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Tuberculosis (TB) continues to pose a significant health risk to morbidity and mortality 

worldwide.  Mycobacterium tuberculosis, the causative agent of TB, is responsible for nearly 10 

million new cases of active disease and 2 million deaths annually.  While the majority of M. 

tuberculosis infected individuals are asymptomatic (termed latent TB) and contain the infection, 

a subset (~10%) of infected individuals either present initially with primary active disease or 

reactivate subsequently over the course of their lifetime.  The precise immune mechanisms 

responsible for this observed spectrum remain unclear but recent evidence suggests that early 

events in M. tuberculosis infection influence host outcome.  In this dissertation, we utilized 

established non-human primate (NHP) models of M. tuberculosis to examine the early 

immunologic, pathologic, and contextual responses following infection.  The primary aim of this 

thesis was to develop a novel genomic barcoding approach to add to our in vivo toolbox 

permitting single-bacterial tracing to probe early events in a variety of infection contexts.  Our 

work validated the use of these bacterial tags and provided a unique ability to quantitatively track 

individual founding bacilli and their descendants in infected macaques.  We found that the 

majority of bacteria are able to establish infection (i.e. a primary granuloma) but only a subset of 

bacteria contributes to productive dissemination.  In addition, our barcode strategy permitted 

reinfection studies in which primary and secondary infections are separately evaluated using 

library-specific identifiers.  Our initial observations suggest that an ongoing primary infection 
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substantially limits secondary granuloma establishment and bacterial growth.  By adapting our 

current NHP model of TB with new genomic barcoding tools, our work has provided insight into 

bacterial dissemination, reinfection, and host variability.  Finally, our most recent studies are 

looking into the earliest context of the lung by probing the lung microbiome and its interaction 

with M. tuberculosis.  Our latest observations suggest that the microbial lung landscape is highly 

variable across individuals, is distinct from the oral cavity, and undergoes significant alterations 

following infection. Overall, this body of work reiterates the importance of appreciating the 

influence that early infection and single lesion dynamics contributes to host outcome. 
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1.0  A BRIEF INTRODUCTION INTO MYCOBACTERIUM TUBERCULOSIS, TB 

BIOLOGY AND EARLY INFECTION 

Sections of the chapter are adapted from the original publication: 

Cadena AM, Flynn JL, & Fortune SM (2016) The Importance of First Impressions: Early Events 

in Mycobacterium tuberculosis Infection Influence Outcome. mBio 7(2):e00342-00316. 

& 

from the review in preparation: 

Cadena AM, Fortune SM, & Flynn JL  (2017) Heterogeinity in Tuberculosis: the Importance of 

Considering Local Conflicts in a Global Contex. 

1.1 THE BUG: ITS PERSISTENCE, SUCCESS, AND HOST INTERACTION 

1.1.1 Mycobacterium tuberculosis, an old threat remains 

Tuberculosis remains a global health threat.  In spite of an existing drug regimen and the M. 

bovis bacilli Calmette-Guerin (BCG) vaccine, there were 10.4 million incident cases of TB and 

1.8 million deaths in 20151.  The greatest global burden for active TB lies in sub-Saharan Africa, 

India, and China where effective TB control is hampered by co-infection, poverty, inadequate 

disease surveillance, questionable BCG vaccine efficacy, and increasing drug resistance1-4.  In 
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addition to these socio-economic barriers, our incomplete understanding of the human immune 

response further drives TB resurgence as a global infectious disease.  The lack of true immune 

correlates of protection to M. tuberculosis infection and disease5-7 coupled with the heterogeneity 

of the human immune response to TB8,9, impinge on the development of novel vaccines and anti-

mycobacterial drugs. 

1.1.2  Host outcome in TB, beyond the two-state paradigm 

Classically, Mycobacterium tuberculosis infection is thought to result in one of two states: latent 

infection or active disease. The former outcome is a clinically silent process defined by 

immunological containment and bacterial persistence and accounts for ninety percent of human 

infections with an estimated burden of approximately 2 billion individuals worldwide10,11.  By 

contrast, active disease is classified as a failed host response manifesting primarily as pulmonary 

TB typified by chronic cough, fever, sustained weight loss, wasting, and hemoptysis12.  In 2015, 

there were 10.4 million new cases of illness and 1.8 million deaths1 due to TB; this active disease 

state is estimated to occur in approximately 5% of initial infections in the first 18 months with a 

remaining risk of 5% over the course of one’s life13.  More recently, the TB field has embraced a 

newer paradigm that recognizes a spectrum of clinical outcomes within these two states7,14,15.  

The biological and immunological underpinning for this variability is not well understood and 

remains an open question in human TB. 

The large reservoir of asymptomatic latent infection in the human population represents a 

nuanced continuum of bacterial persistence and host containment ranging from cleared infection 

to low-grade tuberculosis14,15 (Figure 1).  This viewpoint extends the definition of subclinical, 

latent tuberculosis beyond a single status to better differentiate risk of reactivation, prioritize 
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preventive treatment, and emphasize host heterogeneity to M. tuberculosis infection.  Individuals 

that have sterilized infection would be least likely to reactivate and presumably last to require 

intervention.  By contrast, latently infected individuals who are harboring a low-grade, 

percolating infection would be at higher risk to reactivate and more likely to require treatment.  

In addition to better segregating individuals at higher risk of reactivation, this perspective 

provides greater appreciation for the dynamic nature of M. tuberculosis infection and the human 

immune response to TB, which, in turn, affords better explanation for those individuals who can 

control and clear infection as exhibited by persistent TST non-responders.  These individuals, 

despite documented high-risk exposure to TB, are consistently TST negative16-18 and suggest that 

intrinsic19 and innate immune factors might be contributing to mycobacterial clearance in the 

absence of an adaptive immune response20.  Lastly, this model reiterates the immunologic and 

pathologic variability underscoring all of these human outcomes, which is crucial to develop 

intervention strategies that recognize and target the unique, complex, and independent nature of 

the local host-pathogen interactions of this disease.   
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Figure 1. Tuberculosis presents along a spectrum of host outcomes.  

Within the clinically-defined, binary classification of TB exists a more complex set of host outcomes to M. 

tuberculosis infection.  This spectrum is driven by multiple factors but is thought to reflect differences in M. 

tuberculosis burden, a balance of pro (P)- and anti (A)-inflammatory cytokines, and pathology.   

 

Evidence supporting this newer paradigm of human TB has been observed in human 

studies with 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography 

(FDG PET CT)21.  The authors find that among 35 ART-naïve, HIV-1 positive LTBI adults, 10 

patients with pulmonary irregularities indicative of subclinical disease had a significantly higher 

risk to present with active TB compared to the remaining 25 patients that had no subclinical 

pathology by FDG PET CT.  These findings mirror data in the macaque model of tuberculosis in 

which FDG PET CT features including elevated lung inflammation and extrapulmonary sites of 

infection predicted reactivation risk in latently infected macaques prior to tumor necrosis factor 

(TNF) neutralization with 92% sensitivity and specificity22.  Both of these studies validate the 

biological importance and subsequent clinical benefit in appreciating the variability of host 

outcomes in TB. 
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Clinical heterogeneity has also been observed in the context of recent studies examining 

blood transcriptional signatures related to host status. In 2010, Berry et al reported a 393-

transcript signature distinct for active TB in both intermediate and high burden areas relative to 

latent TB subjects and healthy controls23.  Interestingly, while the majority of latent individuals 

clustered independently, 10-25% of the LTBI subjects shared similar transcriptional profiles with 

active TB patients, and most likely highlighted individuals with subclinical, active disease.  

These shared transcriptional profiles observed in a subset of clinically-defined latent TB subjects 

reiterate the radiological findings above, and further emphasize the varied nature of this disease, 

which can even be distinguished in the periphery.  More recently, additional gene expression 

analysis of pulmonary and extra-pulmonary TB patients found that transcriptional profiles are 

influenced by symptom status and site of disease24.  Individuals with extra-pulmonary disease 

exhibited heterogeneous gene signatures in which the magnitude of response was related to the 

presence of symptoms and site; those individuals with the highest mean molecular distance to 

health had the highest percentage of patients within the group having one or more symptom of 

either fever, night sweats, chest pain, cough, or weight loss.  These findings suggest that illness 

is likely linked to the site of infection, bacterial burden, and site host response, which in turn 

contribute to the resulting diversity of transcriptional profile and ultimately host status.  In non-

human primates, similar transcriptional studies have interrogated both lung-specific granuloma 

changes25 as well as longitudinal changes in the blood26.  In the first study, granulomas from 

rhesus macaques were found to undergo transcriptional reprogramming between early (4weeks) 

and late (13weeks) time points in infection25.  In the second study, peripheral analyses in 

cynomolgus macaques revealed the greatest transcriptional change between 3 and 8 weeks post 

infection26.  Both of these profiling studies reiterate the variable and dynamic states occurring 
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both locally and systemically throughout infection and reinforce the importance that early events 

play in shaping clinical outcome27.  

1.1.3 The granuloma, a dynamic structure of bacterial containment and persistence 

The hallmark of human TB is the granuloma, an organized and localized aggregate of immune 

cells that consists of macrophages, lymphocytes, and other host immune cells and forms in 

response to persistent stimuli28.  In TB, these structures arise at the sites of infection and 

represent an active interchange between the host and pathogen.  The formation of a granuloma is 

crucial to adequately control and contain infection29,30, but may also contribute to early M. 

tuberculosis proliferation and dissemination31-33.  Human studies from over a half-century ago 

have revealed that in active disease and latent infection, granulomas exhibit morphological 

heterogeneity7,34.  In addition to the classic caseous granuloma, granulomas can be non-

necrotizing, neutrophil-rich, mineralized, or completely fibrotic30.  In nearly all of these 

instances, the basic granuloma architecture exhibits the following layout: a central acellular 

necrotic core, termed caseum, surrounded by a diverse population of macrophages, which is 

itself circumscribed by a lymphocytic cuff of CD4 and CD8+ T cells and B cells, and may have a 

peripheral fibrotic edge29,32.  Granulomas primarily contain macrophages at various stages of 

activation and T and B cells, but can also contain neutrophils, dendritic cells (DCs), and 

fibroblasts30,32 (Figure 2).  The important lesson learned from appreciating the heterogeneity of 

human TB granulomas is that each separate lesion represents a localized microenvironment that 

can be independently influenced by the quality of the localized immune response, the 

pathogenicity, state, and prevalence of the bacteria, the extent of immunopathology, and the 

overall host disease status35,36.  The interaction of all of these factors in the granuloma has yet to 
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be determined but does allow for speculation into how heterogeneous disease states can arise 

from varying lesion-specific dynamics, particularly in the early stages of infection. 

 

Figure 2. Archetypical caseous granuloma.  

A classic caseous granuloma from an infected macaque.  It is organized into an inner region (c) of necrotic caseum 

surrounded by a region (h) of histocytic macrophages that is encapsulated (granuloma periphery) by a cuff of T and 

B lymphocytes.  This lesion has a peripheral region of fibrosis (black arrow).  Image courtesy Edwin Klein, VDM.   

 

1.2 FIRST IMPRESSIONS MATTER: EARLY EVENTS IN MYCOBACTERIUM 

TUBERCULOIS INFLUENCE OUTCOME 

New vaccines against M. tuberculosis are essential for preventing infection, disease and 

transmission.  However, the host immune responses induced by an effective vaccine remain 
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unclear6.  Increasingly it has become clear that early events including early innate responses in 

infection are of major importance in the eventual outcome of the infection37,38.  Studying such 

events in humans is challenging, as they are occurring within the lung and thoracic lymph nodes, 

and any clinical signs of early infection are relatively non-specific.  Development of an effective 

vaccine requires a clear understanding of the successful (and detrimental) early host responses 

against M. tuberculosis, with the goal to improve upon natural immune responses and prevent 

infection or disease. 

M. tuberculosis infection generally progresses quite slowly, with active TB being 

diagnosed most commonly within the first two years of infection.  People often do not know 

when they are exposed or infected and therefore, studying early events of infection in humans 

can be challenging.  Nonetheless, some studies support that the earliest events in M. tuberculosis 

infection are critically important in dictating clinical outcome. First and foremost, the inoculum 

dose in animal models from mice to non-human primates influences the severity of infection, so 

that more bacteria delivered to the lungs results in a worse outcome.  In addition, data from 

nonhuman primate studies suggest that between 3-6 weeks post-infection, one can predict 

whether the animal will progress to active TB disease or remain latently infected 6 to 9 months 

later, based on the extent of early dissemination, serologic (ESR) and PET-CT features 

suggestive of more extensive inflammation39.  Thus, clinical course is at least in part dictated by 

the early innate and adaptive immune responses.  Indeed, efforts to understand the basis of 

protective immunity to M. tuberculosis infection are pushing us to look even earlier into the 

course of infection.  Clinical studies suggest that there are individuals who are highly exposed to 

M. tuberculosis but remain persistently tuberculin skin test negative, and thus presumably 

uninfected16,18.  These individuals raise the possibility that at still earlier points in the course of 
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infection, it is possible for the host to fully clear the bacteria and that this early bacteriocidal 

response could be harnessed through vaccination.    

1.2.1 Clinical Data on Early Infection 

There are major gaps in our understanding of the early events in M. tuberculosis infection in 

humans.  These stem from the difficulty in identifying the onset of infection, for which there are 

no good diagnostic tools.  The classic diagnostic test for M. tuberculosis infection is the 

tuberculin skin test (TST), which is a delayed type hypersensitivity response to a crude mixture 

of M. tuberculosis proteins and lipids known as purified protein derivative (PPD).  A more recent 

test for infection is the Interferon-Gamma Release Assays (IGRA), in which blood is stimulated 

with two M. tuberculosis-specific antigens and then assayed for IFN-γ by ELISA or ELISPOT. 

Both the TST and IGRA measure the T cell response to mycobacterial antigens, and therefore are 

not positive until a measurable T cell response is induced. Induction of measurable T cell 

responses to M. tuberculosis infection can be quite slow in tuberculosis.  It occurs in humans 

approximately 6 weeks post-infection40. In non-human primates and in guinea pigs, TST 

conversion occurs 4-8 weeks after exposure and infection41,42.  Although TST is not usually 

performed in mice, an older study showed that PPD+ skin test responses were observed at 4-6 

weeks post-infection43.  However, M. tuberculosis-specific T cell responses in lymphoid tissues 

can be measured as early as 2 weeks post-infection44.  Conversion of a negative to positive TST 

or IGRA result denotes recent exposure and infection.  Frequent TST or IGRA testing is 

necessary in clinical settings to establish an approximate time of infection, but by the time a T 

cell response is measurable, the early events in infection have already occurred.  The lack of 

simple diagnostic tests that can be used to identify infected individuals immediately after 
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infection makes it difficult to conduct rigorous studies on the course of early infection in 

humans.  

Despite these limitations, landmark studies were conducted by Poulsen in the Faroe 

Islands in the pre-treatment era of the 1930s and 1940s that provided critical insights into initial 

infection in humans40,45.  In these studies, a version of tuberculin skin testing was performed on 

nearly all of the 30,000 residents of the numerous villages in the Faroe Islands, and nearly all 

persons with active TB were known.  Thus, the local epidemiology of TB in each village was 

well documented, and since most villages were small, tracking individuals and obtaining detailed 

histories was possible.  New TST conversions were followed up closely, with particular attention 

paid to identifying the time of infection by determining the index case and the duration of 

exposure to that case by the newly infected individual, as well as clinical signs post-infection, 

including X-rays and fluoroscopy.  The first detailed description of these studies is a fascinating 

series of “case reports” documenting the duration of and time since exposure to an index case, 

skin test conversion, subsequent clinical manifestations, and outcome40.  In some cases, exposure 

to a person with active TB for less than 24 hours resulted in TST conversion and subsequent 

development of primary TB. TST conversion was generally evident by 6 weeks post-exposure. 

Interestingly, nearly all of the reported cases experienced a fever (termed “initial fever”) around 

the time of skin test conversion, and follow up indicated hilar adenopathy, with a number of 

subsequent cases of active TB and deaths. 

In a follow up study, Poulson rigorously analyzed early symptoms of infection and 

outcome45.  A total of 232 subjects (children and adults) who had TST conversions within the 6 

month interval of testing were followed for several years.  An additional 285 subjects who were 

selected as presenting with an initial fever in conjunction with recent skin test conversion were 
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also followed.  Of the 232 “unselected” subjects, 63% had an initial fever after infection, and the 

frequency was similar between adults and children.  The fever was of variable intensity and 

duration, though this was not predictive of disease outcome.  These findings suggest an initial 

inflammatory process in the majority of those infected with M. tuberculosis, regardless of 

infection trajectory (i.e. primary disease or containment).  Poulson documented other signs of 

initial inflammation associated with infection including elevated erythrocyte sedimentation rate 

(ESR), a non-specific sign of inflammation and erythema nodosum, an inflammatory process 

often linked to mycobacterial infection.  Elevated ESR was coincident with initial fever, and in 

most cases returned to normal within 2 months.  Even with the X-ray and fluoroscopy 

technology available at the time, hilar adenopathy, presumably signifying thoracic lymph node 

enlargement, was identified in 55% of subjects unselected for fever in the first two months post-

infection, with little increase in hilar lymph node involvement after this time.  Pulmonary 

infiltrates were observed within the first year in 27% of converters, which agrees with a separate 

study in Norway46.  These infiltrates were usually seen within 3 months of TST conversion and 

usually unilateral. Most of these infiltrates regressed over the next several months, and only 15% 

of those with infiltrates progressed to active TB.  However, when separated between adults and 

children, the authors find that 2% of children with infiltrates developed active disease whereas 

25% of adult converters with infiltrates progressed to TB suggesting that early pulmonary 

infiltrates in adult converters is linked with disease progression45.  

Importantly, the earliest stages of infection may also be associated with bacterial carriage 

in sputum.  For example, a recent study employing active case finding to estimate the prevalence 

of TB in household contacts revealed a stunningly high rate of asymptomatic carriage of M. 

tuberculosis bacteria in the sputum in household contacts, presumably more recently infected by 
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the incident case47.  Similarly, pediatric studies suggest that there can be an early period of 

bacterial “excretion” after infection, which subsequently can resolve and does not necessarily 

herald eventual tuberculosis disease48.  This supports a model in which an early period of 

bacterial growth is relatively common, even where the infection will subsequently be controlled.  

These studies provide evidence of an early evolution of the infection in the majority of 

those infected, including an inflammatory process, evidence of thoracic lymph node involvement 

and potentially also the presence of culturable bacilli in the airways or sputum.  Thus, the initial 

events in humans are not usually “silent” and suggest that the host immune response to initial 

infection is relatively robust.  As most infections do not progress to active TB, this immune 

response is often successful in restraining the infection, although it is apparently a matter of 

months before this containment is complete. 

These findings from human studies are recapitulated by our studies in macaque models of 

tuberculosis.  Cynomolgus macaques develop active TB or latent infection, defined clinically, 

following infection with <25 CFU M. tuberculosis strain Erdman42,49.  Using PET/CT imaging 

with fluorodeoxyglucose (FDG) as a probe, immunological assays, and clinical assessments, we 

have demonstrated that all macaques infected with a low dose of M. tuberculosis have an 

evolution of infection within the lungs, with granulomas visible by 2-3 weeks by PET/CT 

imaging39,50.  Thoracic lymph nodes are often enlarged or show FDG avidity within a few weeks 

of infection. Using culture of gastric aspirates and bronchoalveolar lavage (BAL) as surrogates 

for sputum cultures, 30% of infected monkeys were found to shed culturable M. tuberculosis 

within 2 months of infection, indicating bacilli in airways during acute infection49.  This was 

loosely correlated with outcome, with 90% of macaques that progress to active TB showing a 

positive gastric aspirate or BAL in the first two months of infection, compared to 44% of those 
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monkeys that would present with latent infection (unpublished data). ESR is very low in 

uninfected monkeys (normal <2mm).  Increased ESR within 60 days of infection was strongly 

correlated with eventual progression to active TB; ESR>15 in the first 2 months of infection 

correctly predicted outcome with 92% accuracy (unpublished data).  Coleman, et al. showed that 

formation of new granulomas between 3-6 weeks post-infection, and increased PET avidity in 

those granulomas, was associated with eventual development of active TB39.  Although 

radiographs are less useful in macaques than in humans and not as sensitive as PET CT, our early 

studies using x-rays suggested that early pulmonary infiltrates were observed in 60% of our 

macaques42, most of which went on to develop active disease.  The macaque data support the 

human data on early inflammatory responses following infection, but also suggest that the final 

outcome of primary infection is determined early by the ability of the host to control infection in 

the granulomas and prevent early dissemination. 

