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Adolescence is a qualitatively unique period of development when cognitive control abilities are 

available but are unreliably engaged, which can lead to risk-taking behavior impacting survival. 

The specific neural mechanisms contributing to the maturation of cognitive control remain 

poorly understood. To address this issue, we employed functional magnetic resonance imaging 

(fMRI) and magnetoencephalography (MEG) to study brain networks and oscillations underlying 

cognitive control development in both the resting state and during a cognitive flexibility task. In 

the first study, we found that the organization of brain networks was established prior to 

adolescence. However, a network of brain regions anchored in the anterior cingulate cortex 

(ACC) and anterior insula (aIns) significantly increased its influence over other brain networks 

via increased network integration during the resting state, resulting in faster correct responses on 

a cognitive control task. In the second study, we leveraged increased temporal resolution using 

MEG to further probe resting state connectivity changes with age. We found similar medial 

prefrontal regions became less coupled in their interactions with the rest of the brain, specifically 

in the theta band (5-9 Hz oscillations), and were related to developmental decreases in 
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impulsivity. As such, these results suggest there are developmental increases in the flexibility of 

resting state connectivity, which may afford less effortful instantiation of cognitive control. The 

third study directly tested age-related changes in brain oscillations during a cognitive flexibility 

paradigm. We found evidence of strong induction of theta band oscillations in the ACC when 

task switching that scaled positively with average reaction time. Similar to our resting state MEG 

findings, we found that the prominence of ACC theta band rhythms decreased with development, 

suggesting that during cognitive flexibility, adolescents need to engage greater cognitive control 

to switch between cognitive demands compared to adults. Taken together, these results inform a 

model of adolescent development such that the specialization of medial prefrontal systems plays 

a primary role in developmental improvements in cognitive control as they strengthen their 

integration with other networks. Increased network integration affords these regions the ability to 

more flexibly engage other brain regions, supporting the maturation of cognitive control. 
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1.0  INTRODUCTION 

1.1 ADOLESCENT BRAIN DEVELOPMENT 

Brain changes during adolescence are unique and critical for determining adaptive adult level 

control1. Decades of research support the idea that the adolescent brain is qualitatively and 

quantitatively different from either the child or adult brain. Gross brain morphology is in place 

by childhood; however, there are continued refinements in the form of synaptic pruning and 

increased myelination of major white matter tracts throughout adolescence and beyond2–5. By 

adolescence core brain processes are on line, supporting the ability to engage cognition at adult 

levels; however, performance in cognitive control tasks is not adult levels as adolescents engage 

these systems in an inconsistent manner. As such, by adolescence the ability to make complex 

decisions is available, but its lack of reliability may undermine goal directed behavior believed to 

underlie risk-taking behavior that has an impact on mortality6. Importantly, adolescence is a 

critical period of development in which many psychiatric disorders emerge7, including 

schizophrenia, which has a strong link to deficiencies in neural oscillations related to cognitive 

control8. Therefore, characterizing the neural basis of normative development of brain networks 

and their oscillations is imperative for informing the neural basis concerning the emergence of 

psychiatric disorders.  
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1.2 IMMATURE COGNITIVE CONTROL SYSTEMS 

Cognitive control refers to an emergent phenomenon characterized by the ability to voluntarily 

coordinate behavior within a noisy and variable environment to support goal-driven behavior9. 

Inhibitory control and working memory are key components of cognitive control. Importantly, 

these systems interact in a coordinated fashion during moment-to-moment cognition10. Inhibitory 

control describes the function of suppressing reflexive, goal-incompatible responses, while 

working memory refers to the active maintenance of information that guides goal-directed 

behavior. Critically, these components of cognitive control are available early in childhood11. 

Results reliably show that what continues to develop into adolescence is the rate at which 

accurate responses are made, decreases in reaction times, and decreases in the variability of 

reaction times11,12. Therefore, development is likely characterized by the refinements in the 

interactions between existing control systems, rather than the emergence of new networks. The 

neural basis for changes in aspects of cognitive control that support its reliable instantiation are 

not understood, limiting our ability to understand impaired development, such as in 

psychopathology. 

fMRI studies have been inconclusive as to the mechanisms by which cognitive control 

refinements occur. This likely stems from the inherent inability of fMRI to speak directly to 

neural mechanisms. Developmental fMRI studies, which have primarily focused on lateral 

prefrontal cortex, have shown both increases and decreases in the blood-oxygen-level dependent 

(BOLD) signal between groups during control tasks, likely resulting from inhomogeneous tasks 

and different classification of age groups13. Here, we address these limitations by rigorously 

implementing rsfMRI connectivity and graph theory methods that overcome limitations in 

previous developmental studies. Furthermore, rather than studying activity within single regions 
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we probe changes in brain network function by using MEG as a complementary tool to fMRI, 

capitalizing on the excellent temporal resolution of MEG. This approach affords us the ability to 

probe connectivity and oscillatory mechanisms underlying cognitive control development at 

frequencies relevant to inter-regional communication at the timescales from which control 

constructs emerge (i.e., milliseconds). As such, the central aim of this dissertation is to directly 

address potential network and oscillatory mechanisms underlying the development of cognitive 

control through adolescence.  

1.3 A NETWORK APRROACH TO BRAIN ANALYSES 

In 1995, Biswal and colleagues noted that spontaneous BOLD oscillations in the ultra-slow 

frequency domain (0.01-0.10 Hz) were highly correlated in time between the left and right 

primary motor cortices while subjects were not engaged in any particular task14. Highly 

synchronized ultra-slow frequency oscillation between disparate regions of the brain have come 

to be termed resting-state networks. Since 1995, resting state BOLD activity has been used to 

determine networks of correlated BOLD oscillations, including sensory networks, such as the 

visual network, as well as cognitive networks, such as the cingulo-opercular and fronto-parietal 

control networks15 and the brain’s default mode network16.  

This conceptualization of brain functioning enabled the introduction of graph theoretical 

analyses to neuroscience, enabling neuroscientists to describe and quantify this high dimensional 

data, known as the human connectome17. As such, the brain can be conceptualized as a collection 

of brain regions (nodes) and their temporal correlation (links). Network approaches are a 

powerful way to understand brain functioning for several reasons. First, measuring the statistical 
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dependency between the oscillations of each region and every other region enables analysis of 

data across regional, network, and whole-brain scales. Next, these approaches provide a common 

framework for understanding and simplifying spatiotemporal aspects of whole-brain oscillations 

across conditions of rest and task.   

Much like human social networks, the brain is organized into a small-world topology; 

that is, a high degree of clustering, with sparse connectivity to other clusters. The segregation of 

brain regions with strong internal correlations into a cluster is referred to as a network. The way 

in which all nodes in the brain cluster into segregated networks is referred to as network 

organization. Analytically, the clustering of nodes into networks is often accomplished via 

‘community detection’ algorithms (e.g., see refs18,19). The networks resulting from these 

algorithms have proven to be highly reproducible across algorithms, parcellations, and scanning 

sites20–22.  

Some nodes within a network only engage in strong correlations within the network, 

while others exhibit strong correlations to nodes of other networks as well. These nodes are said 

to display a high level of network integration23,24. Nodes engaging in a high level of network 

integration are sometimes referred to as hubs. A similar network organization has been shown to 

be present in both the task state and resting state; however, patterns of coupling within and 

between networks are less static in non-random ways, such that they strongly predict patterns of 

co-activation across various task conditions25.   
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1.4 FUNCTIONAL BRAIN NETWORK DEVELOPMENT 

Functional networks are apparent by 2 years of age26–29. Small-worldness is present throughout 

childhood and adolescence, as in adulthood30. Within these small-world networks, the 

organization of hubs has been found to be different in infancy compared to adulthood shifting 

from predominance in sensory to association cortex31,32. By childhood, the organization, number, 

and connectivity of the hub architecture is at adult levels30,33,34. The relatively early stabilization 

of hub architecture suggests a foundational architecture in network connectivity that provides a 

backbone for network integration. A proxy of increased integration has been demonstrated in 

increased resting correlation strength between prefrontal hubs and non-hubs regions from 

childhood to adolescence when adult connectivity is mostly reached30. This period of integration 

parallels increases in white matter integrity of frontoparietal tracts35, engagement of top-down 

networks supporting cognitive control36, and performance in cognitive control tasks11.  

At the network level, cognitive control would be underlied by the effective integration of 

segregated networks supporting its components, such as those involved in inhibitory control, 

working memory, and performance monitoring. Initial studies investigating changes in 

segregation and integration found that children have a greater number of short-range connections 

and fewer long-range connections compared to adults, suggesting that with development there is 

a shift in predominance of local to distributed circuit engagement that may reflect increases in 

network integration34,37–39. These findings were subsequently undermined by the discovery that 

in-scanner head motion, which is greater in children than adults, resulted in spurious effects that 

biased short-range connections40,41. In our first study, we address this issue and resolve the 

ability to assess developmental changes while controlling for head motion. 

Since this time, network integration has been defined by first identifying the network 
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organization of functional brain networks42 and quantitatively defining integration based on 

network measures sensitive to network organization24,43. While this new approach has not been 

applied, based on the reliance of cognitive control on distributed circuitries that incorporate 

disparate specialized networks, the prediction is that with developmental changes, network 

organization would mature relatively early in development, while integration would continue to 

strengthen into adulthood when cognitive control is at its peak.  

It is becoming increasingly apparent that brain networks deviate from this mostly static 

state over the course of a typical resting state acquisition (i.e., within minutes), though the degree 

to which this is the case is debated44. Regardless, recent work in fMRI has shown that resting 

state networks exhibit increased variability throughout development45,46. EEG studies further 

support this notion, noting that signal complexity increases throughout childhood and 

adolescence47. That said, the frequency spectra contributing to this finding remain unsolved. In 

Chapter 3, we will address this hole in the literature by analyzing the phase component of 

oscillations between large-scale networks. The ability for networks to integrate is an enduring 

aspect of network development, suggesting that communication across specialized networks may 

be a primary feature of age-related improvements in cognitive control. The studies within this 

dissertation will begin to uncover the mechanisms by which these network interactions 

contribute to refinements in cognitive control abilities.  

1.5 BRAIN NETWORKS UNDELRYING COGNITIVE CONTROL 

In 2003, Braver and colleagues used a mixed block-event related fMRI task switching paradigm 

to dissociate brain regions contributing to sustained cognitive control from those underlying 
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more transient cognitive control processes48. Results from this study concluded that the anterior 

prefrontal cortex is involved in sustained control, while the superior parietal lobes are involved 

in more transient control. Several years later, Dosenbach and colleagues used graph theoretical 

techniques introduced to neuroscience by Sporns and colleagues and found these regions are core 

nodes of two distinct networks operating in parallel15,49. Specifically, the anterior prefrontal 

cortex was a part of a broader network encompassing the anterior cingulate cortex, bilateral 

insula, and frontal operculum. This network of regions, coined the cingulo-opercular network, 

supports sustained cognitive control. Supporting transient aspects of cognitive control is the 

frontoparietal network, which includes the superior parietal lobes as core nodes of a broader 

network encompassing the dorsolateral prefrontal cortex, middle cingulate cortex, and inferior 

parietal lobes.   One widely cited view of these networks is that they’re involved with tasks that 

are involved in many forms of cognition, including language, reading, math, and working 

memory. Therefore, these control networks are thought to play a critical role in domain-general 

task set initiation and switching (frontoparietal network) and sustained control (cingulo-opercular 

network).   

 Around the same time, Seeley and colleagues discovered another cluster of brain regions 

involved in the interface between bottom-up and top-down processes50.  This cluster, referred to 

as the salience network, comprised regions of the bilateral insula, anterior cingulate, dorsomedial 

nucleus of the thalamus, and several brainstem nuclei. Interestingly, these regions are some of 

the most common to appear in fMRI literature, ranging from tasks invoking cognitive control, as 

well as, those eliciting interceptive/autonomic responses, such as pain and empathy51 (Craig 

2009). Both the anterior cingulate and anterior insula are anatomical hubs in the brain, projecting 

to both frontal and parietal cortices and also displaying a high degree of connectivity between 
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themselves52,53. These three networks are central components of cognitive control, but need to 

operate while suppressing the default mode network which engages the medial anterior 

prefrontal cortex and posterior cingulate cortex, and supports a task-negative mind wandering 

state, rather than focused attention.   

 Functionally, the anterior cingulate and anterior insula play a critical role in cross-talk 

between functional brain networks. It has been shown that the anterior insula is a causal outflow 

hub, specifically acting as a ‘switchboard’ between functional networks, especially between the 

task-negative default mode network and task positive fronto-parietal network54. 

Developmentally, the strength of both structural and functional between network connections 

from the anterior insula to the default mode network and the fronto-parietal network was shown 

to be significantly stronger in adults compared to children, indicting the flexibility of insular 

functioning in task switching between a task positive and task negative state may improve 

throughout adolescence55. However, the mechanism linking control network development and 

adolescent improvements in cognitive control remain unclear.  

1.6 OSCILLATIONS AND THEIR COMPONENTS: AMPLITUDE AND PHASE 

Neural signals, whether measured directly or indirectly – as is the case in most human studies – 

are measured in the time domain. A measure of signal amplitude is obtained per unit of time. In 

fMRI, this time resolution is on the order of 1-3 seconds, while in MEG, this time resolution is 

on the order of milliseconds. Any time-varying signal, such as neural signals, that engages in 

periodic activity is oscillatory. Indeed, oscillations are an intrinsic property of populations of 

neurons56. To study a signal’s oscillatory components in greater details, the time-varying signal 
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can be decomposed into its frequency components (units = Hz) via frequency decomposition 

techniques (e.g., fast-Fourier transform) and/or time/frequency decomposition techniques (e.g., 

Morlet wavelets). The resulting oscillations filtered into a specific frequency or frequency range 

can then be described in terms of signal amplitude and phase. 

 The strength of a neural oscillation at a given frequency is reflected in the amplitude of 

the oscillation, defined as the amount of deviation away from a baseline. Squaring this term 

results in the total amount of power for that oscillation. Stronger oscillations result in a greater 

deviation away from baseline (i.e., greater amplitude/power). The phase of an oscillation refers 

to the angle of the sinusoidal function of that oscillation (Figure 1). The phase angle within a 

group of neurons has been shown to affect the likelihood of spike output from a sending group of 

neurons and sensitivity of input in a receiving group57. 

 

Figure 1. Oscillatory components: amplitude and phase 

 

The level of phase synchrony between two regions can be measured using a phase-

locking value (PLV)58. PLV measures the variability in the phase of the oscillations of two brain 
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regions over time. PLV ranges from 0 to 1, representing a random phase relationship and fixed 

phase relationship, respectively. Regional interactions exhibiting a high PLV indicate a relatively 

low level of variability, while interactions exhibiting a low PLV indicate a relatively high level 

of variability58. 

 Oscillations in the beta/gamma (14-80Hz) band have been shown to play a critical role in 

enabling local neuronal synchronization, while alpha/theta (4-14Hz) band oscillations have been 

shown to be critical for long-distance integration59,60. Specifically, long-range frontoparietal 

interactions during working memory retention and mental imagery evolved most strongly in the 

theta and alpha (4-14Hz) frequency range61,62. As such, cortical oscillations could play a central 

role in synaptic pruning, supporting the temporal coordination and specification of local and 

long-distance connectivity63. Indeed, evidence has begun to emerge from 

electroencephalographic literature that the precision of temporal coordination, as measured by 

the co-fluctuation of the phase of neural populations, continues to increase throughout childhood 

and adolescence across several frequency bands, including theta-, beta-, and gamma-bands while 

subjects are engaged in a task64. However, it is still unknown how phase relationships between 

brain networks develop at rest when oscillations are not locked to an external cue. In sum, at the 

core of cognition is a dynamic communication structure enabling rapid, coordinated interactions 

between disparate regions of the brain. Viewed in this way, networks and their oscillations 

provide a valuable avenue for the assessment of normative brain development65.  
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1.7 MECHANISMS UNDERLYING IMPROVEMENTS IN COGNITIVE CONTROL: 

A MODEL 

Recent evidence supports the notion that the integration of existing large-scale brain networks 

subserving cognitive processes underlies mature cognitive control. For example, integration 

between the cingulo-opercular (CO) network, which subserves task-set maintenance, and the 

fronto-parietal (FP) network, which underlies trial-by-trial updating, increases with working 

memory demands66. Furthermore, performance in adolescence is associated with greater 

interactions between these cognitive control networks and the default mode network67,68.  

We recently proposed a novel model of a network-based mechanism for improved 

cognitive control abilities throughout development69.  We postulate that underlying the 

maturation of cognitive control is the strengthening of the dynamic interaction of neural systems 

supporting cognitive control including: working memory, inhibitory control, and performance 

monitoring. This model of control shares features with a recently proposed model of cognitive 

control, relying on context-dependent, cross-component interactions70. The components of 

cognitive control (inhibitory control, performance monitoring, and working memory) are 

composed of both distinct and overlapping brain regions (Figure 2). Indeed, these three 

components compliment one another and rarely is one used but not the others71. Distinct regions 

within each component represent those that have greater segregation predominantly participating 

in a specific component of cognitive control. In contrast, other regions that overlap across 

components play a more integrative role, allowing for more flexible and coordinated activity 

between components. Each pairwise relation between regions carries some connectivity weight 

(representing the degree of correlation), which is modulated by the current task state. 

Developmentally, with experience, successful interactions (i.e. connectivity patterns that 
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facilitate goal achievement) would be reinforced, while connections leading to unsuccessful or 

inefficient outcomes would be pruned leading to specialization within and between network 

connectivity in adulthood. During a task-state, this maturation would result in decreases in the 

variability of performance, while an increase in variability would be expected in the resting-sate, 

supporting increased flexibility. Over development, experience would strengthen connectivity 

patterns between components that would support timely and flexible engagement of cognitive 

control45,72,73.  

 

 

 

 

 

 



 13 

 

Figure 2. A model of the maturation of cognitive control.  

At the cellular level, DA (red) and GABA (blue) systems undergo dynamic changes 

throughout adolescence. We propose that maturational neurotransmitter changes during 

adolescence lead to increased signal-to-noise, power, and synchrony in the cortex at the circuit 

level when control systems are engaged during a task. These changes in maybe unique in cortical 

regions underlying cognitive control. These circuit level changes lead to systems-level 

alterations of distributed connectivity patterns depicted for inhibitory control (PM = performance 

monitoring; IC = inhibitory control; WM = working memory). Circles represent brain regions, 

and lines between them indicate a pair-wise connection. Line thickness represents connection 

strength. Circles within overlapping networks, represent highly integrative regions. Connections 

that lead to successful performance are strengthened by adulthood, while connections that do not, 

are weakened and/or pruned. Taken together, these developmental changes, occurring across 

multiple levels of brain function, contribute to mature cognitive control behavior. 
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1.8 DEVELOPMENT OF TASK SWITCHING 

Switching between components of cognitive control is a central feature of the model explained 

above. Two types of flexibility associated with task switching have been previously defined: 

instructed flexibility and adaptive flexibility. Instructed flexibility involves subjects adapting 

their behavior based on changing task rules, while adaptive flexibility requires subjects to infer 

rules based on feedback, as in the Wisconsin card-sorting task. Here, our paradigm focuses on 

instructed, cue-based flexibility. The neural and behavioral cost of switching has been shown to 

be greater in adolescence than in adulthood. Behaviorally, though more pronounced in children, 

adolescents incur a greater switch cost (i.e., increased reaction times when comparing switch 

trials within a block to non-switch trials within the same switch block74 than adults), indicating 

immaturities in temporal aspects of component interactions. To determine the neural correlates 

of these behavioral changes with age, Rubia and colleagues implemented fMRI and a response-

switching paradigm in adolescence (10-17yrs) and adults (20-43yrs) in which subjects were 

presented with a grid divided into four squares, with either a vertical or horizontal bidirectional 

arrow in the middle of the grid75. Trials began with a red dot appearing in one of the four 

quadrants. When the bidirectional arrow was vertical, subjects had to determine whether the dot 

was in the top or bottom of the grid. Conversely, when the arrow was horizontal, subjects were 

instructed to indicate whether the dot was on the left or right side of the screen. When contrasting 

switch to non-switch trials, these researchers found areas of the inferior frontal, posterior 

parietal, and anterior cingulate cortices were significantly more active (as measured with BOLD) 

in adults compared to adolescents. Similar regions were shown to display this same 

developmental profile in a subsequent study76.  
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1.9 SUMMARY AND OVERVIEW 

Adolescence is a significant period of cognitive development characterized by the specialization 

of interacting brain systems. The oscillatory network mechanisms underlying the reliable 

engagement of cognitive control remain elusive. This proposal aims to elucidate the 

spatiotemporal large-scale network mechanisms contributing to more reliable, adult-like 

engagement of cognitive control.    

