Followed from the Bayes 

theorem [9] 

𝑓𝑓(𝑝𝑝𝑖𝑖|𝑥𝑥𝑖𝑖) ∝ 𝑓𝑓(𝑝𝑝𝑖𝑖)𝑠𝑠(𝑥𝑥𝑖𝑖|𝑝𝑝𝑖𝑖) 

𝑝𝑝𝑖𝑖|𝑥𝑥𝑖𝑖 ~ 𝑝𝑝. 𝑝𝑝. 𝑑𝑑.𝐵𝐵𝑠𝑠𝑠𝑠𝑎𝑎(1 + 𝑥𝑥𝑖𝑖, 1 + 𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) 

After obtaining the posterior distribution of  𝑝𝑝𝑖𝑖 , the unit probability mass (UPM) is 

calculated for each of the three intervals partitioned by EI. UPM is defined as the probability of 

the interval divided by the length of the interval [10]. For example, Let 𝐵𝐵(𝑥𝑥;𝑎𝑎, 𝑏𝑏)  be the 

cumulative distribution function of the Beta distribution. The UPM of EI is 

𝐵𝐵(𝑝𝑝𝑇𝑇 + 𝜖𝜖2, 1 + 𝑥𝑥𝑖𝑖 , 1 + 𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) − 𝐵𝐵(𝑝𝑝𝑇𝑇 − 𝜖𝜖1, 1 + 𝑥𝑥𝑖𝑖, 1 + 𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖) 
𝜖𝜖1 + 𝜖𝜖2

 

One of the dose assignment decisions, escalation, stay at the same dose and de-escalation, 

is chosen depending on which of the three intervals, (0, p𝑇𝑇 − 𝜖𝜖1),   [𝑝𝑝𝑇𝑇 − 𝜖𝜖1, 𝑝𝑝𝑇𝑇 + 𝜖𝜖2] and (pT +

𝜖𝜖2, 1) has the largest UPM. This process repeats until a primary stopping rule (e.g. maximum 

sample size) is satisfied. At the end of the trial, we use a less informative beta prior, 

𝐵𝐵𝑠𝑠𝑠𝑠𝑎𝑎(0.005, 0.005), to obtain the posterior distribution. The isotonically transformed posterior 

mean for each dose level is calculated and the dose level with the smallest absolute difference 

between the posterior mean and the target toxicity is selected as the MTD [10].  

There are two built-in safety rules for mTPI design. The first safety rule requires an early 

termination of the trial when the probability of dose 1 excessing the target toxicity is over 95%. 

The second one check the next dose in advance during dose escalation to prevent going to an overly 
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toxic dose [10]. Figure 1 provides a comparison of the dose-finding schemes for LRcat design and 

mTPI design.   

2.3 BOIN DESIGN 

Both LRcat and mTPI design assume that the interval boundaries of the posterior toxicity 

distribution are independent of dose level 𝑝𝑝 and the number of patient treated at dose level 𝑝𝑝. Liu 

and her colleagues described a Bayesian framework to select interval boundaries based on the 

accumulated toxicity information throughout the trial [12]. Following the same notations from 

mTPI, �̂�𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖 𝑝𝑝𝑖𝑖⁄  denotes the observed toxicity rate at dose level 𝑝𝑝. Three point hypothesis are 

formulated: 

𝐻𝐻0𝑖𝑖:    𝑝𝑝𝑖𝑖 = 𝜙𝜙          𝑇𝑇ℎ𝑠𝑠 𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑠𝑠 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 𝑝𝑝𝑠𝑠 𝑠𝑠ℎ𝑠𝑠 𝑀𝑀𝑇𝑇𝑀𝑀  
𝐻𝐻1𝑖𝑖:    𝑝𝑝𝑖𝑖 = 𝜙𝜙1         𝑇𝑇ℎ𝑠𝑠 𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑠𝑠 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 𝑝𝑝𝑠𝑠 𝑠𝑠𝑐𝑐𝑏𝑏𝑠𝑠ℎ𝑠𝑠𝑓𝑓𝑎𝑎𝑝𝑝𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑠𝑠   
𝐻𝐻2𝑖𝑖:    𝑝𝑝𝑖𝑖 = 𝜙𝜙2        𝑇𝑇ℎ𝑠𝑠 𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓𝑠𝑠𝑝𝑝𝑠𝑠 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 𝑝𝑝𝑠𝑠 𝑠𝑠𝑑𝑑𝑑𝑑 𝑠𝑠𝑑𝑑𝑥𝑥𝑝𝑝𝑠𝑠   

where 𝑝𝑝𝑖𝑖  is the true toxicity probability of the current dose, 𝜙𝜙  is the target toxicity 

probability, 𝜙𝜙1, 𝜙𝜙2 are the toxicity probability of the highest sub-therapeutic and the lowest overly 

toxic dose respectively. The prior probability of each hypothesis being true is defined as 𝜋𝜋𝑘𝑘𝑖𝑖 =

Pr(𝐻𝐻𝑘𝑘𝑖𝑖) ,𝑟𝑟 = 1,2,3. The noninformative prior probability for the hypothesis is 𝜋𝜋1𝑖𝑖 = 𝜋𝜋2𝑖𝑖 = 𝜋𝜋3𝑖𝑖 =

1 3⁄ . Let 𝜆𝜆1𝑖𝑖 and 𝜆𝜆2𝑖𝑖 respectively denote the dose escalation and de-escalation boundaries. The 

probability of making incorrect decision, denoted as α(𝜆𝜆1𝑖𝑖,𝜆𝜆2𝑖𝑖), is computed based on the Bayes 

theorem: 

𝛼𝛼(𝜆𝜆1𝑖𝑖,𝜆𝜆2𝑖𝑖) = 𝑃𝑃𝑓𝑓(𝐻𝐻0𝑖𝑖)𝑃𝑃𝑓𝑓{(�̂�𝑝𝑖𝑖 ≤ 𝜆𝜆1𝑖𝑖) ∪ (�̂�𝑝𝑖𝑖 ≥ 𝜆𝜆2𝑖𝑖)|𝐻𝐻0𝑖𝑖}
+ 𝑃𝑃𝑓𝑓(𝐻𝐻1𝑖𝑖)𝑃𝑃𝑓𝑓{�̂�𝑝𝑖𝑖 < 𝜆𝜆2𝑖𝑖|𝐻𝐻1𝑖𝑖} + 𝑃𝑃𝑓𝑓(𝐻𝐻2𝑖𝑖)𝑃𝑃𝑓𝑓{�̂�𝑝𝑖𝑖 > 𝜆𝜆1𝑖𝑖|𝐻𝐻0𝑖𝑖} 

 
When 𝜋𝜋1𝑖𝑖 = 𝜋𝜋2𝑖𝑖 = 𝜋𝜋3𝑖𝑖, it can be shown that α(𝜆𝜆1𝑖𝑖, 𝜆𝜆2𝑖𝑖) is the likelihood-ratio hypothesis-

testing boundaries  
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𝜆𝜆1𝑖𝑖 =
log �1 − 𝜙𝜙1

1 − 𝜙𝜙 �

log �𝜙𝜙(1 − 𝜙𝜙1)
𝜙𝜙1(1 − ϕ)�

   ,     𝜆𝜆2𝑖𝑖 =
log � 1 − 𝜙𝜙

1 − 𝜙𝜙2
�

log �𝜙𝜙2(1 − 𝜙𝜙)
𝜙𝜙(1 − 𝜙𝜙2)�

 

Once the interval boundaries 𝜆𝜆1𝑖𝑖, 𝜆𝜆2𝑖𝑖 are decided, the next dose is selected based on the 

comparison of the current observed toxicity rate  �̂�𝑝𝑖𝑖 with respect to the boundaries. If �̂�𝑝𝑖𝑖 ≤ 𝜆𝜆1𝑖𝑖, we 

escalate to the next dose level; if �̂�𝑝𝑖𝑖 ≥ 𝜆𝜆2𝑖𝑖, we de-escalate the dose; and if  �̂�𝑝𝑖𝑖 ∈ (𝜆𝜆1𝑖𝑖,𝜆𝜆2𝑖𝑖), we retain 

the current dose [13]. The dose assignment rule of the BOIN design is clearly an adaptation of a 

rule-based design. To eliminate an overly toxic dose for safety, BOIN design checks the toxicity 

rate of the lowest dose to see if it exceeds the target toxicity at 95%. 

In the following analysis involving BOIN, we used  𝜙𝜙1 = 0.6𝜙𝜙 𝑎𝑎𝑝𝑝𝑑𝑑 𝜙𝜙2 = 1.4𝜙𝜙, which is 

recommended for general use by Liu et al.  [13].  

