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Bioinformatics can be divided into two phases, the first phase is conversion of raw data into 

processed data and the second phase is using processed data to obtain scientific results. It is 

important to consider the first “workflow” phase carefully, as there are many paths on the way to 

a final processed dataset. Some workflow paths may be different enough to influence the second 

phase, thereby, leading to ambiguity in the scientific literature. Workflow evaluation in 

bioinformatics enables the investigator to carefully plan how to process their data. A system that 

uses real data to determine the quality of a workflow can be based on the inherent biological 

relationships in the data itself. To our knowledge, a general software framework that performs real 

data-driven evaluation of bioinformatics workflows does not exist. 

The Evaluation and Utility of workFLOW (EUFLOW) decision-theoretic framework, 

developed and tested on gene expression data, enables users of bioinformatics workflows to 

evaluate alternative workflow paths using inherent biological relationships. EUFLOW is 

implemented as an R package to enable users to evaluate workflow data. EUFLOW is a framework 

which also permits user-guided utility and loss functions, which enables the type of analysis to be 

considered in the workflow path decision. This framework was originally developed to address the 

quality of identifier mapping services between UNIPROT accessions and Affymetrix probesets to 

facilitate integrated analysis1. An extension to this framework evaluates Affymetrix probeset 

filtering methods on real data from endometrial cancer and TCGA ovarian serous carcinoma 

samples.2 Further evaluation of RNASeq workflow paths demonstrates generalizability of the 
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EUFLOW framework. Three separate evaluations are performed including: 1) identifier filtering 

of features with biological attributes, 2) threshold selection parameter choice for low gene count 

features, and 3) commonly utilized RNASeq data workflow paths on The Cancer Genome Atlas 

data. 

The EUFLOW decision-theoretic framework developed and tested in my dissertation 

enables users of bioinformatics workflows to evaluate alternative workflow paths guided by 

inherent biological relationships and user utility.   
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PREFACE 

This work, in part, uses figures, concepts and extends upon a mathematical framework from three 

published works of which I am a primary contributor and author. An early foundation for this work 

was presented in, “Identifier mapping performance for integrating transcriptomics and proteomics 

experimental results”.3 Our research team evaluated mapping identifiers between gene expression 

and protein expression platforms using the data from these platforms as a guide. A decision-

theoretic framework utilized transcript to protein correlation across cancer samples. The 

mathematical framework was developed and published in,  “A decision theory paradigm for 

evaluating identifier mapping and filtering methods using data integration1”,  As the primary 

author, I extended the framework to include a full evaluation of identifier filtering of Affymetrix 

gene expression data in, “Improving cancer gene expression data quality through a TCGA data-

driven evaluation of identifier filtering”.2 In this dissertation, I present the application of this 

framework to gene expression data processing problems. I also present the software EUFLOW 

(Evaluation and Utility of workFLOWs) to enable users of bioinformatics data to apply the 

framework to their own workflow choices.  

In Chapter 1, I will present the basic terminology for this dissertation, and discuss the need 

for general evaluation of workflows using real data. Chapter 2 will review the proliferation of 

bioinformatics workflows, gene expression workflow paths, and the use of correlation as a means 

to evaluate gene expression data. In Chapter 3, I will briefly present the general mathematical 

framework of EUFLOW. In Chapter 4, I will present a vignette of the EUFLOW package, which 

enables users to execute the framework in the R environment as a package. In Chapter 5, I will 
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demonstrate the use of EUFLOW to evaluate RNASeq workflows. In Chapter 6, I will discuss the 

relevance of workflow evaluation to bioinformatics clinical implementation, the innovation of the 

EUFLOW framework, the generalizability of the EUFLOW framework, and my future direction 

of workflow evaluation including further development of the EUFLOW package.  

I thank my long-time advisor and friend, Roger Day, Sc.D., for his endless patience, 

devoted teaching, and vast impact on my life as a teacher and scientist. Dr. Day has coached me 

through writing, coding and the general organization of this work. Dr. Day has provided the 

foundation for the development of the EUFLOW package and has pointed me in the direction for 

my future work and endeavors.  

I thank, posthumously, M. Michael Barmada, Ph.D., who believed in the problem that I 

seek to solve in this dissertation, which gave me the courage to proceed in this direction. I also 

thank Dr. Barmada for his service as the committee chair, and also am thankful for his tutorage on 

the processing of RNASeq data.  

I also thank my recently appointed Chair and Major advisor, Vanathi Gopalakrishnan 

Ph.D., for her advice over the years and her time in the final weeks of this work for helping me 

with clarity, purpose, and writing of this work. 

   Thank you to my committee members for their advice and guidance over the years and in 

the recent days leading up to the defense; to Uma Chandran, Ph.D. for inspiring me to solve this 

problem from the very beginning and her guidance in the last decade; and to Harry Hochheiser 

Ph.D. for pushing me to complete this work, providing a new perspective, and helping me to 

assemble my committee. And for providing guidance over the years, thank you to Xinghua Lu 

PhD for helping state the challenges of this work. And finally, thank you to Daniel Weeks for 

joining my committee at a late stage of this dissertation and for providing examples of evaluations 
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related to this dissertation. Thank you to Toni Porterfield for the many times that she has made my 

life easier during my time at DBMI. Also, thank you to the countless fellow students over the years 

for their input and time that impacted my learning and research in a positive way. Thank you to 

the National Library of Medicine for supporting my training (T15 LM 007059). 

Thank you to my parents, Deborah and Kevin, for believing in me, encouraging me to 

follow my dreams and instilling a strong work ethic. To my children, Rachel, Riley, and Norah, I 

hope that you follow your own dreams and never quit until you achieve those dreams. And to my 

wife, Amyjo, thank you for pushing me every step along the way, believing in me, and providing 

me with the support and companionship that made this work possible. 
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1.0  INTRODUCTION 

The ultimate focus of bioinformatics is to provide sound and accurate representation of underlying 

biological mechanisms through scientific inquiry. Bioinformatics can be divided into two phases, 

the first phase is conversion of raw data into processed data and the second phase is performing an 

analysis to address the scientific inquiry. The tools employed by bioinformaticians allow for many 

alternative ways to process raw data based on their representation and origin. Bioinformaticians 

must be careful to consider how the data is processed before carrying out the goals of a scientific 

inquiry. Specifically there are many software tools to accomplish the data processing in gene 

microarray analysis, RNASeq analysis, miRNA target selection, proteomics, and other settings 

(Table 1). High-throughput platforms produce raw data (i.e. sequence or binding intensity) that is 

converted to information about the biological state (i.e. gene expression). The data processing 

activities form sequences called pipelines or workflow paths. Since there are often parameter 

settings, extra data-cleaning steps, and optional steps along the way, the multitude of workflow 

paths available can be quite large. Table 1 represents a very brief list of the many processing 

alternatives for each platform. If alternative workflow paths produce very different processed data 

this may confound the downstream analysis. An evaluation of the workflow path quality is a 

necessary to provide processed data fit for scientific inquiry. Previous evaluation of workflow 

paths is limited to evaluation against simulated data or evaluations of limited scope (i.e. focus on 

one platform). Previous workflow evaluation literature will be reviewed in Chapter 2.3.  
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This introduction will provide some motivating examples that different datasets are indeed 

produced in gene expression data processing. Furthermore, the value of using real data between 

platforms will be introduced as a means of an evaluation. A data-guided evaluation of workflow 

paths would enhance the scientific inquiry, as higher quality processed data would likely provide 

a more representative analysis outcome of the true biological state. For example, if a microarray 

based gene expression workflow path that does not consider cross-hybridization (i.e. multiple 

transcripts bind to the same measurement probe) gene expression values would be overestimated. 

In this introductory chapter, the case will be made for a real-data driven evaluation 

framework of workflows in bioinformatics. In the chapters that follow I present EUFLOW 

(Evaluation and Utility of workFLOWs) as a software application to enable data-guided evaluation 

of bioinformatics workflows. In order demonstrate the need for this evaluation framework, I will 

define the terminology of workflows, discuss how workflow paths are selected, and present 

potential consequences of choosing a workflow on the processed data. 

1.1 HIGH-THROUGHPUT BIOLOGICAL PLATFORMS 

Since the advent of the central dogma of molecular biology, basic science has developed 

technology to measure the expression of genes and proteins. The formulation of the gene, 

transcript, and protein relationship continues to develop as science discovers new mechanisms of 

biological control. However, the current knowledge of the central dogma can help develop models 

for understanding the relationship between gene, transcript, protein, and functional disease states. 

High-throughput “-omics” platforms provide a means to measure gene expression, protein 

expression, as well as mechanisms of control including miRNA and methylation of DNA. The raw 
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data produced by these platforms must be converted from polymer sequences and/or binding 

intensities to data that is useful to a biologist or a clinician. Although there are many high-

throughput platforms, this section will introduce five commonly utilized platforms from The 

Cancer Genome Atlas.4  
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Table 1. Brief list of bioinformatics platforms used in TCGA.4 

Five sample platforms with data available at The Cancer Genome Atlas. Raw data is converted to final 
processed data using a workflow path or option. The workflow paths and options are responsible for converting the 

data and are discussed in detail in Section 1.1 and in Chapter 2.5–17 
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Measurement of gene expression is commonly performed by either probe hybridization or 

direct sequencing of mRNA. Prior to the development of rapid sequencing technology, 

oligonucleotide microarrays measured mRNA expression by printing nucleotides on a “chip” in a 

specific sequence. The microarray chip is then exposed to RNA samples and mRNA that is 

complementary to the probes would bind to the chip. Binding to the probes is measured in the form 

of color or light intensity. TCGA has hundreds of samples with gene expression values from the 

Affymetrix U133 Plus 2.0 GeneChip.18 The Affymetrix GeneChip has 54,675 probesets, which 

measure about 18,000 protein coding genes. Probe binding intensity is converted to gene 

expression values with workflows that quantify, normalize, and filter the probesets. Raw data from 

the Affymetrix chip is often represented as a fold change or other transformed expression value. 

Table 1 lists three examples of probeset filtering, JetSet, PlandbAffy, and Netaffx. These filtering 

workflow options are described in greater detail in Section 2.2.  

Another measurement platform for gene expression in TCGA is RNASeq, or direct 

sequencing of RNA from a sample. One platform is the Illumina HiSeq sequencing system.19 After 

extraction of the RNA sample users of the Illumina HiSeq platform prepare the library of RNA 

primers, generate the clusters of RNA, and then the sequencing system can take 1.5 to 11 days to 

sequence the RNA.19 The output of sequences is stored as a FASTQ file, which is the raw data for 

the Illumina HiSeq RNASeq platform. TCGA provides the FASTQ file to certified users as Level 

1 data. This data, however, must be aligned, assembled and quantified for gene expression. Table 

1 lists three methods to process the TCGA Level 1 data. TCGA provides RNASeqV1 and 

RNASeqV2 as processed data for public download.9,8 The primary difference between these two 

platforms is that RNASeqV2 considers alignment across splice junctions9. However, many other 
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processing methods are available, such as SALMON.10 In Section 2.2 more details on alignment, 

assembly, and quantification methods are presented. 

TCGA also provides raw and processed data for protein expression in the form of Reverse 

Phase Protein Assay (RPPA).20 The RPPA process uses serial diluted protein lysate from frozen 

cell pellets and prints a nitrocellulose slide. Detection of the protein expression uses validated 

antibodies, which enables the measurement of protein expression from the lysate with an indicator 

solution of avidin-biotinylated peroxidase.20  The serial dilution intensity curve is converted into 

a fold-change of the protein expression from a known spike-in protein sample. Alternative methods 

have been developed to determine the measurement of protein expression. These methods interpret 

the dilution curve using different algorithms and include SuperCurve, Modified SuperCurve and 

NormaCurve.11–13  

Another platform offered by TCGA is measurement of microRNA with the Illumina HiSeq 

2000 platform. The processing of miRNA is similar to RNASeq with some differences in library 

preparation.19 miRNA is a molecule which can bind to mRNA and can either prevent the target 

mRNA from binding to the ribosome during translation or destroy the mRNA by recruitment of a 

nuclease.21 One processing step that is necessary prior to the analysis of miRNA is determination 

of a miRNA target. There are many miRNA targeting algorithms available including mirExpress 

and DeepBase.14,15 

Measurement of DNA methylation enables the analysis of epigenetic data of DNA 

regulation. TCGA provides Level 3 data of DNA methylation with the Illumina Infinium Assay 

platform.22 Methylated residues of DNA are detected in a bead assay as nucleotides are added, 

where the unmethylated and methylated residues have beads which are detected at a residue 

sequence level. This results sequence file which has the location of methylation residues for a 
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sample. There are alternative processing methods to determine the methylation states from the 

sequence file including QSEA and DISMISS.16,17    

Each of these platforms produce data that is in a raw form, either as a sequence file or some 

binding intensity. This data must be processed to the expression or quantifiable value at the level 

of biological interpretation. In the next section the terminology of workflows will be explicitly 

stated. 

1.2 TERMINOLOGY 

The terminology of workflows are not consistently defined across the literature. Inconsistent 

terms such as pipeline, workflow, procedure, and methods have all been utilized in the literature 

with ambiguity.23,24  

One workflow is a sequence of workflow components (WC). A workflow component is 

an individual data processing task, which is either required to obtain final processed data or will 

further modify the processed data. The platforms in Table 1 each have well-established examples 

of workflow components (discussed in detail in Chapter 2). The RNASeq platform, for example, 

starts as a massive sequence file (FASTQ) that must be aligned to the reference genome, 

assembled into exon or gene level information, and then quantified for the gene expression value. 

These three workflow components are required to obtain final processed data, however further 

workflow components may be applied to clean and normalize the gene expression values. For 

each of these workflow components, workflow options represent decisions on how to execute 

this workflow. Specific workflow options are presented in Chapter 2. Sometimes a WC is 

actually not necessary for obtaining final processed data, so choosing not to execute a WC is yet 
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another WO. The utilization of data cleaning and quality control workflow components is highly 

inconsistent in the literature.25–28 Data cleaning, or filtering, is defined as a process where some 

of the analysis features are deleted from the data set, often guided by a quality assessment 

criterion. Details on filtering are provided in the publication provided in Appendix A.2 Some 

workflow components may require users to select a parameter by which a threshold is selected, 

such as deciding the minimal number of reads in an RNASeq analysis.29,30 The sequence of 

workflow options that are selected for the workflow will be defined as a workflow path. There 

are often many workflow paths possible for converting the same raw data to the final processed 

data.  

In summary, a workflow is a sequence of workflow components for constructing a 

workflow path, which itself consists of workflow options in a sequence. To illustrate the 

complexity of a workflow, consider Table 2A. Table 2A demonstrates the use of this 

terminology in four workflow paths (WP1,WP2,WP3,WP4) with 4 workflow components 

(WC1,WC2,WC3,WC4) resulting in 4 different final processed datasets 

(FPD1,FPD2,FPD3,FPD4). For example, WP1 uses two Workflow Steps (WO1a, WO2a) to 

obtain the final processed data. As a specific example Table 2B describes the RNASeq workflow 

as a sequence of four components: 1) Alignment, 2) Assembly, 3) Quantification, and 4) 

Threshold. These components have many options, but for brevity Table 2B list the workflow 

options utilized for RNASeqV1 and RNASeqV2. The two workflow paths are presented as a 

sequence of these workflow options that they utilized to obtain the final processed data. Next, the 

challenges of choosing between workflow paths are presented. 
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Table 2. General and RNASeq specific definition of a workflow.  

Table 2A presents four different workflow paths (WP) constructed from the available workflow options. 
Each WP results in a distinct final processed dataset (FPD).  Each WP consists of choices made for each workflow 
components (WC). The WC have multiple workflow options (WO). In Table 2B two separate RNASeq workflow 
paths are constructed for the workflow components Alignment, Assembly, Quantification, and Threshold. The 
available workflow options are discussed in detail in Chapter 2. The two workflow paths have been available on 
TCGA as Level 2 gene expression data on thousands of cancer patient samples.4 The workflow options in Table 2B 
are discussed in Section 2.2. 
 

A 

 
One Workflow 

= A Sequence of Workflow Components 
Workflow Paths 

 = A Sequence of Workflow Options 
Workflow 
Component 

Workflow 
Options 

WP1 WP2 WP3 WP4 

WC1 (exactly 1) WO1a, WO1b WO1a WO1a WO1b WO1b 
WC2 (0 or 1) WO2a, WO2b WO2a WO2b WO2a (none) 
WC3  (0 or more) WO3a, WO3b (none) WO3a WO3a, WO3b WO3a, WO3b 
WC4  (threshold)  𝛳𝛳(WO4) (none)  (none)  𝛳𝛳(WO4)=0.2 𝛳𝛳(WO4)=0.5 
FINAL PROCESSED DATASETS   FPD1 FPD2 FPD3 FPD4 

 

B 
 

One Workflow 
= A Sequence of Workflow Components 

Workflow Paths 
 = A Sequence of Workflow Options 

Workflow 
Component 

Workflow 
Options 

WP1 WP2 

Alignment  Bowtie,BWA BWA Bowtie 
Assembly Mapslice, Samtools Samtools Mapsplice 
Quantification RSEM, RPKM RPKM RSEM 
Threshold Prune low counts Prune lowest values Prune lowest values 
FINAL PROCESSED DATASETS   RNASeqV1 FPD RNASeqV2 FPD 
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1.3 CHALLENGES OF CHOOSING A WORKFLOW PATH 

1.3.1 How biologists currently choose workflow paths 

Most workflows have multiple paths available to the user. This abundance of the workflow paths 

may be beneficial to the analyst as more choices provide flexibility. However, it is unsettling if the 

choice of the workflow path is arbitrary, rather than based on evidence. Given the many workflow 

paths available to choose from, users can approach the choice quite differently. These decisions 

can be related to one or more of the following categories: 1) availability of fully pre-processed 

data, 2) quality of fully processed data, 3) the investigator’s familiarity of the workflow path, 4) 

novelty of the workflow path, and 5) a decision based on a comparative analysis in the literature.  

Data that is already pre-processed is attractive to new investigators simply due to 

availability. If the data is from a team of high reputation, it is assumed that the data has been 

verified, curated, and has been demonstrated to be useful in other publications. Therefore, the 

data is assumed to be of high quality. In this example, the workflow path has been performed 

without guidance or participation of the user. Repositories of information such, as the Gene 

Expression Omnibus, cBio, and The Cancer Genome Atlas, contain hundreds of platforms and 

thousands of patient samples which describe gene expression, copy number variation, protein 

expression and post-translational modification.31–33 Most of the repositories only provide Final 

Processed Data (FPD) to uncertified users, due to information security concerns. This “Ready to 

Go” (RTG) data is commonly downloaded and used for publication of cancer biomarker studies 

and other scientific inquiry due to availability and the quality of the data. It is hard to dispute the 

attractiveness of availability of data, as the investigator can proceed directly to the primary 

research question. We must be careful not to assume that available data is of high quality. In 
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order to determine quality of data, users should continuously evaluate workflow paths in the light 

of new evidence. For example, TCGA RNASeq data reprocessing was recently shown to alter 

scientific inquiry conclusions on lung histology and HER2 activation pathway status.34   

Alternatively, many analysts prefer to start with raw data (i.e. sequence data, light 

intensity) and apply a familiar workflow path consisting of their preferred sequence of 

processing steps. Familiar workflows are selected based upon habit or more specifically the set 

of skills employed by the analysis. For example, some workflow options are only executed from 

command line in Unix/Linux. Often web-based platforms are easier to use, but there are many 

more workflow options available on R Bioconductor, Python, and Linux/UNIX based tools. R 

Bioconductor, is an open source environment which continues to grow in the number and quality 

of analysis tools to permit workflow path analysis on raw biological data.35 However, the use of 

R Bioconductor, requires a moderate knowledge of the R programming language. Finally, 

Linux/Unix tools require the ability to execute at command line or through shell scripts. Many 

bioinformaticians utilize command line tools due to the ability to automate the process and 

decrease computational time. In addition, many bioinformatics tools are only available as a 

command line tool. Linux/Unix tools can also provide the ability to string together workflow 

path using workflow steps from different programming languages in the same environment. 

Given all of these factors, it is easy to see how a workflow path is often selected by the user’s 

familiarity with particular methods. Users must be careful not to assume the quality of a 

“default” or familiar workflow path when higher quality paths are available.  

Another factor to consider is the novelty of a workflow path or choice. Recently 

published methods have salience and a presumption of superiority over previous methods simply 

by virtue of novelty. Contrarily, users may be reluctant to explore or utilize workflow path steps 
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that are not reviewed by recent literature. Search engines also may contribute to choosing a novel 

workflow path as the default literature search parameter is “sort by date”. The novelty of a 

workflow choice is not a compelling factor when deciding on how to process the data. 

Using the literature, in the form of a published comparative analysis, to inform a user on 

workflow path quality is another factor in workflow path choice. It is standard for any new 

workflow path or bioinformatics method to compare itself against the current workflow paths 

and methods. The comparison is often based upon speed, prediction of “spiked-in” data, or some 

other biological parameter.36–43 The greatest disadvantage in these studies is an arbitrary 

selection of which workflow paths are included in the comparison. Examples of published 

comparative studies are presented in Chapter 2 of this dissertation.  

Lastly, the ideal decision is when the user performs data-driven evaluative workflow path 

choice. Evaluation of workflow paths is defined as making a judgment of the quality of the 

workflow path. Some evaluation on workflow quality is present in the literature.44–49 When these 

evaluations are performed they are often not generalizable, utilize a small sample of workflow 

paths, focus on a single workflow step, or they use simulated data to evaluate a workflow path. 

These examples will be reviewed in Chapter 2 of this dissertation.  

1.3.2 Consequences of workflow path choice 

Given the variety of choices in workflow paths, the most important question is: Does a workflow 

path decision make a difference in the final analysis? A robust conclusion may be provided by 

only a small portion of the workflow paths. Any change in a workflow option or change of a 

parameter setting constitutes a new workflow path. Table 2 illustrates this concept between four 

general workflow paths and the final processed data. Workflow paths performed on the same 



 13 

data may produce equivalent final processed datasets. Equivalent data is defined as datasets 

which have identical features and identical values for each feature. If two (or more) sets of final 

processed data (FPD) contain equivalent representations of data, the data is completely 

consistent FPD. Very often, however, workflow paths produce non-equivalent final processed 

data, but the analysis outcome does not change, in other words the conclusions of the analysis 

would be the same regardless of workflow path choice. If two (or more) workflow paths produce 

final processed datasets which are not identical, but the outcome of the analysis is not altered, 

then they are defined as practically consistent FPD. Finally, the most concerning relationship is 

inconsistent FPD. Inconsistent FPD provide not only data that are not equivalent representations 

of the data, but also result in datasets that lead to different analysis outcome. In this section, 

examples of inconsistency in the FPD results directly from 1) identifier mapping, 2) identifier 

filtering, 3) threshold selection, 4) use of different RNASeq workflow paths, or other types of 

workflow path selection. 