     In Chapter 2, we characterize the spatial aspects of large-scale network topology 

contributing to the developmental improvements in cognitive control, specifically network 

organization and network integration. Chapter 3 seeks to understand the role of neural 

oscillations resting-state network development and how these dynamics relate to cognitive 

control development. Lastly, in Chapter 4 we analyze the role of oscillations in the 

developmental improvements in cognitive control, specifically the ability to rapidly switch brain 

states to meet current cognitive demands. To this end, we have developed a novel cognitive 

control task, requiring subjects to switch between more automatic and inhibitory control 

processes. Together, the experiments contained within these aims will allow us to better 

understand the spatiotemporal network and oscillatory mechanisms underlying the remarkable 

improvement in cognitive abilities from adolescence to adulthood. 
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2.0  THE CONTRIBUTION OF NETWORK ORGANIZATION AND INTEGRATION 

TO THE DEVELOPMENT OF COGNITIVE CONTROL 

2.1 BACKGROUND 

Cognitive control is the ability to execute voluntary, goal-directed behavior77–79. It requires 

flexible and adaptive coordination of core executive systems that are supported by integration 

among by widely distributed, specialized brain circuitries10. The core components of cognitive 

control are available early in development80. However, in adolescence cognitive control abilities 

become significantly more reliable and flexible, as response accuracy and speed stabilize in 

adulthood81. These developmental gains in information processing occur in parallel with brain 

maturational events, including synaptic pruning82 and myelination83, which predominantly 

enhance collaboration among brain systems84. The nature of the interaction between brain 

network maturation and cognitive development during adolescence is not well understood7, 

limiting our ability to understand the neural basis of psychopathology that emerges at this time, 

many of which are characterized by deficits in cognitive control85. 

Characterizing functional brain network interactions during the resting state (i.e., while 

the subject is not engaged in any particular task) has become a valuable emerging approach for 

investigating the brain basis of cognitive development. Studies using this approach have revealed 

roles for these networks in supporting cognitive control10,15. Approximately 20 functional 
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networks have been identified in the functional connectome86, including sensorimotor networks, 

such as the somatomotor (SM) and visual networks; cognitive networks, such as the fronto-

parietal (FP) and cingulo-opercular/salience (CO/Salience) networks; and a task-negative default 

mode (DM) network 21. Each functional network operates as a module within the full 

connectome. Networks are demarcated by dense internal connectivity18,87, defining a 

foundational organization for the functional brain. Thus, network organization refers to the 

network affiliation of each region of the connectome. Initial studies characterizing age-related 

changes in functional network organization suggested that the organization of these networks 

continued to change into adulthood88, such that development proceeded from short-distance 

anatomical networks in infancy and childhood, to long-range, widely distributed networks in 

adulthood39,88–90. However, age-related differences in head motion artifacts may have 

confounded the connectivity distance findings40,41,91. Advances in data processing methods40,41,91, 

and recent findings suggest that foundational aspects of functional network organization are 

established early in development, while processes related to network integration continue to 

mature into adulthood92. Network integration refers to the level of functional coupling between 

networks, measured by participation coefficient (PC), a graph theoretical construct23. PC is a 

particularly useful construct to measure network integration, given its sensitivity to between-

network connectivity, while maintaining robustness to the total number of connections (degree). 

Degree-based measures of integration have been shown to be dependent on the size (number of 

nodes) in a network and therefore can skew results towards a greater number of hubs within 

larger networks, such as the default mode network24. Participation coefficient is normalized by 

the degree of the node. As a result, increases in participation coefficient are driven by increases 

in the number of between-network connections.  
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Properties of network organization and integration could parallel cognitive development, 

which is characterized by enhanced adaptive and flexible integration of mature core control 

components. Thus, in the present study, we sought to identify whether age-related changes in 

functional networks are determined by changes in network organization and/or network 

integration and whether these changes are related to developmental improvements in cognitive 

control. We applied graph theory93,94 to a rich developmental resting-state functional magnetic 

resonance imaging (RS-fMRI) dataset obtained in 10-26 year olds who also performed the 

antisaccade task, a robust developmental measure of cognitive control.  

Given that core cognitive components are on-line by childhood and that the ability to 

adaptively and flexibly engage these components improves into adulthood95–99, we hypothesized 

that network organization, which supports component processes, would not change with age, but 

that network connectivity strength and integration, which both support interaction between 

components, would strengthen with age. In turn, we hypothesized increased control network 

integration would predict age-related improvements in cognitive control as measured by the 

antisaccade task.  

2.2 METHODS 

2.2.1 Subjects 

One hundred ninety-five subjects aged 10 – 26 years participated in this study (Table 1 in section 

2.3.1). Written informed consent was obtained from every subject and minors did sign assents. A 

phone screen questionnaire was used to assess medical history and history of psychiatric 
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disorders. As determined through the interview process, neither subjects nor their 1st degree 

relatives included in this study currently or previously had any neurological disease, brain injury, 

or diagnosed psychiatric illness. Substance use was assessed using the drug use and history 

questionnaire. Subjects included in this study were free from substance use/abuse. A post-scan 

questionnaire was used to inquire if subjects had fallen asleep. Sixteen subjects reported periods 

when they may have briefly drifted into sleep but none reported sleeping throughout the entire 

resting state scan. Data from three subjects were discarded due to excessive head motion. 

Therefore, we report data from 192 subjects. While age was considered as a continuous variable, 

some analyses considered developmental stages by binning ages after first sorting individual 

subjects by age, similar to methods used in the past to characterize changes in childhood (n=41 

10-12 year olds), early (n=41 13-15 year olds) and late adolescence (n=53 16-19 year olds), and 

adulthood (n=57 20-26 year olds). 

2.2.2 Task Design 

The antisaccade task was performed by subjects outside of the MR scanner on a separate day 

from the MR visit. For a full description of the antisaccade task used, see100. Briefly, neutral 

trials were extracted from an incentivized antisaccade task, consisting of reward, loss, and 

neutral trials. There were a total of 40 of each trial type. Each neutral trial began with a white 

central fixation, which then turned red for 1.5 sec, prompting subjects to prepare a response. 

Next, a peripheral stimulus (yellow dot at approximately 0.5 degree/visual angle) appeared at an 

unpredictable location on the horizontal meridian (± 4 and 8 degrees/visual angle) for 1.5 sec. 

Subjects were instructed to inhibit making a saccade towards the stimulus, and instead to saccade 

to the mirror location of the stimulus. Eye movement data were scored on-line using interfaced 
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E-Prime (Psychology Software Tools, Inc., Pittsburgh, PA) and ASL (Applied Science 

Laboratories, Bedford, MA) eye tracking software. A script detected if at any time during the 

first 1000 ms a subject made a saccade to the stimulus or if no eye movement was generated. An 

auditory tone (1163 Hz) was played for 400 ms if the subject made a saccade to the stimulus. If 

the subject made a correct saccade a “cha-ching” sound (1516 Hz) was presented for 400ms. 

Correct responses were defined as those in which the first eye movement in the saccade was 

directed toward the mirror location at a velocity greater than or equal to 30/s101 and extended 

beyond a 2.5 /visual angle from the central fixation. A response was considered incorrect when 

the first saccade was directed towards the target beyond a 2.5 /visual angle from central 

fixation, but were subsequently directed to the hemifield opposite the target, similar to 

previously published work100. 

2.2.3 Eye Tracking 

In addition to the on-line scoring, eye data were scored offline by a technician for various 

saccade metrics, including correct trials and errors, as well as saccade latency, using ILAB 

software101 and an in-house scoring suite written in MATLAB (Math Works, Inc., Natic, MA). A 

correct antisaccade response was one in which the first saccade following stimulus onset was 

towards the mirror location of the stimulus and extended beyond a 2.5 degrees/visual angle 

central fixation zone. Errors were defined as occurring when the first saccade following stimulus 

onset was directed towards the stimulus and extended beyond central fixation.   
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2.2.4 MR Data Acquisition  

Data were acquired using a 12-channel Siemens 3T Tim Trio at the University of Pittsburgh 

Medical Center Magnetic Resonance Research Center. The resting-state scan was acquired at the 

end of the scanning session and was always at the same time of acquisition for all subjects. For 

each subject, we collected 300 seconds (200 TRs) of resting-state data. Structural images were 

acquired using a sagittal magnetization-prepared rapid gradient-echo sequence (repetition time 

[TR] = 1570 ms, echo time [TE] = 3.04 ms, flip angle = 8°, inversion time [TI] = 800 ms, voxel 

size = 0.78125 × 0.78125 × 1 mm). Functional images were acquired using an echo-planar 

sequence sensitive to BOLD contrast (T2*; TR = 1.5 s, TE = 29 ms, flip angle = 70°, voxel size = 

3.125 × 3.125 mm in-plane resolution, 29 contiguous 4-mm axial slices). During the resting-state 

scan, subjects were asked to close their eyes and relax, but not fall asleep.  

2.2.5 RS-fMRI Preprocessing 

Functional images were preprocessed using AFNI102 and Freesurfer103. Standard preprocessing 

steps were completed, including:  (1) normalization based on global mode, (2) wavelet 

despiking104, (3) simultaneous multiple regression of nuisance variables from BOLD data and 

bandpass filtering41 at 0.009 Hz < f  > 0.08, and (4) spatial smoothing using a 6 mm full-width at 

half-maximum Gaussian blur. Given the Power parcellation used within this study models 

regions of interest as 10mm spheres, we decided to use smoothing to increases SNR. The 

canonical networks derived from this parcellation have been shown to not be influenced by 

spatial smoothing21. Freesurfer was used to segment gray matter, white matter, and ventricular 

voxels. Nuisance regressors included ventricular signal averaged from ventricular regions of 
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interest (ROIs), six head realignment parameters obtained by rigid body head motion correction, 

and the derivatives of these signal and parameters. In addition to wavelet despiking, we removed 

any remaining high motion volumes via a scrubbing procedure40,91. For the original 195 subjects, 

we calculated two quality control measures with respect to head motion, volume-to-volume 

frame displacement (FD) and the RMS derivative of fMRI time series (DVARS). We censored 

and removed volumes in individual subjects that had an FD > 0.5 mm and DVARS > 5, as well 

as the frame preceding the motion artifact and the two subsequent frames. FD is calculated on 

the original motion time series (i.e., before motion correction with wavelet despiking). On the 

other hand, DVARS is calculated after motion correction with wavelet despiking. Large DVARS 

values after wavelet despiking would indicate motion/artifact-related noise in the global signal 

(i.e., brain-wide change from one volume to the next) still remained after despiking, which we 

did not observe (Table 1: note DVARS after wavelet despiking is considerably lower in all 4 

groups than DVARS calculated prior to wavelet despiking). Because we collected 300 seconds 

of data, subjects were dropped entirely if  > 20% of their volumes were removed, leaving the 

minimum amount of rest data for any subject 240 seconds. This procedure resulted in the 

removal of three subjects from further analyses. Of the remaining 192 subjects, only four did not 

contain a full 300 seconds of data.  

2.2.6 Functional Network Parcellation 

For each subject, nodes (n=264) were defined from the functional parcellation derived by Power 

and colleagues21. Coordinates were derived through fc-Mapping105,106 and a meta-analytic 

procedure21, covering major brain systems involved in both tasks and rest. All ROIs were 

modeled as 10mm diameter spheres around a center coordinate. For each subject, the time series 
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of voxels within each ROI were averaged and then correlated to produce a 264x264 correlation 

matrix for each subject. Any comparisons made between correlations were transformed to z 

values using Fisher z(r) transformation, and then reconverted to Pearson r values for reporting 

and visualization.  

2.2.7 Individual and Group Correlation Matrices 

Network-level age-related changes were assessed using individual correlation matrices. For all 

other RS-fMRI analyses, age was treated as a categorical variable to assess stage-like 

developmental changes in graph metrics and changes in the distribution of connections between 

children (aged 10-12), early adolescents (aged 13-15), old adolescents (aged 16-19), and adults 

(aged 20-26). Notably, no standard for binning age groups over adolescence currently exists, 

though binning roughly follows Luna and colleagues11.  Since short-distance correlations 

(Euclidean distance < 20mm) can arise from artifacts40, these connections were not included in 

tests for age-dependent significant strength changes in connectivity.  

2.2.8 Network Detection and Comparison 

Since there is no ideal, biologically salient threshold that definitively defines functional 

networks, we explored a range of network densities from 1-25% to avoid any thresholding bias. 

Results involving participation coefficient at the group level reflect values that are averaged 

across all network densities to remove any bias of a single threshold. For a representative 

network assignment, we chose a network density of 10%, since this threshold results in 

meaningful network organization (i.e., 5 networks), while maintaining full connectedness. 
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Importantly, we did not impose network assignments according to21, since that would erode the 

ability to make conclusions concerning developmental changes in network organization. 

To define and examine the developmental trajectory of functional network organization, 

we partitioned the full connectome of 264 ROIs into functional networks using Newman’s Q-

metric coupled with an efficient optimization approach proposed by Blondel et al.18,19,107.This 

method has been verified to be one of the best-performing community detection algorithms of 

undirected networks108. Furthermore, unlike recent community detection approaches, Newman’s 

algorithm does not include a gamma parameter for the biasing of larger vs. smaller modules. 

Therefore, the only input to the algorithm was the adjacency matrices. We then calculated 

normalized mutual information (NMI) to determine the level of similarity between network 

assignments across age groups, with values closer to 0 indicating dissimilar network assignments 

and values closer to 1 indicating similar assignment. We permuted the labels of individual 

matrices between contrasts 1000 times to generate a null distribution of NMI values for each 

contrast. Matrices between groups were randomly shuffled and partitioned into functional 

networks, and NMI was calculated. Upon the finding that the observed NMI values fell within 

one standard deviation of the mean of the null distribution, we executed a leave one out cross 

validation to generate a distribution of observed NMI values for the following analysis. Because 

conventional significance testing does not allow stating evidence in favor of null findings, we 

implemented a Bayes factor alternative109 to compare the observed NMI distribution with the 

null distribution. Values greater than 1 indicate the likelihood of stable functional network 

organization is ‘n’ times more likely than the likelihood of developmental changes in functional 

network organization.   
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2.2.9 Connectivity Strength Changes during Adolescence 

A general concept in the development of functional networks is that they develop from “local to 

distributed”88. To test this hypothesis, given methodological improvements for head motion and 

a denser, more representative functional network21, we contrasted connectivity values from 

averaged weighted matrices in children versus adults for each ROI-ROI pair. Euclidean distance 

was also calculated for each pairwise relation. We then performed a simple linear regression with 

distance as a predictor of change in connectivity strength between the children and adult 

matrices.  

We also addressed changes in connectivity strength as a function of within- and between-

network interactions. First, within each group-averaged matrix, we averaged all within-network 

pairwise relations and all between-network pairwise relations, separately. We then performed a 

two-tailed t-test for each consecutive age contrast. We then wanted to test for significant 

increases or decreases in connectivity with respect to specific network interactions. To this end, 

within each group-averaged matrix, the average connectivity strength was calculated for each 

network. We then tested each combination of within-network (e.g., DM/DM network) and 

between-network (e.g., DM/FP network) interactions to determine significant increases or 

decreases in connectivity strength between consecutive age groups. For each comparison, we ran 

a two-tailed t-test to determine significance (Bonferroni corrected for multiple comparisons).  

2.2.10 Developmental Changes in Participation Coefficient at the Network Level 

For each subject, we partitioned the full network into sub-networks imposing the community 

assignments from the adult group in the analysis outlined above, and subsequently calculated 
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participation coefficient for every node within each group. Participation coefficient (PC) is a 

graph measure quantifying the degree to which a node engages in inter-network 

communication23,24. Higher PC indicates more distributed between network connectivity, while a 

PC of 0 signifies a node’s links are completely within its home network (within network). Nodal 

participation coefficients were then averaged within each network and were tested for significant 

age-related effects using linear and inverse models.  

2.2.11 Long-Term Fluctuation in Network-level Participation Coefficient  

To determine any long-term fluctuations in participation coefficient that may not be captured at 

the individual subject data, we calculated average subject correlation matrices using a moving 

average approach, used previously in functional brain network data88 and commonly used in 

economics research. Averaged group matrices were formed using a moving average of age-

ordered subjects (e.g., group1: subjects 1-30, group2: subjects 2-31, … group163: subjects 163-

192), thus generating 163 groups of 30 subjects in each group. Each group matrix was then 

parcellated according to the adult network assignment and PC was calculated for each ROI 

within each group. For each group, the PC for ROIs within a network were averaged and plotted 

as a function of age.  

2.2.12 Relating Changes in Integration to the Development of Inhibitory Control  

To test the hypothesis that the relationship between age and performance (accuracy and RT) on 

the antisaccade task is moderated by integration of the CO/Salience network with other 

functional networks, a hierarchical multiple regression analysis was conducted separately for 



 27 

accuracy and reaction time. If a significant interaction was observed, age groups were binned 

into the four age groups previously defined and a median split of the averaged participation 

coefficient within the CO/Salience network was conducted. Within each bin, we tested for 

significant differences in RT using a t-test between high and low PC groups and corrected for 

multiple comparisons using the Bonferroni method. 

2.2.13 Identifying Specific Nodes Increasing in Participation Coefficient   

We sought to discover brain regions that significantly increased in the ability to integrate 

information from widespread functional networks using graph theory. PC was calculated for 

each node within each categorical age group. Importantly, the degree, or number of links a node 

has, was not considered as a metric for integration since network measures that are degree-based 

have recently been called into question in Pearson correlation RS-fMRI networks24. PC for each 

node was contrasted between each set of chronological age groups (children vs. early 

adolescents, early adolescents vs. late adolescents, and late adolescents vs. adult) and between 

adults and children by subtracting the younger group’s PCs from the older group’s PCs resulting 

in four total contrasts. Permutation tests were conducted on each node to test nodes for 

significant changes in PC. To generate a null distribution of PCs for each node, subject labels 

were randomized within groups 1000 times and PC was calculated for every node in each run. 

Contrasts between age groups were then generated by subtracting the PCs for each node for the 

younger group from the older group. This process was repeated for each age contrast. Significant 

increase or decrease in participation coefficient for a node was Bonferroni corrected for multiple 

comparisons.  
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2.2.14 Age-related Changes in the Distribution of Regional Participation Coefficient   

Within each group, and for each node that significantly increased in participation coefficient, we 

calculated the degree of the ROI to each network, including its ‘home’ network, and then 

contrasted these values for consecutive age groups for comparison. The degree of a node is 

determined by the number of links a node has. This approach allowed us to contrast the 

distribution of links to each network between consecutive age groups (i.e., within-network vs. 

between-network connectivity). This approach affords the ability to characterize the driving 

factor(s) behind the observed significant increases in PC. 

2.2.15 Computations and Visualizations  

AFNI102 and Freesurfer103 were used to process MRI images. We used the Brain Connectivity 

Toolbox94 in MATLAB (The Mathworks, Natick, MA) for network computations and statistical 

testing. For brain visualizations, we used the BrainNet Viewer110. 

2.3 RESULTS 

2.3.1 Development of Functional Network Organization   

We used a previously defined functional connectome parcellation of 264 functional regions of 

interest (ROIs) across cortical, subcortical, and cerebellar structures21 in a sample of 192 

individuals, aged 10-26 years old (Table 1). For each subject, we correlated the time series of 
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each ROI with that of every other ROI. We then formed group matrices by averaging each 

subject’s connectivity matrix within categorical age groups (10-12; 13-15; 16-19; and 20-26 year 

olds) (Figure 3A). For each group, we partitioned the full functional connectome into modules 

using Newman’s Q-metric coupled with an efficient optimization approach18,19,107 across network 

densities ranging from the top 1% to 25% of pair-wise correlations in terms of correlation 

strength. Notably, Newman’s Q-algorithm returns modules of densely interconnected nodes. We 

interpret these modules as being functionally connected collections of brain regions sub-serving 

common functions and therefore refer to them as functional brain networks. The representative 

network partition of the full connectome was thresholded at a density of 10% (Figure 3A) to 

partition the network into a meaningful structure while maintaining high connectedness, which 

would be limited with lower thresholds. This approach identified more comprehensive networks 

compared with those incorporating lower thresholds21, such that a single network encompassed 

the cingulo-opercular, subcortical, and salience networks. We refer to this network, which 

includes regions critical to cognitive control, as the CO/Salience network.  
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Table 1. Demographics 

a DVARS calculated prior to wavelet despiking 

b DVARS calculated on motion time series after wavelet despiking. Large decreases indicate 

wavelet despiking was effective in mitigating head motion confounds. 