 
Figure 1. Comparison of dose assignment scheme for LRcat design (left) and mTPI design (right) 
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3.0  NUMERICAL STUDY 

3.1 SIMULATION SETTING 

We performed computer simulations on six phase I clinical designs: the traditional continual 

reassessment method with power model (CRM); a modified CRM constraining dose-skipping 

during escalation and only selecting doses with mean posterior probability of DLT lower than the 

target toxicity (mCRM) as the MTD; and the mTPI, BOIN and LRcat designs introduced in Section 

2. In addition, we add the LRcat25 (LRcat with 25% overdose control) design as a variation of 

LRcat commensurable to mCRM. To obtain the operating characteristics of the six designs, 2000 

trials for each scenario was simulated. 

We considered a hypothetical phase I trial with seven dose levels (12.5, 25, 50, 100, 150, 

200, 250) and a target toxicity rate of 30%. Assuming the desired dose is among these seven dose 

levels, eight scenarios were selected to represent a broad class of potential dose-toxicity relations 

(Figure 2). We specified the scenarios based on four parameters: the target toxicity and the 

corresponding dose; an unacceptable toxicity rate (0.90 for steep curves and 0.65 for flat curves) 

and the corresponding dose. Dose-toxicity curves generated from this method were slightly 

modified to obtain more distinctive characteristics. Scenarios 1 and 8 represent two boundary 

scenarios with MTD at dose level 1 and 7. When the true MTD is at dose levels 2, 4 and 6, we 

considered two plausible dose-toxicity curves: a steep one indicating there is an abrupt increase of 

toxicity rate just before the MTD, and a flat one indicating the toxicity rate increases steadily 

throughout the trial. The maximum sample size is 36. A similar simulation setting was used in 

Neuenswander’s papar [11]. 
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Figure 2. Dose-toxicity relationships of the eight simulation scenarios.  
The horizontal line represents the target toxicity probability of 0.3. 
 

 
Table 1. Scenarios for simulation study. 

 
 
 
 
 

 

 

 

The CRM requires specification of a prior distribution and a set of initial guesses (skeleton) 

of the toxicity probabilities for the candidate doses to be used in the trial. For CRM and mCRM, 

the dose toxicity model is assumed to be empiric 𝜋𝜋𝜃𝜃(𝑑𝑑) = 𝑠𝑠𝑑𝑑𝜃𝜃 with a vague prior distribution for 

log (𝜃𝜃) specified as normal with 𝜇𝜇 = 0 and 𝜎𝜎2 = 1.342 [5]. The skeleton 𝑠𝑠𝑑𝑑 is calibrated using the 

algorithm elaborated in [14]. For the two-parameter logistic regression model in LRcat and 

LRcat25, we adapted the prior bivariate normal distributions for log (α) and log (β) derived in 

Neuenschwander et al’s paper from the quantile-based method [11]. To make the comparison 

Dose 12.5    25     50    100   150   200    250 
Scenario 1 0.30, 0.41, 0.53, 0.61, 0.71, 0.76, 0.84 
Scenario 2 0.13, 0.30, 0.55, 0.76, 0.84, 0.90, 0.92 
Scenario 3 0.24, 0.30, 0.38, 0.53, 0.66, 0.71, 0.79 
Scenario 4 0.01, 0.04, 0.09, 0.30, 0.52, 0.65, 0.73 
Scenario 5 0.15, 0.17, 0.23, 0.30, 0.36, 0.44, 0.51 
Scenario 6 0.01, 0.02, 0.02, 0.06, 0.14, 0.30, 0.56  
Scenario 7 0.03, 0.04, 0.10, 0.17, 0.23, 0.30, 0.37  
Scenario 8 0.01, 0.03, 0.07, 0.10, 0.14, 0.17, 0.30 
NOTE: The target dose is in boldface. 
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between CRM and LRcat more sensible, we used two pairs of matched priors as depicted in Table 

2 and Figure 7. The first pair of priors (A) assumes the MTD at the highest dose level and prior 

(B) assumes the MTD at the second dose level. Prior (A) is used in the simulation study. 

Table 2. Prior specification for CRM and LRcat 

3.2 EVALUATION METRICS 

A well-founded phase I trial design should lead to accurate estimation of the MTD while 

concentrating dose assignments at or closely below the MTD. It also should minimize dose 

assignments at suboptimal dose levels and associate greater penalty with overdosing compared to 

under-dosing [6]. In light of these criteria, we considered the following five metrics to measure 

the performance of the designs: 

i. Distribution of the selection percentages of the MTD. Instead of using a single 

percentage of correct selection (PCS) on the true MTD dose level, we choose to 

exhibit the percentage of selecting the dose as the MTD for each dose levels. When 

PCS may give a similar conclusion about two designs, this metrics facilitates relative 

evaluation of suboptimal dose assignments.  

ii. Distribution of number of patients treated on dose. This metrics presents the average 

number of patients treated at each dose across the simulated trials. The number 

treated at or above the true MTD will raise particular concerns.  

iii. The risk of overdosing—the percentage of simulated trials in which more than 60% 

of patients are treated at doses above the MTD.  

 CRM skeleton 
(𝒅𝒅𝟏𝟏,𝒅𝒅𝟐𝟐, … ,𝒅𝒅𝟕𝟕) 

LRcat prior 
BVN: (𝝁𝝁𝟏𝟏,𝝁𝝁𝟐𝟐,𝝈𝝈𝟏𝟏,𝝈𝝈𝟐𝟐,𝛒𝛒) 

A (0.00, 0.00, 0.00, 0.01, 0.06, 0.16, 0.30) (-0.847, 0.381, 2.015, 1.207, 0) 
B (0.16, 0.30, 0.45, 0.59, 0.71, 0.80, 0.86) (2.27, 0.26, 1.98, 0.40, -0.16) 
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iv. The risk of under-dosing—the percentage of simulated trials in which more than 80% 

of patients are treated at doses below the MTD. 

The above two risk measure provide more reliable information about the conservatism of 

the designs, comparing to the average number of patients treated at doses above MTD. The 

threshold for defining under-dosing is higher than that of the overdosing since under-dosing is of 

less concern in application [15]. 

v. The average proportion of toxicity. It is computed by average number of toxicity in trial
average number of patients in trial

 . 

Due to the various levels of conservatism among the explored designs, there is a 

variation of average sample size. Therefore the commonly used measurement, 

average number of toxicity, could easily fail to provide accurate information. In this 

circumstance, a comparison of the average proportion of toxicity is more reasonable. 

3.3 RESULTS 

3.3.1 Selection percentage of the MTD  

When the true MTD is at dose level 2, CRM, mTPI, BOIN and LRcat perform almost identically 

in selecting the correct MTD regardless of the shape of the underlying dose-toxicity curve. mCRM 

and LRcat25 behave similarly in selecting MTD at a subtherapeutic dose. Notable differences start 

to exist among designs when the true MTD is at dose level 4. If the underlying dose-toxicity curve 

is steep (Scenario 4), CRM and mTPI show higher chance of choosing a dose above the true MTD 

even though all of the designs give correct prediction of MTD. LRcat25 behaves much more 

consertively than mCRM as it selects the dose lower than the MTD in more than 40% of the time. 

When the underlying curve is flat (Scenario 5), only LRcat outperforms other designs. The poor 



14 
 

performance of CRM in Scenarios 5 could be the consequence of a misspecified skeleton. If we 

apply the skeleton (0.01, 0.02, 0.07, 0.16, 0.30, 0.45, 0.59) with pre-specified MTD at dose level 

5, CRM will perform better (result not shown). The sensitivity of CRM and LRcat to prior 

specifications will be discussed later in Section 4.4. mCRM and LRcat25 start to compensate for 

their high level of conservatism and perform poorly in this scenario. When the true MTD is at dose 

level 6 with a flat dose-toxicity curve (Scenario 6), CRM and the three interval-based designs 

perform similarly and correctly recommend the true MTD. When the toxicity probability increases 

slowly, CRM, BOIN and LRcat show their potential to give the right recommendation. CRM and 

LRcat have the best performance in boundary scenarios (Scenario 1 and 8). mCRM performs very 

poorly if the true MTD is at the highest dose. 
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Figure 3. Selection percentage of MTD (Scenario 1 – Scenario 4 in the left panel, Scenario 5 – Scenario 8 in the right panel) 
The plots are superimposed by the underlying dose-toxicity curves of the scenario. Shaded bars indicate the true MTD.  
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Figure 4. Patient allocation (Scenario 1 – Scenario 4 in the left panel; Scenario 5 – 8 in the right panel) 
Greyed bars indicate the true MTD. 
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3.3.2 Patient allocation, risk of over-dosing and under-dosing 

An ideal design should allocate the majority of patients to the level of the true MTD while having 

a relatively smaller number of patients on suboptimal dose levels. In consideration of safety, we 

pay extra attention to those designs that tend to assign more patients to overly toxic dose levels. In 

scenarios where the toxicity of the drug increase rapidly with doses, all designs perform 

appealingly. By contrast, when the dose-toxicity curve is flat, more conservative designs (mCRM, 

LRcat25) are likely to have a higher bar on doses below MTD while more aggressive designs 

(CRM, LRcat) have higher bars above. mTPI and BOIN have a moderate level of conservatism 

and perform favorably in patient allocation. It is noted that with the true MTD moving to higher 

dose levels, the level of conservatism further differentiate the performance of designs.    