1.3.2.1 Consequences of identifier mapping inconsistency 

 

As a motivating example I will first consider workflow components in Affymetrix microarray 

chips. The Affymetrix U133 Plus 2.0 microarray chip has 54,675 probesets, which represent 

oligonucleotides on the chip designed to be complementary to the mRNA from human cells. The 

probeset identifiers, however, may represent one, many, or no actual mRNA in a sample. As these 

probesets are redundant or of variable quality in matching to the mRNA, investigators must decide 

how to interpret the microarray data. Workflow components to obtain the final processed data 

include conversion of the binding intensity to a measure of gene expression, normalization of the 
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expression values, quality control feature selection, and mapping of the probeset values to other 

platforms such as protein expression.  

Identifier mapping is a workflow component, which maps between “–omics” identifiers. 

Mapping between an Affymetrix microarray probeset and a UNIPROT protein accession identifier 

for integrative bioinformatics applications is an identifier mapping workflow component. 

Affymetrix offers the Netaffx database to lookup what Uniprot accession matches a particular 

probeset7. However, the Netaffx database has been found to be inconsistent and redundant when 

mapping the identifiers50. Other tools to map between these identifiers includes the DAVID 

ontology, ENFIN Envision database, PICR application, and the BridgeDB application.51–54  

Figure 1. Identifier mapping illustration. 

An identifier mapping tool is a workflow component (WC) that maps identifiers that are biologically 
connected. The output of the identifier mapping tool is a set of pairs that correspond across the platforms. In this 
example, three protein identifiers are mapped to the three transcript identifiers. 

These identifier mapping tools resemble a library search tool for bioinformatics identifiers. 

Figure 1 illustrates a small identifier mapping example where a user has three protein identifiers 

and three mRNA identifiers from the same hypothesized gene product. Identifier mapping tools 

will provide a matched pair for what mRNA corresponds to a particular protein. Users may expect 
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that the tools agree most of the time for the same identifiers, but this is not what is observed when 

comparing these tools. Previously, Day et al. (2011) compared multiple tools on the same set of 

identifiers.3 Figure 2 illustrates disagreement of Netaffx_Q and DAVID_Q mapping between 

11,879 Uniprot accession identifiers to an Affymetrix probeset.7,51 The horizontal axis is the 

number of probesets retrieved by each service and the vertical axis is a protein identifier that is 

entered in the query. Since the Affymetrix probeset represents a transcript that will be biologically 

translated to a protein (Uniprot) a high level of agreement is expected. Red and blue represent 

probesets uniquely mapped to a protein by NetAffx_Q and DAVID_Q, respectively. These 

services agree when the section is gray (see Figure 2). In fact, entirely different retrieval sets are 

mapped for 497 protein identifiers (Netaffx) and 809 protein identifiers (DAVID). Figure 2 also 

shows that for 186 Uniprot ACC the two platforms identified extra probesets that the other service 

did not map. Furthermore, the same exact map between transcript identifier and protein identifier 

occurred with only 52.5 % agreement. Further details of identifier mapping disagreement are 

available in Day et al (2011).3   
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Figure 2. Identifier mapping disagreement. 

ACC = one uniprot accession identifier, NetAffx_Q = NetAffx query probesets mapped, DAVID_Q = 
DAVID query probesets mapped. In Day et al. (2011), identifier mapping tools retrievals were compared for 
mapping between a list of 11,879 Uniprot Accessions by DAVID query and Netaffx query. Red represents probesets 
identified by Netaffx only, blue represents probesets identified by DAVID only, and gray represents probesets 
identified by both mapping tools.3 (This figure is reproduced from Day et al. 2011 from which the authors retain 
copyright, including Kevin McDade)  
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The consequence of choosing the wrong identifier mapping tool can be meaningful. As a 

demonstration, Table 3 shows the three workflow options (identifier mapping tools) utilized to 

map 6 Affymetrix probeset identifiers to the protein ANXA2. Choosing one of these workflow 

options represents a simple workflow path. The workflow paths each result in a different set of 

mapped pairs. Which path does the user perform for the analysis? Quality of the identifier 

mapping tool is ideally the deciding factor. The choice could impact the results of a scientific 

inquiry.  

If a user has, for example, protein expression data and mRNA data on the same samples, 

then it would be a fair expectation that coorelation between pairs would be a good guide for the 

quality of the identifier tool. Identifer mapping workflow paths that produce high coorelation 

between the pairs that they map can be considered of higher quality then workflow paths that 

produce less highly coorelated pairs. A complete argument for using coorelation as a quality 

metric is presented in Chapter 2. 

For the example, in Table 3 coorelation can be utilized in deciding which path to select. 

In Day et al. (2011), 98 endometrial cancer samples were used to determine MS-MS spectral 

count and Affymetrix probe intensity.3 Spearman correlation was determined between ANXA2 

protein 6 probesets mapped by the DAVID identifier mapping tool to ANXA2. For this example, 

Figure 3 shows the scatterplot of unlogged mRNA expression vs spectral count for two probesets 

(213503_x_at and 1568126_at).3 The criterion (Spearman rho) for the two probesets is a model 

quality for the workflow path. 1568126_at is identified by Netaffx and DAVID, but not by 

Envision. In fact, Envision does a good job of identifying the best 3 identifier pairs based on the 

model quality. A full analysis in Day et al. (2011) revealed that Envision was the optimal 
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identifier mapping tool for this dataset based on correlation as a model quality criterion.3 Users 

that choose DAVID in this example may have included multiple irrelevant data points. This is an 

example based on one protein, but the task becomes more difficult when considering much larger 

datasets. 

Table 3. Identifier mapping results for one mRNA/protein query. 

 Results of identifier mapping tools on six probeset features. For the mapping workflow component (WC) 
there are three workflow options (WO), DAVID (D), ENVISON (E), and Netaffx (N). Choosing DAVID will result 
in an identifier map of 6 pairs. The criterion is the Spearman rho from Day et al (2011)3 based on endometrial cancer 
data. “+” = means that the service (D,E or N) reports a mapping between the feature and ANXA2, “-“ means that the 
feature is not reported by the service.    

WC WO WP1 WP2 WP3 Total 
Mapping {D,E,N} D E N Identifiers 

mapped 
Features Criterion 

+ - + 2 1568126_at 0.176 

+ + + 3 201590_x_at 0.532 

+ + + 3 210427_x_at 0.531 

+ + + 3 213503_x_at 0.557 

+ - - 1 210876_at 0.321 

+ - - 1 211241_at 0.305 
Final Processed Data 
mapped for ANXA2 

6 3 4 
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Figure 3. Scatter plot for ANXA2 protein and 2 probesets. 

Figure from Day et al. (2011), Transcript signal (mRNA) versus Annexin 2 spectral counts (protein).3 
E= endometriod cancer, S= serous cancer, N=Normal. (Kevin McDade included in copyright)  
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1.3.2.2 Consequences of identifier filtering inconsistency 

Inconsistency also has been observed between methods to “filter” poor quality Affymetrix 

probesets. The Affymetrix chip has 54,000 plus “probesets”, which are thought to evaluate 

~18,000 human transcripts. Many methods have been developed to convert these probesets to 

reliable transcript abundances through normalization and probeset filtering. Some of these 

methods are more accepted than others, but no “best practice” has been determined. Table 4 is a 

short list of some identifier filtering methods used to remove redundant or inaccurate probesets 

from Affymetrix microarray data.2   

Since these Affymetrix chips have been available for more than a decade, there are many 

approaches that have been applied to similar data, some of which show drastic differences in 

relative transcript abundance. In Yu et al. (2007), investigators remapped the probesets in the 

mouse and human U133 microarray chips through transcript alignment.26  In remapping the 

probesets, they demonstrated how different methods result in different conclusions on a subset of 

data.  

In addition, our laboratory has demonstrated the differences among probeset filtering 

methods and how the selection of filtering methods can have a drastic effect on the set of 

transcripts included in an analysis.1  The workflow option differences were compared by 

arranging the number of probesets filtered and not filtered between each pair of workflow 

options in a set of 2X2 tables. Some notable odds ratios include: odds ratios of correlation (i.e. 

Jetset to Plandbaffy; OR=3.54), independence (i.e. Masker to Affytag; OR=1.08), and even 

inverse correlation (i.e. Plandbaffy to Affytag; OR=0.59). The odds ratio between different 

filtering tools imply that workflow options were inconsistent. Figure 4 shows a simple example 

where three mRNA probesets represent the same gene product are filtered. Filtering is not unique 
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to Affymetrix chips. Identifier filtering is defined as any workflow component where a raw set of 

identifiers are pared down to a smaller and more reliable or accurate set of identifiers. Identifier 

filtering can also be performed in workflows, such as proteomics, microRNA targeting and 

RNASeq processing.29,55,56    

Figure 4. Identifier filtering illustration. 

Identifier filtering is a workflow component (WC) that removes data points that are poor representations of 
the biological signal. In this example, mRNA 3 is removed from the final processed data.  



22 

Table 4. Subset of Affymetrix filtering workflow options2. 

Filter symbols, descriptions, developer criteria, and selected filtering condition for Affymetrix probeset 
platform. 

Filter Symbol Description Developer Criteria Identifier Filtering 
AT57,58 Affytag - Pre-2004 Affymetrix 

annotation for the Affymetrix HGU133 
Plus 2.0 array 

Original annotation determined by 
mapping to UniGene and Locus Link. 

“_at is considered unique. 

Filter al annotation tags that 
begin with “_[agirxsf]_at” 

AG57,58 Affy Grade - Netaffx Transcript 
Assignment Pipeline 

“A” grade is the highest grade where ≥ 
9 probes match transcript sequence. 

Filter grades not equal to A. 

M59 Masker - National Cancer Institute 
alternative chip definition file (CDF) 

masking out probesets with poor target 
location 

A CDF file which eliminates a probe 
when more than 2 nucleotides to not 

match the target as well as nonspecific 
probes 

Filter any probeset that has no 
remaining probes on the mask 

GSEN60 GeneAnnot Sensitivity The fraction of the probes in a probeset 
that match Watson-Crick nucleotide 

base pairs in the nominal gene 

Filter probesets with Geneannot 
Sensitivity < 90% 

GSPE60 GeneAnnot Specificity Sum over the number of matching 
probes with lower weight to non-

specific probes 

Filter probesets with Geneannot 
Specificity ≤ 50% 

GQ60 Geneannot Quality Score A pipeline which confirms the probeset 
annotation with GeneCard data. 

GQ= 1 is confirmed entirely 
with GeneCard data; Filter 

probesets with a GQ = [2-6] 

E61 Encode - Encyclopedia of DNA 
elements 

Protein coding genes are determined by 
human curation, RNA sequence and 

comparative genomics 

Filter all probesets that map to a 
non-“Protein coding” target 

PD62 PlandbAffy database BLAT of target to the probe and 
evaluation of nucleotide mismatch or 

exon location 

Filter all probesets with a 
proportion of “good” probes 

<30% 

J5 Jetset Bioconductor package Determines features such as robustness 
of the probe, coverage, as well as 

nucleotide alignment with the reference 
genome 

Filter all except the highest-
scoring probeset among those 

annotated for target gene. 
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Using the same data as described in the previous section, the use of Spearman correlation 

as a criterion is also helpful.1 In Table 5, three identifier filtering tools are utilized to remove 

probesets from the dataset. Identifier filters can utilize sequence information, hybridization 

location or probe complementarity to determine the value of the probeset.5,6 The three workflow 

paths represented in this example are; Encode (E), AffyGrade(AG), and PlandbAffy(PD).6,63,64 

Each of the three identifier filters act as an interrogation on the probeset. Ideally, a probeset should 

bind to a complementary mRNA molecule in the exonic region and represent a protein coding 

gene. Encode determines the status of “protein coding” for 4 probesets. AffyGrade finds 5 

probesets to have excellent sequence complementarity (see Table 4 for details). The PlandbAffy 

filter determines if the probes cross hybridize with an exonic region in 5 probesets.   

Table 5. Brief identifier filtering results. 

Results of identifier filtering tools on six probeset features. For the filtering workflow component (WC) 
there are three workflow options (WO), ENCODE (E), AffyGrade (AG), and PlandbAffy (PD). Choosing the 
ENCODE WP will result in a reduced final processed data of 4 probesets. The criterion is the Spearman rho from 
Day et al (2011).3 “+” = the filter allows the feature, “-“ = the filter disallows the feature.  

WC WO WP1 WP2 WP3 Total 
Filtering {E,AG,PD} E AG PD # Not 

removed 
Features Criterion 

+ - + 2 1568126_at 0.176 
+ + + 3 201590_x_at 0.532 
+ + + 3 210427_x_at 0.531 
+ + + 3 213503_x_at 0.557 
- + + 2 210876_at 0.321 
- + - 1 211241_at 0.305 

Final Processed Data 4 5 5 
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In the case of identifier filtering, workflow paths can be applied in Boolean combinations 

(i.e. an intersection of two or more resources). Figure 5 illustrates the successive application of 

filters E and AG upon the 6 ANXA2 probesets. Three probesets (201590_x_at, 210427_x_at, and 

213503_x_at) are not removed by any of the three filters. They also have the highest Spearman 

correlations, suggesting that the intersection of the three filters can improve data quality. In the 

previous section, we saw that these are the same three probesets that Envision mapped to ANXA2 

in the ID mapping example. The confluence of optimal filtering method, optimal ID mapping, and 

high correlations strongly reinforces the validity of our evaluation approach. Presumably, applying 

rigorous feature selection will raise the average quality of the features, but at the cost of reducing 

the dataset.  

Figure 5. Intersection of identifier filters for ANXA2.  

If the ENCODE (E) and AffyGrade (AG) filters are applied successively then only three probesets remain. 
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Expanding upon identifier filtering, the paper presented in Appendix A presents more 

examples of Affymetrix analysis inconsistency. In this analysis 9, different probeset filtering 

methods were utilized on the same data set, ovarian serous carcinoma data from TCGA. Each of 

the probeset filtering methods removed probesets from the analysis due to problems such as 

cross hybridization, failure to hybridize to a exonic region, and poor sequence complementary 

matching. A high-quality hybridization should provide a more accurate quantification of gene 

expression. Therefore, over all genes, those with higher accuracy gene expression values should 

be more strongly correlated with protein expression for that gene than those with poorer 

accuracy. The article in Appendix A calculates transcript-to-protein correlations, fits mixture 

models, and calculates expected utility for each probeset filtering method and their Boolean 

combinations with the EUFLOW framework. 

1.3.2.3 Consequences of threshold selection inconsistency 

Another problem in bioinformatics is the inconsistency of threshold selection on the final 

processed data. Many biological platforms suffer from poor sensitivity and specificity unless 

some arbitrary threshold is placed on a parameter, which in effect filters features from the final 

processed data. Examples include selection of a fold-change threshold in microarray data, a 

minimum read threshold in quantification of RNASeq mapped reads, and the low dynamic range 

of MS/MS proteomics.28,65,66 Analysis by Williams et al. (2016) on Drosophila neuron RNASeq 

gene expression has demonstrated the consequences of changing the thresholds on the scientific 

conclusion.66  

A simple threshold scenario is presented in Table 6 for RNASeq read filtering. Users of 

RNASeq data will often select a minimum number of reads to represent an expressed transcript. 
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An arbitrary threshold is often selected and changing the threshold number represents a WP. 

Table 6 represents this scenario with thresholds of 30, 100, and 1000 of reads. If four mRNA are 

represented by different reads this decision will impact the final processed data.  

Table 6. Brief threshold selection example. 

Example of a threshold selection experiment. For the filtering workflow component (WC) there are three 
workflow options (WO), remove mRNA that is less than 30 reads, 100 reads and 1000 reads. Choosing the 30 read 
threshold will result in a reduced final processed data of 3 probesets. This is just an example and is not based on real 
data. “+” = at this threshold the filter allows the feature, “-“= at this threshold the filter disallows the feature.   

WC WO WP1 WP2 WP3 
Threshold 
selection 

for 
number of 

reads 

{0-10000} 30 100 1000 Features 
- - - mRNA 1 

(25 reads) 
+ - - mRNA 2 

(75 reads) 
+ + - mRNA 3 

(150 reads) 
+ + + mRNA 4 

(1500 reads) 
Final Processed Data mRNA2 

mRNA3 
mRNA4 

mRNA3 
mRNA4 

mRNA4 

1.3.2.4 Consequences of RNASeq workflow path inconsistency 

Consistency matters when choosing a workflow path to process RNASeq data. RNAseq data 

analysis has many workflow components such as alignment, assembly, and quantification. Some 

investigators have reported the impact of workflow path choice on the relative transcriptional 

abundance.28,30,67  Other problems include artifacts resulting from gene fusion events, altered 

reads due to paralogs in the genome, and alignment with introns.9,44,68 As some workflow options 

address these issues and others do not, inconsistency results among studies. In Chapter 2 the 
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inconsistency of RNASeq workflows will be reviewed in greater detail for each of the required 

workflow components.  

1.3.2.5 Other types of workflow inconsistency 

The pipelines for variant callers in whole genome sequencing also demonstrate tremendous 

variation in output. Although this project will not evaluate variant callers, the phenomenon 

reinforces the hypothesis that methods do matter. Liu et al. (2013) evaluated 7 pipelines for the 

variant caller endpoint.38  The seven pipelines differed in Ti/Tv (Transition/Transversion Ratio) 

and SNP counts and indels by as much as 11% between pipelines. In another recent analysis Alioto 

et al. (2015) compared combinations of  3 commonly utilized reference genomes, 4 alignment 

tools, and 2 variant callers and found the workflow paths to have drastic differences in the mutation 

calls69. They compared 19 workflow paths a curated MB.GOLD reference sequence which the 

authors considered to be the true positive variants.69 The 19 workflow paths had a precision range 

for the variants from 0.11 to 0.99. One of the most startling results in next generation pipeline 

comparison comes from O’Rawe et al.70 Comparing across five pipelines of whole genome 

sequencing data and 15 family exomes the investigators reported a 57.4% concordance on single 

nucleotide variants. This is an extremely disturbing statistic given the rapid march to personalize 

medicine based on patient genetics for clinical purposes. 
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1.3.3 Quality vs quantity 

In the previous section identifier mapping, identifier filtering, threshold selection, and RNASeq 

were presented to demonstrate that differences exist in workflow paths in the quantity of the 

output. Also, it is important to understand that the quality of the feature pairs that remain 

unfiltered may be different between workflow paths. Deciding how to balance quality and 

quantity of the final processed data really depends upon the user’s analysis goals. For example, 

in Affymetrix identifier filtering, when we remove probesets they are correct or incorrect. A user 

must decide if they are willing to sacrifice some correct probesets in order to remove more 

incorrect probesets. Another user might prefer to keep incorrect probesets so they do not throw 

away correct probesets.  

Consider the following in addressing the concerns of users making a choice between 

quality and quantity (Figure 6). When you are choosing between two workflow paths that 

remove features some portion of the remaining data is shared (top bar). But when the final 

processed data is restricted to one workflow path, there will be some true positives and some 

false positives that are included in the data. Figure 6 presents an unknown choice that a user is 

making when selection of a particular workflow path is utilized. Choosing WP1 will produce 

more probeset pairs but worse average quality of data (i.e. large proportion of FP), while 

selecting WP2 will have more probeset pairs but better average quality (i.e. smaller proportion of 

FP). A user’s utility for this unknown decision should be considered a vital part of any workflow 

evaluation.    
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Figure 6. Choosing between quantity and quality. 

TP = Feature pair correctly included, FP = Feature pair incorrectly included, WP1 = a hypothetical 
workflow path that produces more unique FP than TP but more unique features overall, WP2 = a hypothetical 
workflow path that produces slightly more unique TP than FP but less unique features overall. 

1.4 THESIS 

The EUFLOW decision-theoretic framework and software enables bioinformaticians to evaluate 

alternative workflow paths. It uses real biological data sets, expected biological relationships and 

user utility to guide optimal workflow path choice. EUFLOW can lead to better analyses across 

bioinformatics. I test EUFLOW here on gene expression data including workflows of microarray 

chips and RNASeq platforms. 



30 

Figure 7 describes the EUFLOW framework. EUFLOW requires as an input: 1) a set of 

workflow path evaluation data, 2) reference data, and 3) an identifier map between the reference 

and the evaluation identifiers. The set of evaluation data contains features (i.e. gene ids, 

probesets) as the rows and samples as the columns for all workflow paths. The data in the 

evaluation set is mapped, by the identifier map, to the reference data. The reference data has 

features (i.e. protein identifiers) as the rows and the same samples as the evaluation set as the 

columns. A model quality must be calculated at the level of the evaluation feature identifier to 

reference feature identifier pairs. The user specifies how the model quality is calculated (i.e. 

correlation) for each pair. The model quality represents the expected biological relationship 

between the pairs. A density of the model quality has TP and FP for every WP, an underlying 

mixture distribution which includes “+” component (positively correlated, biologically coupled) 

and a “-“negative component (incorrect or other biological decoupling) can be deconvolved 

using the procedure described in Chapter 3. An estimation of the posterior probability of a pair in 

an element of the “+” mixture can be determined using the Expectation Conditional 

Maximization and the Empirical Bayes Plug-in method, which are described in Chapter 3.  A 

better workflow path will have a higher proportion of pairs that belong in the “+” mixture 

component. With the user specifying loss from including a false positive and gain from including 

a true positive EUFLOW is able to calculate the expected utility for each workflow path. The 

user specifies both the model quality criterion and the user utility for gain/loss of feature pairs. 

EUFLOW is implemented as an R package (https://github.com/Kkm5/EUFLOW.git). The 

EUFLOW R package was prototyped using Affymetrix probeset identifier filtering which is 

briefly presented in chapter 4 of this dissertation and in its entirety as Appendix A. Further 

https://github.com/Kkm5/EUFLOW.git
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testing of EUFLOW is presented in this dissertation on TCGA-based RNASeq identifier 

filtering, threshold selection, and a common workflow path evaluation. 
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Figure 7. EUFLOW framework. 