* Mean FD was significantly greater in the child group compared to each other age group (p < 

0.05, Tukey’s HSD corrected for multiple comparisons). A one-way analysis of variance 

(ANOVA) was conducted between groups for mean DVARS before wavelet despiking (Mean 

DVARS a) and again between groups after wavelet despiking (Mean DVARS b), with no 

significant differences observed in either test  (p > 0.05). Note FD is calculated prior to our 

motion correction procedure while the final DVARS values (Mean DVARs b) are calculated after 

our motion correction procedure. 

Group n 

Age  

Mean (SD) 

IQ  

Mean (SD) Race 

Mean 

FD 

Mean 

DVARS a  

Mean 

DVARS b  

Child 41(20F) 11.55 (0.82) 

112.10 

(13.17) 

28(68%) 

white 0.64* 26.72 2.59 

Early 

Adolescence 41(18F) 14.54 (0.91) 

110.17 

(10.94) 

30(73%) 

white 0.20 21.97 2.17 

Late 

Adolescence 53(28F) 17.89 (0.92) 

112.51 

(12.01) 

44(83%) 

white 0.22 24.84 1.60 

Adult 57(30F) 22.38 (1.83) 

116.84 

(13.18) 

40(70%) 

white 0.18 22.97 2.43 
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Figure 3.  Development of network organization.  

(A) Group averaged correlation matrices organized according to network affiliation. ROI 

order is consistent across all 4 groups. (B) Regions of interest imposed on a semitransparent 

brain Normalized mutual information (NMI) is a measure of similarity between two sets of data. 

Here, NMI refers to the comparison between two sets of network affiliation vector between each 

consecutive age group and between children and adults.  

 

We tested changes in network organization using normalized mutual information (NMI), 

which measures the mutual dependence of two variables (i.e., how much information in variable 

one is also contained in variable two). NMI values range from 0 to 1. A value of 0 indicates no 

mutual dependence (no shared information), while a value of 1 indicates complete dependency 

(completely shared information). We calculated NMI for networks between consecutive age 

groups and between children and adults (Figure 3B). We used a random permutation test to 

compare observed NMI values to a null distribution of 1000 NMI values. For the adult vs. child 
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contrast, observed NMI = 0.73 (null M = 0.68, null SD = 0.07); between children and early 

adolescents, NMI = 0.67 (null M = 0.73, null SD = 0.08); between early adolescents and late 

adolescents, NMI = 0.69 (null M = 0.76, null SD = 0.06); and between late adolescents and 

adults, NMI = 0.77 (M = 0.70, SD = 0.06) (Figure 4). Importantly, all observed NMI values fell 

maximally just over one standard deviation of the null mean, indicating no significant differences 

in network organization from late childhood into adulthood. To provide statistical evidence for 

findings reflecting stable network organization, we took a Bayesian approach, weighting 

evidence in favor of the null hypothesis (stable network organization) versus the evidence for the 

alternative hypothesis (dynamic network organization)109. First, we generated a distribution of 

observed NMI values by performing a leave one out cross validation. We removed one subject 

from each group for any given contrast and calculated NMI on the remaining group-averaged 

thresholded matrices. Then, we compared the resulting distribution to the previously generated 

null distribution for each contrast by calculating the Jeffreys-Zellner-Siow (JZS) Bayes factor109. 

Values greater than 1 provide evidence supporting the null hypothesis, while values between 0 

and 1 provide support for the alternative hypothesis. With respect to the null hypothesis of stable 

developmental network organization, values ranging from 1 to 2 indicate anecdotal evidence and 

from 3 to 10, substantial evidence. For children vs. early adolescents, JZS Bayes factor = 3.82; 

for early adolescents vs. late adolescents, JZS Bayes factor = 2.49; for late adolescents vs. adults, 

JZS Bayes factor = 5.34, and for children vs. adults, JZS Bayes factor = 8.01. These results 

indicate substantial evidence in favor of stable network organization throughout late childhood, 

adolescence, and adulthood. Importantly, these results were robust across network densities; 

thus, our results were not due to our choice of representational network density (Appendix A.2, 

Table 4).  
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In addition to group-averaged matrices, we also calculated NMI between modules 

defined on the basis of individual subject data and the group-averaged adult module assignments 

to provide an analysis of subject variability. No significant differences were observed between 

groups, as any potential between-group variability was found to be smaller than that of within-

group variability (Appendix A.2; Figure 26). 

 

 

 

 

Figure 4. Comparison of NMI to a null distribution 

Red lines denote the observed value for NMI. This value was plotted against a null distribution 

for each subsequent age group comparison and between children and adults. For each 

comparison, observed values fell within one standard deviation of the null distribution, indicating 

a lack of evidence for significant differences between module assignments between age groups 

(i.e., no change in network organization). Importantly, this effect was not restricted to the 

network density represented here (Appendix A.2, Table 4). 
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2.3.2 Connectivity Strength Changes during Adolescence  

Given that network organization is on-line by childhood and remains stable throughout this 

developmental period, it likely does not account for cognitive changes during adolescence. 

Hence, we investigated developmental changes in network connectivity strength within networks 

(reflecting the integrity of specialized networks) and between networks (reflecting the integration 

of information processing across functional domains). First, we partitioned each group-averaged 

matrix into networks according to the adult network assignment. Consecutive age group 

comparisons of within- and between-network connectivity were conducted using a two-tailed t-

test that was Bonferroni corrected for multiple comparisons (p < 0.01).  

Age-related changes in connectivity strength were unique to developmental stages. From 

childhood (10-12 years) to early adolescence (13-15 years), there was a global decrease in 

network connectivity strength for both within-network and between-network connectivity 

(Figure 5A) (p < 0.05, corrected). From early adolescence (13-15 years) to late adolescence (16-

20 years) within-network connectivity remained stable while between-network connectivity 

increased across networks, with the exception of DM/FP network connectivity, which remained 

stable (Figure 5B). Lastly, from late adolescence (16-19 years) to adulthood (20-26 years), 

within-network connectivity strength again decreased, while between-network connectivity 

continued to increase (Figure 5A, 5B). These results indicate that the transition to adult-level 

network connectivity is characterized by a shift from predominance of within-network 

connectivity to reliance on between-network connectivity. Together, these results suggest that 

increased collaborative brain function may underlie improvements in cognitive control. 
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Figure 5. Connectivity strength changes as a function of network organization 

Connectivity strength changes through development as a function of network organization. (A) 

Connectivity strength changes as a function of within- and between-network connectivity. 

Asterisks denote significant differences between groups (p < 0.05, corrected) (B) Each cell 

represents the t-statistic resulting from a t-test of connectivity strength between each network 

contrast. The diagonal represents within-network comparisons (e.g., DM-DM network 

connectivity strength differences between groups), while off-diagonal elements are between-

network comparisons (e.g., DM network and CO/Salience network). Therefore, matrices are 

symmetric. Asterisks denote significant differences between groups (p < 0.01, corrected). 
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2.3.3 No Changes in Distance-dependent Connectivity through Adolescence  

Next, we examined the presence of distance related changes with development39,88,90. In the 

present study, age-related change in connectivity strength between ROI pairs was assessed by 

subtracting each pairwise relation of averaged child connectivity matrix from the averaged adult 

connectivity matrix. We also calculated Euclidean distance for each pairwise relation and 

regressed the change in connectivity strength against Euclidean distance (Figure 6B). Results 

showed that Euclidean distance accounted for a non-significant amount of the variance in change 

in connectivity with age (R2 = 0.002, p > 0.05), indicating distance alone does not play a 

significant role in connectivity strength changes from childhood to adulthood39,88,90. We also 

contrasted the distributions of the top 100 increasing and decreasing connections in terms of 

connectivity strength between children and adults and found no significant differences (p = 0.33; 

Figure 6A).  
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Figure 6. Developmental changes in connectivity strength are not a function of 

distance. 

(A) Distance distributions of significantly increasing connections (blue) and significantly 

decreasing connections (red) between the child and adult group. No significant difference was 

found between the two distributions, indicating a lack of evidence for distance-dependent effects 

on change in connectivity strength (p = 0.33). (B) Each point represents a pairwise relationship 

between two regions of interest. Data values represent the difference by subtracting the averaged 

child matrix from the averaged adult matrix, plotted as a function of the Euclidean distance 

between regions of interest. No significant relationship was found between changes in 

correlation strength and distance (p > 0.05). 

2.3.4 Developmental Trajectories of Network-level Integration  

In addition to characterizing age-related changes in the strength of connectivity both as a 

function of network organization and as a function of distance, we also aimed to quantitatively 

characterize the distribution of these between-network interactions using graph theory. Brain 

regions (nodes) within networks may either contain connections (links) solely to nodes within 
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the same network or may also contain between-network links. A node that has distributed links 

across multiple networks can be regarded as a highly integrated region (Figure 7A). Here, we 

operationally define integration as the level to which a region contains distributed links from its 

‘home’ network to a foreign network. Participation coefficient (PC) is a graph theoretical 

construct that is used to calculate integration between brain networks23. PC refers to the level to 

which a node establishes links to foreign networks, with values ranging from 0 to 1. Nodes that 

link solely to other nodes within their ‘home’ network would have a PC of 0, while nodes with 

many distributed between-network links would have a PC closer to 1. Delineating the level of 

integration using a node’s PC extends beyond defining the degree centrality (i.e., number of 

links) of a node, to defining the relative importance of those links with other networks87.  
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Figure 7. Development of network integration. 

Development of network integration (A) Model network with four communities (larger gray 

circles) to illustrate participation coefficient (PC). Nodes (smaller colored circles) that are 

warmer colors have a larger PC due to the existence of distributed links to other networks, 

representing network integration. (B) The CO/Salience network significantly increased in PC, 

and thus integration, through adolescence (p < 0.001).  No other network demonstrated any 

significant relationship with age in individual subjects (p > .05). (C) Development of long-term 

fluctuations in participation coefficient by network after smoothing data. The centerline of each 

curve represents the mean. Upper and lower bounds represent the 95% confidence interval. 

Asterisks denote statistically significant results from the regression analysis. 

 

To analyze developmental trajectories of integration at the network level, we calculated 

PC for every node within individual subject matrices at each network density. As an important 

aside, to remove the arbitrary bias in thresholding, all subsequent calculations involving PC are 

represented as the mean value across the range of network densities. Though we chose this 

method, PC values at a range of network densities are highly correlated with the mean value 

across thresholds (Appendix A.2; Figure 27). PC across all nodes is significantly positively 

correlated with the PC of all nodes at each network density. If our results were only driven by a 
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specific threshold (e.g., 5%), but not others (e.g., 20%), a significant relationship between mean 

PC and the specific threshold driving the effect (5% in this example) would exist, but would not 

exist in others (20% in this example). This provides evidence that PC is robust to any biases that 

could be introduced by thresholding. 

For each subject, nodes were grouped according to the network to which they were 

assigned in the adult group. Then, we calculated the mean PC value for each network and tested 

each network for significant age-related effects on individual subjects, fitting both linear and 

inverse regression models, which are known to best fit this period of development 11. The choice 

of superior model fit was made quantitatively, using Akaike information criterion (AIC). The PC 

of the CO/Salience network significantly increased over the age range studied (R2 = 0.11, t = 

4.76, p < 0.001) (Figure 7B) optimally fit with an inverse model. No other network displayed 

age-related changes in PC for either linear or inverse models (p > 0.05). The purported role of 

the CO/Salience network is the maintenance of cognitive control. Thus, increased integration of 

the CO/Salience network with other brain networks may underlie improvements in cognitive 

control performance during adolescence. We tested this hypothesis by investigating associations 

between network integration and behavioral performance in the antisaccade task.  

To identify any long-term fluctuations in PC that may not be captured at the individual 

subject level, we sorted individual subject matrices by age and then calculated average subject 

correlation matrices using a moving average approach. After calculating PC for each region 

within each moving average group, we computed the mean PC within each network. We then fit 

linear, inverse, quadratic, and cubic regression models to the data, with the best fit model defined 

as the one with the lowest AIC (Figure 7C). The best fit model for the CO/Salience network was 

an inverse fit (R2 = 0.59, p < 0.05), showing an increase in PC from late childhood through ~14 
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years of age, followed by relative stability (Figure 7C, black curve). The quadratic model best fit 

age-related changes in the DM network (R2 = 0.28, p < 0.05), which decreased in PC throughout 

adolescence, but increased slightly into early adulthood (Figure 7C, red curve). A quadratic 

model best fit the visual network (R2 = 0.51, p < 0.05), with peak levels of integration occurring 

late in adolescence (Figure 7C, blue curve). A cubic model best fit the FP network (R2 = 0.29, p 

< 0.05), where PC increased from late childhood through ~14 years of age before declining from 

~14 to 20 years, and then increasing again throughout early adulthood (Figure 7C, yellow curve). 

Lastly, the SM network remained relatively stable throughout development (R2 = 0.01, p > 0.05) 

(Figure 7C, cyan curve). The fact that no other network demonstrated significant age-related 

effects in the individual subjects analysis compared to the moving average approach suggests the 

lack of differences is likely to due a high amount of individual subject variability.  

2.3.5 Cingulo-Opercular/Salience Network Integration Moderates the Relationship 

between Age and Antisaccade Latency  

The antisaccade task is a particular robust test of inhibitory control that reliably shows sensitivity 

to cognitive development through adolescence as accuracy and reaction times (RT) during 

successful response inhibition improves through adolescence111–113. First, we tested the effect of 

age on accuracy and RT separately, with age modeled as both a linear and an inverse function. 

As is typical for the adolescent age range11, all regression models involving age were best fit by 

an inverse model, as determined by lower AIC, compared to linear models. Similar to previous 

studies111–117, we found developmental increases in the accuracy of correct inhibitory response 

(R2 = 0.14, t = 5.55, p < 0.001) and decreases in RT through the adolescent period (R2 = 0.14, t = 

-5.51, p < 0.001) (Figure 8A, 8B).   
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Figure 8. Relationship between increased cingulo-opercular/salience network 

integration and cognitive control 

Performance on the antisaccade task improves throughout adolescence, evidenced by increased 

accuracy (A) and decreased reaction time (B). As integration of the CO/Salience network 

increase, reaction times significantly decrease (C). (D) Results from the moderation analysis. 

CO/Salience integration significantly moderated the effect between age and antisaccade reaction 

time, such that less CO/Salience integration was predictive of longer reaction times, while higher 

CO/Salience integration led to significantly faster reaction times (p < .01). Note that this effect 

only occurred during late childhood, indicating earlier maturation of the CO/Salience network is 

critical for achieving adult-like behavior earlier in development. (E) Reaction time as a function 

of CO/Salience network integration in the child group. 
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Next, we tested the association between PC of the CO/Salience network (i.e., 

CO/Salience network integration) and antisaccade accuracy and RT, controlling for age. Results 

showed no association between CO/Salience network PC and accuracy (p > 0.05). However, as 

CO/Salience network PC increased, RT to correct inhibitory responses decreased (R2 = 0.11, t = 

-2.22, p = 0.02) (Figure 8C), suggesting that greater CO/Salience network integration supports 

age-related improvements in timely successful inhibitory control. Notably, no other network 

displayed a significant relationship between PC and accuracy or RT (all p > 0.05). While it may 

be surprising that FP did not associate with antisaccade latency, exerting sustained control within 

an inhibitory state may play a critical role in the time to initiate a correct response. The 

CO/Saliency network exhibited a robust increase in integration to the SM network (Appendix A, 

Table 5), potentially facilitating more reliable control signals to the SM network for motor 

output. Conversely, the frontoparietal network has been shown to support transient control, 

rather than sustained control. Antisaccade accuracy may be underlied by the within-network 

interactions of control networks rather than integration between networks. Indeed, antisaccade 

accuracy has been associated with DLPFC and FEF interactions, both within the frontoparietal 

network118.  

Given the relationship between age and both antisaccade performance and CO/Salience 

network PC, we assessed whether CO/Salience network PC moderates the relationship between 

correct antisaccade RT and age. To test this, we ran two moderation analyses, one including 

CO/Salience network PC as a moderator of age and antisaccade accuracy and a second including 

CO/Salience network PC as a moderator of age and antisaccade RT. In each model, both 

regressors were centered prior to model fitting. CO/Salience network PC did not significantly 

moderate the relationship between age and accuracy (p > 0.05). However, CO/Salience network 
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PC did moderate the relationship between age and correct antisaccade RT (R2 = 0.16, t = -3.28, p 

< 0.001). To identify when in development this interaction was most prominent, we investigated 

effects on RT within age groups by performing a median split of CO/Salience network PC 

(Figure 8D). We observed a significant difference in individual subjects within the child group 

(10-12 years) between RTs of subjects with high vs. low CO/Salience network PC. Lower 

CO/Salience network PC resulted in longer RTs, while higher CO/Salience network PC resulted 

in shorter RTs (t = 2.07 p = 0.04, Bonferroni corrected). When we extracted the data for each 

subject, the results showed that as PC increased, antisaccade RT decreased (R2 = 0.19, t = -2.94, 

p < 0.01) (Figure 8E).  

2.3.6 Developmental Patterns of Regional Integration  

Given the finding of changes in network integration with age, we were interested in probing 

specific regional contributions to increased network integration. In order to identify the 

contribution of regions of interest (ROIs) to age-related differences in network integrations, 

which is overlooked when averaging at the network level, we tested each ROI in the network for 

significant increases in PC across age groups. Specifically, we permuted the connectome 1000 

times between consecutive age groups to generate a null distribution of PC for each brain region. 

The resulting null distributions were normally distributed. Here, we report significant regional 

increases in PC in a stage-like manner throughout development (Figure 9). 
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Figure 9. Regional increases in participation coefficient. 

Node color represents network affiliation. In the transition from childhood to adolescence, most 

regional increases were localized to the CO/Salience network, corroborating network-level 

findings. During adolescence, regional increases were mostly within the SM network, while 

regions within the DM network and FP network increased in integration from late adolescence 

into early adulthood. 

2.3.6.1 Childhood to Early Adolescence  

From childhood to early adolescence, 26 ROIs demonstrated significant increases in PC (Figure 

9; Appendix A.2, Table 5). Of those, two were in the DM network, three were in the SM 

network, 10 were in the visual network, 11 were in the CO/Salience network, and zero were in 
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the FP network. The significant increases in PC for ROIs within the SM network were mainly 

driven by increased degree (i.e., number of links) to the visual, CO/Salience, and FP networks, 

with a concomitant decrease in degree within the SM network. Within the visual network, ROIs 

that significantly increased in PC also increased in degree to the DM, SM, and FP networks. 

ROIs within the CO/Salience network showed an increase in degree with the SM, visual, and FP 

networks, and a decrease in degree within the CO/Salience network. Importantly, many regions 

within the CO/Salience network that significantly increased in PC were anatomically located in 

the dorsal anterior cingulate (dACC), anterior insula (aIns), and striatum, including bilateral 

putamen and globus pallidus.  

2.3.6.2 Early Adolescence to Late Adolescence  

Twenty regions significantly increased in PC from early adolescence to late adolescence (Figure 

9; Appendix A.2, Table 5). Of those, two were in the DM network, 14 were in the SM network, 

three were in the visual network, one was in the CO/Salience network, and zero were in the FP 

network. Within the DM network, the posterior cingulate cortex showed a decrease in degree 

with the DM and visual networks, but an increase in degree to the CO/Salience network. Within 

the SM network, ROIs increased in both within- and between-network degree, especially to the 

FP, visual, and CO/Salience networks. The only region within the CO/Salience network that 

significantly increased in PC was the right posterior insula. This region demonstrated increased 

degree within network and between all networks. Three ROIs within the VN increased 

significantly in PC: the left middle occipital gyrus, right cuneus, and left fusiform gyrus. All 

three regions increased in degree to the DM, SM, and FP networks.   
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2.3.6.3 Late Adolescence to Adulthood  

Seventeen ROIs significantly increased in PC from late adolescence into adulthood (Figure 9; 

Appendix A.2, Table 5). Of those, nine were in the DM network, one was in the SM network, 

four were in the visual network, one was in the CO/Salience network, and two were in the FP 

network. Profiles of change in degree were variable for regions within the DM network. The left 

superior frontal gyrus, left temporal-parietal junction (TPJ), and left fusiform all decreased in 

within-network degree, while the left angular gyrus, left posterior cingulate, and right medial 

frontal gyrus (MFG) all increased in within-network degree. The regions that increased in 

within-network degree also had increases in degree with other networks. The left TPJ, left 

angular gyrus, and bilateral MFG increased in degree to the FP network. Interestingly, many DM 

network regions, including the bilateral MFG, also had increased degree to the CO/Salience 

network. With the exception of the right lingual gyrus, the regions within the visual network that 

significantly increased in PC showed decreased within-network degree and increased between-

network degree to each of the four other networks. For the first time throughout development, 

nodes within the FP network significantly increased in PC, namely the left inferior parietal lobe 

(IPL) and left dorsolateral prefrontal cortex (dlPFC). Both regions decreased in within-network 

degree and increased in between-network degree with the DM network. Additionally, the left 

dlPFC also decreased in degree to the CO/Salience network.  