As a complement to the average number of allocated patient, we also examined how likely 

is a design to assign patients sub-optimally. When the dose level increases, we expect a general 

decreasing trend in the risk of over-dosing and an increasing trend in the risk of under-dosing. 

Designs that go against the general trend rise concerns. CRM and LRcat, the most aggressive 

designs, maintain a high risk of overdosing in all scenarios. The risk even raised 5% for the LRcat 

design which counteracts the good performance of LRcat in correct selection of MTD. When the 

differences between adjacent doses are large (dose-toxicity curve is steep), designs are less likely 

to make implausible decisions which explains the sudden decreases in the heights of bars in the 

steep-curve scenarios. We also note that designs based on posterior intervals are more sensitive to 

changes in the distance of adjacent dose. In terms of risk of under-dosing, conservative designs 

present extremely high bars. The risk of under-dosing even exceeds 80% for mCRM in Scenario 

7. The drastic decrease or increase of mTPI design in these two risk measurements is concerning. 
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It implies that mTPI performance less satisfactorily when the true MTD is not among the 

intermediate dose levels. BOIN design performs desirably with respect to the two risks and exhibit 

a good balance between conservativeness and aggressiveness. 

 
Figure 5. Risk of over-dosing (upper panel) and risk of under-dosing (lower panel) 

3.3.3 Toxicity 

When the true MTD is at higher doses, it is less likely to observe DLTs. Consequently, we expect 

an overall decreasing trend in the average proportion of toxicity Scenario 1 through Scenario 8. 

One thing draw immediate attention is that CRM and LRcat design have substantially higher 

toxicity proportion in most of the scenarios. It is consistent with previous findings about the 

aggressiveness of the two designs. Besides, we notice that mCRM and LRcat25 perform no better 

(even worse) than the more aggressive designs when the MTD is at the lowest dose levels 

(Scenarios 1 – 3). 
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Figure 6. Average proportion of toxicity. 

3.4 SENSITIVITY ANALYSIS  

3.4.1 Sensitivity to interval width 

To conduct an additional sensitivity analysis for the interval-based designs, we compared LRcat, 

LRcat25, mTPI and BOIN with variations in the target interval width (a deviation of 0.07, 0.1 and 

0.15 from the target toxicity of 0.3). We made the following adjustments: for LRcat and LRcat25, 

we fixed the threshold for an unacceptable toxicity at 0.60 and varied the width of the target 

toxicity interval; for mTPI, we simply adjusted the width of the equivalence interval; for BOIN, 

we calibrate the prior guess of the boundaries 𝜙𝜙1and 𝜙𝜙2 to get the desired posterior boundaries λ1 

and λ2. For instance, if the posterior target interval is (0.23, 0.37), we tried several possible pairs 

of 𝜙𝜙1, 𝜙𝜙2 to find 0.17 and 0.445 generated 𝜆𝜆1, 𝜆𝜆2 closest to the interval boundaries. Scenario 5 

from the previous numeric study was used to represent the underlying dose-toxicity relationship. 

Most of the interval designs perform poorly in selecting the correct MTD in Scenario 5, and we 

would like to see if a variation in the interval boundaries could improve or worsen their 

performance. Designs were compared using the same criteria from the numeric study. The result 

is shown in the Table 2.  
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LRcat demonstrates robustness to the changes in interval width. Irrespective of the 

variations of the boundary values, LRcat keeps accurately predicting the MTD. Also, for LRcat, 

the percentage of selecting the true MTD is distinguishable from that of selecting the suboptimal 

doses. The mTPI is also invariant to the changes in interval width when the interval is symmetric. 

On the other hand, BOIN and LRcat25 are significantly affected by the varying intervals. BOIN 

selects the true MTD with a percentage only marginally larger than that of selecting a sub-

therapeutic dose in the original setting of Scenario 5. With the widening of the target interval, we 

see the marginal prediction advantage vanishes and BOIN shifts the highest recommendation 

percentage to the dose lower than the MTD. LRcat25, on the contrary, benefits from the increasing 

interval width. When the target interval is defined by a 0.15 deviation from the target interval, 

LRcat25 provides the correct recommendation of the true MTD.  

The peril of a wide target interval is also evident. As the interval getting wider, there is an 

increase in the average toxicity rate and the risk of overdosing. The rise in the risk of overdosing 

for LRcat and LRcat25 is stunning. The risk of overdosing for LRcat25 is about 10% when the 

interval boundary deviated from the target by 0.05, but upsurges to over 30% when the deviation 

expands to 0.15. 

Under certain circumstances, the clinical investigator might want to define a target interval 

with asymmetric distances from the target toxicity. For example, a trial is carried out with target 

toxicity of 0.25, but previous studies have shown no efficacy under 0.20. Thus, the investigator 

may suggest a target interval from 0.2 to 0.35. To investigate the effects of asymmetric target 

intervals, we compared the performance of the interval-based designs with target intervals (0.2, 

0.35) and (0.25, 0.4). The results are shown in Table 3. We noted that LRcat consistently gives the 

correct prediction of the MTD and does not vary notably in the measurements of toxicity and over-
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dosing. However, the mTPI design shows unanticipated behaviors by incorrectly predicting the 

MTD to a higher dose level and displaying much higher level of toxicity and risk of overdosing.  

 Table 3. Interval-based designs with symmetric target intervals of varying width. 

 
 
 

Dose levels 1 2 3 4 5 6 7  Toxicity 
proportion 

Average 
No. of 

patients 

Risk of 
overdosing 

(%) 
Scenario 5 0.15 0.17 0.23 0.30 0.36 0.44 0.51 none 
Target toxicity interval = (0.23, 0.37) 

mTPI % MTD 
# Pts 

5.15 
7.4 

13.90 
8.2 

29.60 
9.2 

29.50 
6.8 

15.85 
3.1 

4.30 
0.9 

1.10 
0.2 

0.60 0.23 35.8 2.95 

BOIN % MTD 
# Pts 

5.35 
7.0 

12.90 
7.8 

28.35 
9.1 

29.05 
6.9 

16.00 
3.4 

5.80 
1.1 

1.20 
0.2 

1.35 0.24 35.6 2.05 

LRcat % MTD 
# Pts 

1.20 
5.5 

6.85 
3.8 

24.05 
7.5 

33.95 
9.2 

24.70 
6.3 

8.00 
3.1 

1.45 
0.7 

0.00 0.27 36 23.85 

LRcat25 % MTD 
# Pts 

2.00 
5.0 

10.60 
4.0 

33.05 
7.7 

23.80 
6.1 

14.00 
5.2 

3.60 
2.8 

1.05 
1.1 

12.00 0.30 32 17.6 

Target toxicity interval = (0.20, 0.40) 
mTPI % MTD 

# Pts 
7.30 
8.1 

14.80 
8.3 

29.60 
9.0 

28.25 
6.5 

14.90 
2.9 

3.60 
0.8 

0.90 
0.2 

0.65 0.23 35.8 2.85 

BOIN % MTD 
# Pts 

8.15 
10.9 

15.20 
9.6 

30.55 
8.6 

27.70 
4.6 

12.15 
1.5 

4.20 
0.3 

0.70 
0.1 

1.35 0.23 35.6 2.3 

LRcat % MTD 
# Pts 

1.45 
5.6 

7.15 
3.4 

25.2 
7.3 

32.65 
8.4 

23.35 
6.4 

8.55 
3.8 

1.75 
1.1 

0.00 0.28 36 27.7 

LRcat25 % MTD 
# Pts 

0.60 
4.7 

6.75 
2.7 

29.05 
7.3 

28.1 
6.8 

18.95 
5.8 

6.10 
4.2 

1.0 
1.5 

9.45 0.32 33.2 23.85 

Target toxicity interval = (0.15, 0.45) 
mTPI % MTD 

# Pts 
14.00 
10.8 

22.25 
9.6 

29.35 
8.4 

23.25 
4.7 

8.20 
1.6 

2.00 
0.3 

0.20 
0.0 

0.75 0.21 35.7 3.70 

BOIN % MTD 
# Pts 

16.60 
11.0 

22.35 
9.6 

30.15 
8.6 

20.80 
4.6 

7.20 
1.5 

1.35 
0.3 

0.35 
0.1 

1.20 0.20 35.6 2.65 

LRcat % MTD 
# Pts 

1.55 
5.7 

9.65 
3.9 

24.25 
6.2 

30.45 
7.7 

23.25 
6.7 

9.05 
4.3 

1.85 
1.4 

0.00 0.29 36 30.7 

LRcat25 % MTD 
# Pts 

0.60 
3.8 

4.50 
2.7 

22.75 
6.2 

28.8 
6.8 

23.50 
5.9 

9.35 
6.0 

1.05 
1.7 

9.45 0.33 32.9 32.65 

NOTE: Important results are in bold face. 
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 Table 4. Interval-based designs with asymmetric target intervals 

3.4.2 Sensitivity of LRcat and CRM to mis-specified priors  

A big challenge for model-based Bayesian designs is the prior specification. Prior studies have 

demonstrated higher flexibility of two-parameter models than the one-parameter ones [5, 12].  In 

order to investigate the degree of sensitivity of CRM and LRcat to different priors, we compared 

the performance of the two designs under prior A and prior B across all eight scenarios. Figure 7 

presents the prior distribution of toxicity probability at each dose level for CRM and LRcat under 

prior A and B approximately matched medians and 95% credible intervals.  