A more in depth study of granulomas from macaques demonstrated that the bacterial 

burden in the initial granulomas at 4 weeks post-infection is relatively high (~5 x 104 CFU) with 

minimal bacterial killing occurring36.  However, as the adaptive immune response is induced, 

bacterial killing in granulomas increases, dramatically reducing bacterial burden, and in some 

cases sterilizing the granuloma.  Indeed, even in monkeys that progress to active TB, an average 

of 30% of the granulomas are sterile36.  The specific factors that drive an individual granuloma 

towards a particular fate remain poorly understood, but are likely to reflect the contributions of 

both host and bacterial factors. 
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1.2.2 Early Granuloma Formation and Bacterial Dissemination 

What is known about the course of granuloma formation in people?  Our understanding of early 

granuloma formation is rooted in results from human autopsy series published by Georges 

Canetti in the 1955.  Based on his histopathologic examinations of 1500 autopsies, Canetti 

proposed that all tuberculous lesions proceed initially through an exudative and then a caseous 

phase.  He suggested that lesions then sit at a “crossroads”–some remaining solid and ultimately 

sclerosing and others softening, where softening of the caseum, not caseation per se, was the 

harbinger of active disease51.  At the time that he wrote, Canetti did not understand the basis of 

softening although in about half the cases, it was associated with an influx of neutrophils.  In a 

discussion that remains highly relevant today, he wrote51:  “This poses the question of whether 

an unknown factor orients the lesion from the outset toward liquefaction; that is, determines its 

fate from the earliest phases when the lesion may not be distinguished from another whose 

evolution will be ‘normal.’  On the other hand, one also often observes softening of lesions of 

long-standing radiologic existence; this is evidence of the potential danger of old caseous 

lesions.”   

Researchers have sought to better define and identify determinants of granuloma fate in a 

variety of experimental models.  Data from these models has supported many of Canetti’s 

observations (Figure 3).  Exploration of early granuloma organization and development in 

guinea pigs has shown that within 21 days there is evidence of caseation preceding initiation of T 

cell responses implicating both innate mechanisms and bacterial processes in early cellular 

death52.  Similarly, in macaques, the earliest granulomas isolated from the lungs (at 3 and 4 

weeks post-infection) are primarily caseous in nature53, where some of these lesions are expected 
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to progress but most will not, and indeed, some will be fully sterilized after the onset of adaptive 

immunity.    

 

Figure 3. Canetti model of granuloma evolution.  

Canetti granuloma formation and progression coupled with outcome of M. tuberculosis infection. Image used, with 

permission, Cadena et al27. Copyright (2016) American Association of Microbiology, USA.  

 

The first steps in the development of the granuloma, and the path to early caseation, have 

been elucidated using M. marinum in zebrafish.  These studies indicate that early macrophage 

death in the primary granuloma is linked to bacterial replication, dissemination, and secondary 

granuloma formation31,32.  Specific modulation of macrophage apoptosis and necrosis by the 

ecosanoid pathway, PGE2 and LXA4, respectively, early in infection has been shown to 

influence infection outcome54,55.  These studies extend the concept of the granuloma as a 
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protective host response to suggest that it also provides a niche for mycobacteria to establish 

robust infection.   

The events that dictate the fate of the granuloma after early caseation are less well 

understood.  M. tuberculosis expresses matrix metalloproteinases that can degrade collagen and 

facilitate tissue destruction56-58.  The relative contribution of these bacterial virulence factors to 

the softening of the caseum that Canetti described, as opposed to caseation per se, remains 

unclear.  It is possible that this reflects the effect of the enzymes responsible for the lipid 

mediators already implicated in TB disease, where alteration of activity is also expected to 

impact the linked lipid mediators of resolution of inflammation and neutrophil recruitment.  

1.2.3 What are the Critical Cellular Events in Early Infection? 

Our current understanding of the cellular events in early infection of M. tuberculosis draws on a 

number of in vitro model systems and in vivo small animal model studies.  Inhalation of a small 

number of M. tuberculosis via droplet nuclei from a person with active tuberculosis results in 

deposition of the bacilli into the alveolar space and initial contact and phagocytosis by alveolar 

macrophages59.  Following infection, an early influx of phagocytic cells including alveolar 

macrophages, neutrophils, and dendritic cells (DCs) arrive to this focus and begin to seed 

formation of a granuloma7,60.  Studies using a M. marinum zebrafish model helped to 

characterize the earliest cells recruited to the site of infection and showed that macrophages, not 

neutrophils, were the dominant phagocytosing cells in the first 4 days post infection61.  Murine 

studies with both M. tuberculosis62 and BCG63 suggest that there is early infection of alveolar 

macrophages, various populations of DCs, and neutrophils64.  At 2 weeks post infection, the 

lungs of C57BL/6 mice infected with ~100 CFU of M. tuberculosis Erdman revealed that the 
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predominant populations in the lungs are Ly6G+ neutrophils and F4/80+ macrophages64.   

Further characterization of the kinetics of lung recruitment within the first 2 to 4 weeks of 

infection in mice infected with GFP labeled M. tuberculosis revealed a diverse and dynamic 

interplay between host cells and bacteria62.  At 14 days post infection, myeloid DCs, alveolar 

macrophages, and neutrophils had the highest percentage of M. tuberculosis (GFP+) infected 

cells; by day 21, neutrophils and myeloid DCs had the highest percentages.  Similar observations 

of the mediastinal LNs determined that myeloid DC migration was the primary infected source 

during the initial stages of infections62. An excellent overview of these early cellular interactions 

is reviewed and modeled by O’Garra et al7 and summarized in Figure 4. These observations 

highlight the diverse range of early phagocytic responders to M. tuberculosis infection and 

implicate their initial influence on the progression of early disease and dissemination.   
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Figure 4. Early cellular response to M. tuberculosis.  

An overview of the early cellular interactions between host and bacterium following M. tuberculosis infection that 

culminate in formation of the tuberculosis granuloma.  

 

A recent review by Srivastava et al comprehensively assessed the diversity of these initial 

mononuclear cell subsets and detailed their contributions in tuberculosis65.  The authors 

evaluated the relative differences of each subset’s ability to both prime adaptive responses and 

control M. tuberculosis by reviewing each subset individually, drawing on in vitro, mouse, and 

human data.  Ultimately, the authors posit that the inherent functional differences of each subset 

likely contribute to the overall outcome of infection following potential skewing of one subset 

over the others.  Importantly, this hypothesis helps to bridge the observed diversity in cell types 



 19 

with the resulting clinical variability observed in tuberculosis.  Building on this hypothesis, we 

propose that the interplay of these diverse cell subsets and M. tuberculosis in the initial stages of 

infection contributes to granuloma fate and heterogeneity36,66 which subsequently influences host 

outcome39.  From this, we hypothesize that the local differences driven by early host-pathogen 

interactions manifest as a spectrum of granulomas with varying capacities for containment and 

bacterial killing, which ultimately leads to different clinical outcomes.  As a point of speculation, 

it is possible that the activation status of the initial infected cell that seeds a granuloma could set 

the stage for inflammation, T cell recruitment, macrophage activation and eventual fate of that 

granuloma. 

1.2.4 Neutrophil activity is a strong correlate of the outcome of human infection with M. 

tuberculosis 

In recent years, it has become clear that neutrophil activity is a strong correlate of human TB 

disease state.  Studies of gene expression in the blood of people with active and latent TB 

revealed a signature of neutrophil driven IFN-β production in those with active disease23,67.  

Furthermore, neutrophils were the primary cell infected with M. tuberculosis in samples of 

human BAL fluid, sputum, and pulmonary cavities from with active TB cases68.  In addition to 

being a correlate of disease state, recent studies in small animal models suggest that neutrophil 

activity directly contributes to the progression to active disease.  For example, Dorhoi et al. 

sought to understand the role of micro-RNA223, which had been identified as a correlate of M. 

tuberculosis infection state in a large human cohort69.  Studying the function of this micro-RNA 

in mice, they found that it controlled neutrophil recruitment to the lung during infection by 

regulating the expression of key neutrophil chemoattractants including CXCL2, CCL3 as well as 
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IL-6.  In spite of these observations, the role of neutrophils in early infection remains 

incompletely understood.  In zebrafish, neutrophils contributed an early protective effect against 

M. marinum through NADPH-dependent oxidative killing70.  In mice infected with M. 

tuberculosis, early depletion of neutrophils reduced migration of DCs to lymph nodes and further 

delayed priming of antigen-specific CD4+ T cells71.  In this same study, DCs that ingested 

infected neutrophils migrated better in an in vitro transwell chemotaxis system than those that 

simply ingested free M. tuberculosis bacilli.  These findings suggest that neutrophil recruitment 

plays a causal role in disease progression with potentially both protective and destructive 

properties, which is likely dependent on their timing and magnitude of response.  

Recent data suggest that the human gene expression signature of active tuberculosis, 

neutrophil derived IFN-βexpression, reflects part of a broader signaling network that regulates 

the function of key immune players including macrophages, T cells and neutrophils72-74.  The 

signaling network includes cytokines, most notably Type I IFNs, IL-10, IL-1 and IL-1 Receptor 

Antagonist (IL-1RA), as well as lipid derived small molecule regulators of inflammation such as 

the eicosanoid prostaglandin E2 (PGE2).  Recent work by Mayer-Barber and colleagues suggests 

a cross-regulatory network in which Type I IFNs promote the production of IL-10 and IL-1RA, 

which in turn negatively regulate IL-1 expression and IL-1 dependent expression of PGE275.  In 

this model, PGE2 and IL-1 are protective and inhibit bacterial growth.  Altering this signaling 

network, for example by supplementing with PGE2 or increasing PGE2 by inhibiting 5-

lipoxygenase (5-LO) with the asthma drug, Zileuton, dramatically ameliorates infection outcome 

in mice.  The mechanism(s) by which this signaling network controls the outcome of TB 

infection in infected animals or humans is unclear.  These eicosanoids are important players in a 

cascade of lipid mediators that coordinate inflammation and the resolution of inflammation and 
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include the prostacyclins, leukotrienes, thromboxanes and resolvins76.  Importantly these lipid 

mediators are both synthesized by ---and have substantial effects on-- other key immune cells in 

the granuloma, including neutrophils.  The 5-LO product, LTB4, which has been implicated in 

zebrafish as an important driver of poor TB outcomes77,78, is a powerful neutrophil 

chemoattractant that serves to amplify primary danger signals and coordinate neutrophil 

recruitment.  Thus, it is likely that the profound effects of perturbing the Type I IFN-IL1-PGE2 

signaling network in mice reflect not only the impact on macrophage fate but also the arrival and 

function of neutrophils at the site of infection.     

1.2.5 T cells and beyond 

For a granuloma to function, T cells are required. The interactions between M. tuberculosis and 

the cells of the innate immune system clearly have profound consequences on the subsequent 

adaptive response.  The adaptive response is slow to emerge in M. tuberculosis infected hosts. 

Humans (and macaques) convert a tuberculin skin test, a measure of an adaptive T cell response, 

at approximately 6 weeks post-infection40,42.  T cell responses in blood can be detected in 

macaques between 4-6 weeks49, while a T cell response the lymphoid tissues of mice can be 

detected between 14-21 days post-infection44,79.  This delay in T cell response has been attributed 

to several factors, including a delay in delivery of bacteria or antigens to the thoracic lymph node 

for T cell priming. Although some studies have suggested that the delay is in part due to the low 

numbers of bacilli delivered to the host44, another study found that dose of infection did not 

appreciably influence the time to priming of an adaptive response80.  There may be specific 

bacterial factors that inhibit delivery of M. tuberculosis to the lymph node.  Evidence exists for 

both dendritic cells and CCR2+ macrophages as important players in transit of M. tuberculosis to 
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the lymph nodes for priming T cells81,82.  Whether the bacteria that end up in the lymph nodes 

come from the airways during early infection, or the lung granulomas once they are established, 

is not yet clear.  There is evidence from mice that dendritic cells can carry M. tuberculosis from 

airways to the thoracic lymph node81.  It is less clear where the CCR2+ macrophages are 

encountering the bacilli for transport to lymph nodes, but it appears more likely that these are 

lung parenchymal bacteria.  Nonetheless, most mouse studies have shown that M. tuberculosis 

bacilli must be in a lymph node to initiate priming of a T cell response44,79, although mice devoid 

of lymph nodes and spleen were capable of priming T cell responses in the lungs83. 

Alteration of macrophage apoptosis, driven by the balance of LXA4 and PGE2 signals, 

alters CD8+ T cell cross-priming by DCs55.  These seminal findings provide insight into earlier 

observations of M. tuberculosis-specific impairment of antigen presentation and defects in Ag85-

specific CD4+ T cell expansion in spite of enhanced airway-LPS stimulated macrophage 

recruitment to the lung and increased migration of DCs to the draining LNs44.  In addition to 

delaying potent T cell responses, recent work in mice has proposed that preliminary M. 

tuberculosis dissemination utilizes CD11c+ DCs to seed new granuloma formation84.  

Investigating both intraperitoneal BCG and aerosol H37Rv infections in C57Bl/6 mice, Harding 

et al demonstrated that inflammatory DCs are a possible source of bacterial spread after acute 

infection as these cells are frequently arrested during their migration to the lymph nodes 

following interaction with antigen-specific T cells.  These areas of infected DC-T cell capture 

generate new foci of inflammation that can either formulate new granulomas or extend 

preexisting structures depending on distance traveled.  Collectively, these findings support the 

view that virulent M. tuberculosis actively subverts the early host immune response by 

modulating preliminary macrophage death to delay the onset of potent adaptive responses and 
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utilize trafficking DCs to further dissemination.  These adaptations are likely crucial for M. 

tuberculosis to establish a foothold for infection given its slow growth.  

In considering potential important drivers of granuloma resolution – or the softening of 

the caseum observed by Canetti-- it is also interesting to note that the T cell response directly 

regulates the innate inflammatory response.  Nandi and Behar have shown in the mouse model 

that IFN-γ produced by CD4+ T cells inhibits neutrophil recruitment such that influx of 

neutrophils was reflective of a failed Th1 response74.  These results were extended by Mishra and 

colleagues who showed that IFN-γ dependent nitric oxide production suppressed IL-1 production 

by inhibiting assembly of the NLRP3 inflammasome85. 

In addition to phagocytes, M. tuberculosis likely encounters other cell types, cytokines, 

and innate defense molecules in the airways during initial infection.  Mucosal associated 

invariant T cells (MAITs) are CD3+CD8+ (or double negative) T cells that have T cell receptors 

encoded by the TRAV1/1 genes and are restricted not by the classical MHC molecules, but by a 

non-classical molecule MR-1 (reviewed in 86).  These cells are at higher frequency in blood and 

mucosal sites in humans compared to mice.  MAITs emerge from the thymus with effector 

capabilities and thus can be considered to be early responders to bacterial, including M. 

tuberculosis, infections. MAITs respond to cells infected with bacterial pathogens without prior 

exposure to that pathogen, produce the cytokines IFN-γ and TNF, and are cytotoxic.  Although 

the range of microbial ligands recognized by these “innate” T cells is not known, it was shown 

that MAITs recognize microbe derived riboflavin metabolites87.  Recent studies suggest greater 

TCR diversity than originally appreciated, and thus MAITs are likely to recognize other 

microbial-derived ligands88.  In MR-1 deficient murine models, MAIT cells were associated with 

early protection against bacterial pathogens, including mycobacteria89.  Thus, these cells may act 
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as early sensors of M. tuberculosis infection in airways, and provide early cytokines to activate 

macrophages against this infection. 

Other innate cells, including Natural Killer (NK) cells, may also play a role in early M. 

tuberculosis infection.  NK cells are strong producers of IFN-γ and TNF and can also be 

cytolytic for M. tuberculosis-infected macrophages38.  Mycolic acids are ligands for NK cells, 

and human studies have shown substantial variability in responses of NK cells to extracellular M. 

tuberculosis90, suggesting that the capacity of NK cells to recognize and respond to M. 

tuberculosis could contribute to early innate resistance to infection.  

In addition to cells, the airways also have molecules such as surfactants and hydrolases 

that have been proposed as potential modulators of M. tuberculosis infection. Human surfactant 

proteins A and D bind to M. tuberculosis91.  Surfactant protein A up-regulates expression of the 

mannose receptor on human macrophages92, an important receptor for binding to M. 

tuberculosis, and modulates the inflammatory response of macrophages93.  Human surfactant 

protein D directly binds to M. tuberculosis reducing uptake by macrophages94.  However, mice 

deficient in both surfactant proteins A and D were not impaired in control of low dose aerosol 

infection with M. tuberculosis95.  Antimicrobial peptides, such as cathelicidin (LL-37), are also 

present in airways96 and have been shown to increase the pro-inflammatory functions of 

macrophages and the killing of intracellular M. tuberculosis97.  Intratracheal administration with 

synthetic peptides mimicking LL-37 in mice reduced M. tuberculosis bacterial burden98.  There 

is substantial evidence that Vitamin D is important in resistance to tuberculosis99-102, and this 

appears to be in part due to induction of LL-37103,104.  

Antibodies are an obvious acquired immune response that might modulate the course of 

infection in airways.  As part of the acquired immune response, pathogen specific antibodies 
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cannot be predicted to prevent initial infection in previously unexposed hosts, though it is 

possible that they could serve this function in the case of repeat exposure or vaccination.  More 

importantly, although M. tuberculosis infection induces strong antibody responses, there is only 

scant experimental evidence that antibodies can prevent the initial establishment of infection. 

Passive transfer of antibodies specific to some cell wall antigens has been reported to confer 

protection against disease in a mouse model but the effect was inconsistent.  However, there are 

clear data that antibodies can change the interaction of the bacterium with macrophages in a 

variety of ways105,106; bacterial opsonization alters vesicular trafficking and macrophage 

signaling and interaction of antibodies with activatory or inhibitory Fc receptors on macrophages 

can modulate macrophage function105.  Beyond their classical functions, antibodies have the 

capacity to mark the infected macrophage as aberrant and recruit the responses other innate 

immune cells—thus making them potential modulators of the local immune response.  However, 

whether antibodies are present in the airways in sufficient quantities to modulate initial infection 

remains unclear, and a source of substantial investigation. 

In summary, there are a variety of cells, cytokines, and molecules present in airways that 

can modulate the initial response of the host to M. tuberculosis infection.  These factors may 

prevent infection completely, limit initial establishment of granulomas, modulate the local 

environment of newly emerging granulomas or increase the induction of T cell responses against 

M. tuberculosis.  Changes in these factors could increase susceptibility to initial infection as 

well. Further studies will be necessary to more fully understand the relative contributions of 

these factors to modulation of initial infection. 
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1.2.6 Lessons from Clinical Isolates of M. tuberculosis 

It is highly likely that bacterial factors drive differences in granuloma fate as well as host factors.  

Using barcoded bacteria to track to origins of the bacterial populations in individual lesions, we 

have shown that most pulmonary granuloma arise from one progenitor bacterium36 and genetic 

polymorphisms arise and become fixed in the bacterial populations of isolated granuloma107.  

These data are consistent with historical data indicating that within a given individual, bacteria in 

one lesion can acquire drug resistance independently of the bacterial populations in other 

lesions108.  These data reinforce the concept that granuloma evolve relatively independently 

within the same host.    

Many bacterial virulence factors have been identified through forward and reverse 

genetic approaches in experimental systems.  However, it is not clear whether any of these might 

be modulated to alter interactions with the host in a lesion specific fashion and thus contribute to 

the different lesional trajectories we and others have observed36,39,109.  This question has not yet 

been addressed through lesion specific analyses, for example, transcriptional profiling of 

granuloma bacterial populations, which is experimentally challenging given the relatively small 

number of bacteria in many lesions.   