2.4 INTERIM DISCUSSION 

We sought to characterize the development through adolescence of functional brain network 

organization, connectivity strength, and integration. Furthermore, we tested the relationship 
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between network integration and developmental improvements in inhibitory control. Our results 

provide evidence that: (1) network organization is stable by late childhood; (2) connectivity 

strength changes with development, reflecting concurrent decreases in within-network 

connectivity and increases in between-network connectivity; (3) anatomical distance does not 

account for age-related changes in connectivity strength through adolescence; (4) increased 

integration of the CO/Salience network throughout the adolescent period and; (5) CO/Salience 

network PC moderates the relationship between age and antisaccade reaction time, such that 

higher PC, and thus integration, of this network contributes to faster RTs on the antisaccade task. 

These findings suggest that foundational aspects of functional network architecture, specifically 

network organization, are established early in development, while the processes underlying 

network integration continue to mature into adolescence92. This process reflects the way 

cognitive control develops, as characterized by more adaptive and flexible interactions of earlier 

maturing core components. 

2.4.1 Developmental Stability in Functional Brain Network Organization  

Within the human functional connectome, densely interconnected brain regions are organized 

into well-defined functional networks, subserving sensory, motor, and cognitive functions. Our 

findings indicate that this network organization is stable between 10 and 26 years of age, 

countering earlier findings that suggested developmental changes in network organization reflect 

a shift from localized to distributed organization, which may have been confounded by head 

motion artifact40,88,91,119,120. The current study applied a wide array of advanced preprocessing 

steps to limit head motion artifact, including wavelet despiking104, simultaneous bandpass 

filtering the time series data and nuisance regressors41, as well as scrubbing40. These results 
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suggest that, after controlling for head motion, there are no changes in network organization 

from late childhood to adulthood. 

 Previous studies found that many aspects of human functional network topology remain 

stable throughout adolescence, including small-worldness88,89,121, global efficiency, and hub 

organization92. Combining these findings with our results showing the stability of network 

organization, we see strong evidence that the large-scale organization of functional networks is 

stable by late childhood, possibly even earlier. Despite the fact the brain undergoes continual 

structural maturation of both gray and white matter3,4,83,122, key fundamental properties of large-

scale functional circuitry, including organization, are stable throughout late childhood to 

adulthood. While non-significant age-related changes to network organization cannot be 

concluded through inferential statistics, Bayesian inference via JZS Bayes factors allowed us to 

test the likelihood of the null vs. the alternative hypothesis109. Using this method, we confirmed 

the finding that network organization does not change significantly with age.   

2.4.2 Age-related Changes in Connectivity Strength  

Our results show age-related changes in connectivity strength. Within-network connectivity 

strength decreased with age, suggesting that maturity results in network refinements akin to 

pruning unnecessary connections, which improves signal transmission within networks. On the 

other hand, we found that between-network connectivity strength decreased into early 

adolescence and subsequently increased into adulthood, ultimately enhancing the ability for 

different networks to collaborate. Interestingly, adolescence demarcated the period when 

between-network connectivity began to increase, perhaps reflecting a qualitative shift in network 

interactions towards collaborative network functioning. These changes were sensitive to network 
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organization, not solely by the distance between connections, as initial studies had 

suggested39,88,90,123. These results are not surprising given our implementation of recent advances 

in head motion control that minimized its confounds on age differences in connection strength as 

a function of distance40,91. Distance-related changes in connectivity strength by age have been 

found after controlling for head motion, albeit with a weaker effect than previously reported, in a 

sample that included children younger than those in the current sample (8 vs. 10 years of age)123. 

Decreasing short-range connectivity and increasing long-range connectivity may be specific to 

an earlier developmental stage, when greater changes in white matter connectivity are 

occurring83. These results suggest that the adolescent transition to maturity is a period of 

refinements in connectivity within stable networks and concomitant increases in connectivity 

across widely distributed circuitry.  

2.4.3 Increased Integration of the Cingulo-opercular/Salience Network  

While between-network connectivity increased with age, the distribution of links (i.e., 

integration) among networks remained stable for most networks studied. This suggests that the 

framework for network integration is available by childhood, with continued increases in the 

strength of these established between-network links. An exception, however, was the 

CO/Salience network, which displayed age-related changes in integration with other networks, as 

assessed by participation coefficient. The CO/Salience network is involved in maintaining a task 

set, saliency, and configuring sensory information, cognitive state, and motor output15,124. The 

continued enhancement of CO/Salience network integration follows what is known about the 

development of cognitive control. Core cognitive control abilities are present early in 

development, but the consistent successful implementation of control continues to improve into 
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adulthood. This developmental pattern has been found for a wide range of cognitive control 

tasks, such as the antisaccade, go-no-go, and stroop tasks13,99. Our findings of stable network 

organization, coupled with increased integration, are consistent with these behavioral findings, 

suggesting that the underlying architecture supporting mature brain functioning is present early 

in development, with refinements continuing into adolescence.  

Developmental differences in integration patterns at the regional scale within the 

CO/Salience network corroborated the network-level findings. From childhood into early 

adolescence, specific regions that drove increased integration of the CO/Salience network 

included the right aIns, bilateral dACC, anterior and mediodorsal nuclei of the thalamus, and 

putamen. Both the aIns and dACC are extensively anatomically connected to many major brain 

networks across cortical and subcortical regions52,125. Together these regions drive a control 

network guiding mental activity and behavior through an interaction of cognitive, affective, and 

homeostatic functions51,124,126,127. We observed an increase in the number of links between the 

CO/Salience network and the SM network from every region that became more integrated within 

the CO/Salience network, enabling more rapid access from this control system to the motor 

system to guide goal-directed behavior127. Due to its role in detecting salient stimuli and acting 

as a switch between large-scale networks86, the aIns may play a particularly important role in 

normative development, supporting enhanced integration of brain processes. In line with this, 

there is evidence that abnormal engagement of the aIns and dACC may underlie 

neurodevelopmental disorders, such as autism123,127–129.  

Many of the regions within the CO/Salience network that significantly increased in 

integrative properties were subcortical, including the putamen and thalamus. These regions show 

larger changes than cortical areas with respect to fractional anisotropy in white matter, increasing 
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30% to 50% from childhood into early adulthood130 and also show a protracted 

neurophysiological development131. This parallels our findings of increased integration of these 

subcortical structures with cortical networks. Given that adolescence is a period of enhanced 

sensation seeking11,86, the steep increase in the integrated nature of these regions with other brain 

networks during early adolescence suggests a mechanism by which motivational systems are 

reconfigured with more cognitive, sensory, and affective systems132.  

2.4.4 Cingulo-opercular/Salience Network Integration Moderates Age-related 

Improvements in Inhibitory Control  

In agreement with an extensive literature99,113, we found age-related decreases in reaction times 

of correct inhibitory responses. Our network analyses indicated that increased CO/Salience 

network integration predicted faster RTs on the antisaccade task, underscoring the importance of 

the CO/Salience network integrating with other networks, subserving cognitive control. 

Importantly, we found that CO/Salience network integration moderated decreases in antisaccade 

latency as a function of age. This moderation was significant in the transition from late childhood 

to early adolescence, when (at both the network and the regional scale) the CO/Salience network 

became significantly more integrated with other functional networks. Together, these results 

indicate that development brings greater integration between the CO/Salience network, 

supporting sustained cognitive control15, and regions that underlie action such as the SM 

network, resulting in the ability to generate quicker execution of correct cognitive control 

signals133.  
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2.4.5 The Role of Resting-state Coupling in Network Integration  

Although intrinsic, spontaneous coupling between regions at frequencies <0.1 Hz has been 

studied for over 20 years, the neural substrate and the meaning of the slow frequency signal 

remains unclear134,135, though functional networks observed using fMRI have also been identified 

using magnetoencephalography136. Many ROI-ROI pairs demonstrate high correlations between 

their time courses despite a lack of monosynaptic connections137,138. Though the functional 

purpose of spontaneous slow frequency BOLD oscillations is not known, a range of possibilities 

exist. Resting-state functional networks may be groups of regions that often co-activate in task-

based settings, reflecting a history of co-activation15,139,140. This interpretation is supported by 

studies finding strong resting-state correlations, despite the lack of a direct anatomical 

connections. However the existence of strong functional connectivity in the absence of direct 

anatomical connections allows for other alternatives, including the notion that resting-state 

networks are constantly sampling a possibility of configurations, constrained by anatomy, to 

make predictions about optimal network configurations for a given input135. Furthermore, over 

long timescales, such as in this study, resting-state functional brain networks are dependent on 

anatomical connectivity; however, at shorter timescales, numerous configurations are possible141. 

That said, changes in the framework of integration within the functional connectome during 

adolescence may reflect differences in the pattern in which information is shared across 

distributed neural networks. Specifically, from a graph theoretic view, the regions that 

significantly increased in participation coefficient are areas that integrate across multiple 

functional networks to a greater extent. Importantly, the role these brain regions play in 

integrating information may reflect a particular vulnerability for the emergence of 
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psychopathology, which emerges during adolescence - a time when the brain is reorganizing the 

way it shares and processes information across these networks. 

2.4.6 Limitations  

This study was not without limitations. The sample was cross-sectional, undermining our ability 

to analyze subject-specific growth trajectories. We are also limited by some inherent limitations 

to fMRI, including residual head motion, though we took multiple processing steps towards 

mitigating these effects including wavelet despiking, simultaneous bandpass filtering of the time 

series and nuisance regressors, and scrubbing. Additionally, five minutes of resting-state data is 

considered a minimum requirement for analyses of resting-state fMRI data, with recent pushes 

for longer acquisitions138,142.  That said, relatively short resting state acquisitions in fMRI are 

susceptible to reliability issues, as it has been shown that the stability of resting state correlations 

requires upwards of 15+ minutes. However, longer acquisitions may lead to even greater 

differences between age groups in head motion. Furthermore, our study contained a relatively 

large sample size, which helps to assuage acquisition length issues. Lastly, because PC was 

averaged over all nodes within a network, it is possible that some single brain regions could be 

driving this effect more than others. That said, we still found CO/Salience network increases in 

integration with age that moderated the relationship between cognitive control performance and 

age. This finding stresses the importance of network integration for adult-like cognitive control 

performance, rather than the maturation of any singular brain region. Future studies could aim to 

elucidate specific brain regions driving cognitive control maturation via integration.     
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2.4.7 Summary  

These results provide evidence that the period of childhood through adulthood is characterized 

by increased integration of widely distributed, but stable, networks. As such, a critical 

component underlying the adolescent transition to adult-level execution of control is the 

refinement and strengthening of integration between existing specialized networks. In particular, 

the CO/Salience network continues to increase its integration, and thus influence, on other 

networks, providing a mechanism for developmental improvements in cognitive control. These 

findings support a novel two-stage model of adolescent brain development in which network 

organization stabilizes prior to adolescence, while the integration of information across widely 

distributed circuitry increases in the transition from adolescence to adulthood. 
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3.0  OSCILLATIONS, NETWORKS, AND THEIR RELATIONSHIP WITH THE 

DEVELOPMENT OF IMPULSE CONTROL  

3.1 BACKGROUND 

The transition from adolescence to adulthood is characterized by significant enhancements in 

brain function, supporting increased cognitive control and normative decreases in 

impulsivity69,143. Developmental task fMRI studies indicate that core regions supporting 

cognitive control (e.g., anterior cingulate cortex (ACC)) are engaged in adolescence during 

cognitive tasks, but their blood oxygen-level-dependent (BOLD) signal activation144,145 and 

connectivity with other brain regions continues to mature into adulthood92,146,147. As such, brain 

systems supporting cognitive control are present prior to adolescence; however, the successful 

instantiation of cognitive control continues to improve13. As we demonstrated in the previous 

chapter, developmental resting state fMRI studies analyzing whole brain connectivity patterns 

parallel this principle, such that the intrinsic organization of functionally connected networks is 

apparent by childhood123,147,148, while integration (between-network functional connectivity) 

continues to refine well into late adolescence and early adulthood, supporting improvements in 

cognitive control147. However, due to the lack of temporal specificity of the BOLD fMRI 

response, the oscillatory properties and frequency specificity of age-related changes in functional 
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connectivity remain poorly understood, limiting a mechanistic understanding of neurocognitive 

development.  

Electrophysiological (EEG/MEG) studies have begun to offer insight into development 

changes in cortical oscillations. The majority of research concerning electrophysiological 

maturation across development has used electroencephalography (EEG), finding age-related 

decreases in total power (total amount of activity across broadband frequencies)149 and absolute 

power in each frequency band149–152. Additional work has shown there is a redistribution of 

power from lower to higher frequency bands, with frontal regions reaching adult levels of power 

after more posterior sensorimotor regions149,150,153. Similar posterior-to-anterior gradients have 

been observed using EEG measures of coherence, an index of regional coupling including both 

phase and amplitude components154. Interestingly, the curvilinear decreases in slow-wave power 

(i.e., 0.5 – 7 Hz) are highly correlated with gray matter volume decreases during adolescence 155. 

Although these studies have begun highlighting developmental trajectories of neural oscillations, 

the poor spatial specificity of EEG has limited our understanding of the interactions between 

specific brain regions and their role in large-scale functional networks supporting cognitive 

control development.   

We seek to bridge this gap in the literature, linking the age-related changes in brain 

network oscillations to the development of cognitive control. In a sample of 68 adolescents and 

young adults (aged 14-31 years), we employed magnetoencephalography (MEG) to explore 

intrinsic properties related to oscillatory developmental within and between cortical networks. 

Specifically, within frequency intervals related to inter-areal neural interactions (1-49 Hz)58,156, 

we examined functional coupling of well-defined brain networks using the phase locking value 

(PLV). Unlike correlation or coherence measures, the PLV permits the separation between the 
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phase and amplitude components between two oscillators, enhancing the ability to speak to the 

variance in coupling between two brain regions during the resting state157.  

     Using this approach, we demonstrate age-related increases in functional decoupling of 

theta band oscillations during adolescence, which followed a robust posterior-anterior gradient, 

with the greatest age-related changes in frontal regions, especially along the midline. Using a 

priori network membership, we show the greatest developmental theta band decoupling occurred 

in higher-order cognitive networks, relative to sensorimotor networks. Finally, we demonstrate 

that decoupling of theta band oscillations between orbitofrontal cortex and the anterior temporal 

lobe mediates self-reported impulsivity, a developmentally sensitive measure of adolescent 

cognitive control. Together, these findings provide new insights into an oscillatory mechanism 

underlying developmental improvements in control-related behavior. 

3.2 METHODS 

3.2.1 Subjects 

Of the 81 adolescents and adults we recruited for this study, we include data from 68 subjects, 

ranging in age from 14-31 years (M = 22.51, SD = 5.55). Thirteen subjects were dropped due to 

unavailable ECG and/or EOG data. None of the subjects, nor their first degree relatives, 

currently or previously had a psychiatric or neurological disorder. All participants gave written 

informed consent, and the University of Pittsburgh Institutional Review Board approved the 

study. Subjects were compensated monetarily for their participation in the study. 
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3.2.2 Structural MRI Acquisition 

For each subject, we acquired a structural MRI to co-register MEG data for analyses in source 

space. Data from the 68 remaining subjects were pooled from 2 separate protocols within the lab 

and thus had slightly different structural MR sequences. Importantly, the slight differences in 

acquisition would not affect subsequent processing steps. For the first 28 subjects from the first 

protocol, structural images were acquired using a sagittal magnetization-prepared rapid gradient-

echo sequence (repetition time [TR] = 2100 ms, echo time [TE] = 3.43 ms, flip angle = 8°, 

inversion time [TI] = 1050 ms, voxel size = 1mm isotropic). For the 40 subjects included in the 

second protocol, structural images were acquired using a sagittal magnetization-prepared rapid 

gradient-echo sequence (repetition time [TR] = 2200 ms, echo time [TE] = 3.58 ms, flip angle = 

9°, inversion time [TI] = 1000 ms, voxel size = 1mm isotropic). 

3.2.3 MEG Acquisition 

MEG data were acquired using an Elekta Neuromag Vectorview MEG system (Elekta Oy) 

comprising 306 sensors arranged in triplets of two orthogonal planar gradiometers and one 

magnetometer, distributed to 102 locations. The MEG scanner was located inside a three-layer 

magnetically shielded room within the University of Pittsburgh Medical Center. The data were 

acquired continuously with a sampling rate of 1000 Hz. Head position relative to the MEG 

sensors was measured continuously throughout the recording period to allow off-line head 

movement correction. Two bipolar electrode pairs were used to record vertical and horizontal 

electro-oculogram (EOG) signals to monitor eye movement. 
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3.2.4 MEG Data Processing 

For artifact removal, we first manually visually inspected every channel across the resting-state 

run for noisy or flat channels and squid jumps. MEG data were then preprocessed off-line using 

the temporal signal space separation (tSSS) method (10 second correlation window, 0.98 

correlation limit), which uses spatial and temporal features to separate signals into components 

generated within the MEG helmet and components from outside the helmet, which must be 

artifactual158,159. This method greatly increases the signal-to-noise ratio (SNR) of the resulting 

data160. tSSS also performs head movement compensation by aligning sensor level data to a 

common reference161. This head motion correction procedure also provides estimates of head 

motion relative to sensor coordinates that we subsequently used for head motion estimates for 

each subject. Lastly, the raw time series data were down-sampled to from 1000Hz to 250 Hz.  

 An independent component analysis (ICA) approach was used to automatically detect 

and attenuate heartbeat, eye blink, and eye movement artifacts. ICA was performed on each 

channel using the Infomax algorithm, with the number of components selected to account for 

95% of the variance. The Pearson correlation of the components and the ECG or EOG channel is 

used to identify artifactual sources through an iterative thresholding method (as implemented in 

MNE Python) and subsequently manually inspected. After removal of the artifactual sources, the 

data was reconstructed from the remaining components. 

MEG sensor data were then projected from the sensors on to the cortical surface to 

estimate source activities, using the minimum-norm estimates (MNE) procedure. First, the 

geometry of each participant's cortical surface was reconstructed from the respective structural 

MR images using FreeSurfer162,163. The solution space for the source estimation was then 

constrained to the gray/white matter boundary by placing 5,124 dipoles per hemisphere. A 
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forward solution for the constructed source space was calculated using a single compartment 

boundary-element model. The noise covariance matrix was calculated from a two-minute empty 

room scan, in which we acquired data with no subject present. The noise covariance matrix and 

the forward solution were then combined to create a linear inverse operator to project the resting-

state MEG sensor data to the cortical surface. We then warped individual subject data from 

native space to FreeSurfer average space to facilitate the interpretation of specific regions and 

networks.  

3.2.5 Regions of Interest (ROIs) 

We extracted the time series of resting-state MEG data from a recent parcellation of 333 ROIs 

covering the entire cortical surface20. This atlas was chosen because it comprises major cortical 

functional networks, including control networks, sensorimotor networks, and the default mode 

network and covers the entire cortical surface. These networks are known to have protracted 

developmental trajectories in the resting-state fMRI literature30,147 and are thus candidates for 

developmental changes at the faster timescales, of which MEG is sensitive.  

