
THE RELATIONSHIP BETWEEN NICOTINE AND BODY WEIGHT: IMPLICATIONS 

FOR TOBACCO REGULATORY POLICY FROM RATS & HUMANS 

by 

Laura Eloise Rupprecht 

Bachelor of Science, Juniata College, 2010 

Submitted to the Graduate Faculty of 

the Deitrich School of Arts and Sciences in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

University of Pittsburgh 

2017 



ii 

UNIVERSITY OF PITTSBURGH 

DEITRICH SCHOOL OF ARTS AND SCIENCES 

This dissertation was presented 

by 

Laura Eloise Rupprecht 

It was defended on 

March 29, 2017 

and approved by 

Judy L. Cameron, Professor, Psychiatry 

Eric C. Donny, Professor, Psychology 

Mary M. Torregrossa, Assistant Professor, Psychiatry 

Julie A. Blendy, Professor, University of Pennsylvania, Pharmacology 

 Dissertation Advisor: Alan F. Sved, Chairman and Professor, Neuroscience 

Dissertation Chair: Linda Rinaman, Professor, Neuroscience 



iii 

Copyright © by Laura Eloise Rupprecht 

2017 



iv 

Smokers weigh less than non-smokers and former smokers, an observation that has been 

attributed to nicotine in cigarette smoke. Despite the ability of nicotine to suppress weight gain, 

body mass index (BMI) is positively associated with smoking intensity. These phenomena 

suggest a complex relationship between nicotine and body weight: that nicotine impacts body 

weight, and that body weight may modify nicotine reinforcement. This dissertation tests the 

hypotheses that self-administered nicotine suppresses body weight and that body weight impacts 

nicotine reinforcement in rats and human smokers. Experiments tested these hypotheses in a rat 

model of nicotine self-administration and in human smokers. Experiments in Chapter 2 

demonstrate that self-administered nicotine suppressed body weight gain independent of food 

intake in rats. Acquisition of low dose nicotine self-administration resulted in suppression of 

weight gain. In contrast, reduction of nicotine dose from a prior higher dose increased weight 

gain. Experiments in Chapter 3 demonstrated that self-administered nicotine in rats suppressed 

respiratory exchange ratio, indicating increased fat utilization, prior to a nicotine-induced 

suppression of weight gain. The experiment in Chapter 4 evaluated weight gain in human 

smokers randomized to smoke very low nicotine content (VLNC) cigarettes for 6 weeks. These 

data align with the rat self-administration data in Chapter 2; smokers compliant with VLNC 

cigarettes gained weight after 6 weeks of use. The current environment is obesogenic. The 

experiment in Chapter 5 tested the impact of self-administered nicotine on obesity-prone and 
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obesity-resistant rats and found that nicotine failed to suppress weight gain in obesity-resistant 

rats. Chapter 6 tested the ability of body weight and/or diet to impact nicotine self-

administration. In obese smokers and rats, smoking/nicotine intake was increased, but decreased 

per body mass, suggesting that nicotine intake is titrated dependent on body mass. In sum, self-

administered nicotine acts to suppress weight gain likely via increased fat utilization, and 

nicotine consumption is titrated dependent on weight. A potential strategy to reduce the health 

burden of smoking is a reduction in the nicotine content of cigarettes, which is hypothesized to 

reduce smoking and promote quitting. The data reported in this dissertation has important 

implications for tobacco regulatory policy.  
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1.0 INTRODUCTION 

1.1 THE TOBACCO EPIDEMIC AND REGULATORY SCIENCE 

Tobacco use, primarily through cigarette smoking, is the largest cause of preventable 

death worldwide. Despite the well-publicized health risks associated with smoking, 

approximately 19% of adults in the United States are smokers, and about half of these smokers 

are predicted to die prematurely due to tobacco-related illnesses (Centers for Disease et al., 

2011). Strategies to reduce the morbidity and mortality caused by tobacco smoke are of 

immediate need. Nicotine, the primary psychoactive constituent in cigarettes, drives continued 

use of tobacco products. A potential strategy to reduce cigarette smoking and improve smoking-

related public health outcomes is the reduction of nicotine content in cigarettes below a 

theoretical addictive threshold (Benowitz et al., 1994). Such a reduction would promote quitting 

in current smokers and prevent initiation in new smokers (Benowitz et al., 1994; Donny et al., 

2012). Thus, with the goal of improving public health, The Family Smoking Prevention and 

Tobacco Control Act, passed in 2009, gives authority to the Food and Drug Administration 

(FDA) to mandate the content of nicotine in cigarettes to any non-zero level (Donny et al., 2012; 

Hatsukami et al., 2013; United States. Congress. House. Committee on Energy and Commerce. 

Subcommittee on Health., 2008). The World Health Organization (WHO) Framework 

Convention on Tobacco Control calls for established guidelines for the regulation of the content 
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of cigarettes (World Health Organization Study Group on Tobacco Product, 2012). The most 

recent report of the WHO study group on tobacco product regulation emphasizes nicotine 

reduction as a strategy to reduce the immense harm caused by tobacco smoke (World Health 

Organization Study Group on Tobacco Product, 2015). Recent evidence suggests that reduction 

of nicotine content in cigarettes reduces smoking in humans (Benowitz et al., 2013; Hatsukami et 

al., 2013). Such a tobacco control policy could have dramatic implications for the rates of 

smoking, but may also impact other health-related outcomes. 

1.2 CONSIDERATION OF NICOTINE AND WEIGHT REGULATION 

In the United States, the past 35 years have been marked by a slow decline in the number 

of smokers and a dramatic and rapid increase in the rates of obesity. Over 70% of adults and 

17% of children and adolescents are considered overweight or obese and deaths due to obesity-

related diseases are predicted to surpass mortality caused by tobacco smoke within the decade 

(Hurt et al., 2010; Mokdad et al., 2005; Stewart et al., 2009). Together, obesity and smoking 

represent the largest current obstacles in public health. Epidemiological and empirical studies 

describe an inverse relationship between tobacco smoking or nicotine and body weight (Audrain-

McGovern et al., 2011; Jacobs et al., 1981), and desired weight loss or maintenance of reduced 

body weight is commonly cited as a primary reason for smoking (Fulkerson et al., 2003). 

Moreover, ex-smokers typically gain an average of 10 lbs within the first year of abstinence 

(Audrain-McGovern et al., 2011). Oftentimes even the possibility of weight gain after cessation 

is a strong enough motive to drive continued use (Donny et al., 2011b; Filozof et al., 2004). The 

decline in smoking rates may in part contribute to the increases in obesity (Chou et al., 2004) and 
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the motivation to continue to smoke as a method of body weight suppression could be greater in 

obese smokers (Audrain-McGovern et al., 2011). There is a growing appreciation that body 

weight and diet may be important environmental factors impacting motivated behaviors (Volkow 

et al., 2012). Smoking is associated with other maladaptive health behaviors, including increased 

intake of densely caloric diets (Rupprecht et al., 2015b). It is likely that diet and body weight 

have an important impact on nicotine-seeking behaviors. These observations imply that body 

weight may be a critical determinant of smoking and other related health behaviors as a result of 

a policy regulating the nicotine content in cigarettes. Though obesity and smoking are 

interrelated, how one might causally affect the other is essentially unstudied. 

In the context of nicotine reduction, a regulatory policy mandating low levels of nicotine 

in cigarettes has two primary implications, as it relates to weight gain. Post-cessation weight gain 

as been attributed to nicotine withdrawal (Filozof et al., 2004; Gross et al., 1989) (detailed more 

below), and the possibility exists that reduction of nicotine in cigarettes could result in 

substantial weight gain in smokers (Rupprecht et al., 2015a). Second, the smoking population is 

heterogeneous and subpopulations of smokers may continue to smoke despite large reductions in 

nicotine content. The interrelationship between nicotine and body weight (the impact of nicotine 

on body weight regulation, and the impact of body weight on nicotine reinforcement) is the focus 

of the experiments in this dissertation.  
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1.3 SMOKING FOR WEIGHT LOSS: THE IMPACT OF NICOTINE ON ENERGY 

BALANCE 

1.3.1 Humans. 

Smokers weigh less than non-smokers and former smokers (Audrain-McGovern et al., 

2011; Rasky et al., 1996). Approximately 10% of smokers report smoking for weight control 

(French et al., 1995; Klesges et al., 1989). Adolescents, women, and people with obesity may be 

more likely to report smoking for weight control, though there are also reports describing no 

effect of these factors (French et al., 1996; Fulkerson et al., 2003; Levine, 2008; Levine et al., 

2013). Smoking results in a lower body weight set point (Cabanac et al., 2002). The weight-

suppressive effects of smoking have been attributed to nicotine in cigarette smoke. Smokers may 

use cigarettes as a food replacement, and in this context, smoking may reduce caloric intake 

(Ogden et al., 1994). However, evidence also suggests that smokers and non-smokers have equal 

daily caloric intake (Perkins et al., 1992). The impact of cigarette smoke on feeding in human 

smokers is complex, and seems to be dependent on the caloric or palatable value of the food, as 

well as satiety-state (Perkins et al., 1995; Perkins et al., 1992). Cigarette smoke can increase 

basal metabolic rate, which is in part due to nicotine and to the inhalation of smoke (Audrain et 

al., 1991; Perkins, 1992b; Perkins et al., 1989b).  

Cessation from cigarette smoking results in weight gain, which is variable across 

individuals (Audrain-McGovern et al., 2011). A large magnitude of post-cessation weight gain 

(i.e., “super-gainers”) is predicted by low weight prior to cessation and heavy levels of daily 

smoking (Veldheer et al., 2015). Post-cessation weight gain is attenuated by nicotine 

replacement therapies and cessation medications that act as partial agonists at nicotinic 
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acetylcholine receptors (nAChR) (Farley et al., 2012; Gross et al., 1989). Individual differences 

in efficacy for nicotine replacement to attenuate post-cessation weight gain have been reported 

(Lerman et al., 2004). For example, in post-menopausal women, transdermal nicotine patch can 

increase weight gain, compared to cessation without replacement therapy (Allen et al., 2005).  

The landscape of tobacco product use is changing, with cigarette use at a slow decline, 

and use of electronic nicotine device systems (ENDS), or e-cigarettes, increasing. Recent 

evidence suggests that some ENDS users have the expectation of weight control, and that the use 

of ENDS may regulate weight control (Morean et al., 2017). Given that palatable food 

consumption is increased following nicotine via nasal spray (Perkins et al., 1992), the 

combination of nicotine and palatable flavors in ENDS products has important implications for 

ENDS abuse liability, and its impact on weight regulation. The issues of weight expectations 

from tobacco use, and the pharmacological actions of nicotine to regulate energy balance in 

human tobacco users remains relevant.  

The impact of smoking and nicotine on weight regulation is complex, and difficult to 

study in a causal manner in humans. The majority of experiments testing the impact of nicotine 

or smoking on energy balance occur in current smokers, after the differences in body weight 

exist. Therefore, it is difficult to attribute differences in caloric intake, energy expenditure, or 

other parameters to nicotine itself, or long term adaptations due to reduced body weight gain 

over time. Additionally, weight-concerned smokers are more likely to use smoking as a form of 

food restriction. Rodent models of nicotine administration represent a tool for the study of the 

impact of nicotine on energy balance without these confounds.  
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1.3.2 Rodents. 

Nicotinic receptors are expressed almost ubiquitously on central and peripheral cells 

involved in energy balance (Zoli et al., 2012). Therefore, the regulation of body weight by 

nicotine is complex, and results of studies focused on nicotine and energy balance are likely 

dependent on the method, duration, and dose of administration. The regulation of body weight is 

dependent on energy in (i.e., calories consumed and nutrient absorption) and energy out (i.e., 

energy expenditure: metabolic rate, adaptive thermogenesis, and physical activity) (Grill et al., 

2012). Indeed, previous work has established effects of nicotine on decreased food intake, and 

increased metabolism, thermogenesis, and physical activity (L. L. Bellinger et al., 2010; 

Grunberg et al., 1985a; Zoli et al., 2012). An incomplete list of the impact of nicotine on energy 

balance can be found in Table 1. While nicotine has the ability to regulate many aspects of 

energy balance, it is commonly accepted that the substantial body weight reduction by nicotine is 

due to decreased food intake. Of note (Table 1), the vast majority of experiments testing the 

impact of nicotine on energy balance have used non-contingent experimenter-administered 

administration. Several experiments have demonstrated that experimenter- and self-administered 

nicotine differentially impact catecholamine and glucocorticoid release and cardiovascular 

regulation, factors that influence body weight regulation. The effects of self-administered 

nicotine on energy balance were experimentally tested, and the results are reported in Chapters 2 

– 5 of this dissertation.
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Table 1. The impact of nicotine on energy balance in rodents 

Publication 
Administration 
route 

Dose Duration Subject Weight Feeding Other notes 

Aceto et al. 
(1986) 

Continuous s.c. 
infusion 

10 mg/kg/day 6 days Male SD ↓ n/a ↓ water intake 

L. Bellinger et al.
(2003)

i.p. injection
2 or 4 
mg/kg/day 

14 days Male SD ↓ 
↓ meal size; 
↑ meal # 

No change in water 

L. L. Bellinger et
al. (2005)

i.p. injection 1.4 mg/kg/day 12 days 
Female 
SD 

↓ 
↓ meal size; 
↑ meal # 

L. L. Bellinger et
al. (2010)

i.p. injection 1.4 mg/kg/day 12 days Male SD ↓ ↓ ↓ RQ but not EE 

Bishop et al. 
(2004) 

Osmotic s.c. 
minipumps 

6 mg/kg/day 12 days 
Female 
SD 

↓ ↓ 
↓RQ (acute) but not 
EE 

Blaha et al. 
(1998) 

Osmotic s.c. 
minipumps 

6 mg/kg/day 7 days 
Male & 
Female 
Fischer 

↓ 
↓ via meal 
size 

No change in estrous 
cycle 

Bowen et al. 
(1986) 

Osmotic s.c. 
minipumps 

4, 8, 12 
mg/kg/day 

19 days 
Female 
SD 

↓ ↓ 
No change in water 
or activity 

H. Chen et al.
(2005)

Smoke inhalation 
1.2 mg 
(3x daily) 

4 days 
Male 
Balb/C 
mice 

↓ ↓ 
↑ UCP3 in BAT; ↓ 
UPC1 in WAT 

Clarke et al. 
(1984) 

s.c. injection 0.4 mg/kg 1 month Male SD ↓ ↓ ↓ water intake 

Grebenstein et al. 
(2013) 

Programmed i.v. 
infusions 

60μg/kg/inf 
(23-h) 

9 days Male SD ↓ 
↓ in light 
phase; ↓ 
meal size 

Grunberg et al. 
(1985a) 

Osmotic s.c. 
minpumps 

4, 8, 12 
mg/kg/day 

18 days Male SD ↓ n/a 
↑ activity (after ↓ 
decrease in weight) 

Grunberg et al. 
(1985b) 

Osmotic s.c. 
minipumps 

6 or 12 
mg/kg/day 

17 days Male SD ↓ 
↓, but less for 
sweet foods 

Grunberg et al. 
(1988) 

Osmotic s.c. 
minipumps 

6 or 12 
mg/kg/day 

17 days 
Male & 
Female 
SD 

↓ 
↓ of junk 
food only 

Grunberg et al. 
(1984) 

Osmotic s.c. 
minipumps 

4, 8, 12 
mg/kg/day 

14 days Male SD ↓ No change 

Grunberg et al. 
(1986) 

Osmotic s.s. 
minipumps 

4, 8, 12 
mg/kg/day 

17 days 
Female 
SD 

↓ 
↓ at highest 
dose 

Mangubat et al. 
(2012) 

i.p. injection
0.5 or 1.4 
mg/kg 

50 days 
Male 
C57BL/6 
mice 

↓ ↓ 
↓ fat mass in HED 
fed only 

de Morentin et al. 
(2012) 

s.c. injection 2 mg/kg/12h 17 days Male SD ↓ ↓ 
↓RQ; ↑ body and 
BAT temp 

Mendez et al. 
(2016) 

Osmotic s.c. 
minipumps 

1 mg/kg/day 14 days Male SD ↓ 
↓ meal 
duration and 
# (HED) 

Mineur et al. 
(2011) 

i.p. injection 0.1 – 3 mg/kg 30 days Male mice ↓ ↓ 

Miyata et al. 
(1999) 

Osmotic s.c. 
minipumps 

1,5, or 9 
mg/kg/day 

7 days 
Male 
Fischer 

↓ 
↓ meal # & 
size 

Increased DA and 
5HT in LHA 

Miyata et al. 
(2001) 

Osmotic s.c. 
minipumps 

5 mg/kg/day 5 days 
Female 
Fischer 

↓ 

↓ via meal 
size; ↑ 
intermeal 
interval 

Prolonged estrous 
cycle 

Schechter et al. 
(1976) 

i.p. injection 
0.8 mg/kg 
(2 or 3x daily) 

5 weeks Male SD ↓ No change 

Seoane-Collazo 
et al. (2014) 

s.c. injection 2 mg/kg/12h 8 days Male SD ↓ ↓ 
↓ fat mass; ↑ BAT 
temp 

Wellman et al. 
(1986) 

s.c. injection 
0.8 mg/kg (3x 
daily) 

14 days Male SD ↓ No change 
No change in BAT 
temp 

Wellman et al. 
(2005) 

s.c. injection 1.4 mg/kg/day 14 days Male SD ↓ ↓ 
Rats fed chow or 
HED 

Winders et al. 
(1993) 

Osmotic s.c. 
minipumps 

12 mg/kg/day 14 days Male SD ↓ ↓ 



 8 

 
 

1.3.1 Regulation of body weight by nicotine in obesity. 

In the general population, smokers weigh less than non-smokers and smokers who quit 

gain a substantial amount of weight within the first year of abstinence (Audrain-McGovern et al., 

2011); this relationship, however, is not as simple in the obese population. There is a negative 

correlation between the percentage of smokers and body mass index (BMI) among lean smokers, 

but this relationship is reversed among overweight, obese, and morbidly obese smokers (Chatkin 

et al., 2010). Thus, there is a U shape curve associated with percentages of smokers and smoking 

status as a function of BMI. Furthermore, several other studies report that moderate smokers 

weigh less than non-smokers, but heavy smokers (i.e., smoking at higher frequencies) are often 

obese (Chiolero et al., 2007a; Nielsen et al., 2006).  