It is likely that the different virulence manifestations of clinical strains will shed some 

light on the bacterial pathways that flexibly alter interactions with the host.  Six distinct lineages 

have now been defined based on sequence differences110.  There is mounting evidence that this 

genetic diversity generates clinically relevant phenotypic variation and impacts infection 

outcome.  Strains have been shown to differ in terms of their mortality, pathologic manifestations 

and immune responses in mice and in human macrophages111-114.  Despite the mounting evidence 
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that the genetic diversity of M. tuberculosis has clinical consequences, few concrete links 

between genotype and phenotype have been identified.  The best studied association has been 

between the presence of phenolic glycolipid biosynthesis and the hypervirulent phenotype and 

immunosuppressive properties associated with Lineage 2 strains115.  In M. marinum infection of 

zebrafish, phenolic glycolipid promotes the recruitment of permissive macrophages to the site of 

infection and is required to establish robust infection116.  In modulating initial macrophage 

recruitment114 as well as macrophage death pathways (discussed above), M. tuberculosis is likely 

influencing multiple early host interactions to affect inflammatory programs, granuloma fate, 

dissemination, and ultimately infection outcome.  

It remains unclear whether bacterial expression of virulence lipids varies in a lesion 

dependent fashion.  It is interesting to note, however, that production of another virulence lipid, 

PDIM, is one mechanism to resolve propionyl-CoA toxicity during growth on fatty acids117,118.   

PDIM biosynthesis is both required for bacterial survival in mice and macrophages119,120 and 

PDIM has been proposed, based on work in M. marinum, to directly cloak TLR2 ligands116.   

Thus, it is possible that the regulatory effects of central carbon metabolism—where more or less 

PDIM may be produced depending on carbon source availability—provides an energy efficient 

mechanism to link host environment with bacterial virulence and reinforce the trajectory of any 

given lesion after it is established by very early host events. 

Establishment and progression of M. tuberculosis remains somewhat of a mystery in 

humans.  However, a deeper understanding of the early events in tuberculosis is essential to 

identifying new and effective strategies of preventing active TB. The best vaccine would prevent 

establishment of the infection, or at the very least, prevent early dissemination of individual 

granulomas.  Understanding the early airway and lung responses to this infection is crucial, as 
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this is where control must occur.  There are a variety of host cell types and molecules, as well as 

bacterial factors, which interact in early infection, as described here.  Building on this knowledge 

will move the field of vaccines against tuberculosis forward. Without a clear understanding of 

the early processes that vaccines must prevent or limit, and the host responses that can be 

harnessed for protection, we cannot expect a vaccine to succeed against this complex and 

evolved pathogen.  

1.3 MODELING HETEROGENEITY AND SINGLE LESION DYNAMICS IN THE 

MACAQUE MODEL OF MYCOBACTERIUM TUBERCULOSIS 

Animal models of M. tuberculosis are critical to dissect features of infection pathogenesis, TB 

pathology and immunology, and bacterial virulence.  Several animal models have been used over 

the past decades to study TB including zebrafish121, mice122, and nonhuman primates123,124.   

Each system possesses both benefits and limitations in modeling TB and while none perfectly 

capture human M. tuberculosis infection, they all contribute to our understanding of this disease.  

The model recognized to best recapitulate the multiple facets of variability in TB is the 

cynomolgus macaque.  While ethical considerations, limited reagents, and cost may detract 

general use, the range of outcomes both clinically and pathologically is remarkably similar to 

that observed in humans49,125.  There is a 50:50 ratio of latent infection and active disease in adult 

cynomolgus macaques infected with low dose (<25) virulent M. tuberculosis Erdman.  

Importantly, within these binary definitions, infected macaques recapitulate the entire spectrum 

of human disease both at the local, lung and overall host level including the ability to reactivate 
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latent infection following immune suppression with SIV126, anti-TNF127 or anti-CD4 

treatment128.     

Given the recent seminal finding that the majority of M. tuberculosis lesions in NHPs 

arise from a single bacillus36, genetically tagging individual bacilli provides an unparalleled 

ability to track the outcomes of discrete lesions within a single host. This dissertation utilizes this 

molecular barcoding tool to examine lesions in multiple dimensions by linking immunology, 

histology, and radiographic imaging to specific lesions in a novel manner.  Collating these 

different facets of TB biology allows for the re-creation of infection on a lesion-by-lesion basis 

and will enhance understanding into the early events that occur post challenge by generating an 

overall picture of M. tuberculosis infection in vivo.  Furthermore, barcoding individual M. 

tuberculosis permits the study of sequential infections and exposures in a single host. These are 

crucial aspects of M. tuberculosis infection that have yet to be thoroughly explored. 
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2.0  STATEMENT OF INTENT AND SPECIFIC AIMS 

It is estimated that a third of the world’s population is infected with M. tuberculosis, the acid-fast 

bacillus responsible for tuberculosis (TB). A tenth of this infected population will develop 

primary active disease with the remaining 90 percent containing the infection as latent TB.  Of 

those individuals with latent TB, ~5-10% will reactivate to active TB disease over their lifetime.  

Epidemiologic studies of tuberculin skin test (TST) screening in highly endemic countries have 

further revealed persistent non-responders, despite high exposure to M. tuberculosis, hinting of a 

potentially TB resistant human reservoir.  The complex heterogeneity that is responsible for this 

observed human variability to TB remains poorly understood.  It is likely that the human TB 

spectrum stems from early immunologic and host-bacterium interactions that orchestrate both the 

susceptibility to infection, progression of disease, and risk of reactivation.  In probing early 

events in M. tuberculosis infection, we hope to identify key phases of infection that control 

bacterial dissemination and correlate with protection, which can be subsequently exploited for 

novel vaccine development and drug design.  In this dissertation, we examine how early events 

in M. tuberculosis infection relate to host outcome by addressing questions of bacterial 

dissemination and reinfection using individually barcoded bacteria in the non-human primate 

(NHP) model of TB. We are also evaluating the earliest microbial interactions in the lung by 

examining the influence of M. tuberculosis on the lung microbiome, particularly as a function of 
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pulmonary inflammation. Together, these studies will help elucidate the contribution of early 

events on host outcome.   

Primary hypothesis: We hypothesize that early interactions between M. tuberculosis and host 

immune components drive local lesion heterogeneity and that these initial events influence 

infection outcome.  To address this hypothesis, we propose the following Specific Aims: 

2.1 SPECIFIC AIM 1: DETERMINE FEATURES CONTRIBUTING TO 

BACTERIAL DISSEMINATION IN M. TUBERCULOSIS INFECTION AND EXPLORE 

HOW EARLY INTERACTIONS BETWEEN HOST AND BACTERIA MODIFY 

BACTERIAL SPREAD  

We will infect a cohort of cynomolgus macaques (Macaca fascicularis) with a library of 

individually barcoded M. tuberculosis Erdman (~25 CFU) to track bacterial fate post challenge.  

These identity tags enable us to correlate lesion development with M. tuberculosis dissemination, 

infection progression, disease presentation, and lesion heterogeneity. Coupling the roadmap of 

infection from tagged M. tuberculosis (identity) with serial 18[F]-fluorodeoxyglucose (FDG) 

PET/CT imaging (timing) and cumulative bacterial burden (granuloma fate), we aim to unravel 

events in early infection critical to productive dissemination. 

Hypothesis: Early granulomas that are highly inflammatory (FDG avid) will be more 

likely to contribute to productive (CFU+) secondary lesions.  
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2.2 SPECIFIC AIM 2: DETERMINE HOW AN ONGOING M. TUBERCULOSIS 

INFECTION MODULATES SECONDARY INFECTION: PROTECTION OR 

EXACERBATION? 

Surprisingly little is known about the protective or pathogenic potential of a prior, ongoing M. 

tuberculosis infection on a subsequent exposure or infection.  Addressing this question is crucial 

to the development of effective vaccines. We will examine the impact of prior infection on 

reinfection in TB by infecting macaques with two different libraries of barcoded M. tuberculosis.  

Each library will have a unique library-specific tag to differentiate primary and secondary 

granulomas.  In two successive, low-dose (>25 CFU) infections, we will investigate whether an 

ongoing infection assists host clearance by enhancing TB immunity or undermines host defense 

by exacerbating host immunopathology.  

Hypothesis: Primary infection enhances protection to secondary infection by eliciting 

immune responses that limit early bacterial dissemination and augment bacterial killing 

in secondary granulomas.  

2.3 SPECIFIC AIM 3: DETERMINE HOW M. TUBERCULOSIS INFLUENCES THE 

LUNG MICROBIOME IN THE MACAQUE MODEL OF TUBERCULOSIS 

The specific interactions of the lung microbiota with M. tuberculosis early in infection are 

entirely unexplored.  Studies on other infections that examine immunity and the microbiome 

suggest that there are important exchanges that occur between these entities that influence the 

immunological landscape by altering immune regulation and inflammation in both local and 
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systemic contexts129.  We will assess if M. tuberculosis modifies the lung microbiome in 26 

infected macaques by serially comparing infected and uninfected lobes over the course of 

infection looking for changes in abundance and diversity as a function of pulmonary 

inflammation.  Since we have robust markers of disease progression using PET/CT as a measure 

of lung inflammation39,109, we will determine whether there is a correlation between the duration 

of change in lung microbiome in response to M. tuberculosis infection and the outcome of 

infection, gaining power from the serial sampling of individual animals.  We reasoned that the 

increased inflammation in animals that are progressing to active TB is likely to have a sustained 

interaction with the microbiome, while the animals that are controlling the infection early, and 

therefore have reduced inflammation, are less likely to have a sustained change in microbiome 

composition.  Successful completion of this aim will demonstrate the relationship of the structure 

of microbial communities to M. tuberculosis infection and progression of infection, define 

changes in the structure of lung microbial communities over time, and determine the relationship 

of microbial communities to systemic inflammatory biomarkers.  In examining some of the 

earliest relationships between M. tuberculosis and the lung microbe milieu, we aim to better 

understand how the initial lung context may influence host outcome and host variability in TB.  

Hypothesis: We hypothesize that lung inflammation from M. tuberculosis influences the 

variability and diversity of the lung microbiome in the infected lobe of macaques. 
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3.0  DIGITALLY BARCODING MYCOBACTERIUM TUBERCULOSIS REVEALS IN 

VIVO INFECTION DYNAMICS IN THE MACAQUE MODEL OF TB 

This chapter is adapted from the accepted manuscript: 

Constance J. Martin*, Anthony M. Cadena*, Vivian W. Leung, Philana Ling Lin, 

Pauline Maiello, Nathan Hicks, Michael R. Chase, JoAnne L. Flynn# & Sarah M. Fortune#. 2017. 

Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the 

macaque model of tuberculosis. mBio 8:e00312-17. *Co-first authors, both authors contributed 

equally to this work; #Corresponding authors 

3.1 IMPORTANCE 

Classically, M. tuberculosis infection was thought to result in either latent infection or active 

disease.  More recently, the field has recognized that there is a spectrum of M. tuberculosis 

infection clinical outcomes.  Within a single host, this spectrum is recapitulated at the granuloma 

level, where there can simultaneously be lesional sterilization and poorly contained disease.  To 

better understand the lesional biology of TB infection, we digitally barcoded M. tuberculosis to 

quantitatively track the fate of each infecting bacterium.  By combining this technology with 

serial PET-CT imaging, we can dynamically track both bacterial populations and granuloma 

trajectories.  We demonstrate that there is little constraint on the bacterial population at the time 
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of infection.  However, the granuloma imposes a strong bottleneck on dissemination, and the 

subset of granulomas at risk of dissemination can be distinguished by physical features.  

3.2 INTRODUCTION 

Tuberculosis (TB) poses a threat to global health, responsible for more than 10 million new cases 

of active disease and nearly 2 million deaths in the last year130.  However, these recognized cases 

of TB disease reflect only a small fraction of M. tuberculosis infections, most of which result in a 

spectrum of outcomes that are clinically silent and collectively referred to as latent TB 

(LTBI)2,10,131.  These different courses of infection are characterized by a range of bacterial 

burdens and pathology, and correlate with reactivation risk14,21,22,49.  Recently, the field has 

focused on early interactions between host and bacterium as potential drivers of the variable 

outcomes of M. tuberculosis infection27.  However, new tools are needed to dissect the local 

biology of M. tuberculosis infection, especially in the non-human primate model (NHP), whose 

strengths are that it recapitulates the variable course of human infection and produces individual 

granulomas with pathology very similar to that found in humans49,132,133. 

Dissection of lesion course in macaques has been transformed by the use of positron 

emission tomography coregistered with computed tomography (PET/CT) and a 18F-

fluorodeoxyglucose radiotracer (18[F]-FDG), and validated in humans21,39,109.  Using this 

approach, we previously demonstrated that formation of disseminated lesions early after 

infection is associated with development of active disease whereas limited early dissemination is 

associated with maintenance of clinically latent infection, suggesting that early dissemination is 

critical in determining host outcome39.  From these studies, it was unclear whether early 



 36 

dissemination was the result of a global defect in immunity or due to loss of control by a single 

lesion.  We have also shown that granulomas follow unique trajectories even within individual 

macaques as evidenced by differences in killing efficacy132.  Thus, we hypothesized that 

individual granulomas might similarly vary in their risk of dissemination.   

We have also shown that most lesions harbor the progeny of a single bacterial founder.  

However, this study was limited to very early time points (~4 weeks post-infection) and so did 

not assess the dynamics of dissemination132.  Moreover, as the previous study only used a panel 

of 8 bacterial strains, it did not allow us to unambiguously resolve the subsequent fate of each 

bacterium following infection.     

To address the lack of tools available to answer these critical biological questions, we 

developed a genome barcoding system, allowing us to track the fate of each infecting bacillus.  

The population dynamics of other pathogens have been tracked by assessing change in genetic 

composition of a population, leveraging either natural or artificially introduced genetic 

variation134.  However, these infection models are typically characterized by a relatively large 

infecting inoculum and wide bottlenecks that make tracking of individual bacteria or viruses in a 

population infeasible, and instead investigators have tracked changes in the distribution of 

diversity in the population to estimate bottleneck size.  By contrast, TB is a paucibacillary 

infection, where inocula of <20 organisms successfully establish infection, allowing us to track 

infection dynamics by directly following the fate of each bacterium that establishes infection.  To 

do this, we developed a complex library of digitally barcoded M. tuberculosis such that each 

infecting organism carries a unique and quantifiable sequence identifier.  In parallel, we 

developed a robust Python algorithm to reliably discriminate bacterial barcodes.  By combining 

this barcoding system with serial 18[F]-FDG PET/CT in a macaque model, we provide the first 
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quantitative map of within-host bacterial population dynamics focusing on M. tuberculosis 

infection and dissemination.  

3.3 MATERIALS AND METHODS 

3.3.1 Barcode generation 

Primers  (CM29/CM30 – see primer table, Supplementary Table 6) using a string of degenerate 

bases were used to amplify qTags135 from parent vectors and were restriction enzyme-digested 

and cloned into pJeb402 with KpnI and XbaI. Each library (single qTag) was constructed in E. 

coli and plated at 4x coverage before plates were scraped, maxi-prepped (Qiagen) and 

transformed into M. tuberculosis Erdman or M. smegmatis mc155 at 4x coverage.  Libraries were 

then scraped, passed through a 5μM filter (Millex) and sonicated for single cell suspension and 

mixed at equal OD600 to generate infectious libraries containing a pool of three Library IDs. 

3.3.2 Sequencing 

Bead beaten and phenol:chloroform purified genomic DNA was diluted to 10ng/uL, and  

amplified using Phusion polymerase through two rounds of PCR of 12 cycles each.  Primers are 

indicated in primer table.  Fragments of the appropriate size were gel purified, quantified using 

Clonetech NGS kit and sequenced on an Illumina Miseq using V2 chemistry.   
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3.3.3 Macaque infections, PET/CT imaging, and tissue excision 

Four adult cynomolgus macaques (Macacca fasicularis) were obtained from Valley Biosystems 

(Sacramento, California) and screened for M. tuberculosis and other comorbidities during a 

month-long quarantine.  Each macaque had a baseline blood count and chemical profile and was 

housed according to the standards listed in the Animal Welfare Act and the Guide for the Care 

and Use of Laboratory Animals. All animals were infected with barcoded strain Erdman M. 

tuberculosis via bronchoscopic instillation as previously published49,125 and received an 

inoculum of 11±5 CFU (determined by plating a sample of the inoculum and counting CFU after 

3 weeks).  All animals were followed with serial 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]-FDG) 

PET/CT imaging as formerly described39,109,132 to identify and track lesion formation and 

progression over time (Table 1).  As before, lesions were individually characterized by their date 

of establishment (scan date), size (mm), and relative metabolic activity as a proxy for 

inflammation ([18F]-FDG standard uptake normalized to muscle [SUVR]).  Lesions > 1mm can 

be discerned by our PET/CT equipment. To avoid barcode cross-contamination, individual 

granulomas were separately excised and processed using the animal’s pre-necropsy scan as a 

guide for identity and location.  

3.3.4 Isolation and preparation of bacteria from tissue samples 

Following removal at necropsy, each lesion was homogenized and plated for bacterial burden on 

7H11 agar supplemented with oleic albumin dextrose catalase (OADC).  A small portion of 

homogenate was frozen for CEQ analysis (below).  After a 3-week incubation, the plates were 

counted for CFU and colonies were pooled and scraped into 7H9 supplemented with OADC and 
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20% Tween 80. Each plate was scraped into a separate tube and frozen in 5mL of 7H9 at -80°C 

to await genomic DNA extraction and sequencing.   

3.3.5 Extraction of M. tuberculosis genomes and chromosomal equivalent quantification 

(CEQ) 

M. tuberculosis genomic extraction and CEQ quantification was performed as previously 

published22,132.  Briefly, gDNA was extracted with phenol:chloroform:isoamyl alcohol (25:24:1, 

Invitrogen) with an intermediate bead beating step using 0.1mm zirconia-silica beads (BioSpec 

Products, Inc.).  CEQ was assessed relative to a serially diluted standard curve of M. tuberculosis 

genomic DNA using quantitative real-time PCR preformed in triplicate on an iQ5 Multicolor 

Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.) and a 384-well 7900HT Fast 

Real Time PCR System (Applied Biosystems).  Quantification of CEQ used the previously 

published primer-probe mixture and TaqMan Universal Master Mix II (ThermoFisher 

Scientific). Acceptable real-time PCR efficiency for each run was kept between 90%-110%. 

3.3.6 Bioinformatics analysis 

Data were analyzed using a custom Python pipeline available on GitHub 

(https://github.com/sarahfortunelab/barcodetracking).  The pipeline iterates through the raw 

FASTQ files generated from Illumina sequencing for each indexed sample.  We first identify 

library ID, barcode and molecular counter features using constant “handle” sequences as search 

motifs. We then filter data to obtain high-quality reads that: 1-have all features present; and 2- 

have a maximum probability of base calling error of 0.001 (equivalent to a minimum base 
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quality score of least 30 or Phred 63).  As an additional check, we grouped reads that passed 

quality control and counted molecular counter copies to check the extent of skewing.  For each 

sample, we also tallied the number of unique molecular counters for each sequence combination 

and normalized counts to the total molecular counts in the sample.  Using the aforementioned 

percentage counts as a metric for library-ID-barcode abundance, we computed the true-false-

determining threshold in the pipeline using a recursive approach.  In each round, we first 

computed and sorted the relative abundance in descending order. Second, we iterated through the 

barcodes that passed the previous threshold and, for each, eliminated less-abundant variants that 

differed by one position from the former.  Third, we calculated the threshold dividing true and 

false barcodes using a modified concavity approach.  Once the threshold reached a stable point, 

we applied the final threshold to return the set of true barcodes. 