We observed that when the toxicity rates of neighboring dose levels are close (flat dose-

toxicity curve), both designs are notably influenced by mis-specified priors. For example, in regard 

to Scenario 7 (true MTD at dose level 6), prior A is more reasonable since it pre-determines the 

MTD at a dose close to the true MTD. On the contrary, prior B is a misspecification which assumes 

a MTD much lower than the true case. Therefore, it is not surprising to see an inferior performance 

 Dose 
levels 

1 2 3 4 5 6 7  Toxicity 
proportion 

Average 
No. of 

patients 

Risk of 
overdosing 

(%)  Scenario 
5 

0.15 0.17 0.23 0.30 0.36 0.44 0.51 none 

Target toxicity interval = (0.20, 0.35) 
mTPI % MTD 

# Pts 
0.05 

0 
2.1 
0.5 

11.7 
3.1 

34.30 
9.9 

42.65 
17.5 

7.95 
4.3 

1.25 
0.5 

0 0.34 35.8 54.15 

BOIN % MTD 
# Pts 

8.25 
8.3 

15.35 
8.3 

30.4 
9.1 

27.90 
6.3 

11.90 
2.7 

4.15 
0.8 

0.70 
0.2 

1.35 0.22 35.6 2.0 

LRcat % MTD 
# Pts 

2.40 
5.2 

9.30 
3.5 

23.7 
5.7 

33.05 
7.2 

20.95 
6.0 

9.20 
4.8 

1.50 
3.6 

0 0.31 36 34.35 

LRcat25 % MTD 
# Pts 

2.70 
4.8 

11.50 
3.8 

35.45 
8.0 

20.10 
5.7 

10.35 
4.8 

3.00 
2 

0.55 
0.8 

16.4 0.3 30 13.7 

Target toxicity interval = (0.25, 0.40) 
mTPI % MTD 

# Pts 
0 
0 

0.40 
0.1 

4.95 
1.3 

27.55 
7.3 

52.0 
19.0 

12.45 
6.9 

2.65 
1.1 

0 0.36 35.7 71.45 

BOIN % MTD 
# Pts 

3.45 
6.5 

11.90 
7.5 

27.30 
9.1 

30.20 
7.3 

17.60 
3.7 

6.75 
1.3 

1.45 
0.3 

1.35 0.24 35.6 2.4 

LRcat % MTD 
# Pts 

0.60 
5.2 

4.05 
3.2 

19.90 
7.3 

32.95 
8.7 

26.65 
6.7 

12.15 
3.6 

3.70 
1.2 

0 0.28 36 27.3 

LRcat25 % MTD 
# Pts 

0.40 
4.8 

7.10 
3.0 

28.85 
7.8 

26.40 
6.3 

17.65 
5.6 

6.95 
3.7 

2.50 
1.4 

10.2 0.31 32.8 22.35 

NOTE: Important results are in bold face. 
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of CRM and LRcat using prior B in prediction percentage of MTD (Table 4). However, it is worth 

noting that, under both priors, CRM has higher average toxicity rate and higher risk of allocating 

too many patients to overly-toxic doses.  

 
Figure 7. The median and 95% credible interval of prior probability of DLT for CRM and LRcat. 
Upper panels: CRM skeleton A and LRcat prior A are used in the simulation study. 
Lower panels: CRM skeleton B and LRcat prior B are used in the sensitivity analysis. 
Dashed line for CRM indicates target probability of 0.3; dashed lines for LRcat indicate target probability interval. 
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Table 5. Comparison of CRM and LRcat in Scenario 7 with different priors 
 Dose 

levels 
1 2 3 4 5 6 7 Toxicity 

proportion 
Risk of 

overdosing 
(%)  Scenario 

7 
0.03 0.04 0.10 0.17 0.23 0.30 0.37 

(1) CRM (Skeleton A) and LRcat (Prior A) 
CRM % MTD 

# Pts 
0 
3 

0 
0.4 

0.85 
1.1 

8.55 
2.9 

20.05 
5.2 

38.3 
8.5 

32.25 
14.8 

0.28 
 

32.0 
 

LRcat % MTD 
# Pts 

0 
3.1 

0 
0.2 

0.8 
0.8 

7.75 
2.7 

25.15 
6.2 

37.55 
10.1 

28.75 
12.9 

0.27 
 

28.05 

(2)  CRM (Skeleton B) and LRcat (Prior B) 
CRM % MTD 

# Pts 
0 

5.2 
0 

3.5 
2.65 
5.7 

17.95 
7.2 

32.85 
6.0 

30.3 
4.8 

16.25 
3.6 

0.22 8.75 

LRcat % MTD 
# Pts 

0 
4.8 

0.05 
3.8 

5.1 
8.0 

26.95 
5.7 

35.15 
4.8 

22.1 
2 

10.75 
0.8 

0.19 1.75 

NOTE: Important results are in bold face. 
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4.0  REANALYSIS OF A RECENT ONCOLOGICAL CLINICAL TRIAL  

We consider a recent phase I cancer clinical trial to serve as a motivating example. The goal of the 

trial is to identify the MTD of a gamma secretase inhibitor (PF-03084014) with potential antitumor 

activity for patients with advanced solid malignancies. The open-label study comprised a dose-

finding portion and an expansion cohort. A variation of 3+3 design, which targets the MTD with 

≤ two toxicities among six patients (p_T≤2⁄6), was implemented in the dose-finding part of the 

study. The study drug was administered orally at eight prespecified doses 20, 40, 80, 100, 130, 

150, 220, and 330 (mg BID). A total of 41 patients were recruited in the dose-finding study. 9 of 

them were later deemed not evaluable for DLT. The first cohort of patients were treated at the 

lowest dose without experiencing DLT. The dose escalated sequentially and no DLT were 

observed for the next two dose levels. At dose 80 mg, one patient experienced DLT in the first 

cohort of 3, then additional 3 patients were assigned to this level with no DLT observed. The 

investigator then decided to continue dose escalation. Dose level 6 and 7 had one DLT out of six 

patients. At the last dose, two DLTs were seen in two patients. The trial was terminated and the 

MTD was selected to be 220 mg BID [13]. The process of the trial is presented in Table 5. 

In this section, the oral gamma-secretase inhibitor trial introduced above was 

retrospectively analyzed to explore the performance of the novel phase I clinical trial design in 

real-world application. Based on the number of DLTs at each dose level observed in the study, we 

assume the underlying dose-toxicity relationship is delineated by the toxicity rates 0, 0, 0, 0.17, 0, 

0.17, 0.17, 1.0 (Table 5). The maximum sample size is 33 and the target toxicity rate is 0.3. Since 

the DLTs were observed at higher doses, we used the prior that pre-determines MTD at dose 7 

(prior A) for LRcat/LRcat25 and CRM/mCRM. In this analysis, we kept the default setting of the 
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toxicity interval boundaries for LRcat/LRcat25, mTPI and BOIN designs. Suppose the trial has 

not been carried out, we recruit a cohort of 3 patients at each step. Then depending on either a 

1000 simulated results (LRcat and its variations) or the prespecified dose-finding spreadsheet for 

mTPI (Table I-A) and BOIN (Table I-B), we select the dose level for the next cohort. The step 

repeated until the maximum sample size was reached or the last experimented dose level has a 

toxicity rate over 95% for CRM. The result of the retrospective analysis is presented in Table 6. 