The relationship between heavy smokers and obesity has not been studied longitudinally 

or causally and may be explained by several factors. First, obesity may enhance nicotine 

reinforcement, driving cigarette consumption. This idea is explored in more detail below. 

Alternatively, the relationship may be explained by clustering of other risk behaviors; for 

example, higher levels of cigarette consumption are linked with low levels of physical activity, 

low fruit/vegetable intake, and high alcohol consumption (Chiolero et al., 2006). Thus, high rates 

of obesity among heavy smokers may be due to other independent health risk factors. Thirdly, 

obese smokers may smoke at higher rates in an effort to suppress body weight, which would 

indicate that obesity precedes initiation of smoking.  A more complete understanding of these 

pathways is critical in determining how body weight and smoking behaviors may be impacted 

following the implementation of a nicotine reduction policy.  
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Despite data suggesting that high BMI is associated with smoking, compared to a rate of 

obesity of over 35% of obesity in the general population, only 5% of the general population 

smokes and is obese (Healton et al., 2006). Thus, chronic exposure to nicotine may prevent 

excess weight gain in individuals who would otherwise be obese. As these data are not available 

in human smokers, animal models might provide important information to fill this gap. A 

constant subcutaneous infusion of nicotine suppressed body weight gain in rats that become 

obese when maintained on a densely caloric diet (i.e., diet-induced obesity) (Seoane-Collazo et 

al., 2014). In contrast, oral administration of nicotine via drinking water had no effect on body 

weight in Zucker fatty rats (R. H. Liu et al., 2001; R. H. Liu et al., 2003), a different animal 

model of human obesity. The total daily dose of nicotine delivered orally to the Zucker fatty rats 

(R. H. Liu et al., 2003) was substantially lower than the dose delivered by subcutaneous infusion 

to diet-induced obese rats (Seoane-Collazo et al., 2014), which may explain the difference 

between the two studies. To our knowledge, there are no other reports of the effects of nicotine 

or smoking on body weight regulation in an obese population. 

The impact of nicotine and smoking on obesity must be evaluated beyond an effect solely 

on body weight or BMI. Chronic smoking can increase fat accumulation, associated with central 

obesity and insulin resistance. High BMI is not always correlated with obesity-related illnesses. 

Waist-to-hip ratio (WHR), a measure of central obesity, is often predictive of the development of 

Type II diabetes and poor health outcomes. Former smokers who relapse lose weight, 

approximately 2.5 lbs, but display an increase in WHR (Shimokata et al., 1989). Central obesity 

increases dose-dependently with cigarette consumption, and this increase in abdominal fat 

accumulation often occurs independently of changes in BMI or body weight (Barrett-Connor et 

al., 1989; Shimokata et al., 1989). Smoking also induces insulin resistance (Attvall et al., 1993), 
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characteristic of Type II diabetes, and it is thought that nicotine in tobacco smoke that 

contributes to the development of insulin resistance (Eliasson et al., 1996). Indeed, smoking and 

nicotine consumption is associated with the development of Type II diabetes, which may be 

mediated by central obesity and insulin resistance (T. Liu et al., 2011; Xie et al., 2009). The 

contribution of chronic nicotine exposure to the development of insulin resistance is supported in 

animal models (Wu et al., 2015). Thus, it seems the relationship between nicotine, smoking, and 

obesity is paradoxical; nicotine may reduce body weight in an obese population and prevent the 

onset of obesity in an otherwise obese smoker, whereas chronic nicotine exposure may increase 

central obesity and the development of Type II diabetes in lean smokers, and potentially obese 

smokers as well. 

1.4 THE EFFECTS OF OBESITY ON NICOTINE REINFORCEMENT 

Evidence also points to the potential impact of obesity on the degree to which nicotine 

reinforces behavior. The mechanistic link between the drive for food and psychoactive drugs is 

clear in humans and rodents, which may underlie the co-occurrence of obesity and substance 

abuse disorders (Avena et al., 2008; Volkow et al., 2003; Wang et al., 2004). As mentioned 

above, higher BMI is associated with smoking more cigarettes per day, which may be linked 

with higher levels of nicotine dependence. In female smokers, childhood-onset obesity is 

associated with earlier smoking initiation and more severe withdrawal symptoms, but not 

increases in nicotine dependence or cigarettes consumed per day (Saules et al., 2007). Further, 

craving for cigarettes significantly increased following two-day abstinence in high-BMI female 

smokers compared to low BMI counterparts, matched for nicotine dependence and cigarettes per 
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day (Saules et al., 2004). A longitudinal survey study found that female adolescent obesity is 

linked to higher levels of nicotine dependence later in life (Hussaini et al., 2011). However, a 

separate study found a positive correlation between nicotine dependence and BMI in adult men 

but not women (John et al., 2005b). Results from these studies are not totally consistent, but 

generally support the notion that obesity might contribute to increased uptake of cigarette use or 

nicotine dependence.  

To our knowledge, there is only one controlled laboratory study investigating the effects 

of body weight on nicotine reinforcement in human smokers (Blendy et al., 2005). Non-obese 

and obese non-deprived smokers were asked to take 16 total puffs from 2 cigarettes differing in 

nicotine content: a normal nicotine content and a very low nicotine content (VLNC) cigarette. 

Measures of nicotine dependence and cigarettes per day were slightly elevated in the obese 

smokers. However, nicotine reward, measured by the percentage of total puffs taken from the 

nicotine cigarette, was lower in the obese subjects. Ratings of liking for the VLNC cigarette, 

while lower than the ratings of liking for the normal nicotine cigarette, were elevated in the 

obese compared to non-obese subjects. The data describing a relationship between obesity and 

smoking behavior are limited and not entirely consistent across studies, but a picture emerges 

that might support the view that obese smokers may be more nicotine dependent and susceptible 

to smoking, but derive less reward or liking from the cigarettes. More importantly, perhaps, is 

that these data highlight the possibility that obese smokers may derive more reward from VLNC 

cigarettes, indicating the potential for increased acceptance and use of reduced nicotine content 

cigarettes in obese smokers.  

Recent efforts using animal models have focused on the concept that consumption of a 

densely caloric diet may increase motivated behaviors, such as drug-seeking. Evidence supports 
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the idea that high fat diet exposure may increase motivation for nicotine reward. In an outbred 

population of Sprague-Dawley rats that become obese when maintained on a densely caloric diet, 

only a subset develops insulin resistance. Obese insulin-resistant rats, modeling Type II diabetes, 

displayed a strong place preference for an environment previously paired with nicotine 

(Richardson et al., 2014). Interestingly, the obese insulin-sensitive rats do not show a nicotine 

conditioned place preference. Similarly, in a separate report that that did not consider insulin 

sensitivity, lean mice fed a standard chow diet show conditioned place preference for nicotine, 

but this is not observed in mice fed a high fat diet (Blendy et al., 2005). Further, rats that become 

hypoinsulinemic by injection of Streptozotocin, modeling Type I or advanced stage Type II 

diabetes, show enhanced nicotine self-administration across doses and schedules of 

reinforcement (O'Dell et al., 2014).These data indicate that perhaps obesity-induced insulin 

resistance, and not obesity itself, enhances nicotine reinforcement. Limited data from humans are 

consistent with these claims. Over 40% of adolescents with diabetes reported to be smokers 

(Reynolds et al., 2011) and quit rates among diabetic smokers are very low (Gill et al., 2005). 

Further studies investigating specifically whether diet-induced diabetes enhances acquisition and 

maintenance of nicotine self-administration and smoking behavior is warranted. 

Obese smokers represent a unique population and may be especially susceptible to 

smoking and the weight-suppressive effects of nicotine. Thus, obese smokers should be 

considered a vulnerable population in a tobacco-reduction policy. It is possible that chronic 

nicotine exposure may reduce the onset of obesity in a subset of people who are otherwise 

predisposed to overweightness or obesity. Preliminary work from human and rodent models 

supports the possibility that reduction of nicotine dose or content will result in substantial weight 

gain in lean populations (Rupprecht et al., 2016). It is possible that nicotine reduction may result 
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in the development of obesity and its associated co-morbidities in a subset of smokers. Several 

lines of research suggest that diet-induced insulin resistance increases susceptibility to smoking 

and nicotine reinforcement (O'Dell et al.; Richardson et al.), raising the possibility that obese 

individuals might be more likely to initiate smoking of reduced nicotine content cigarettes, 

potentially increasing acceptance and use of VLNC cigarettes. On the other hand, insulin-

resistant obese smokers may maximally benefit from nicotine reduction, as insulin resistance is a 

greater determinant of their behavior. Our argument is limited by the number of controlled, 

experimental studies focused on obese smokers or animal models of obese smokers. This gap in 

the literature restricts our ability to discern causal from correlative effects and demands future 

attention to this population, both in human and animal models. A better understanding of how 

weight and smoking behaviors will be impacted by a potential transition to VLNC cigarettes is 

critical. Analyses from surveys, such as the National Health and Nutrition Examination Survey, 

examining the differences in weight at the initiation of and following the cessation of smoking 

between lean and obese individuals could provide a useful foundation for future work. The 

initiation of smoking behaviors cannot be experimentally evaluated in humans; thus, animal 

models are needed to test the self-administration of low doses of nicotine thought to be below the 

threshold of addiction (Smith et al., 2014) in a model of diet-induced obesity and 

hypoinsulinemia. The ability to ask these questions in an animal model may lead to a more 

mechanistic understanding of the link between obesity and smoking. Until we gain a more 

comprehensive picture of the relationship between nicotine and obesity, careful consideration of 

obese smokers in nicotine-reduction policy is necessary and future work focusing on this 

population in human and animal models is of immediate importance. 
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1.4.1 Modeling lean and obese smokers in rodents. 

The bulk of preclinical research on nicotine addiction is modeled by self-administration 

in male rats that are food restricted on a standard diet low in fat content (Rupprecht et al., 

2015c). This paradigm does not accurately model human populations that typically consume 

more calories than metabolically required (Adebayo et al., 2014; Hill et al., 1998). Sprague-

Dawley rats remain lean if maintained on low-fat standard chow (B. E. Levin et al., 2003; B. E. 

Levin et al., 2005). However, when maintained on a high energy diet (HED), the body weight of 

a subset of rats (obesity-prone; OP) becomes significantly higher than a separate subset (obesity-

resistant; OR) after three weeks of diet exposure (Madsen et al., 2010). The body weight 

distribution observed in outbred OP and OR rats are among the best animal models of human 

body weight gain in the United States (Nilsson et al., 2012); the predisposition for obesity is a 

polygenetic trait and is not expressed until prolonged environmental exposure to a HED (B. E. 

Levin, 2010). Chapters 5 and 6 utilize OP and OR rats allowed to self-administer nicotine as a 

rodent model of obese and lean smokers.  

1.5 EVALUATING THE RELATIONSHIP BETWEEN NICOTINE AND BODY 

WEIGHT 

The relationship between body weight and nicotine is complex. Nicotine has the ability to 

suppress body weight, but may also increase central adiposity and contribute to obesity. 

Preclinical research on nicotine’s effects on reduced food intake have most commonly used 

subcutaneous, non-contingent injections of nicotine, oftentimes using doses within the range that 
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cause seizures. There is an obvious paucity in the literature of nicotine’s effects on energy 

balance in the most commonly accepted animal model of smoking: intravenous nicotine self-

administration in rats. Chapter 2 tests the impact of self-administered nicotine across a range of 

doses on body weight and food intake. Results suggest that self-administered nicotine, even at 

very low doses, suppresses body weight independent of food intake. In the context of a 

regulatory policy mandating very low nicotine levels in cigarettes, reduction of nicotine resulted 

in substantial weight gain. Chapter 3 uses indirect calorimetry to measure the impact of self-

administered nicotine on energy expenditure and results indicate that self-administered nicotine 

suppresses body weight gain through increased fat utilization, measured by a decrease in 

respiratory exchange ratio.  

Weight gain is a potential consequence of nicotine reduction policy. Chapter 4 examines 

this possibility through secondary analyses of data from a clinical trial in which smokers were 

randomized to VLNC cigarettes for six weeks. Men and women with high levels of compliance 

on investigational VLNC cigarettes had significant weight gain compared to participants in 

normal nicotine content control groups and participants non-compliant on VLNC cigarettes. 

Implications of the results for regulatory policy are discussed further in Chapter 4. 

The current environment is obesogenic, and study of rodents fed standard, low fat chow 

is not representative of current populations. In Chapter 5, the impact of self-administered 

nicotine in OR and OP rats fed HED on body weight and food intake is tested. Self-administered 

nicotine suppressed weight gain in OP, but not OR rats. These results suggest that individuals 

resistant to the development of diet-induced obesity may also be resistant to the weight-

suppressive effects of nicotine.  



16 

 Smoking among the obese population is high (Chatkin et al., 2010). This may be due to 

many factors. The explanation might be as simple as a clustering of unhealthy behaviors, such 

that, for example, people eating densely caloric foods also smoke (Chiolero et al., 2006). 

Alternatively, many obese individuals may use smoking as a method of weight reduction 

(Audrain-McGovern et al., 2011). Finally, obesity has been linked to increased reward-seeking 

behaviors. This could lead to increased nicotine-seeking or smoking behavior and augment 

seeking for food reward, causing excess weight gain (Volkow et al., 2012). Nicotine reduces 

BMI while at the same time increases fat accumulation, central obesity, and insulin resistance 

(Chiolero et al., 2008), which could contribute to the development of obesity. Moreover, insulin 

resistance is thought to enhance nicotine reinforcement (O'Dell et al., 2014; Richardson et al., 

2014), potentially driving smoking behavior. Together, these factors could create a cycle 

promoting nicotine consumption in the obese population. Chapter 6 evaluates the impact of body 

weight on nicotine reinforcement and consumption in human smokers and a rodent model of 

lean and obese smokers. As noted above, obese smokers represent a potential subpopulation of 

risk for continued smoking following implementation of product standards regulating low 

nicotine levels in cigarettes. Nicotine consumption in obesity is tested following large reductions 

in nicotine. Results from these experiments demonstrate that nicotine consumption is tightly 

regulated dependent upon body weight.  

 Work within this dissertation describes the complex relationship between nicotine and 

body weight. Self-administered nicotine suppresses body weight, likely through increased fat 

utilization, and the ability of nicotine to suppress body weight is dependent upon obesity status 

and diet. Very low doses of nicotine suppress body weight, indicating that smokers who initiate 

cigarette use following a mandated reduction of nicotine content in cigarettes may smoke for the 

weight suppressant effects of smoking. Large reductions in nicotine dose and content result in 

increases in weight gain, suggesting that product standards regulating nicotine content to low 

levels in cigarettes will result in weight gain in smokers. Finally, nicotine consumption is titrated 

dependent upon body weight, and nicotine reduction may be an effective strategy for reducing



17 

 cigarette use in obese and non-obese smokers. The work outlined below extends our 

understanding of nicotine’s actions on energy balance and the impact of body weight on nicotine 

reinforcement and consumption, and has important implications for regulatory policy. 
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2.0 SELF-ADMINISTERED NICOTINE SUPPRESSES BODY WEIGHT 

INDEPENDENT OF FOOD INTAKE IN MALE RATS 

2.1 INTRODUCTION 

There is an inverse relationship between smoking and body weight, such that smokers 

weigh less than non-smokers but gain an average of ten pounds in the first year of abstinence 

(Audrain-McGovern et al., 2011; Williamson et al., 1991). Many smokers cite weight loss as a 

primary reason for smoking and weight gain for the inability to quit (Pomerleau et al., 2001; 

Rosenthal et al., 2013; Veldheer et al., 2014).  

Nicotine is the primary psychoactive constituent in cigarettes and researchers have 

suggested that nicotine in cigarettes is most likely responsible for the body weight suppression 

observed in smokers (Grunberg, 1985; Grunberg et al., 1985a; Grunberg et al., 1984; Grunberg 

et al., 1986; Winders et al., 1990; Zoli et al., 2012). Studies utilizing rodent models have 

generally reported that nicotine exposure, primarily via subcutaneous continuous infusion or 

repeated daily injections, results in a dose-dependent suppression of body weight (Grunberg et 

al., 1984; Mineur et al., 2011) and decreased food intake (L. L. Bellinger et al., 2010; Mineur et 

al., 2011; Miyata et al., 2001). Despite reports that nicotine delivery can increase physical 

activity (Faraday et al., 2003; Faraday et al., 1999) and metabolic rate (de Morentin et al., 2012), 

the body weight-suppressant effects of nicotine are generally discussed as secondary to a 
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suppression of caloric intake (Zoli et al., 2012). This conclusion, however, is at odds with data 

from the clinical literature suggesting that smokers and non-smokers have equal daily caloric 

intake (Perkins, 1992a; Perkins et al., 1991). The vast majority of experiments examining the 

effects of nicotine on food intake and body weight have utilized experimenter-administered 

nicotine, which can produce different effects than self-administered nicotine (Donny et al., 

2000). However, few investigators have utilized self-administration procedures to examine the 

impact of nicotine on food intake or body weight.   