EUFLOW takes three input files and user specifications to determine the expected utility of a workflow path 
based upon real data, a relationship specified by the user between the workflow path final processed data and the 
reference data. A complete description of the EUFLOW framework and terms will be provided in Chapter 3. 
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2.0  BACKGROUND 

An evaluation of workflows is necessary because: 1) there are so many choices available for a 

given bioinformatics platforms, 2) these choices differ from one another how the raw data is 

processed, 3) the current evaluation methodology is incomplete, and 4) real data relationships are 

easily extracted from the data that is processed. I will begin by discussing the proliferation of 

bioinformatics workflow paths (Section 2.1). I will next briefly review a selection of workflow 

components, steps and options available to a user of gene expression microarray and RNASeq 

processing (Section 2.2). These workflow steps and options can differ drastically in approach, 

through either computational algorithm or biological relevance. In section 2.3, I will review 

previous attempts to evaluate gene expression workflow paths and discuss the evaluation gap of 

gene expression workflows. Previous attempts to evaluate gene expression workflows are limited 

to simulated data or is not generalizable to other types of workflows. And finally in section 2.4, I 

will discuss the previous use of mRNA to protein correlation as a measure of data quality, as well 

as provide an argument for its value to evaluation of gene expression workflows. 

2.1 PROLIFERATION OF WORKFLOW PATHS 

Regardless of the bioinformatics workflow, new components, options and paths are continually 

developed and utilized. The number of workflow paths that result can be staggering. Due to the

magnitude of data types and workflow paths, steps and options there is a great need to organize  
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the information in the form of data structures and ontologies. One ontology, EDAM, classifies 

over 2200 bioinformatics concepts including data, identifiers, operations, and topics.71  The 

EDAM ontology can be found at http://edamontology.org/page. EDAM refers to WP, WS, and 

WO’s as “operations”. Although it provides a framework it does not support evaluation of the 

bioinformatics operations. A further extension of the EDAM ontology is the BioXSD data 

exchange format, which provides an XML format to encourage interoperability of bioinformatics 

web portals.72   

In addition to structure formats and ontologies, numerous attempts have been made to 

streamline bioinformatics workflows. The Taverna system uses a search language (Scufl) to 

execute workflows (WP) through a series of atomic tasks (WS).73 Another system similar to 

Taverna is BioWMS.74 The BioWMS executes workflow and is able to document the process for 

reproducibility. The Galaxy system is another popular platform which permits hundreds of 

sequence based processing steps and is able to capture the steps in a protocol.75 Bioextract and 

GenePattern 2.0 provide similar executive and reproducibility functions of workflow 

management tools.76,77 A new workflow management tool for the genomics community is the 

Cancer Genomics Cloud by Seven Bridges (http://www.cancergenomicscloud.org). The CGC not 

only provides a workflow management system, but also is able to directly access the TCGA data 

and perform a workflow path designed by the user. Advancement has been made in development 

of workflow organizational structures and management systems. The CGC also has a DREAM 

Challenge for the quantification of known isoforms and detection gene 

fusions https://twitter.com/DR_E_A_M. 

http://edamontology.org/page
http://www.cancergenomicscloud.org/
https://twitter.com/DR_E_A_M
http://edamontology.org/page
http://www.cancergenomicscloud.org
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2.2 GENE EXPRESSION WORKFLOW PATHS 

Gene expression is one of the most utilized and explored of bioinformatics workflows. In this 

section, workflow paths, steps and options for three gene expression workflow paths are reviewed: 

1) Affymetrix identifier mapping, 2) Affymetrix microarray identifier filtering, and 3) RNAseq

analysis workflow paths. 

2.2.1 Affymetrix identifier mapping 

Identifier mapping of Affymetrix probesets is a challenge as the probesets were designed in 

iterations with redundant probesets.6,7,78,79 Furthermore, the quality of the redundant probesets can 

vary greatly which can create challenges in mapping the probesets to other platforms such as 

protein identifiers.3 In Day and McDade (2013) we developed the mathematical framework 

utilized in this dissertation to evaluate four workflow paths from the options EnVison, Netaffx, 

DAVID, and the union of all three workflow options1. Our evaluation was able to utilize the 

framework to observe that Envision was the best workflow choice of the workflow paths 

evaluated.1    

2.2.2 Affymetrix microarray probeset filtering 

Gene expression analysis on oligonucleotide arrays (i.e. Affymetrix HG-U133 Plus 2.0) has long 

been impaired by the presence of multiple probesets targeting the same gene, probes of 

questionable quality, and annotation errors.80–82 The U133 chip has 54,675 probesets which 

correspond to 18,000 protein coding genes. Available methods to pare down the feature set from 
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54,675 probesets to a more accurate and restricted feature set include: (1) consolidation 

methodologies by trimming the mean, or other outlier reduction methods  (ranging from means 

to medians)83–86, (2) Probeset redefinition: re-evaluating probes and redefining probesets 

accordingly81,87–92, and (3) identifier filtering: removing probesets identified as “bad” based on 

biological features.25,5,6  For the purpose of workflow evaluation, this section will focus on 

identifier filtering. Identifier filtering on Affymetrix probesets represent a motivating example 

for the development of EUFLOW as there are many workflow options yet no consensus after 

many years of development in the literature. 

Examples of Affymetrix, based probeset filters are presented in Table 4 in Chapter 1. The 

filters described here are evaluated with the EUFLOW framework and presented in the complete 

published work in Appendix A. Netaffx is the most common source for identifier filtering of 

Affymetrix chips and features probeset information directly from the designer of the probesets. 

One common way to determine the quality of a probeset is to look at the probeset identifier tag. 

The tags specify the unique probe state, where “_at” is a high quality tag for a probe that binds to 

one transcript without cross hybridization.7 Affytag (AG) removes probesets for which the 

Affymetrix identifier (ID) contains a qualifier; that is, the ID ends in “_[agirxsf]_at”, reflecting 

original doubts concerning the correct and unique hybridization of the probes in each probeset, as 

documented by Affymetrix when the array was designed.57,58 AffyGrade (AG), provided by the 

NetAffx array annotation file, is a quality grade labelled as A, B, C, R, and others. Only probesets 

with “A” grade were accepted, since “A” grades represent at least 9 “matching probes” to the target 

mRNA.57 The NCI Masker59 filter removes probesets omitted from the NCI “masked” chip 

description file (CDF). Masker was produced by the NCI Laboratory of Population Genetics. The 

CDF file eliminates any probes that do not have at least 24 out of 25 nucleotides match the target 
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GenBank transcript. In addition, it eliminates any nonspecific probes that map to a different 

chromosome, strand, or are part of a gene cluster that could cause cross hybridization. 

Geneannot provides three different identifier filtering tools: 1) probeset sensitivity, 2) 

probeset specificity, and 3) a probeset quality score.80 Geneannot Sensitivity (GSEN) is defined as 

the fraction of the probes in a probeset that match Watson-Crick nucleotide base pairs in the 

nominal gene. Geneannot Specificity (GSPE) is calculated as a sum over the number of matching 

probes with lower weight to non-specific probes. Geneannot quality measure (GQ) is determined 

from the ordinal rank assigned by Geneannot to demonstrate the confirmation of the probeset to 

mRNA match. A score of “1” is reported to be the “best”, which demonstrates that the probes were 

confirmed using the GeneCard data via Entrez Gene or Ensembl.80 The worst score is a “6”, which 

is defined as probesets where the only information available is original Netaffx annotation.57 The 

EnCode (E) filter utilizes the EnCode93 project’s determination of protein coding status of the 

target sequence location in the genome, to remove probesets of non-coding targets. The gene status 

is classified as protein coding, transcribed pseudogene, untranscribed pseudogene, lincRNA, not 

identified by Genecode, et cetera.61 Only probesets with the “protein coding” Ensembl code were 

accepted. The Ensembl codes were matched to the Uniprot accession code present in our analysis. 

The PlandbAffy (PD) filter utilizes the PlandbAffy 62 database, which uses the probeset sequence 

and the BLAT database to align probe nucleotide sequences to the target and assign to each probe 

a grade reflecting alignment mismatches, alignment to other sequences risking cross-hybridization, 

and intronic versus exonic location. The Jetset (J) filter uses the Jetset5 assessment, which also 

considers nucleotide complementarity across the probesets, but also considers splice isoform 
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coverage, and transcript degradation. In addition, JetSet (J) will score each probeset of a target 

gene and select the best probeset (of currently defined probesets) for each gene on the chip.  

In summary, the workflow options for filtering poor quality probesets can depend upon 

sequence complementarity (i.e. Jetset, PlandbAffy, Geneannot), probeset design (AffyGrade, 

AffyTag), or post-hoc probeset processing (i.e. Masker, Encode). Users of one of these filtering 

methods may filter without evaluating the performance of the filtering workflow option.  

2.2.3 RNASeq workflow components 

RNAseq is widely used in diverse medical domains as a tool of discovery including fields such 

as cancer, Alzheimer’s, and heart disease.94–96 Yet more workflow paths for RNASeq analysis 

continue to be developed, each of which argues that some improvement has been made over the 

old set of standard workflow paths.  

RNAseq platforms provide a newer and deeper view gene expression, by providing 

sequence level information. There are many workflow options to process RNAseq data. There is 

vigorous competition to develop the fastest, highest performing, and available workflow options 

in RNAseq analysis. This provides the RNAseq data analysts a diverse selection of methods to 

choose from. Although there are some popular workflow options in RNAseq analysis, there is no 

universally accepted way to determine the relative gene expression from RNAseq data. Across 

the field there are subtle filtering, quality control techniques, and parameter settings that make it 

very difficult for an analyst to choose workflow options rationally.  

There are many well-documented reviews of how the analysis pipelines differ in terms of 

the process and the resulting gene expression values.38,70,97,98 In addition to multiple workflow 

paths there are many platforms which produce unique data types and formats. The Illumina 
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platform is the most utilized platform but other systems, such as AB SOLiD and Ion torrent, are 

still considered highly reliable.99  The RNAseq standard output is a FASTQ file which contains 

four lines: 1) the read name, 2) raw sequence, 3) optional note space, and 4) the quality identifier 

of each base. The collection of FASTQ files can contain quite a bit of memory, upwards of 1 TB. 

Once the FASTQ file is obtained, the next step is to align the FASTQ file to the reference 

genome. There are many alignment algorithms available and since this is an important focus of 

this topic it is reviewed in full detail (section 2.2.3.1). Alignment will result in reads stored in a 

SAM/BAM file. The SAM version of the file is a tab-delimited sequence storage file, BAM is a 

binary compressed version of the SAM format. Further steps are to assemble the transcriptome 

by determining which of the exons match the same transcript and determining which isoforms 

are reliable, thereby providing the user with regions which represent certain transcripts (section 

2.2.3.2). Finally, the last stage is the quantification of the reads into some measure of relative 

transcriptional abundance (section 2.2.3.3).   

2.2.3.1 The alignment workflow component 

Alignment can be divided into two basic categories, unspliced aligners and spliced aligners. The 

unspliced aligners will align reads which contain no (large) gaps to the reference genome. The 

spliced aligners are necessary when the reads map of exon-exon junctions.98,100  Here I present a 

review on the functionality of the select alignment tools. 

Alignment of reads depends on the ability to search a massive reference genome for each 

of the reads obtained from the FASTQ file. The number of reads for the Illumina HiSeq platform 

is typically on the order of 50-200 million reads, which are 32-100 base pairs in length.101   The 

first generation alignment methods included hash table based methods such as MAQ, RMAP, 
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and Soap.102–104 The hash-based methodologies suffered primary from computational time on the 

order of thousands of hours.105   

One of the most widely used short read alignment algorithms is the Burrows Wheeler 

Alignment tool.101 The BWA method is able to read paired ends and permits short indels and 

gaps. It has the advantage over the hash-based methods by using “Full text index in Minute 

Space “ (FM-index), which keeps the memory usage low in the search tree.106  The FM-index 

will compress the input index but permits fast substring queries. The Burrows-Wheeler transform 

methods have the greatest benefit of having performance independent of the size of the reference 

sequence. Other methods that have benefited from the Burrows Wheeler Transform include 

BarraCUDA, SOAP2, and Bowtie.107–109  BarraCUDA uses graphic processing units and the 

BWA method to process the index tree on graphical processing units rather than computational 

cluster methods.109  Since BarraCUDA is using the BWA method, speed is the only real 

difference between the two methods. SOAP2 is an updated version of the hash table only based 

SOAP.108  In SOAP2, the hash table is used to search for the location of the read in the Burrows 

Wheeler Transform reference index. Ruiquang et al (2009) found that on one human Asian 

sample similar percentages of paired reads were mapped in about 4% of the time ( SOAP2 828 

seconds versus SOAP 19,234 seconds).108  Another popular hash table based method is MAQ 

which has developed a mapping quality score.103  The reads are split and stored in a hash table 

and the authors suggest 20 to 30 read depth to reduce the false negative rate.103  The Short Read 

Mapping Package or SHRiMP takes the reference genome, splits it into “q-grams” and stores the 

“q-grams” in a hash table.110  These “q-grams” are then filtered and ordered by size, perfect 

matches, and total “edits”. The “edits” can be indels or SNV’s from the reference genome. In this 

way SHRiMP has gap tolerance unlike previously mentioned methods.110  The Genomic Next 
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Generation Universal MAPPer, or GNUMAP, developed by Clement et al. , uses a probabilistic 

model to align more reads than the previously mentioned methods.111 GNUMAP stores the reads 

in a position weight matrix (PWM) and aligns the reads via the Neddleman-Wunsch algorithm. 

The authors demonstrate an error rate of 1.11% compared to 4.17% using Bowtie and other hash 

table methods.111 All of the above mentioned methods tend to focus on speed. Although it is 

important to evaluate speed of the alignment tool, biological factors such as the ability to align a 

splice junction, must be considered in evaluation as well. In an effort to address these issues 

some of the authors have updated the algorithms to address splicing issues.108,112 However, the 

BWA-like alignment methods still struggle to align across splice junctions, which is a problem 

when aligning reads from RNA.   

Spliced aligners, or “long” read mappers, attempt to solve the issue of reads that cross a 

splice junction. Many of these alignment tools start with Bowtie or BWA-like methods to map 

the non-spliced reads and then a use a new algorithm to sort through the rest of the library to map 

the spliced reads. This approach is called “exon-first” read mapping and includes methods such 

as Tophat and MAPSPLICE.9,98 Tophat relies heavily on Bowtie to map all non-splice junction 

reads. This is the “exon first” portion of the algorithm.98 Where Bowtie ignores the unmappable 

reads, Tophat stores these reads and then applies a “seed and expend” approach. Tophat does not 

assume that the mapped reads are not alternative splices (as it should not), but rather produces a 

list of all possible neighbors under a certain threshold distance. The “seed and extend” approach 

will select about 30 bp upstream from the donor and 30 bp downstream from the acceptor and 

attempt to align these sites to the “leftovers” in the unmapped set.98   

Another popular spliced alignment tool is the Mapsplice package by Wang et al. (2010).9  

The Mapsplice algorithm separates what the authors refer to as “tags” (200bp) into read 
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segments that are mapped considering anchor sites downstream from the read segment. 

Mapsplice also has a quality score significance based on three components: 1) alignment quality 

based on direct sequence match to the reference; 2) anchor significance where shorter anchors 

are considered less significant; and 3) entropy which uses Shannon Entropy to determine the 

uniformity of the sequence obtained by RNAseq.9    

There are other splice aligning tools which actually form the basis of the “seed and 

extend” approach used by Mapsplice and Tophat. QPALMA for example is similar to Tophat, 

but utilizes a training set of known splice sites.113 This is acceptable for some investigators which 

utilize smaller genomes which have extensively cataloged the known splice junctions. However, 

QPALMA is not ideal for human samples where we do not yet know all possible spice junctions. 

Another example is ERANGE, Enhanced Read Analysis of Gene Expression. Rather than use the 

splice sites as a training set, ERANGE appends the known splice junctions to the reference 

genome.114 Regardless ERANGE and QPALMA are limited to the definition files of the known 

splice junctions. Tophat and Mapsplice are not without their own problems, however, as is the 

case with “exon first” read mapping and retro-transposed pseudogenes. These pseudogenes were 

once processed mRNA that is reintroduced back into the genome in another location without the 

introns. Since the exon can match a pseudogene sequence, a read may be mapped to the 

pseudogene as if it were an exon. 

Another successful alignment tool is the STAR algorithm developed by Dolbin et al. 

(2012). The STAR algorithm is a two phase process: 1) seed searching phase and 2) the 

clustering/stitching/scoring phase.115 The seed searching phase finds the Maximal Mappable 

Prefix, which is the longest possible unique match to a substring. In the second phase the user 

defines anchor seed windows and then the un-anchored seeds are stitched together and a score is 
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determined from the possible combinations. To validate their results STAR, TOPHAT, 

MAPSPLICE were aligned the ENCODE long RNAseq dataset where STAR aligned 94% of the 

reads compared to TOPHAT finding 71% of the known reads. 

2.2.3.2 The transcriptome assembly workflow component 

Once alignment/mapping is complete, the next step in an RNAseq workflow is to determine the 

isoforms that exist in the BAM/SAM file. Isoforms are alternative versions of mRNA molecules 

which are produced, for example, by different transcriptional start sites or alternative splicing. 

Gene expression is more granular when determined at the level of the isoform rather than the 

level of the gene. Assembly can be performed using two different grouping metrics: 1) a 

reference genome or 2) a de novo method, which uses the mRNA sequences within the data to 

find the isoform groups. The input to reference genome based methodologies is a BAM/SAM 

file. The input to a de novo method is the collection of reads as a FASTQ. Cufflinks and 

Scripture use the reference genome to reconstruct the transcriptome.100,116  Scripture uses a 

“connectivity graph” that creates a graph from neighboring nucleotide bases. A probabilistic 

model will recreate a “transcript graph” and reassemble and report the isoforms based on a 

likelihood threshold. Cufflinks can perform both reconstruction as well as relative transcriptional 

abundance. Cufflinks takes a splice alignment input (BAM) from Tophat or another spliced 

aligner.100 Cufflinks operates off of an application of the Dilworth Theory (1950) which states 

that the number of mutually compatible reads is the same as the minimal number of transcripts to 

explain the reads.117 Cufflinks uses this principle to take the mutually incompatible reads left 

over from TOPHAT to determine a “minimum path cover”.100 

A few tools offer the reconstruction of the transcriptome without a reference genome. 

This type of assembly is called de novo assembly. One of the more effective de novo assembly 
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strategies is the Velvet algorithm.118 Velvet uses a data structure called a de Bruijn graph which 

organizes k-mers into pairs, where each pair is the node, and the k-mer is displayed along the arc. 

Since the de Bruijn graph is hampered by the tendency of genomic repeats, which would be 

represented in the graph as the same chain, the Breadcrumb algorithm is employed by the 

developers to utilize paired reads in the FASTQ file to determine the assembly.118  The 

developers of Velvet mention that it is meant for applications of short reads, which is ideal for 

RNAseq de novo assembly.      

2.2.3.3 The quantification workflow component 

Once alignment and assembly into isoforms is complete, the general principle is to determine 

quantity of a particular transcript. If there are more reads for a particular transcript, this reflects 

the abundance of the transcript. I will discuss below in the quantification section the different 

measures of relative transcriptional abundance. The term “relative transcriptional abundance” is 

utilized in RNAseq analysis for the following reasons: 1) reads may mean that a gene that has 

twice as many reads is expressed twice as much, 2) one gene is longer and therefore more “read 

fragments” are available, or 3) some reads may align to paralogs in the reference genome. Some 

analysts may assume that 2 and 3 should occur is a constant proportion across genes and 

samples.  

Common approaches to quantification include Cufflinks and MISO.100,103 These two 

approaches use the assembly to determine the number of counts that map to full length 

transcripts. This count must be normalized, however, since read depth and fragment size is 

highly variable. The reads per kilobase of transcripts per million mapped reads (RPKM) is the 

standard metric in most quantification methodologies, which normalizes the feature by gene 
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length and total mapped reads. However, paired end reads have a dependency upon one another 

and therefore the metric fragments per kilobase of transcript per million reads (FPKM) accounts 

for this in Cufflinks.100 One more approach to mention is the RSEM119 algorithm, which is able 

to calculate abundance with a reference genome or de novo using the Expectation Maximization 

algorithm by learning a fragment length distribution from the data.  

2.3 THE EVALUATION GAP 

2.3.1 RNASeq workflow evaluation with simulated data 

One evaluation of RNAseq workflow paths is through the use of the BEERS toolkit.43  The 

BEERS simulator takes as an input a set of transcript models and the expected quantification of 

each transcript and intron in the model. The simulator then creates a FASTQ file with random 

alternative splice forms from each model and independently introduces nucleotide substitution 

and indels independently throughout the model. Based on the quantification value of the 

transcript (provided by user) and intron (also provided by user), a probability is used to generate 

the simulated reads for the FASTQ file.43 The resulting simulated data now has a known number 

of reads by which RNAseq workflow options steps, such as alignment, can be evaluated.  
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2.3.2 RNASeq specific workflow evaluation 

There are a few examples of integrated platforms for RNASeq analysis, but none of the 

platforms provide a complete evaluation of workflows. In each of these examples the BEERS 

toolkit is used to evaluate the workflow option. Habegger et al. (2010) have developed an 

integrated and modular framework to complete RNAseq processing called RSEQtools.120  

RSEQtools provides a framework to align FASTQ files from multiple platforms, convert to a 

mapped read format (MRF) and permit transcript assembly, quantification, 

aggregation/correlation, and gene fusion identification.120  RSEQtools also provides visualization 

on read depth by location. RSEQtools does not, however, provide an evaluation of the workflow 

paths, but rather a platform to complete the analysis.120  Another integrated RNAseq workflow 

tool is ArrayExpressHTS, developed by Goncalves et al. (2011). ArrayexpressHTS provides the 

user with options to alignment and expression options, such as Tophat, Bowtie, and BWA for 

alignment and Cufflinks for expression.98,101,112,121 ArrayexpressHTS enables data quality on the 

sequence, but not on the complete workflow quality (i.e. alignment, assembly, quantification). 

Wang et al. (2011) provide a framework called RseqFlow which allows multiple workflow 

options on RNAseq data including two alignment algorithms, Bowtie and PerM, and three 

calculated options for RPKM.122  Wang et al. (2011) evaluated the quality of three expression 

measures on the criteria of similarity to read length and location databases obtained from 

ENCODE. RSeqFlow deals with error and ambiguity in RNASeq data by providing three 

different metrics for gene expression. The RPKM_Uniq value eliminates multi-reads which can 

over-estimate the gene expression value from alternative isoforms. The RPKM_Random handles 

the isoforms differently by random assignment of each multi-reads. The RPKM_UM gene 

expression value does not consider multi-reads and eliminates all unmapped reads.122  They 
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determined that the default setting RPKM_UM is the optimal expression measure in sequence 

similarity from ENCODE. These integrated platforms only assess the quality of the workflow 

options at isolated stages, rather than permit a comprehensive workflow evaluation. 