Table 6. The original example trial 

 Dose level for 21 days, mg BID 
20 40 80 100 130 150 220 330 

Number of 
patients 

3 3 3 6 3 6 6 2 

Number (%) 
of DLT 

0 0 0 1 (16.7) 0 1 (16.7) 1 (16.7) 2 (100) 
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Table 7. Results of the reanalysis of the example trial  

 
In this particular trial setting, mTPI and BOIN have the identical dose escalation behavior 

as the original 3+3 design (results omitted). The only disagreement resides on the highest dose 

level (330 mg/BID), where 2 DLTs in 2 patients were observed. mTPI, alike 3+3, decides to de-

escalate and end the trial. However, BOIN chooses to de-escalate but reserves this dose for future 

consideration which implies a larger sample size for detecting the true MTD.  

A comparison between Table 6 and Table 5 reveals that more aggressive designs perform 

more efficiently and allocate less proportion of patients to non-therapeutic doses. LRcat skips less 

therapeutic doses and assigns the majority of patients to doses 150 and 220 mg/BID. CRM 

escalates fast and detect the MTD with only 15 patients. This type of aggressiveness, however, can 

easily raise concerns about patient safety. Therefore, we also considered designs with more 

 Doses Total Selected 
MTD 

(mg/BID) 
 20 40 80 100 130 150 220 330 

CRM  
No. patient 3 NA NA NA 3 NA 6 3 15 220  
No. DLT 0 NA NA NA 0 NA 1 2 3 
mCRM  
No. patient 3 3 3 6 6 3 NA NA 24 130  
No. DLT 0 0 0 1 0 1 NA NA 2 
LRcat  
No. patient 3 NA NA NA NA 18 12 NA 33 220 
No. DLT 0 NA NA NA NA 3 2 NA 5 
LRcat25           
No. patient 3 NA 3 6 3 18 NA NA 33 150 
No. DLT 0 NA 0 1 0 3 NA NA 4 
LRcat without dose-skipping  
No. patient 3 3 3 3 3 6 12 NA 33 220 
No. DLT 0 0 0 1 0 1 2 NA 4 
LRcat with loss 1-0-1-2  
No. patient 3 NA 3 NA 3 24 NA NA 33 150 
No. DLT 0 NA 0 NA 0 3 NA NA 3 
LRcat with loss 1-0-2-4  
No. patient 6 3 3 12 6 3 NA NA 33 150 
No. DLT 0 0 0 1 0 1 NA NA 2 
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constraints like LRcat with no dose-skipping or LRcat applying heavier weights to overly toxic 

probability intervals. The results show that restrictions can eliminate the risk of abrupt dose 

escalation but generally undermines the accuracy and efficiency of detecting the MTD. 

Nevertheless, we want to point out the favorable features of LRcat with constraint on dose-

skipping. First, at a dose as low as 100 mg/BID, it chooses to escalate without assigning more 

patients when one DLT presents (a 2000 simulation over this step validates the consistency of this 

choice). Secondly, it allocates as many as 12 patients to the dose just below the MTD. Although 

this design reaches the maximum sample size before properly converges to the true MTD, it could 

be a good candidate for future implications.  

Albeit this reanalysis can be subjective, it still provides evidence that the novel interval-

based designs can perform as well as the traditional CRM design. Furthermore, LRcat and its 

variations are more flexible than mTPI and BOIN in application. Besides, with application of more 

appropriate safety rules, variants of LRcat are capable of ideal performance. 
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5.0  COMPUTATION 

The previous analysis was programmed in R. The rjags package was used to allow interference to 

JAGs for implementation of Gibbs sampling algorithm. A sample R code of the LRcat function is 

provided in Appendix B. The mTPI function and the Excel macro for the spreadsheet were original 

developed by Ji Yuan and was adapted with a few modifications. Functions for BOIN analysis 

were adapted from the R package “BOIN” developed by Yuan et al.. (link to 

CRAN:  https://CRAN.R-project.org/package=BOIN) 

https://cran.r-project.org/package=BOIN
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6.0  DISCUSSION 

In this study, we probed the performance of innovative phase I clinical trials which share similar 

interval-based dose transition schemes. From the simulation study of eight potential scenarios, 

LRcat, mTPI and BOIN have performance comparable to the CRM design in most scenarios. This 

observation is consistent with findings in previous simulation studies [10, 11, 13]. However, in 

certain scenarios, characteristics of these designs are noticeable. LRcat outperforms other designs 

when the underlying dose-toxicity curve is flat. But this design is criticized for its high probability 

of toxicity and high risk of overdosing. mTPI is sensitive to the distance of toxicity probability 

between two adjacent doses, hence does not deal well with scenarios with flat dose-toxicity curve 

or boundary scenarios. In the original paper of mTPI, Ji et al. only discussed the situations of 

symmetric target intervals and declared the robustness of mTPI to the choices of ϵ′s [10]. 

However, we found that mTPI demonstrates sensitivity to EI’s when 𝜖𝜖1 and 𝜖𝜖2 takes different 

values. Overall, BOIN has the best performance in the numeric study. But in terms of sensitivity 

to target interval boundaries, BOIN appears to be most sensitive to the varying of target interval 

width. It is not surprising since BOIN make dose selection decisions simply based on the relative 

location of the current observed toxicity rate to the pre-determined interval boundaries. Thus, a 

wide interval increases the risk of retaining a suboptimal dose.  

An apparent advantage of mTPI and BOIN over LRcat is their simplicity in application. 

The rule-based nature of mTPI and BOIN ensures that the dose escalation decisions can be 

tabulated previewed prior to the conducting of the trial. However, we want to point out that model-

based designs also have their merits in application. Firstly, it has been shown in our study that 

LRcat and CRM perform more flexible and possibly more efficient than the other designs. In 
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addition, LRcat and CRM can easily accommodate covariates for more complicate clinical 

analytical purposes like assessing combinations of two drugs or studying of two subpopulations 

(for phase I-II designs) [12]. From a perspective of promoting closer interdisciplinary collaboration 

of clinical investigators and biostatisticians, we advocate for a wider application of model-based 

designs like CRM and LRcat, especially when designs like mTPI and BOIN show no obvious 

superiority. More specifically, LRcat is more favorable than CRM since it only requires a 

specification of the prior bivariate normal distribution for model parameters, whereas CRM 

requires specification of both prior distribution and the skeleton.  

On the other hand, it is undeniable that the LRcat design triggers concerns about patient 

safety. The variant of LRcat with over-dose control proposed in the original paper [11], LRcat25, 

is proved to be too conservative and compromises the efficacious detection of the true MTD. We 

briefly investigated other variants of LRcat with different safety and dose selection rules in a 

retrospective analysis of a recent phase I cancer clinical trial. Although we did not find an optimal 

design, the considerably good performance of LRcat with no dose skipping is inspiring. Future 

studies to improve LRcat design can focus on inspecting effects of more suitable safety and dose 

assignment rules.  

Phase I cancer clinical trial is the indispensable step for the development of anticancer 

therapies. In the two year period from 2012 to 2014 along, there were 272 publications of phase I 

clinical trial in oncology [8] (needless to say numerous unpublished trials). With such a massive 

application of phase I clinical trial, researchers and clinical investigators should be supported with 

up-to-date information about cutting-edge phase I clinical trial methods. Based on our study of 

head-to-head comparison of novel interval-based dose-finding methods, we provide the following 

practical implications: (a) LRcat with some proper safety rules can serve as a good alternative for 
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CRM as it manifest more flexibility and efficiency; (b) BOIN is a well-established dose-finding 

method but requires cautiousness in defining the boundaries; and (c) mTPI design performs 

competitively but tends to allocate more patients to suboptimal doses when the true MTD is at the 

lowest or the highest doses. Besides, before further investigation on the inferior performance of 

mTPI when the pre-defined target interval is asymmetric, mTPI design might not be a favorable 

choice in such situations.  
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APPENDIX A. DOSE-FINDING SPREADSHEETS 

A.1 DOSE-FINDING SPREADSHEET OF THE MTPI DESIGN 
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A.2 DOSE-FINDING SPREADSHEET OF THE BOIN DESIGN 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E
1 D D S S E E E E E E E E E E E E E E E E E E E E E E E E E E E E E
2 D D D D S S S E E E E E E E E E E E E E E E E E E E E E E E E E
3 DU DU D D D D S S S S E E E E E E E E E E E E E E E E E E E E E
4 DU DU DU D D D D D S S S S S E E E E E E E E E E E E E E E E E
5 DU DU DU DU DU D D D D S S S S S S S S E E E E E E E E E E E E
6 DU DU DU DU DU DU D D D D D S S S S S S S S S E E E E E E E E
7 DU DU DU DU DU DU DU D D D D D D S S S S S S S S S S E E E E
8 DU DU DU DU DU DU DU DU DU D D D D D D S S S S S S S S S S S
9 DU DU DU DU DU DU DU DU DU DU DU D D D D D D S S S S S S S S