The current experiments evaluated the impact of self-administered nicotine, across a 

range of doses, on body weight and food intake in adult male rats. Results demonstrated that self-

administered nicotine suppressed body weight gain independent of food intake and this effect 

was observed at very low doses. An additional experiment investigated the impact of reducing 

nicotine dose on body weight; results revealed that reduction of nicotine dose from a large self-

administered dose to very low doses resulted in substantial weight gain. These data are important 

in the context of a reduction of nicotine content in cigarettes, a potential approach to reducing the 

abuse potential of cigarettes (Hatsukami et al., 2013). The current data provide novel insight into 

the consequences of nicotine on body weight and offer important implications for the impact of 

nicotine reduction policy on body weight regulation. 

2.2 METHODS 

Subjects 

Male Sprague-Dawley rats (Harlan Farms, IN, weighing between 200 and 300 g upon 

arrival) were housed individually in hanging-wire cages on a reverse light-dark 12:12 hr cycle 
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(lights off at 0700h) in a temperature-controlled facility (between 68 and 70 °F). Rats had free 

access to standard rodent chow (Purina Rat chow 5001) and water, unless noted otherwise. All 

procedures were approved by the University of Pittsburgh Institutional Animal Care and Use 

Committee. 

Drugs 

Nicotine hydrogen tartrate salt (Sigma, St. Louis, MO) was dissolved in 0.9% saline. 

Doses of nicotine used for self-administration were 1.875, 3.75, 7.5, 15, and 60 µg/kg/infusion, 

and for subcutaneous injection, the doses were 0.3 and 1.0 mg/kg (expressed as freebase). 

In a subset of experiments (Experiments 3 & 4), a cocktail of cigarette constituents was 

included in the intravenous nicotine solution. The selected doses of the cocktail of cigarette 

constituents were based on previous studies (Clemens et al., 2009; Smith et al., 2015), and/or 

were indexed to a standard dose of nicotine, based on their relative concentrations in cigarette 

smoke, that supports robust self-administration behavior (30 µg/kg/infusion). The doses used in 

select self-administration studies were as follows: acetaldehyde (16 µg/kg/infusion), harman (0.1 

µg/kg/infusion), norharman (0.3 µg/kg/infusion), anabasine and nornicotine (0.9 µg/kg/infusion), 

and anatabine, myosmine, and cotinine (0.09 µg/kg/infusion).  

The pH of solutions was adjusted to 7.0 (±0.2) using a dilute sodium hydroxide solution. 

All solutions used in self-administration studies were passed through a 0.22 µm filter to ensure 

sterility. All intravenous infusions were delivered in approximately 1-s (0.1 ml/kg/infusion). 

Subcutaneous injections were delivered at 1 ml/kg. 
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Procedures 

Surgery 

After at least seven days of habituation post-arrival, rats were anesthetized with 

isoflurane (2-3% in 100% O2) and implanted with catheters into the right jugular vein, as 

described previously (Donny et al., 1995; Donny et al., 1999). Rats were allowed to recover for a 

minimum of 5 days before self-administration procedures. During the surgical recovery period, 

catheters were flushed once daily with 0.1 ml sterile saline containing heparin (30 U/ml), 

timentin (66.67 mg/ml), and streptokinase (9,333 U/ml). Thereafter, catheters were flushed with 

0.1 ml heparinized saline (10 U/ml) and heparinized saline (30 U/ml) containing timentin (66.67 

mg/ml) prior to and following the self-administration sessions, respectively. 

Self-administration 

Thirty-eight operant chambers (30.5 cm2 x 24.1cm2 x 21.0 cm; ENV-008CT; Med-

Associates) enclosed inside sound-attenuating chambers, equipped with two nose-poke holes 

located on the same wall (2.5 cm in diameter and 5 cm above the floor), two white stimulus 

lights (3.5 cm in diameter, located 6.5 cm above each nose-poke hole), a houselight, and a fan 

were used in the current studies. An infusion pump was located outside of each chamber, which 

delivered intravenous infusions during self-administration sessions through tubing connected to 

each rat’s catheter. This tubing was protected in a metal encasing, attached to a swivel system 

that allowed relatively unrestricted movement. 

During daily (7d/wk) 1-h self-administration sessions, fulfilling the required nose-poke 

responses into the active portal resulted in one infusion of nicotine. Infusions were accompanied 
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by a 15-sec cue light illuminated above the active nose-poke portal and an unsignaled 1-min 

timeout, where responses were recorded but had no scheduled consequence. Throughout the 1-h 

sessions, responses into the inactive nose-poke portal were recorded but had no consequences. In 

experiments that used food restriction (Experiments 2 & 3) the allotted food amount (20 g/day) 

was in the home cage when the rat returned from its self-administration session. For self-

administration studies, rats in nicotine groups included in analyses passed a patency test, which 

required displaying physical signs of ataxia within 5-s of intravenous injections of chloral 

hydrate (up to 60 mg/rat) or methohexital (5 mg/kg). In all experiments, baseline body weights 

were counterbalanced across drug groups. 

Experiment 1. The effect of self-administered nicotine on body weight and food intake 

Rats were implanted with intravenous catheters and assigned to self-administer nicotine 

(60 µg/kg/infusion, n=11) or saline (n=8). Rats weighed 316.6 ± 2.1 g at the start of self-

administration. Rats were allowed to respond for drug infusions on a fixed-ratio (FR) 2 schedule 

of reinforcement for 20 consecutive days. Body weight was measured daily before the self-

administration session. Food intake was measured daily over the 23-h period in the home cage, 

accounting for spillage.  

Experiment 2. The effect of subcutaneous nicotine injection on food intake 

Given that the results of Experiment 1 are unexpected, the effect of subcutaneous 

injection of nicotine on food intake was measured in a separate group of rats to replicate previous 

reports (L. L. Bellinger et al., 2010; Mineur et al., 2011; Miyata et al., 2001). Rats weighing on 

average 362.8 ± 2.7 g were assigned to a group and injected with nicotine (0, 0.3, or 1.0 mg/kg, 
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s.c.; n=8 per group) at the onset of the dark cycle. Food intake was measured 1, 3, 6, and 24h

post-injection, accounting for spillage. 

Experiment 3. The effect of a range of self-administered nicotine doses on body weight 

under mild food restriction 

Given the results of Experiment 1, and that the majority of self-administration studies are 

performed in rats under mild food restriction (Rupprecht et al., 2015c), the effect of self-

administered nicotine on body weight was analyzed from a previously reported experiment 

(Smith et al., 2014). All rats were food restricted to ~80% of their ad libitum intake (20g/day) at 

least 5 days before self-administration procedures began. Rats were randomly assigned to self-

administer nicotine at one of five doses: 60 µg/kg/infusion (n=65), 15 µg/kg/infusion (n=17), 7.5 

µg/kg/infusion (n=15), 3.75 µg/kg/infusion (n=12), or 0 µg/kg/infusion (n=17). In this 

experiment, the nicotine solution contained a cocktail of constituents found in cigarette smoke. 

Each drug group differed by nicotine concentration, but the cocktail concentrations remained 

consistent across different nicotine doses. Rats weighed 268.7 ± 1.5 g on the first day of the 

experimental period. Rats acquired self-administration of nicotine on a  FR1 for one day, FR2 for 

seven days, and escalated to FR5 for the remainder of the study (Smith et al., 2014). Body 

weight was measured daily and evaluated for 20 days of self-administration.  

To test the possibility that the addition of cigarette constituents could impact body weight 

regulation, a separate group of rats were food restricted (20g/day) and responded on an FR2 

schedule of reinforcement for infusions of nicotine (60 µg/kg/infusion) without (n = 8) or with (n 

= 11) the cocktail described above, with one minor change. Examination of dosages selected in 

papers cited by Clemens et al (2009), the paper on which the original cocktail solutions were 
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based, suggested that the concentrations of the anatabine and anabasine should be reversed 

(Smith et al.). Thus, the cocktail solution contained 0.9 µg/kg/infusion of anatabine and 0.09 

µg/kg/infusion anabasine, along with the other constituents. Average body weight at the start of 

self-administration was 298.1 ± 4.9 g. Body weight was measured daily and evaluated for 10 

days of self-administration. 

Experiment 4. The effect of nicotine dose reduction on body weight gain 

Body weight regulation following nicotine dose reduction was evaluated post-hoc from a 

previously published study from our laboratory (Smith et al., 2013). Food restricted (20g/day) 

rats learned to self-administer infusions of nicotine (60 µg/kg/infusion + cocktail) for 17 days 

before immediate reduction of nicotine dose, with cocktail doses remaining constant, to one of 

the following doses: 15 (n=10), 7.5 (n=11), 3.75 (n=11), 1.875 (n=10), or 0 (n=13) 

µg/kg/infusion. Rats responded on an FR5 schedule of reinforcement for the reduction phase of 

the experiment. Rats weighed 279.6 ± 2.2 g at the start of dose reduction. The control group 

remained on 60 µg/kg/infusion nicotine with cocktail, which is referred to as “Maintained” 

(n=11). 

Statistics 

Data for each experiment were analyzed separately and are expressed as means ± SEM. 

All statistical analyses were performed using SPSS. Comparisons between drug group and 

session (self-administration experiments) or day (feeding experiments) were analyzed by mixed-

design and repeated measures ANOVA tests to account for the within-subjects design of the 

experiments while testing for between-subjects effects of nicotine dose groups. In tests of 
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repeated measures where Mauchly’s Sphericity tests were significant, the data were Greenhouse-

Geisser corrected; degrees of freedom reflect this correction where appropriate. Correlations 

were assessed using a two-tailed Pearson’s correlation. The α-level for all tests was set at 0.05. 

Where appropriate, a Bonferroni adjustment was made to account for the comparison of saline 

control to many nicotine dose groups. The α-levels were adjusted to 0.0125 and 0.01 for 

Experiments 3 and 4, respectively, resulting in an overall type I error rate of 0.05. 

2.3 RESULTS 

Experiment 1. Self-administered nicotine suppressed body weight gain but not food intake. 

Rats self-administering 60 µg/kg/infusion nicotine earned significantly more infusions 

(8.3 ± 1.0; F1,18 =26.776, p < 0.001) than the saline group (1.9 ± 0.3), averaged over the final 

three days of self-administration (Figure 1). Self-administered 60 µg/kg/infusion nicotine 

suppressed body weight gain compared to intravenous infusions of saline (Figure 2). An 

ANOVA comparing groups on every fifth day revealed significant differences between groups 

on Days 10, 15, and 20 (Fs1,18 > 12.535, ps < 0.003). There were no significant differences in 

food intake (expressed as a percentage of body weight) between nicotine and saline groups 

across days (p = 0.831, Figure 2). There were no differences in grams of food consumed between 

groups (p = 0.627; saline = 26.3 ± 0.7 g; nicotine = 24.5 ± 0.7 g on Day 20). Additionally, 

cumulative food intake during the 20 days of self-administration did not differ between groups 

when expressed as a percentage of body weight (Figure 2) or in total grams consumed (p = 

0.105).  
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Figure 1. Infusions earned across 1-h daily sessions.  

Over 20 daily 1-h daily sessions, rats in the nicotine group earned significantly more infusions 

than in the saline group.  
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Figure 2. The impact of large dose self-administered nicotine on body weight and 

food intake 

Effects of self-administered nicotine on body weight and food intake. Body weight gain and food 

intake in rats that self-administered 0 (n=11) or 60 (n=8) µg/kg/infusion nicotine. Self-

administered 60 µg/kg/infusion nicotine significantly suppressed cumulative body weight gain, 

but not 24h food intake, expressed as a percentage of body weight. There was no impact of self-

administered nicotine cumulative food intake over the 20-day self-administration period. * 

indicate p < 0.05, between 0 and 60 µg/kg/infusion nicotine. 
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Experiment 2. Subcutaneously administered nicotine suppressed food intake.  

The highest dose of nicotine tested, 1.0 mg/kg, s.c., significantly suppressed food intake 

by approximately 10% at 3, 6, and 24h post-injection (Figure 3). Repeated measures ANOVA 

revealed a significant effect of time (F1.833,1 = 908.890, p < 0.001) with no significant interaction 

between time and drug group (p = 0.071); post-hoc tests revealed significant differences between 

saline and 1.0 mg/kg nicotine at 3, 6, and 24h (ps < 0.006). There was no significant impact of 

0.3 mg/kg nicotine on food intake at any time point. 
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Figure 3. The impact of experimenter-administered subcutaneous injection of 

nicotine on food intake.  

Experimenter-administered nicotine (1.0 mg/kg, s.c.) delivered at the onset of the dark cycle 

significantly suppressed food intake at 3, 6, and 24 hours. * indicate p < 0.05, between 0 and 60 

µg/kg/infusion nicotine. 
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Experiment 3. Self-administered nicotine suppressed body weight gain when food was held 

constant and restricted.  

Self-administered nicotine dose-dependently suppressed body weight gain when food 

was held constant and restricted (Figure 4). Repeated measures ANOVA revealed a significant 

main effect of day (F2.78,1 = 430.846, p < 0.001) and significant nicotine group by day interaction 

(F11.121,4 = 3.702,  p < 0.001). Comparisons between groups on every fifth day showed significant 

effects of nicotine group on Days 5, 10, 15, and 20 (ps < 0.008). Analyses further revealed that 

saline was significantly different from: 60 µg/kg/infusion on Days 5, 10, 15, and 20; 15 

µg/kg/infusion on days 10, 15, and 20; 7.5 µg/kg/infusion  on Days 10 and 20; and 3.75 

µg/kg/infusion on day 10 (all ps < 0.0125). Additionally, on Day 20, body weight gain in the 60 

µg/kg/infusion group was significantly different from 0, 3.75, and 7.5 µg/kg/infusion groups (all 

ps < 0.017). There was a significant negative correlation between cumulative nicotine intake and 

cumulative body weight gain (Figure 4; p < 0.001). It is noteworthy that total nicotine intake in 

this experiment is much higher than total nicotine intake reported in Experiment 1, which is 

likely explained by the differences in feeding status (Donny et al., 1998). Rats under food 

restriction acquire self-administration behavior more quickly and respond at higher rates 

(Rupprecht et al., 2015c). In a separate group of rats testing the impact of the addition of 

constituent chemicals on body weight regulation, there was no significant difference in body 

weight gain between no cocktail (25.8 ± 8.5 g) and cocktail groups (28.4 ± 5.1 g) after ten days 

of self-administration (p = 0.99). 
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Figure 4. Self-administered nicotine dose-dependently suppresses body weight independent

of food intake.   

Effects of a range of self-administered nicotine doses on body weight gain. Body weight gain in 

rats that self-administered 0 (n=17), 3.75 (n=12), 7.5 (n=15), 15 (n=17), or 60 (n=65) 

µg/kg/infusion nicotine. In rats whose food intake was held restricted and constant, self-

administered nicotine dose-dependently suppressed body weight gain. Across all doses, there 

was a negative correlation between cumulative nicotine intake and cumulative body weight gain 

on Day 20. # indicates 0 µg/kg/infusion different from 60 µg/kg/infusion, * indicates 0 

µg/kg/infusion different from all nicotine doses, ◊ indicates 0 µg/kg/infusion different from 15 

and 60 µg/kg/infusion, and + indicates 0 µg/kg/infusion different from 7.5, 15, and 60 

µg/kg/infusion; all ps < 0.0125. 
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Experiment 4. Reduction of nicotine dose results in body weight gain independent of food intake. 

Reduction of nicotine dose from 60 µg/kg/infusion caused significant weight gain 

compared to Maintained group (60 µg/kg/infusion) self-administration (Figure 5). Infusions 

earned in the 7.5 and 15 µg/kg/infusion were similar to the Maintained group following the 

reduction, but there was a significant reduction of infusions earned in all other groups, such that 

the 3.75 and 1.875 µg/kg/infusion groups responded similarly to saline (Smith et al., 2013). 

Repeated measures ANOVA revealed a main effect of day (F2.753,1 = 145.818, p < 0.001) and a 

significant interaction between day and dose group (F13.764,5 = 2.802, p = 0.001). Planned 

comparisons to identify differences between groups every tenth day revealed significant effects 

of groups on days 30, 40, and 50 (ps < 0.002). Post-hoc analyses showed that the Maintained 

group was significantly different from 1.875 and 3.75 µg/kg/infusion on Days 30, 40, and 50.  
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Figure 5. Reduction of nicotine dose results in increased weight gain.  