A powerful new integrated platform called MAP-Rseq created by Kalari et al. (2014) 

permits multiple preprocessing filtering steps and complete workflow execution including 

alignment, assembly, and quantification.123 MAP-Rseq also provides a quality assessment of the 

process based on the BEERS software to generate simulated paired end RNA sequencing data.43  

With this data the MAP-Rseq RPKM was determined to have a .87 correlation with the 

simulated BEERS data.      

Another large scale comparison across RNAseq workflows has been performed known as 

the RNA-seq Genome Annotation Assessment Project (RGASP) on 26 alignment protocols.44 

The alignment protocols included multiple spliced aligners, as well as other pipelines utilized 

widely by users of RNAseq analysis including both versions of TOPHAT, STAR, MAPSPLICE, 

and a number of other workflow options.9,98,115 Multiple criteria were utilized to compare to the 

BEERS simulated transcriptome including alignment yield, assembly performance, coverage, 

and indel detection. Drastic differences were observed between the alignment yield of the mouse 

transcriptome and the BEERS transcriptome with a range of 68.4% and 95.1% yield. Also, in 

terms of ambiguous mapping of reads, one alignment tool reported 37% of sequence reads as 

being ambiguous. There were great differences in coverage among the workflow options: the 

simulated data generated 16,554 Ensembl genes and the combined assembly included 17,800 

genes. The authors hypothesize that this is due to alignment to over 1,000 pseudogenes. The 

RGASP results demonstrate that different RNAseq workflow options produce drastically 

different results.  
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2.3.3 Real data RNASeq comparison and evaluation of workflow steps 

Evaluation of RNASeq is certainly a developing area in bioinformatics so complete evaluations 

are scant. There are many comparisons of RNASeq workflow steps and paths in the literature using 

real data, but RNASeq real data evaluations are often limited to individual workflow steps. The 

popular Tophat alignment tool, for example, was validated by a comparative study against 

ERANGE and Velvet+gmap on mouse real data.98,114,118 There are also published examples of 

alignment tools which evaluate performance based upon computational time/memory.37,109,124 One 

of these studies, Seyednasrollah et al. (2013), compared runtimes across 8 RNASeq workflow 

paths (referred to as pipelines) using both human and mouse real data.37 There are also powerful 

methods to compare assembly and gene profiling tasks, such as baySeq and edgeR.68,125 Kvam et 

al. (2012) developed a real data based comparison using a two-stage Poisson model on four 

assembly tools on maize RNA.125 Considering the preceding approaches there are two major gaps 

that remain in the real data evaluation and comparison of RNASeq workflow paths. One gap is the 

small number of workflow paths due to massive amount of time and memory necessary, which 

explains a focus on runtime by RNASeq workflow path comparison and evaluations. The second 

gap is a lack of focus on quality of the workflow path data. One of the more powerful RNASeq 

workflow evaluation addresses both of the gaps in the previous literature is Williams et al 

(2017).126 They performed an evaluation of 216 different workflow paths for monocyte RNASeq 

data by determining precision and recall by comparison to microarray and BeadChip assay. They 

found drastic differences in the workflows but the most drastic differences were observed at the 

quantification steps of a workflow. It must be noted, however, that referring to microarray data as 

“truth”, which is a required assumption in the Williams et al (2017) evaluation, is a strong 
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assumption. Other investigators have demonstrated the problems with using microarray as a 

quality comparison to RNASeq data.127,128   

2.4 CORRELATION AS QUALITY METRIC 

Quality of the final processed data should be the guide in choosing a workflow path. Relationships 

between molecules is the foundation of molecular biology. Widely known concepts, such as the 

central dogma of molecular biology, can serve as a guide for bioinformatics data processing.129 

The use of correlation to as a Model Quality Criterion is not unique to the EUFLOW framework.1 

Correlation between RNASeq data and Affymetrix data has often been utilized to benchmark new 

analysis methods in molecular biology.25,40,130 Correlation of protein and mRNA have also been 

utilized successfully to learn about mechanisms of cancer biology.131–134 Protein expression 

methodology has also benefited from using correlation as a quality metric.33,39,135,136 In addition, 

correlation can be utilized to identify or annotate other types of biological molecules such as 

miRNA and miRNA targets.137–139,128 In fact, three way correlation analysis can identify the 

relationship between central dogma pathways.21 Correlation between protein and mRNA 

expression levels has been documented to serve as a quality metric is many different applications. 

Correlation as a model quality criterion can guide users of workflow paths in gene expression or 

any other bioinformatics workflow when a relationship is expected between molecular pairs.  
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3.0  MATHEMATICAL FRAMEWORK 

This section introduces a framework for workflow evaluation, which extends a previously 

published methodology for identifier filtering and identifier mapping. For more details, see 

Day and McDade 2013.1 (In that manuscript, a WP is called a "method", and the letter "M" 

appears where herein we use WP.) To evaluate a workflow the user must have the following 

inputs: 

1) A large number of biological samples from a biological repository

2) Two high-throughput data sets created on different platforms, each with a feature list 

of identifiers. The two data sets come from the same biological samples

3) An identifier map which produces pairs of identifiers from the two data sets (The main 

example thus far is the pairing of a transcript ID to the ID of a protein that is presumed to be its 

translation product, Each ID pair selects a pair of features, one from each data set)

4) A model quality score for each feature pair p, designated MQ(p). The MQ(p) are treated 

independently for modeling the mixture distribution

5) A workflow consisting of a set of workflow components, where each component has 

workflow options to select from.

6) The workflow paths (WP) which we want to evaluate and compare, each formed by 

making a set of choices selected from the available options. For each WP, the set of pairs 

accepted or produced by that method is designated as S(WP). In this framework, WP is a 

workflow path as previously defined. Membership of a pair p in the set S(WP) means that p is a 

version or member of that workflow path.

. 
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The Model Quality score in this application is the correlation of the two measurements 

across the biological samples. We consider the probability density of the correlation values for all 

pairs produced by the workflow path (WP) (Figure 8, black line). This density is modelled as a 

mixture with the following three components:      

• “+”: The transcript feature and the protein feature are correctly identified and mapped, and

they are truly biologically coupled, which means that transcript abundance and protein

abundance are monotonically related for this pair in these samples. The blue line in Figure

8 represents the “+” component.

• “0”: The transcript feature and the protein feature are correctly mapped, but biologically

decoupled. This means that the expected monotonic relationship between a transcript and a

protein are not observed. There are many biological reasons for decoupling, including RNA

interference by microRNA’s, post-translational processing, and any other mechanism

causing the protein abundance to fail to reflect the transcript abundance. The green line in

Figure 8 represents the distribution of correlations for decoupled pairs, which we refer to as

the “0” component.

• “x”: Undesirable pairs. Either a feature was mis-identified, the mRNA/protein pair

mapping was incorrect, or the data quality for the feature is poor. The red dashed line in

Figure 8 represents the distribution of correlations for misidentified pairs, which we refer to

as the “x” distribution. Pairs included in this distribution should not be assigned. These

assignments may be due to incorrect actions on the part of the identifier mapping or the

workflow in general.
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However we cannot distinguish the "0" and "x" components, so in practice the mixture model 

fitted has only two components, and the two components "0" and "x" are labeled as "-". 

Figure 8. Mixture distribution example. 

A hypothetical observed correlation density (black) is deconvolved into mixture components, the "+" 
coupled pairs ("+": blue), a decoupled pairs ("0": green), and mis-identified or poor quality pairs ("x"; red)1.  

3.1 ESTIMATION OF THE “+” POSTERIOR PROBABILITY 

We would like to identify the features in either “+” or “0” for inclusion. However, the data cannot 

distinguish between the “0” and “x” groups. Under mild assumptions, the WP with the highest 

posterior probability for “+” is also the WP with the highest posterior probability for “+” or “0”. 

We refer to the combined “0” and “x” groups as the “-” group. Even though groups “0” and “x” 

cannot be distinguished, basing the relative performance of workflow methods on the mixture 
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distributions from the observed correlations is likely to yield the correct decision; the argument for 

this statement is previously reported.1 

Let G(p) be the component, whether “+”, “0”, or “x”, that pair p belongs to. A better 

workflow path should do a better job at excluding incorrectly mapped pairs (i.e. those with G(p) 

= “x”). Increasing the probability that G(p) = “+” should reduce the G(p) = “x” component. Let 

the proportion of pairs in group g be: 

Pr(𝐺𝐺(𝑝𝑝) = 𝑔𝑔) = 𝜋𝜋𝑔𝑔  for 𝑔𝑔 ∈ {" + ", "0", "𝑥𝑥"} 

The mixture model provides the opportunity to estimate Pr(G(p) = “+”) for each pair p. 

This probability provides the metric we need to evaluate alternative workflow paths. 

We now assume that the true correlations for all the pairs in group g are distributed as a 

mixture of normal distributions with mean 𝜑𝜑𝑔𝑔 R and variance 𝑉𝑉𝑔𝑔. There is also measurement error, 

so the correlation of each pair p in group g is normally distributed with marginal mean 𝜑𝜑𝑔𝑔 R and 

marginal variance 𝜏𝜏𝑔𝑔𝑔𝑔  =  𝑉𝑉𝑔𝑔 + 𝜎𝜎𝑝𝑝2, where 𝜎𝜎𝑝𝑝2 is the measurement error variance specific to pair p. 

We estimate 𝜎𝜎𝑝𝑝2  by the bootstrap method, as described in Day & McDade 2013.1 To estimate the 

probability of a pair belonging to the “+” group we use an Expectation Conditional 

Maximization algorithm to determine the following parameters: 1) the prior probability 𝜋𝜋+ of 

belonging to the “+” group,  2), the within-group true variance V+ of the correlations in “+” 

group and 3) the within-group true variance V-  = V0 +Vx . Here “true” signifies without 

sampling error. This is possible since we are able to constrain the mean of the “0” and “x” groups 

to 0. This constraint defines this algorithm as Expectation Conditional Maximization (ECM). For 

a complete description of the ECM algorithm see Additional File 1 from Day and McDade 

20131. Pseudocode is available to describe the ECM in Appendix B.  
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Having determined the maximum likelihood estimates of the parameters, we can now 

calculate for each pair p the posterior probability of belonging to the “+” group by defining: 

𝜋𝜋+𝑝𝑝∗   =   Pr(𝐺𝐺(𝑝𝑝) = +   |   𝑀𝑀𝑀𝑀𝑝𝑝   and parameter estimates) 

𝜋𝜋−𝑝𝑝∗ = 1 − 𝜋𝜋+𝑝𝑝∗ =  𝜋𝜋𝑥𝑥𝑝𝑝∗ +  𝜋𝜋0𝑝𝑝∗  

This calculation provides the posterior probability that pair p belonging to the “+” 

component, given the correlation 𝑀𝑀𝑀𝑀𝑝𝑝 and its sampling variance 𝜎𝜎𝑝𝑝2, estimated from bootstrap 

sampling. To convert that variance into the variance of the posterior probability, the delta method 

approximation is used. This consists of multiplying the variance of the correlation times the square 

of the derivative of the posterior probability as a function of the correlation. 

𝑣𝑣+𝑝𝑝∗ = 𝑣𝑣𝑣𝑣𝑣𝑣�𝜋𝜋+𝑝𝑝∗ �  ≅ 𝑣𝑣𝑣𝑣𝑣𝑣�𝑀𝑀𝑀𝑀𝑝𝑝�  ×  �
𝑑𝑑𝜋𝜋+𝑝𝑝∗

𝑑𝑑𝑑𝑑𝑄𝑄𝑝𝑝
�
2

. 

The expression for the derivative is presented in Additional file 1 of Day and McDade 

(2013)1. A weighted mean of the “+” proportion provides an expected proportion of “+” group 

pairs for a given workflow path. The weighted mean is estimated using the posterior probabilities 

of each pair and the variances of these posterior probabilities. 

𝑃𝑃+𝑊𝑊𝑊𝑊 = � 𝜋𝜋+𝑝𝑝∗ (𝑣𝑣+𝑝𝑝∗ )−1
𝑝𝑝∈𝑆𝑆(𝑊𝑊𝑊𝑊)

/ � (𝑣𝑣+𝑝𝑝∗ )−1
𝑝𝑝∈𝑆𝑆(𝑊𝑊𝑊𝑊)

 

This value provides a basis for the application of the Bayes expected loss calculation to 

calculate a user utility for each WP, which will be introduced in the next section.  
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3.2 EXPECTED UTILITY FOR AN ANALYSIS GOAL 

It is important to consider that different analysts have different analysis goals. One workflow path 

may include a pair or a feature while another excludes it. The pair will be either a “true positive” 

of the first WP or a “true negative” of the second. The relative value of including a true positive 

versus excluding a false positive will be different for different scientific goals. Utility values can 

express these valuations. We utilize the Bayesian decision principle of maximizing expected 

utility. This principle is useful for selecting a WP as illustrated in the next section. The Bayesian 

expected loss calculation for a particular WP is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 = 𝑈𝑈𝑇𝑇𝑇𝑇𝑃𝑃+𝑊𝑊𝑊𝑊 − 𝐿𝐿𝐹𝐹𝐹𝐹𝑃𝑃−𝑊𝑊𝑊𝑊 

Define 𝑈𝑈𝑇𝑇𝑇𝑇 as the utility of the user for a true positive pair,  𝐿𝐿𝐹𝐹𝐹𝐹 as the loss of a user for 

including a false positive pair, 𝑃𝑃+𝑊𝑊𝑊𝑊 as the expected proportion of “+” group pairs for a given 

workflow path and 𝑃𝑃−𝑊𝑊𝑊𝑊 as the expected proportion of “-” group pairs for a given workflow path. 

These values enable the calculation of the Mean Expected Utility (MEU). As an alternative, the 

analyst may choose to use Total Expected Utility (TEU), which is the product of the number of 

workflow paths in the evaluation and mean expected utility. Define 𝑛𝑛𝑊𝑊𝑊𝑊 as the number of 

workflow paths to evaluate. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊 = 𝑛𝑛𝑊𝑊𝑊𝑊 ×  (𝑈𝑈𝑇𝑇𝑇𝑇𝑃𝑃+𝑊𝑊𝑊𝑊 − 𝐿𝐿𝐹𝐹𝐹𝐹𝑃𝑃−𝑊𝑊𝑊𝑊) 



56 

3.3 COMPOSITE FILTERING STRATEGIES 

Boolean conjunction (intersection; “and”) and disjunction (union; “or”) operators, can create 

composite filtering strategies, which are easily evaluated as well. An analyst may consider whether 

the union or intersection of two or more filtering methods is worth the extra effort. Given a current 

strategy, for each so-far-unused method, one can automatically construct and evaluate the 

strategies formed by conjoining this method to the current strategy via conjunction or disjunction. 

A forward selection assesses the expected utility for each of these conjoined strategies, and chooses 

the one with the highest expected utility. This is referred to as “greedy” selection because it takes 

the immediate best step, in sequence. In contrast is the exhaustive search of every Boolean 

combination of the methods, which in principle could find better strategies, but is sometimes 

impractical. To see an example of using Boolean combinations of filtering strategies in context see 

Figure 16 and 17 in Appendix A. 
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4.0  EUFLOW R PACKAGE 

We have developed the EUFLOW package to assist users who have multiple versions of data that 

arise from different workflow paths. The package can be downloaded via github 

at https://github.com/Kkm5/EUFLOW.git. In Chapter 4, this package will be described including 

the development, requirements, as well as a basic vignette of the R package. 

4.1 DEVELOPMENT PRIOR TO PACKAGE 

EUFLOW is an extension of prior projects which evaluated identifier mapping and filtering. The 

package depends upon some functionality of IdMappingAnalysis, which was utilized in evaluation 

of the identifier mapping evaluation in Section 1.2.2.1.140 IdMappingAnalysis enables users to 

evaluate identifier mapping, while EUFLOW extends the evaluation to identifier filtering, 

threshold selection and general workflow path evaluation.140 EUFLOW functionality was inspired 

by the identifier filtering evaluation performed in Appendix A2. In this Chapter the resources for 

the package development are presented as well as a vignette “How to use the EUFLOW package?” 

4.2 RESOURCES FOR PACKAGE DEVELOPMENT 

The following resources are utilized to: 1) obtain data, 2) process workflow options, 3) develop 

the package, and 4) version control and backup. 

https://github.com/Kkm5/EUFLOW.git


58 

Data for testing and development of EUFLOW was obtained through the data portal of 

The Cancer Genome Atlas (TCGA).4 TCGA has thousands of patients across 34 types of cancer 

on numerous platforms including DNA sequencing, miRNA sequencing, RNA sequencing, 

protein expression, DNA methylation, and copy number variation4. Levels of data are available 

from complete processed data (gene expression) to the raw unprocessed files (sequence files). An 

application process is necessary for sensitive Level 1 information, like DNA sequence data. The 

Cancer Genomics hub (CGHub) through the National Cancer Institute serves as the secure 

repository for large and protected files4. Although TCGA has a download matrix to obtain data 

files other means exist, like cBio R packages, to facilitate program based data retrieval.32  

RStudio is the most widely utilized IDE for the R programming language. R studio can 

be downloaded open source at https://www.rstudio.com/. All required packages are able to be 

installed within one working environment and developed as an R project. The source code for the 

EUFLOW utilizes Git within Rstudio and all code is updated to the Github server at 

https://github.com/Kkm5/EUFLOW.git. The package includes the following: 1) a data folder for 

vignette input, 2) inst folder for input data file download outside of the package, 3) man folder 

for help files, 4) R folder for the source code, and 5) vignette folder for an example of package 

use.  

R Bioconductor is also a value resource for users that process RNASeq data in R. Many 

of the workflow paths and options discussed in Chapter 2 are available as a package that can be 

obtained through R Bioconductor. There are more RNASeq workflow paths and options 

available through Bioconductor than any other open source platform. This creates and 

environment that is convenient as users can run a workflow path on raw data with R 

https://www.rstudio.com/
https://github.com/Kkm5/EUFLOW.git
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Bioconductor packages and then evaluate the different workflow path output files with the 

EUFLOW package.      

4.3 EUFLOW VIGNETTE 

Note: this a copy of the vignette in the EUFLOW package. It is a stand-alone demonstration of an 

evaluation of two RNASeq workflow paths and is available in the package as the file “How-to-

use-the-EUFLOW-package.R” 

4.3.1 Introduction 

The data in bioinformatics is often in some “raw” form which is not yet ready for analysis. 

Processing this data often involves several steps, called variously a workflow, pipeline, or protocol. 

EUFLOW does not process raw data but rather serve as an evaluation on the final processed data 

from alternative workflow paths.  

To evaluate a workflow the user must have the following inputs: 

• A large number of biological samples from a biological repository, such as

TCGA, or a private collection of biological samples.

• Two high-throughput data sets created on different platforms, each with a feature

list of identifiers; the two data sets come from the same biological samples.
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o EvaluationExperimentSet is an R dataframe, which contains features from

different workflow paths on the same samples. For example gene

expression data from two different workflow paths (format described in

the next section).

o ReferenceSet is a R dataframe, which contains features which correspond

to the EvaluationExperimentSet on the same samples as the

EvaluationExperimentSet

• An identifier map which produces pairs of identifiers from the two data sets. (The

main example thus far is the pairing of a transcript ID to the ID of a protein that is

presumed to be its translation product). Each ID pair selects a pair of features, one

from each data set (format described in the next section).

o IdentifierMap is an R dataframe, which contains a list of reference feature

identifiers mapped to a comma separated list of features. The

IdentifierMap can be constructed using the IdMappingAnalysis

Bioconductor package140. If a user does not have an identifier map and the

features identifiers are the same ( i.e. Gene Symbols for the ReferenceSet

and the EvaluationExperimentSet are the same) then a EUFLOW function

WorkflowPathMap enables a user to construct an IdentifierMap.

• A model quality score for each feature pair p, designated MQ(p). The MQ(p) are

treated independently for modelling the mixture distribution. In applications thus

far, this score is a correlation coefficient between the two features. In this vignette

we will demonstrate Pearson and Spearman correlation.

o Currently supported for correlation, person spearman, or kappa.
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4.3.2 RNASeq evaluation demonstration 

RNASeqV1 and RNASeqV2 are workflow paths that process raw FASTQ RNASeq data to obtain 

a measure of gene expression in TCGA data. The differences between the workflow options that 

are employed by these workflow paths is discussed in greater detail in Chapter 2, but the primary 

difference between the workflow paths is the handling of alternative splicing. The evaluation of 

these two workflow paths is a simple example for the illustration of EUFLOW functionality. Table 

7 shows the workflow options for each of the workflow paths evaluated in this vignette. The 

RNASeq workflow requires the alignment of reads, the assembly into transcripts, and the 

quantification of the sample RNA. RNASeqV1 uses the Burrows-Wheeler algorithm for alignment 

and Samtools for assembly and quantification by determining the RPKM (Reads Per Kilobase 

Million).124,141 The RNASeqV2 workflow path, however, using an assembly method which 

considers gene isoforms which determines gene expression at the gene level as fragments per 

kilobase million (FPKM). In this example there are 67 mRNA features considered as only 67 

corresponding Reverse Phase Protein Assay (RPPA) antibodies were available in TCGA as the 

reference dataset. Only 66 mRNA features were considered for RNASeqV2 due to missing datafor 

some samples. The identifier map creates paired features of the 133mRNA/protein pairs. 
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Table 7. Demonstration of EUFLOW input. 

A table for the demonstration evaluation of EUFLOW. EUFLOW does not process the workflow but 
compares the workflow paths on the same evaluation data. In this example RNASeqV1 and RNASeqV2 workflow 
paths are evaluated. The input to EUFLOW is the boxed section. The EVALUATION DATA VALUES produced 
from the two workflow paths form the input for the EUFLOW package as a merged R dataframe. The REFERENCE 
DATA VALUES are from another platform with an expected relationship. The identifier map pairs the features in 
the evaluation set.    