3.3.7 T cell flow cytometry and intracellular cytokine staining 

At necropsy, granulomas were processed intro single cell suspensions with sterile PBS.  Portions 

of these suspensions were used for T cell profiling and cytokine analysis.  Tissue suspensions 

were stimulated with Mtb CFP10 and ESAT 6 (BEI Resources, Manassas, VA) and Brefeldin A 

(GolgiPlug, BD Biosciences) in RPMI (Lonza, Walkersville, MD) supplemented with 1% L-

glutamine and 1% HEPES (Sigma, St. Louis, MO) for 3.5 hours.  The final concentration of 

Mtb-specific peptides was 2.5μg/mL.  Cells were first stained with LIVE/DEAD Fixable Blue 

Dead Cell Staining Kit (ThermoFisher Scientific) for viability and then stained with the T cell-

specific marker, CD3, using the anti-human CD3 (clone SP34-2, BD Biosciences) antibody in a 

standard FACs buffer. Following surface staining described above, the cells were fixed and 

permeablized (BD, Cytofix/Cytoperm) and washed with BD Perm/Wash buffer (BD, 
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Biosciences).   Incubations were preformed according to manufacturer recommendations.  Cells 

were then stained with the following intracellular cytokine stains: anti-human IFN-γ (clone B27, 

BD Biosciences), anti-human TNFα (clone Mab11, eBiosciences), anti-human IL-2 (clone MQ1-

17H12, BD Biosciences), IL-6 (clone MQ2-6A3, BD Biosciences), anti-human IL-10 (clone 

JES3-9D7, eBiosciences), and anti-human IL-17A (clone eBio64CAP17, eBiosciences).  Flow 

cytometry was preformed on a LSR II (BD) and analyzed using FlowJo Software ver. 9.9.5 

(Treestar Inc., Ashland, OR).  Size (FSC) and granularity (SSC) were used to isolate the 

lymphocyte population at the cytometry.  All cytokine data presented are gated on CD3+ T cells. 

3.3.8 Statistical analysis 

Statistical analysis was performed in Graphpad Prism, JMP and R, significance was found when 

p < 0.05.   

3.4 RESULTS 

3.4.1 Barcoded bacterial library generation 

We engineered a library of digitally barcoded plasmids that we introduced into M. smegmatis 

and M. tuberculosis Erdman.  The ‘barcode’ consists of a random 7-mer and adjacent 75-mer 

library identifier tag stably inserted into the bacterial chromosome135 (Figure 5A).  Using this 

approach, we were able to generate libraries of roughly 50,000 uniquely identifiable bacteria, 

ensuring a <2% chance that a barcode would be represented twice if 20 bacteria are randomly 
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selected.  To quantitate barcodes via sequencing, the barcode is amplified from isolated genomic 

DNA in two rounds of nested PCR steps.  In the first round, a pool of four primers with a 

degenerate variable length spacer anneals a random 9-mer ‘molecular counter’ that allows us to 

enumerate PCR templates rather than amplicons136.  The degenerate variable length spacer, or 

“phasing region”, introduces sequence variability necessary for Illumina based sequencing of 

relatively low complexity libraries 137.  The second round of PCR completes the addition of 

sequencing adapters and multiplexing indices.  Using this sequencing approach, we confirmed 

the diversity of the M.tuberculosis Erdman library and found that most barcodes were present at 

similar abundances (Figure 5B).  A few sequences appeared over-represented, however, these 

represented only 0.5% of the total library and were not identified in any NHP used in this study.   

Concurrently, we developed a custom Python pipeline, BARTI, to identify barcodes from 

Illumina sequencing data in complex biological samples (i.e. granulomas), where both sequences 

and number of barcodes in a sample are unknown.  The challenge in reading out randomized 

DNA barcodes is that errors inherent in sequencing create uncertainty in identifying unique 

barcode sequences.  In previously published genomic barcoding approaches, this challenge was 

addressed by using only arrayed libraries of known barcodes, such that exact or near-exact 

sequence matching could be enforced138.  However, this approach significantly constrains the 

number of unique individuals represented in a population and precludes unambiguously tracking 

individual bacteria.  In sequencing approaches where unknown barcodes are used, error 

correction methods have been developed to discriminate false sequences from true139,140 but the 

best approach to high precision barcode counting is unclear. 
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Figure 5. Barcode structure and pipeline validation. 

A.  Barcode structure in the M. tuberculosis genome (top), and after preparation for sequencing (middle).  Schema 

of the BARTI pipeline for barcode identification, thresholding and counting.  B.  Abundance of individual barcodes 

in a single library.  C.  Number of barcodes counted using BARTI from known number of barcoded Mycobacterium 

smegmatis colonies at a read depth of >100,000.  D.  Ratios of barcodes counted using BARTI (actual) from known 

mixtures of barcode-containing plasmids mixed at indicated ratios (expected) and sequenced at a read depth of 

>100,000.  Dashed line is linear regression, R2 is Spearman correlation. 

 

To define the analytic path that provided the most accurate barcode quantitation, we 

arrayed single colonies of barcoded M. smegmatis, generated and sequenced pools of known 

numbers of colonies.  We expected that the number of barcode sequences identified should be 
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equal to the number of colonies used in that sample’s preparation.  Without error correction, as 

with other iterations of genome barcoding technology138,139, a much larger number of barcode  

sequences were identifiable in the sequencing data than were present in the input library.  

Strict read-quality filtering eliminated many, but not all, suspected erroneous sequences.  

Distance errors, wherein one or more bases in a barcode sequence are erroneously called, are 

common to these types of sequencing data.  Often algorithms are applied to correct distance 

errors by condensing sequences that differ by one base to the dominant sequence in order to 

maintain the greatest read depth possible141,142.  However, we found that condensing barcodes 

that differed by a single base in some cases skewed the estimation of barcode number.  Thus, we 

chose to discard sequences that differed by one base from a more abundant barcode.  This 

processed pool of barcode sequences still contained two populations of barcodes, abundant and 

putatively “true” and rare and putatively “false” barcodes representing persistent erroneous 

sequencing. By rank ordering the barcode sequences by template counts and taking the second 

derivative of the slope between each barcode to the next lesser abundant barcode, we found that 

the maximally negative point along this line described an inflection point that accurately 

separated expected number of barcodes from sequencing artifact.  Using this analytic approach, 

we accurately quantitated the number of known bacterial barcodes in the pooled mixtures of 

arrayed mycobacterial colonies across a range of sequencing read depths (Figure 5C and 

Supplementary Figure 30).  The sequencing pipeline also accurately quantitated both the 

number and relative abundance of barcode sequences present at unequal ratios when the least 

abundant barcodes were >1% of the population (Figure 5D).  
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Table 1. Details of macaque infection and disease. 

 

3.4.2 Mapping M. tuberculosis infection dynamics in macaques.   

To define bacterial population dynamics in vivo, we infected 4 macaques (Table 1) with a goal 

inoculum of ~20 CFU of barcoded Erdman, where the delivery inoculum as determined by 

plating was 11 ± 5 CFU, recognizing there is uncertainty in this number created by plating and 

counting very low numbers of a very dilute sample.  We tracked temporal and spatial granuloma 

formation in vivo with serial 18[F]-FDG PET/CT for 15-20 weeks.  Lesions were identified, 

labeled, and characterized for size and PET avidity (SUV)39.  Using the final pre-necropsy 

PET/CT as a lesion map, we excised each individual lesion, plated their homogenates, scraped 

and sequenced the resulting colonies to decode bacterial founder identity.  By overlaying serial 

PET/CT scans with post-sequencing barcode identity, we were able to create a systematic history 

of productive—i.e. culture positive—lesion formation and dissemination in each animal (Figure 

6A).   

 

 

 

Animal 
ID Strain Recovered # 

Barcodes 
4wk Gran Counts 

(PET/CT) 
Time to Nx 

(wks) 
Gross Pathology 

Score Total CFU 

17814 
Barcoded 

Mtb 
Erdman 

 

22 26 19 21 23,979 

17914 21 27 19 24 24,489 
18014 21 26 15 23 53,710 

18114 16 12 16 14 14,060 
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3.4.3 Concordance between estimated dose and number of bacteria that successfully 

establish infection.   

In other pathogens including Salmonella and HIV, barcode tracking has demonstrated that only a 

tiny fraction of the delivered organisms successfully establish infection143,144.  M. tuberculosis is 

thought to be a more efficient pathogen but the infective dose of M. tuberculosis has been 

difficult to define.  We compared the number of bacteria in the inoculum as estimated by plating 

with the number of unique barcodes identified in that animal to estimate the fraction of the 

inoculum that successfully established infection.  The number of bacteria in the inoculum closely 

matched the number of barcodes recovered from the animal.  These numbers also paralleled the 

number of granulomas identified by PET-CT at 4 weeks post infection (Table 1).  These data 

suggest that the early events of infection impose little to no bottleneck on the bacterial 

population and are consistent with the model that the infective dose of M. tuberculosis can be as 

low as one bacterium.  

3.4.4 A subset of granulomas disseminate to form new lesions. 

We then sought to define bacterial population dynamics through the first three months of 

infection, encompassing the window of dissemination that we previously identified between 3 

and 8 weeks of infection.  We have previously shown that at 3 weeks post infection, most 

granuloma harbor the progeny of a single founder132.  Here, we find that that the majority of 

granulomas even at later time points contain the progeny of a single bacterial founder, as most 

lesions (85%) had only one barcode sequence (Figure 6B).  Thus, we find little evidence of 

inter-lesional mixing of the bacterial population even after a period of dissemination.  Thoracic 
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lymph nodes often contained more than one barcode (75%), as expected for sites draining the 

lung.  However, only a minority of barcodes present in the lung were culturable from the lymph 

nodes, suggesting that not all granulomas productively disseminate to lymph nodes, at least at 

these later time points (Figure 6C-F).  

Barcode tracking defines two populations of granulomas: lesions containing bacteria that 

are derived from the same founder, which we interpret as the product of productive 

dissemination, and lesions harboring unique bacterial barcodes, which were “contained”—i.e. 

did not appear to have disseminated to form new culture positive lesions.  The pattern of 

dissemination varied across the four animals (Figure 6C-F).  In 3 macaques the majority of 

lesions were contained.  In one macaque, ID: 18014, ~80% of lesions were disseminated.  This 

appeared to reflect failure of containment at multiple sites as opposed to widespread 

dissemination from a single initial lesion.  On the whole, however, this analysis demonstrates 

that while nearly all bacteria in an infecting inoculum successfully establish a culture positive 

lesion, the majority do not contribute to further spread of infection.  Across all 4 animals, only a 

small fraction (8.75%) of granulomas were able to seed multiple (≥3) new granulomas in lung 

and lymph nodes (Figure 6C-F).    
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Figure 6. Contained and disseminated lesions from 15-20 week infected macaques.  

A.  Thoracic CT scan from animal 180-14, with barcode composition in lymph nodes (pie charts) and granulomas 

(bubbles).  Inset, 4 and 5 WPI (weeks post infection) with granulomas identifiable at those time points.  White arrow 

marks dissemination of ‘purple’ barcode from founder lesion at 4 WPI to new lesion at 5 WPI.  Red arrow marks 

dissemination of ‘olive’ barcode from founder lesion at 4 WPI to new lesion at 5 WPI.  B.  Quantification across all 

animals of number of unique barcode sequences found in granulomas and lymph nodes.  C-F.  Contained and 

disseminated barcode sequences in all recovered CFU+ lesions arrayed according to spatial distribution 

approximately from top to bottom of each lung lobe for the 4 macaques (macaque ID in top left of each graph).  

Blue shading reflects percentage of molecular counters out of total for a lesion for that barcode.  Numbered lesions 

were identified pre-necropsy by scan, lettered lesions were found during necropsy and often do not have 

corresponding XYZ coordinates.  Gastric aspirates in E were taken 13 days apart.  Barcodes are arbitrarily 

numbered.  RLL, right lower lobe; LLL, left lower lobe; ACC, accessory lung lobe; EP, extra-pulmonary; LN, 

lymph node; AIR, airway. 

3.4.5 Dissemination occurs primarily through local spread.  

We sought to better understand these patterns of dissemination by defining the spatial dynamics 

of bacterial spread.  Using 3-dimensional lesional coordinates from pre-necropsy PET/CT scans, 

we interrogated the spatial relationships between disseminated lesions containing the same 

barcode compared to the population of contained lesions (Supplemental Figure 31).  Lesions 

that share barcodes are closer together than the population of contained lesions (mean contained 

= 19.657mm, mean disseminated = 8.87mm) and are significantly different populations 

(D=0.615, p=2.82e-9) (Figure 7A).  Thus, most dissemination appears to result from local rather 

than hematogenous or lymphatic spread. 

Matching timing data from serial scans with barcode identity we also established the 

temporal dynamics of dissemination.  Consistent with previous findings39, there is substantial 
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dissemination within the first 6 weeks of infection.  After this window of early dissemination, 

there is a period of apparent quiescence and then a second wave of granuloma spread (Figure 

7B).   

 

Figure 7. Spatial and temporal characteristics of dissemination.  

A.  Density histogram of the Euclidean distance of each disseminated lesion (red) to contained (blue) lesions with 

the same barcode sequence across all animals.  Blue line is the Euclidean distance of all contained lesions to other 

lesions that do not contain the same barcode sequence.  Data is only reflective of lesions for which XYZ coordinates 

are known.  Dashed line is mean for each distribution, *; p < 0.05 by Welch’s t-test.  B.  Number of lung 

disseminating events across all animals at the indicated time points (WPI; weeks post infection).  Timing reflects 

definitive dissemination events matched with barcode and serial imaging. 

3.4.6 Disseminated lesions are larger than contained lesions.  

The variability in the patterns of dissemination was striking as even the animal allowing 

extensive dissemination was not identifiable by clinical course.  These animals were also not 

distinguished by their total bacterial burden at necropsy (Table 1), which were similar to the 
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average total CFU as compared to our historical data (N=18 cynomolgus macaques22,39 range = 0 

- 222,864; mean = 34,338; median = 6613).  

These data suggested that dissemination is driven by lesional as well as global features.  

We therefore sought to identify lesional characteristics that distinguish containing from 

disseminating lesions.  We compared the populations of T cells between these sets of lesions, but 

found minor differences in the frequency of cytokines produced by T cells following ex vivo 

stimulation (Supplemental Figure 32).  However, as dissemination and necropsy are separated 

by weeks-to-months, the quality of the immune response likely changed dramatically, and we 

cannot determine in this study T cell responses in granulomas at the time of dissemination. 

PET/CT imaging allows us to interrogate lesional biology over the course of infection, 

not simply at the time of necropsy. To begin to identify lesional features that correlate with fate, 

we screened disseminated and contained granulomas for differences in bacterial burden (Figure 

8A), cumulative bacterial load (CEQ) (Figure 8B), and bacterial killing (CFU/CEQ) (Figure 

8C) at the time of necropsy.  None of these parameters, determined by necessity only 15-20 

weeks post-infection, predicted the risk of dissemination.  Next, we evaluated 18[F]-FDG 

PET/CT characteristics including FDG avidity (SUVR) (Figure 8D) and size (Figure 8E) for 

each granuloma over the course of infection.  While SUV, a measure of metabolic uptake of 

18[F]-FDG and a proxy for inflammation, did not reveal any differences between the two lesion 

fates, granuloma size as measured by PET/CT early in infection (at 4-5wks) differentiated the 

two fates (p=0.0154); larger lesions early in infection were associated with a higher risk of 

dissemination and formation of new culture positive lesions.  
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Figure 8. Granuloma size early differentiates dissemination.  

A.  Bacterial burden (CFU) from granulomas obtained at necropsy (15-20 WPI) of contained (n=41) and 

disseminated (n=42) lesions from four barcoded macaques.  Data are reflective of lesions initiating dissemination as 

determined by temporal PET/CT analysis.  In instances where the precise founder is not known, all involved lesions 

were classified as disseminated. B.  Total bacterial load (live + dead; CEQ) of contained (n=20) and disseminating 

(n=28) lesions. C.  Bacterial killing determined by CFU/CEQ ratio for contained (n=20) and disseminating lesions 

(n=28).  D.  Granuloma FDG avidity (SUVR) and E. size (mm) of contained (n=36) and disseminating (n=30) 

lesions at 4-5 weeks post infection as assessed by PET/CT (*p=0.0154). Panels A-E: each symbol is a granuloma. 

Statistics for A-E: Mann Whitney test. 

3.5 PRELIMINARY DISSEMINATION IN EARLY INFECTION 

To assess this commitment to fate in early infection, we infected two additional macaques with 

14 CFU of barcoded Erdman and necropsied the animals between 4-5 weeks with PET/CT scans 

at 3 and 4 weeks.  As we did in the late-term macaques, we isolated individual lesions at 

necropsy using pre-necropsy scans and sequenced barcode identity from plated CFU.  Both 
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animals had fewer stable lesions than spreader lesions, with the majority of spread occurring 

between the lung and lymph nodes (Figure 9) rather than in formation of new lung granulomas. 

Differentiating disseminating and contained lesions in these early macaques not only confirmed 

our previous association between increased granuloma size and spread (p=0.0010) but also 

revealed a correlation between bacterial burden and spread (p=0.0130) (Figure 10). There was 

no correlation with FDG avidity (SUVR) in these time points between the two types of lesions 

(Figure 10). 

Figure 9. Early dissemination localizes to the lymph nodes. 

Left panel: barcode map, macaque ID: 17513; right panel: barcode map, macaque ID 15614. Images courtesy Vivian 

Leung, HSPH.   
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Figure 10. Granuloma size and bacterial burden differentiates dissemination in early infection.  

A. Bacterial burden (CFU) from granulomas obtained at necropsy (4-5 WPI) of contained (n=7) and disseminating 

(n=15) lesions from four barcoded macaques (*p=0.0262).  Data are reflective of lesions initiating dissemination as 

determined by temporal PET/CT analysis.  In instances where the precise founder is not known, all involved lesions 

were classified as disseminated.  B. Granuloma FDG avidity (SUVR) and C. size (mm) of contained (n=7) and 

disseminating (n=15) lesions at 4-5 weeks post infection as assessed by PET/CT (***p=0.0010). Panels A-C: each 

symbol is a granuloma. Statistics for A-C: Mann Whitney test. 

 

3.6 DISCUSSION 

To resolve the within-host bacterial population dynamics that contribute to the spectrum of M. 

tuberculosis infection, we generated a novel library of digitally barcoded M. tuberculosis and an 

associated Python pipeline for their identification and tracking in biological samples from 

macaques.  This barcode library and accompanying pipeline overcome significant hurdles 

inherent in this type of analysis.  By pairing information from serial PET/CT scanning with the 

sequence identities of bacteria from infected tissue, we have an unparalleled level of resolution 

of within-host infection dynamics at a lesional level.  Genome tagging has been used 

successfully to ask many questions about the population behavior of bacterial and viral 
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infections, but to date all of these strategies involved tracking of pools of known barcodes via 

exact sequencing matching to distinguish barcodes.  We have developed an approach to 

accurately identify and quantitate individuals pulled from a highly complex library where the 

sequence identifiers are not known a priori.  These tools allow us to confidently track the 

descendants of individual bacteria and the population as a whole. 

In this study, we sought to define constraints on the bacterial population from inoculation 

through the first five months post-infection.  Importantly, we found no evidence of significant 

impediments to the establishment of M. tuberculosis infection, in that the number of individual 

bacteria identified by digital barcode as well as the number of initial granulomas observed by 

PET/CT is similar to the estimated infectious dose.  While this study cannot assess all constraints 

on the bacterial population associated with transmission—especially those associated with 

aerosolization—it is consistent with the hypothesis that the natural infective dose of M. 

tuberculosis could be as low as a single organism145,146.  These data highlight the limited capacity 

of the earliest innate responses to prevent establishment of infection.   

Though the innate response does not appear to limit initial infection, it does appear to 

constrain early dissemination.  Indeed, we found evidence of significant constraints on 

dissemination, indicating that there is a bottleneck at the level of the granuloma.  In most 

animals, only a minority of granulomas seed a second, culture positive granuloma.  Previous 

work in the zebrafish model found that in contrast, dissemination was the rule and not the 

exception31.  

Our data suggest additional facets to the lesional variability that we have previously 

documented in terms of bacteriocidal capacity132.  We found that there is variability in the extent 

of dissemination that is an independent marker of disease course, distinct from total bacterial, 
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clinical, or radiographic measures of disease.  We demonstrated that granuloma size assessed by 

18[F]-FDG PET/CT in the first few weeks post-infection correlates with risk of dissemination.  

Size is not a proxy for higher numbers of bacteria in a granuloma (data not shown), which might 

be a simple explanation for the relationship with dissemination risk.  Instead, we speculate that 

size is an independent biologic feature and that physical expansion increases the bacterium’s 

access to avenues of spread.  Because most instances of productive dissemination that we 

identify are to sites less than 10mm away, it suggests that productive dissemination throughout 

the lung rarely occurs through the blood or lymph.  