Effects of nicotine dose reduction on body weight gain. Body weight gain in rats where dose was 

reduced from 60 µg/kg/infusion to: Maintained at 60 (n=11), 15 (n=10), 7.5 (n=11), 3.75 (n=11), 

1.875 (n=10), or 0 (n=13) µg/kg/infusion nicotine. Reduction of nicotine dose resulted in 

significant increases in body weight gain compared to constant self-administration of 60 

µg/kg/infusion nicotine. * indicates 60 µg/kg/infusion different from 3.75 and 1.875 

µg/kg/infusion. All ps < 0.01. 
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2.4 DISCUSSION 

The present data are the first to demonstrate that self-administered nicotine, across a 

range of doses, suppresses body weight independent of food intake. These data have important 

implications for the understanding of the impact of nicotine on body weight and for nicotine 

regulatory policy. The negative correlation between nicotine intake and body weight gain 

indicates that total nicotine exposure directly impacts body weight regulation. While it has been 

reported that smokers and non-smokers have equal daily caloric intake (Perkins, 1992a), this is 

the first report to our knowledge of nicotine suppressing body weight independent of changes in 

food intake in a rat self-administration model.  

The current data support the view that nicotine, at least when self-administered by adult 

male rats in daily 1-h sessions, suppresses body weight without simultaneous decreases in food 

intake. These data differ from a large body of work demonstrating that nicotine suppresses body 

weight, with the common conclusion made that this is primarily driven by a reduction in food 

intake (L. L. Bellinger et al., 2010; Mineur et al., 2011; Miyata et al., 2001). Nearly all of these 

studies have used subcutaneous or intraperitoneal injection or continuous subcutaneous infusion 

of large doses of nicotine, beyond the range that rats would self-administer (Matta et al., 2007). It 

is typical that subcutaneous delivery of nicotine at a dose of 1.0 – 1.5 mg/kg suppresses food 

intake (L. L. Bellinger et al., 2010; Mineur et al., 2011). However, seminal work by Grunberg 

and colleagues (1984) reported that large doses of nicotine delivered via constant subcutaneous 

infusion in osmotic minipumps (4 – 12 mg/kg/day) had no impact on food intake, though 
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resulted in large, dose-dependent suppression of body weight. Furthermore, it is noteworthy that 

rats develop tolerance to the anorectic effects of daily subcutaneous injections of nicotine 

(Caggiula et al., 1991). While blood and brain nicotine levels and the time course of absorption 

differs between intravenous and subcutaneous delivery (Matta et al., 2007), the total amount of 

nicotine delivered may directly affect feeding behavior.  Indeed, it is worth noting that the lowest 

dose of experimenter-administered nicotine that significantly suppressed food intake (1.0 mg/kg, 

s.c.) is larger than the total amount of nicotine self-administered in a 1-h session by rats fed ad

libitum standard rodent chow (ranging from 0.2 – 0.8 mg/kg daily). Additionally, non-contingent 

nicotine increases corticosterone (CORT) levels compared to self-administered nicotine (Donny 

et al., 2000). Elevation of CORT results in the suppression of food intake (Calvez et al., 2011; 

Maniam et al., 2012). Therefore, it is possible that increased CORT levels caused by non-

contingent nicotine administration contributes to suppression of food intake, and the absence of 

this increased CORT during nicotine self-administration allows for the suppression of body 

weight with no effect on food intake. 

To our knowledge, there are few reports on the effects of intravenously infused nicotine 

on feeding behavior. In contrast with the data presented here, the published studies used 23-h 

extended access self-administration sessions in which rats were trained to respond for food (45 

mg pellets) in the operant chamber. In a report from Grebenstein et al (2013), non-contingent 

delivery of 60 μg/kg/infusion nicotine during extended access sessions suppressed body weight 

gain by ~50% and reduced the number of pellets consumed by approximately 20% over 23h. The 

suppression of food intake by non-contingent nicotine delivery may be directly related to the 

elevation of CORT following experimenter-administered nicotine, as mentioned above. In a 

more recent study, however, Bunney (nèe Grebenstein) et al (2015) extended these results by 
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demonstrating that self-administration of 60 μg/kg/infusion nicotine in 23-h sessions suppressed 

chow pellet intake, replicating work by O’Dell and colleagues (2007).  

The differences between the effects of self-administered nicotine on food intake in 1-h 

limited access and 23-h extended access sessions could be due to several reasons. First, total 

nicotine intake in 23-h sessions is typically greater than in 1-h sessions. In the extended access 

experiments described above, nicotine intake ranged from ~1.0 – 2.0 mg/kg per day (Bunney et 

al., 2015; Grebenstein et al., 2013; O'Dell et al., 2007). It is possible that total nicotine exposure 

≥ 1.0 mg/kg causes a suppression of food intake, as noted with the current subcutaneous 

experiment described above. Second, repeated nicotine infusions over 23-h expose rats to many 

spikes in plasma nicotine levels over a prolonged time course each day. Feeding may be 

suppressed following each infusion only when plasma nicotine levels are high. Therefore, a 

suppression of daily food intake by intravenous nicotine is detectable in an extended access 

procedure, when plasma nicotine levels remain elevated for a longer time period and can 

contribute to a large cumulative reduction in food intake. However, in these 23-h sessions, rats 

take the majority of their daily infusions during the active, dark phase (O'Dell et al., 2007). 

Grebenstein et al (2013) report that the reduction in 23-h food intake by nicotine is largely driven 

by suppression of food intake during the light cycle, making the possibility that spikes in nicotine 

plasma levels contribute to food intake suppression unlikely. Regardless, the magnitude of 

nicotine-induced food intake suppression reported (Bunney et al., 2015; Grebenstein et al., 2013) 

cannot account for total amount of body weight gain suppression, indicating that intravenous 

nicotine exposure suppresses body weight gain independent of food intake, at least in part, in an 

extended access procedure. 
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There are several advantages of the use of limited access self-administration procedures. 

First, these procedures allow for the examination of the effects of self-administered nicotine on 

body weight and food intake in the absence of nicotine dependence and withdrawal. The current 

data are the first to demonstrate an impact of self-administered nicotine on body weight using a 

procedure that does not result in nicotine dependence. This is important, as it emphasizes that the 

effects of nicotine, and potentially nicotine reduction, on body weight will likely be observed in 

non-dependent smokers. Second, utilization of the 1-h self-administration procedure allows for 

examining the impact of nicotine on energy expenditure in the absence of changes in food intake. 

While it is clear a combination of changes in metabolism (de Morentin et al., 2012), physical 

activity (Faraday et al., 2003; Faraday et al., 1999), and potentially food intake, (L. L. Bellinger 

et al., 2010; Bunney et al., 2015; Mineur et al., 2011; Miyata et al., 2001; O'Dell et al., 2007) 

contribute to nicotine-induced suppression of body weight, no other procedure removes the 

suppression of food intake as a confound; this is critical as clinical literature indicates food 

intake of human smokers does not differ from non-smokers (Perkins et al., 1991). Third, the use 

of limited access procedures further demonstrates that the effects of self-administered nicotine 

are likely dependent upon the daily cumulative effects of nicotine and not singular, isolated 

spikes in plasma nicotine levels.  

When food intake was restricted and held constant, as is standard in most self-

administration procedures, self-administered nicotine resulted in a dose-dependent suppression 

of body weight. These data further emphasize that the body weight-suppressant effects of self-

administered nicotine can occur independent of changes in food intake. Across all nicotine doses, 

there was a negative correlation between nicotine intake and body weight gain, indicating that 

nicotine exposure directly contributes to the magnitude of body weight suppression. We have 
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previously reported that 3.75 μg/kg/infusion nicotine is subthreshold for reinforcement (i.e., rats 

respond at a similar rate for 0 and 3.75 μg/kg/infusion) and that 7.5 μg/kg/infusion nicotine is at 

threshold, such that only approximately 60% of rats will acquire stable self-administration 

behavior (Smith et al., 2014). In rats that did not meet standard self-administration criteria at 

these low doses of nicotine, the nicotine delivered in the few infusions they received suppressed 

body weight gain. Rats in these groups received very low total daily doses of nicotine (ranging 

from 8.5 – 15 μg/kg daily), likely as a result of general exploratory behavior and not as a result 

of primary reinforcement. Therefore, it is likely that the threshold for body weight suppression 

by nicotine is lower than for reinforcement. These data suggest that doses below the threshold for 

primary reinforcement may still function to suppress body weight, potentially motivating 

continued use in weight-concerned smokers following the implementation of a nicotine reduction 

policy. These results are particularly important regarding the initiation of smoking, as such data 

from human smokers would become available following the implementation of FDA-mandated 

nicotine product standards.  

Although it is generally accepted that nicotine is the primary constituent in cigarettes 

responsible for weight loss (Zoli et al., 2012), we conducted an additional experiment to rule out 

the possibility that a cocktail of select constituents in cigarette smoke may have impacted the 

results of Experiments 3 & 4. This experiment compared weight gain in rats self-administering 

nicotine alone and nicotine in the presence of the additional constituents. There was no impact of 

the addition of the other cigarette constituents on body weight gain, indicating that nicotine, and 

not the other chemicals, contributes to the body weight suppression reported here.  

Body weight can be regulated by changes in energy intake (calorie consumption) and 

energy output (energy expenditure). In the current studies, self-administered nicotine suppressed 
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body weight gain independent of food intake, indicating that nicotine likely regulates body 

weight through increased energy expenditure. This notion is consistent with reports that acute 

and chronic experimenter-administered injections of nicotine have been shown to increase 

physical activity (de Morentin et al., 2012; Elliott et al., 2004) and basal metabolism (de 

Morentin et al., 2012). In rodents, the doses of nicotine used in studies reporting increased 

energy expenditure are within the range that suppresses food intake, making it difficult to 

establish an independent role for suppression of food intake or increased energy expenditure in 

the effect of nicotine on body weight regulation. Nonetheless, it is clear that at moderate 

experimenter-administered doses, nicotine can increase energy expenditure, which likely 

contributes to the body weight-suppressant effects reported here. Future experiments monitoring 

metabolism in a self-administration model are warranted. Data from smokers suggest that 

nicotine can increase metabolic rate (Perkins, 1992b), further supporting for the idea that self-

administered nicotine (via intravenous infusions in rats or via cigarette smoke in humans) may 

suppress body weight through increased energy expenditure.  

The FDA has authority to regulate the nicotine content of cigarettes to a low level 

(Congress, 2009), which may have unintended consequences on body weight (Rupprecht et al., 

2015b). Smoking cessation results in weight gain (Veldheer et al., 2015; Williamson et al., 

1991), and rodents gain weight following the cessation of chronic subcutaneous (E. D. Levin et 

al., 1987; Malin et al., 1992) and intravenous (Grebenstein et al., 2013) nicotine exposures. 

However, whether reduction of nicotine to a dose below a reinforcing threshold results in body 

weight gain in rodents was previously unexplored. Reduction of nicotine dose resulted in 

significant increases in body weight gain in food restricted rats. These data indicate that 

reduction of nicotine exposure by reducing the dose available in each infusion results in body 
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weight gain independent of food intake, suggesting that the reduction of nicotine content in 

cigarettes (thereby reducing total nicotine exposure per cigarette) may result in weight gain in 

current smokers following a potential mandated reduction of nicotine content in cigarettes.  

The results of these experiments provide new insight into the understanding of the body 

weight suppressant effects of nicotine. In a rodent self-administration model of human smoking, 

nicotine robustly suppressed body weight gain without concurrent reductions in food intake. 

These data align with reports from smokers suggesting that the observed body weight differences 

in smokers and non-smokers are independent of changes in daily caloric intake. The ability of 

self-administered nicotine to suppress body weight gain independent of food intake is dose-

dependent and occurs at very low doses below the threshold for reinforcing behavior. Reduction 

of nicotine dose results in body weight gain independent of food intake. These data have 

important implications for nicotine reduction policy, as they suggest that reduction of nicotine in 

cigarettes to a level that will not maintain smoking will likely cause significant weight gain in 

current smokers. However, in new smokers low nicotine levels may still reduce body weight, 

possibly motivating continued use and maintaining exposure to harmful chemicals in cigarette 

smoke. 
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3.0 SELF-ADMINISTERED NICOTINE INCREASES FAT METABOLISM AND 

SUPPRESSES WEIGHT GAIN IN MALE RATS 

3.1 INTRODUCTION 

Cigarette smoking is the largest cause of preventable deaths worldwide (Centers for 

Disease et al., 2013; World Health Organization Study Group on Tobacco Product, 2015). 

Smokers weigh less than non-smokers and former smokers (Audrain-McGovern et al.). Many 

smokers cite weight loss as a reason for smoking and the fear of weight gain as a reason for 

relapse or the inability to quit (Pomerleau et al., 2001; Rosenthal et al., 2013; Veldheer et al., 

2014). Although the weight-suppressive effects of smoking are clear, the mechanisms underlying 

this phenomenon are relatively poorly understood.  

The weight-suppressive effects of cigarette smoke are often attributed to reductions in 

food intake, despite evidence that smokers and non-smokers have equal daily caloric intake 

(Perkins, 1992a; Perkins et al., 1990a). Results of the impact of smoking on energy expenditure 

in humans are mixed. Studies have shown that basal metabolism is increased, decreased, and 

unchanged by smoking (Perkins, 1992b; Perkins et al., 1990b; Perkins et al., 1996). Poor 

cardiovascular or respiratory health in smokers may impact measurements of basal metabolism, 

which relies on respiration. Therefore, animal models may be useful in the study of the impact of 
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smoking on body weight and energy expenditure, where the pharmacological effects of drugs can 

be studied without the confound of the health impact of smoke inhalation. 

Nicotine, the primary psychoactive constituent in cigarettes, suppresses weight gain and 

is likely responsible for the weight-suppressive effects of smoking (Perkins, 1992b; Rupprecht et 

al., 2016; Zoli et al., 2012). The impact of nicotine on energy balance has been studied 

extensively in rodents, typically using experimenter, non-contingent administration. Results of 

studies using experimenter-administered nicotine have shown reduced food intake, increased 

physical activity, increased thermogenesis, and increased basal metabolism (L. L. Bellinger et 

al., 2010; de Morentin et al., 2012; Zoli et al., 2012). Typically, doses of nicotine delivered by 

experimenters to rodents to test parameters related to energy balance are larger than an animal 

would choose to self-administer, and experimenter- and self-administered nicotine differentially 

impact processes that contribute to energy balance. Until recently, however, the impact of self-

administered nicotine on body weight regulation has been largely ignored. 

We have recently demonstrated that self-administered nicotine in male rats during 1-h 

sessions results in large suppression of body weight independent of food intake (Rupprecht et al., 

2016). This suggests that the impact of nicotine on body weight suppression results from 

increased energy expenditure. The goal of these experiments was to measure of energy 

expenditure following 1-h nicotine self-administration sessions in male rats, using indirect 

calorimetry. Understanding the effect of self-administered nicotine on energy balance and weight 

gain may allow for better health outcomes in smokers as it relates to weight gain, and for the 

development of pharmacotherapies for the treatment of obesity. 



 43 

3.2 METHODS 

Subjects 

 Male Sprague-Dawley rats (Harlan Farms/Envigo) weighing between 275 and 300 g 

upon arrival were housed in a temperature-controlled facility on a reverse light-dark 12:12 hr 

cycle. Rats were housed paired in tub cages with a plastic divider separating the rats. Rats had 

free access to powdered Purina Rat chow 5001 and water, unless noted otherwise. All procedures 

were approved by The Scripps Research Institute Institutional Animal Care and Use Committee. 

 

Drugs 

 Nicotine hydrogen tartrate salt (Sigma and MP Biomedicals) was dissolved in 0.9% 

saline. Doses are expressed as free base. 

 

Procedures 

 

Surgery  

 After at least five days of habituation post-arrival, rats were anesthetized with isoflurane 

(2-3% in 100% O2) and implanted with catheters into the right jugular vein, as described 

previously (Donny et al., 1995; Donny et al., 1999). Rats were allowed to recover for a minimum 

of 5 days before self-administration procedures. Following surgery, were flushed with 0.1 ml 

sterile saline containing heparin (30 U/ml), gentamicin (1 mg), and streptokinase (9,333 U/ml). 

Thereafter, catheters were flushed with 0.1 ml heparinized saline (10 U/ml) and heparinized 

saline (30 U/ml) containing gentamicin (1 mg) prior to and following the self-administration 

sessions, respectively. 
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Self-administration 

Operant chambers (Med-Associates) enclosed inside sound-attenuating chambers, 

equipped with a houselight, a fan, and retractable levers were used in the current experiments. 

An infusion pump located outside of each chamber delivered intravenous infusions during self-

administration sessions through tubing connected to each rat’s catheter. The tubing was protected 

in a metal encasing and allowed for relatively unrestricted movement. One lever was available 

for the duration of the 1-h self-administration session. A single response on the lever resulted in 

one infusion of nicotine. Infusions were accompanied by the illumination of a white stimulus 

light above the lever for 1 sec, followed by a 30 sec timeout period during which the white 

houselight was extinguished. No infusions were delivered during the 30 sec timeout, but 

responses were recorded. 

All solutions used in self-administration studies were passed through a 0.22 µm filter to 

ensure sterility. All intravenous infusions were delivered in approximately 1-s (0.1 

ml/kg/infusion). Rats in nicotine groups included in analyses passed a patency test, which 

required displaying physical signs of ataxia within 5-sec of intravenous injections of 

methohexital (5 mg/kg). 

The effect of self-administered nicotine on energy balance, measured by Comprehensive 

Laboratory Animal Monitoring System (CLAMS) 

Prior to surgery, rats received an Echo MRI to measure lean mass, necessary for accurate 

measurement of respiratory exchange ratio (RER). Rats were implanted with intravenous 

catheters and assigned to saline (n=8) or nicotine (60 µg/kg/infusion, n=8) group based on body 
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weight. Rats were allowed to respond for drug infusion on a FR1 schedule of reinforcement for 

14 consecutive days. Following sessions 1, 2, 7, 8, 13, and 14 of self-administration, rats were 

placed in CLAMS units for 22.5 hours, and removed for the next self-administration session. 