10 DU DU DU DU DU DU DU DU DU DU DU DU D D D D D D S S S S S S
11 DU DU DU DU DU DU DU DU DU DU DU DU DU DU D D D D D D S S S
12 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU D D D D D D
13 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU D D D D
14 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU D
15 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU
16 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU
17 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU
18 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU
19 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU
20 DU DU DU DU DU DU DU DU DU DU DU DU DU DU
21 DU DU DU DU DU DU DU DU DU DU DU DU DU
22 DU DU DU DU DU DU DU DU DU DU DU DU
23 DU DU DU DU DU DU DU DU DU DU DU
24 DU DU DU DU DU DU DU DU DU DU
25 DU DU DU DU DU DU DU DU DU
26 DU DU DU DU DU DU DU DU
27 DU DU DU DU DU DU DU
28 DU DU DU DU DU DU
29 DU DU DU DU DU
30 DU DU DU DU
31 DU DU DU
32 DU DU
33 DU

Number of patients treated at current dose
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APPENDIX B: R CODE 

B.1 LRCAT FUNCTION 

LRcat <- function (truep, prior.alpha, ff, sdose, cutpoints, Npat, cohort, 
start, loss) { 
   ### initialize simulation data 
  new.tox <- rep(0, 7) 
  new.notox <- rep(0, 7) 
  new.npat <- rep(0,7) 
  J <- Npat/cohort ## total number of cohorts 
   
  for (j in 1:J) { 

d <- ifelse(j==start,1,d.prior)  
## generate toxicity indicators for the current cohort 

    tox.current <- rbinom(3, 1, truep[d])  
    ## non-toxicity indicators per current cohort 
    notox.current <- 1- tox.current  
    ### update data 
    new.tox[d] <- new.tox[d] + sum(tox.current) ## accumulated toxicity 
counts 
    new.notox[d] <- new.notox[d] + sum(notox.current) 
    new.npat <- new.tox + new.notox 
    ncurrent <- sum(new.tox + new.notox) 
     
    ### culculate posterior DLT from the prior 
    posterior.samples <- 
Posterior.rjags(new.tox,new.notox,sdose,ff,prior.alpha, 
                                         burnin.itr=2000,production.itr=2000) 
    posterior.dlt <- matrix(nrow=2000,ncol=7) 
    k <- length(sdose) 
    for (m in 1:k) { 
      posterior.dlt[,m] <- 
exp(log(posterior.samples[,1])+(posterior.samples[,2]*sdose[m]))/ 
        
(1+(exp(log(posterior.samples[,1])+(posterior.samples[,2]*sdose[m])))) 
    } 
    pdlt <- as.data.frame(posterior.dlt) 
    cut1 <- cutpoints[1]; cut2 <- cutpoints[2]; cut3 <- cutpoints[3]; 
    pdlt <- mutate(pdlt,  
                   p1=cut(V1,c(0,cut1,cut2,cut3,1),include.lowest=TRUE), 
                   p2=cut(V2,c(0,cut1,cut2,cut3,1),include.lowest=TRUE), 
                   p3=cut(V3,c(0,cut1,cut2,cut3,1),include.lowest=TRUE), 
                   p4=cut(V4,c(0,cut1,cut2,cut3,1),include.lowest=TRUE), 
                   p5=cut(V5,c(0,cut1,cut2,cut3,1),include.lowest=TRUE), 
                   p6=cut(V6,c(0,cut1,cut2,cut3,1),include.lowest=TRUE), 
                   p7=cut(V7,c(0,cut1,cut2,cut3,1),include.lowest=TRUE) 
    ) 
     
    dose1 <- as.vector(prop.table(table(pdlt$p1))) 
    dose2 <- as.vector(prop.table(table(pdlt$p2))) 
    dose3 <- as.vector(prop.table(table(pdlt$p3))) 
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    dose4 <- as.vector(prop.table(table(pdlt$p4))) 
    dose5 <- as.vector(prop.table(table(pdlt$p5))) 
    dose6 <- as.vector(prop.table(table(pdlt$p6))) 
    dose7 <- as.vector(prop.table(table(pdlt$p7))) 
     
    ### create a data frame containing posterior probability of DLT by 
categories 
    pdlt.cat <- rbind(dose1,dose2,dose3,dose4,dose5,dose6,dose7) 
    colnames(pdlt.cat) <- c("under","target","excess","unaccept") 
     
    ### compute the Bayes risk and overdosing probability 
    bayes.risk <- function(loss,d) { 
      sum(loss*d) 
    } 
    risk <- as.vector(apply(pdlt.cat,1,bayes.risk,loss)) 
    ndose <- seq(1,7,1) 
    pdlt.cat <- cbind(ndose,pdlt.cat,risk) 
    pdlt.cat <- as.data.frame(pdlt.cat) 
     
    ### select the dose for next level 
    ds <- pdlt.cat 
    d.prior <- ds$ndose[which(ds$risk==min(ds$risk))] 
     
    ### output the result when all patients are recruited 
    if (j==J) {result <- list(d.prior, new.tox, new.npat)} 
  } 
  return(result) 
} 

B.2 SIMULATION (LRCAT/ LRCAT25) 

## function to output operation characteristics 
oc <- function(mtd,ndlt,npat,target.d,D) { 
  d.mtd <- apply(mtd,2,mean)   
  d.mtd <- d.mtd*100 # percentage of MTD on each level  
  p.tox <- ndlt/npat 
  p.tox.mean <- apply(p.tox,2,mean,na.rm=TRUE) # toxicity probability on each 
level 
  d.pat <- apply(npat,2,mean) # allocation of patients 
  avg.n <- mean(rowSums(npat)) # average number of total patients 
  avg.dlt <- mean(rowSums(ndlt)) # average number of DLT 
  avg.pct.dlt <- mean(rowSums(ndlt)/rowSums(npat)) # average percentage of 
dlt 
  overrisk <- if(target.d <= (D-1)) { 
    xx <- vector(mode="numeric", length=nrow(npat)) 
    for (i in 1:nrow(npat)) { 
      xx[i] <- sum(npat[i,(target.d+1):D])/sum(npat[i,]) # percentage of risk 
of overdosing 
    } 
    (length(xx[which(xx>0.6)])/nrow(npat))*100 
  } else 0 
  underrisk <- if(target.d >= 2) { 
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    xx <- vector(mode="numeric", length=nrow(npat)) 
    for (i in 1:nrow(npat)) { 
      xx[i] <- sum(npat[i,1:(target.d-1)])/sum(npat[i,]) # percentage of risk 
of underdosing 
    } 
    (length(xx[which(xx>0.8)])/nrow(npat))*100 
  } else 0 
  ocs <- 
list(d.mtd,p.tox.mean,d.pat,avg.n,avg.dlt,avg.pct.dlt,overrisk,underrisk) 
  ocs <- setNames(ocs, c("PCS","Toxicity probability","Pt. allocation", 
                         "Avg. total patient","Avg. DLT","Avg.% of DLT",  
                         "Risk of Overdosing","Risk of Underdosing")) 
  return(ocs) 
} 
 
######################## LRcat25 simulation ######################### 
LRcat25.sim <- function (truep, nsim) { 
  mtd1 <- matrix(nrow=nsim,ncol=8); mtd1[] <- 0L 
  ndlt1 <- matrix(nrow=nsim,ncol=7) 
  npat1 <- matrix(nrow=nsim,ncol=7) 
  for (i in 1:nsim) { 
    LRcat25<- LRcat25(truep=truep, prior.alpha=list(4, mu3, Sigma3), 
ff="logit2",  
                         sdose=sdose, cutpoints=c(0.2,0.35,0.6), Npat=36, 
cohort=3, start=1, loss=loss1) 
    if (LRcat25[[1]] > 0) { 
      mtd1[i,(LRcat25[[1]]+1)] <- 1 
    } else { 
      mtd1[i,1] <- 1 
    } 
    ndlt1[i,] <- LRcat25[[2]] 
    npat1[i,] <- LRcat25[[3]] 
  } 
  return(list(mtd1,ndlt1,npat1)) 
} 
 