To assess dissemination early, we infected two monkeys with barcoded M. tuberculosis 

and necropsied them at 4-5 weeks post infection.  Our preliminary findings suggested that 

dissemination is linked to granuloma size, as we saw in our longer-term monkeys, and, more 

interestingly, bacterial burden.  We hypothesize that prior to the onset of a robust adaptive 

response at around 4-6 weeks27,36, a proportion of granulomas support robust bacterial growth, 

enabling early spread, perhaps following inadequate innate containment and bacterial evasion.  

Recalling that the quantity of these early spreading events influences host outcome39, we propose 

that a critical axis exists between a lesion’s bacterial burden, physical capacity, and granuloma 

fate that relies on early bacterial control to minimize spread.  A more in-depth analysis of early 

and late dissemination is planned to better understand the basis for dissemination and how it may 

relate to early infection.  

Interestingly, spread to lymph nodes is also highly variable across infected 

macaques9,132,133.  Only 15% of barcodes were represented in the lymph nodes that were culture 

positive (2 macaques).  One current limitation of this work is that we are only able to confidently 

assess and sequence barcodes from live bacteria present at necropsy, i.e. those that grow on 



 57 

plates, and not directly from tissue homogenate.  This is in part due to the paucity of bacterial 

genomic material in these samples, which makes the distinction between true and erroneous 

barcodes in the amplified library challenging.  Clearly, productive infection of the lymph node 

by every bacterial population in the animal is not required for the lymph node to sample and 

present the antigens from these populations. However, these data do raise questions about the 

extent of compartmentalization during M. tuberculosis infection, and how that might influence 

generation of adaptive immune responses. 

Questions like those of antigenic compartmentalization are only important if there are 

important functional differences between the bacteria in different sites within the host.  Our work 

to date has demonstrated that lesional bacterial populations are isolated from the earliest points in 

infection. Our previous studies of bacterial mutability35 have demonstrated that the rates of 

genetic mutation are too low to generate sufficient variation to account for observed differences 

in lesional course at these early time points during infection – though they don’t preclude genetic 

differentiation over longer time periods.  Furthermore, we cannot rule out the possibility of 

distinct patterns of transcriptional adaptation or epigenetic inheritance in these isolated bacterial 

populations that will be the subject of future studies.  One important lesson from these studies is 

the fact that the barcodes recovered from gastric and bronchoalveolar lavages, which are taken as 

proxies for the sputum in NHP, represent only a fraction of the bacterial barcodes (3.75%) 

present in the animal (Figure 6C & 6D).  These data are consistent with clinical studies 

demonstrating that organisms with different drug resistance patterns can be isolated from the 

sputum of individual patients and highlight the need to be cautious in interpreting the sputum 

bacteria as representative of the entire bacterial population within an individual147,148.  
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Previously we reported heterogeneity of granuloma features and bacterial control within a 

single infected animal and here we reveal another layer of heterogeneity and complexity between 

different granulomas.  Our findings reveal novel avenues of research to probe both host and 

bacterial factors that influence such disparate granuloma fates.  These new tools will allow 

further characterization into the dynamic local interactions of bacteria and host that ultimately 

govern both lesion fate and patient outcome.  Furthermore, the use of genome barcoding and 

tagging technologies has broad application, from development to cancer, and the new tools 

presented here will provide solutions to digitally tracking cells in a variety of fields.   
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4.0  PRIMARY INFECTION WITH MYCOBACTERIUM TUBERCULOSIS CONFERS 

PROTECTION TO SECONDARY INFECTION IN THE MACAQUE MODEL OF 

TUBERCULOSIS 

This chapter is adapted from the manuscript in preparation: 

Anthony M. Cadena, Constance J. Martin, Vivian W. Leung, Philana Ling Lin, Pauline 

Maiello, Nathan Hicks, Michael R. Chase, Sarah M. Fortune# & JoAnne L. Flynn#, Primary 

infection with Mycobacterium tuberculosis confers protection to secondary infection in the 

macaque model of tuberculosis, manuscript in preparation, 2017. #Corresponding authors. 

4.1 INTRODUCTION 

It is increasingly recognized that individuals are repeatedly infected with M. tuberculosis.  

Estimates place reinfection TB as high as >50% in individuals that have successfully completed 

treatment for an initial episode of TB149-152 emphasizing its prevalence and highlighting the 

discordance between a previous infection, clearance, and renewed susceptibility152,153.  In 

addition, recent studies have indicated that cases of multiple isolate infection (mixed infection) 

can occur in around 2-18% of active TB patients151,152 and that such cases can result in disparate 

drug sensitivities complicating disease management150,151,154.  Further confounding these 

epidemiological estimates is the unknown burden of reinfection among individuals with latent 
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TB infection (LTBI)155.  How all these previous infections with M. tuberculosis influence 

subsequent infection is poorly understood and whether such instances confer protection or 

exacerbate pathology remains a key question in TB.  

Early observations among entering nursing students in the 1920s suggested that those 

students that were initially PPD negative were at higher risk to develop active TB relative to 

those that entered with PPD positivity, and thus implicate a level of protection in LTBI.  

Subsequent studies have attempted to characterize the level of protection but have had variable 

results13,156,157.  A more recent comprehensive survey of the epidemiology literature by Andrews 

et al suggests that latent TB infection in humans may reduce the risk of progression to active TB 

after re-exposure by as much as 79% compared to uninfected individuals13, however these 

epidemiological studies are limited in that the variables are notoriously difficult to control.  

Appropriately evaluating the effect of LTBI in this context is crucial as drug treatment within 

this group, which occurs in some regions of the world10,158, may alter or subvert this apparent 

protection.  A recent LTBI study in South African gold miners by Churchyard et al demonstrated 

diminished protection following termination of preventive therapy implicating a potential 

requirement for an ongoing infection for protection159.  In an experimental setting with drug 

treatment, a mouse model of reinfection using the virulent W-Beijing M. tuberculosis strain 

HN878 found that mice were transiently resistant to reinfection in this animal model160.   

Additional study is needed to adequately determine whether previous exposure or infection with 

M. tuberculosis provides protection against establishment of a second infection, which is very 

difficult to assess in humans unless there is progression to disease, as well as against disease. 
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4.2 METHODS AND MATERIALS 

4.2.1 Macaque infections, PET/CT imaging, and tissue excision 

Fourteen adult cynomolgus macaques (Macacca fasicularis) were obtained from Valley 

Biosystems (Sacramento, California) and screened for M. tuberculosis and other comorbidities 

during a month-long quarantine.  Each macaque had a baseline blood count and chemical profile 

and was housed according to the standards listed in the Animal Welfare Act and the Guide for 

the Care and Use of Laboratory Animals.  The animals were separated into two cohorts: 8 

macaques were assigned to reinfection and 6 were assigned to 4-week only controls.  All animals 

were infected with barcoded strain Erdman M. tuberculosis via bronchoscopic instillation as 

previously published49,125.  The infection schema is provided below in Figure 11 with the 4-

week only animals receiving only barcoded library B in a series of matched infections with their 

reinfection counterparts.  All animals received an inoculum of >15 CFU (determined by plating a 

sample of the inoculum and counting CFU after 3 weeks) with the precise details listed in Table 

2.  The animals were further subdivided such that 4 reinfection animals were directly paired with 

2, 4-week only control animals; 2 additional 4-week only animals were infected separately to 

supplement early infection data (Table 2).  Each macaque was followed with serial 2-deoxy-2-

[18F]-fluoro-D-glucose ([18F]-FDG) PET/CT imaging as previously described39,109,132 to identify 

and track lesion formation and progression over time.  As before, lesions were individually 

characterized by their date of establishment (scan date), size (mm), and relative metabolic 

activity as a proxy for inflammation ([18F]-FDG standard uptake normalized to muscle [SUVR]).  

Lesions > 1mm can be discerned by our PET/CT imaging analysis. To avoid barcode cross-

contamination, individual granulomas were separately excised and processed using the animal’s 
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prenecropsy scan as a guide for identity and location.  All lesions observed post second infection 

in the reinfection cohort were initially labeled as secondary lesions pending library qTag 

verification.   

4.2.2 Isolation and preparation of bacteria from tissue samples 

Following removal at necropsy, each lesion was homogenized and plated for bacterial burden on 

7H11 agar supplemented with oleic albumin dextrose catalase (OADC).  A small portion of 

homogenate was frozen for qTag sequencing as well as chromosomal equivalent (CEQ) analysis.  

Genomic DNA was extracted using  

4.2.3 T cell flow cytometry profiling and intracellular cytokine staining 

At necropsy, granulomas, lung tissues, and thoracic lymph nodes were processed into single cell 

suspensions with sterile PBS.  A portion of these suspensions were used for T cell profiling and 

characterization.  T cells were initially stained for viability using the LIVE/DEAD Fixable Blue 

Dead Cell Stain Kit (ThermoFisher Scientific) and then stained for T cell-specific markers using 

the anti-human CD3 (clone SP34-2, BD Pharmigen), anti-human CD4 (clone L200, BD 

Biosciences), and anti-human CD8 (clone RPA-T8, BD Biosciences) antibodies in a standard 

FACs buffer.  

 For intracellular cytokine staining, tissue suspensions were stimulated with M. 

tuberculosis CFP10 and ESAT6 (BEI Resources, Manassas, VA) and Brefeldin A (GolgiPlug, 

BD Biosciences) in RPMI (Lonza, Walkersville, MD) supplemented with 1% L-glutamine and 

1% HEPES (Sigma, St Louis, MO) for 3.5 hours.  The final concentration of the M. tuberculosis 
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specific peptides was 2.5µg/mL.  Following surface staining as detailed above, the cells were 

fixed and permeablized (BD Cytofix/Cytoperm) and washed with BD Perm/Wash buffer (BD 

Biosciences).  Incubations were all performed according to manufacturer recommendations.  

Cells were then stained with the following intracellular cytokines: anti-human IFNγ (clone B27, 

BD Biosciences), anti-human TNFα (clone Mab11, eBiosciences), anti-human IL-2 (clone MQ1-

17H12, BD Biosciences), IL-6 (clone MQ2-6A3, BD Biosciences), anti-human IL-10 (clone 

JES3-9D7, eBiosciences), and anti-human IL-17A (clone eBio64CAP17, eBiosciences). 

Flow cytometry was preformed on a LSR II (BD) and analyzed using FlowJo Software 

v.9.8 (Treestar Inc., Ashland, OR).  Size (FSC) and granularity (SSC) were used to isolate the 

lymphocyte population at the cytometer. All cytokine data presented are gated on CD3+ T cells.  

4.2.4 Statistical analysis 

Statistical analysis was performed in Graphpad Prism, JMP and R, significance was defined as p 

< 0.05.   

4.3 APPROACH 

To evaluate the contribution of an ongoing infection on subsequent infection in TB, 14 macaques 

were separated into two sets, a reinfection set and a matched 4 week only set (Table 2).  The 8 

animals in the reinfection set had a primary infection for 16 weeks followed by a secondary 

infection for 4 weeks; each infection was carried out with a separate barcoded library.  The 6 

animals in the four week-only controls animals received only the second barcoded library 
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(Figure 11).  The infections of the second group of monkeys were performed in parallel with the 

second infection of the reinfection cohort, except for 2, 4 week only animals that formed a third 

infection group used to supplement our early infection data (Table 2).  This study design was 

critical to compare reinfection in a setting controlling for dose and inoculum variation such that 4 

week secondary granulomas could be directly evaluated against 4 week primary granulomas, a 

critical time point where granuloma bacterial burden is highest36, and, thus, a potential phenotype 

most evident.  As of the date of this writing, primary and secondary granulomas were 

distinguished using [18F]-FDG PET/CT imaging39,109,132, pending library qTag validation through 

sequencing.  Consequently, any new lesions that were observed after the second infection were 

termed “secondary lesions” resulting in an unbiased but perhaps overestimated contribution of 

granulomas arising from the second infection in some animals.  We expect that sequence 

analysis will eventually show that some lesions were actually due to spread from the primary 

infection in some animals.  

 

Figure 11. Schematic of Reinfection Study Design. 

14 animals were separated into reinfection and 4wk only controls with 8 and 6 macaques, respectively.  Animals in 

the first group were infected with two successive libraries of barcoded M. tuberculosis (A and B) with a 16 week 

interval between them.  Animals in the second, 4 week only control group were infected with only library B in a 

series of matched infections with the reinfected animals. (All numbers above in weeks). 
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Table 2. Parameters of macaque infections, imaging, and disease.  

4.4  RESULTS 

4.4.1 Primary infection protects against secondary infection by limiting granuloma 

formation and reducing granuloma bacterial burden 

Using [18F]-FDG PET/CT to count the numbers of new, secondary lesions (i.e. those that only 

become apparent subsequent to infection with Library B), we observed a trend towards an 

overall reduction in the numbers of new granulomas formed from the second M. tuberculosis 

library (+p=0.2135) (Figure 12A).  When examined by monkey and separated by infection 

Animal 
ID Strain Infection 

Dose (CFU) 
Time to 

Nx (wks) 

Gross 
Pathology 

Score 
Total CFU PET/CT Scans (wks) 

18915 

Library B 2.0 
Barcoded Mtb 

Erdman 
 

6±1 4 7 318,039 2, 3 
19015 6±1 4 17 1,738,747 2, 4 
19915 5±1 4 19 564,310 2, 4 
20015 5±1 5 11 104,809 3, 5 
5616 10±1 5 32 370,409 4, 5 
5716 

 
10±1 

 
4 
 

20 
 

461,740 
 

3, 4 
 

19115 

1°: Library A 2.0 
Barcoded Mtb 

Erdman 
 

2°: Library B 2.0 
Barcoded Mtb 

Erdman 

1° = 5±1 
2° = 5±1 20 23 37,756 4, 6, 8, 12, 15, 18, 20 

19215 1° = 5±1 
2° = 5±1 20 22 6719 4, 6, 8, 12, 15, 18, 20 

19315 1° = 5±1 
2° = 5±1 21 12 12,196 4, 6, 8, 12, 15, 18, 21 

19415 1° = 5±1 
2° = 5±1 21 22 4,334 4, 7, 8, 13, 15, 18, 21 

19515 1° = 8±1 
2° = 10±1 20 38 361,420 4, 8, 12, 16, 20 

19615 1° = 8±1 
2° = 10±1 20 57 122,872 4, 8, 12, 16, 20 

19715 1° = 8±1 
2° = 10±1 

21 34 10,600 4, 6, 8, 12, 16, 19, 21 

19815 1° = 8±1 
2° = 10±1 21 28 3,331 5, 6, 8, 13, 16, 19, 21 
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group (Figure 12B), the granuloma reduction becomes more apparent with the most surprising 

finding that four macaques in the reinfection set exhibit nearly complete to complete protection 

(ID: 19315, 19415, 19715 & 19815) against establishment of new granulomas.  In the first 

infection group, the estimated CFU for the second library was 5±1, which is close to the 

threshold of infection despite a conservative, calculated error rate.  A more robust reduction was 

appreciated in the second infection group where the estimated CFU for the second library was 

10±1.  Here, in spite of an infection dose of 10, we have two macaques that have two and zero 

new lesions, respectively (Figure 12B).  The other two monkeys in that group have higher 

secondary granuloma counts than their 4 week only counterparts, which is likely due, in part, to 

an actively disseminating primary infection resulting in overestimation by [18F]-FDG PET/CT 

and await qTag verification for definitive library placement.  To our knowledge, this is the first 

reported instance of complete protection against the establishment of infection observed in a 

macaque model of tuberculosis, including in vaccine studies.  

 In addition to assessing the numbers of granulomas formed following a second infection 

in the context of reinfection, we interrogated the overall bacterial burden of the secondary 

granulomas that were able to successfully establish at 4 weeks post second infection.  We found 

that bacterial load in these secondary granulomas were several orders of magnitude lower than 

age-matched primary granulomas, with a significant number having sterilized altogether (53% 

vs. 15%) (Figure 13A &13B). Collectively, our two observations that primary infection limits 

both the establishment and bacterial growth of secondary granulomas implicates the presence of 

a specific and capable immune response elicited by an ongoing M. tuberculosis infection.  
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Figure 12. Primary infection limits secondary granuloma development.  

A. Granuloma counts of age-matched primary (n=6 animals) and secondary (n=8) lesions (4-5weeks post infection) 

(p=0.2153); each symbol is a monkey.  B. 4 week granuloma counts separated by monkey and infection group.  In 

each group, the animals received the same dose of the second library (M. tuberculosis Erdman Library B); group 1 = 

5±1 CFU, group 2 = 10±1 CFU, and group 3 = 6±1 CFU.  The last group only had 2, 4 week only control animals.   

 

 

Figure 13. Secondary granulomas have significantly fewer bacteria than primary granulomas.  

A. CFU of 4 week, age-matched primary (n=33) and secondary (n=47) granulomas (****p<0.0001), each symbol is 

a granuloma.  B. 4 week granuloma CFU separated by monkey and infection group, as above in Figure 12, each 

symbol is a granuloma and all are from barcoded M. tuberculosis library B.  
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4.4.2 Secondary lesions have more robust cytokine expression than age-matched primary 

lesions 

To begin to dissect a possible mechanism driving the protection observed in secondary infection, 

we examined age-matched primary and secondary lesions using ex vivo stimulated, intracellular 

cytokine staining.  We found that a higher frequency of CD3+ T cells in the 4 week secondary 

granulomas produced IL-2, IL-6, and IL-10, and a trend towards higher production for IL-17A 

and TNFα (Figure 14). Only IFN-γ did not appear to be upregulated relative to 4 week primary 

granulomas.  

 

Figure 14. T cells in secondary granulomas produce greater amounts of pro- and anti-inflammatory 

cytokines.  

A-F. CD3+ T cell cytokine expression for IFN-γ, IL-2, IL-6, IL-10, IL-17A, and TNFα, respectively, between 4 

week primary (n=27) and 4 week secondary (n=10) granulomas (*p>0.05 and **p>0.01).  All plots use a 30 T cell 

minimum. Each symbol is a granuloma.  
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4.5 DISCUSSION 

In this study, we addressed reinfection in the macaque model of TB by directly comparing 

infection establishment, bacterial burden, and granuloma immune profiles in a paired set of 

macaque cohorts.  Our data support enhanced protection against early (4 week) secondary 

infection following a primary infection.  Importantly, this is a critical time point in infection as 

clearance of M. tuberculosis is least effective, bacterial dissemination is prominent, and bacterial 

load is highest7,27,36.  Most surprisingly, we report the novel finding of complete protection 

against the establishment of secondary infection in several macaques (Figure 12) suggestive of 

highly effective mycobacterial immunity in the lung and airway.  Moreover, in the secondary 

granulomas that were able to form, we report >1000 fold bacterial killing further indicative of a 

potent, antibacterial state in these granulomas, with the median bacterial burden at 0 (Figure 13).  

The finding that a large portion of 4 week granulomas was sterile is surprising as our previous 

data has shown that granuloma bacterial load in primary infection is greatest in the first several 

weeks of infection36, most likely due to the delay in adaptive immunity27.  We hypothesized that 

the enhanced killing in the reinfected animals was a result of the local lung immunity generated 

by a primary infection and our initial T cell cytokine profiling of the 4 week, secondary 

granulomas revealed significant upregulation of both pro- and anti-inflammatory cytokines 

(Figure 14).  We speculate that the subsequent, pan-hyperresponsive cytokine state promoted a 

balanced immune microenvironment in which both antibacterial responses and 

immunopathology were maintained appropriately30; two immune components that have 

previously been shown to best correlate with granuloma sterility133.  Subsequent studies in 

reinfection will carefully probe the immune profiles and functionality of both innate and adaptive 

factors in the lung and airway to better understand the immune signatures providing this 
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protection.  Further study is required to determine the durability of protection against M. 

tuberculosis seen here as well as the apparent necessity for live M. tuberculosis to elicit the 

appropriate immunity, as the current BCG vaccine does not engender such protection2,3.  