While in the CLAMS units, information was collected on RER, heat production, activity (x and z 

plane counts), drinking, and feeding behavior. Each self-administration session occurred in the 

final hour of the light cycle, so that the CLAMS sessions could begin at dark onset. Rats were 

fed ad libitum with the exception of the 1-h self-administration session. After the removal from 

the CLAMS units on the final day, rats were euthanized with CO2, catheter pedestals were 

removed, and a final Echo MRI was conducted.  

Eight CLAMS units were available, and so the experiment was conducted as two groups 

of 8 (n=4 of each drug treatment) staggered by 5 days. Rats were psuedorandomnly assigned to 

drug groups, counterbalanced for body weight and lean mass.  

Statistics 

Data for each experiment are expressed as means ± SEM. All statistical analyses were 

performed using SPSS. Comparisons between drug group and session (body weight and self-

administration session) or hour of the CLAMS session were analyzed by mixed-design and 

repeated measures ANOVA tests to account for the within-subjects design of the experiments 

while testing for between-subjects effects of nicotine dose groups. Planned post-hoc comparisons 

were assessed at each day or time point using one-way ANOVA. Data are reported for the 

second day of each CLAMS exposure (Days 2, 8, and 14), so that the potential impact of the 

stress of changing housing conditions on energy expenditure data was minimized. The α-level 

for all tests was set at 0.05. 
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3.3 RESULTS 

Body weight and self-administration  

Self-administered nicotine significantly suppressed body weight gain (p < 0.001; Figure 

6a), beginning on Day 8 of self-administration procedures (absolute body weights at the end of 

the experiment were saline: 344.37 ± 6.45 g; nicotine: 325.73 ± 8.50 g). Following the final 

session in the CLAMS units, there was a significant reduction in the percentage of fat mass in the 

nicotine group (p = 0.005; Figure 6b) with no difference between groups in the percentage of 

lean mass (p = 0.967; Figure 6c), although there was a non-significant reduction in lean mass 

gain in the nicotine group over the course of the experiment. Fat mass gain in the nicotine group 

was significantly reduced compared to saline (p = ; Figure 6d). There were no differences in free 

water (p = 0.853) and total water (p = 0.153) weight after the final day of CLAMS, as measured 

by MRI. There were no significant differences in infusions taken between nicotine and saline 

groups (p = 0.08; Figure 7). Average daily nicotine intake was 2.74 ± 0.30 mg/kg/day.  
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Figure 6. The impact of self-administered nicotine on weight and body mass. 

Self-administered nicotine suppressed body weight gain (a) and fat body mass (b), but not lean 

body mass (c). Fat mass gain was significantly reduced by nicotine, with no change in lean mass 

gain (d). * indicates p < 0.05 between drug groups.  
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Figure 7. Infusions self-administered in 1-h daily sessions. 

Infusions earned during each 1-h session daily. There was no impact of drug group on infusions 

earned. 
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Respiratory exchange ratio 

Following day 2 of self-administration, there was a significant effect of time (p < 0.001; 

Figure 8a) and group (p< 0.013) on RER. Nicotine significantly suppressed RER during the light 

cycle (p < 0.003), but not dark cycle (p = 0.133) of the CLAMS session.  Following day 8, there 

was a significant effect of time (p < 0.001; Figure 8b), but no effect of group over the 22h 

session (p = 0.057). There was no impact of group during the dark cycle (p = 0.110), but nicotine 

significantly suppressed RER during the light cycle (p = 0.042). After the final day of self-

administration, there was a significant effect of time (p < 0.001; Figure 8c) and group (p = 0.004) 

on RER. Self-administered nicotine suppressed RER during the dark (p = 0.010) and light cycle 

(p = 0.003).  
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Figure 8. The impact of self-administered nicotine on respiratory exchange ratio. 

Self-administered nicotine reduced RER on days 2 (a), 8 (b), and 14 (c). The dark bar indicates 

dark cycle, and the open bar indicates light cycle during each 22h phase.  * indicates p < 0.05 

between drug groups.  
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Activity  

There was no impact of drug group on X plane total activity counts (ps > 0.164; Figure 

9a, b, c) or Z plane total activity counts (ps > 0.075) on any day during either phase of the light 

cycle. There was a significant effect of time (p < 0.001), and activity during the dark phase was 

significantly higher than in the light phase (p < 0.001). Of note, on Day 14, activity in the first 

hour of the CLAMS session was significantly higher than saline (p = 0.021; Figure 9c). 
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Figure 9. The impact of self-administered nicotine on activity. 

Self-administered nicotine did not impact activity in the x plane (a-c) or z plane (d-f). The dark 

bar indicates dark cycle, and the open bar indicates light cycle during each 22h phase.   
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Heat 

There was no impact of drug group on heat on any day during any phase of the light cycle 

(ps > 0.230; Figure 10). There was a significant effect of time (p < 0.001) and heat was higher 

during the dark than the light phase (p < 0.001). 
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Figure 10. The impact of self-administered nicotine on heat production. 

Self-administered nicotine did not impact heat produced on any day. The dark bar indicates dark 

cycle, and the open bar indicates light cycle during each 22h phase. 
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Drinking and feeding behavior 

Self-administered nicotine transiently suppressed water intake (Figure 11a). On each day, 

there was a significant effect of time (ps < 0.002). Self-administered nicotine significantly 

suppressed water intake on days 2 (p = 0.025) and 8 (p = 0.019), but not day 14 (p = 0.126). 

Planned post-hoc comparisons revealed water intake was suppressed after 22h on day 2, and 6 

and 22h on day 8. Self-administered nicotine had no impact on food intake, as raw intake (ps > 

0.129; Figure 11b) and corrected for body weight (ps > 0.167; Figure 11c). There were no 

differences in food intake at any time point (ps > 0.073). There was no impact of drug on latency 

to feed following placement into the CLAMS chambers on any day (ps > 0.362; Figure 11d). 

There was no impact of self-administered nicotine on meal size over the course of 22h (ps > 

0.057; Figure 11e), though meal size was significantly reduced by nicotine during the light cycle 

on Day 14 (Table 1). Number of meals consumed over 22h was significantly increased in the 

nicotine group (Figure 11f) on days 2 (p = 0.026) and 14 (p = 0.012), which was driven primarily 

during the light cycle (Table 2). The duration of meals was suppressed on Day 14 (p = 0.001; 

Figure 11g). There was no impact of self-administered nicotine on intermeal interval, with the 

exception of the light cycle on Day 2 (Table 2). 
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Figure 11. The impact of self-administered nicotine on water and food intake over 

22h.  

Water intake was reduced by self-administered nicotine on Days 2 and 8 (a), but had no impact 

on total food intake (b, c). There was no impact of nicotine on latency to feed (d), meal size (e), 

meal duration (g), or intermeal interval (h). Self-administered nicotine significantly increased 

meal number on Days 2 and 14 (f). * indicates p < 0.05 between drug groups. 
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Table 2. Meal pattern parameters during dark and light phase of the light cycles. The top line in 

each box is the average for the dark phase, and the bottom number is average for the light cycle. 

* is p < 0.05 comparing saline and nicotine within each phase of the light cycle on that day.

Saline Nicotine 

Day 2 Day 8 Day 14 Day 2 Day 8 Day 14 

Meal size 
2.97±0.82 

2.25±0.42 

1.41±0.15 

1.30±0.23 

1.75±0.19 

1.34±0.26 

1.44±0.18 

1.18±0.21 

1.14±0.12 

1.12±0.11 

1.26±0.11* 

1.23±0.33 

Meal Number 
6.00±0.71 
2.2.5±0.25 

10.29±1.21 
4.85±1.03 

9.43±.043 
2.29±0.29 

7.75±0.85 
3.75±0.48* 

10.25±0.77 
3.13±0.44 

12.13±0.99* 
3.66±0.26* 

Meal Duration 
33.7±18.3 

16.0±9.24 

6.83±0.46 

6.21±1.25 

9.10±0.75 

8.33±1.19 

9.93±1.13 

20.1±9.53 

11.6±2.89 

6.41±2.00 

6.41±0.64* 

4.35±0.88* 

Intermeal Interval 
91.8±13.6 
313.4±20.8 

62.1±4.91 
170.7±38.3 

60.1±6.62 
273.7±53.5 

85.6±11.9 
151.7±24.7* 

68.1±6.35 
235.5±50.3 

54.1±5.23 
164.5±14.7 
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3.4 DISCUSSION 

Many smokers cite weight regulation by smoking as a primary reason for smoking and 

the inability to quit (Pomerleau et al.; Rosenthal et al., 2013; Veldheer et al., 2014). Despite the 

weight-suppressive effects of smoking and nicotine being studied extensively, the mechanism by 

which nicotine acts to suppress body weight remains poorly understood. Results of studies in 

rodents receiving non-contingent nicotine have demonstrated increased energy expenditure and 

decreased energy consumption through diverse actions of nicotine at its nicotinic cholinergic 

receptors (nAChR) (Zoli et al., 2012). There is evidence demonstrating that experimenter- and 

self-administered nicotine may differentially impact physiological responses to nicotine, which 

could impact weight regulation (Donny et al., 2000; Donny et al., 2011a). Therefore, the use of 

nicotine self-administration procedures in rodents is particularly useful in evaluating the impact 

of nicotine on energy balance. 

The results of the present experiment demonstrate that self-administered nicotine shifts 

RER to reflect an increase in fat utilization, without changes in total food intake, activity, or heat 

production. Changes in RER precede nicotine-induced suppression of weight gain, indicating 

that increased fat utilization may cause weight reduction following nicotine self-administration. 

Very low nicotine intake (0.12 mg/kg on Day 2) was sufficient to suppress RER, consistent with 

recent data demonstrating that very low doses of self-administered nicotine suppress body weight 

gain independent of food intake (Rupprecht et al., 2016). It has been hypothesized that 

cumulative nicotine intake over many days may be directly correlated with body weight 
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suppression. This may explain the magnitude of reduction in RER on Day 14, when total 

cumulative nicotine intake was highest.  

In the current experiment, nicotine intake was low compared to previously published 

levels of self-administration at this dose over a similar time course. There are several parameters 

in the self-administration procedure that may explain these low levels of nicotine intake. First, 

rats were allowed to respond on a lever for infusion of nicotine without previous training for 

lever responding. Secondly, the 1h/day sessions occurred in the final hour of the light cycle, so 

that rats could be placed in the CLAMS units at the onset of the dark cycle, when feeding and 

other behaviors related to energy balance are high. Third, self-administration procedures 

typically use food restriction to increase levels of behavior (Rupprecht et al., 2015c). In the 

current experiments, rats were fed ad libitum. The self-administration procedure used a 

compound visual stimulus, which is expected to be mildly reinforcing (Caggiula et al., 2002). 

This stimulus likely explains the of responding in the saline group, and at a low schedule of 

reinforcement and high nicotine dose, enhancement of responding for the stimulus by nicotine 

may not be expected. The similar level of activity at the lever during self-administration between 

groups offers control of energy expenditure in the operant chamber, indicating that differential 

activity in the self-administration session likely does not contribute to differences in weight gain 

between groups.  

Nicotine reduced RER most substantially during the light phase, many hours after the 

nicotine self-administration session. As the half-life of nicotine in a rat is approximately one 

hour (Kyerematen et al., 1988), this suggests that processes contributing to increased fat 

utilization occur when nicotine levels in the blood and brain were likely cleared. This result 

suggests that activation of nAChR is not necessary for increased fat utilization following nicotine 
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self-administration. There are two likely explanations for the present data. First, that a metabolite 

of nicotine with a long half-life is responsible for reductions in RER following self-

administration. Cotinine is the primary metabolite of nicotine, with a half-life of approximately 

eight hours in the rat (Kyerematen et al., 1988). Intravenous infusions of cotinine in cigarette 

smoke to overnight abstinent smokers fails to produce a cardiovascular (Benowitz et al., 1983) or 

physiologic (Hatsukami et al., 1997) effect. Further, chronic injection of cotinine to mice has 

been shown to increase weight gain (Riah et al.). Therefore, it is unlikely that cotinine or another 

metabolite of nicotine acts to decrease RER and weight gain. 

Secondly, the possibility exists that nicotine can produce a change that is long lasting, 

and which remains activated despite a lack of stimulation by nicotine itself. Nicotine 

administration has been demonstrated to increase lipolysis (Andersson et al., 2001; Friedman et 

al., 2012; Sztalryd et al., 1996). Evidence supports two parallel pathways by which nicotine 

could impact lipolysis. First, nicotine has been shown to cause the release of circulating 

catecholamines, which may in part contribute to increased lipolysis (Cryer et al., 1976). The 

release of glycerol in subcutaneous fat by intravenous infusion of low dose nicotine to non-

smokers is attenuated by local beta-adrenergic and nAChR blockade (Andersson et al., 2001), 

indicating that nicotine results in lipolysis by catecholamine release and action and local action at 

adipose tissue. Complicating this idea is evidence demonstrating that while non-contingent 

intravenous infusion of nicotine causes adrenaline release in rats and humans, there is no impact 

of self-administered nicotine on adrenaline release in rats (Donny et al., 2000). Therefore, it is 

unlikely that increased catecholamine release influences results in the present experiment. 

Current evidence suggests that reduced RER by nicotine, long after nicotine self-administration 

sessions concluded, is likely driven by lipolysis locally in adipose tissue. The α7 nAChR is 
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expressed in white adipose tissue and is opened by relatively low levels of nicotine, but is rapidly 

desensitized (Somm, 2014). An agonist of α7 nAChR has been demonstrated to decrease weight 

gain in obese, but not normal weight mice (Marrero et al., 2010). Therefore, it is possible that 

nicotine acts to increase lipolysis at α7 nAChR receptors, and the activation of intracellular 

processes following nAChR activation act to increase fat utilization after nicotine clearance.  

Data from smokers supports the idea that nicotine may increase basal metabolic rate.  

Administration of nicotine to abstinent smokers via nasal spray results in increases resting 

metabolic rate (Perkins et al., 1989a), indicating that nicotine increases RER in smokers. The 

current results from rats compliment and extend what can be learned from a human smoker, 

demonstrating increased metabolic efficiency in nicotine-naïve rats, before nicotine-induced 

body weight changes occur. Smoking cigarettes can increase basal metabolic rate (Roth et al., 

1944), although increases in energy expenditure without increases in basal metabolic rate have 

also been reported (Audrain et al., 1991; Perkins et al., 1986). Inhalation of smoke from 

denicotinized cigarettes can result in small increases in basal metabolic rate, indicating that the 

non-nicotine constituents in cigarettes or the behavioral action of smoke inhalation impacts 

metabolism (Perkins, 1992b; Perkins et al., 1989a). However, data from rodent self-

administration suggest that the combination of nicotine and non-nicotine constituents in cigarette 

smoke act to regulate body weight similarly to nicotine alone Rupprecht et al. (2016), indicating 

that the impact of cigarette smoke on basal metabolism is likely due to behavioral action of 

inhalation and not additional psychoactive smoke chemicals.  

There is a large body of work showing chronic experimenter-administered nicotine 

suppresses food intake, and some evidence that this occurs via reductions in meal size (L. L. 

Bellinger et al., 2010; Grebenstein et al., 2013); Wellman et al. (2005). One report of chronic 
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nicotine injections demonstrated that nicotine acts to suppress food intake without lasting 

changes in respiratory quotient or energy expenditure (L. L. Bellinger et al., 2010). Therefore, it 

is possible that in procedures that cause nicotine-induced suppression of food intake, RER shifts 

back towards carbohydrate utilization in defense of weight set point, and that these specific 

responses may be dependent upon route, dose, and contingency of administration. In the current 

data, self-administered nicotine significantly increased meal frequency with non-significant 

reductions in average meal size. Nicotine dose, route, and duration of administration likely have 

differential impacts on behaviors related to energy balance (Zoli et al., 2012). These results 

underscore the importance of examining the impact of nicotine on body weight regulation across 

many procedures. Regardless, the current data provide further evidence that when nicotine is 

self-administered in 1-h daily sessions, weight gain suppression occurs independent of changes 

in food intake.   

Nicotine has been previously shown to suppress water intake (Clarke et al., 1984; E. D. 

Levin et al., 1987). Decreased fluid intake may contribute to rapid weight loss caused by nicotine 

consumption. However, the current data suggest that over time, tolerance to the hypodipsic 

effects of nicotine develop, suggesting that negative water balance likely does not contribute to 

continued weight loss by nicotine across many days. Further, there was no difference in water 

weight between groups at the end of the experiment. This is in contrast to existing data 

demonstrating that water intake suppression by nicotine is long lasting, though these effects 

resulted from high daily nicotine exposure (up to 10 mg/kg/day nicotine) (Clarke et al., 1984). It 

is possible that tolerance to this develops with nicotine self-administration.  