LRcat25.1 <- LRcat25.sim(s1, nsim) 
lrcat25.1 <- oc(LRcat25.1[[1]],LRcat25.1[[2]],LRcat25.1[[3]],1,7)   
LRcat25.2 <- LRcat25.sim(s2, nsim) 
lrcat25.2 <- oc(LRcat25.2[[1]],LRcat25.2[[2]],LRcat25.2[[3]],2,7) 
LRcat25.3 <- LRcat25.sim(s3, nsim) 
lrcat25.3 <- oc(LRcat25.3[[1]],LRcat25.3[[2]],LRcat25.3[[3]],2,7)  
LRcat25.4 <- LRcat25.sim(s4, nsim) 
lrcat25.4 <- oc(LRcat25.4[[1]],LRcat25.4[[2]],LRcat25.4[[3]],4,7)  
LRcat25.5 <- LRcat25.sim(s5, nsim) 
lrcat25.5 <- oc(LRcat25.5[[1]],LRcat25.5[[2]],LRcat25.5[[3]],4,7)  
LRcat25.6 <- LRcat25.sim(s6, nsim) 
lrcat25.6 <- oc(LRcat25.6[[1]],LRcat25.6[[2]],LRcat25.6[[3]],6,7) 
LRcat25.7 <- LRcat25.sim(s7, nsim) 
lrcat25.7 <- oc(LRcat25.7[[1]],LRcat25.7[[2]],LRcat25.7[[3]],6,7) 
LRcat25.8 <- LRcat25.sim(s8, nsim) 
lrcat25.8 <- oc(LRcat25.8[[1]],LRcat25.8[[2]],LRcat25.8[[3]],7,7)  
 
 
######################## LRcat simulation ######################### 
LRcat.sim <- function (truep, nsim, D) { 
  mtd2 <- matrix(nrow=nsim,ncol=D+1); mtd2[] <- 0L 
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  ndlt2 <- matrix(nrow=nsim,ncol=D) 
  npat2 <- matrix(nrow=nsim,ncol=D) 
  for (i in 1:nsim) { 
    LRcat <- LRcat(truep=truep, prior.alpha=list(4, mu3, Sigma3), 
ff="logit2",  
                    sdose=sdose, cutpoints=c(0.2,0.35,0.6), Npat=36, 
cohort=3, start=1, loss=loss1) 
    if (LRcat[[1]] > 0) { 
      mtd2[i,(LRcat[[1]]+1)] <- 1 
    } else { 
      mtd2[i,1] <- 1 
    } 
    ndlt2[i,] <- LRcat[[2]] 
    npat2[i,] <- LRcat[[3]] 
  } 
  return(list(mtd2,ndlt2,npat2)) 
} 
 
LRcat1 <- LRcat.sim(s1, nsim, 7) 
lrcat1 <- oc(LRcat1[[1]],LRcat1[[2]],LRcat1[[3]],1,7)   
LRcat2 <- LRcat.sim(s2, nsim, 7) 
lrcat2 <- oc(LRcat2[[1]],LRcat2[[2]],LRcat2[[3]],2,7) 
LRcat3 <- LRcat.sim(s3, nsim, 7) 
lrcat3 <- oc(LRcat3[[1]],LRcat3[[2]],LRcat3[[3]],2,7) 
LRcat4 <- LRcat.sim(s4, nsim, 7) 
lrcat4 <- oc(LRcat4[[1]],LRcat4[[2]],LRcat4[[3]],4,7) 
LRcat5 <- LRcat.sim(s5, nsim, 7) 
lrcat5 <- oc(LRcat5[[1]],LRcat5[[2]],LRcat5[[3]],4,7) 
LRcat6 <- LRcat.sim(s6, nsim, 7) 
lrcat6 <- oc(LRcat6[[1]],LRcat6[[2]],LRcat6[[3]],6,7) 
LRcat7 <- LRcat.sim(s7, nsim, 7) 
lrcat7 <- oc(LRcat7[[1]],LRcat7[[2]],LRcat7[[3]],6,7) 
LRcat8 <- LRcat.sim(s8, nsim, 7) 
lrcat8 <- oc(LRcat8[[1]],LRcat8[[2]],LRcat8[[3]],7,7) 
 

B.3 PLOTS FOR SIMULATION RESULTS 

############## Percentage of selected MTD on each dose level ############### 
bar.mtd <- function(truep,target.d,crm,mcrm,mtpi,lrcat25,lrcat,boin) { 
  xaxis <- c('0','1','2','3','4','5','6','7') 
  color <- rep(0,8) 
  color[(target.d+1)] <- 8 
  par(mfrow = c(1, 6), mar=c(4,2.5,2,1), omi=c(0.2,0.2,0.2,0)) 
  p1 <- barplot(crm[[1]],ylim=c(0,95),main="CRM",names.arg=xaxis,col=color) 
  lines(x=p1[2:8], y=truep*100, type="b", pch=16, lty=1, col=4) 
  p2 <- barplot(mcrm[[1]],ylim=c(0,95),main="mCRM",names.arg=xaxis,col=color) 
  lines(x=p2[2:8], y=truep*100, type="b", pch=16, lty=1, col=4) 
  p3 <- barplot(mtpi[[1]],ylim=c(0,95),main="mTPI",names.arg=xaxis,col=color) 
  lines(x=p3[2:8], y=truep*100, type="b", pch=16, lty=1, col=4) 
  boin.mtd <- c(boin$pctearlystop[1],boin$selpercent) 
  p4 <- barplot(boin.mtd,ylim=c(0,95),main="BOIN",names.arg=xaxis,col=color) 



39 
 

  lines(x=p4[2:8], y=truep*100, type="b", pch=16, lty=1, col=4)  
  p5 <- 
barplot(lrcat[[1]],ylim=c(0,95),main="LRcat",names.arg=xaxis,col=color) 
  lines(x=p5[2:8], y=truep*100, type="b", pch=16, lty=1, col=4) 
  p6 <- 
barplot(lrcat25[[1]],ylim=c(0,95),main="LRcat25",names.arg=xaxis,col=color) 
  lines(x=p6[2:8], y=truep*100, type="b", pch=16, lty=1, col=4) 
  mtext("MTD Selection Percentage", side=2, outer=T, at=0.5) 
   
} 
 
## plotting scenarios 1-8 
pdf("PCS new.pdf",height=6,width=7) 
par(mfrow = c(2, 1)) 
 
bar.mtd1(s1,1,crm1,mcrm1,mtpi1,lrcat25.1,lrcat1,boin1) 
mtext("Scenario 1", side=3, outer=T, at=0.5) 
bar.mtd1(s2,2,crm2,mcrm2,mtpi2,lrcat25.2,lrcat2,boin2) 
mtext("Scenario 2", side=3, outer=T, at=0.5) 
bar.mtd1(s3,2,crm3,mcrm3,mtpi3,lrcat25.3,lrcat3,boin3) 
mtext("Scenario 3", side=3, outer=T, at=0.5) 
bar.mtd1(s4,4,crm4,mcrm4,mtpi4,lrcat25.4,lrcat4,boin4) 
mtext("Scenario 4", side=3, outer=T, at=0.5) 
bar.mtd1(s5,4,crm5,mcrm5,mtpi5,lrcat25.5,lrcat5,boin5) 
mtext("Scenario 5", side=3, outer=T, at=0.5) 
bar.mtd1(s6,6,crm6,mcrm6,mtpi6,lrcat25.6,lrcat6,boin6) 
mtext("Scenario 6", side=3, outer=T, at=0.5) 
bar.mtd1(s7,6,crm7,mcrm7,mtpi7,lrcat25.7,lrcat7,boin7) 
mtext("Scenario 7", side=3, outer=T, at=0.5) 
bar.mtd2(s8,7,crm8,mcrm8,mtpi8,lrcat25.8,lrcat8,boin8) 
mtext("Scenario 8", side=3, outer=T, at=0.5) 
 
dev.off() 
 
 
 
###################### Patient allocation ############################# 
bar.pat1 <- function(target.d,crm,mcrm,mtpi,lrcat25,lrcat,boin) { 
  xaxis <- c('1','2','3','4','5','6','7') 
  color <- rep(0,7) 
  color[target.d] <- 8 
  par(mfrow = c(1, 6), omi=c(0.2,0.2,0.2,0), par(mar=c(4,2.5,2,1))) 
  p1 <- barplot(crm[[3]],ylim=c(0,25),main="CRM",names.arg=xaxis,col=color) 
  p2 <- barplot(mcrm[[3]],ylim=c(0,25),main="mCRM",names.arg=xaxis,col=color) 
  p3 <- barplot(mtpi[[3]],ylim=c(0,25),main="mTPI",names.arg=xaxis,col=color) 
  p4 <- 
barplot(boin$nptsdose,ylim=c(0,25),main="BOIN",names.arg=xaxis,col=color) 
  p5 <- 
barplot(lrcat[[3]],ylim=c(0,25),main="LRcat",names.arg=xaxis,col=color) 
  p6 <- 
barplot(lrcat25[[3]],ylim=c(0,25),main="LRcat25",names.arg=xaxis,col=color) 
   
    mtext("Avg. Allocated Patients", side=2, outer=T, at=0.5) 
} 
 
## plotting scenarios 1-8 
bar.pat1(1,crm1,mcrm1,mtpi1,lrcat25.1,lrcat1,boin1) 
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mtext("Scenario 1", side=3, outer=T, at=0.5) 
bar.pat1(2,crm2,mcrm2,mtpi2,lrcat25.2,lrcat2,boin2) 
mtext("Scenario 2", side=3, outer=T, at=0.5) 
bar.pat1(2,crm3,mcrm3,mtpi3,lrcat25.3,lrcat3,boin3) 
mtext("Scenario 3", side=3, outer=T, at=0.5) 
bar.pat2(4,crm4,mcrm4,mtpi4,lrcat25.4,lrcat4,boin4) 
mtext("Scenario 4", side=3, outer=T, at=0.5) 
bar.pat1(4,crm5,mcrm5,mtpi5,lrcat25.5,lrcat5,boin5) 
mtext("Scenario 5", side=3, outer=T, at=0.5) 
bar.pat1(6,crm6,mcrm6,mtpi6,lrcat25.6,lrcat6,boin6) 
mtext("Scenario 6", side=3, outer=T, at=0.5) 
bar.pat1(6,crm7,mcrm7,mtpi7,lrcat25.7,lrcat7,boin7) 
mtext("Scenario 7", side=3, outer=T, at=0.5) 
bar.pat2(7,crm8,mcrm8,mtpi8,lrcat25.8,lrcat8,boin8) 
mtext("Scenario 8", side=3, outer=T, at=0.5) 
 