3.2.6 Measure of Neural Coupling: The Phase-locking Value (PLV) 

For each pair-wise relation between ROIs for each subject, a PLV was calculated for each 

frequency of interest (1-49Hz in 1Hz intervals). Phase-locking is a measure of the propensity for 

two signals to maintain a constant phase separation with each other (i.e., synchrony). Therefore, 

the PLV provides a measure of temporal variability between two MEG signals58. To calculate the 

PLV at each frequency, two time series are spectrally decomposed at a given frequency, resulting 
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in a phase estimate at each time point. A single time-averaged PLV can then be computed by 

averaging all of the phase-locking values, ranging from 0 to 1, representing a random phase 

relationship and fixed phase relationship (synchrony), respectively. Here, we binned the data into 

100 three second chunks and obtained one PLV across the time windows using multitapers. The 

PLV was calculated for each ROI pair, resulting in 55,278 PLVs for each frequency and for each 

subject.  

3.2.7 Determining Age-related Changes in Coupling 

After ROI x ROI PLV individual subject matrices were calculated at each frequency, individual 

subject matrices were concatenated forming a 333 x 333 x 49 x 68 4-D matrix. First, we asked if 

there were developmental changes in PLV across a broadband frequency range (1-49 Hz). To 

this end, we averaged the 4D matrix along the first 2 dimensions of the upper triangle, resulting 

in a single PLV value at each frequency for each subject. A linear mixed effects model with 

maximum likelihood estimation was used to examine main effects and interactions predicting 

PLV. Age and frequency were entered as fixed effects and random intercepts were estimated for 

each subject. Significance values for fixed effects were obtained through a likelihood ratio test 

between models with and without the effects in question (chi-square test). To test individual 

frequencies for PLV ~ Age effects, we regressed PLV against age within each frequency bin and 

corrected for multiple comparisons using false discovery rate164.  
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3.2.8 Posterior-to-anterior Gradient of Decoupling across Development  

Once we determined the frequency range of global decreases in phase locking (5-9 Hz), we 

sought to determine the specific regions in which phase locking was significantly decreasing. To 

this end, we ran linear regression models to determine the rate of change in PLV within the 5-9 

Hz theta band as a function of age, controlling for potential confounds, including motion, power, 

and distance (see below). This resulted in a 333 x 333 matrix of beta weights from the age 

regressor, representing the rate of change in phase-locking for every ROI pair. To obtain a 

summary statistic for each ROI, we summed down each column of the matrix, resulting in 333 

summed beta weights, which we use to characterize the summed rate of change with age for 

every ROI across the cortical surface. This process was repeated across frequencies of interest 

(1-49 Hz) by averaging across frequencies in 5 Hz bins (i.e., 1-5 Hz, 6-10 Hz, … , 46-49 Hz).  

We were interested in general trends across the cortical surface. To this extent, we 

calculated the center of mass for every ROI to obtain a center coordinate and to also get a 

measure of Euclidean distance between each ROI pair. We the regressed the y-coordinate of the 

ROI onto the summed beta weights for each ROI, controlling for average distance between ROIs 

and ROI surface area.  This process was also repeated across 5 Hz frequencies bins in the range 

of 1-49 Hz to determine the specificity of the posterior-to-anterior gradient in the theta-band.   

3.2.9 Specific ROI Interactions Driving Regional Changes in PLV 

Next, we wanted to identify any trends in specific ROI pairs driving regional decreases in phase-

locking. First, we sorted ROIs according to the magnitude of the summed beta weights. We then 

further probed the top 5% of these ROIs (n = 16), which represents the 16 ROIs undergoing the 
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greatest amount of developmental decrease in phase-locking. Of those 16 ROIs, we further 

thresholded each ROIs specific interactions with other ROIs to maintain only the top 5% of each 

ROIs pairwise beta weight (n = 16 pairwise interactions for each of the 16 ROIs), resulting in a 

total of 256 pairwise beta weights demonstrating the greatest rate of ROI-ROI decrease in phase-

locking.  

3.2.10 Control for Power 

We wanted to ensure any age-related changes we observed in PLV were not due to changes in 

the total amount of activity (power) in an area within any given frequency band. First, we 

extracted a power estimate for each ROI. Specifically, we extracted the time series (‘mean flip’ 

in MNE Python) of each ROI and calculated power at each frequency in the interval from 1-49 

Hz. We then extracted relative power in the 5-9 Hz frequency band within subjects by taking the 

mean power within this frequency range for each ROI and dividing by broadband total power (1-

49 Hz) for each ROI. For each ROI within each subject, this procedure resulted in relative theta 

band power. We then averaged across subjects to obtain a mean normalized theta band power for 

each ROI. This value was then plotted against each ROIs y-coordinate to determine the 

posterior-to-anterior gradient in power across the cortex. Because a significant posterior-to-

anterior gradient in power was observed, we included as nuisance regressors the power of each 

ROI, the interaction between each ROI pair, the log-transformed power of each ROI, and the log-

transformed interaction term of each ROI pair into the age models for each ROI pair. 

Additionally, we regressed power into age to demonstrate there were no significant differences in 

theta band power across this age range.  
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3.2.11 Head Movement Correction 

During MaxFilter preprocessing, continuous head position estimates are calculated and any large 

or sudden head movements are recorded. While MaxFilter performs head movement correction 

by aligning sensor data to a common reference, it does not account for artifacts generated by 

head movements, and we wanted to ensure any effects were not a result of head motion artifacts. 

After extracting the estimated movements from the MaxFilter output, we used the translation 

vector and rotation matrix for the head position relative to the sensor array (obtained from co-

registration) to calculate a three-dimensional head movement vector relative to each sensor at 

each time point. The norm of this movement vector was averaged across sensors to obtain a 

single measure of head motion. This motion estimate for each subject was included as a nuisance 

regressor in all regression models involving the analysis of age-related changes in PLV.  

3.2.12 Relationship between Impulsivity and Theta-band Phase Locking 

Prior to the neuroimaging visit (M = 43.61 days, SD = 43.33 days), a sub-sample of participants 

(n = 62) completed the UPPS-P Impulsive Behavior Scale165, either in an online screening (n = 

28) or a separate behavioral visit (n = 34). In the current analysis, total impulsivity scores were 

estimated according to procedures outlined by165. We then regressed age onto this total 

impulsivity score and observed a significant negative linear relationship between total 

impulsivity and age (see Results).  

First, individual subject matrices were submitted to the network-based statistic166 and a t-

test was run between adolescents and adults to extract a cluster of regions with a significant 

decrease in PLV with age. We then performed the network-based statistic on the relationship 
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between impulsivity and PLV, controlling for age. A total of three connections met this criterion 

and were subsequently submitted for a mediation analysis.   

To examine whether differences in PLV may account for age-related differences in 

impulsivity, mediation analysis was performed on PLV values within connections that had 

significant associations with 1) age and 2) impulsivity (while controlling for age), as defined 

above. Significance values for indirect effects were obtained using 5,000 draws in a bootstrap 

procedure167. 

3.3 RESULTS 

3.3.1 Developmental Differences in Global Cortical Phase Locking 

In order to probe developmental changes in cognitive processes, we used a previously defined 

functional parcellation established from resting-state functional magnetic resonance imaging (rs-

fMRI)20 to segregate the cortical surface into 333 regions of interest (ROIs) in a sample of 68 

individuals aged 14-31 years (see Figure 10 for a workflow overview). For each ROI pair at each 

frequency (1-49 Hz, 1 Hz intervals), we calculated a phase-locking value (PLV) to determine the 

degree of coupling between the phases of the oscillations between two ROIs, resulting in 49 ROI 

x ROI PLV matrices for each subject.  
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Figure 10. Workflow schematic 

 

First, we averaged the PLV matrices at each frequency across both ROI dimensions for 

each frequency and subject. This resulted in one global cortical PLV for each frequency, for each 

subject. There was no significant main effect of age predicting PLV (B= -0.0004, t = -1.255, 

χ2(1)= 1.576, p = .209). However, there was a significant age by frequency interaction predicting 

PLV (χ2(48)= 125.56, p < 0.001). A significant negative relationship between global PLV and 

age at each frequency interval between 5-9 Hz (all p < 0.05, FDR corrected) emerged, suggesting 
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an overall oscillatory activity becomes more decoupled at rest within the theta band (Figure 11). 

No other frequency intervals showed a significant age-related change in PLV. 

 

Figure 11. Theta-band phase-locking decreases across development. 

Across most frequency bands, adolescents displayed similar resting-state phase-locking to adults. 

However, in the 5-9 Hz frequency band, there was a significant linear decrease in phase-locking 

throughout development (gray highlighted region; p < 0.05, FDR corrected). Decoupling of 

oscillations at slow frequencies, which enhances integration of widely distributed circuitry, may 

play a significant role in brain development throughout adolescence. Data displayed 

categorically. Error bars represent standard error of the mean. 

3.3.2 Regional Changes in PLV 

To determine the anatomical locus of PLV decreases with age in the theta band, we averaged 

each individual subject’s PLV matrices in the 5-9 Hz frequency interval. Next, we regressed age 

onto each ROI pair’s PLV, controlling for motion and power (see Methods), and extracted the 
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beta weight for age from each model. This resulted in a pairwise matrix of beta values, 

representing the rate of change across development in theta band PLV for each ROI pair.  

We examined whether age-related changes in PLV followed a topographic gradient 

across the cortex, we obtained a summary rate of change for each ROI by summing down the 

columns of the beta matrix and regressed each ROIs summed beta weight against its x-coordinate 

(in MNI coordinate space) in each hemisphere and y-coordinate separately, controlling for 

average distance from each ROI to every other ROI and ROI surface area. In the lateral-to-

medial gradient, we observed a significant negative relationship between the summed beta 

weights and the x-coordinate in the left hemisphere (t = -6.97, p = 8.44*10-11), but only a trend in 

the right hemisphere (t = 2.01 p = 0.05), indicating phase-locking decreased more rapidly with 

age along the medial wall. We also observed a significant negative relationship between the 

summed beta weights and the y-coordinate (t = -13.19, p = 3.68*10-32), indicating a strong 

posterior-to-anterior gradient of PLV change, such that frontal regions experienced greater 

decreases in PLV (i.e., more decoupling) with age than posterior regions (Figure 12). Regions 

undergoing the greatest decrease in PLV (top 5%) over development in rank order listed in Table 

2. In sum, the greatest rate of decrease in PLV occurred in frontal regions, especially along the 

medial wall. 
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Figure 12. Regional decrease in phase locking in the theta band. 

There was a posterior-to-anterior gradient in the decrease in phase-locking throughout 

adolescence evident across parietal, temporal, and frontal regions, with relatively greater age-

related decreases in frontal regions and along the medial wall. 
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Table 2. Regions displaying the greatest decreases in theta band PLV during 

adolescence 

 

 

X Y Z Label Network 

-22.87 30.04 -17.67 Middle Frontal Gyrus Default 

35.67 36.83 -11.64 Middle Frontal Gyrus Default 

31.88 14.36 -30.62 Superior Temporal Gyrus Default 

22.60 31.59 -18.07 Middle Frontal Gyrus Default 

3.92 20.38 -21.68 Orbitofrontal Gyrus Default 

2.74 38.45 -18.07 Orbitofrontal Gyrus Default 

-11.93 24.61 -18.61 Medial Frontal Gyrus Default 

37.93 6.63 -39.65 Middle Temporal Gyrus Default 

41.73 49.58 -7.32 Middle Frontal Gyrus Frontoparietal  

45.60 28.86 -7.42 Inferior Frontal Gyrus Frontoparietal 

39.61 47.59 8.39 Middle Frontal Gyrus Frontoparietal 

-7.24 33.40 23.28 Anterior Cingulate Cortex Salience 

30.20 18.99 -16.89 Inferior Frontal Gyrus Ventral Attention 

12.40 25.56 -24.03 Orbitofrontal Gyrus None 

25.06 7.74 -16.41 Subcallosal Gyrus None 

51.90 -10.20 -35.81 Inferior Temporal Gyrus None 
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3.3.3 Greatest Rate of Change in PLV is Specific to the Theta Band and to the Resting 

state 

To explore developmental changes in the posterior-to-anterior gradient of other frequency bands, 

for each subject, we binned the data in intervals of 5 Hz by averaging PLV matrices accordingly 

(1-5 Hz, 6-10 Hz, … , 46-49 Hz). Beta weight matrices were generated for each frequency bin 

(see Methods), summed, and regressed against the ROI’s y-coordinate. We then extracted the 

beta weight from the y-coordinate regressor in each regression model and plotted this as a 

function of frequency, demonstrating the greatest posterior-to-anterior age effect was at ~6-10 

Hz (Figure 13).  

To assess the specificity of our findings to the resting-state, rather than a task-state, 

activity we analyzed data from the maintenance period of a working memory paradigm in a 

subset of our sample (n = 28; details of task method and results in Appendix A.3 & A.4). After 

extracting pairwise PLVs for each subject and frequency band within the band of interest (5-9 

Hz), we averaged across frequency bands, resulting in one theta-band phase-locking matrix per 

subject. Paralleling the resting-state analysis, we regressed age on each pairwise PLV across 

subjects, controlling for subject head motion. We extracted the beta weight from the age 

regressor, resulting in a beta weight matrix, representing linear effects of age on changes in PLV 

during working memory maintenance. To test for a posterior-to-anterior effect as was observed 

during the resting-state, we summed down the columns and regressed the ROI’s y-coordinate on 

this summed linear age effect. We did not observe a posterior-to-anterior gradient during this 

task state (t = -0.02, p = 0.98). However, we did observe the posterior-to-anterior gradient in this 

subset of subjects (t = -9.31, p < 10-17) during rest. These findings suggest that the strong 

decreases in theta band phase-locking in frontal regions likely is specific to the resting-state. 
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Figure 13. Band specific posterior-to-anterior gradients. 

After binning phase-locking matrices into 5 Hz bins, we found the greatest posterior-to-anterior 

gradient developmental effect was in the theta band. Error bars represent 95% confidence 

intervals. 

3.3.4 Network-level Changes in PLV 

In addition to specific regional changes in PLV we aimed to characterize developmental changes 

in PLV as a function of networks rather than regions 20. For each network combination (e.g., 

DMN-DMN, DMN-FP, etc.) we obtained the mean beta weight of the linear effect of age on 

PLV for all ROIs of the networks being compared. The resulting heat map is shown in Figure 

14A. We then performed a one-way analysis of variance (ANOVA) to quantitatively assess 

whether some networks experienced a greater rate of change in PLV with age compared to 

others. Here, we submitted averaged beta weights of within-network interactions (e.g., default 

mode to default mode) to the ANOVA. As determined by the ANOVA test, there was a 

significant difference in the average beta weight for age effects at the network level (F(12,320) = 
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9.57, p = 10-16). A subsequent post hoc analysis revealed the negative linear age effect was 

greatest for the salience network compared to any other network, with the exception of the 

cingulo-parietal network (p < 0.05) (Figure 14B).  

 

Figure 14. Network changes in phase-locking. 

(A) Age-related decreases in phase-locking tended to be within and between cognitive networks 

(e.g., default mode, frontoparietal, and salience), while within and between-network oscillations 

involving sensorimotor networks remained relatively stable. (B) Age-related increases in theta-

band decoupling were greater in cognitive networks than in sensorimotor networks (p = 10-9 ). 

Oscillations in the salience network became significantly more decoupled compared to any other 

cognitive or sensorimotor network, with the exception of the cingulo-parietal network (all p < 

0.05, corrected) SMH = somatomotor hand; SMM = somatomotor mouth; VIS = visual; AUD = 

auditory; DM = default mode; FP = frontoparietal; SAL = salience; CO = cingulo-opercular; DA 

= dorsal attention; VA = ventral attention; CP = cingulo-parietal; RST = retrosplenial temporal; 

NONE = none (limbic according to ref22). 
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3.3.5 Pairwise Decreases in Phase Locking 

After determining the gradient and locus of decreased phase coupling from adolescence to 

adulthood, we analyzed specific ROI pairs driving this decrease. Specifically, we aimed to 

determine the specific pairwise interactions that contributed to the greatest rate of theta band 

decoupling. We first identified the top 5% of ROIs that showed the greatest rate of theta band 

decoupling (developmental hubs) from the regional analysis. From those ROIs, we extracted the 

top 5% of negative beta weights and plotted the connections, with ROIs grouped by networks 

(Figure 15), as assigned by20. All ROIs from the regional analysis were within higher-order 

cognitive networks, with eight belonging to the default mode network, three belonging to the 

fronto-parietal network, one belonging to the salience network, one belonging to the ventral 

attention network, and three belonging to an undefined network, though all regions were within 

anterior portions of the frontal lobe and are considered part of the limbic network in other 

parcellations (e.g., ref 22). With the exception of two links, all links from these developmental 

hubs were to regions of other cognitive networks, indicating that pairwise decreases in theta band 

coupling are largely specific to cognitive networks.  
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Figure 15. Pairwise increase in resting-state decoupling. 

Pairwise increases in decoupling between the top 5% of brain regions that showed age-related 

increases in decoupling (developmental hubs) and their respective top 5% pairwise interactions. 

Regions (little circles) are colored by the network to which they are affiliated. Link color 

represents the network affiliation to which the developmental hub belonged. The most significant 

pairwise increases occurred between regions of the default mode, frontoparietal, and salience 

networks to other cognitive networks. 
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3.3.6 PLV Mediation of Age and Impulsivity  

We have demonstrated a strong decrease in theta band phase locking, most strongly in frontal 

midline regions. Given the role of anterior prefrontal cortex and anterior temporal lobes in 

impulse control168 and the role of theta oscillations in cognitive control169, we sought to 

determine whether decreases in frontal theta PLV mediated the relationship between impulsivity 

and age. Mediation analysis was performed on PLV values within connections that had 

significant associations with 1) age (path A) and 2) impulsivity (while controlling for age; path 

B). Impulsivity, as measured by the UPPS-P, was negatively associated with age (β = -.333 , t = -

2.74, p = . 008), such that the oldest subjects reported the lowest levels of impulsivity (path C). 

To obtain a cluster of regions that significantly decreased in PLV as a function of age (path A), 

we submitted the individual subject matrices to the network-based statistic. A cluster composed 

of 49 regions with 122 links survived the permutation test (1000 samples). Similarly, we 

performed a median split on impulsivity to break the sample into a high impulsivity group and a 

low impulsivity group. Individual subject PLV matrices were once again submitted to the 

network-based statistic, controlling for age to determine whether PLV predicted impulsivity 

(path B).  A cluster composed of 13 regions with 14 links survived the permutation test (1000 

samples). Of the 14 links, three link were also significant in path A (i.e., PLV ~ Age). These 

three links comprising five distinct regions were submitted to three separate mediation analyses. 

The fist link (L1) was between the left superior frontal gyrus (MNI coordinates: -15.05, 64.73, 

13.29) and the right inferior frontal gyrus (MNI coordinates: 25.07, 7.38, -16.41); the second link 

(L2) was between the left temporal gyrus (MNI coordinates: -50.60, 9.26, -18.71) and right 

medial frontal gyrus (MNI coordinates: 12.40, 25.55, -16.38); and the third link (L3) was between 
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the left middle temporal gyrus (MNI coordinates: -44.87, 7.38, -34.85) and the right medial 

frontal gyrus (MNI coordinates: 12.40, 25.55, -16.38). 

Mediation analyses conducted on each ROI pair separately revealed that partialing out the 

variance each  of the three ROI pairs significantly attenuated the relationship between age and 

impulsivity (indirect pathway [path a*b], L1: β = -0.133 , 95% CI, -0.244, -0.017, p = .03; L2: β = 

-0.154 , 95% CI, -0.322, -0.023, p = .02; L3: β = -0.130, 95% CI, -0.251, -0.036, p = .003). For 

statistics on individual paths, see Figure 16B. These findings suggest the observed relationship 

between age and impulsivity is, in part, accounted for by the decoupling of theta oscillations 

during the resting-state between prefrontal cortex and the anterior temporal lobe. 
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Figure 16. Orbitofrontal/anterior temporal theta-band phase-locking mediates the 

relationship between age and impulsivity. 

(A) Anatomical location of mediation effect. Black nodes and link represent interactions 

mediating the relationship between age and impulsivity. Gray nodes and links represent a cluster 

of regions and their interactions for which a significant relationship between age and PLV 

existed. (B) Mediation model including statistics for specific paths. Note PLV of these three 

interactions fully mediated the relationship between age and impulsivity (difference in p-values 

between path C and paths in C’. 

3.4 INTERIM DISCUSSION 

Interactions between functional brain networks demonstrate a protracted development well into 

adolescence and early adulthood92,147,148. Likewise, electrophysiological studies have reported 

neural oscillations continue to mature throughout adolescence (for a review, see170). We sought 

to bridge these two avenues of research to characterize the developmental trajectory of resting-
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state network oscillations at fast timescales utilizing the excellent temporal resolution of MEG. 