One Workflow 
= A Sequence of Workflow Components 

Workflow Paths 
 = A Sequence of Workflow Options 

Workflow 
Component 

Workflow 
Options 

RNASeqV1 
Workflow path 

RNASeqV2 
Workflow path 

Alignment Bowtie,BWA BWA Bowtie 
Assembly Mapslice, Samtools Samtools Mapsplice 

Quantification RSEM, RPKM RPKM RSEM 
EVALUATION DATA VALUES RNASeqV1 

Gene expression values 
67 mRNA features 

 198 samples 

RNASeqV2 
Gene expression values 

66 mRNA features 
 198 samples 

REFERENCE DATA VALUES RPPA Fold change 
67 protein features 

198 samples 
IDENTIFIER MAP 133 mRNA (GENE SYMBOL) 

67 proteins (GENE SYMBOL) 

Users do not input raw data into EUFLOW but rather must process the data in R or input from 

outside of the R environment. A small section of the EvaluationExperimentSet sample data of 

RNASeqV1 and RNASeqV2 are represented in Figure 9. 
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data(RNASEQDATA) 
RNASEQDATA[1:9,1:3] 

##  X TCGA.04.1348 TCGA.04.1357 
## 1  ACACA_v1  2.747  1.78 
## 2  AKT1_v1  59.020  56.39 
## 3  AKT2_v1  38.490  20.88 
## 4  AKT3_v1  1.125  1.30 
## 5  ANXA1_v1  77.479  120.54 
## 6  AR_v1  0.892  1.80 
## 7  BAX_v1  20.940  26.15 
## 8  BCL2_v1  0.670  3.99 
## 9 BCL2L1_v1  82.593  85.88 

Figure 9. Sample evaluation data for EUFLOW input. 

The first column (X) are the feature identifiers. Two sample identifiers are represented as gene expression. 

The RNASEQDATA file represents the EvaluationExperimentSet for this vignette. Each 

feature identifier has two pieces of information, the first is the mRNA in this example separated 

by a “_” character and the workflow path identifier. For example in the first row, “ACACA” is the 

mRNA for acetyl-CoA carboxylase alpha and “v1” is the designation for RNASeqV1. Each new 

workflow path dataset must be appended to the EvaluationExperimentSet with new workflow path 

tags.  

The reference dataset in this demonstration will use the TCGA RPPA protein expression 

data on the samples.20 The same 198 samples are represented in the same order. In our example 

the Level 3 data for gene expression and protein expression uses the same identifier. For example 

in the RPPADATA.original data file, the “ACACA” represents the protein expression for acetyl-

CoA carboxylase alpha. So in this example two pairs exist for acetyl-CoA carboxylase alpha, 

ACACA_v1/ACACA and ACACA_v2/ACACA. Users that would like to evaluate complex 

identifier maps should utilize the Bioconductor package IdMappingAnalysis before workflow path 

evaluation in EUFLOW.140 To see an example of a complex identifier mapping evaluation please 

see Day and McDade (2013).1 Figure 10 is an example output for the reference data as an input to 
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EUFLOW. It is required that the same sample identifier be utilized to label the sample columns 

(i.e. TCGA.04.1348 must be in both the reference and the evaluation data files).  

data(RPPADATA.original) 
RPPADATA<-RPPADATA.original 
RPPADATA[1:9,1:3] 

##  X TCGA.04.1348 TCGA.04.1357 
## 1  ACACA  0.1370 -1.8782
## 2  AKT1  0.1644 0.8931
## 3  AKT2  0.1644 0.8931
## 4  AKT3  0.1644 0.8931
## 5  ANXA1 -0.1690 0.0967
## 6  AR -0.3593 0.2772
## 7  BAX 0.0118 0.7261
## 8  BCL2 -0.7044 1.3982
## 9 BCL2L1 0.3587 1.7334

Figure 10. Sample reference data for EUFLOW input. 

An example of EUFLOW reference data. The first column (X) are the identifiers for reference features that 
are mapped to the evaluation data. The next two columns represent the RPPA fold change values for two sample 
identifiers.   

Now that we have the data for our example, the WorkflowPathData function will modify 

the separate dataframes into one data structure to prepare to calculate the model quality and 

perform the evaluation (Figure 11). The first item in the list is the reference data and the second 

item in the list is the evaluation data. 
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Workflow.Path.Data<-WorkflowPathData(EvaluationExperimentSet,ReferenceSet) 
Workflow.Path.Data[[1]][1:9,1:3] 

##  Symbol TCGA.04.1348 TCGA.04.1357 
## ACACA  ACACA  0.1370 -1.8782
## AKT1  AKT1  0.1644 0.8931
## AKT2  AKT2  0.1644 0.8931
## AKT3  AKT3  0.1644 0.8931
## ANXA1  ANXA1 -0.1690 0.0967
## AR  AR -0.3593 0.2772
## BAX  BAX 0.0118 0.7261
## BCL2  BCL2 -0.7044 1.3982
## BCL2L1 BCL2L1 0.3587 1.7334

Figure 11. Workflow data structure for EUFLOW. 

Workflow.Path.Data has the first indexed list as the reference data and each indexed item that follows as a 
workflow path from the evaluation data set. 

New labels are assigned using the BuildEvaluationStructure function to create a data 

structure that can sort by reference identifiers and evaluation identifiers. The user determines the 

tags based upon the workflow path. The selection of the tags are for distinguishing between 

workflow paths and will be used in the output to present the workflow path decision metrics 

provided by EUFLOW. 

Evaluation.Structure<-BuildEvaluationStructure(Workflow.Path.Data,EvaluationTag=c("RN
ASeqv1","RNASEQv2")) 
Evaluation.Structure[1:9,1:3] 

##  Symbol TCGA.04.1348 TCGA.04.1357 
## ACACA_reference  ACACA  0.1370 -1.8782
## AKT1_reference  AKT1  0.1644 0.8931
## AKT2_reference  AKT2  0.1644 0.8931
## AKT3_reference  AKT3  0.1644 0.8931
## ANXA1_reference  ANXA1 -0.1690 0.0967
## AR_reference  AR -0.3593 0.2772
## BAX_reference  BAX 0.0118 0.7261
## BCL2_reference  BCL2 -0.7044 1.3982
## BCL2L1_reference BCL2L1 0.3587 1.7334

Figure 12. Evaluation dataframe. 

Dataframe with row names tagged by the user to distinguish workflow paths in EUFLOW output. 
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The function WorkflowPathModelQuality creates a map between the reference ids and 

the evaluation ids. The Path.Model.Quality object contains all of the pairs across the two 

platforms. 

WorkflowPathMap(Evaluation.Structure) 

##    reference    workflow_paths_combined 
## 1   ACACA_reference     ACACA_path_RNASeqv1_1,ACACA_path_RNASeqv2_2 
## 2      AKT1_reference AKT1_path_RNASeqv1_1,AKT1_path_RNASeqv2_2 
## 3      AKT2_reference AKT2_path_RNASeqv1_1,AKT2_path_RNASeqv2_2 
## 4      AKT3_reference AKT3_path_RNASeqv1_1,AKT3_path_RNASeqv2_2 
## 5   ANXA1_reference     ANXA1_path_RNASeqv1_1,ANXA1_path_RNASeqv2_2 
## 6  AR_reference    AR_path_RNASeqv1_1,AR_path_RNASeqv2_2 
## 7  BAX_reference    BAX_path_RNASeqv1_1,BAX_path_RNASeqv2_2 
## 8      BCL2_reference BCL2_path_RNASeqv1_1,BCL2_path_RNASeqv2_2 
## 9  BCL2L1_reference  BCL2L1_path_RNASeqv1_1,BCL2L1_path_RNASeqv2_2 

Path.Model.Quality<-WorkflowPathModelQuality(Evaluation.Structure) 

Figure 13. Workflow identifier map. 

Reference column contains the reference identifier. The workflow_paths_combined column contains a 
comma separated value list of evaluation features. 

Next, using the function ModelQualityPairs on the object Path.Model.Quality the user 

can determine the appropriate model quality for this evaluation. Model.Quality.Values is an 

dataframe which contains the model quality values for each of the pairs. How the values are 

determined is specified by the user. In this example Pearson correlations are calculated for each 

Reference-Evaluation pair across all samples. 
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Model.Quality.Values<-ModelQualityPairs(Path.Model.Quality,method="pearson") 
head(as.data.frame(Model.Quality.Values)) 

##  reference workflow_paths_combined pearson 
## 1 ACACA_reference  ACACA_path_RNASeqv1_1  0.5491 
## 2 ACACA_reference  ACACA_path_RNASEQv2_2  0.5546 
## 3  AKT1_reference  AKT1_path_RNASeqv1_1  0.6291 
## 4  AKT1_reference  AKT1_path_RNASEQv2_2  0.5957 
## 5  AKT2_reference  AKT2_path_RNASeqv1_1 -0.0787 
## 6  AKT2_reference  AKT2_path_RNASEQv2_2 -0.0603 

Figure 14. Pearson model quality values from EUFLOW. 

Other model quality values can be calculated using the "method" argument in the function. 

Spearman r values are calculated in this example. 

Model.Quality.Values<-ModelQualityPairs(Path.Model.Quality,method="spearman") 
head(as.data.frame(Model.Quality.Values)) 

##  reference workflow_paths_combined spearman 
## 1 ACACA_reference  ACACA_path_RNASeqv1_1  0.5389 
## 2 ACACA_reference  ACACA_path_RNASEQv2_2  0.5645 
## 3  AKT1_reference  AKT1_path_RNASeqv1_1  0.5293 
## 4  AKT1_reference  AKT1_path_RNASEQv2_2  0.5478 
## 5  AKT2_reference  AKT2_path_RNASeqv1_1 -0.0465
## 6  AKT2_reference  AKT2_path_RNASEQv2_2 -0.0452

Figure 15. Spearman model quality values from EUFLOW. 

Next the correlation values and the reference-evaluation pairs are the input to the 

EstimatePosteriorProbability function. The first step of this function is to apply a bootstrapping 

procedure to obtain a resampled standard deviation and bias of the model quality values. Next the 

vector of correlations, the variance, and the bias are the input to the EM procedure to estimate the 

posterior probability and posterior probability variance of belonging to the "+" component. Figure 
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9 is the output of the EstimatePosteriorProbability function. It is a mixture distribution is 

estimated that has 2 components where one component represents the "+" component and the 0 

centered component represents the "-" and "0" component. The dataframe Posterior.Probabilitity 

has a column for the posterior probability and variance of the posterior probability of the “+” 

component. 

Figure 16. Mixture distribution for vignette. 

A sample of the mixture distribution plot obtained by running the EstimatePosteriorProbability function in 
EUFLOW. The black data smooth line is the empirical correlation density, the solid blue line is the mixture fit 
estimate, and the dashed lines represent the two predicted components where the “x or 0" component has a 0 
centered mean.  
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head(Posterior.Probability) 

##  reference workflow_paths_combined postProbs postProbVar  corr 
## 1 ACACA_reference  ACACA_path_RNASeqv1_1  0.999820  7.92e-08  0.5491 
## 2 ACACA_reference  ACACA_path_RNASEQv2_2  0.999731  2.29e-07  0.5546 
## 3  AKT1_reference  AKT1_path_RNASeqv1_1  0.999946  9.87e-09  0.6291 
## 4  AKT1_reference  AKT1_path_RNASEQv2_2  0.999909  2.57e-08  0.5957 
## 5  AKT2_reference  AKT2_path_RNASeqv1_1  0.000144  3.27e-08 -0.0787 
## 6  AKT2_reference  AKT2_path_RNASEQv2_2  0.000301  1.66e-07 -0.0603 
##  sd  bias 
## 1 0.0588 -0.001878 
## 2 0.0723  0.002329 
## 3 0.0766 -0.002303 
## 4 0.0708 -0.011713 
## 5 0.0438 -0.000379 
## 6 0.0483  0.002412 

Figure 17. Posterior probability output from EUFLOW. 

For each feature pair the posterior probability of belonging to the “+” component (postProbs), the variance 
of that probability (postProbVar), model quality (corr), the standard deviation (sd) of the model quality, and the bias 

(bias) of the model quality are calculated.  

A user can now input values for the Utility of a true positive (UTP) and Loss of a false 

positive (LFP) for the estimation of the Expected Utility of each method. Evaluation.table will 

take the input value of Posterior.dataframe to calculate the following values: 1) nPairs, 2) PrPlus, 

3) PrTrue, 4) PrFalse, 5) Utrue, 6) Lfalse, 7) Eutility1, and 8) Eutility.

The number of pairs used in the workflow path is defined as nPairs. PrPlus is  𝑃𝑃+𝑊𝑊𝑊𝑊 from 

Chapter 3 and is the optimally weighted mean of the proportion of pairs that are estimated to be in 

the + component for each workflow path. PrTrue is equal to 𝑃𝑃+𝑊𝑊𝑊𝑊 unless a deltaPlus factor is 

applied by the user. As defined previously, the deltaPlus is proportion of valid pairs that the user 

expects to be in the + component. Prfalse is 𝑃𝑃−𝑊𝑊𝑊𝑊 = 1 − 𝑃𝑃+𝑊𝑊𝑊𝑊, Utrue is calculated as the product 

𝑈𝑈𝑇𝑇𝑇𝑇𝑃𝑃+𝑊𝑊𝑊𝑊 which is the first part of the Bayesian expected loss calculation. LFalse is the second 

part of the Bayesian expected loss 𝐿𝐿𝐹𝐹𝐹𝐹𝑃𝑃−𝑊𝑊𝑊𝑊. Eutility1 is the complete Bayes expected loss and 

represents the Mean Expected Utility  𝑈𝑈𝑇𝑇𝑇𝑇𝑃𝑃+𝑊𝑊𝑊𝑊 − 𝐿𝐿𝐹𝐹𝐹𝐹𝑃𝑃−𝑊𝑊𝑊𝑊. Eutility is the product of the nPairs 

and the Bayes expected loss and represents the TEU, 𝑛𝑛𝑊𝑊𝑊𝑊 ×  (𝑈𝑈𝑇𝑇𝑇𝑇𝑃𝑃+𝑊𝑊𝑊𝑊 − 𝐿𝐿𝐹𝐹𝐹𝐹𝑃𝑃−𝑊𝑊𝑊𝑊). 
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In the sample data, RNASeqv1 has 67 gene expression features mapped to 67 RPPA protein 

expression features and nPairs in the calculation below represents the number of pairs with model 

quality scores determined from correlation. A PrPlus value of 0.945 was estimated using the 

unknowns estimated from the ECM, and this value is the optimally weighed mean of the proportion 

of pairs belonging to the + component for RNASeqv1 pairs. PrTrue is equal to the PrPlus as the 

deltaPlus parameter was set at 1 for this example. The value of 0.0546 for PrFalse is simply 1- 

PrTrue and is the optimally weighted mean of the proportion of pairs belonging to the “-“ 

component. Provided these values for the data the user specified values are now used to determine 

the Bayes expected loss as UTP =1 and LFP = 1, which in this example simplifies the Bayes 

expected loss to PrTrue – PrFalse and for RNASeqv1 is 0.891. And finally the Total Expected 

Utility is the product of nPairs and Eutility1. For this worked example RNASeqv2 has the 

maximum value of Mean Expected Utility and Total Expected Utility and is the suggested 

workflow path using default EUFLOW parameters. 

Evaluation.table<-WorkflowEvaluationTable(Posterior.Probability) 
Evaluation.table 

##  nPairs PrPlus PrTrue PrFalse Utrue Lfalse Eutility1 Eutility 
## RNASeqv1  67  0.945  0.945  0.0546 0.945 0.0546  0.891  59.7 
## RNASeqv2  66  0.965  0.965  0.0347 0.965 0.0347  0.931  61.4 

Figure 18. EUFLOW Evaluation table. 

For each workflow path the number of feature pairs (nPairs), proportion of pairs belonging to the “+” 
component, proportion of feature pairs belonging to the “+” component with delta factor (PrTrue), proportion of 

feature pairs belonging to the “-“ component, the utility portion of the Bayes expected loss (UTrue), the loss portion 
of the Bayes Expected loss (Lfalse), the mean expected utility (Eutility1), and the Total Expected Utility (Eutility).  
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5.0  EUFLOW RNASEQ EVALUATION EXPERIMENTS 

In Chapter 2, many RNASeq workflow paths were reviewed to demonstrate the proliferation and 

systematic differences of workflow paths. In this section, usage of EUFLOW 

(https://github.com/Kkm5/EUFLOW.git) is demonstrated through evaluations of several 

RNASeq workflows, each with a single workflow component. These include:  an identifier 

filtering workflow component, a threshold selection workflow component, and a workflow 

component consisting of an entire RNASeq pipeline. An evaluation can be performed at a 

quantifiable stopping point which has some model quality criterion to the reference data. For 

simplicity the evaluations performed in Chapter 5 end at the final processed data of gene 

expression values. All of these evaluations are available within the vignette "How_to 

use_the_EUFLOW_package.Rmd"  

5.1    DATA FOR EVALUATION 

The evaluations performed to demonstrate EUFLOW include breast invasive carcinoma (BRCA) 

(406 total samples) and ovarian serous carcinoma (OV) (198 total samples). The BRCA and OV 

sample pools were used for this evaluation example due to: 1) the high number of available 

samples, 2) the availability of Illumina HiSeq RNASeq data, and 3) the availability of protein 

expression data. Matched samples, which have both RNAseq and RPPA data are utilized. If data  

https://github.com/Kkm5/EUFLOW.git
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was not available for either the transcript or the protein then it was excluded from the evaluation. 

The following evaluations will be performed 1) RNASeq TCGA BRCA identifier filtering, 2) 

RNASeq TCGA BRCA Threshold selection, and RNASeq TCGA OV common workflow path 

evaluation.

The IlluminaHiSeq_RNASeqV1 and IlluminaHiSeq_RNASeqV2 data were downloaded 

using the cBio R package and the TCGA data portal, respectively. These “ready to go” datasets 

are the final processed datasets of curated workflow paths. RNASeqV1 is processed by the 

workflow path developed by Li et al. (2010).8 RNASeqV2 is processed using RSEM and 

MapSplice developed by Wang et al (2010).9  Another workflow path included in the evaluation 

is the TCGA BRCA data set. This data was processed using the SALMON workflow path.10 The 

workflow path was executed by David Boone, PhD at the Department of Biomedical 

Informatics, School of Medicine, University of Pittsburgh.  

The Reference Set file is the protein expression Reverse Phase Protein Assay (RPPA) 

fold change data.20 This dataset was downloaded using the cdgsr Bioconductor package.35 Since 

the quality of RPPA data is highly dependent upon the binding of antibody only validated 

antibody status is included in this analysis. Appendix B.2 has the antibody list, which are 

classified as high quality using the MDAnderson standard antibody list. This list was produced 

using a procedure similar to Tibes et al. (2006) validation of RPPA antibodies.20   

The results for these evaluations are presented in Section 5.2 (Identifier filtering), Section 

5.3 (Threshold selection) and Section 5.4 (Common workflow paths). 
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5.2 EVALUATING AND COMPARING RNASEQ IDENTIFIER FILTERS 

In bioinformatics workflows, features that do not meet certain biological standards can be removed 

from the analysis. However, this practice is inconsistent and can hinder meta-analysis and clinical 

implementation. A simple evaluation removing feature pairs which have transmembrane and low 

complexity regions is presented below.  

5.2.1 Identifier filtering workflow paths 

The identifier filtering evaluation of RNASeq workflow paths utilized the Salmon version of the 

popular Sailfish workflow path on TCGA breast cancer data of 406 samples.10 The BRCA RPPA 

fold change data was obtained through the TCGA data warehouse on the same 406 samples. For 

simplicity, the identifier map is limited to an identity relation in which the transcript and the protein 

use the same HGNC identifiers in Appendix B.2. The features produced by the workflow paths 

and the reference data are already in the format of a HGNC identifier so the id map was simplified 

in this evaluation. Biomart was utilized to search the ENCODE database for 62 feature pairs and 

the classification of the TMHMM algorithm and the SEG complexity142,143. These filters were 

selected due to the biological impact of transmembrane protein and low complexity regions in an 

RNASeq workflow. Transmembrane proteins are difficult to measure due to the loss of 

stabilization of the phospholipid membrane in the structure. Low complexity regions impact the 

identification of protein coding regions144. Considering these groups the three workflow paths for 

this evaluation are 1) No filtering, 2) filter transmembrane feature pairs, and 3) filter high 

complexity feature pairs.  
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Table 8. SALMON RNASeq filtered workflow component evaluation workflow paths. 

A table for the evaluation of a filtering workflow component applied to SALMON processed RNASeq gene 
count data. The final quantified gene counts are then filtered based upon two filtering categories to remove features 
that are transmembrane (TM.) and high complexity (HC) according to the TMHMM and SEG algorithm from the 
BioMart database. The boxed section is the input for EUFLOW. 

Workflow Workflow Paths 

Workflow 
Component 

Workflow 
Options 

SALMON 
No filter 

SALMON 
Filter TM 

SALMON 
Filter HC 

Alignment Read –free 
alignment 

Read –free 
alignment 

Read –free 
alignment 

Read –free 
alignment 

Assembly SALMON SALMON SALMON SALMON 
Quantification SALMON SALMON SALMON SALMON 

Filter TMHMM,SEG None 
All 62 mRNA 

features remain 

TMHMM = 
FALSE 

48 mRNA 
features remain 

SEG =FALSE 
50 mRNA 
features 
remain 

EVALUATION DATA VALUES SALMON 
Gene count 

values 
62 mRNA 

406 samples 

SALMON 
Gene count 

values 
48 mRNA 

406 samples 

SALMON 
Gene count 

values 
50 mRNA 

406 samples 

REFERENCE DATA VALUES 62 RPPA fold change protein features 
IDENTIFIER MAP 62 mRNA (GENE SYMBOL) 

62 proteins (GENE SYMBOL) 
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5.2.2 Identifier filtering model quality 

The input files to EUFLOW includes 1) a 62 X 407 RPPA fold change data file where the rows 

are the 62 features and the first column of the file contains the Hgnc_symbols followed by 406 

TCGA sample names, 2) a 186 X 407 RNASeq feature gene count data file where the rows are the 

features with a tag (_v1, _v2, _v3, _v4, _v5) for features which meet the identifier filtering groups 

in Table 8. The identifier map in this example is the matched gene identifiers (i.e 

ANXA2_reference mapped to ANXA2_v1). Model quality is determined via Pearson correlation 

for each of the pairs. The density for the Pearson correlations is in Figure 10 (black line). Using a 

bootstrap procedure variance and bias are estimated and the mixture distribution is deconvolved 

via Expectation-Maximization, the resulting mixture components are represented by the dotted 

blue lines in Figure 19, and the resulting posterior probability is for each pair.  
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Figure 19. Mixture distribution for identifier filtering of RNASeq breast cancer data. 