Ultimately, our work in reinfection provides exciting clues for novel immunological biomarkers 

of protection that will inform more effective vaccine development6,161.  
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5.0  THE INFLUENCE OF M. TUBERCULOSIS ON THE LUNG MICROBIOME IN 

THE MACAQUE MODEL OF TUBERCULOSIS 

This chapter is partially adapted from the accepted NIH grant RO3 AI122067 (Flynn JL, Lin PL, 

and Ghedin E, 2015) and represents an ongoing study probing the relationship of the lung 

microbiome and M. tuberculosis infection in the macaque model of tuberculosis that I initiated. 

 

5.1 INTRODUCTION AND INNOVATION 

Microbial dysbiosis is increasingly being recognized as a significant factor influencing human 

disease in a variety of contexts spanning allergy, autoimmunity, cancer, and infectious disease162. 

The gut microbiome, in particular, has had the greatest amount of literature linking the immune 

system and an organ’s microbiome163 but it is increasingly becoming clear that other human 

immune surfaces and interfaces including the lung are shaped by host-microbe interactions164,165. 

Specific human studies linking lung microbiome changes and bacterial infections are limited, but 

earlier work in Pseudomonas aeruginosa166 has identified an association between airway 

microbial loss and pathogen colonization suggesting that microbial diversity can influence 

pathogen selection and disease at this site.    
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Here we explored the effects of M. tuberculosis infection on the lung microbiota over the 

first several months of infection in a macaque model of TB, using serial bronchoalveolar lavage 

(BAL) samples obtained from animals funded on other studies. This initial exploration of the  

dynamic changes in microbiota in response to M. tuberculosis infection, and preliminary 

correlations with outcome measures of infection, will provide novel data and set the stage for 

more focused future investigations of the influence of lung microbiota on M. tuberculosis 

infection. 

In this study, we coupled our cynomolgus macaque model of TB125 with the unique 

ability to serially sample the airways of animals throughout the course of infection.  We 

exploited the technologies that we have developed with respect to PET/CT imaging, 

immunologic analyses, clinical assessments, prediction of outcome, and genomic sequencing 

analyses39,49,53,167-170 to determine the duration of effect of M. tuberculosis infection on the lung 

microbiome. This is the first targeted exploration of the lung microbiome in a model of TB that 

replicates human infection outcomes and pathology.  

5.1.1 Tuberculosis and the microbiome 

Almost nothing is known about the interaction of the lung microbiome and M. tuberculosis.  M. 

tuberculosis causes a chronic lung infection as primary disease can take up to 2 years to be 

clinically diagnosed and humans with latent TB can remain infected for their lifetime. 

Reactivation of clinically latent infection can occur years to decades after initial infection. Cross-

sectional human studies examining the interaction of M. tuberculosis infection and lung 

microbiota (measured by sputum) have been limited but suggest that TB patients have altered 

diversity in their sputum microbiota compared to uninfected humans171,172. The distribution of 
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some genera (Stenotrophomonas and Phenylobacterium) was unique to TB patients172. Certain 

patterns of microbiota (e.g., presence of Pseudomonas spp.) were observed in patients with 

recurrent TB and treatment failure suggesting that the lung microbiota interacts with both host 

and pathogen173. Specifically, alterations in Treponema and Atopobium were associated with 

recurrent TB suggesting that an altered “normal” microbiome is associated with ongoing 

susceptibility to TB173. Studies examining the microbiota of the oropharynx between health 

controls and TB patients showed differences in diversity and abundance of particular organisms 

although no differences in major phyla were observed174.  Distinct changes in the gut 

microbiome were observed after experimental M. tuberculosis infection in a mouse model175, 

although the effects of these changes on course of infection are not clear. Perry et al showed that 

seroprevalence of H. pylori in humans was associated with a decreased risk of progression to TB 

disease and this pattern was recapitulated in our cynomologus macaque model of M. tuberculosis 

infection176. 

5.2 METHODS AND MATERIALS 

5.2.1 Microbiome sample collection and M. tuberculosis infections  

To sample the oral flora, we first obtained a 5mL rinse of the cheek pouches by administering 

5ml of PBS by syringe and then recovering as much liquid as we could.  We followed the oral 

cavity washing with a 5mL saline wash of the sterilized bronchoscope to detect any residual 

DNA within the scope.  To minimize subsequent lower airway broncheoalveolar lavage (BAL) 

sampling, we swabbed each animal’s mouth with an antiseptic agent (chlorohexane). A 7mL 
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saline lavage of the uninfected lower lung (often left lung) was performed, followed by 

sterilization of the scope with antiseptic solution (Cidex, Civco Medical Solutions) before 

sampling the opposite infected lung. From these lavages, we collected approximately 3-5mL 

from each lobe and immediately aliquoted into 2-4.5mL cryovials and froze the vials at -80°C.  

Thus, from each monkey at each time point, we had 4 samples (mouth, scope, right lower lobe, 

left lower lobe) (Figure 15).  Our serial sampling was done at pre-infection (0), 1, 4 and 5-

months post-infection (several macaques had sampling only out to 4 months due to the onset of 

drug treatment).  Monkeys were infected with <25 CFU M. tuberculosis strain Erdman via 

bronchoscopic instillation into the right lower lung, as we have previously described42,49. The 

animals for this project are from separately funded studies of Dr. Flynn and Dr. Lin, and are un-

manipulated except for M. tuberculosis infection. Samples are analyzed using target gene 

sequencing of the V4 hypervariable region of 16S rRNA for bacteria169 (see below).  To date, we 

have obtained serial samples from 26 M. tuberculosis infected cynomolgus macaques and a 

further 10 will be sampled in the following year.  
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Figure 15. Schematic of macaque airway sampling. 

Ongoing clinical assessments (e.g., cough, appetite or weight loss), erythrocyte 

sedimentation rate (ESR, marker of systemic inflammation) and gastric aspirate and BAL for M. 

tuberculosis growth were performed to obtain clinical outcome measures as described42,49. More 

importantly, PET/CT imaging of lung disease in all of these animals will be obtained over the 

course of infection, including at the 4 and 5-month time points to assess disease progression. As 

noted above, we have identified several parameters of PET/CT change that are correlated with 

extent of disease. 

5.2.2 DNA extraction from BAL samples 

To avoid potential contamination, all DNA extractions are performed in a dedicated biosafety 

level 3 cabinet that is first exposed to a UV light source for 15 minutes. Samples were prepared 

in batches by monkey, where each sample is thawed and centrifuged, and the PowerSoil® DNA 
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extraction kit (MO BIO Laboratories, Inc.), which includes a bead-beating step, is used to extract 

the DNA. 

5.2.3 Analysis of microbial community structures 

Dr. Elodie Ghedin, an expert in genomic characteristics of the microbiome as they relate to lung 

infection, and her laboratory preformed the taxonomic analysis of samples. The 16S amplicon 

sequence data from the samples were processed using the following pipeline: first, we used the 

Mothur pipeline177,178 modified for the MiSeq platform, which includes removal of low quality 

reads, chimeras (UCHIME), non-mate-paired reads and merging of paired-end reads179. 

Taxonomic assignments of the sequences were made using the RDP (Ribosomal Database 

Project) classifier180, which classifies sequences to the genus level.  Second, we utilized 

taxonomy-independent analyses through the generation of Operational Taxonomic Units 

(OTUs), which provide classifications at approximately the species level by clustering sequences 

based on nucleotide identities of ≥97% using the UCLUST program 181 Assignments of 

taxonomy were further refined through phylogenetic methods including using PyNAST 182 to 

generate an alignment for each cluster from which a phylogenetic tree was built using the 

FastTree approximately-maximal-likelihood method183. Third, we used the taxonomic and OTU-

based profiles in a series of ordination, clustering, and community structure (measuring richness 

and evenness) analyses designed to compare and identify significant shifts in 16S rRNA profiles 

between samples and for further statistical analyses (see Statistical Analyses). Finally, we 

determined the stability in the structure of the microbiome over time using the ordination, 

clustering and diversity analyses and comparing data across time points. 
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5.2.4 Neutral Model Analysis  

The data from the oral wash and the bronchoscope control were used to determine which 

microbe (identified in the taxonomic analysis described above) was a true resident of the lung 

rather than a microbe from the mouth. To do this, we applied the neutral model of community 

ecology 169,184. This model examines whether distribution of organisms in the lung results from 

dispersal from the mouth or from active environmental selection in the lungs. This analysis 

allowed us to determine true residents of the lungs and how their representation varies over time 

(see Statistical Analyses). 

5.2.5 Statistical Analyses 

Whole community structure changes were analyzed using Adonis, a multivariate ANOVA based 

on dissimilarities, available in QIIME185. Individual OTUs that differ between infected and 

uninfected lobes were identified with repeated measures ANOVA. To examine the relationship 

of microbial communities to both systemic marker of inflammation (ESR) and lung TB-specific 

inflammation by PET/CT, we will use a random intercept model, or linear mixed model, with 

autoregressive correlation structure; a LASSO penalty will be added to this regression to account 

for the large number of potential fixed effects (OTUs). On categorical variables, the linear mixed 

model will be replaced with a logistic mixed model with the same autoregressive correlation 

structure and penalty parameters. To test the shifts in abundance for specific taxa due to M. 

tuberculosis infection, we also employed smoothing spline ANOVA (SSANOVA) methods 

(http://cbcb.umd.edu/software/metagenomeSeq). We have previously used these methods in a 

http://cbcb.umd.edu/software/metagenomeSeq
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separate study on the progression of differential abundance of specific oral microbial taxa during 

the course of a SHIV infection186. 

5.3 PRELIMINARY RESULTS 

Lung microbiome analyses have been performed on the first cohort of 10 macaques with a total 

of 162 samples (Table 3). The second set of 16 macaques is in progress.  Sequencing and 

analysis was performed for all oral wash and BAL samples using the bronchoscope and reagent 

controls for appropriate thresholding. The data below is representative of the first set of 10 

animals.  Infection status of each lung lobe is determined by PET/CT at each sampling time 

point36,39,109 allowing for direct comparisons of infected and uninfected lobes over time.   

 

Table 3. Lung Microbiome Samples 

 

Cohort Macaques Lung BAL Oral Wash 
Bronchoscope 

Controls 

Reagent 

Controls 

Total 

Samples 

1 10 70 36 36 20 162 

2 16 114 58 58 32 262 
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5.3.1 The oral microbiome is distinct from the lung microbiome  

Using principle component analysis (PCA), comparison of OTUs between the oral wash and 

BAL reveals that the oral cavity clusters separately from the lung lobes, irrespective of time 

point post infection (Figure 16).  While the infected and uninfected lobes (red and blue, 

respectively) are spread along the first component (axis 1), the oral samples are tightly clustered 

with very little spread indicating that the microbial composition of this compartment is distinct 

from the lower airway.   

 

Figure 16. Principle component analysis reveals discrete microbial landscapes between the oral and lung 

environment.   

Figure courtesy Elodie Ghedin, NYU.  
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5.3.2 The lung microbial community changes over time following infection 

To look for differences over time following M tuberculosis infection, we compared the alpha-

diversity of the OTUs from infected and uninfected lobes (determined by PET/CT) from all 

macaque at each time point.  We find that at 4 months post infection, there is a trend towards 

greater microbial diversity in the infected lobe (p=0.08) (Figure 17).  This shift appears to be 

transient as the diversity then begins to decrease in the following month.   

 

Figure 17. Lung microbial diversity shifts over time with M. tuberculosis infection.  

Alpha-level diversity of BAL samples throughout infection between uninfected (blue) and infected (red) lobes 

(+p=0.08). Figure courtesy Elodie Ghedin, NYU.  
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To better understand the specific microbial communities contributing to the change at 4 

months, we analyzed the data with the linear discriminate analysis (LDA) effect size (LEfSe) 

method187.  This approach helps to determine features responsible for the differences found 

between class comparisons on a metagenomic scale.  Using this method, we determined that in 

this first macaque set, the bacterial genera Fusobacterium, Neisseria, and Aggregatibacter were 

associated with M. tuberculosis in the infected lobe and Burkholderia in the uninfected lobe 

(Table 4).  Subsequent time-dependent Smoothing Spline ANOVA (SSANOVA) analyses 

validated all of the associations except for Neisseria (Table 4).  

 

Table 4. Discriminating features between infected and uninfected lobes in M. tuberculosis infection 

 

 

 

 

 

 

5.3.3 The oral and lung microbiome are highly variable across macaques  

By separating out the ten bacterial genera with the highest relative abundance of OTUs in the 

infected lobe for each macaque during M. tuberculosis infection, we see that there is great 

diversity across animals (Figure 18).  Several macaques display little change in the lung 

Genus Lobe LDA Score 
p-value 

(LEfSe) 

p-value 

(SSANOVA)  

Fusobacterium Infected 4.363 0.003 0.010 

Neisseria Infected 4.221 0.015 - 

Aggregatibacter Infected 4.113 0.004 0.019 

Burkholderia Uninfected 4.336 0.0003 0.010 
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microbiome following infection, whereas others display a high degree of variability, both with 

respect to magnitude and duration.   

 

Figure 18. There is a high degree of variability across macaques during infection.   

The relative abundance of taxa of the infected lobe for each monkey (ID across top) over the course of M. 

tuberculosis infection. (B=pre-infection, 1=1 month post infection, 4=4 months post infection, and 5=5 months post 

infection.) Figure courtesy Elodie Ghedin, NYU.  
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5.3.4 Pulmonary inflammation is highly variable across macaques 

To begin to relate pulmonary inflammation with the changes in the lung microbiota, we 

quantified lung inflammation, as measured by [18F]-FDG avidity (Total PET hot), in each 

macaque at 1, 4, and 5 months post M. tuberculosis infection (Figure 19).  Each time point 

coincides with the BAL lung microbiome sampling that was done above. There is a wide range 

of lung inflammation observed in these animals.  Several macaques exhibited large changes in 

total PET hot at 4 months whereas others animals have relatively little pulmonary inflammation 

throughout infection. A more precise analysis will be performed on each macaque in which each 

lobe will be evaluated for lung inflammation, infection status, and microbial diversity.  
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Figure 19. Total pulmonary lung inflammation in infected macaques.  

Using [18F]-FDG avidity (total PET hot), we assessed lung inflammation in all macaques (n=26) over the course of 

M. tuberculosis infection.  

 

5.4 DISCUSSION/FUTURE DIRECTIONS 

This primary aim of this study is to determine whether M. tuberculosis influences the lung 

microbiome following infection.  Analysis of the first cohort of ten macaques reveals that M. 

tuberculosis can induce changes in the lung microbiome of infected macaques, but that the 

alteration is variable across macaques.  Importantly, our study strategy is designed to compare 
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infected lobes from uninfected lobes within the same macaque across infection to minimize the 

masking effect of animal-to-animal variability.  We find that the changes are specific to the 

infected lobe, relative to the opposite, uninfected lobe, and greatest in the 4th month post 

infection (Figure 17).  We subsequently preformed metagenomic LDA effect size analyses 

(LEfSe) to better discern the specific microbial genera most likely driving the difference in lobe 

status and discovered that Fusibacterium, Neisseria, and Aggregatibacter are associated with M. 

tuberculosis (Table 4).  Interestingly, these microbes are normally associated with the 

oropharynx188 and may suggest opportunistic, migratory colonization following M. tuberculosis 

infection that stems from inflammatory dysbiosis in the lung129,188.  Dickson et al present a 

model of airway dysbiosis and inflammation in which an insult (infection, allergy, or 

environmental agent) triggers an inflammatory state that perpetuates a cycle of microbial 

alteration and respiratory inflammation driven by changes in growth conditions and distorted 

pulmonary architecture129 (Figure 20).  While the functional significance of the increase in 

several oropharynx species is not known, it implies that there may be less separation between the 

upper and lower respiratory tract during infection, and, when coupled with lung inflammation, 

may drive differential host responses in infection.  Going forward, we will finalize our full data 

set of 26 animals and rerun all analyses to validate and finalize our observations and conclusions.  

Ultimately, we aim to relate the microbiome changes to pulmonary inflammation using our serial 

FDG PET/CT imaging39,109.  We have quantified the total lung inflammation in the 26 animals 

(Figure 19) and observed a wide range of inflammation with several macaques exhibiting an 

increase in inflammation at 4 months, others had no changes in inflammation at all; this 

heterogeneity matches the range of infection outcomes that we see in this animal model49,125 and 

in humans.  Interestingly, the total PET hot increases at 4 months coincide with the increased 
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microbial diversity observed above (Figure 17).  This relationship will be further examined on a 

lobe-by-lobe basis for each macaque.  We will also look for evidence suggesting that the degree 

of inflammation influences the duration and magnitude of lung microbiome alteration.  Finally, 

we will generate a microbial interaction network to visualize how the microbes influence each 

other over the course of M. tuberculosis infection. A better appreciation of the interactome 

between host immunity, lung microbiota, and pathogen is important as it presents a fresh domain 

to study that likely contributes to host heterogeneity and a new potential for therapy.  It is 

intriguing to speculate that certain microbial species could be utilized in tandem with 

chemotherapy or vaccination to minimize inflammation or enhance/polarize specific immune 

cells for better bacterial killing.  

 

Figure 20. Cycle of lung microbiome dysbiosis and airway inflammation.  

A pulmonary insult initiates localized inflammation that modifies airway function and architecture leading to altered 

growth conditions that in turn promotes microbe dysbiosis through various selective pressures. 
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6.0  IMPLICATIONS OF DISSERTATION: SIGNIFICANCE, CONCLUSIONS AND 

FUTURE STUDIES 

In this dissertation, we have coupled our well characterized macaque model of tuberculosis, 

which appropriately captures and recapitulates the full spectrum of human infection and 

disease42,49,109,126,189, with novel molecular, imaging, and bioinformatics tools to address several 

important questions in early M. tuberculosis infection.  Early events in this bacterial infection are 

critical junctures during which key components of the immune system are poised to either 

interact favorably to promote containment or interact poorly and allow for early dissemination.  

These initial interactions influence host outcome27,39 and likely contribute to the overall 

heterogeneity observed in human infection.  In this body of work, we have specifically tackled 

questions involving dissemination, reinfection, and the lung microbiome.  Each of these three 

domains are uniquely tied to early infection and their exploration has provided new insight into 

how to exploit the earliest exchange between bacterium and host in favor of man.  

6.1 SIGNIFICANCE 

In 2015, TB overtook AIDS as the leading infectious disease killer worldwide with an estimated 

1.4 million deaths, and a further 0.4 million deaths among human immunodeficiency virus-

positive (HIV+) individuals1.  Overall incidence for the same year was an estimated 10.4 million 
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cases, of which there was approximately 580,000 cases of drug-resistant tuberculosis1.  These 

numbers persist in spite of widespread infant vaccination with M. bovis Bacille-Calmette et 

Guerin (BCG) in endemic areas and inexpensive and effective antibiotic treatment2,190,191.  This 

is, in part, due to poor patient compliance and poor access to health care, which limits the 

efficacy of chemotherapy despite an estimated 90-95% cure rate in TB treatment control 

programs in drug-sensitive cases2,158.  Moreover, the BCG vaccine is reputed to protect against 

the worst forms of disseminated TB in children but has a highly variable rate of protection in 

adults likely stemming from multiple factors including differences in geographic location, route, 

substrain, and the local, lung environment191; newer, more reliable and effective vaccines are 

needed.   

6.2 CHAPTER CONCLUSIONS AND FUTURE STUDIES 

6.2.1 Barcoded M. tuberculosis reveals a bottleneck of secondary dissemination that is 

predicted by early granuloma size.  

To probe dissemination and track early bacterial dynamics, we generated a novel M. tuberculosis 

barcoding system with an associated Python pipeline that has given us unparalleled ability to 

track the fate of individual bacilli in infected macaques.  Moreover, when paired with our serial 

[18F]-FDG PET/CT imaging, we were able to reconstruct infection maps in which we could 

segregate disseminated or contained lesions and begin to examine individual lesions for features 

relating to bacterial spread.  Interestingly, we found that only a subset of granulomas 

disseminated to form new, productive (CFU+) granulomas, and that granuloma size early 
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(between 4-5 weeks post infection) correlated with dissemination. When we looked at two 

additional early infection monkeys, we confirmed the early feature of size and found that those 

larger lesions had higher CFU relative to their contained counterparts.  We speculate that there is 

a critical crossroads for granuloma fate in early infection in which early cellular responses, 

bacterial growth, and granuloma size interact to dictate further dissemination or containment 

(Figure 21).  Deciphering the key players that direct either endpoint will be an interesting 

question for future study, particularly as these decisions likely rely on components of the innate 

response given its timing.  Notably, the two early macaques had significant dissemination to the 

thoracic lymph nodes and only minimal early lung spread.  Whether this is indicative of a more 

general phenotype of early spread or an isolated instance found in these two animals is also 

unknown and warrants further study.  Ultimately, this new barcoding scheme has not only 

provided novel depth into disease progression and individual granuloma fate mapping, it has also 

reaffirmed an unappreciated role for early granuloma dynamics in shaping host outcome.   
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Figure 21. Granuloma fate is influenced by a complex and dynamic exchange of host and bacterial features. 