Furthermore, we aimed to anchor developmental changes in resting-state oscillations to 

maturation of control abilities that occur during adolescence. We found an increase in theta-band 

decoupling that was stronger in frontal and midline regions, especially in higher-order cognitive 

networks. In parallel, many of the strongest pairwise increase in resting-state theta decoupling 

occurred between regions affiliated with the default mode, fronto-parietal, and salience networks. 

Furthermore, theta-band coupling between anterior frontal and temporal lobe regions mediated 

the relationship between age and impulsivity, providing an oscillatory mechanism for decreased 

impulsivity throughout development.   

Similar to early electrophysiological work using EEG to study coherence between 

cortical lobes171, we found a protracted development of frontal lobe interactions. In particular, 

the salience network, comprised of the anterior cingulate and anterior insula. Both of these 

regions are anatomical and functional hubs of the cortex52,172, with anatomical connections to 

several major brain systems. It has been proposed that midline frontal theta may act to entrain 

disparate neural systems when cognitive control is needed169. Here, we extend this idea in the 

resting-state, such that an increase in frontal theta decoupling may be an intrinsic marker for an 

increased ability for these regions to variably interact with disparate brain systems, enhancing the 

brain’s flexibility of cognitive systems throughout development during the resting-state.  

A network of regions in orbitofrontal and anterior temporal lobes also displayed a high 

rate of theta-band decoupling with development. Furthermore, interactions between this network 

and the salience network had the greatest rate of theta-band decoupling of any within- or 

between-network comparison (Figure 14a). Regions belonging to this network are often 

prescribed a role in impulse control and when lesioned, lead to greater impulsivity173,174. Here, 
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we showed evidence that several interactions between orbitofrontal and anterior temporal regions 

mediated the relationship between age and impulsivity. Theta-band oscillations may be the 

mechanism by which these regions communicate to execute impulse control, given the role of 

theta oscillations in control abilities169. Lending support to this theory, theta-band activity tends 

to flow from frontal regions to more posterior regions175. Though we cannot speak to the 

direction of information flow here, given the drastic increases in cognitive control abilities from 

adolescence to adulthood and role of frontal theta in this domain, further research should probe 

directly the relationship between frontal theta and increases in cognitive performance throughout 

development. 

Developmental decreases in phase-locking may be conceptualized as increases in noise. 

An increase in noise during the idle resting-state may be beneficial to the brain in the form of 

stochastic resonance and/or neural flexibility176. If the brain were to maintain one rigid 

configuration of interactions during rest, the flexibility required to create complex thought or 

initiate a rapid response to exogenously driven input would be hampered. Indeed, a prominent 

theory on the nature of resting-state is the sampling of multiple network configurations along an 

anatomical backbone135,141. If this is the case, brain networks require flexibility in the form of 

imperfectly coupled oscillators to maintain dynamics in networks. Evidence is accumulating 

more rapidly supporting the notion that the brain engages in multiple states (i.e., nonrandom and 

significantly differing network configurations)177,178, even as fast as once every 100-200 ms179. 

Additionally, several studies have found evidence for increased cortical variability throughout 

development45,176,180. Our findings here support these fMRI-based findings in that decreased 

phase-locking may represent an overall increase in variability58,181,182, though decoupling of 

oscillators may also be due to an overall increase in signal complexity. 
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Developmental changes in phase-locking should be largely unaffected by power within 

the same frequency band (but see ref 183). To assuage any concerns regarding potential artifactual 

effects of power, we first demonstrated that power in the 5-9 Hz frequency band did not change 

with age. Additionally, to control for relative theta power in our regression models of PLV and 

age, we included the power of each ROI and the interaction between each ROI pair as nuisance 

regressors.  

Our results provide electrophysiological evidence that decreases in theta-band coupling 

between higher-order networks underlies the transition from adolescence to adulthood. 

Furthermore, we provide a mechanism that contributes to decreases in impulsivity throughout 

adolescence. In the next chapter, we will probe frontal theta rhythms as a mechanism by which 

cognitive control, specifically cognitive flexibility, refines to adult levels.     
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4.0  DEVELOPMENT OF COGNITIVE FLEXIBILITY 

4.1 BACKGROUND 

Thus far, resting-state analyses have demonstrated a critical role for the anterior cingulate and 

insular cortices – core nodes of the cingulo-opercular/salience control network – in the 

developmental enhancements in control processes, including inhibitory control and impulsivity. 

In this chapter, we aim to directly test the function of these regions and broader control networks 

during cognitive flexibility, which is known to have a protracted development184. Cognitive 

flexibility refers to the ability of an organism to effectively switch between multiple goal states 

quickly and accurately. As such, cognitive flexibility is a core function of cognitive control185. 

Humans have the unique ability to rapidly and flexibly alternate between tasks requiring the 

instantiation of very different rule sets10, often signaled by a single cue externally driven cue, 

referred to here as exogenously-driven task switching. This form of cognitive flexibility hinges 

on a readiness to redirect attention away from old rule sets and orient attention to novel events.   

Cognitive flexibility as measured using task switching paradigms is driven by a core of 

‘flexible hubs’ (i.e., DLPFC and IPL) that comprise the canonical fronto-parietal 

network10,186,187. In addition to fronto-parietal regions, the ACC plays a central role in task 

switching. An extensive body of ERP, EEG, and MEG literature has consistently found a robust 

P3-like component in fronto-parietal regions in response to cue-based task switching188,189, 
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indicating an increase in activity several hundred millisecond after a subject has been cued to 

switch rule sets. Both task switching and novelty detection have been shown to elicit the P3 

response in humans190, likely due to the fact they both present a realization for the need to 

instantiate control133,169 requiring conflict to be resolved191 (i.e., an instance of cognitive 

flexibility). In all these tasks, a common spectral signature resides in the theta band (4-8 Hz) 

oscillations within the ACC and has been shown to be phase locked to the onset of the cue 

stimulus192. However, whether the ACC is functioning to solely resolve conflict and/or is playing 

a role in task switching reaction time directly remains debated193–195.  

The purpose of this section is to better understand temporal and frequency components 

underlying successful implementation of task switching processes as well as their developmental 

trajectories through adolescence. For the following reasons, we hypothesize age-related 

decreases in theta power during preparation to successfully switch between tasks. First, cognitive 

flexibility improves with development, indicating that when young subjects generate a correct 

response it would require greater effort, and thus greater need for cognitive control. Given theta 

band power scales with conflict resolution169, we expected adolescents would require greater 

theta band power to generate a correct response to conflict. Second, our MEG resting state 

results indicated age related decreases in ACC coupling reflecting a possible enhancement in the 

ability for control processing regions to flexibly adapt to changing demands. Lastly, the 

cingulum is one of the last major white matter tracts to fully mature83. Within increased 

myelination into adulthood, we reasoned this greater structural integration may afford the ACC 

the ability to instantiate a weaker signal to produce the same correct response with age. 

Additionally, given recent models of the interplay between ACC and regulatory regions within 
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the fronto-parietal network169,196,197, we predicted beta/gamma oscillatory power in the DLPFC 

would scale linearly with trial-to-trial fluctuations in RT on switch trials. 

4.2 METHODS 

4.2.1 Subjects 

Sixty-five subjects participated in our MEG study. Of those, eight subjects had poor EOG/ECG 

recordings, not allowing us to remove heartbeat and/or eye blink artifacts. An additional three 

subjects had > 2 cm head displacement and were thus discarded. Four subjects did not return for 

an MRI and thus did not have a structural MRI to which we could co-register the MEG data. 

Three subjects did not have > 15 switch trials and were thus not included in the final analysis. 

This left us with a total of 47 subjects for further analyses. Based on a questionnaire, none of the 

subjects, nor their first degree relatives, currently or previously had a psychiatric or neurological 

disorder. All participants gave written informed consent, and the University of Pittsburgh 

Institutional Review Board approved the study. Subjects were compensated monetarily for their 

participation in the study. 

4.2.2 Task Design 

In the Multi-Source Interference Task (MSIT; See Figure 17), subjects place their index, middle, 

and ring fingers on the buttons that correspond respectively to the numbers 1, 2, and 3. Trials 

begin with a colored crosshair cue (see paragraph below) presented for 500 ms, followed by a 
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horizontal display of three numbers (e.g., 1 0 0). Subjects are instructed to push the button of the 

finger corresponding to the unmatched number (1-index; 2-middle, 3-ring finger; correct answer 

= index finger above) as quickly and accurately as possible. Subjects fixate a gray crosshair until 

the beginning of the next trial (200 – 1300 ms). Trials last 2000 ms. 

The color of the crosshair cue at trial onset determines the trial type of which there are 

three: congruent (green crosshair), which is used elicit a motor response with a minimal 

‘cognitive’ response; incongruent (red crosshair), in which finger-to-number incongruence elicits 

inhibitory processes; and working memory (blue crosshair). Congruent trials present unmatched 

stimuli corresponding to the congruent finger mapping (e.g., 1 0 0). Incongruent trials present an 

unmatched number in a different location from the finger stimulus pair and flanked by two other 

non-zero numbers (e.g., 2 2 1). Because the unmatched number is located in a position 

incongruent with respect to the finger corresponding to it, finger-to-number incongruence is 

induced.  

The task is grouped into two main blocks – a pure block (PB), where subjects are 

presented the trial type with its corresponding crosshair color (e.g., all congruent trials cued by a 

green colored crosshair) and a mix block (MB), where cue colors change in a pseudorandom 

fashion. Each pure block consists of 35 trials, while each switch block consists of 60 trials with 

an average of 11 switch trials. Each block is separated by 60 seconds. Block order is randomized 

to control for any possible learning effects across blocks. For the remainder of this chapter, our 

analyses will focus on incongruent trials only. Our rationale for this was twofold: (1) effects of 

task switching (i.e., switch cost: switch trial performance – MB non-switch trial performance) 

were only present in switching to incongruent trials (see section 4.3.1), reflecting the notion that 

resources are only allocated for switching into a state eliciting to need for more control (i.e., one 
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requiring response inhibition); (2) We wanted to isolate processes related to switching into this 

state, rather than an easier task state (i.e., switching into congruent trials). Switching into a 

congruent or working memory trial from and incongruent trial set offloads resources related to 

response inhibition, making the switch to these trials a relatively easier process by which more 

automatic number-to-finger mapping ensues.  

 

 

 

Figure 17. MEG switch task design 

4.2.3 Structural MR Acquisition 

For each subject, we acquired a structural MRI to co-register MEG data for analyses in source 

space. Structural images were acquired using a sagittal magnetization-prepared rapid gradient-

echo sequence (repetition time [TR] = 2200 ms, echo time [TE] = 3.58 ms, flip angle = 9°, 

inversion time [TI] = 1000 ms, voxel size = 1mm isotropic). 
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4.2.4 MEG Acquisition 

MEG data were acquired using an Elekta Neuromag Vectorview MEG system (Elekta Oy) 

comprising 306 sensors arranged in triplets of two orthogonal planar gradiometers and one 

magnetometer, distributed to 102 locations. The MEG scanner was located inside a three-layer 

magnetically shielded room within the University of Pittsburgh Medical Center. The data were 

acquired continuously with a sampling rate of 1000 Hz. Head position relative to the MEG 

sensors was measured continuously throughout the recording period to allow off-line head 

movement correction. Two bipolar electrode pairs were used to record vertical and horizontal 

electro-oculogram (EOG) signals to monitor eye movement. 

4.2.5 MEG Data Processing  

For artifact removal, we first manually visually inspected every channel across all nine runs for 

noisy or flat channels and squid jumps. MEG data were then preprocessed off-line using the 

temporal signal space separation (tSSS) method as detailed in section 3.2.4. Lastly, the raw time 

series data were down-sampled to from 1000Hz to 250 Hz and concatenate across runs for 

artifact identification and removal. Subjects who had total head displacement  > 2 cm were 

excluded from further analyses (n=3).  

     Next we imported the structural MR data into Brainstorm198, defining 15,000 vertices 

(dipoles), representing the cortical envelope. We first defined the nasion point and left and right 

preauricular points. We then implemented an affine transformation to the MNI coordinate 

system.  Using the three fiducial points, we co-registered the MEG data in sensor space with 
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individual subject anatomy. We further refined this registration iteratively using digitized head 

points obtained during MEG data acquisition.  

     Next, the raw MEG time series were imported into Brainstorm. First, we imported a list of 

bad channels for each subject, removing these channels from inclusion in further analysis. We 

then removed 60Hz line noise using a notch filter. Using the EOG and ECG channels, we 

identified heart beat and eye blink events automatically, with subsequent manual inspection to 

ensure events were properly identified.  These events were used in the removal of artefactual 

components using the signal-space projection (SSP) approach as implemented in Brainstorm. 

Once these artifacts were removed, we manually inspected the data once more for any additional 

noisy segments of data to ensure any segments not corrected by the above automated methods 

were removed from further analyses.  

4.2.6 MEG Deconvolution  

To isolate neural responses related to task switching from the motor components of the task (i.e., 

the button press), we developed a deconvolution approach similar to those used in BOLD fMRI 

activation studies. From each subject’s concatenated data file, we estimated the time course of 

activity at the sensor level using a finite impulse response regression (FIR) model. FIR design 

matrices were constructed manually and applied to the sensor time series using in-house Matlab 

code. Sensors and events labeled as ‘bad’ (in addition to 1000ms around these noisy segments) 

were excluded from the model. Additionally, we only considered correct trials. We were 

interested in modeling the trial onset (0ms) up to one sample before the subsequent trial 

(1996ms, total of 499 samples), while removing activity related to the button push. Button 

pushes were modeled over a duration consisting of -1000ms to 3600ms (1151 samples) around 
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the button push event. These parameters were chosen manually after iteratively inspecting the 

data for a relaxation to baseline of motor-related activity. We modeled a total of 9 unique trial 

events (3 trial types: congruent, incongruent, working memory; each consisting of switch trials, 

non-switch trials within a mix block, and pure block trials) in addition to the button push. Signal 

drift was modeled as an 8th order Legendre polynomial time series. After deconvolution, data 

were baselined using the mean of 12 samples after cue onset (48ms), given this interval of time is 

well below the amount of time a neural response be elicited in primary visual cortex.  As an 

important aside, our task design did not include jitter between trials, as this deconvolution step 

was not anticipated during task design. Due to natural jitter in reaction times, we were able to 

isolate the motor response using a window longer than a trial duration (2000ms); however, we 

could only model a given trial as far as the duration of the trial due to a lack of jitter between 

subsequent trial onsets. That said, deconvolution allows us to conclude with certainty that the 

effects we observe in both the time and frequency domain are locked to the trial onset, rather 

than having mixed contributions from different trial events or any other ongoing background 

oscillations.  

4.2.7 Head Model, Inverse Model, and Warping   

At this step, we did not constrain the orientation of our dipoles, resulting in 3 vectors of data 

(x,y,z) for each dipole, totaling 45,000 dipoles (3 orthogonal orientations * 15,000 vertices). We 

used overlapping spheres as magnetic fields are far less sensitive to heterogeneity of tissue in the 

brain, skull and scalp than are the scalp potentials measured in EEG. This locally-fitted spheres 

approach achieves reasonable accuracy relative to more complex BEM-based methods199,200. A 

data covariance matrix was calculated over all trials and combined with the individual subject 



 91 

head model to a create a linearly constrained minimum variance (LCMV) beamformer201, 

projecting MEG sensor-level time courses to the cortical surface. Our choice in a LCMV 

beamformer over MNE was made after comparing inverse models from averaged deconvolved 

button presses in primary motor cortex and noting more focal activation using LCMV 

beamformer. Because we were interested in comparing task switching effects between subjects, 

we warped individual vertex time series to MNI space by taking the norm of the x,y, and z 

direction dipoles within each vertex and subtracting off a baseline period of 50ms, starting at cue 

onset.   

 

4.2.8 Regions of Interest   

Subjects included in the MEG analysis completed the task in an fMRI scanner on a separate day. 

To avoid any issues of circularity when discerning task effects in the MEG data, we defined 

regions of interest using fMRI. Individual subject BOLD data were preprocessed and 

deconvolved to separate switch from non-switch trials. We then built a contrast of switch – non-

switch trials and subsequently averaged across all subjects to obtain an average map for which 

activity was significantly greater for switch trials than non-switch trials (cluster extent > 50 

voxels). Using this approach, we found a total of 11 ROIs that displayed greater activity during 

switch trials, relative to non-switch trials, including bilateral dorsolateral prefrontal cortex 

(DLPFC), bilaterial inferior parietal lobe (IPL), bilateral superior parietal lobe (SPL), bilateral 

anterior insula (aIns), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and 

middle cingulate cortex (MCC). These MNI coordinates were subsequently used as centers of 
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mass for MEG ROIs (Table 3). For the MEG data, these center coordinate were then grown to 

include ~100 vertices per ROI.   

 

ROI Label X  Y Z 

Right IPL 42 -48 51 

Left IPL -41 -38 48 

Left DLPFC -47 16 29 

PCC 0 -42 24 

MidCingulate 0 -23 45 

Right aIns 38 20 4 

Left aIns -35 19 4 

Left SPL -35 -61 50 

Right SPL 38 -62 51 

Right DLPFC 47 15 30 

ACC 0 25 20 

Table 3. ROI MNI coordinates 

4.2.9 Average Time Courses  

Our first objective was to obtain an average of activity within each ROI related to task switching. 

First, we calculated the average time course of activity across all subjects for switch and non-

switch trials, separately. This resulted in an average time course of activity for each vertex across 

the cortical surface for switch and non-switch trials. We then extracted the time series of activity 

for each ROI as defined above while aligning the sign of the current fluctuations across the 
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vertices.  Next, we contrasted switch vs. non-switch trials by subtracting single-subject averaged 

non-switch trials from averaged switch trials for each ROI and subsequently averaging these 

differences across subjects. This procedure resulted in difference time courses for each ROI. To 

test for significant difference between task conditions at each time point, we created a sampling 

distribution by permuting the condition labels (switch, non-switch) and computing a one-sample 

t-test at each time point (HA: switch > non-switch) for each ROI separately. This resulted in a t-

statistic at each time point for every ROI.  

4.2.10 Frequency Components of Task Switching  

We obtained an estimate of power at each frequency in the interval from 1-50 Hz for each ROI. 

To this end, we executed a fast Fourier transform (FFT) using the full trial length (cue onset at 

0ms – 1996ms post cue onset) data from the individual subject switch and non-switch trials 

separately. We then subtracted the resulting power spectrum densities of non-switch trials from 

switch trials and removed the mean offset, given switch trials in general were found to have 

greater power across all frequencies. We then performed a one-tailed one-sample student’s t-test 

to test each positive deviation from zero in the difference of switch vs. non-switch conditions.   

4.2.11 Time/Frequency decomposition  

After observing significant effects within specific frequency bands (i.e., theta and alpha, 4-14 

Hz) across many ROIs, we next wanted to determine the approximate time interval in which the 

power in these frequency bands significantly increased. To decompose the data its frequency 

components across time, we convolved ROI time-domain data with a series of complex Morlet 
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wavelets in a frequency interval of 3-50 Hz, using a 3-cycle wavelet. Wavelets have high 

frequency resolution at lower frequencies, but the temporal resolution is poor. However, the poor 

temporal resolution is not a limitation here, given the deconvolution step outlined above in 

section 4.2.6. We can be confident that any fluctuations in activity in the time domain are well 

localized in time (4ms) and are locked to the trial onset. Similarly, any oscillations we observe 

would also be locked to the trial onset. Altogether, at the relative low frequencies that we are 

interested in, with relative good precision, we can determine the frequency and timing of switch 

effects.  

4.2.12 Brain regions predicting trial-to-trial differences in reaction time  

Next, we aimed to determine brain regions that demonstrated a significant trial-level relationship 

with RT. Moreover, we wanted to isolate brain regions that exhibited this relationship in switch 

trials significantly more than non-switch trials. To this end, we categorized RTs into a fast and 

slow group via median split and re-deconvolved MEG sensor level data, resulting in patterns of 

brain activity corresponding to fast and slow reaction times. This procedure was executed for 

both switch and non-switch trials and projected into source space at the individual subject level 

and warped to MNI space. We then subtracted source level beamformer estimates of slow RT 

trials from fast RT trials, resulting in a contrast map of activity. This was done for both switch 

and non-switch trials separately, resulting in a contrast for both switch and non-switch trials. 