The results of the current experiment demonstrate that self-administered nicotine in male 

rats suppresses body weight, potentially via increased fat oxidation, without changes in activity, 



63 

heat production, or feeding behavior. Together, these results indicate that nicotine-induced body 

weight suppression relies on decreased RER. Nicotine has been previously reported to increase 

thermogenesis and slow gastric emptying (de Morentin et al., 2012; Perkins et al., 1996; Scott et 

al., 1992; Seoane-Collazo et al., 2014). The design of the current experiments cannot rule out the 

possibility that other parameters not included in our experimental design may contribute to the 

effect of self-administered nicotine on energy balance. For example, nicotine has been shown to 

increase thermogenesis. Self-administered nicotine in male rats shifts RER towards fat utilization 

after nicotine has been cleared and suppresses weight gain. 
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4.0  REDUCING NICOTINE EXPOSURE RESULTS IN WEIGHT GAIN IN 

SMOKERS RANDOMIZED TO VERY LOW NICOTINE CONTENT CIGARETTES 

4.1 INTRODUCTION 

Tobacco use, primarily through cigarette smoking, is the leading cause of preventable 

mortality, resulting in over 480,000 deaths in the United States annually (Centers for Disease et 

al., 2011; World Health Organization Study Group on Tobacco Product, 2015). Nicotine is the 

primary addictive constituent in cigarettes, and in an effort to reduce the public health burden of 

smoking, the Family Smoking Prevention and Tobacco Control Act gave the Food and Drug 

Administration (FDA) authority to greatly reduce the nicotine content of cigarettes if doing so 

would improve public health (Congress, 2009). This policy falls in line with the hypothesis that 

the reduction of nicotine content in cigarettes to a level below an addictive or reinforcing 

threshold will suppress nicotine-seeking behaviors in smokers (Benowitz et al., 1994; Donny et 

al., 2012; Hatsukami et al., 2013). In a recent study, we tested this hypothesis by investigating 

the effects of cigarettes varying in nicotine content on cigarettes smoked per day and nicotine 

dependence over a 6-week period (Donny et al., 2015). We found that smokers randomized to 

smoke very low nicotine content (VLNC) cigarettes containing 2.4 mg of nicotine per gram of 

tobacco and below for 6 consecutive weeks smoked fewer cigarettes and had lower levels of 

nicotine dependence compared to those randomized to smoke normal nicotine content cigarettes 



65 

(NNC; 15.8 mg of nicotine per gram of tobacco) or their usual brand (Donny et al., 2015). These 

data support the reduction of nicotine in cigarettes as a strategy for improving smoking-related 

public health outcomes. However, to fully capture the public health impact of a potential nicotine 

reduction policy, it is also necessary to identify possible unintended consequences of nicotine 

reduction, so that policymakers and clinicians may attempt to mitigate them.  

The relation between smoking cessation and weight gain is well established. Smokers 

weigh less than non-smokers and smoking cessation is typically accompanied by weight gain, on 

average, of 4.5 kg within a year of abstinence (Aubin et al., 2012; Audrain-McGovern et al., 

2011; Veldheer et al., 2015). As such, one consequence of a nicotine reduction policy may be 

weight gain among current smokers (Rupprecht et al., 2015b). Nicotine in cigarettes is likely 

responsible for the weight-reducing effects of smoking. Use of the transdermal nicotine patch or 

nicotine gum (Gross et al., 1989) during quit attempts attenuates cessation-induced weight gain, 

typically in a dose-related manner. Additionally, varenicline, a partial nicotinic agonist FDA-

approved for smoking cessation, may offset weight gain among quitters during treatment (Nides 

et al., 2006). In rats, self-administration of nicotine results in suppression of body weight gain 

(Bunney et al., 2015; O'Dell et al., 2007; Rupprecht et al., 2016). Moreover, cessation of nicotine 

self-administration (Bunney et al., 2015) or reduction of nicotine dose to levels below a 

reinforcing threshold (Rupprecht et al., 2016) results in weight gain. Mice exposed to smoke 

from NNC cigarettes gained significantly less weight than those exposed to smoke from VLNC 

cigarettes (Abreu-Villaca et al., 2010). Taken together, evidence points to reductions in nicotine 

exposure as mediating cessation-induced weight gain, and thus, weight gain is a likely outcome 

of nicotine reduction (Benowitz et al., 2012).  
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The aim of this investigation was to examine the effect of an abrupt switch to use of 

VLNC cigarettes on weight among current smokers. A randomized double-blind, multi-site 

clinical trial of daily smokers (n=839) not interested in quitting was completed in which 

participants were assigned to smoke cigarettes varying in nicotine content for six weeks. Here, 

we evaluated if smoking reduced nicotine content cigarettes in this sample was associated with 

weight gain. Given the hypothesized primary role of nicotine exposure as the mechanism 

underlying weight gain and evidence that most participants use other products when randomized 

to VLNC cigarettes (Benowitz et al., 2015; Nardone et al., In Press), an important analysis 

focused on the relation between urinary biomarkers of nicotine exposure and weight gain. 

Furthermore, some evidence suggests that women are more likely to use smoking as a method of 

weight control and may be more susceptible to post-cessation weight gain (Farley et al., 2012; 

Levine et al., 2001); therefore, differences in outcomes due to gender were also explored.  

4.2 METHODS 

Participants 

Adult daily smokers were recruited using flyers, direct mailings, television and radio, and 

other advertisements across 10 sites between 2013 and 2014. Inclusion criteria included: at least 

18 years of age, at least five cigarettes smoked per day, expired carbon monoxide (CO) greater 

than 8 ppm or urinary cotinine greater than 100 ng/ml. Exclusion criteria were: intention to quit 

smoking in the next 30 days; use of other tobacco products on more than 9 of the past 30 days; 

serious psychiatric or medical condition; positive toxicological screen for illicit drug use other 

than cannabis; pregnancy, plans to become pregnant, or breastfeeding; and exclusive use of “roll 
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your own” cigarettes. All 839 eligible participants provided written informed consent prior to 

enrollment. The study was approved by accredited Institutional Review Boards at each 

participating site, and written informed consent was obtained from each study volunteer.  All 

study procedures were conducted in compliance with research ethics outlined in the Declaration 

of Helsinki.   

Study Design 

The seven-group, double-blind, randomized trial included a screening visit, a 2-week 

baseline period during which participants smoked their own usual brand cigarettes, and a 6-week 

investigational cigarette use period. During the 6-week experimental period, participants were 

provided with one of seven types of cigarettes varying in nicotine content (mg nicotine per g of 

tobacco): 0.4 mg/g; 0.4 mg/g high tar (HT); 1.3 mg/g; 2.4 mg/g; 5.2 mg/g; 15.8 mg/g, and usual 

brand (UB). Average tar yields were 8 to 10 mg; however, for the high tar cigarettes it was 13 

mg. The 0.4 HT condition, which contained tobacco filler with the same nicotine content, but 

differed from 0.4 mg/g cigarettes in filter and ventilation resulting in higher yield (ISO) of tar 

and nicotine, was added to the design to explore the impact of tar yield on the use and 

acceptability of VLNC cigarettes. A two-week supply of cigarettes was provided free of charge 

at each weekly session during the experimental period. During this time, participants were 

instructed to smoke only the provided investigational cigarettes and received counseling aimed to 

increase compliance, though there was no penalty for using other nicotine/tobacco products. 

Study design is described in greater detail in the primary study manuscript (Donny et al.). 
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Study Assessments & Laboratory Analyses 

During each visit to the laboratory, participants were asked to remove shoes and 

outerwear, and to plant both feet firmly and evenly on the scale surface. Body weight was 

measured to the nearest 0.1 kg. Biomarkers of nicotine exposure were assessed from urine 

samples collected at randomization, Week 2, and Week 6. Urinary total nicotine equivalents 

(TNE), the sum of nicotine and its metabolites and a measure of daily nicotine exposure, were 

analyzed by liquid chromatography tandem mass spectrometry (Carmella et al., 2013; Murphy et 

al., 2014; Murphy et al., 2013). Saliva samples for the assessment of nicotine metabolite ratio 

(NMR), an indicator or CYP2A6 activity and the rate of nicotine metabolism, were collected 

during the second baseline session (Donny et al., 2015).  

Statistical Analyses 

Our initial comparison focused on differences in weight gain (defined as each 

participant’s weight at each visit minus his or her baseline weight in kg) by randomized 

treatment assignment. Baseline weight was the average of three measurements taken at screening 

and the two, weekly baseline visits. Two participants were found to have a 50kg weight gain at 

the six-week follow-up period. These records are assumed to have been a data entry error and 

were removed from all analyses. Differences in weight gain over time were analyzed using a 

linear mixed model with a random intercept to account for multiple observations from a single 

individual. Fixed-effects included in the model were treatment group, visit, treatment by visit 

interaction, baseline weight, age, gender, race, the natural log of salivary NMR, site, time-of-year 

at enrollment and a site by time-of-year at enrollment interaction. Time-of-year at enrollment 
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was included in the model by mapping the calendar onto a circle and translating the date into 

radians and was included as time-of-year impacts weight gain (Le et al., 2003). A Bonferroni-

adjusted p-value of 0.01 was used to conclude statistical significance when comparing treatment 

groups to the 15.8 mg/g control. A secondary comparison was also completed, which compared 

treatment groups to the Usual Brand control condition. 

Within this study population, the average reduction in biomarkers of tobacco use was

less than expected given the reduction in nicotine content of the study cigarettes (Donny et al., 

2015), indicating likely use of other sources of nicotine (e.g., non-study cigarettes). The use of 

other nicotine-containing products could potentially mask an effect of the use of VLNC 

cigarettes on weight gain. Thus, we conducted a subgroup analysis comparing weight gain by 

compliance status in the combined 0.4 mg/g and 0.4 mg/g HT groups. Compliance status was 

dichotomized and a participant was considered compliant if their urinary TNE was less than 6.41 

nmol/ml at Week 2 and Week 6. This cutoff was established in a prior study in which 

compliance with 0.4 mg/g cigarettes was enforced (Denlinger et al., 2016). Biochemical 

confirmation of compliance was not possible in the other cigarette conditions because individual 

differences in nicotine intake from these cigarettes likely result in greater overlap in the 

distribution of TNE with smoking NNC cigarettes and no data are available validating such a 

cutoff. Weight-gain was compared by compliance status over time using a linear mixed-model 

with a random intercept and fixed-effects for compliance status, visit, compliance status by visit 

interaction, baseline weight, age, gender, race, baseline cigarettes per day (CPD), natural log of 

baseline TNE, study site and time-of-year at randomization. Baseline CPD and baseline TNE 

were previously shown to be associated with biochemical measures of non-compliance and were 

included in this model to account for potential confounding (Nardone et al., In Press). Gender 
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was examined as a moderator by adding an interaction for gender and estimating treatments 

effects within each gender. Finally, the association between weight gain and the natural log of 

TNE, as the raw TNE data were not normally distributed, at Week 6 in the 0.4 mg/g and 0.4 

mg/g HT groups was summarized by Pearson’s correlation coefficient. 

4.3 RESULTS 

Sample characteristics 

The overall sample was 41.7 ± 13.2 years old, 57.3% male, smoked 15.6 ± 7.6 CPD, and 

weighed 85.8 ± 21.8 kg at baseline. Retention exceeded 92% and attrition did not differ by 

cigarette group. Additional baseline sample characteristics can be accessed in the primary report 

of these data (Donny et al., 2015).  

Cigarette condition failed to significantly impact weight gain 

Mean changes in body weight (kg) comparing between each investigational cigarette 

condition and each of the two control conditions (15.8 mg/g and Usual Brand groups) by week 

for the entire study sample are shown in Table 2. With the exception of the 0.4 mg/g HT group at 

Week 4 (p = 0.009), there were no significant differences in weight gain when comparing the 

reduced nicotine conditions with the 15.8 mg/g control group across all treatments groups and 

week. 
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Table 3. Effect of smoking reduced nicotine content cigarette on weight gain (kg) over 6 weeks 

Treatment 

Group 

Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 

Week 

6 

15.8 mg group as reference group (primary analysis): 

5.2 mg/g  

 0 (-

0.48, 0.48)  

 0.29 (-

0.2, 0.77)  

 0.01 

(-0.47, 0.5)  

 0.13 (-

0.36, 0.62)  

 0.14 

(-0.36, 0.63)  

 0.01  

(-0.48, 0.49)  

2.4 mg/g  
0.01  

(-0.47, 0.5)  

 0.34  

(-0.15, 0.83)  

 0.08 

(-0.41, 0.58)  

 0.24  

(-0.26, 0.73)  

 0.37 

(-0.13, 0.87)  

 0.22  

(-0.27, 0.71)  

1.3 mg/g  
 0.2 

(-0.28, 0.68)  

 0.52 

(0.03, 1)  

 0.25 

(-0.24, 0.73)  

 0.16  

(-0.34, 0.65)  

 0.22 

(-0.27, 0.71)  

 0.18  

(-0.3, 0.67)  

0.4 mg/g  
 0.1 

(-0.39, 0.59)  

 0.36  

(-0.13, 0.85)  

 0.11 

(-0.39, 0.6)  

 0.28  

(-0.22, 0.77)  

 0.34 

(-0.16, 0.83)  

 0.18  

(-0.32, 0.67)  

0.4 mg/g (HT) 
0.11  

(-0.38, 0.59)  

 0.51 

(0.03, 0.99)  

 0.23 

(-0.25, 0.72)  

 0.65* 

(0.16, 1.14)  

 0.33 

(-0.16, 0.82)  

 0.12  

(-0.36, 0.6)  

Usual Brand group as reference group (secondary analysis): 

15.8 mg/g  
-0.06 

(-0.55, 0.42)  

-0.04 

(-0.53, 0.45)  

-0.14 

(-0.63, 0.35)  

-0.16 

(-0.65, 0.33)  

-0.43 

(-0.92, 0.06)  

-0.2

(-0.69, 0.29)  

5.2 mg/g  
-0.07 

(-0.55, 0.42)  

 0.25  

(-0.24, 0.73)  

-0.13 

(-0.62, 0.36)  

-0.03 

(-0.52, 0.46)  

-0.3

(-0.79, 0.2)  

-0.19 

(-0.68, 0.29)  

2.4 mg/g  
-0.05

(-0.53, 0.44)  

 0.3  

(-0.18, 0.79)  

-0.06 

(-0.55, 0.44)  

 0.08  

(-0.42, 0.57)  

-0.06 

(-0.56, 0.44)  

 0.02  

(-0.47, 0.51)  

1.3 mg/g  
0.14  

(-0.34, 0.62)  

 0.48  

(0, 0.96)  

 0.1  

(-0.38, 0.59)  

 0  

(-0.49, 0.49)  

-0.21 

(-0.7, 0.28)  

-0.02 

(-0.5, 0.47)  

0.4 mg/g  
0.04  

(-0.45, 0.52)  

 0.32  

(-0.17, 0.81)  

-0.04 

(-0.53, 0.46)  

 0.12 (-

0.38, 0.61)  

-0.09 

(-0.59, 0.4)  

-0.02 

(-0.52, 0.47)  

0.4 mg/g (HT) 
 0.04  

(-0.44, 0.52)  

 0.47  

(-0.01, 0.95)  

 0.09 

(-0.39, 0.57)  

 0.49 

(0.01, 0.97)  

-0.1

(-0.59, 0.38)  

-0.08 

(-0.56, 0.4)  
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Reduced nicotine exposure resulted in significant weight gain 

Weight gain was significantly negatively correlated with nicotine exposure in the two 

lowest nicotine content cigarette conditions (0.4 mg/g and 0.4 mg/g HT; r = -0.21, p = 0.001, 

95% CI: -0.34, -0.08; Figure 12). Within the two lowest nicotine content cigarette conditions, 

smokers compliant with the investigational cigarettes (n = 45) gained significantly more weight 

than non-compliant smokers (n = 170), the 15.8 mg/g control group (n = 119) and the Usual 

Brand group (n = 118) beginning at Week 3 (Figure 13). Women compliant on study product (n 

= 24) gained significantly more weight than non-compliant women (n = 76) and women in the 

15.8 mg/g control group (n = 48) and Usual Brand group (n = 46) (Figure 14a). Likewise, men 

compliant on study product (n = 21) gained significantly more weight than non-compliant men (n 

= 94) and men in the 15.8 mg/g group (n = 71) and Usual Brand group (n = 72) (Figure 14a). 

There was no significant interaction between gender and compliance on weight gain. 
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Figure 12. Relationship between nicotine exposure and weight gain.  

Within 0.4 mg/g and 0.4 mg/g HT groups, weight gain was negatively correlated with the natural 

log of TNE. 
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Figure 13. Weight gain over time in compliant and non-compliant individuals 

randomized to 0.4 mg/g and 0.4 mg/g HT cigarettes.  

Mean cumulative weight gain in individuals compliant (urinary TNE less than 6.41 nmol/ml at 

Week 2 and Week 6) or non-compliant (urinary TNE greater than 6.4 at Week 2 or Week 6) on 

0.4 mg/g and 0.4 mg/g HT cigarettes, and 15.8 mg/g control group. * indicates P<0.01 

comparing compliant and non-compliant groups. # indicates P<0.01 comparing compliant and 

15.8 mg/g groups. + indicates P<0.1 comparing compliant and usual brand groups. 
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Figure 14. Weight gain over time in compliant and non-compliant men and women 

randomized to 0.4 mg/g and 0.4 mg/g HT cigarettes. 