6.2.2 Reinfection in TB: primary infection protects against early secondary infection. 

How an ongoing M. tuberculosis infection influences a subsequent, secondary infection is 

entirely unexplored.  Here we leveraged the macaque model of TB to experimentally assess the 

effect of reinfection on the course of early secondary infection.  Utilizing 18[F]-FDG PET/CT 

imaging and separate library qTags, we differentiated primary and secondary lesions in a 

matched set of macaque experiments where 4 week primary granulomas were directly compared 

against 4 week secondary granulomas.  Excitingly, our data suggested that previous infection is 

protective against reinfection in that it completely protected several animals from developing any 

new secondary granulomas and, of the granulomas that did form, a large majority (>50%) were 

sterile (Figure 12 & Figure 13).  Those with detectable CFU were all significantly diminished 
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versus primary granulomas of the same age (~4 weeks post infection) demonstrating a uniformly 

strong anti-tuberculous response.  Importantly, the level of protection exhibited here is greater 

than that of BCG vaccination191 and any vaccine candidate tested in our macaques to date.  To 

provide better perspective into the bacterial killing seen in reinfection, we compared granuloma 

CFU data from early (5-6 weeks post infection) vaccinated animals that received BCG, an H56 

boost, and a CAF01 adjuvant prior to M. tuberculosis infection (Figure 22) [data courtesy 

Robert DiFazio, unpublished].  The bacterial burden in the secondary granulomas in reinfection 

was considerably lower than the primary granulomas from the vaccinated animals further 

highlighting the magnitude of protection observed in our reinfected animals. (Infectious dose 

was similar for both studies.)  As a result, the immunologic features engendering the protection 

observed in our reinfection studies offer unique potential to identify novel immunological 

biomarkers for better vaccine development. Our initial investigations into some of the protective 

immune responses suggested that the CD3+ T cells from secondary granulomas at 4 weeks post 

infection were poised to produce greater amounts of both pro- and anti-inflammatory cytokines 

than the primary granulomas (Figure 14).  We believe this rapid, balanced cytokine milieu 

contributed to the substantial killing by appropriately pairing macrophage activation and 

bactericidal responses with immune regulatory programs and tissue preserving responses7,30,133 

(modeled in Figure 23).  TH1 responses are likely necessary for appropriate activation of 

macrophages to kill internalized M. tuberculosis32, and most vaccines entering clinical trials have 

relied on induction of IFN-γ+ T cell subsets as a measure of vaccine success6.  However, our 

reinfection data above suggested that multiple cytokines are necessary to achieve protection, at 

least in the context of an early secondary infection.  Intriguingly, IFN-γ was the only cytokine 

not found to be upregulated when we compared primary and secondary granulomas.  It should be 
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noted that this data does not discount the importance of IFN-γ but rather suggests that a broader 

landscape of cytokines is needed to initiate a protective response in TB.  Future studies in 

reinfection are needed to fully understand the immunological basis providing this protection, 

particularly in light of a renewed focus on resident memory T cells192.  In addition, the durability 

of this observed protection as well as the apparent needed for viable M. tuberculosis will have to 

be thoroughly tested.   

 

 

Figure 22. Putting in perspective: bacterial killing in reinfection vs. vaccination.  

(Adapted from Figure 13). CFU of 4 week primary (n=33), 4 week secondary(n=47), and vaccinated, 5-6 week 

primary (n=71) granulomas (****p<0.0001), each symbol is a granuloma.  (Early BCG+H56/CAF01 granuloma 

data curtesy Robert DiFazio, unpublished).  
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Figure 23. A balanced cytokine milieu elicits anti-tuberculous immunity and immune regulation. 

 Model of immunity in reinfection.  A primary infection with low dose M. tuberculosis Erdman Library A initiates 

and maintains adaptive immunity including antigen-specific T cells that migrate to granulomas and help promote 

bacterial control and clearance.  While several primary granulomas are sterilized and resolved over 16 weeks, this 

local T cell immunity is rapidly poised to respond to a secondary infection (Library B).  The early production of pro- 

and anti-inflammatory cytokines helps prevent establishment of secondary granulomas and greatly enhances 

bacterial killing whilst diminishing excessive lung inflammation and immunopathology.  

6.2.3 M. tuberculosis alters the lung microbiome. 

The final arm of this dissertation was an initial survey into microbial environment of the lung 

and its relationship with M. tuberculosis infection.  The lung microbiome is arguably among the 
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earliest interactions between host and pathogen, and the role that the microbiota plays in 

influencing host immunity and host response at mucosal sites is becoming increasingly 

apparent129,162,193,194.  By serially sampling the BAL of both infected and uninfected lobes in 

macaques over the course of M. tuberculosis infection, we have provided the first evidence of a 

dynamic interplay between bacterium and host microbiota in the lung.  Specifically, we see an 

increase in microbial diversity in the 4th month post infection in the infected lobe relative to the 

opposite, uninfected lobe that is most likely driven by species of the oropharynx188, as well as a 

concomitant increase in total lung inflammation at the same time point in several macaques 

(Figure 17, Figure 19 & Table 4).  While our data analysis is still preliminary, this shift is 

intriguing as it suggests that the lower airway may undergo increased cross-contamination with 

the upper respiratory tract following infection and inflammation.  The significance of this shift is 

still unclear and requires further study.  In addition to finishing analysis on the remaining 16 

macaques, we are working to associate this lung microbiome alteration with pulmonary 

inflammation in a more detailed, lobe-specific basis.  Such analysis would provide a functional 

relationship to the observed interactions by tying inflammation driven by infection with the 

observed dysbiosis in the lung flora (modeled in Figure 24).  Understanding this cycle of 

inflammation and microbial dysbiosis129 in TB is very exciting as it posits an additional 

component that likely influences the variable responses to host outcome.  Moreover, if precise 

microbe-host-pathogen relationships are identified, it presents an entirely new avenue for 

therapeutic intervention in which particular lung microbes could be used to engage specific 

immune programs and minimize overall inflammation in the hopes of steering more favorable 

outcomes to M. tuberculosis.   
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Figure 24. Model of M. tuberculosis alteration of the lung microbiome.  

Left panel: normal lung at steady state.  There is a dynamic interplay between the airway and local microbiota that 

maintains an immunological equilibrium.  Right panel: inflammation and dysbiosis in M. tuberculosis infected lung. 

Following successful infection, there is perturbation of the airway concomitant with pulmonary inflammation and 

immune cell recruitment.  These changes alter the local environment allowing for increased colonization with 

Neisseria, Fusobacterium, & Aggregatibacter spp. from the upper respiratory tract and further dysbiosis and 

inflammation. 
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6.3 FINAL THOUGHTS  

This dissertation probed early events in three separate and unique contexts, early dissemination 

and disease progression, reinfection, and the lung microbiome.  To address the first two aims, we 

developed and validated a novel tool for use in our macaque model of TB that permitted tracking 

of individual bacilli to determine bacterial fate and granuloma dynamics.  We coupled this 

information with real-time serial [18F]-FGD PET/CT imaging and recreated maps of infection 

that gave us new insight into events that contribute to granuloma outcome.  We observed that 

early features, including granuloma size and bacterial burden, were associated with bacterial 

dissemination.  These two features in tandem with early immune responses are likely key 

components of the initial interactions between host and pathogen that influence host outcome.  

Our new barcoded M. tuberculosis also allowed us to examine how primary infection impacts a 

secondary infection by utilizing library specific qTags that differentiate parental strain.  

Although we are awaiting final confirmation of library identity from our sequencing 

collaborators, our imaging data suggested that we revealed an exciting phenotype of protection in 

which we observed complete protection against new granulomas in several macaques and 

considerable anti-mycobacterial killing in the first weeks in all of the remaining animals.  

Importantly, this protection occurred across the spectrum of host outcomes in primary infection 

in our macaques implicating that significant disease burden in the first infection is not required.  

This is critical as the majority of humans (~90%) dwell within the latent end of the TB spectrum.  

Confirming the apparent requirement for viable M. tuberculosis is equally critical as this would 

be among the first design steps in generating a vaccine (a macaque reinfection study with 

sterilizing drug treatment has just started).  While on the surface the administration of live M. 

tuberculosis might be unpalatable as a vaccine strategy, there are ideas of kill-switch and other 
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severely attenuated strains in the pipeline that offer encouragement for such an approach.  

Finally, and perhaps most readily, this model of macaque reinfection can be used as a robust 

platform to fully dissect the precise immune mechanisms eliciting protection, which can be 

directly translated for use and testing in human TB vaccine settings.  The final segment of this 

thesis set the stage for an interesting set of new studies that will interrogate the interface of the 

local, lung microbiota and M. tuberculosis.  Our first stab has yielded though-provoking 

suggestions on how a trifecta of microbe-host-pathogen interactions may influence infection 

outcome, particularly as a result of inflammation and dysbiosis.  The influence of the 

microbiome on infectious disease and immunity is a very active area of research and by applying 

this fresh perspective to our model of macaque TB, we may uncover new understanding of host 

variability in TB and potentially open new opportunities for early treatment and intervention.   
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8.0  APPENDIX A: VERY LOW DOSES OF MYCOBACTERIUM TUBERCULOSIS 

YIELD DIVERSE HOST OUTCOMES IN COMMON MARMOSETS (CALLITHRIX 

JACCHUS) 

This appendix chapter is adapted from the original publication and represents a side 

project ancillary to my primary thesis in early events:  

Cadena AM, et al. (2016) Very Low Doses of Mycobacterium tuberculosis Yield Diverse 

Host Outcomes in Common Marmosets (Callithrix jacchus). Comp Med 66(5):412-419. 

8.1 INTRODUCTION 

Tuberculosis remains a risk to global public health, with 9.6 million new cases of active 

tuberculosis and 1.5 million deaths in 2014195. Although most humans contain Mycobacterium 

tuberculosis in a clinically asymptomatic infection termed ‘latent tuberculosis,’ a smaller subset 

(approximately 10%) of patients present initially with primary active disease or subsequent 

disease reactivation over the course of their lifetime7. The biologic basis for the disease spectrum 

of M. tuberculosis in humans is unknown and continues to be an active area of research. 

Several animal models have been adapted for experimental M. tuberculosis infection, 

greatly contributing to our understanding of tuberculosis biology196. NHP models of tuberculosis, 

particularly cynomolgus macaques (Macaca fascicularis)49,125 and rhesus macaques (Macaca 
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mulatta)197,198 are recognized as the most faithful animal models in replicating the human 

spectrum of disease in terms of both pathology and infection outcome15,30,125,199. In addition, the 

recently developed common marmoset model of tuberculosis (Callithrix jacchus)200 replicates 

crucial facets of human tuberculosis, including cavitary disease. This model demonstrated 

divergent rates of disease progression after challenge with 3 strains—a Beijing isolate, the less 

virulent strain CDC1551, and M. africanum—and 2 different inocula (250 and 25 CFU). 

Notably, each infection resulted in rapid pulmonary disease presentation and weight loss, and all 

animals died by 75 days after challenge, thus reflecting the inherent susceptibility of common 

marmosets to this infection. 

The influence of M. tuberculosis dose and strain on host outcome has been examined in 

several animal models. For example, BALB/c mice demonstrated a broad range of virulence, 

bacterial load, and pathology after infection with 19 different M. tuberculosis complex strains of 

11 major genotype families113.  These 19 strains were segregated according to their virulence, 

bacterial burden, pathology, and delayed-type hypersensitivity responses as high, intermediate, 

and low responders. Strains that were classified as high responders induced the most pathology, 

greatest bacterial burden and highest mortality and included the isolates Beijing 2 and 3, Africa 

2, and Somalia 2. At the other end of the spectrum, those strains that elicited the least severe 

pathologic scores caused no or minimal mortality after 112 days, yielded the lowest bacterial 

load, and included the isolates H37Rv, Canetti, and Beijing 1113.  A recent review examined the 

virulence and immunogenicity of several genotypic lineages of M. tuberculosis in mice and 

related these findings to observed human epidemiologic data201. Overall, virulence and immune 

response vary extensively within each genotype, with many genotypes having both high- and 

low-virulence variants. Furthermore, rabbits (like mice) demonstrate an influence of dose, strain, 
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and growth phase on tubercle formation and virulence, and M. tuberculosis strain Erdman had 

the greatest virulence in rabbits, requiring the fewest inhaled bacilli to generate visible tubercles 

at 5 weeks202. 

Whether common marmosets have any capacity to control M. tuberculosis infection or 

are universally susceptible to developing active tuberculosis, even with low-dose inocula, has not 

been determined to date. In this study, we aimed to better characterize the disease phenotypes 

and host outcomes of common marmosets after M. tuberculosis infection by challenging animals 

with very low doses (less than 15 CFU) of the Erdman and CDC1551 strains. 

8.2 MATERIALS AND METHODS 

8.2.1 Animals. 

Common marmosets (Callithrix jacchus) were obtained from the Wisconsin National Primate 

Research Center (Madison, WI). Prior to shipment, the animals were tested for Campylobacter, 

Shigella, Salmonella, Giardia, Cryptosporidium, Entamoeba, and Balantidium. On arrival at the 

University of Pittsburgh, the marmosets were screened for M. tuberculosis infection and other 

comorbidities during a month-long quarantine. More specifically, each macaque underwent 

complete baseline blood and biochemical analyses, 2 tape tests to screen for pinworms, and 

Giardia ELISA with 2 pooled fecal sets. All marmosets were housed and maintained according 

to the practices and standards detailed in the Animal Welfare Act and the Guide for the Care and 

Use of Laboratory Animals within a biosafety level 3 facility. These NHP were housed in a 4 × 4 

macaque cage system, with the internal dividers removed to allow for open access and 



 104 

opportunities for climbing to the top and bottom of the cage. A nest box was included in the 

upper part of the cage, and the animals were fed a specialized marmoset diet (as advised by Dr 

Saverio Capuano, Wisconsin Primate Center). In some cases, infected animals were cohoused 

with naïve cagemates for a separate transmission study. The IACUC at the University of 

Pittsburgh approved all protocols and experiments. 

8.2.2 Infection and necropsy. 

Common marmosets were infected with either the virulent Erdman strain of M. tuberculosis or 

CDC1551 at doses of 1 to 12 CFU, as determined by plating the inoculum. One animal in the 

Erdman cohort was infected by aerosol, and the remaining marmosets were infected through 

bronchoscopic instillation, as previously described125. In brief, a disinfected bronchoscope was 

placed into the desired bronchus and 0.2 mL of sterile saline containing the appropriate infection 

inoculum was instilled. For the marmoset infected by aerosol, an infection inoculum was 

administered through a 10-min exposure to aerosolized bacilli created by a 3-jet Collison 

nebulizer (BGI, Waltham, MA) controlled by the AeroMP bioaerosol exposure system (Biaera 

Technologies, Hagerstown, MD) in a head-only exposure chamber (CH Technologies, 

Westwood, NJ) within a class III biologic safety cabinet (Baker, Sanford, ME). After infection, 

all marmosets were clinically monitored for signs of infection according to previously published 

methods49,125, and 18F-fluorodeoxyglucose positron-emission tomography–CT (PET–CT) scans 

were performed monthly, as previously described39,109,200. Marmosets were euthanized when they 

lost more than 20% of their preinfection body weight or when they exhibited substantial clinical 

signs of disease (for example, lethargy and anorexia). At necropsy, a gross pathology score for 

each marmoset was determined according to our published scoring system49, which evaluates 
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tuberculosis-specific disease in all lung lobes, thoracic lymph nodes, and extrapulmonary sites. 

Overall bacterial burden scores and CFU counts for individual granulomas, regions of complex 

pathology (for example, tuberculosis pneumonia), and thoracic lymph nodes were quantified and 

calculated as previously described36,49. Briefly, multiple individual tissue samples in each 

marmoset were identified by using PET–CT imaging as a guide, excised, and plated at necropsy, 

and bacterial colonies were counted 21 d after necropsy. The CFU score for each animal was 

determined by summation of each tissue’s log-transformation of bacterial burden, thus providing 

a relative comparator for all marmosets. In comparison, the total CFU count was the sum of the 

actual number of bacilli in all samples taken from the animal, and thus provided a more accurate 

representation of the bacterial burden. 

8.3 RESULTS 

8.3.1 Host outcome after M. tuberculosis infection in marmosets 

To determine the clinical progression and disease pathology of very low-dose infection, 9 

marmosets were challenged with 2 different strains of M. tuberculosis at doses of 1 to 12 CFU 

(Table 5). Inocula were determined by plating at the time of challenge. All but one of the 

marmosets in this study were infected by direct instillation of bacteria into the airways by using a 

bronchoscope. The marmoset that received 12 CFU of the Erdman strain (animal no. 3012) was 

infected through aerosol dispersion. All marmosets infected with the Erdman strain (dose range, 

1 to 12 CFU, with most animals infected with 2 CFU) presented with rapidly progressing disease 

regardless of dose. Clinically, all of these marmosets exhibited physical signs of illness, 
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including inactivity, reclusiveness, and diminished appetite. The animals exhibited precipitous 

weight loss after infection and arrived at the weight-loss threshold of 20% by 45 days after 

infection (median, 39 days), requiring euthanasia (Figure 25). Coughing was observed in a 

subset of animals (marmosets 13210, 13310, 13410, 13610, 13710, and 3412). At necropsy, all 

animals infected with strain Erdman had gross pathology scores that exceeded 30 (median score, 

41; Table 5). 

 

Table 5. Survival, disease presentation, and bacterial burden and dissemination after infection of common 

marmosets with very low doses of M. tuberculosis infection. 

aCFU = Colony forming units 

 

By contrast, the 2 marmosets challenged with strain CDC1551 (dose, 1 or 7 CFU) had 

divergent outcomes associated with dose but demonstrated reduced overall disease compared 

with that of marmosets infected with strain Erdman. The marmoset that received 7 CFU of the  

CDC1551 strain (animal no. 3913) had mild to moderate disease progression and steady 

weight loss and survived to 89 days (Table 5 and Figure 26). Surprisingly, the marmoset that 

received 1 cfu of CDC1551 (animal no. 3713) had mild disease progression, with a sustained 

period of weight loss in this animal beginning on day 76 that was not accompanied by any other 

Animal ID Strain Infection 
Dose (CFUa) 

Survival 
(days) 

Gross 
Pathology 

Score 

CFU 
Score 

% Tissue 
Positive 

13210 Mtb Erdman 
 

2 39 49 142 100 
13310 2 35 56 164 100 
13410 2 37 41 158 100 
13610 2 38 31 123 100 
13710 2 40 33 137 95.2 
3012 12 32 53 144 100 
3412 1 43 33 107 100 

       3713 CDC1551 1 307 25 26 32 
3913 7 89 66 53 100 
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clinical signs of disease. By day 174, this marmoset was regaining weight and returned to its 

initial weight by day 282 (Figure 25). This marmoset was euthanized after the conclusion of the 

study on day 307; euthanasia was not due to weight loss or clinical morbidity.  

The marmoset inoculated with 7 CFU had a gross pathology score of 66, whereas the 

marmoset inoculated with 1 CFU had a score of 25 (Table 5).  

 

 

Figure 25. Weight loss after infection with very low doses of M. tuberculosis varied according to strain and 

dose. 