Because we were interested in brain regions exhibiting a significantly relationship with RT in 

switch trials extending beyond regions generally related to RT (regions exhibiting a significant 

relationship with RT in non-switch trials), we subtracted the non-switch contrast at every time 

step from the switch contrast and tested for significant differences at each time step using a one-
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sample paired t-test. We considered a brain/RT relationship significant only if an ROI difference 

time course was significantly positively related to RT for two contiguous time samples (HA: 

differencetn&tn+1 > 0).  

After observing that several regions significantly predicted trial-to-trial fluctuations in RT 

in switch trails vs. non-switch trials at specific time intervals, we wanted to determine the 

frequency component(s) underlying these differences. As was done earlier, the data was 

decomposed into its frequency components with a series of complex Morlet wavelets in a 

frequency interval of 3-50 Hz, using a 3-cycle wavelet. We did this in individual subject space 

on source level data. Here, we were building contrasts of contrast; thus, rather than calculating 

power across time, we calculated amplitude across time to retain the sign of the signal prior to 

contrasting. As was done in the time domain, the resulting time-frequency matrices for trials with 

slower RTs were subtracted from trials with faster RTs for switch and non-switch trials 

separately. This resulted in averaged contrast RT matrices for switch and non-switch trials. We 

then computed the differences between switch and non-switch trials and tested the differences 

for significance against 0 using a one-tailed one-sample student’s t-test.  

4.2.13 Relationship between power, age, and average reaction time  

Next, we sought to determine the developmental trajectory of oscillations underlying task 

switching. For each frequency in the interval from 3-50 Hz (1 Hz bins), we regressed age onto 

average power for each brain regions for switch and non-switch conditions separately. From 

there, we were interested in probing brain/behavior relationships within the frequency bands 

demonstrating a significant relationship with age. To that end, the relationship between power 

and average RT was determined by regressing subject’s average regional power onto their 
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average RTs, controlling for age. In the first step of this analysis, we binned and averaged 

oscillations into their canonical frequency bands (theta: 3-7 Hz; low alpha 8-10 Hz; high alpha: 

11-14 Hz; low beta: 15-22 Hz; high beta: 23-30 Hz; gamma: 30-50 Hz). If we observed both a 

relationship between frequency and age and between frequency and RT controlling for age, we 

ran a linear mixed effects model, testing the interaction of oscillatory power and age on average 

RTs.   

4.3 RESULTS 

4.3.1 Behavior 

In general, subjects performed worse on incongruent switch trials compared to incongruent non-

switch trails. Specifically, accuracy (% correct) on switch trials (M = 84.74, SD = 15.73) was 

significantly worse (t = -2.14, p = 0.03) than non-switch trials (M = 90.30, SD = 10.67). 

Additionally, reaction times (ms) on switch trials (M = 828, SD = 112) was significantly longer (t 

= 2.33, p = 0.02) than non-switch trials (M = 777, SD = 90). Developmentally, there was a 

negative trend level relationship between accuracy and age on switch trials (r = 0.28, p = 0.07); 

however, we did not find evidence for a relationship between age and average response time on 

switch trials (r = 0.04, p = 0.75). No differences in accuracy (t = -0.57, p = 0.57) or reaction 

times (t = 1.33, p = 0.18) were observed in the comparison of congruent switch vs. non-switch 

trials. There were also no differences in accuracy (t = 0.93, p = 0.35) or reaction times (t = -0.21, 

p = 0.83) for working memory switch vs. non-switch trials. For reasons listed in section 4.2.2, as 

well as these behavioral findings, the remainder of this chapter will focus on incongruent trials.   
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4.3.2 Regional effects of task switching 

First, we wanted to ensure regions that showed significantly more activation for switch compared 

to non-switch trials from the mix block (correct trials only) in the fMRI data also demonstrated 

significantly more activation in the MEG data. Because we were interested in switch effects, we 

contrasted the total activity for each ROI in an interval spanning 100-800 ms post cue 

presentation (trial onset). This window was chosen to isolate the effects that would be due solely 

to task switching. In conjunction with the fMRI data, all ROIs in the MEG data demonstrated 

significantly more activity in switch vs. non-switch trials (all t > 3.42, p < 0.05, FDR corrected; 

Figure 18A, 18B). Generally, most ROIs displayed significantly greater activity in switch vs. 

non-switch, with the greatest differences occurring in an interval from 100-800 ms. To probe 

these effects further, we ran a permutation test to compare switch vs. non-switch activity at every 

time step within this same time interval (Figure 18C).  
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Figure 18. Spatiotemporal effects of task switching. 

(A) Average time courses of switch and non-switch trials separately. (B) Average difference time 

courses between switch and non-switch trials. Schematic of trial events are depicted in the 

bottom right panel. (C) Resulting t-statistics of one-tailed permutation paired t-test and each time 

step. 
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4.3.3 Frequency Components  

We found a significant condition (switch vs. non-switch) by frequency interaction for each ROI 

(all p < 0.05, FDR corrected; Figure 19A).  To determine the loci of the interaction, we 

computed the difference in the power spectrum densities for each ROI and further subtracted to 

mean difference between the two to observe effects beyond the general increase in power in 

switch trials (Figure 19B). In general, there is commonly increased activity in theta – beta bands 

during tasks requiring cognitive control. We subtracted the main difference off to isolate effects 

of task switching over and above this general increase in slower wave power. Significance was 

determined as a t-statistic greater than 2.75, corresponding to p < 0.05, FDR corrected across 

ROIs. In general, there were increases in theta band power in switch trials compared to non-

switch trials in bilateral DLPFC, bilateral insula, and along the cingulate, including separate 

regions in the anterior, mid, and posterior cingulate cortices. Additionally, there were increases 

in alpha band power in more posterior regions, such as bilateral IPL and SPL and the PCC. The 

bilateral DLPFC and MCC also showed significantly greater increases in alpha band power in 

the switch vs. non-switch condition. 
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Figure 19. Frequency components of task switching. 

(A) Average power spectra for switch and non-switch trials. Note overall greater activity across 

all frequency bands (B) Difference in power across frequencies in switch vs. non-switch 

conditions. Red line denotes equal amounts in power in both conditions. Deviations above zero 

and within gray shaded bars indicate significantly greater power in at a given frequency for 

switch compared to non-switch (p < 0.05, corrected). 
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4.3.4 Temporal specificity of increases in power during task switching  

Next, we aimed to determine the locus of time in which these increases in power occurred during 

task switching. For each subject, we decomposed the time series of activity of switch and non-

switch trials separately into their frequency components across the duration of the trial. We then 

contrasted the average of switch vs. non-switch conditions and subtracted the mean difference of 

the two conditions. The first observable increases in theta power across several ROIs, including 

the ACC, began shortly after the cue presentation (within 200 ms) signaling the need to switch 

(Figure 20). The bilateral DLPFC, ACC, and left IPL all showed two dissociable peaks in theta 

band activity during task switching, occurring shortly after cue presentation (~200 ms) and again 

after the mean of the button pushes (~1400 ms). Furthermore, because our deconvolution 

procedure accounts for any trial-to-trial differences in the time courses of activity that would 

arise trivially from temporal shifts of motor preparation and execution signals, the observed 

differences here correspond to those changes in MEG signal amplitude that are associated with 

task switching processes.   
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Figure 20. Time/Frequency decomposition of switch vs. non-switch contrast. 

4.3.5 Regional contributions to trial-to-trial fluctuations in reaction time during task 

switching 

In the context of task switching, trial-to-trial behavioral variability can be conceived of as 

resulting from two distinct classes of neural variability. The first class of behavior-relevant 

neural variability is that which affects the processes supporting the performance requirements of 

a particular rule set. For instance, in the congruent task condition, variability in behavioral 

performance could be produced by trial-to-trial fluctuations in the activity of neurons within 

brain areas that support perceptual or decision making processes; for incongruent trials, neural 

variability affecting response inhibition processes may additionally affect behavioral 

performance. Importantly, this kind of neural variability can, in principle, influence behavioral 
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variability regardless of whether a trial occurs within a switching or non-switching context. The 

second class of neural variability is that which impacts neural processes related to either the act 

of switching into a particular rule set or maintaining an appropriate state of readiness in 

anticipation of switching rule states. This kind of neural variability will influence behavioral 

performance either during trials that that constitute a switch event –e.g. an incongruent trial 

immediately following any trials that occur within the context of a switch block. The goal for the 

next series of analyses is to isolate the neural sources of behavioral variability that are specific to 

task switching processes and to determine when they occur within the time course of task-related 

neural events. 

To dissociate the contributions to trial-to-trial differences in RT from task switching-

related neural variability and neural variability specifically related to the demands of response 

inhibition, we separately estimated time courses of activity for the trials with the fastest and 

slowest RTs (defined by median split) within incongruent-switch and incongruent-non-switch 

trials. Contrasting fast and slow RT time courses within each condition reveals the regions and 

times at which trial-to-trial fluctuations in neural activity are associated with variations in 

behavioral performance. To determine the regions whose contributions to RT variability were 

specifically related to task switching processes, we calculated the difference between fast vs. 

slow RT contrasts, subtracting the switch contrast from the non-switch. We found that nine out 

of the eleven ROIs demonstrated a significantly greater relationship with RT in the switch trials 

compared to non-switch trials at various points in time in an interval from 50ms – 500ms post 

switch cue (Figure 21). Of these nine regions, the right IPL was the first region to predict faster 

RTs at 64-72 ms post switch (p < 0.05). To understand the frequency components(s) contributing 

to these effects, we decomposed the data into its frequency components over time, following the 
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same contrast logic as the time domain analysis (Figure 22). In the right IPL, alpha/low beta 

band and gamma band activity (~10-20 Hz and ~40 Hz) was correlated with faster RTs on switch 

trials to a significantly greater extent than non-switch trials. A similar pattern of significance was 

observed in low beta band oscillations (~14-22 Hz) in the bilateral aIns and bilateral SPL. 

Additionally, gamma band oscillations (~40-50 Hz) in the left DLPFC and bilateral insula 

correlated with faster RTs on switch trials to a significantly greater extent than non-switch trials. 

Thus regions of the fronto-parietal network predicted trial-to-trial fluctuations in reaction times 

when task switching; however, the ACC did not, providing support for the notion that the ACC 

functions primarily as a conflict signal in the context of task switching.  

We will be conducting follow up analyses in which we will enter trial by trial RTs into 

the deconvolution matrix to truly relate trial-to-trial fluctuations in activity to trial-to-trial RTs, 

rather than doing a median split. 
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Figure 21. Regions displaying significantly more ability to predict RT in the switch 

vs. non-switch condition in the time-domain. 
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Figure 22. Regions displaying significantly more ability to predict RT in the switch 

vs. non-switch condition in the frequency domain as a function of time. 
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The top panel represents power as a function of frequency and time for each ROI. The bottom 

panel shows areas of the time/frequency shows the frequencies and time intervals in which there 

was a more significant relationship between power and RT. Note the lack of a relationship in the 

ACC. 

 

4.3.6 Relationship between average power and average RT during task switching  

Next, we asked whether power in any frequency band within each ROI predicted average RT. 

First, we regressed the difference in theta band power (switch – non-switch) against subject’s 

switch cost (average RT on switch – non-switch trials), controlling for age. We found a positive 

linear relationship between the difference in ACC theta power and switch cost (t = 2.52, p = 

0.01), indicating greater ACC activity in switch vs. non-switch trials results in a slowing of 

average RT. To further probe the locus of this effect, we regressed ACC theta band power on RT 

for switch and non-switch trials separately, controlling for age in both models. ACC theta band 

power demonstrated a significant positive relationship with RT in the switch condition (t = 2.96, 

p = 0.005) but not in the non-switch condition (t = 0.10, p = 0.91).  

Alpha band oscillations (8-10 Hz) in left IPL, bilateral DLPFC, and right aIns followed a 

similar trajectory. Here, we found a positive linear relationship between the difference in alpha 

power and switch cost in the left IPL (t = 2.73, p = 0.009), left DLPFC (t = 2.58, p = 0.01), right 

DLPFC (t = 2.48, p = 0.02), and right aIns (t = 2.29, p = 0.03) indicating greater alpha band 

activity in the regions in switch vs. non-switch trials results in a slowing of RT, on average. For 

each of these ROIs, we then regressed alpha band power on RT for switch and non-switch trials 

separately, controlling for age in both models. Alpha band power demonstrated a significant 
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positive relationship with RT in the switch condition for the left IPL (t = -2.05, p = 0.04); left 

DLPFC (t = 2.12,  p = 0.04), and right aIns (t = 2.29, p = 0.03) but not in the non-switch 

condition (all p > 0.05).  The dissociation of effects by condition for these regions within these 

frequency bands indicates the behavioral relevance of these neural effects is specific to task 

switching rather than purely motor preparation or other computations not related to task 

switching.  

4.3.7 Relationship between power and age during task switching  

Given the increase in power observed in switch vs. non-switch trials and the predominance of 

theta band activity across several regions involved in task switching, we next wanted to 

determine which frequencies demonstrated a significant relationship with age. All reported 

intervals that exhibited a significant relationship with age were FDR corrected at p < 0.05. We 

observed a significant developmental decreases in power during switch trials within the theta 

band for the ACC (4-7 Hz; Figure 23A), MCC (6-8 Hz; Fig Figure 23B), right DLPFC (5-6Hz; 

Figure 23C), left DLPFC (5 Hz; Figure 23D), left IPL (7-8 Hz; Figure 23E), and left aIns (6-10 

Hz; Figure 23F). Additional age-related decreases in power were observed within the gamma 

band in the left DLPFC (43-44 Hz) and the left IPL (37-38 Hz). For non-switch trials, the only 

developmental effect we observed was in the left aIns. Here, there was a significant increase in 

power across development in the interval from 12-13 Hz.  
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Figure 23. Changes in power across development in switch vs. non-switch trials.  

Each plot demonstrates the T-statistic of the age regressor on power as a function of 

frequency. Blue traces represent switch trials, whereas red traces represent non-switch trials. 

Black horizontal line denotes significance threshold after correction for multiple comparisons. A 

= Anterior cingulate cortex; B = Mid cingulate cortex; C = Right dorsolateral prefrontal cortex; 

D = Left dorsolateral prefrontal cortex; E = Left inferior parietal lobe; F = Left anterior insula. 

4.3.8 Interaction between power and age on RT during task switching  

Because we observed both a relationship between theta/alpha power and RT during task 

switching across several regions, in addition to power and age, we ran a linear mixed effects 
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model, testing the interaction of normalized (switch minus non-switch) power and age on 

average normalized RTs (i.e., switch – non-switch RTs) for each region/frequency band pair 

separately. There was a weak interaction between ACC theta band power and age (F(1,46) = 4.25, 

t = -2.06, p = 0.05; Figure 24), such that greater ACC theta band power results in a slightly 

greater switch cost during adolescence than in adulthood (t = 1.97, p = .048, though ACC switch 

power still scales linearly with average RT in adults (t = 2.21, p = 0.03).  There was also a 

significant interaction between right aIns alpha band power and age (F(1,46) = 4.94, t = -2.22 , p 

= 0.03; Figure 25). Similar to ACC theta band power, adolescents exhibiting high right aIns 

power incurred a significantly greater average switch cost than those exhibiting low right aIns 

alpha power (t = 2.14, p = 0.044); however, in contrast to ACC theta power, there was no 

relationship between right aIns power and switch cost in adults (t = -0.36, p = 0.71). No other 

region demonstrated a power/age interaction (all p > 0.05). In sum, adolescents demonstrated 

increased slow wave (theta/alpha) power when incurring a greater switch cost to a greater extent 

that adults within core regions of the brain’s cingulo-opercular/salience network.  

 



 111 

 

Figure 24. Interaction between ACC theta band power and age predicting average 

RT switch cost. 

 

 

 

Figure 25. Interaction between right aIns alpha band power and age predicting 

average RT switch cost. 
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4.4 INTERIM DISCUSSION 

We sought to characterize the spatiotemporal profile of task switching and its protracted 

development in adolescence and early adulthood. Our results provide evidence that: (1) task 

switching is characterized by a network of brain regions that comprise core regions of cognitive 

control networks, including the ACC, bilateral insula, bilateral DLPFC, and bilateral parietal 

association cortices; (2) theta band ACC scales linearly and positively with average reaction time 

but not trial-to-trial reaction time, indicating theta band oscillations in the ACC underlie conflict 

signaling arising from an exogenous cue switch signal; (3) a network of brain regions oscillating 

in the beta/gamma band, including the bilateral insula, IPL, DLPFC demonstrate greater activity 

preceding more rapid motor response during task switching at the single trial level (4) slower 

frequency power, specifically in the theta and alpha band (4-14 Hz) within the DLPFC, IPL and 

midline regions decrease into adulthood; (5) the relationship between ACC theta power and 

average RT is stronger during adolescence than in adulthood, suggesting adolescence require 

greater recruitment of ACC neurons to resolve conflict when switching between tasks133,191,202. 

These findings suggest that foundational aspects of oscillatory activity underlying task switching 

are present by adolescence. However, before adulthood it is more effortful to task switch 

requiring greater instantiation of cognitive control reflected in greater theta power through 

adolescence compared to adulthood. See gen discussion  

4.4.1 Differential contributions of the ACC, DLPFC, and IPL in task switching  

In this study, we found increases in the ACC in both switch and non-switch trials, with 

significantly greater activity in switch trials compared to non-switch trials in a window of time 
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from ~100-800 ms post switch cue presentation. This indicates that the ACC plays a key role in 

task switching specifically. The relationship between average ACC theta power and average RT, 

but the lack thereof at the single trial level, indicates that the ACC is not playing a role in the 

modulation of the motor response during task switching per se, but rather it is likely related to 

the average conflict/effort baseline and foundation of temporal coordination for subsequent 

adaptation169,203. As a follow-up to this, we subtracted average RTs from the pure block trials 

from average non-switch RTs from the mixed blocks (Appendix A.5, Figure 28). We then 

correlated this value with the average switch cost across subjects and did not observe a 

significant relationship. Given this finding, coupled with the early increase in ACC theta power, 

it is unlikely that the ACC is playing a direct regulatory/adaptive role in task switching. Rather, it 

appears the ACC is more likely functioning as to resolve conflict associated with task switching 

within a broader network of regions more directly related to the regulation of control (i.e., 

DLPFC and IPL), rather than being involved in the regulatory processes itself as proposed by 

other groups204,205. These data are consistent with recent theories of ACC functioning within the 

domain of cognitive control133. 

There is mounting evidence that the DLPFC is a critical region for the adaptation of 

behavior following conflict. The IPL was the first region temporally to contribute significantly to 

faster RTs on switch trials, over and above its contribution to RT in general (i.e., IPL/RT 

relationship in non-switch trials). This may be related to an early increase in attention that is 

related to the changing colored cue indicating the need to switch into a new task state.  

The DLPFC/IPL and ACC are part of two largely parallel control networks15, though 

anatomical evidence suggest reciprocal connections between these two regions do exist, but their 

connectivity strength is specific to the cytoarchitectonic regions206.  The DLPFC and IPL are 
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hubs within the fronto-parietal network, while the ACC and aIns are core nodes of the cingulo-

opercular/salience network15. The fronto-parietal network has been shown to be critical for task 

adaptation and task switching10, while the cingulo-opercular network is more involved in the 

maintenance of control, including monitoring and updating. Thus, the fronto-parietal network 

often is associated with more transient control, while the cingulo-opercular network is associated 

with more stable forms of control. The rapid and transient increase in beta/gamma band 

oscillations in the DLPFC and IPL contributing to faster RTs on switch trials is in line with this 

interpretation of the functionality of the fronto-parietal network. Conversely, the lack of a trial-

to-trial relationship between RT and ACC theta power (as well as alpha band oscillations in 

fronto-parietal regions) but the presence of a positive relationship on average, suggests that for a 

given individual, trial-to-trial variance in RT during task switching is more directly modulated by 

fronto-parietal activity in the beta/gamma frequency bands. Additionally, we found evidence that 

the aIns demonstrated predictive power in trial-to-trial fluctuations in RT during switch trials 

more significantly than non-switch trials may indicate this regions involvement as a switch board 

between these two control networks53, which otherwise function in parallel. 