Mixture distribution plot obtained by running the EstimatePosteriorProbability function in EUFLOW on the 
model quality parameters from the RNASeq/RPPA pairs. The black data smooth line is the empirical correlation 
density, the solid blue line is the mixture fit estimate, and the dashed lines represent the two predicted components. 

5.2.3 Identifier filtering expected utility 

Given the default parameters (UTP = 1, LFP = 1, and delta = 1), mean expected utility (MEU) and 

total expected utility (TEU) were calculated using the WorkflowEvaluationTable from the 

EUFLOW package. Each of the filter feature sets and the unfiltered set are provided in Table 9. 

Each filter represents a workflow path. Key observations include the PrPlus of the non-

transmembrane feature pairs of 0.962. This is consistent with non-transmembrane protein 

expression reliability, as transmembrane proteins mis-folding in the absence of phospholipid 
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membrane stabilization. Considering equal treatment of false positives and false negatives the 

optimal workflow path with a MEU 0.925 is NTM. However, if TEU is the criterion then not 

filtering at all is the optimal workflow path (TEU=50.87).   

Table 9. Utility table for RNASeq identifier filtering example. 

The number of pairs used in the workflow path is defined as nPairs. PrPlus is  𝑷𝑷+𝑾𝑾𝑾𝑾 from Chapter 3 and is 
the optimally weighted mean of the proportion of pairs that are estimated to be in the + component for each 

workflow path. PrTrue is equal to 𝑷𝑷+𝑾𝑾𝑾𝑾 unless a deltaPlus factor is applied by the user. As defined previously, the 
deltaPlus is proportion of valid pairs that the user expects to be in the + component. Prfalse is 𝑷𝑷−𝑾𝑾𝑾𝑾 = 𝟏𝟏 − 𝑷𝑷+𝑾𝑾𝑾𝑾, 

Utrue is calculated as the product 𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 which is the first part of the Bayesian expected loss calculation. LFalse 
is the second part of the Bayesian expected loss 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾. MEU is the complete Bayes expected loss and represents 

the Mean Expected Utility  𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 − 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾. TEU is the product of the nPairs and the Bayes expected loss 
and represents the Total Expected Utility, 𝒏𝒏𝑾𝑾𝑾𝑾 ×  (𝑼𝑼𝑻𝑻𝑷𝑷𝑷𝑷+𝑾𝑾𝑾𝑾 − 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾). 

Workflow 
Path 

Number 
of pairs 

PrPlus PrTrue PrFalse Utrue Lfalse MEU TEU 

AllGeneIDs 62 0.910 0.910 0.0897 0.910 0.0897 0.821 50.87 

NTM 48 0.962 0.962 0.0376 0.962 0.0376 0.925 44.39 

LC 50 0.907 0.907 0.0927 0.907 0.0927 0.815 40.73 

5.3 EVALUATION OF RNASEQ THRESHOLD SELECTION 

The next evaluation considers the same breast cancer data, but uses a different application of 

threshold selection. Three cutoff points (1000, 5000, 10000 gene count) separate the feature pairs 

into 4 groups that are evaluated as separate workflow paths. Table 10 lists the workflow 

components and the 4 workflow paths. The workflow paths differ only in the threshold step where 

a mean gene count is determined across the samples and the thresholds of 1000, 5000, and 10000 

create 4 different workflow paths with 62, 59, 38, and 16 feature pairs, respectively.  
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Table 10. SALMON RNASeq threshold evaluation workflow paths and data input. 

A table for the evaluation of a threshold workflow component applied to SALMON processed RNASeq 
gene count data. The final quantified gene counts are included if the mean gene counts across the samples is above 
the threshold of 1000, 5000, or 10000 gene counts from the SALMON workflow. The boxed section is the input for 
EUFLOW. 

Workflow Workflow Paths 

Workflow 
Component 

Workflow 
Options 

SALMON SALMON 
gene counts 
over 1000 

SALMON 
gene counts 
over 5000 

SALMON 
gene counts 
over 10000 

Alignment Read –free 
alignment 

Read –free 
alignment 

Read –free 
alignment 

Read –free 
alignment 

Read –free 
alignment 

Assembly SALMON SALMON SALMON SALMON SALMON 
Quantification SALMON SALMON SALMON SALMON SALMON 

Threshold 1000 count mean 
5000 count mean 
10000 count mean 

None 59 mRNA 
features with 
sample mean 

over 1000 

38 mRNA 
features with 
sample mean 

over 5000 

16 mRNA 
features with 
sample mean 
over 10000 

EVALUATION DATA VALUES SALMON 
Gene count 

values 
62 mRNA 

406 samples 

SALMON 
Gene count 

values 
59 mRNA 

406 samples 

SALMON 
Gene count 

values 
38 mRNA 

406 samples 

SALMON 
Gene count 

values 
16 mRNA 

406 samples 

REFERENCE DATA VALUES 62 RPPA fold change protein features 
IDENTIFIER MAP 62 mRNA (GENE SYMBOL) 

62 proteins (GENE SYMBOL) 
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Model quality is determined via Pearson correlation for each of the pairs. The correlation 

density is in Figure 20 (black line). Using a bootstrap procedure variance and bias are estimated 

and the mixture distribution is deconvolved via Expectation-Maximization, the resulting mixture 

components are represented by the dotted blue lines in Figure 20, and the resulting posterior 

probability is estimated.  

Figure 20. Mixture distribution from the threshold evaluation. 

Mixture distribution plot obtained by running the EstimatePosteriorProbability function in EUFLOW on the 
model quality parameters from the RNASeq/RPPA pairs. The black data smooth line is the empirical correlation 
density, the solid blue line is the mixture fit estimate, and the dashed lines represent the two predicted components. 
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Table 11. Utility table for RNASeq threshold example. 

The number of pairs used in the workflow path is defined as nPairs. PrPlus is  𝑷𝑷+𝑾𝑾𝑾𝑾 from Chapter 3 and is 
the optimally weighted mean of the proportion of pairs that are estimated to be in the + component for each 

workflow path. PrTrue is equal to 𝑷𝑷+𝑾𝑾𝑾𝑾 unless a deltaPlus factor is applied by the user. As defined previously, the 
deltaPlus is proportion of valid pairs that the user expects to be in the + component. Prfalse is 𝑷𝑷−𝑾𝑾𝑾𝑾 = 𝟏𝟏 − 𝑷𝑷+𝑾𝑾𝑾𝑾, 

Utrue is calculated as the product 𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 which is the first part of the Bayesian expected loss calculation. LFalse 
is the second part of the Bayesian expected loss 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾. MEU is the complete Bayes expected loss and represents 

the Mean Expected Utility  𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 − 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾. TEU is the product of the nPairs and the Bayes expected loss 
and represents the Total Expected Utility, 𝒏𝒏𝑾𝑾𝑾𝑾 ×  (𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 − 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾). 

Workflow 
Path 

Number 
of pairs 

PrPlus PrTrue PrFalse Utrue Lfalse MEU TEU 

Allfeatures 62 0.879 0.879 0.121 0.879 0.121 0.758 47.0 

Over1000 59 0.896 0.896 0.104 0.896 0.104 0.791 46.7 

Over5000 38 0.824 0.824 0.176 0.824 0.176 0.647 24.6 

Over10000 16 0.862 0.862 0.138 0.862 0.138 0.723 11.6 

Table 11 is the evaluation table from EUFLOW for the number of feature pairs, parameters 

and Mean Expected Utility and Total Expected Utility. From the posterior probability and 

application of the default utility parameters, we are able to calculate the MEU and TEU for each 

threshold cut point. If TEU is the criterion for deciding the threshold then not filtering at all is the 

WP decision. However, if MEU is the criterion then a threshold of 1000 is the WP decision. It is 

important to remember that TEU selects workflow paths in filtering/threshold examples by being 

a stringent criterion and is optimal users that prefer not to lose data (See Chapter 3 for details).  

5.4 EVALUATION OF COMMON RNASEQ WORKFLOW PATHS 

EUFLOW can also be applied in a very different context, such as different versions of a workflow 

path. If two workflow paths produce different levels of gene expression the level of different values 
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then the correlation values can be very different as well. This can result in data that is inconsistent 

and may influence the data quality. One of the more common choice that users of RNASeq data 

must make is between multiple versions of the same dataset, simply processed with a different 

workflow path. It is important to mention users of TCGA RNASeq when it was first available 

downloaded RNASeqV1 data as the default Level 3 data. When the Mapsplice RNASeqV2 data 

was available users were able to download both versions of the data. As of 2017, only RNASeqV2 

data is available for download directly from TCGA, but the original data (RNASeqV1) is archived 

at cBio32. RNASeqV2 has become the ‘de facto’ standard for TCGA RNASeq data. However, it 

is not clear that this workflow path is optimal for all users. Many of the workflow paths presented 

in Chapter 2, may be optimal but these workflow paths must be recalculated from Level 1 raw 

data. A user may be interested in whether the “ready to go” Level 3 data is sufficient for their 

analysis goals or whether they should choose to reprocess the data with one of the countless 

available workflow paths.  
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Table 12. General and RNASeq specific definition of a workflow. 

A table for the evaluation of common RNASeq workflow paths. Alignment, Assembly and Quantification 
workflow components have different workflow options for the three workflow paths RNASeqV1, RNASeqV2, and 
Piccolo. The dark outline box represents the input to the EUFLOW package.  

Workflow Workflow Paths 

Workflow 
Component 

Workflow 
Options 

RNASeqV1 
Workflow path 

RNASeqV2 
Workflow path 

PICCOLO 
Workflow path 

Alignment Bowtie,BWA BWA Bowtie 
Assembly Mapslice, Samtools Samtools Mapsplice 

Quantification RSEM, RPKM RPKM RSEM 
EVALUATION DATA VALUES RNASeqV1 

Gene 
expression 
values 67 

mRNA features 
 198 samples 

RNASeqV2 
Gene 

expression 
values 66 
mRNA 
features 

198 samples 

 PICCOLO 
Gene 

expression 
values 65 
mRNA 
Features 

198 samples 
REFERENCE DATA VALUES RPPA Fold change 

67 protein features 
198 samples 

IDENTIFIER MAP 198 mRNA (GENE SYMBOL) 
67 proteins (GENE SYMBOL) 

This evaluation is a three way RNASeq workflow path evaluation on TCGA ovarian 

samples across three different workflow paths, RNASeqV1, RNASeqV2, and the PICCOLO 

workflow path. The RNASeqV1 data uses the RPKM method which quantifies gene expression 

by normalizing for total read length and the number of sequencing reads8. RNASeqV2 carefully 

considers splice junctions using Mapsplice and RSEM to quantify gene expression9. The Piccolo 

workflow path uses the Rsubread package and reports the data via feature counts determined 

from the FKPM34. OV RNASeqV1, OV RNASeqV2, OV RPPA data were obtained using the 
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cgdsr R Bioconductor package (https://CRAN.R-project.org/package=cgdsr). The Piccolo data 

was obtained from the Gene Expresion Omnibus (GSE62944). 

Table 12 lists the workflow components and options employed for the evaluation of sample 

of common RNASeq workflow paths. Model quality is determined via Pearson correlation for each 

of the pairs. The density for the Pearson r values is in Figure 21 (black line). Using a bootstrap 

procedure variance and bias are estimated and the mixture distribution is deconvolved via 

Expectation-Maximization, the resulting mixture components are represented by the dotted blue 

lines in Figure 21, and the resulting posterior probability is for each pair. Threes feature pairs 

contained missing data; RNASeqv2 was evaluated for 66 feature pairs and Piccolo was evaluated 

for 65 feature pairs.  

Figure 21. Mixture distribution from the Ovarian TCGA workflow path evaluation. 

Mixture distribution plot obtained by running the EstimatePosteriorProbability function in EUFLOW on the 
model quality parameters from the RNASeq/RPPA pairs. The black data smooth line is the empirical correlation 
density, the solid blue line is the mixture fit estimate, and the dashed lines represent the two predicted components. 

https://cran.r-project.org/package=cgdsr
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Table 13. Utility table for RNASeq workflow evaluation example. 

The number of pairs used in the workflow path is defined as nPairs. PrPlus is  𝑷𝑷+𝑾𝑾𝑾𝑾 from Chapter 3 and is 
the optimally weighted mean of the proportion of pairs that are estimated to be in the + component for each 

workflow path. PrTrue is equal to 𝑷𝑷+𝑾𝑾𝑾𝑾 unless a deltaPlus factor is applied by the user. As defined previously, the 
deltaPlus is proportion of valid pairs that the user expects to be in the + component. Prfalse is 𝑷𝑷−𝑾𝑾𝑾𝑾 = 𝟏𝟏 − 𝑷𝑷+𝑾𝑾𝑾𝑾, 

Utrue is calculated as the product 𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 which is the first part of the Bayesian expected loss calculation. LFalse 
is the second part of the Bayesian expected loss 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾. MEU is the complete Bayes expected loss and represents 

the Mean Expected Utility  𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 − 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾. TEU is the product of the nPairs and the Bayes expected loss 
and represents the Total Expected Utility, 𝒏𝒏𝑾𝑾𝑾𝑾 ×  (𝑼𝑼𝑻𝑻𝑻𝑻𝑷𝑷+𝑾𝑾𝑾𝑾 − 𝑳𝑳𝑭𝑭𝑭𝑭𝑷𝑷−𝑾𝑾𝑾𝑾). 

Workflow 
Path 

Number 
of pairs 

PrPlus PrTrue PrFalse Utrue Lfalse MEU TEU 

RNASeqv1 67 0.950 0.950 0.0504 0.950 0.0504 0.899 60.2 

RNASeqv2 66 0.972 0.972 0.0279 0.972 0.0279 0.944 62.3 

PICCOLO 65 0.878 0.878 0.1218 0.878 0.1218 0.756 49.2 

In Table 13, RNASeqv2 provided the highest MEU and TEU, primarily due to the high 

PrPlus and low PrFalse values. All three WPs had very high PrPlus values likely due to the filtering 

and threshold steps incorporated into these workflow paths. 
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6.0  DISCUSSION 

The multitude of workflow paths available for bioinformatics provides diverse and unique ways 

to process raw data. Here I have demonstrated the evaluation of different types of workflow 

evaluation in three publications and the subsequent development of the EUFLOW package. 

EUFLOW guides users to utilize a workflow path by carefully considering error tolerance and 

biological relationships within paired data.   

6.1 RELEVANCE TO BIOMEDICINE 

Biotechnology tools such as RNASeq gene profiling could be extremely powerful in diagnosis 

and treatment of disease. However, if two widely accepted workflow paths produce clinical 

results which are inconsistent then clinical implementation will appropriately be questioned. 

Reproducibility of data is a major obstacle in effective clinical adoption of high-throughput 

genomic and proteomic data.145,146 One argument to increase reproducibility is standardization of 

workflows. Standardization of a workflow path is often difficult because the standard must be 

determined to be the most reliable and accurate among the choices. Gene expression microarray 

and RNASeq analysis are two examples where hundreds of workflow path tools have been 

developed yet no standard analysis workflow path has emerged. Another solution is transparency 

and demanding that workflows are not only published but also evaluated against multiple other 
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 workflows. An alternative argument can also be posed, rather than instill a standard workflow 

path (which unlikely to be universally accepted) provide a means to evaluate alternative 

workflows. RNAseq is at the cusp of being clinically implemented as a diagnostic tool, but 

before RNAseq is effectively implemented in the clinical environment, problems in the RNAseq 

workflow path consistency should be addressed. 

If another workflow path were utilized, would the same data lead to similar conclusions 

in the new workflow path?  If the answer to this question is no, then the clinical relevance of 

RNAseq would be called into question. Relevance could only be retrieved if we knew that one 

workflow was the most reliable. In order for RNAseq data to be clinically relevant and 

generalizable we must determine a way to evaluate workflow paths in RNAseq analysis.  In 

Chapter 2 there were many examples of the vast differences between final processed datasets, 

however little work has been performed to demonstrate the downstream impact of the differences 

in these datasets on the scientific conclusions. I would like to highlight that workflow path 

choice impact on analysis outcome is an underdeveloped area of research in bioinformatics.  

6.2 INNOVATION 

The EUFLOW package, to the best of my knowledge, is the first methodology to evaluate 

bioinformatics workflow paths that 1) is usable to address any bioinformatics workflow choice 

issue, 2) uses real data on biological samples to perform the evaluation, and 3) allows the user to 

select the best workflow path for a preferred explicit trade-off between correctly including and 

incorrectly including a feature, reflecting the goals of the analyst. Threshold selection is also a 
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 common task as the low count sensitivity of gene expression and dynamic range 

of proteomics demands a line to be drawn to decide the detectability of certain 

molecules. Identifier mapping is a less common workflow component, but especially 

valuable for integrated analyses.  

In the identifier filtering of Affymetrix probsets, not only did EUFLOW evaluate the 

workflow paths using real data, but it was also able to evaluate combinations of filters created by 

intersections and unions. Enabling the evaluation of combinations of methods is powerful.  

Using real data for evaluation is uniquely valuable. Chapter 2 has demonstrated 

evaluation of RNASeq workflow paths using simulated data, but the limitations of our biological 

understanding casts doubt about the degree of realism that simulation can provide; discovery of 

novel features in molecular biology continues. The use of transcript-to-protein correlation is 

imperfect (see limitations below), but it does correspond to a basic expectation connecting the 

genome to phenotypes. EUFLOW can go beyond this with refined models and model quality 

scores that consider other biology, such as miRNA and DNA methylation. 

Finally, in regard to utility as a feature of EUFLOW it is important to consider that not 

all users have the same purpose in an analysis. In the identifier filter example, removing the 

transmembrane feature pairs from an analysis gives an improvement on the mean expected utility 

from 0.821 to 0.925. However the Total Expected Utility is not improved by using the non-

transmembrane proteins only. EUFLOW enables utility and loss to be factored into the workflow 

path choice, as well as the criterion for the choice. 
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6.3 LIMITATIONS 

The EUFLOW package is limited by the availability of data in two parallel platforms with a Model 

quality that makes sense to the user. It is often difficult to find protein expression data or other 

reference data on the same samples as your evaluation. When reference data is available then it is 

often in a smaller feature size that the evaluation data. In the RNASeq filtering evaluation only 62 

verified antibodies were available for the breast cancer data as opposed to 1109 gene identifiers 

from the evaluation dataset. Currently the availability of paired data across platforms is limited to 

a few repositories, such as TCGA. EUFLOW is enhanced by the availability of paired data, and 

hopefully more data in this format is available in the future.  

Another limitation is that real data based correlation is not a flawless model quality. 

Biological interference such as miRNA switching off translation, the impact of proteasomes 

destroying protein after it is translated, and other biological deregulating factors, mRNA and 

protein are not always expected to have a positive correlation. The EUFLOW framework accounts 

for discordant but biologically connected data, however, the impact of this factor in a particular 

dataset is unknown.    

6.4 FUTURE WORK 

For future development of the EUFLOW package, my first step would be to complete a usability 

test for users of RNASeq workflow paths to identify needs for future versions of the EUFLOW 

package. Many extensions are desirable, More flexibility in choice of model quality criterion 

would be desirable. More visual representations of the effects of the utility parameters on the MEU 
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or TEU could be helpful. When threshold selection is the goal, visualizing the effect of changing 

the threshold one unit at a time and plots the TEU or MEU. And finally a more developed input 

functionality that would guide the processing of workflow paths from within R will enhance 

usability. This automated piping should integrate with command line tools like SALMON.  

My next step would be to develop the EUFLOW package for incorporation into 

Bioconductor. Bioconductor is open source and open development hub for bioinformatics package 

development. Due to the fact that Bioconductor contains many complete workflow procedures for 

many of the use cases mentioned in this proposal, Bioconductor is the ideal location for the 

EUFLOW package.35 Finally, conducting workflow path evaluations in workflows such as miRNA 

target identification, peptide identification in mass spectrometry, and many RNASeq workflow 

paths would be highly valuable research.  

6.5 CONCLUSION 

There are too many workflow paths to evaluate exhaustively for any bioinformatics based process. 

Literature searches should be conducted, investigators should communicate, and new workflow 

paths should be developed. However, after an investigator has completed the searching, 

communication, and looked at what is new; arbitrary decisions remain. The investigator has 

specific analysis aims that should also be considered. Without an evaluation framework for these 

choices users are left to go back and change certain filtering steps or lower certain parameter 

thresholds to see if this changes the outcome. The EUFLOW package provides the user with a 

“prior to final analysis” tool to plan a workflow path and any workflow options to be included in 

the data processing stage. Furthermore the EUFLOW package provides a less arbitrary means of 
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deciding how an investigator goes forward in future experiments. In conclusion, EUFLOW enables 

users of bioinformatics workflows to evaluate alternative workflow paths guided by inherent 

biological relationships and user utility.     
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APPENDIX A 

IMPROVING CANCER GENE EXPRESSION DATA QUALITY THROUGH A TCGA 

DATA-DRIVEN EVALUATION OF IDENTIFIER FILTERING. 

Note: This paper was an aim of the dissertation and is provided here as an appendix for reference 

in the main document2.  

Data quality is a recognized problem for high-throughput genomics platforms, as evinced by the 

proliferation of methods attempting to filter out lower quality data points. Different filtering 

methods lead to discordant results, raising the question, which methods are best? Astonishingly 

little computational support is offered to help analysts decide which filtering methods are optimal 

for the research question at hand.  

To evaluate them, we begin with a pair of expression data sets, transcriptomic and 

proteomic, on the same samples. The pair of data sets form a test bed for the evaluation. Identifier 

mapping between the data sets creates a collection of feature pairs, with correlations calculated for 

each pair. To evaluate a filtering strategy, we estimate posterior probabilities for the correctness 

of probesets accepted by the method. An analyst can set expected utilities that represent the trade-

off between the quality and quantity of accepted features. 

We tested nine published probeset filtering methods and combination strategies. We used  



two test beds from cancer studies providing transcriptomic and proteomic data. For reasonable 

utility settings, the Jetset filtering method was optimal for probeset filtering on both test beds, 

even though both assay platforms were different. Further intersecting with a second filtering 

method was indicated on one test bed but not the other. 