All animals except one had sustained weight loss that prompted euthanasia by 90 days. The marmoset infected with 

1 CFU of CDC1551 (animal no. 3713) had a period of weight loss by recovered its preinfection body weight by day 

282. This animal was euthanized at 307 days after infection due to the conclusion of the study.  

8.3.2 In vivo PET–CT imaging. 

To compare in vivo disease progression between strains and doses, all marmosets were followed 

by using serial PET–CT imaging39,109; we here present 2 representative animals from each cohort 
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for comparison. For strain Erdman, 2 marmosets (nos. 3012 and 3412) were imaged and 

compared with 2 animals infected with CDC1551 (nos. 3913 and 3713). Both sets of animals 

represented the highest and lowest dose administered for each strain (Table 5). In agreement 

with clinical and weight observations, these marmosets had differing rates of disease 

progression, as demonstrated by 18F-fluorodeoxyglucose uptake. Relative to their baseline scans, 

both Erdman-infected marmosets had activity indicative of pulmonary and lymphatic disease on 

their 4 week postinfection PET–CT scans (Figure 26, yellow arrows), whereas the 2 animals 

challenged with CDC1551 had normal scans without disease, thus reflecting the slower 

progression associated with this strain. The prenecropsy scan for each animal was obtained just a 

few days prior to euthanasia. Given the rapid loss of body weight that necessitated early 

euthanasia in the 2 Erdman-infected marmosets, the 4 week scans served as their prenecropsy 

scans. By contrast, the disease in the CDC1551-infected marmosets progressed more slowly 

(prenecropsy scans at weeks 12 and 44). In particular, marmoset 3913 had significant disease in 

the right lower lung lobe and thoracic lymph nodes (Figure 26, yellow arrows), and marmoset 

3713 (dose, 1 CFU of CDC1551) had very little 18F-fluorodeoxyglucose uptake during his 

prenecropsy scan at 300 days after infection. 

8.3.3 Overall bacterial burden and extent of dissemination. 

Comparisons of bacterial burden (CFU scores)49 and the number of bacteria per tissue sample 

(granuloma, lymph node, tuberculosis pneumonia)36 revealed strain- and dose-dependent 

differences dependent (Table 1 and Figure 3). 
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Figure 26. Serial PET/CT imaging of infected marmosets revealed variable disease progression that was 

dependent on dose. 

These images are representative PET/CT coronal cross-sections from marmosets infected with very low doses of M. 

tuberculosis; 18F-flurodeoxyglucose was used as a probe for inflammation. Left panel: 2 marmosets infected with 

the Erdman strain (doses, 12 and 1 CFU) were followed over the course of infection. For both animals, their 4 week 

scans served as their prenecropsy scans, in light of their rapid disease progression and clinical decline. Right panel: 

2 marmosets infected with CDC1551 (doses, 7 and 1 CFU) were followed throughout infection. For all animals, the 

date of each prenecropsy scan (in weeks) is labeled at the lower left. Yellow arrows denote diseased areas of lung 

and thoracic lymph nodes, whereas the white arrow highlights noninflammatory uptake in the heart.  
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All of the Erdman-infected marmosets (including the one that received a dose of 1 CFU) had 

CFU scores above 100 (median, 142) and more than 95% of the tissues cultured were positive 

for M. tuberculosis (Table 5), indicative of prominent and widespread disease. By contrast, the 2 

marmosets challenged with 7 and 1 CFU of CDC1551 had CFU scores of 53 and 26, 

respectively, supporting the finding that bacterial burden is related to dose for this strain (Figure 

27A). The inoculation dose of 7 CFU of CDC1551 resulted in 100% of tissues that were positive 

for tubercular bacilli, whereas the infection due to the 1-cfu dose was contained to a much 

greater extent, with only 32% of tissues positive for bacteria (Table 5). Two marmosets from the 

Erdman group (no. 3012, inoculated with 12 CFU, and no. 3412, which received 1 CFU) were 

selected for more precise comparison of tissue burden with the 2 animals infected with CDC1551 

(marmosets 3913 and 3713). Comparisons of each animal’s cumulative bacterial burden (total 

CFU counts among all lung and lymph node samples) revealed that 3 of the marmosets had 

cumulative burdens that exceeded 5 × 106 CFU, with little difference between the lung and 

lymph-node compartments (Figure 27B). In contrast, the total bacterial load in the marmoset 

infected with 1 CFU of CDC1551 (no. 3713) was nearly 100-fold lower than that in the other 3 

(Figure 27B), with the vast majority of the burden contributed by infected thoracic lymph nodes 

(Figure 27C). Assessing each tissue separately revealed that the median lung or lymph node 

bacterial burden was higher in the 2 animals that received the higher dose within each strain 

(Figure 27C). Lymph nodes had the greatest variability across the different tissues, and the 

highest burdens occurred in regions of lung tuberculosis pneumonia. Most notably, the tissue 

bacterial burden in the marmoset that received 1 CFU of CDC1551 ranged from primarily sterile 

sites to the moderately infected superior pretracheal lymph node, which had 6.4 × 104 CFU. 
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Figure 27. Very low dose infection with CDC1551 results in diminished bacterial burden. 

(A) Comparisons of CFU scores for all 7 marmosets reveal the decreased scores for the 2 animals that received 

CDC1551. (B) Total CFU counts (the sum of all bacilli from every plated sample) and (C) the number of cfu per 

tissue sample from a subset of marmosets reveal the reduced bacterial loads in the 2 marmosets infected with 

CDC1551. In the marmoset infected with 1 CFU of CDC1551 (animal no. 3713), the total bacterial burden was 

approximately 2 logs lower than that in any other animal, and there were fewer bacilli in individual tissues, with a 

majority of samples being sterile. 

 

8.3.4 Gross and histologic disease pathology after challenge with very low doses of M. 

tuberculosis. 

Comparison of gross pathology at necropsy (Figure 28) revealed marked differences in the 

magnitude and extent of disease progression. For example, marmoset 3412, which was infected 

with 1 CFU of the Erdman strain, demonstrated pulmonary disease that was grossly limited to 

the left lower lung (Figure 28A), with concomitant enlargement and effacement of the left 

thoracic lymph nodes (Figure 28B). The left lower lobe showed extensive tuberculous 

pneumonia, with a central focal area of severe necrotizing consolidation (2 cm); the lobe 

completely lacked any normal, aerated lung parenchyma. Gross examination of the spleen and 
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liver revealed enlargement of both organs, with numerous (20 or more) granulomas (diameter, 

pinpoint to 1 mm or greater) throughout (Figure 28C). 

By contrast, gross examination of tissues from the marmoset infected with 1 CFU of 

CDC1551 (no. 3713) revealed 2 relatively well-circumscribed lesions in the left (lesion diameter, 

1.5 mm) and right (10 mm) lower lobes (Figure 28D); there were 4 additional discrete lesions 

(diameter, 2 mm or less) in the right lower lobe. The inferior and superior pretracheal lymph 

nodes were both enlarged, with significant effacement in the superior node (Figure 28E). The 

liver (Figure 28F) and spleen had no readily identifiable gross lesions. The liver was markedly 

enlarged, extending several centimeters below the costal region, and had an accentuated lobular 

appearance, with several large, irregular, superficial regions of parenchymal pallor. This 

discoloration was likely due to differential blood settling, euthanasia-solution–induced 

hepatocellular artifact, or glycogenation; there was no gross indication of tuberculosis throughout 

this organ. 

Histopathology of lung, thoracic lymph nodes, spleen, and liver largely confirmed the 

findings at necropsy. For the marmoset challenged with 1 CFU of the Erdman strain (animal 

3412), the region of tuberculosis pneumonia in the left lower lobe consisted of extremely 

neutrophil-rich inflammatory infiltrate, extending from alveolus to alveolus. Centrally, there was 

a large area of coagulative necrosis with near total effacement of all recognizable tissue 

architecture. There was minimal evidence of the formation of architecturally organized 

granuloma structures per se within the entirety of the large necrotizing region (Figure 29A). The 

left cranial hilar lymph node displayed extensive nodal effacement, with regions of necrotizing 

and nonnecrotizing inflammation with poor structural organization (Figure 29B). Examination 
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of the spleen (Figure 29C) and liver (Figure 29D) revealed multiple regions of caseous and 

nonnecrotizing granulomas, indicative of widespread disseminated disease. 

 

 

Figure 28. Gross pathology after infection with very low doses of CDC1551 was reduced relative to that after 

Erdman. 

Representative gross pathology from 2 marmosets infected with 1 CFU of the Erdman strain (top row) and 1 CFU of 

CDC1551 (bottom row). These images show the major disease-associated differences between the 2 animals. (A) 

Left lower lobe of lung with a central consolidation. (B) Enlarged and effaced left cranial hilar and left mainstem 

bronchial nodes, with mildly swollen central carinal lymph nodes. (C) Enlarged spleen and liver, with many 

disseminated pinpoint granulomas. (D) Granuloma in right lower lobe of lung. (E) Enlarged superior pretrachael 

lymph nodes. (F) Liver without gross evidence of tuberculous disease. Black arrows highlight areas of tuberculous 

disease. 
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In the marmoset challenged with 1 CFU of CDC1551 (animal 3713), the left lower lung 

lobe contained a single, caseous granuloma that was well circumscribed and had a prominent 

lymphocytic cuff (Figure 29D). In contrast to lung, the superior pretracheal lymph node had 

prominent coalescing and effacing caseous granulomas, with evidence of early collagen fibril 

formation within the necrotic matrix (Figure 29E). Despite the lack of gross disease at necropsy, 

this marmoset had microscopic evidence of splenic tuberculosis, with multiple, small minimally 

necrotizing granulomas (Figure 29F). In addition, sections of liver exhibited several focal areas 

containing caseous granulomas and small, nonnecrotizing sinusoidal granulomas (Figure 29F). 

Overall, the gross and microscopy pathology mirrored the clinical differences in these 2 

marmosets and reiterate the distinction between the 2 strains, even at very low doses. Similar 

extensive gross and microscopic disease was present in all marmosets infected with the Erdman 

strain as well as in the animal infected with 7 CFU of strain CDC1551. Importantly, despite the 

marked difference in the general histologic appearance between the 2 CDC1551-infected animals 

and the more immunologically contained response in the marmoset challenged with 1 CFU, this 

marmoset had numerous microscopic findings that suggested that the disease was entering a 

more widely disseminating stage. The presence of numerous small nonnecrotizing granulomas 

and epithelioid cell aggregates within thoracic lymph nodes as well as the microscopic 

granulomas in the hepatic and splenic parenchyma indicated the onset of more fulminant and 

progressive disease prior to necropsy. 

 



 115 

 

Figure 29. Histopathology after infection with very low doses of the Erdman and CDC1551 strains. 

Representative histopathology from the 2 marmosets shown in Figure 4, which were infected with 1 CFU of the 

Erdman strain (top row) and 1 CFU of CDC1551 (bottom row). These images illustrate the differences between the 

2 animals, particularly in the organization and structure of the lung granulomas. (A) Tuberculosis pneumonia with a 

large area of necrosis in the left lower lung lobe; magnification, 1.25×. (B) Left cranial hilar lymph node with areas 

of necrotizing and nonnecrotizing granulomatous inflammation; magnification, 4×. (C) Spleen with disseminating 

necrotizing and nonnecrotizing foci; magnification, 4×. (D) Liver with caseous granuloma; magnification, 10×. (E) 

Circumscribed caseous granuloma with a well-defined lymphocytic cuff in the left lower lung lobe; magnification, 

4×. (F) Superior pretracheal lymph node with coalescing and effacing caseous granulomas; magnification, 4×. (G) 

Spleen with multiple areas of minimally necrotizing granulomas dispersed throughout the parenchyma; 

magnification, 4×. (H) Liver with several, small sinusoidal nonnecrotizing granulomas; magnification, 10×. 

Hematoxylin and eosin stain. 
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8.4 DISCUSSION 

Here we report the diverse disease progression and host outcome patterns that occurred after the 

infection of common marmosets with very low doses (1 to 12 CFU) of 2 strains of M. 

tuberculosis. The susceptibility of marmosets to the Erdman strain was unrelated to dose or 

route. However, the inoculation dose may be an important determinant of outcome after 

challenge with the less virulent CDC1551 strain. All of the marmosets challenged with low doses 

of strain Erdman presented with fulminant, disseminating active tuberculosis, had a median 

survival time of 39 days, and had evidence of invasive necrotizing alveolitis and tuberculosis 

pneumonia, with little evidence of well-circumscribed granulomas. In contrast, infection with 

CDC1551 promoted an more slowly progressing infection overall; the marmoset that received 7 

CFU survived to 89 days, and the animal given 1 CFU survived more than 300 days. To our 

knowledge, this is the first reported instance of apparent recovery, stabilization, and survival 

beyond 300 days of a marmoset infected with a strain of M. tuberculosis. 

Our initial findings recapitulated those reported by our colleagues, who also described 

differential disease progression between several strains within the M. tuberculosis complex200. 

This previous study compared CDC1551, M. africanum N0091, and a Beijing K04 isolate at 

doses of 25 and 250 cfu; all 3 strains at both doses produced fulminant disease and prompted 

euthanasia by 80 d after infection due to weight loss200. The rapid disease progression, high 

bacterial burden, and invasive necrotizing pathology associated with the Beijing K04 isolate is 

very similar to the disease evolution, bacterial load, and disease presentation in our marmosets 

that were infected with the virulent Erdman strain. The median survival time in the previous 

study was 37 days200, similar to the 39 days for Erdman-infected marmosets in the current study. 
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Moreover, the higher dose of the K04 isolate was the only case for which the rate of weight loss 

was significantly increased. Likewise, among the Erdman-infected marmosets in our study, the 

animal that received 12 cfu had the most rapid weight decline and was euthanized 32 days after 

infection. In contrast, infection with CDC1551 resulted in the slowest disease progression among 

the 3 strains evaluated previously and yielded a median survival time of 59 days200. Notably, half 

of the marmosets infected with the CDC1551 strain previously developed cavitary lesions, a 

particular manifestation of human tuberculosis that is associated with erosion of lung 

parenchyma into the airway, facilitating bacterial transmission203. In agreement with these 

findings, our marmoset that received 7 CFU of CDC1551 (no. 3913) demonstrated several sites 

of cavitation. A separate study performed by these collaborators200,204 followed marmosets 

infected with various low aerosol doses of CDC1551 for weight loss in infected animals prior to 

drug treatment at 7 weeks. Little to no weight loss was seen in the animals exposed to 1 to 2 

CFU, whereas infection with higher doses significantly increased weight loss percentage (data 

not shown) suggesting that the route of infection was not directly responsible for the difference 

observed in the marmoset infected with 1 CFU of CDC1551 presented here. 

Extending the published findings, we present data supportive of long-term control of 

infection in a single marmoset. Infection with approximately 1 CFU of CDC 1551 presented as 2 

primary lesions, one in each of the lower lung lobes, as determined by PET–CT imaging39,109 

(Figure 2). Except for a period of transient weight loss beginning at day 76 after infection, this 

marmoset showed no other sign of clinical morbidity. Close observation by PET–CT imaging 

revealed that the lesion in the right lower lobe gradually increased in tracer uptake, whereas the 

signal in the lesion in the opposite lobe gradually decreased, suggesting at least partial 

immunologic control and disease resolution. This apparent discrepancy between the 2 individual 
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lesions is characteristic of the independent nature of granulomas even within the same NHP 

host36,39. These results were confirmed at necropsy, in that the lesion in the left lower lobe was 

sterile (that is, yielded no organisms by plating), whereas the lesion in the right lower lobe had 

approximately 2.6 × 103 bacteria. However, the microscopic pathology in the nodal lymph nodes 

and the presence of microscopic granulomas in the liver and spleen suggest that the infection 

may have been entering a more invasive stage, albeit at a slower rate than reported for all other 

marmosets to date. The histologic characteristics of the 2 lung lesions from this animal were 

distinct from the granulomas excised from the marmoset infected with 7 CFU of the same strain 

and from any of marmosets challenged with the Erdman strain. The left lower lobe lesion was an 

archetypical caseous granuloma with a well-circumscribed lymphocytic cuff, whereas the right 

lower lobe lesion had areas of tuberculosis pneumonia and nonnecrotizing granulomas. All of the 

Erdman-infected animals had a predominance of invasive, neutrophil-rich granulomatous 

alveolitis in their pulmonary sites that exhibited occasional organization and circumcision but did 

not form traditional defined granulomatous structures. Overall, the recovery of body weight and 

the lack of clinical manifestations coupled with the postmortem observations of decreased total 

cfu counts, diminished bacterial dissemination, and less extensive gross pathology suggest that 

the marmoset’s greater capacity to limit disease progression was likely due to the reduced 

virulence of CDC1551 and the very low infection dose. 

The primary limitation of our study is that the stable but chronic infection phenotype has 

only been observed in the single marmoset described.  However, we found a strong relationship 

between the infectious dose of CDC1551 and weight loss in marmosets. Further infections with 1 

to 3 CFU of CDC1551 are warranted in this small animal model to better define the mechanisms 

of control of low-dose infection. If this NHP species does exhibit relative resistance to M. 
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tuberculosis in a persistent manner, it would broaden their applicability as a small animal model 

of tuberculosis to include chronic infection studies yet retain their inherent benefits as a NHP 

model that offers decreased cost, small size205, dizygotic twinning206, pliability for drug 

studies204, and the ability to replicate aspects of human disease200,205. In addition, marmosets 

might be developed as a model for vaccine-induced protection against tuberculosis. 

In conclusion, optimizing the common marmoset (C. jacchus) model of M. tuberculosis 

infection requires identification of the range of host outcomes for this NHP species. In the 

current study, we noted variable disease progression in marmosets challenged with very low 

doses (1 to 12 CFU) of 2 strains of M. tuberculosis. Both the dose and strain of M. tuberculosis 

influenced the outcomes after challenge. Very low-dose challenge with the virulent Erdman 

strain did not ameliorate the rate of disease progression, because all of these marmosets (even 

those infected with 1 to 2 CFU) presented with rapidly disseminating active disease, resulting in 

clinical decline that prompted euthanasia by 43 days after inoculation. Infection with the less 

virulent CDC1551 strain resulted in delayed disease progression that was somewhat dependent 

on the inoculation dose. One of the most striking findings was that challenge with approximately 

1 CFU of CDC1551 produced one case in which a marmoset effectively controlled the M. 

tuberculosis infection in a subclinical state for more than 300 days. At necropsy, this marmoset 

had reduced bacterial burden in its involved lymph nodes and lungs, reduced tissue 

dissemination, less overt gross pathology, and mildly progressing histology. These findings are 

in stark contrast to all previously reported M. tuberculosis infections of common marmosets, thus 

potentially extending this small-animal model beyond studies of acute infection while 

maintaining the clinical spectrum observed in the human disease. 
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9.0  APPENDIX B: SUPPLEMENTARY TABLES & FIGURES 

Table 6. Sequencing Primer Table. 
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Figure 30. Barcode counting.  

A. Pictorial example of BARTI thresholding ‘real’ barcodes from ‘noise’ arising from sequencing artifact. Unique 

barcodes from 25 picked M. smegmatis colonies are rank-ordered by number of molecular counters. The inflection 

point can be visually described as the largest drop-off between two barcode sequences and is mathematically 

described and found in the methods section (Section 3.4.6).  B. BARTI has good accord between expected and 

actual found sequences across a range of read depths.  
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Figure 31. Distance between lesions.   

Euclidean distance between each lung granuloma to every other lesion in that animal. Contained lesions in blue, 

disseminated lesions in red.  
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Figure 32. Frequency of cytokine producing T cells for IFN- (A), IL-2 (B), IL-6 (C), IL-10 (D), IL-17A (F), 

and TNF show minor differences between contained and disseminated lesions.  

Each symbol is a granuloma.  Analyzed contained (n=7) and disseminated (n=12) lesions had a minimum of 30 

CD3+ T cells after processing and gating in FlowJo (ver. 9.9.5) for analysis (*p=0.0.283, **p=0.0098).  Statistics 

for A-F: Mann Whitney.  
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Figure 33. Size is not associated with granuloma bacterial burden.  

There is a very weak correlation between granuloma size, as measured by PET/CT at 4-5 weeks post infection and 

CFU in granulomas necropsied at both 15-19 weeks post infection (A) (r2=0.140, p=0.001, n=71) and 5-6 weeks (B) 

(r2=0.066, p=0.0391) post infection.  Linear regressions performed in Prism 6. 
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