4.4.2 Developmental decreases in theta/alpha power  

Developmental decreases in relatively slower frequency power has been found both across many 

task states and in the resting state170.  The age related decrease in theta and alpha oscillations 

within the ROIs surveyed may be indicative of greater need to instantiate control before 

adulthood, given these effects are not related directly to task adaptation (i.e., to trial to trial 

fluctuations in RT). This is supported by the result that adults demonstrated an increase in theta 

power when incurring a greater switch cost, thus greater difficulty results in greater theta power. 
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In fact, adults engage ACC at greater levels than adolescents when they commit inhibitory 

errors113, further suggesting that greater ACC engagement supports cognitive control. This 

evidence indicates ACC theta band oscillations act to resolves conflict regardless of age. Thus, 

the foundational aspects of ACC functioning are online by adolescence. However, as one 

develops, ACC functioning becomes more refined, likely as a result of more successful 

implementation of conflict resolution as maturation occurs requiring less power to instantiate 

successful control in adulthood. 

 Alpha band oscillations are often prescribed an inhibitory role in brain functioning.  

Right aIns alpha band oscillations scaled positively with average RT, however, this effect was 

only observed during adolescence. Furthermore, we did not observe a significant decrease in 

alpha band oscillations within the right aIns. This result is in agreement with greater theta power 

reflecting increased effort when young requiring, in this instance, the significant engagement of 

inhibitory processes.  

4.4.3 Summary 

In this chapter we have shown that a wide network of regions underlying cognitive control 

demonstrated increased activity, most prominently in the slower frequency (i.e., theta/alpha) 

bands during the preparation to successfully switch tasks. Furthermore, these oscillations were 

related to increased RT on average during task switching, likely reflecting conflict resolving 

signals. We also showed the increased higher frequency oscillations (beta/gamma band) within 

the fronto-parietal network, namely the DLPFC and IPL, are related to faster RTs on switch 

trials, over and above their typical relationship during motor execution. However, we did not 

find a relationship between ACC and trial-to-trial fluctuations in RT, lending further support to 
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accounts of ACC function in control signaling, rather than regulation directly133,191,202. Lastly we 

showed the strength of theta oscillations within the ACC decreased with development, likely 

underscoring the notion that adults can resolve conflict successfully with less neural ‘effort’ than 

adolescents. We are currently examining to role of the phase of ACC theta oscillations in task 

switching and developmental trajectories in the phase of ACC theta oscillations.  
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5.0  GENERAL DISCUSSION 

Components of cognitive control, including inhibitory control and cognitive flexibility, continue 

to improve through adolescence13,69. The experiments conceptualized and executed in this 

dissertation sought to characterize 1. the topology of developmental differences in component 

(i.e., network) interactions underlying the development of cognitive control; 2. the oscillatory 

contributions of these networks to the development of cognitive control, both in the resting-state 

and 3. while subjects performed a task probing cognitive flexibility.  

 First (Chapter 2), using fMRI we found that network organization of resting state 

networks remained stable throughout adolescence. That is, the same network topology was 

present from childhood to adulthood, suggesting that network organization may be a 

foundational aspect of higher-order cognitive functions. However, the correlation strength 

between the cingulo-opercular/salience network, which underlies that ability to sustain cognitive 

control15,48, to other brain networks increased significantly through adolescence in tandem with 

improvements in cognitive control performance. These findings are important as they indicate 

that specific to the transition to adult level cognitive control is the ability for networks specific to 

sustaining cognitive control to impact networks that determine action, while other critical 

components of network dynamics are already online (network organization and integration 

between networks that support transient cognitive components and sensorimotor processes). 
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To probe the neural basis of developmental changes in interactions between networks, we 

next (Chapter 3) characterized age-related differences in resting state network oscillations and 

their association with impulsivity, a marker of cognitive control. Results indicated that coupling 

between network ROIs, defined by phase locking, were already online across most frequency 

ranges that have been associated with cognition (alpha and beta (10-30 Hz)), further supporting 

our findings from rsfMRI indicating that network organization is online by childhood. In 

contrast, we found age-related changes specific to the theta band (5-9 Hz), a frequency interval 

that is associated with the instantiation of cognitive control within midline frontal regions169. In 

line with this regional specificity of cortical theta band oscillations, we found age-related 

decreases in the strength of coupling between ROIs that was predominantly in frontal and 

midline regions. These regions comprise the default mode, frontoparietal, and salience networks, 

with the greatest decreases in coupling occurring within the salience network. Furthermore, theta 

band coupling between anterior frontal and temporal lobe regions mediated age-related decreases 

in impulsivity, such that less coupling was associated with less impulsivity.  

Decreases in ACC theta phase coupling during rest may be an intrinsic marker for an 

increased ability for these regions to variably interact with disparate brain systems, enhancing the 

brain’s flexibility of cognitive systems throughout development during the resting-state. 

Evidence is accumulating supporting the notion that the brain engages in multiple states177,178, as 

rapidly as once every 100-200 ms179. Neural inflexibility during rest would not allow for the 

exploration of multiple network states along the brain’s functional backbone, which is thought to 

be a primary function of resting state interactions135,178. Thus, decoupling of oscillations across 

brain networks may be the mechanism by which network flexibility enables dynamic network 

configuration enabling greater integration at rest.  
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Together, these findings suggest that crosstalk between ROI’s that support the ability to 

instantiate and sustain cognitive control becomes less committed with age. We propose that 

perhaps an ease in the commitment of ROIs interacting with one another with age may support 

increased flexibility to more readily switch engagement with changing task demands into 

adulthood. We recognize that this finding initially appears at odds with our rsfMRI finding 

showing increases in integration between cingulo-opercular/salience networks and other 

networks. However, we propose that we may be characterizing different aspects of change in 

similar processes. BOLD time courses in rsfMRI may capture a general effectiveness of the 

ability for networks to collaborate, while the refined timescale of neural oscillations measured by 

MEG may show the variability in regional interactions that contribute to enhanced network 

integration. The fact that both approaches show age-related changes in the same cognitive 

domain of the ability to sustain cognitive control is compelling in highlighting that specialization 

is specific to this more metacognitive aspect of cognitive control, namely the ability to sustain a 

state of cognitive control. Future studies, which we are presently investigating, should probe the 

relationship between BOLD and MEG oscillations to better understand shared neural 

mechanisms. 

Finally, given the robust developmental effects within the cingulo-opercular/salience 

network, both in this dissertation and in other developmental literature90,98,99,113, we next wanted 

to probe the development of this network in the context of cognitive flexibility (i.e., transient 

control) by using a task approach (Chapter 4). Both of our resting state studies showed age-

related changes involving core regions within the salience network (i.e., ACC and aIns, which 

are anatomical and functional hubs), which is involved in both sustained and transient aspects of 

cognitive control15,50,186. Thus, we hypothesized their engagement during task switching would 
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play an important role in development. Results showed that theta band oscillations, which play a 

central role in the instantiation of cognitive control133,169,  were related to increased RT on 

average (but not trial-to-trial) during task switching, likely reflecting conflict-resolution 

signals191,202. In line with our resting state MEG findings, we found evidence that the strength of 

theta oscillations within the ACC decreased with development. Importantly, this changes was 

observed in the context of no age-related differences in task switching performance. Together, 

these findings may reflect that adults can resolve conflict successfully with less neural ‘effort’ 

than adolescents can. Adult studies show that there are increases in theta oscillations with 

increasing cognitive load207,208, supporting our notion that greater theta in adolescence may 

reflect greater cognitive effort. Thus, adolescents displaying greater theta band coupling at rest 

and concomitant increases in theta power during task suggest that neural processes related to 

theta in particular underlie improvements in cognitive control into adulthood. An important 

implication is that adolescents can show adult level performance and engage similar neural 

processes, indicating that base cognitive processes are online. However, they do not have ability 

to readily and flexibly engage them as well as adults, supporting the notion that adolescence is a 

period in the refinement in neural processes and interactions underlying cognitive control.  

Development brings greater integration and potentially greater flexibility between the 

cingulo-opercular/salience network, supporting sustained cognitive control15,147, and regions that 

underlie action output such as the somatomotor networks, resulting in the ability to generate 

quicker execution of successful cognitive control signals133. We also found that integration 

between the cingulo-opercular/salience network and regions involved in transient control (i.e., 

DLPFC and IPL) increased throughout adolescence (Chapter 2). Given our finding of the lack of 

a relationship between trial-to-trial ACC theta band activity and RT in a task switching 
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paradigm, the influence of ACC activity in the context of cognitive flexibility is likely mediated, 

at least partially, through other regulatory systems, such as the DLPFC, or more broadly, the 

fronto-parietal network48,186. One compelling possibility is that the conflict signal generated in 

the ACC is passed to the anterior insula, which then reorients brain networks to regulate behavior 

towards a successful goal state55.   

During adolescence important structural changes are occurring that may be associated 

with our results. In particular, the cingulum, a white matter tract that provides connectivity 

between frontal and posterior midline regions, continues to show increases in white matter 

integrity into adulthood 83,122,209. Myelination is a primary contributor to white matter integrity 

and is known to speed up neural processing, as well as protecting the integrity of signaling210. 

Thus, increased myelination of the cingulum would afford greater connectivity of the salience 

network (i.e., ACC and aIns) supporting the ability to more effectively sustain a cognitive 

control state while being able to flexibly interact with other systems210. The transition to adult 

level cognition then would reflect increased flexibility of theta band oscillations during rest 

while requiring a weaker signal into adulthood to instantiate the required level of cognitive 

control. 

5.1 CLOSING REMARKS 

Together our studies identify that critical to the transition to adult level cognition is engagement 

of the salience network and its component regions. We found that it increases its interactions 

with other networks, supporting improvements in cognitive control. Increases in salience 

network integration at rest likely affords this network greater flexibility at rest and more effective 
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engagement of transient control systems needed to implement cognitive flexibility. The systems 

supporting transient components of cognitive control itself, such as the frontoparietal network 

are on line by childhood. Taken together, these results support the model that by adolescence, 

foundational aspects of cognitive control are available, but the ability to effectively engage them 

continues to improve into adulthood. This active strengthening of control processes through 

adolescence may be critical in the maturation of cognitive control systems that, once established, 

switch to a mode of flexible engagement supporting the ability to readily integrate information 

from cognitive and default networks underlying adult level cognition. A break in this active 

strengthening of cognitive control brain systems may contribute to abnormal maturation, such as 

in psychopathology. 
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APPENDIX A 

A.1 FIGURES 

 

Figure 26. Normalized mutual information between individual subjects and adults. 
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Figure 27. Participation coefficient is robust to network density. 

Y-axis represents participation coefficient (PC) for the representative network density. X-axis 

represents mean PC across network densities. 

 

 



 125 

A.2 TABLES 

 

Table 4. Stable network organization is not dependent on network density 

 

 



 126 

 

Table 5. Regional increases in participation coefficient. 

DM = default mode network; SM = somatomotor network; Vis = visual network; CO/S = 

cingulo-opercular/salience network; FP = fronto-parietal network; w/in = degree change in 

within-network connectivity; b/w = degree change in between-network connectivity. Each cell 

within each of these columns represents the change in degree.  

	

Contrast ROI Hemisphere Network Δ Degree DM SM Vis CO/S FP w/in b/w 
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Culmen R DM 2 0 0 2 0 0 0 2 

Precuneus L SM 2 1 -4 3 1 1 -5 7 

Postcentral G. R SM 1 -1 -5 4 1 2 -5 6 

Insula R CO/S 14 2 9 2 1 0 1 13 

Postcentral G. L SM 17 3 -1 11 3 2 -1 18 

Middle Occipital L VIS 16 6 5 0 5 0 0 16 

Lingual R VIS 12 1 8 1 0 2 1 11 

Parahippocampal G. R VIS 11 0 8 2 0 1 2 9 

Lingual L VIS 4 2 2 -1 0 1 -1 5 

Cuneus L VIS 23 3 8 6 3 3 6 17 

Lingual L VIS 5 2 1 1 0 1 1 4 

Middle Occipital R VIS 9 2 5 0 0 2 0 9 

Middle Occipital L VIS 9 3 4 0 0 2 0 9 

Cuneus R VIS 6 3 2 -2 0 3 -2 8 

Middle Occipital L VIS 8 2 3 2 0 1 2 6 

Anterior Cingulate L CO/S -5 0 1 0 -6 0 -6 1 

Anterior Cingulate L CO/S 1 1 1 -1 -3 3 -3 4 

Thalamus R CO/S -6 1 1 1 -8 -1 -8 2 

Thalamus R CO/S 1 -3 4 0 -5 -6 -5 6 

Thalamus L CO/S 0 2 1 2 -5 0 -5 5 

Lentiform L CO/S 12 2 6 1 3 0 3 9 

Lentiform L CO/S 21 6 7 0 3 5 3 18 

Lentiform R CO/S 2 0 4 0 -1 -1 -1 3 

Lentiform R CO/S 4 1 3 1 -1 0 -1 5 

Thalamus R CO/S 6 7 1 -1 -6 5 -6 12 

Declive L DM 12 0 6 -1 7 0 0 12 
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Orbital G. R DM 4 -1 0 0 5 0 -1 5 

Paracentral G.  L SM 7 2 3 -1 0 3 3 4 

Postcentral G. R SM 12 -1 5 7 0 1 5 7 

Precentral G. L SM 10 0 4 6 0 0 4 6 

Precentral G. L SM 13 0 6 3 2 2 6 7 

Precentral G. L SM 16 0 11 6 -1 0 11 5 

Postcentral G. L SM 13 0 2 8 0 3 2 11 

Postcentral G. L SM 8 -1 2 5 0 2 2 6 

Inferior Parietal Lobe R SM 4 0 -1 0 2 3 -1 5 

Insula R CO/S 14 1 6 3 2 2 2 12 

Superior Temporal G. R SM 21 0 11 2 7 1 11 10 

Superior Temporal G. R SM 6 1 2 0 3 0 2 4 

Postcentral G. L SM 7 0 1 2 3 1 1 6 

Precentral G. R SM 2 -1 3 2 -3 0 -1 3 

Postcentral G. R SM 10 0 7 1 0 2 7 3 

Postcentral G. L SM 10 1 3 2 4 0 3 7 

Posterior Cingulate G. L DM 5 -1 0 1 4 1 -1 6 

Cuneus L VIS 15 2 11 1 0 1 1 14 

Precuneus R VIS 15 1 11 1 1 1 1 14 

Middle Occipital L VIS 7 2 2 0 1 2 0 7 
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Parahippocampal G. L DM 7 -2 3 3 0 3 -2 9 

Insula R SM 1 0 -3 1 3 0 -3 4 

Middle Temporal G. L DM 1 -5 3 3 -1 1 -5 6 

Angular G L DM 4 -1 2 1 1 1 -1 5 

Posterior Cingulate G. L DM 3 1 3 -1 0 0 1 2 

Superior Frontal G. L DM 2 -2 0 1 1 2 -2 4 

Medial Frontal G. R DM 8 4 1 1 2 1 4 4 

Medial Frontal G. R DM 5 0 0 0 4 1 0 5 

Medial Frontal G. L DM 4 1 1 0 2 0 1 3 

Medial Frontal G. L DM 2 0 -1 1 1 1 0 2 

Cuneus L VIS 5 3 1 -2 3 0 -2 7 

Lingual G. L VIS 8 5 2 -3 2 2 -3 11 

Lingual G. R VIS 6 1 1 1 2 1 1 5 

Lingual G. R VIS 3 1 0 -1 3 0 -1 4 

Inferior Parietal Lobe L FP 1 2 1 0 4 -6 -6 7 

Medial Frontal G. L CO/S 6 7 0 0 -6 5 -6 12 

Middle Frontal G. L FP 3 0 4 0 -1 0 0 3 
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A.3 WORKING MEMORY TASK 

The spatial working memory task is modeled on the classic Sternberg working memory 

paradigm. Cue stimuli were yellow circles appearing in one of eight possible locations. Each trial 

began with fixation followed by a presentation of three frames (300ms each) showing one cue 

stimulus at a time in either the same location or three different locations. A blank grid was 

inserted between the frames for 200ms to decrease chunking and motion perception. A 1500ms 

(50% of trials), 3000ms (25% of trials), or 4500ms (25% of trials) delay period was used to 

minimize habituated preparatory responses.  

Following the delay period, subjects made a button press to indicate whether a frame 

showing four circles located among eight possible locations had occurred in any of the previous 

cue locations (50% of trials), or were all in novel locations (50% of trials). A total of 144 high 

load trials and 144 low load trials were distributed across 12 runs, with the order randomized 

within runs. Inter-trial fixation intervals ranged between 1000 and 4500ms, with a short break 

between runs. The task was designed and run using E-Prime (Psychology Software Tools, Inc., 

Pittsburgh, PA). 
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A.4 TASK MEG DATA PREPROCESSING 

 

MEG data were first manually inspected for flat or noisy channels that can arise due to sensor 

malfunction, and these channels were removed from further analysis. The maximum number of 

channels excluded within a single participant was 23. As we did with the resting-state data, we 

attenuated environmental noise using the MaxFilter software to apply temporal signal space 

separation (tSSS). If at any time during a trial the total displacement of MEG sensors relative to 

the head was greater than 5mm, the trial was rejected from all future analyses. Across all 

participants, only 38 total trials were dropped for head motion, with at most 4 trials dropped for 

head motion within a single participant. 

The remaining preprocessing steps were applied using tools in the MNE Python 

package211. First, the data was band-pass filtered to the frequency range of interest (1-55Hz) 

using a 10-second overlap-add FIR filter. Cardiac, eye-blinks, and eye movement (saccade) 

artifacts are not identified by tSSS as they originate from the subject's body, so we used an 

independent components analysis (ICA) method to attenuate these artifacts, similar to the 

resting-state methods. The shapes of the automatically-detected artifactual components were 

checked visually to verify the selection of artifactual components, and the selection of 

components was then amended in the rare cases that the automatic procedure failed to identify 

components which showed clear EOG or ECG patterns. Finally, trials were screened for 

remaining sensor jumps, muscle artifacts, or saccade artifacts by checking for magnetometer 

amplitudes which exceeded 2.5*10-10 T or gradiometer amplitudes which exceeded 4*10-10 T/m; 

no further trials were rejected by these criteria. 
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During the experiment, trial event onset times were recorded into a digital stimulus 

channel through the E-Prime software. The event timings and codes from this channel were 

checked against E-Prime log files to remove spurious events which occurred in some runs due to 

software timing synchronization glitches. Based on this verified trial event data, trials with 

incorrect or omitted responses were removed, as we are interested only in trials during which 

working memory was successfully engaged. In addition, a total of 10 trials across all participants 

were rejected due to mismatches between stimulus channel event codes and timing reported by 

E-Prime, with at most 4 trials dropped from a single subject for this reason.  

After preprocessing, we extracted the first 1500 ms of the maintenance period from the 

task and calculated the PLV between each of the 333 ROIs in the 5-9 Hz frequency range, 

mimicking the resting-state analysis. For each ROI pair, we then regressed the PLV onto age, 

controlling for subject head motion. Next, the beta weight from the age regressor was extracted 

from each model and beta weight matrices were constructed. As in the resting-state analysis, we 

summed down the columns of the matrix to get a summed beta weight representing the total 

linear age effect. We then regressed this value for ROI against the ROI’s anatomical y-

coordinate and did not observe any posterior-to-anterior effects (t = -0.02, p = 0.98). 
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A.5 ACC THETA BAND OSCILLATIONS ARE NOT ADAPTIVE 

 

We asked whether or not the slowing of RT with greater ACC theta power was adaptive in that 

incurring a greater switch cost (higher RT on a switch trial relative to non-switch trials within the 

mix block) led to a dampening of cost in the mixed block (mix cost) (i.e., decrease in the 

difference between average RT on non-switch trials in the mix block and the average RT on 

trials in the pure block)48. Evidence for an adaptive role for a switch cost beyond the switch trial 

itself would manifest as a negative relationship between mix cost and switch cost.  

We calculated the mixing cost and regressed individual subject’s average switch cost 

onto mixing cost. We did not find support for this adaptive effect as there was no significant 

relationship between switch cost and mixing cost (r = -0.17, p = 0.26; Figure 28). In sum, the 

lack of an ACC/RT trial-to-trial relationship and lack of a switch cost/mixing cost effect provides 

strong evidence in favor of a control instantiation signal functioning to resolve conflict brought 

about by task switching via other regulatory regions within the switch trial itself. 
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Figure 28. Mixing cost vs. switching cost. 

The lack of evidence for a significant relationship between mixing cost and switch cost lends 

further support to the notion that increases in ACC theta band power prior to motor output are 

likely related solely to conflict related to task switching. 
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