A.1 INTRODUCTION

Do commonly utilized methods to process raw data from the high-throughput genomic platforms 

differ much from each other? Does it matter which methods are utilized to process the 

data? Repositories of information such as the Gene Expression Omnibus, cBioPortal, and The 

Cancer Genome Atlas (TCGA) contain hundreds of platforms and thousands of patient samples31–

33. These platforms include measurement of gene expression, copy number variation, protein

expression and post-translational modification. All of this information is available to users in 

“levels” of data, where, for most users, only the processed data is available. Some workflow 

options are “ready-to-go”: the data available are pre-processed, such as Affymetrix HU133 Plus 

2.0 data, RNA-Seq data, methylation data, and many other data types in TCGA.   Alternatively, 

many analysts prefer to start with raw data and apply a customized workflow consisting of 

their preferred sequence of processing steps. Workflow options include ready-to-go workflows, 

custom workflows, individual processing steps, or tuning parameters in particular steps. Any 

change in a workflow step or change of a parameter setting constitutes a new workflow option. To 

what extent do these choices affect the final dataset to be analyzed? If the datasets differ 

substantially, will they differ in quality? If so, how can we tell which is best?  Finally, will 

soundness of the scientific conclusions be harmed by sub-optimal workflow choices, and 

improved by better choices? Surprisingly these questions are scarcely addressed in the 
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bioinformatics literature. Aside from the obvious benefit that the quality of analyses could be 

improved, there is the issue of comparing results from different studies. When two investigations 

report on comparable data sets, a third party may wish to compare or contrast the results, for 

example for scientific validation. The choice of different workflows in the two studies 

generates a potential confounder in comparing them. Greater consensus on workflow 

choices would help alleviate this problem.  

An example of a data setting burdened by a poor understanding of workflow option choices 

is the Affymetrix microarray. Affymetrix expression data is publicly available for over 

35,000 datasets, and is an immensely valuable resource for almost every type of cancer 

research147. However, there is no de facto standard of determining the gene expression values 

from raw data. Many processing and normalization options can yield values of gene expression 

on about 18,000 gene products from an ambiguous set of 54,675 probesets. A critical step 

in an Affymetrix workflow is to remove, or “filter”, poor quality probesets. This process 

of removing “bad” measurement points has been defined previously as identifier filtering3.  

Identifier filtering applied to Affymetrix chips presents an opportunity to evaluate 

workflow options concisely. We previously performed a comparison, not an evaluation, of 

identifier filtering. In identifier filtering, the user removes features (i.e. probesets) judged to do a 

poor job reflecting expression of their intended gene products. Table 14 outlines the identifier 

filtering implementations tested here, including PlandbAffy (PD), JetSet (J), AffyTag (AT), 

AffyGrade (AG), Masker (M), EnCode (E), and three methods deriving from GeneAnnot 

(GSPE,GSEN, GQ).60,62,5,64,148. Table 14 also provides the abbreviation utilized in this paper for 

each of the nine filtering strategies. These methods apply diverse criteria that consider nucleotide 

complementarity, probe design, and cross hybridization of probe to off-target gene product.  
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This article presents a comprehensive evaluation of workflows consisting of probeset 

identifier filtering methods and their combinations. The methodology is previously published149;  

and this paper is an application of the methodology to an important problem in bioinformatics 

practice. As a test-bed for evaluation, it utilizes transcript expression data paired with protein 

expression data. However, the goal of this work is not specifically to guide analysis of paired 

datasets, but rather a much broader goal, to provide guidance for feature filtering in transcript 

expression experiments.  

Prior research by our laboratory group has documented disagreements among resources 

that map between identifiers for probesets and identifiers for proteins150. This work was 

implemented as a Bioconductor35package, IdMappingAnalysis140. We showed that the quality of 

the mappers could be compared based on real biological data150. Subsequent methodological 

work created a more general decision-theory-based approach, and demonstrated how other 

workflow elements besides identifier mappers, including filtering methods and threshold choices, 

can also be evaluated 149.  
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Table 14. Identifier filtering methods and the scores utilized for filtering 

Filter Symbol Description Developer Criteria Identifier Filtering 
AT57,58 Affytag - Pre-2004 Affymetrix 

annotation for the Affymetrix HGU133 
Plus 2.0 array 

Original annotation determined by 
mapping to UniGene and Locus Link. 

“_at is considered unique. 

Filter al annotation tags that 
begin with “_[agirxsf]_at” 

AG57,58 Affy Grade - Netaffx Transcript 
Assignment Pipeline 

“A” grade is the highest grade where ≥ 
9 probes match transcript sequence. 

Filter grades not equal to A. 

M59 Masker - National Cancer Institute 
alternative chip definition file (CDF) 

masking out probesets with poor target 
location 

A CDF file which eliminates a probe 
when more than 2 nucleotides to not 

match the target as well as nonspecific 
probes 

Filter any probeset that has no 
remaining probes on the mask 

GSEN60 GeneAnnot Sensitivity The fraction of the probes in a probeset 
that match Watson-Crick nucleotide 

base pairs in the nominal gene 

Filter probesets with Geneannot 
Sensitivity < 90% 

GSPE60 GeneAnnot Specificity Sum over the number of matching 
probes with lower weight to non-

specific probes 

Filter probesets with Geneannot 
Specificity ≤ 50% 

GQ60 Geneannot Quality Score A pipeline which confirms the probeset 
annotation with GeneCard data. 

GQ= 1 is confirmed entirely 
with GeneCard data; Filter 

probesets with a GQ = [2-6] 

E61 Encode - Encyclopedia of DNA 
elements 

Protein coding genes are determined by 
human curation, RNA sequence and 

comparative genomics 

Filter all probesets that map to a 
non-“Protein coding” target 

PD62 PlandbAffy database BLAT of target to the probe and 
evaluation of nucleotide mismatch or 

exon location 

Filter all probesets with a 
proportion of “good” probes 

<30% 

J5 Jetset Bioconductor package Determines features such as robustness 
of the probe, coverage, as well as 

nucleotide alignment with the reference 
genome 

Filter all except the highest-
scoring probeset among those 

annotated for target gene. 

For a variety of reasons, previous investigators have examined correlations between data 

from pairs of expression platforms, for example relating  RNA-Seq to oligonucleotide data, and 

relating oligonucleotide data to protein expression data151–154. A natural assumption is that greater 

transcript expression will lead to greater protein expression. There are, however, biological reasons 

that a particular mRNA species might have weak or no correlation with the expression of the 
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correctly mapped protein 149,153–157 . The evaluation method applied here takes that into account, 

as we shall see. 

A.2 METHODS

For reference, an overview of the methodology appears in Figure 21. 
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Figure 22. Identifier filtering flowchart 
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Two cancer datasets were utilized as test-beds for this evaluation of filter methods. The 

first is a data set of 91 endometrial cancer samples and 7 normal endometrium samples, studied 

with tandem mass spectrometry proteomic data and Affymetrix U133 2.0 Plus expression data 

from the Gynecologic Cancer Center of Excellence (GynCOE)150. The second is a data set of 401 

ovarian serous cystadenocarcinoma samples with (RPPA) protein assay and Affymetrix U133A 

mRNA data from The Cancer Genome Atlas (TCGA)135,158. These data sets differ substantially 

in sample size, number of features, and platforms. Proteomic and mRNA feature identifiers are 

paired across platforms using the IdMappingRetrieval Bioconductor package159,160. The 

EnVision mapping was selected based on the results from our previously published evaluation of 

identifier mapping resources 150,161.  

The endometrial cancer biomarker studies were performed by the Gynecologic Cancer 

Center of Excellence 150,162,163. The tissue samples were subjected to trypsin digest at the University 

of Pittsburgh. Tryptic peptide digests were separately analysed in duplicate by LC-MS/MS with 

an LTQ-FT (ThermoFisher Scientific, Inc, San Jose CA) and an LTQ-Orbitrap (ThermoFisher 

Scientific Inc.) mass spectrometer. The combined analyses yielded 12,288 distinct protein UniProt 

accessions across all samples and both instruments. The gene expression data was performed on 

the Affymetrix U133 2.0 Plus array. For complete details of the microarray and proteomic studies, 

see Day et al150.  

For the second test-bed, we turned to TCGA. TCGA has multiple levels of genomic, 

transcriptomic, somatic mutation, and protein expression data for many types of cancer data. The 

ovarian serous cystadenocarcinoma sample dataset is especially useful here. The ovarian cancer 

data has 401 samples with various types of genomic, transcriptomic, and proteomic data. The data 

utilized here comes from two platforms: the U133A Affymetrix array, with 22,277 probesets, and 
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the RPPA studies on 68 proteins performed by M.D.Anderson Cancer Center. The proteins 

selected for the RPPA studies were chosen for their cancer relevance. Using the 

IdMappingRetrieval Bioconductor package164, we obtained 151 probeset-to-protein pairs.  

Nine filtering methods were evaluated and compared and they are listed in Table 14. 

Affytag (AG) removes probesets for which the Affymetrix identifier (ID) contains a qualifier; that 

is, the ID ends in “_[agirxsf]_at”, reflecting original doubts concerning the correct and unique 

hybridization of the probes in each probeset, as documented by Affymetrix when the array was 

designed57,58. Although the identifier tags were initially used as the ‘de facto’ quality measure, 

these tags had reliability problems. We include this tag-based probeset quality measure to verify 

that our quality assessment paradigm can detect the expected deficiency of performance in a 

superseded method relative to the more recent measures. AffyGrade (AG), provided by the 

NetAffx array annotation file, is a quality grade labelled as A, B, C, R, and others. Only probesets 

with “A” grade were accepted, since “A” grades represent at least 9 “matching probes” to the target 

mRNA57. The NCI Masker 59 filter removes probesets omitted from the NCI “masked” chip 

description file (CDF). Masker was produced by the NCI Laboratory of Population Genetics. The 

CDF file eliminates any probes that do not have at least 24 out of 25 nucleotides match the target 

GenBank transcript. In addition, it eliminates any nonspecific probes that map to a different 

chromosome, strand, or are part of a gene cluster that could cause cross hybridization.  

We test three filters utilizing Geneannot60, a database of gene expression annotations and 

quality which evaluates the Affymetrix probesets on the following criteria. For each of the 

probesets on the Affymetrix chip sensitivity, specificity, and overall quality score is determined. 

Sensitivity is defined as the fraction of the probes in a probeset that match Watson-Crick nucleotide 

base pairs in the nominal gene. This classification is labelled as Geneannot Sensitivity (GSEN). 



The next classification is labelled Geneannot Specificity (GSPE) and is a sum over the number of 

matching probes with lower weight to non-specific probes. Thresholds defining GSEN and GSPE were, 

respectively, sensitivity metric ≥ 0.9 and specificity metric ≥ 0.5, each chosen by maximizing 

expected utility. Finally, the Geneannot quality measure (GQ) is determined from the ordinal rank 

assigned by Geneannot to demonstrate the confirmation of the probeset to mRNA match. A score 

of “1” is reported to be the “best”, which demonstrates that the probes were confirmed using the 

GeneCard data via Entrez Gene or Ensembl. The worst score is a “6”, which is defined as probesets 

where the only information available is original Netaffx annotation57. For the purposes of this 

study GQ accepts only probesets with a “1” score. Our EnCode (E) filter utilizes the EnCode93 

project’s determination of protein coding status of the target sequence location in the genome, to 

remove probesets of non-coding targets. The files are available at 

http://encodeproject.org. The GENCODE version 12 annotation files were utilized to 

determine gene status from human genome build 37. The gene status is classified as protein 

coding, transcribed pseudogene, untranscribed pseudogene, lincRNA, not identified by 

Genecode, et cetera61. Only probesets with the “protein coding” Ensembl code were accepted. 

The Ensembl codes were matched to the Uniprot accession code present in our analysis. 

The PlandbAffy (PD) filter utilizes the PlandbAffy 62 database, which uses the probeset 

sequence and the BLAT database to align probe nucleotide sequences to the target and assign to 

each probe a grade reflecting alignment mismatches, alignment to other sequences risking cross-

hybridization, and intronic versus exonic location. The PlandbAffy filter was defined to accept a 

probeset if 30% of the probes within the probeset were classified as perfect exonic, non-cross 

hybridizing matches. To set the threshold, we maximized expected utility, as described in Day 

and McDade149. The Jetset (J) filter uses the Jetset 5 assessment, which also considers
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nucleotide complementarity across the probesets but also considers splice isoform coverage, 

and transcript degradation. In addition, JetSet (J) will score each probeset of a target gene and 

select the best probeset (of currently defined probesets) for each gene on the chip. Therefore, 

Jetset (J) is a stringent eliminator of probesets.  

The identifier filtering evaluation of probesets uses a previously published methodology 

for comparison of bioinformatics workflow options to determine the evaluation metric. The steps 

in this application to identifier filtering are summarized in Figure 21. For more details, see Day 

and McDade 2013149. The method requires the following inputs: 

• A large number of biological samples from a biological repository, such as

TCGA, or a private collection of biological samples.

• Two high-throughput platforms each with a feature list of identifiers; the two

platforms must be on the same biological samples.

• A planned set of workflow options to compare.

• An identifier map, which connects the pairs of data across the platforms (i.e.

transcript to protein).

• A Model Quality Score for each pair p, designated 𝑀𝑀𝑀𝑀𝑝𝑝. The MQ scores are

treated independently for modelling the mixture distribution. In applications thus

far, this score is a correlation coefficient.

• For each method M, the set of pairs accepted or produced by that method is

designated as S(M).
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In the current application, each pair is an mRNA transcript feature paired with a protein 

feature linked through the EnVision identifier mapping resource. Membership of a pair p in the set 

S(M) means that method M claims that the transcript feature in p should be included for any data 

analysis. The two platforms, respectively, assess the two processes gene expression and protein 

expression.  

The Model Quality score in this application is the correlation of the two measurements 

across the biological samples. We consider the probability density of the correlation values for all 

pairs produced by the methods M (Figure 23, black line). This density is modelled as a mixture 

with the following components:

• “+”: The transcript feature and the protein feature are correctly identified and they are truly

biologically coupled. This means that a pair in this component is correctly mapped between

transcript and protein identifier, and transcript abundance and protein abundance are

monotonically related. The blue line in Figure 23 represents the “+” component.

• “0”: The transcript feature and the protein feature are correctly mapped, but biologically

decoupled. This means that the expected monotonic relationship between a transcript and a

protein are not observed. There are many biological reasons for decoupling, including RNA

interference by microRNA’s, post-translational processing, and any other mechanism

causing the protein abundance to fail to reflect the transcript abundance. The green line in

Figure 23 represents the distribution of correlations for decoupled pairs, which we refer to

as the “0” component.

• “x”: An incorrect mRNA/protein pair relationship was assigned. The red dashed line in

Figure 23 represents the distribution of correlations for misidentified pairs, which we refer

to as the “x” distribution. Pairs included in this distribution should not be assigned. These
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assignments may be due to incorrect actions on the part of the identifier mapping or the 

workflow in general.  

 Figure 23. Mixture distribution example from Day and McDade (2013). 

Observed (black): marginal density of correlations. Mis-identified (red, dotted): density of correlations 
where either feature is mis-identified, or they are incorrectly mapped. Decoupled (green): density of correlations of 
pairs correctly mapped but biologically uncorrelated (“discordant”). Coupled (blue): density of correlations of pairs 
correctly mapped and biologically coupled. 

We would like to identify the features in either “+” or “0” for inclusion. However, the data 

cannot distinguish between the “0” and “x” groups. Under mild assumptions, the method with the 

highest posterior probability for “+” is also the method with the highest posterior probability for 

“+” or “0”. We refer to the combined “0” and “x” groups as the “-” group. Even though groups 

“0” and “x” cannot be distinguished, basing the relative performance of workflow methods on the 
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mixture distributions from the observed correlations is likely to yield the correct decision; the 

argument for this statement is previously reported149. 

Let G(p) be the component, whether “+”, “0”, or “x”, that pair p belongs to. A better 

workflow option should do a better job at excluding incorrectly mapped pairs (i.e. those with 

G(p) = “x”). Increasing the probability that G(p) = “+” should reduce the G(p) = “x” component. 

Let the proportion of pairs in group g be Pr(𝐺𝐺(𝑝𝑝) = 𝑔𝑔) = 𝜋𝜋𝑔𝑔  for  𝑔𝑔 ∈ {" + ", "0", "𝑥𝑥"}. The 

mixture model provides the opportunity to estimate Pr(G(p) = “+”) for each pair p. This 

probability provides the metric we need to evaluate workflow options.  

We now assume that the true correlations for all the pairs in group g are distributed as a 

mixture of normal distributions with mean 𝜑𝜑𝑔𝑔 R and variance  𝑉𝑉𝑔𝑔. There is also measurement error, 

so the correlation of each pair p in group g is normally distributed with marginal mean 𝜑𝜑𝑔𝑔 R and 

marginal variance  𝜏𝜏𝑔𝑔𝑔𝑔  =  𝑉𝑉𝑔𝑔 + 𝜎𝜎𝑝𝑝2, where 𝜎𝜎𝑝𝑝2 is the measurement error variance specific to pair 

p. We estimate 𝜎𝜎𝑝𝑝2  by the bootstrap method, as described in Day & McDade 2013149. To estimate

the probability of a pair belonging to the “+” group we use an ECM algorithm to determine the 

following parameters: 1) the prior probability 𝜋𝜋+  of belonging to the “+” group,  2), the within-

group true variance V+ of the correlations in “+” group and 3) the within-group true variance V-  

= V0 +Vx . Here “true” signifies without sampling error. This is possible since we are able to 

constrain the mean of the “0” and “x” groups to 0. For a complete description of the ECM 

algorithm see Additional File 1 from Day and McDade 2013149.  

Having determined the maximum likelihood estimates of the parameters, we can now 

calculate for each pair p the posterior probability of belonging to the “+” group by defining: 

𝜋𝜋+𝑝𝑝∗   =   Pr(𝐺𝐺(𝑝𝑝) = +   |   𝑀𝑀𝑀𝑀𝑝𝑝   and parameter estimates) 
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 𝜋𝜋−𝑝𝑝∗ = 1 − 𝜋𝜋+𝑝𝑝∗ =  𝜋𝜋𝑥𝑥𝑝𝑝∗ +  𝜋𝜋0𝑝𝑝∗  

This calculation provides the posterior probability that pair p belonging to the “+” 

component, given the correlation 𝑀𝑀𝑀𝑀𝑝𝑝 and its sampling variance 𝜎𝜎𝑝𝑝2, estimated from bootstrap 

sampling. To convert that variance into the variance of the posterior probability, the delta method 

approximation is used. This consists of multiplying the variance of the correlation times the square 

of the derivative of the posterior probability as a function of the correlation. 

𝑣𝑣+𝑝𝑝∗ = 𝑣𝑣𝑣𝑣𝑣𝑣�𝜋𝜋+𝑝𝑝∗ �  ≅ 𝑣𝑣𝑣𝑣𝑣𝑣�𝑀𝑀𝑀𝑀𝑝𝑝�  ×  �
𝑑𝑑𝜋𝜋+𝑝𝑝∗

𝑑𝑑𝑑𝑑𝑄𝑄𝑝𝑝
�
2

A weighted mean of the “+” proportion provides an expected proportion of “+” group pairs 

for a given identifier filtering method. The weighted mean is estimated using the posterior 

probabilities of each pair and the variances of these posterior probabilities. 

𝑃𝑃+𝑀𝑀 = � 𝜋𝜋+𝑝𝑝∗ (𝑣𝑣+𝑝𝑝∗ )−1
𝑝𝑝∈𝑆𝑆(𝑀𝑀)

/ � (𝑣𝑣+𝑝𝑝∗ )−1
𝑝𝑝∈𝑆𝑆(𝑀𝑀)

 

This quantity provides the basis for comparing the methods, 𝑀𝑀 ∈ {𝑀𝑀1, … ,𝑀𝑀𝐾𝐾}. 

It is important to consider that different analysts have different analysis goals. One method 

may include a pair or a feature while another excludes it. The pair will be either a “true positive” 

of the first method or a “true negative” of the second. The relative value of including a true positive 

versus excluding a false positive will be different for different scientific goals. Utility values can 

express these valuations. We utilize the Bayesian decision principle of maximizing expected 

utility. This principle is useful for selecting a single filtering method, choosing a threshold for a 
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method (Geneannot, PlandbAffy), or selecting a Boolean composite filtering strategy (described 

in the next section).  

For this study, we set the following values: 

 = the loss associated with a “false positive” = 1, 

 = the utility of including a “true positive”=2, 

We explored sensitivity of the comparisons between methods to these three values, and found that 

the comparisons are relatively insensitive (data not shown). The Bayesian expected loss calculation 

is: 

𝐸𝐸𝐸𝐸 = 𝑈𝑈𝑇𝑇𝑇𝑇𝑃𝑃+𝑀𝑀 − 𝐿𝐿𝐹𝐹𝐹𝐹𝑃𝑃−𝑀𝑀 

This is the Mean Expected Utility (MEU). As an alternative the analyst may choose to use 

Total Expected Utility (TEU), which simply is the product of the number of methods compared 

and mean expected utility.  

Boolean conjunction (intersection; “and”) and disjunction (union; “or”). operators, can 

create composite filtering strategies, which are easily evaluated as well. An analyst may consider 

whether the union or intersection of two or more filtering methods is worth the extra effort. Given 

a current strategy, for each so-far-unused method, one can automatically construct and evaluate 

the strategies formed by conjoining this method to the current strategy via conjunction or 

disjunction. A forward selection assesses the expected utility for each of these conjoined strategies, 

and chooses the one with the highest expected utility. This is referred to as “greedy” selection 

because it takes the apparent best step, in sequence. In contrast is the exhaustive search of every 
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Boolean combination of the methods, which in principle could find better strategies, but is 

impractical. 

A.3 RESULTS

The nine filtering methods are far from redundant. Many analysts who use one of the filtering 

methods listed in Table 14 might expect only minimal differences in the probesets retrieved and 

retained. Instead, the nine filtering method strategies do not demonstrate similar probeset 

decisions. Table 15 compares the classifications of each pair of methods. Panel A: all probesets 

on Affymetrix HGU133 Plus 2.0 array. Panel B:  only 887 probesets from the ID pairs in the 

endometrial sample.  