Mean cumulative weight gain in women (a) and men (b) compliant (urinary TNE less than 6.41 

nmol/ml at Week 2 and Week 6) or non-compliant (urinary TNE greater than 6.4 at Week 2 or 

Week 6) on 0.4 mg/g and 0.4 mg/g HT cigarettes, and 15.8 mg/g control group. * indicates 

P<0.01 comparing compliant and non-compliant groups.  
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4.4 DISCUSSION 

The implementation of product standards requiring substantial reductions in nicotine 

content in cigarettes is hypothesized to improve public health by facilitating cessation of 

smoking. However, the reduction of nicotine content in cigarettes may have other unintended 

health-related outcomes. The current investigation found that although there was no impact of 

random assignment to reduced nicotine content investigational cigarettes on weight gain, 

compliance with investigational cigarettes containing only 2-3% of the nicotine found in NNC 

cigarettes was associated with resulted in significant weight gain. Furthermore, among 

individuals smoking cigarettes with the lowest nicotine content, weight gain was negatively 

correlated with biomarkers of nicotine exposure. These results have important implications for 

product standards on nicotine and the understanding of nicotine on body weight regulation. The 

reduction of nicotine content in cigarettes results in an expected amount of weight gain and 

would likely be observed if product standards requiring low nicotine levels in cigarettes are 

enacted, assuming people do not substitute other nicotine-containing products.  

 Compliant participants in the VLNC cigarette condition gained approximately 1.4 kg 

over 6 weeks of smoking VLNC cigarettes, which is comparable to weight gain reported among 

abstinent smokers over a similar time period (Emont et al., 1987; Klesges et al., 1989). In the 

current study, weight gain among compliant smokers occurred primarily within the first three 

weeks of VLNC use, and then plateaued. This is reassuring, as it suggests that weight gain 

following reductions in nicotine exposure might be expected to be consistent with long term 
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changes in weight gain following cessation. Further support for this notion is provided by a study 

that reported significant body weight gain (approximately 2 kg) in self-reported compliant 

smokers of cigarettes with nicotine content that was gradually reduced after 26 weeks (Benowitz 

et al., 2012). Therefore, it is reasonable to expect long term weight gain following nicotine 

reduction to be similar to that observed in cessation, assuming no use of other nicotine-

containing products. A meta-analysis of 62 studies focused on cessation-induced weight gain 

reported a curvilinear pattern of weight gain over 12 months in untreated abstinent smokers, with 

weight gain reaching approximately 4.5 kg and plateauing after approximately six months 

(Aubin et al., 2012). Further, the rate of weight gain in former smokers returns to that of age-

matched non-smoker controls following one year of smoking cessation (Audrain-McGovern et 

al., 2011). Veldheer et al. (2015) recently reported a positive correlation between CPD prior to 

quitting and ten-year post-cessation weight gain, indicating that a larger change in nicotine 

exposure results in more robust weight gain. Of note, the sample in the current report was 

overweight at baseline. Obese and overweight smokers consume more CPD on average than 

normal weight smokers (Rupprecht et al., 2015b; Veldheer et al., 2015), and therefore may be at 

risk for larger weight gain following nicotine reduction (Veldheer et al., 2015). Although 

cessation is associated with an overall increase in weight gain, the impact of quitting on weight 

gain varies, with approximately 16% of smokers losing weight and 10% gaining over 10 kg in 

one year (Aubin et al., 2012). The same variability might be expected population-wide following 

nicotine reduction in cigarettes. Future studies testing the impact of VLNC cigarette use on 

weight and weight-related health outcomes over longer time periods may confirm this and should 

more fully capture the impact of nicotine reduction on body weight and health.  
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Despite the likelihood of weight gain in smokers following nicotine reduction, the overall 

public health impact of reducing nicotine in cigarettes may be positive if nicotine reduction 

increases smoking cessation (Benowitz et al., 1994; Donny et al., 2015; Rupprecht et al., 2015b).  

Indeed, smoking cessation is widely recommended despite the expected gain in weight because 

the health benefits of quitting far outweigh the negative health consequences of post-cessation 

weight gain (Health et al., 2004). It is possible that nicotine content could be reduced to a level 

that would support quitting without resulting in weight gain. However, the lowest nicotine 

content cigarette tested most reliably decreased multiple measures of dependence and increased 

quit attempts (Donny et al., 2015), putative predictors of a positive public health impact, even if 

accompanied by weight gain. There is no indication that the amount of weight gain expected 

during use of VLNC cigarettes would exceed that of other means of quitting without 

pharmacotherapy. Research is warranted to determine if NRTs (Filozof et al., 2004; Gross et al., 

1989; Schnoll et al., 2012), varenicline (Nides et al., 2006), or bupropion (Farley et al., 2012), 

which attenuate post-cessation weight gain, would similarly mitigate the weight gain observed in 

smokers of VLNC cigarettes.     

Women more frequently report using smoking as a weight-control method and report fear 

of weight gain following quitting (Filozof et al., 2004; Levine et al., 2001). Some studies report 

that post-cessation weight gain is greater among women than men (Filozof et al., 2004; 

Williamson et al., 1991), but there are also contradictory findings (Aubin et al., 2012). Our study 

did not reveal significant gender differences, though we did find that women gained more weight 

on average than men following reductions in nicotine exposure. Additionally, weight gain at 

Week 3 was equal for women and men, but then plateaued in women and decreased in men.  

Women were more likely to be compliant on VLNC study product (Nardone et al., In Press), and 
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within the compliant group, nicotine exposure was lower in women than men (natural log of 

TNE ± SEM: 0.08 ± 0.17 in women; and 0.43 ± 0.20 in men). The lower levels of nicotine 

exposure among women may contribute to the higher average weight gain reported here. Sample 

size was low and future experiments with sufficient power to address gender differences in 

weight gain are warranted. 

In addition to the results of this study clarifying the effect of VLNC cigarettes on weight 

gain, it was demonstrated that urinary biomarkers of product compliance can allow for 

evaluating potential unintended consequences of nicotine reduction where non-compliance could 

otherwise occlude an effect. Indeed, differences in compliance likely both reduce potential effect 

size and add substantial variance to measures of unintended consequences related to reduced 

nicotine exposure per se. An important limitation of focusing on just compliant participants is 

that they self-selected into compliant and non-compliant groups, which may introduce 

confounds. Biomarkers of compliance might be utilized to incentivize compliance on study 

product to better our understanding of the effects of a potential product standard on behavior and 

health.  

These data contribute important information to tobacco regulatory science and provide a 

greater understanding of the impact of nicotine on body weight regulation. The magnitude of 

weight gain is negatively related to nicotine exposure, and is similar to what is observed 

following smoking cessation. Given these results, weight gain is an expected outcome of the 

implementation of product standards mandating reduced nicotine content in cigarettes. Under the 

assumption that reductions in nicotine exposure leads to decreased dependence and therefore, 

increased quitting Donny et al. (2015), the positive public health impact of product standards 

mandating reductions in nicotine content in cigarettes are likely to outweigh the negative health 
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consequence of weight gain (Health et al., 2004). Nonetheless, the potential for weight gain must 

be considered when assessing the public health impact of product standards requiring the 

reduction of nicotine content in cigarettes. Furthermore, the long-term effect of such strategy 

must be considered in future research with the goal of mitigating potential weight gain following 

implementation of product standards reducing nicotine levels in cigarettes. 
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5.0 SELF-ADMINISTERED NICOTINE DIFFERENTIALLY IMPACTS BODY 

WEIGHT GAIN IN OBESITY-PRONE AND –RESISTANT RATS 

5.1 INTRODUCTION 

Tobacco smoke and obesity represent the largest causes of preventable deaths worldwide 

(Centers for Disease et al., 2013). Over the past 35 years in the United States, rates of cigarette 

smoking have slowly declined, as the rates of obesity have dramatically increased (Stewart et al., 

2009). Abstinence from smoking is typically accompanied by weight gain (Audrain-McGovern 

et al., 2011; Zoli et al., 2012) and research suggests that smoking cessation is in part responsible 

for the drastic increase in the rates of overweight in the United States (Flegal et al., 1995). The 

relationship between smoking and body weight regulation, particularly among the obese 

population, is poorly understood. Research on the effect of smoking on BMI among obese 

smokers has resulted in conflicting results (Cooper et al., 2003; Fidler et al., 2007), and is 

complicated by reliance on self-report data or the challenges of prospective studies. The negative 

health consequences of smoking are more severe among the obese population (Chiolero et al., 

2008; Rupprecht et al., 2015b) and the relationship between smoking and obesity requires more 

attention. 

Although research has consistently demonstrated that higher BMI is associated with 

higher rates of smoking (Chiolero et al., 2007b), the casual relationship between obesity and 
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nicotine exposure is unclear. Whether chronic nicotine exposure via cigarette smoke prevents the 

development of obesity in smokers that would otherwise be obese is unknown (Rupprecht et al., 

2015b).  It is difficult to assess whether nicotine causes changes in body weight regulation in 

human smokers; animal models may provide a better opportunity to evaluate this hypothesis. 

Previous research has demonstrated that large doses of subcutaneous nicotine suppress body 

weight and food intake in obese rodents (Mangubat et al., 2012; Seoane-Collazo et al., 2014), but 

the impact of nicotine on body weight and feeding behavior in obesity has not been studied in an 

animal model of nicotine self-administration. 

Outbred rats remain lean when fed chow, but when maintained on a diet modeling the 

nutritional content of Westernized societies, body weight gain separates into distinct groups: a 

subset of obesity-prone (OP) and obesity-resistant (DR) rats (B. E. Levin et al., 1989). OP and 

OR rats are considered among the best animal models of diet-induced obesity and recapitulate 

many key features of the human condition . The current experiment evaluated the impact of self-

administered nicotine on body weight gain and food intake in OP, OR, and chow-fed rats. 

Results demonstrated that self-administered nicotine suppressed body weight gain in chow-fed 

and OP rats without suppression of daily food intake. OR rats were insensitive to the weight-

suppressive effects of self-administered nicotine. 
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5.2 METHODS 

Subjects 

Male Sprague-Dawley rats (n=60; Charles River, Kingston, NY) weighing 275-300 g 

upon arrival were housed individually in hanging-wire cages on a reverse light-dark 12:12 hr 

cycle (lights off at 0700h) in a temperature-controlled facility (between 68 and 70 °F). Upon 

arrival, rats had free access to high energy diet (HED; Research Diets D12266B, New 

Brunswick, NJ; 31.8% kcal from fat, 25.2% kcal from sucrose, 4.41 kcal/g) and water, unless 

noted otherwise. All procedures were approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. 

Drugs 

Nicotine hydrogen tartrate salt (Sigma, St. Louis, MO) was dissolved in 0.9% saline; 

doses are expressed as free base (Rupprecht et al., 2016; Smith et al., 2013). Infusion duration 

was adjusted daily to account for body weight gain.  

Classification of body weight phenotype groups 

Body weight was monitored daily while all rats had free access to HED for two weeks. 

At the end of this two-week period, the twenty rats that gained the most weight were assigned to 

OP and the twenty rats that gained the least weight were assigned to OR. . The middle tertile 

gained an intermediate amount of weight and were placed on chow (Purina 5001; 3.36 kcal/g) on 

Day 15 as a diet control, and will be referred to as the Chow group (n=20). Rats in the Chow 

group had at least five days of chow exposure before behavioral procedures. Rats assigned to OP 
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and OR groups remained on HED maintenance. Average body weight for each group on the first 

day of experimentation was as follows: Chow = 423.3±13.3 g; OP = 445.4±18.2 g; OR = 

392.7±21.1 g. 

Procedures 

Surgery 

After two weeks of diet exposure and phenotype group classification, rats were 

anesthetized with isoflurane (2-3% in 100% O2) and implanted with catheters into the right 

jugular vein (Smith et al., 2013; Smith et al., 2014). Rats were allowed to recover for 5-6 days 

before self-administration procedures, during which catheters were flushed daily with 0.1 ml 

heparinized saline (30 U/ml) containing timentin (66.67 mg/ml) and streptokinase (8,333 U/ml). 

Catheters were flushed with 0.1 ml heparinized saline (10 U/ml) and heparinized saline (30 

U/ml) containing Timentin (66.67 mg/ml) prior to and following the self-administration sessions, 

respectively. 

Self-administration 

Self-administration occurred in 38 operant chambers (Med-Associates) (Rupprecht et al., 

2016; Smith et al., 2015). Rats were assigned to drug group (0 or 60 μg/kg/infusion nicotine), 

counterbalanced by body weight within phenotype group (n=20/phenotype, n=10 receiving 

saline or nicotine within phenotype).  One nose-poke hole was assigned as active, resulting in the 

delivery of an i.v. infusion after fulfilling the fixed-ratio (FR) 2 response requirement. The other 

nose-poke hole was inactive; responses at this nose-poke portal were recorded but had no 
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consequence. Active and inactive nose-poke holes were randomly assigned (left or right).  

Infusions were accompanied by a 15-sec cue light illuminated above the active nose-poke portal 

and an unsignaled 1-min timeout, where responses were recorded but had no scheduled 

consequence. Self-administration occurred in 20 consecutive 1-h daily sessions. Sessions began 

1 – 2 h following the onset of the dark cycle, depending on cohort order. Each phenotype group 

was equally represented in each cohort, and time of day of self-administration session had no 

impact on dependent measurements. 

Rats included in analyses passed a patency test, which required displaying physical signs 

of ataxia within 5-s of intravenous injections of methohexital (5 mg/kg). Final sample size 

following patency testing is as follows: Chow saline, n=10; Chow nicotine, n=9; OP saline, n=9; 

OP nicotine, n=9; OR saline, n=10, OR nicotine, n=7.  

Food intake measurements 

Food intake measurements, accounting for spillage, were taken every fifth day of 

experimentation over 24h. Measurements occurred while the rat was out of the home cage, 

during operant sessions to minimize disruption of food intake. Unlike most self-administration 

experiments (Rupprecht et al., 2015c), these rats had unrestricted access to food, with the 

exception of the 1-h self-administration session. 

Statistics 

Statistical analyses were performed using SPSS. Comparisons between drug group, 

phenotype, and session (self-administration experiments, every fifth day) or day (feeding 

experiments) were analyzed by mixed-design and repeated measures ANOVA tests. Planned 
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comparisons between drug groups within each phenotype were analyzed using one-way 

ANOVA. The data were Greenhouse-Geisser corrected where Mauchly’s Sphericity tests were 

significant. The α-level for all tests was set at 0.05. 

5.3 RESULTS 

High energy diet exposure suppressed nicotine self-administration. 

Nicotine groups acquired stable behavior, taking more infusions than saline controls (p < 

0.001). Within the nicotine groups, there was a significant effect of phenotype (p = 0.042). Chow 

rats self-administered more nicotine compared to rats fed HED (p = 0.011), though this did not 

reach significance when separated into OP and OR rats (Figure 15). 
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Figure 15. Infusions earned in 1-h daily self-administration sessions.  

Infusions earned across 1-h daily self-administration sessions. Open symbols indicate 

saline, and filled indicate nicotine groups. Across phenotypes, rats earned significantly 

more nicotine than saline infusions. Within the nicotine groups, Chow rats self-

administered significantly more nicotine than HED-maintained groups. 
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Self-administered nicotine suppressed body weight gain in OP and Chow, but not DR rats. 

Self-administered nicotine suppressed BW gain in OP and Chow rats compared to 

intravenous infusions of saline (Figure 16). There was a significant main effect of day (p < 

0.001); day*phenotype (p < 0.001); day*drug (p < 0.001); and three-way interaction (p = 0.011). 

Within phenotype, self-administered nicotine significantly suppressed BW gain in Chow rats on 

all days tested (ps < 0.018; Figure 16 a & b) and in OP rats on Days 5, 10, 15, and 20 (ps < 

0.016; Figure 16a & c). There was no significant impact of nicotine on weight gain in OR rats 

(Figure 16a & d). 
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Figure 16. Self-administered nicotine suppressed body weight gain in OP and chow-

fed rats.  

Self-administered nicotine (60 µg/kg/infusion) suppressed body weight gain in OP and Chow 

rats, but not OR rats (a). Open symbols indicates saline, and filled indicate nicotine groups.  For 

clarity, bar graphs demonstrate suppression of body weight gain in Chow (b), OP (c), and lack of 

suppression in OR (d) groups after 20 days of self-administration.  Data expressed as means ± 

SEM. * indicate p < 0.05, between 0 and 60 µg/kg/infusion nicotine within phenotype group.
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Self-administered nicotine had no impact on food intake. 

There was no significant effect of self-administered nicotine on 24h food intake at any 

measurement, analyzed as kcal as a percentage of BW (Figure 17 shows data from the final 24h 

of the experiment only, for clarity). There was no effect of day, phenotype, drug, or interaction 

term. There was no impact of drug on any day when tested within phenotype. Food intake data 

were transformed to correct for BW as caloric consumption increased significantly in the saline 

groups over the 20 days of experimentation as BW increased (p = 0.001), and to control for 

potential between subject differences. When food intake was expressed as kcal, there was a 

significant effect of day (p = 0.005), but no significant effect of drug, phenotype, or interaction. 
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Figure 17. Self-administered nicotine does not impact food intake. 