################ Average Percentage of Toxicity####################### 
bar.tox <- function(crm,mcrm,mtpi,boin,lrcat,lrcat25,title) { 
  crm.tox <- crm[[6]] 
  mcrm.tox <- mcrm[[6]] 
  mtpi.tox <- mtpi[[6]] 
  boin.tox <- (boin$totaltox[1]/boin$totaln[1]) 
  lrcat.tox <- lrcat[[6]] 
  lrcat25.tox <- lrcat25[[6]] 
  tox <- c(crm.tox,mcrm.tox,mtpi.tox,boin.tox,lrcat.tox,lrcat25.tox) 
  barplot(tox, ylim=c(0,0.50), main=title, 
          col=c('#66c2a5','#fc8d62','#8da0cb','#e78ac3','#a6d854','#ffd92f') 
          ) 
   
  abline(h=0.30,lty=4) #,col="#FFC300" 
} 
 
## plotting toxicity rate 
par(mfrow = c(1, 8), family="", oma=c(3,2,1,1), mar=c(3,3,2,1)) 
 
bar.tox(crm1,mcrm1,mtpi1,boin1,lrcat1,lrcat25.1,"Scenario 1") 
bar.tox(crm2,mcrm2,mtpi2,boin2,lrcat2,lrcat25.2,"Scenario 2") 
bar.tox(crm3,mcrm3,mtpi3,boin3,lrcat3,lrcat25.3,"Scenario 3") 
bar.tox(crm4,mcrm4,mtpi4,boin4,lrcat4,lrcat25.4,"Scenario 4") 
bar.tox(crm5,mcrm5,mtpi5,boin5,lrcat5,lrcat25.5,"Scenario 5") 
bar.tox(crm6,mcrm6,mtpi6,boin6,lrcat6,lrcat25.6,"Scenario 6") 
bar.tox(crm7,mcrm7,mtpi7,boin7,lrcat7,lrcat25.7,"Scenario 7") 
bar.tox(crm8,mcrm8,mtpi8,boin8,lrcat8,lrcat25.8,"Scenario 8") 
 
mtext("Designs", side=1, outer=T, at=0.5) 
mtext("Average Toxicity Rate", side=2, outer=T, at=0.5) 
 
legend(x=-45,y=-0.10,legend=c('CRM','mCRM','mTPI','BOIN','LRcat','LRcat25'), 
       #col=c('#66c2a5','#fc8d62','#8da0cb','#e78ac3','#a6d854','#ffd92f'), 
       col=c('#000000','#4c4c4c','#7f7f7f','#b2b2b2','#cccccc','#e5e5e5'), 
       #angle=angle1, density=density1, 
       horiz=T, pch=15,bty="0",xpd=NA,cex=1.2,pt.cex=2) 
 
dev.off() 
 
######################## Risk of overdosing ######################## 
bar.over <- function(crm,mcrm,mtpi,boin,lrcat,lrcat25,ylim,title) { 
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  #xaxis <- c('3+3','CRM','mTPI','LRcat25','LRcat','BOIN') 
  mtpi.over <- mtpi[[7]] 
  boin.over <- boin$overdose60[1] 
  crm.over <- crm[[7]] 
  mcrm.over <- mcrm[[7]] 
  lrcat.over <- lrcat[[7]] 
  lrcat25.over <- lrcat25[[7]] 
  over <- c(crm.over,mcrm.over,mtpi.over,boin.over,lrcat.over,lrcat25.over) 
  barplot(over, ylim=c(0,ylim), main=title, 
} 
 
## plotting percentage of overdosing 
par(mfrow = c(1, 7), family="", oma=c(4,2,1,1), mar=c(2,3,2,1)) 
 
bar.over(crm1,mcrm1,mtpi1,boin1,lrcat1,lrcat25.1,35,"Scenario 1") 
bar.over(crm2,mcrm2,mtpi2,boin2,lrcat2,lrcat25.2,35,"Scenario 2") 
bar.over(crm3,mcrm3,mtpi3,boin3,lrcat3,lrcat25.3,35,"Scenario 3") 
bar.over(crm4,mcrm4,mtpi4,boin4,lrcat4,lrcat25.4,35,"Scenario 4") 
bar.over(crm5,mcrm5,mtpi5,boin5,lrcat5,lrcat25.5,35,"Scenario 5") 
bar.over(crm6,mcrm6,mtpi6,boin6,lrcat6,lrcat25.6,35,"Scenario 6") 
bar.over(crm7,mcrm7,mtpi7,boin7,lrcat7,lrcat25.7,35,"Scenario 7") 
#bar.over(three8,mtpi8,boin8,crm8,lrcat8,lrcat25.8,"Scenario 8") 
 
mtext("Designs", side=1, outer=T, at=0.5) 
mtext("Risk of Overdosing (%)", side=2, outer=T, at=0.5) 
 
legend(x=10,y=25,legend=c('CRM','mCRM','mTPI','BOIN','LRcat','LRcat25'), 
       #col=c('#66c2a5','#fc8d62','#8da0cb','#e78ac3','#a6d854','#ffd92f'), 
       col=c('#000000','#4c4c4c','#7f7f7f','#b2b2b2','#cccccc','#e5e5e5'), 
       #angle=angle1, density=density1, 
       horiz=F, pch=15,bty="o",xpd=NA,cex=2,pt.cex=3) 
dev.off() 
####################### Risk of Underdosing ########################## 
bar.under <- function(crm,mcrm,mtpi,boin,lrcat,lrcat25,ylim,title) { 
  mtpi.under <- mtpi[[8]] 
  boin.under <- boin$underdose80[1] 
  crm.under <- crm[[8]] 
  mcrm.under <- mcrm[[8]] 
  lrcat.under <- lrcat[[8]] 
  lrcat25.under <- lrcat25[[8]] 
  under <- 
c(crm.under,mcrm.under,mtpi.under,boin.under,lrcat.under,lrcat25.under) 
  barplot(under, ylim=c(0,ylim), main=title, 
          col=c('#000000','#4c4c4c','#7f7f7f','#b2b2b2','#cccccc','#e5e5e5') 
          ) 
} 
 
## Plot percentage of overdosing 
par(mfrow = c(1, 7), family="", oma=c(4,2,1,1), mar=c(2,3,2,1)) 
 
bar.under(crm2,mcrm2,mtpi2,boin2,lrcat2,lrcat25.2,80,"Scenario 2") 
bar.under(crm3,mcrm3,mtpi3,boin3,lrcat3,lrcat25.3,80,"Scenario 3") 
bar.under(crm4,mcrm4,mtpi4,boin4,lrcat4,lrcat25.4,80,"Scenario 4") 
bar.under(crm5,mcrm5,mtpi5,boin5,lrcat5,lrcat25.5,80,"Scenario 5") 
bar.under(crm6,mcrm6,mtpi6,boin6,lrcat6,lrcat25.6,80,"Scenario 6") 
bar.under(crm7,mcrm7,mtpi7,boin7,lrcat7,lrcat25.7,80,"Scenario 7") 
bar.under(crm8,mcrm8,mtpi8,boin8,lrcat8,lrcat25.8,80,"Scenario 8") 
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mtext("Designs", side=1, outer=T, at=0.5) 
mtext("Risk of Underdosing (%)", side=2, outer=T, at=0.5) 
 
legend(x=10,y=25,legend=c('CRM','mCRM','mTPI','BOIN','LRcat','LRcat25'), 
       col=c('#000000','#4c4c4c','#7f7f7f','#b2b2b2','#cccccc','#e5e5e5'), 
       horiz=F, pch=15,bty="o",xpd=NA,cex=2,pt.cex=3) 
 
dev.off() 
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