Each table entry is the odds ratio from the 2x2 table cross-classifying probesets as either 

filtered or retained by the two methods. The odds ratio is the product of the agreements divided 

by the product of the disagreements. An odds ratio of 1.0 indicates that the two classifications are 

providing independent information; an odds ratio much larger than one indicates redundant 

information, and an odds ratio much smaller than one indicates contradictory information. For 

example, the odds ratio of 5.88 comparing Jetset to Encode in Table 15 Panel A indicates 

considerable redundant information: the odds of a probeset being excluded by Encode is 5.88 

times greater if the probeset is also excluded by Jetset versus if it is included by Jetset. In 

contrast the odds ratio of 1.07 comparing PlandbAffy to Masker indicates nearly independent 

information: knowing whether Masker includes a probeset says almost nothing about whether 
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PlandbAffy does. More remarkable still is the odds ratio of 0.345 for Jetset and Masker, which 

indicates that knowing that Masker includes a probeset considerably decreases the odds that 

Jetset includes it; Jetset and Masker provide contradictory information. (One might hope that 

they usefully complement each other. The analysis of Boolean combinations will address that 

hope.)   (For details about odds ratios, see Szumilas (2010)165. )   

For each of the test-beds (endometrial and ovarian), a correlation mixture model was fitted 

to all feature pairs as described in the Methods section. Figure 24 shows the fitted mixture 

components for the two test-beds. They appear considerably different. Nevertheless, as we will 

see, the two mixture models lead to similar comparative evaluations of the filtering methods, 

suggesting that the best practices conclusions we are seeking may have general application.  
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Table 15. Odds ratio chart for probeset filtering  

The table cell entries are the odds ratios assessing the degree of association of each pair of filtering 
methods. Each table entry is the odds ratio from the 2x2 table cross-classifying probesets as either filtered or 
retained by the two methods. The odds ratio is the product of the agreements divided by the product of the 
disagreements. For details of the interpretation of the odds ratios, see text. Panel A: all probesets on Affymetrix 
HGU133 Plus 2.0 array. Panel B:  the 887 probesets from the ID pairs in the endometrial sample. 

 A 

B 
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Figure 24. Observed and fitted density distributions for probeset filtering example 

A) GynCOE Endometrial Experiment, B) TCGA Ovarian Experiment. In each panel, the horizontal axis
represents the Pearson’s correlation for pairs of mRNA expression and protein expression features (887 pairs in 
panel A, 151 pairs in panel B). The solid black line “data smooth” is a non-parametric estimate of the probability 
density of observed correlations. The solid blue line is a mixture distribution estimate of the probability density of 
the true correlations, determined from the generalized EM algorithm, which deconvolves the error term with 
individual variances for each correlation. The dotted lines are the mixture components. The mixture component 
labelled “x or 0” is interpreted as incorrect or decoupled feature pairs (probability =0.624 in endometrial samples 
and probability = 0.373 in ovarian samples). The mean is constrained to zero (see Methods). The mixture component 
labelled “+” is interpreted as correct and coupled feature pairs (probability = 0.376 in endometrial samples and 
probability =0.627 in the ovarian samples). Vertical lines are placed at the mean correlation of each component. 
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Each mixture distribution has two components: one centered at zero, and the other with 

mean > 0. The right-most component, labeled “+”, corresponds to the pairs where both features 

are correctly identified and mapped, and also biologically “coupled” through the translation 

process, protein synthesis. For each pair, we calculated the posterior probability for belonging to 

the “+” component. Summing or averaging across the pairs accepted by a filtering method, we 

calculated the expected utility for that method.  

The purpose of probeset filtering is to remove incorrectly identified or ineffectively 

designed probesets without removing too many correct probesets. Some investigators may want 

to apply stringent filtering criteria, for example to reduce multiple comparisons penalties and 

false discoveries, while others would be more concerned with missing a true discovery. For 

purposes of illustration, we fix a utility of a true positive (UTP) = 2, and a loss of a false positive 

(LFP) = 1 (see Methods). This implies that an investigator would wish to include a true positive 

at the cost of including a false positive feature, but not at the cost of including 3 false positive 

features, with indifference if the cost is two false positives. The different quantity-quality 

priorities of investigators are represented by two ways of combining expected utilities: the total 

expected utility (TEU) and the mean expected utility (MEU). An analyst choosing TEU wants as 

many features as possible, perhaps driven by the need to feed some systems biology algorithm. 

An analyst choosing MEU is more concerned with the quality of the resulting data set. Summary 

figures demonstrate the greedy forward selection for the endometrial and ovarian data sets 

(Figure 25). For each of the filters applied in Figure 25A there is a removal of poor quality 
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probesets with a gain in TEU. Figure 25B illustrates the MEU over a series of filters, each 

successive filter reduces probesets with the increase in expected utility. 

Figure 26 demonstrates a more detailed picture with each circle data point representing a 

set of probesets obtained from the application of an identifier filtering method. The two paths 

represent using TEU or MEU as the metric for the greedy forward selection. For the endometrial 

data, Figure 26A plots the estimated proportion of true coupled (quality) vs. the number of pairs 

remaining (quantity), for the endometrial data. The point at the upper left corresponds to 

including all 887 features pairs obtained with no filtering. The proportion of “+” pairs is only 

0.30, which implies that  the total expected utility TEU is -81.9 and the mean expected utility 

MEU -0.0923. The conclusion is that, without filtering, one should not analyze these data. The 

labeled points correspond to reduced feature sets created by a single filtering method. The paths 

correspond to successive application of filters selected by a greedy forward selection of 

intersections and unions.  

Jetset filtering provided the best single-method strategy for both TEU and MEU criteria 

(label = J). It is notable that Jetset was optimal even for TEU despite removing roughly half of 

the probesets (from 887 to 434; 51.1% probesets removed). For Jetset, TEU = 80.3 and MEU = 

0.185, both in the positive zone, suggesting at least that after filtering a data set is of sufficient 

quality to deserve analysis. Figure 26 shows the subsequent improvements by greedy selection of 

higher order Boolean combinations for the TEU (Panel A) and MEU (Panel B) criteria, 

Intersecting Jetset with GSPE was the best next step for the TEU criterion (filtering away 56.1% 

of the probesets) 138.9 TEU; intersecting with PlandbAffy is the best next step for MEU 
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(filtering away 59.8%) 0.3868 MEU. Further selection did not improve either criterion 

noticeably (maximum TEU 148.5, maximum MEU 0.4864).  

In the endometrial data set the estimated proportion of true coupled (Pr(“+”)) is .303 with 

887 mRNA-Protein pairs. The endometrial greedy forward selection shows a very similar path and 

in fact after one greedy node both greedy search modes find Jetset as the methodology of option, 

increasing the Pr(“+”) from .303 to .396. The optimal set for total expected utility is Pr(“+”) = 

.496, while the mean expected utility finds a set with Pr(“+”) = 0.503. 

In the ovarian cancer data set (Figure 26B), Jetset filtering again provided the best single-

method strategy for MEU criteria. Jetset reduced the number of probesets even more severely, 

from 151 to 47 (78.9% probesets filtered away) for the MEU selection criterion. The benefit in 

terms of the quality was quite dramatic but the cost in terms of pair reduction actually decreased 

the total expected utility from 290 to 131. Figure 26B shows the subsequent improvements by 

greedy selection of higher order Boolean combinations. Intersecting Jetset with Encode was the 

best next step for the TEU criterion (filtering away 18.5% of the probesets) 1.58 TEU; taking a 
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union with Jetset after the encode intersection restored 4 probesets and increased the TEU very 

slightly to 1.60. No further union or intersection provided any improvement. 
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Figure 25. Greedy forward selection for probeset filtering example 

Starting with all probesets the filters are applied to each cancer type using a greedy forward selection. The 
numbers of probesets are shown above each data point. The filter number represents the next filter intersection in the 
greedy forward selection, a union or an intersection. A) The total expected utility is the greedy forward selection 
criterion. B) The mean expected utility is the greedy forward selection criterion. 
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Figure 26. Quantity versus quality for probeset filtering example 

Points are plotted for filtering strategies constructed from filtering methods by Boolean operators. A Level 
1 strategy (red; “1”) is a single filtering method.   J: Jetset; GQ: Geneannot Quality; GSPE: Geneannot Specificity; 
GSEN: Geneannot Sensitivity; M: Masker; PD: Plandbaffy; AG:Affymetrix Grade; AT:Affymetrix Tag; E:Encode . 
A Level 2 strategy (blue; “2”) is the intersection or union of two Level 1 strategies, and so forth. The lines connect 
the best strategies (circled) at each Boolean complexity level according to greedy forward selection. 
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In the Ovarian Serous Carcinoma TCGA dataset the Affymetrix to reverse phase protein 

assay data provide 151 pairs at a high Pr(“+”) = .733. Unlike the endometrial data the TEU and 

the MEU provide 2 different paths to “best practice” of probeset filtering. The MEU path chooses 

the Jetset filter method by throwing away all but the 47 pairs in the Jetset optimization with a 

Pr(“+”) of .961. After 2 levels the MEU maximizes to a Pr(“+”) = .997 and eliminated all but 44 

pairs. The TEU favors quantity by keeping 123 pairs and a Pr(“+”) of .862. The TEU actually adds 

back in the union of the Jetset of 4 probesets to bring the total pairs to 127 and a Pr(“+”) of .867. 

Whether filtering with two methods rather than one is worth the extra effort is, of course, the 

judgment of the analyst. 

A.4 DISCUSSION

The goal of this work is to provide guidance for choosing a probeset filtering strategy in 

transcript expression experiments. It is not to guide analysis of paired datasets. The usefulness of 

linking with the protein abundance data is specifically to help evaluate and compare different 

filtering methods. 

Many investigators assume that the filtering methods available are close enough that 

choice of filtering method will have a negligent effect on the overall results of an analysis. The 

odds comparing the methods pairwise demonstrate that some of the methods differ considerably. 

The two test-beds both selected Jetset as the best single-method strategy for the MEU criterion. 

This happens despite the fact that both the mRNA expression platform and the proteomics 
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platform are different between the two test-beds, and the range of correlations is quite different 

as well. This result provides encouragement that the evaluation methodology applied here can 

produce best-practices conclusions that can be useful for external microarray data sets. 

Jetset eliminates as many as 80% of probesets. This may seem extreme to a user of 

microarrays but consider this: There are roughly three times the probesets as there are protein-

coding genes in the human genome, so if (as Jetset does) a method selects only the best probeset 

for each gene, then a minimum of 2/3 of the probesets must be eliminated. When the goal of the 

biological research requires more features than a strict filtering method like Jetset would allow, 

and then Jetset would not be used. Our method reflects this, by granting the user goal-specific 

utility values that will penalize false negatives more stringently. If increasing this penalty leads 

to an unacceptable number of false positives, then the research goal cannot be achieved, and it is 

best that the investigator know this.  

In the ovarian dataset, an investigator leery of discarding such a large proportion of 

probesets would be attracted to using Encode, guided by our TEU criterion. In both test-beds, 

Encode removes few probesets, but in the ovarian test-bed the probesets removed are of 

especially poor quality. This may be related to the fact that the mass spectrometry platform in the 

endometrial test-bed is not designed for accurate quantification. In contrast, the RPPA platform 

utilizes selected validated antibodies, so that one source of poor correlations is greatly reduced. 

Since RPPA data is a ligand based local protein expression assay the sensitivity for an individual 

protein is much higher than the LC MS/MS data. This method is sensitive to correlation of 
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mRNA expression to protein and the RPPA data has a more reliable protein measurement at low 

protein expression.  

A.5 CONCLUSIONS

The evaluation methodology applied here has some major virtues. Conclusions are developed on 

real, not simulated, data. Conclusions can be subject to replication independently on multiple test-

beds. Conclusions are responsive to the needs of investigators through the decision theory 

framework, which helps an investigator decide how much data to filter away based on mRNA to 

protein correlation.  

Many investigators utilize publicly available data, such as the TCGA data warehouse, to 

unlock discoveries at the genome, transcript, and protein levels of cancer biology. Previously, in 

merging and analyzing data from an expression data set and proteomic data on the same samples, 

our team found startling differences in the identifier mapping services. We developed a 

principled, data-grounded method to evaluate and compare these services. This method has broad 

generalizability to evaluating many kinds of data pipeline choices and strategies, including 

identifier filtering methods and read filtering methods to remove erroneous or poor quality 

features, and tuning parameter settings in pipelines. We are developing a new package that will 

support much wider applications to all kinds of workflow options. That package will include the 

decision theory component as well. 
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APPENDIX B 

B.1 ECM ALGORITHM

Given model quality values (MQ) of feature pairs are distributed 

Define variance as a convolution of measurement error variances of the pairs and 

group variance 

 𝜏𝜏𝐺𝐺(𝑝𝑝)𝑝𝑝 =  𝜎𝜎𝑝𝑝2 + 𝑉𝑉𝐺𝐺(𝑝𝑝) 

Where 𝜑𝜑𝐺𝐺(𝑝𝑝) is the mean of group {" + ", "0", "𝑥𝑥"} 

Define the prior probability of a pair as a member of group g 

Define the prior probability of the “-“ mixture component as 

𝑀𝑀𝑀𝑀(𝑝𝑝)~𝑁𝑁(𝜑𝜑𝐺𝐺(𝑝𝑝), 𝜏𝜏𝐺𝐺(𝑝𝑝)𝑝𝑝) 

Pr(𝐺𝐺(𝑝𝑝) = 𝑔𝑔) = 𝜋𝜋𝑔𝑔  for 𝑔𝑔 ∈ {" + ", "0", "𝑥𝑥"} 

𝜋𝜋− = 𝜋𝜋0 + 𝜋𝜋𝑥𝑥 

Pr(𝐺𝐺(𝑝𝑝) = 𝑔𝑔) = 𝜋𝜋𝑔𝑔  for 𝑔𝑔 ∈ {" + ", " − "} 
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Define group membership G(p) as missing data 

Define the complete data likelihood per observation k 

Pr�𝑀𝑀𝑀𝑀𝑝𝑝,𝐺𝐺(𝑝𝑝)�𝜑𝜑,𝑉𝑉,𝜋𝜋� = Pr [𝑀𝑀𝑀𝑀𝑝𝑝|𝐺𝐺(𝑝𝑝)] × Pr [𝐺𝐺(𝑝𝑝)]

∝ exp (−
(𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑𝐺𝐺(𝑝𝑝))2)

2𝜏𝜏𝐺𝐺(𝑝𝑝)𝑝𝑝
× (𝜏𝜏𝐺𝐺(𝑝𝑝)𝑝𝑝)−1/2 × 𝜋𝜋𝐺𝐺(𝑝𝑝) 

Set mean of the “0” component and “x “ component to 0 

𝜑𝜑0 = 𝜑𝜑𝑥𝑥 = 0 

Define posterior probability of a pair membership in the “-“ component 

𝜋𝜋−𝑝𝑝∗ = 1 − 𝜋𝜋+𝑝𝑝∗ =  𝜋𝜋𝑥𝑥𝑝𝑝∗ +  𝜋𝜋0𝑝𝑝∗  

Define free variable 

𝜙𝜙 = (𝜑𝜑− = 0,𝜑𝜑+,𝜋𝜋+,𝑉𝑉−,𝑉𝑉+) 
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E-step

Calculate expectation of the complete-data log likelihood 

𝑄𝑄(𝜙𝜙,𝜙𝜙∗) =
1
2� � 𝜋𝜋𝑔𝑔𝑔𝑔∗ (−

(𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑𝐺𝐺(𝑝𝑝))2

�𝜎𝜎𝑝𝑝2 + 𝑉𝑉𝑔𝑔� − log�𝜎𝜎𝑝𝑝2 + 𝑉𝑉𝑔𝑔�
+ 𝑁𝑁0∗ log𝜋𝜋0 +

𝑔𝑔𝑘𝑘
𝑁𝑁1∗ log𝜋𝜋1 

Where the posterior odds and solve expectation 

𝜋𝜋−𝑝𝑝∗

𝜋𝜋+𝑝𝑝∗
=

Pr�𝑀𝑀𝑀𝑀𝑝𝑝,𝐺𝐺(𝑝𝑝) = ” − “�𝜑𝜑−∗ ,𝑉𝑉−∗,𝜋𝜋−∗ �
Pr�𝑀𝑀𝑀𝑀𝑝𝑝,𝐺𝐺(𝑝𝑝) = ” + ”�𝜑𝜑+∗ ,𝑉𝑉+∗,𝜋𝜋+∗ �

=
𝜋𝜋−∗

𝜋𝜋+∗
×

exp�−
(𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑−∗ )2

2�𝑉𝑉−∗ + 𝜎𝜎𝑝𝑝2�
� /�𝑉𝑉−∗ + 𝜎𝜎𝑝𝑝2

exp�−
(𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑+∗ )2

2�𝑉𝑉+∗ + 𝜎𝜎𝑝𝑝2�
� /�𝑉𝑉+∗ + 𝜎𝜎𝑝𝑝2

𝐸𝐸∗𝑁𝑁− = �𝜋𝜋−𝑝𝑝∗
𝑝𝑝

 

𝐸𝐸∗𝑁𝑁+ = �𝜋𝜋+𝑝𝑝∗
𝑝𝑝

 

Set Q partial derivatives to zero: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜑𝜑𝑔𝑔

= � 𝜋𝜋𝑔𝑔𝑔𝑔∗
𝑘𝑘

(�𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑𝑔𝑔��𝜎𝜎𝑝𝑝2 + 𝑉𝑉𝑔𝑔� )−1� = 0 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑉𝑉𝑔𝑔

=
1
2� 𝜋𝜋𝑔𝑔𝑔𝑔∗

𝑘𝑘
((𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑𝑔𝑔)2(𝜎𝜎𝑘𝑘2 + 𝑉𝑉𝑔𝑔)−2 − �𝜎𝜎𝑘𝑘2 + 𝑉𝑉𝑔𝑔)−1� = 0 
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M-step

Iterate n-steps 

Set  𝑉𝑉𝑔𝑔 = 𝑉𝑉�𝑔𝑔 

Solve 

𝜑𝜑�𝑔𝑔 =
∑ 𝜋𝜋𝑔𝑔𝑔𝑔∗𝑝𝑝 𝑀𝑀𝑀𝑀𝑝𝑝(𝜎𝜎𝑝𝑝2 + 𝑉𝑉�𝑔𝑔)−1

∑ 𝜋𝜋𝑔𝑔𝑔𝑔∗𝑝𝑝 (𝜎𝜎𝑝𝑝2 + 𝑉𝑉�𝑔𝑔)−1

Set 𝜑𝜑𝑔𝑔 = 𝜑𝜑�𝑔𝑔 

Solve 

𝑉𝑉�𝑔𝑔 = max (0,� 𝜋𝜋𝑔𝑔𝑔𝑔∗ (𝑀𝑀𝑀𝑀𝑝𝑝 − 𝜑𝜑�𝑔𝑔)2 −� 𝜋𝜋𝑔𝑔𝑔𝑔∗ 𝜎𝜎𝑝𝑝2)/𝑁𝑁𝑔𝑔∗
𝑝𝑝𝑝𝑝
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B.2 FEATURES FOR EVALUATION

Table 16. Features for RNASeq identifier filtering evaluation. 

Hgnc Symbols, Descriptions and Filter status for the 62 features from the Identifier filtering and threshold 
evaluation on SALMON TCGA Breast cancer samples. Transmembrane = 0 is a non-transmembrane gene product 
based on BioMart results from TMHMM, Transmembrane =1 is a transmembrane gene product based on Biomart 
results from TMHMM, Low complexity = 0 detects a random intended amino acid sequence based on SEG results 
from BioMart, Low complexity =1 detects sequences with an ordered sequence structure similar to protein coding 
sections.  

Hgnc_symbol Description Transmembrane Low complexity region 
ACACA acetyl-CoA carboxylase alpha  0 1 
AKT1 AKT serine/threonine kinase 1  0 0 
AKT2 AKT serine/threonine kinase 2 0 0 
AKT3 AKT serine/threonine kinase 3  0 0 
ANXA1 annexin A1  0 0 
AR androgen receptor 0 1 
BAX BCL2 associated X, apoptosis regulator 1 1 
BCL2 BCL2, apoptosis regulator 1 1 
BCL2L1 BCL2 like 1  0 0 
BCL2L11 BCL2 like 11  1 1 
BECN1 beclin 1 0 1 
CAV1 caveolin 1 1 1 
CCNB1 cyclin B1  0 1 
CCND1 cyclin D1 0 1 
CCNE1 cyclin E1 0 1 
CDH1 cadherin 1 1 1 
CDH2 cadherin 2 1 1 
CDKN1B cyclin dependent kinase inhibitor 1B 0 0 
CLDN7 claudin 7  1 1 
COL6A1 collagen type VI alpha 1 chain  0 1 
CTNNA1 catenin alpha 1  0 1 
CTNNB1 catenin beta 1 0 1 
DVL3 dishevelled segment polarity protein 3 0 1 
EEF2K eukaryotic elongation factor 2 kinase  0 1 
EGFR epidermal growth factor receptor 1 1 
EIF4E eukaryotic translation initiation factor 

4E  
0 1 

EIF4EBP1 eukaryotic translation initiation factor 
4E binding protein 1 

0 0 

ERBB2 erb-b2 receptor tyrosine kinase 2  1 1 
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ERBB3 erb-b2 receptor tyrosine kinase 3  1 1 
ERRFI1 ERBB receptor feedback inhibitor 1 0 1 
ESR1 estrogen receptor 1 0 1 
GATA3 GATA binding protein 3  0 1 
GSK3A glycogen synthase kinase 3 alpha  0 1 
GSK3B glycogen synthase kinase 3 beta 0 1 
IGFBP2 insulin like growth factor binding 

protein 2 
0 1 

IRS1 insulin receptor substrate 1  0 1 
KDR kinase insert domain receptor 1 1 
KIT KIT proto-oncogene receptor tyrosine 

kinase 
1 1 

MAP2K1 mitogen-activated protein kinase 
kinase 1  

0 1 

MAPK1 mitogen-activated protein kinase 1  0 1 
MAPK14 mitogen-activated protein kinase 14 0 1 
MTOR mechanistic target of rapamycin  0 1 
NOTCH1 notch 1  0 1 
PCNA proliferating cell nuclear antigen  0 0 
PECAM1 platelet and endothelial cell adhesion 

molecule 1  
1 1 

PGR progesterone receptor 0 1 
PRKAA1 protein kinase AMP-activated catalytic 

subunit alpha 1 
0 1 

PRKCA protein kinase C alpha  0 0 
PTEN phosphatase and tensin homolog  0 1 
PXN paxillin  0 1 
RAF1 Raf-1 proto-oncogene, 

serine/threonine kinase 
0 1 

RPS6 ribosomal protein S6  0 1 
RPS6KB1 ribosomal protein S6 kinase B1 0 0 
SMAD1 SMAD family member 1  0 1 
SMAD3 SMAD family member 3  0 1 
SMAD4 SMAD family member 4  0 1 
SRC SRC proto-oncogene, non-receptor 

tyrosine kinase 
0 1 

STAT5A signal transducer and activator of 
transcription 5A  

0 1 

STMN1 stathmin 1  0 0 
SYK spleen associated tyrosine kinase 0 0 
TP53 tumor protein p53  1 1 
YBX1 Y-box binding protein 1 0 1 
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