Self-administered nicotine (60 µg/kg/infusion) did not impact 24h food intake, expressed as kcal 

as a percentage of BW to account for the between subjects design of the experiment, in Chow 

(a), OP (b), or OR (c) rats after 20 days of self-administration, when nicotine intake was 

maximal in all groups. Data expressed as means ± SEM. Values within each bar are mean 24h 

kcal consumed on Day 20 of the experiment ± SEM.   
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5.4 DISCUSSION 

The current data are the first to evaluate the impact of self-administered nicotine on BW 

in a model of human diet-induced obesity and demonstrate that rats resistant to the development 

of obesity are resistant to nicotine-induced suppression of BW gain. Many smokers cite weight 

regulation as a primary reason for smoking initiation and the ability to quit (Audrain-McGovern 

et al., 2011). However, these data suggest that among smokers consuming a typical Westernized 

diet, a subset may be resistant to nicotine-induced weight-suppression. Therefore, expectations of 

weight suppression among many weight-concerned smokers may be unfounded.  

In the current data, suppression of BW gain by nicotine in OP and Chow rats occurred 

independent of food intake, replicating previous results (Rupprecht et al., 2016) and aligning 

with feeding data from human smokers. We have previously demonstrated that nicotine intake is 

negatively correlated with BW gain in adult male rats fed standard rodent chow (Rupprecht et 

al., 2016). The magnitude of weight reduction was greater in Chow than OP rats, possibly due to 

higher total nicotine consumption in Chow rats. Importantly, the lack of BW suppression seen in 

OR rats was not accompanied by a compensatory increase in food intake. Weight gain in OP 

nicotine rats was comparable to both lean (Chow and OR saline groups), suggesting that nicotine 

exposure may prevent the development of obesity. This aligns with a report in humans 

demonstrating that obese smokers lose weight compared to normal weight smokers during 

smoking (Veldheer et al., 2015). It is unclear why rats resistant to the development of obesity are 

also resistant to the weight-suppressive effects of nicotine. It is possible that nicotine acts to 
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suppress BW through similar mechanisms as those resulting in the anti-obesity phenotype in OR 

rats. Therefore, in OR rats, nicotine cannot act to potentiate reduced weight gain. Furthering our 

understanding of nicotine-induced BW suppression may lead to insights on resistance to diet-

induced obesity. 

The notion that OP and OR rats have differential responses to psychostimulants is not 

new. Selectively bred OP rats are more sensitive to the anorectic effects of D-amphetamine 

compared to selectively bred OR rats when fed chow, but this difference is occluded with HED 

maintenance (Valenza et al., 2015). Similarly, chow-maintained selectively bred OP rats are 

more sensitive to cocaine-induced locomotor sensitization than chow-maintained OR rats 

(Oginsky et al., 2015; Vollbrecht et al., 2015), but this difference is not present in outbred HED-

maintained OP and OR rats (Oginsky et al., 2015). It is possible that in the current experiments, 

OP rats were more sensitive to the locomotor effects of nicotine, potentially contributing to the 

suppression of BW. However, previous reports suggest that the differential effect of 

psychostimulants on behaviors related to BW regulation is blocked with HED-maintenance, 

which is at odds with the current data.  

 The current experiment was not designed to test whether the impact of self-administered 

nicotine on BW regulation pre-exists a manipulation of diet, although it provides some clues. It 

is likely that the extremes of HED-induced BW gain within the Chow group are more OP-like or 

OR-like. If the impact of nicotine on BW relies solely on the polygenetic predisposition to 

develop obesity, and not the combination of genetic and environmental factors, then rats that 

gained the least weight on HED in the Chow group should be resistant to the weight-suppressive 

effects of nicotine. However, there was no relationship between weight gain during HED 

maintenance and the impact of nicotine on weight gain in the Chow group (data not shown). This 
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suggests that resistance to nicotine-induced BW suppression requires consumption of a densely 

caloric diet. Examining the impact of nicotine on body weight regulation in selectively bred 

obesity-prone and –resistant rats would remove this confound. 

The weight gain in saline and nicotine Chow groups reported here is similar to what is 

expected in chow-fed rats without previous HED consumption (Rupprecht et al., 2016), though 

the exclusion of a chow group without HED exposure in the current design limits our 

interpretation. It is possible that prior maintenance on HED could impact weight gain when 

returned to chow. Future work may include a group that remains HED-naïve as a control, or 

utilize selectively bred obesity-prone and –resistant rats, though these rats are no longer 

commercially available.   

Self-administered nicotine in extended access 23-h sessions has been demonstrated to 

suppress responding for chow pellets (Bunney et al., 2015; O'Dell et al., 2007), but not 

responding for sucrose (Bunney et al., 2015). Smokers experience intermittent increases in blood 

and brain nicotine levels, which can be modeled using 1-h or 23-h access protocols. There are 

several advantages to the use of 1-h nicotine self-administration sessions in the study of body 

weight regulation (Rupprecht et al., 2016). The robust impact of nicotine on body weight when 

self-administered over 1-h provides some clues about potential mechanisms of action by which 

nicotine acts to suppress body weight. As the half-life of nicotine is about one hour in the rat 

(Adir et al., 1976), a metabolite of nicotine with a half-life lasting several hours, such as cotinine, 

may act to suppress body weight. Alternatively, nicotine may activate downstream pathways that 

have long lasting effects on body weight regulation, such as increased brown adipose tissue 

activity. 
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Nicotine consumption was higher in Chow rats compared to rats maintained on HED, 

independent of susceptibility to diet-induced obesity, which may suggest that HED-exposure 

reduces drug-seeking behaviors. One report supports this idea, demonstrating that HED-exposure 

impairs cocaine-seeking behaviors (Wellman et al., 2007). In contrast, it is possible that a prior 

exposure to HED may increase drug-seeking behaviors. Early life (Morganstern et al., 2013) and 

unpredictable (Puhl et al., 2011) exposure to high-energy diets have been shown to increase 

drug-seeking when switched to chow. Therefore, it is possible that the behavior observed in the 

current Chow group is increased in comparison to HED-groups due to the short HED-exposure 

period. Nevertheless, these self-administration data are at odds with the observation that smokers 

with obesity smoke more cigarettes per day than normal weight smokers (Veldheer et al., 2015). 

Future experiments testing the impact of obesity on self-administration across a full dose 

response curve may provide more insight to this issue.  

The results of this experiment provide new insight into the understanding of the 

interaction between nicotine and obesity and demonstrate that: 1) obesity-resistant rats are also 

resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may prevent or 

reduce levels of obesity in a subset of smokers. These data highlight the importance of 

considering obesity-prone and –resistant rats as separate populations and suggest that 

expectations of weight regulation by smoking may be unfounded in many weight-concerned 

smokers. 
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6.0 NICOTINE CONSUMPTION DEPENDS ON BODY WEIGHT IN RATS AND 

HUMAN SMOKERS 

6.1 INTRODUCTION 

Obesity and smoking represent the largest challenges to public health and the negative 

health impact of the combination of obesity and smoking may synergistically increase the risk 

for morbidity and mortality (Peeters et al., 2003; Perkins, 1989; Stewart et al., 2009). Obese 

smokers smoke significantly more cigarettes each day than non-obese smokers (Chiolero et al., 

2008; Chiolero et al., 2007a; John et al., 2005a), and obesity may increase the risk for smoking 

(Chatkin et al., 2010). Some evidence suggests that obese smokers have higher levels of nicotine 

dependence (Hussaini et al., 2011). Therefore, it is possible that obesity increases susceptibility 

to smoking.  

 Large reductions in the nicotine content of cigarettes may improve the public health 

burden of smoking, a strategy that is being considered worldwide (Benowitz et al., 1994, 2013; 

Hatsukami et al., 2013). Evidence from human smokers suggests that smoking very low nicotine 

content (VLNC) cigarettes containing 2.4 mg of nicotine/g of tobacco reduces smoking (Donny 

et al., 2015). This reduction in cigarettes smoked per day with VLNC cigarettes is accompanied 

by reductions in nicotine exposure, dependence, withdrawal, and may increase quitting (Donny 

et al., 2015). Similarly, a threshold for nicotine reinforcement has been shown to 
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exist in rats; self-administration behavior is not acquired or maintained at 3.75 µg/kg/infusion 

nicotine and below (Smith et al., 2013; Smith et al., 2014), validating rat self-administration 

procedures for the study of nicotine reduction. Obese smokers have higher ratings of liking and 

satisfaction for VLNC cigarettes (Blendy et al., 2005) and may represent a subpopulation of 

smokers at risk for continued smoking following large reductions of nicotine content in 

cigarettes (Rupprecht et al., 2015a).   

The present experiments examined the impact of obesity on smoking and nicotine 

consumption. Experiments tested: 1) the impact of body mass index (BMI) on smoking behavior 

and associated subjective measures before and after randomization to cigarettes of varying 

nicotine content; and 2) nicotine self-administration in a rat model of obesity, across a range 

doses. Data provide evidence that daily nicotine consumption is titrated dependent upon body 

weight, and have important implications for tobacco regulatory policy, as well as treatment 

strategies for smoking cessation.  

6.2 METHODS 

Clinical trial 

Design  

A secondary analysis from a completed clinical trial was performed. A seven-group, 

double-blind, randomized trial was conducted at 10 sites in the United States. The trial included 

a screening visit, a 2-week baseline period during which participants smoked their own usual 

brand cigarettes, and a 6-week investigational cigarette use period. During the 6-week 

experimental period, participants were provided with one of seven types of cigarettes varying in 
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nicotine content (mg nicotine per g of tobacco): 0.4 mg/g; 0.4 mg/g high tar (HT); 1.3 mg/g; 2.4 

mg/g; 5.2 mg/g; 15.8 mg/g, and usual brand (UB). Average tar yields were 8 to 10 mg; however, 

for the high tar cigarettes it was 13 mg. The 0.4 HT condition, which contained tobacco filler 

with the same nicotine content, but differed from 0.4 mg/g cigarettes in filter and ventilation 

resulting in higher yield (ISO) of tar and nicotine, was added to the design to explore the impact 

of tar yield on the use and acceptability of VLNC cigarettes. A two-week supply of cigarettes 

was provided free of charge at each weekly session during the experimental period. During this 

time, participants were instructed to smoke only the provided investigational cigarettes and 

received counseling aimed to increase compliance, though there was no penalty for using other 

nicotine/tobacco products. Study design is described in greater detail in the primary study 

manuscript (Donny et al., 2015). The study was approved by the Institutional Review Board at 

each study site and was reviewed by the FDA Center for Tobacco Products. 

Participants 

Adult daily smokers (n=840) were recruited using flyers, direct mailings, television and 

radio, and other advertisements between 2013 and 2014. Inclusion criteria included: at least 18 

years of age, at least five cigarettes smoked per day, expired carbon monoxide (CO) greater than 

8 ppm or urinary cotinine greater than 100 ng/ml. Exclusion criteria were: intention to quit 

smoking in the next 30 days; use of other tobacco products on more than 9 of the past 30 days; 

serious psychiatric or medical condition; positive toxicological screen for illicit drug use other 

than cannabis; pregnancy, plans to become pregnant, or breastfeeding; and exclusive use of “roll 

your own” cigarettes. All 839 eligible participants provided written informed consent prior to 

enrollment. 
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Study Assessments & Laboratory Analyses 

Height and weight measurements were collected at the screening visit, which was used to 

calculate BMI. The average number of cigarettes smoked per day during week 6 was assessed 

daily using an interactive telephone voice-response system (InterVision Media), which prompted 

participants to report the number of cigarettes smoked on the previous day. Body weight was 

measured to the nearest 0.1 kg during each visit to the laboratory, which was used to calculate 

cigarettes smoked each day per body mass at each time point. The Fagerstrom Test for Nicotine 

Dependence, Wisconsin Inventory of Smoking Dependence Motives, Minnesota Nicotine 

Withdrawal Scale, and the 10-item Questionnaire on Smoking Motives were administered during 

the second baseline and week 6 laboratory visits.  

Urinary total nicotine equivalents (TNE), the sum of nicotine and its metabolites and a 

measure of daily nicotine exposure, were analyzed by liquid chromatography tandem mass 

spectrometry (Carmella et al., 2013; Murphy et al., 2014; Murphy et al., 2013). Saliva samples 

for the assessment of nicotine metabolite ratio (NMR), an indicator or CYP2A6 activity and the 

rate of nicotine metabolism, were collected during the second baseline session (Donny et al., 

2015).  

Rat experiments: 

Subjects 

Experiments were conducted using two different rat populations, described in detail 

below. Upon arrival, rats were housed individually in ventilated tub cages on a reverse light-dark 
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12:12 hr cycle (lights off at 0700h) in a temperature-controlled facility (between 70 and 74 °F) 

and had free access to high energy diet (HED; Research Diets D12266B, New Brunswick, NJ; 

31.8% kcal from fat, 4.41 kcal/g) or standard rodent chow and water, unless noted otherwise. All 

procedures were approved by the University of Pittsburgh Institutional Animal Care and Use 

Committee.  

 

Outbred rat experiments 

Male Sprague-Dawley rats (Charles River, Kingston, NY) weighing 275-300 g were fed 

HED upon arrival. To classify body weight phenotype groups, body weight was monitored daily 

while all rats had free access to HED for two weeks. At the end of this two-week period, the top 

third with the highest weight gain was assigned to Obesity-Prone (OP), and the bottom third with 

the lowest weight gain were assigned to Obesity-Resistant (OR) (B. E. Levin, 1993; Rupprecht et 

al., 2017). Rats were maintained on HED throughout behavioral procedures unless noted 

otherwise.  

 

Selectively bred experiments 

Male Sprague-Dawley rats selectively bred for obesity-prone (OP) and obesity-resistance 

(OR) were shipped to the University of Pittsburgh from the University of Michigan (kindly 

provided by Dr. Carrie Ferrario, this line originated from selectively bred diet-induced obese and 

diet resistant rats from Dr. Barry Levin. Upon arrival, rats were assigned to HED or chow 

groups, counterbalanced by body weight within phenotype group. Rats were quarantined for 4.5 

weeks before surgical procedures. 
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Drugs 

 Nicotine hydrogen tartrate salt (Sigma, St. Louis, MO) was dissolved in 0.9% 

saline; doses are expressed as free base. 

 

Procedures 

 

Surgery  

 Rats were anesthetized with isoflurane (2-3% in 100% O2) and implanted with 

catheters into the right jugular vein (Smith et al., 2013; Smith et al., 2014). Rats were allowed to 

recover for 5-6 days before self-administration procedures, during which catheters were flushed 

daily with 0.1 ml heparinized saline (30 U/ml) containing Timentin (66.67 mg/ml), or gentamicin 

(1 mg), depending on drug availability at the time of experiments, and streptokinase (8,333 

U/ml). Catheters were flushed with 0.1 ml heparinized saline (10 U/ml) and heparinized saline 

(30 U/ml) containing timentin or gentamicin prior to and following the self-administration 

sessions, respectively. 

 

Self-administration 

Self-administration occurred in operant chambers (Med-Associates) enclosed in sound 

attenuating chambers (Rupprecht et al., 2016; Smith et al., 2015). One nose-poke hole was 

assigned as active, resulting in the delivery of an i.v. infusion after fulfilling the response 

requirement. The other nose-poke hole was inactive; responses at this nose-poke portal were 

recorded but had no consequence. Active and inactive nose-poke holes were randomly assigned 
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(left or right). Infusions were delivered after completion of the reinforcement schedule, as 

detailed below. Infusions were accompanied by a 15-sec cue light illuminated above the active 

nose-poke portal and an unsignaled 1-min timeout. Self-administration occurred in 1-h daily 

sessions, seven days per week, 2-3 h following the onset of the dark cycle. Unless noted 

otherwise, infusion duration was adjusted daily to account for body weight, thereby adjusting 

nicotine dose to body weight. Rats included in analyses passed a patency test, which required 

displaying signs of ataxia within 5-s of intravenous injections of methohexital (5 mg/kg).  

The impact of obesity on nicotine reinforcement, across a range of doses 

Outbred OP and OR maintained on HED (n=20 per group) self-administered 60 

µg/kg/infusion nicotine on an FR2 schedule of reinforcement, until rats reached stable behavior 

(infusions taken within 5% of the previous day for three consecutive days). Thereafter, schedule 

was increased to FR5, and dose was halved every 7 days to 1.875 µg/kg/infusion, and then 

saline. Final sample size following patency testing is as follows: OP, n=14; OR, n=14. Average 

body weights on the first day of self-administration were OP: 403.9 ± 11.9 g; OR: 363.8 ± 16.4 

g. 

 A separate group of outbred OP and OR rats (n= 11/group)  self-administered 60 µg/kg/

infusion nicotine on an FR2 for 14 days before the schedule was changed to a PR (1, 3, 6, 10, 

15, 20, 25, 32, 40, 50, 62, 77, 95, 118, 145, 179, 219, 268, 328, 402, 492). Each dose (60, 15, 

7.5, 0 µg/kg/infusion nicotine) was experienced for 4 consecutive days in 4-h sessions. Final 

sample size following patency testing is as follows: OP, n=11; OR, n=10. Average body weights 

on the first day of self-administration were OP: 430.5 ± 10.5 g; OR: 388.6 ± 13.2 g. 
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The impact of diet on nicotine self-administration in OP and OR rats 

To test whether increased self-administration of low doses of nicotine relies on pre-

existing genetic factors in OR rats or the combination of genetic and environmental factors, 

nicotine self-administration was tested across three phases of diet exposure. In Phase 1 (Chow), a 

group of outbred rats fed standard rodent chow (n = 60) acquired stable responding for 60 

µg/kg/infusion nicotine on an FR2 schedule of reinforcement, before the schedule was increased 

to FR5. Rats responded for 60, 7.5, and 0 for five consecutive days each. Body weight on day 1 

of Phase 1 were: OP: 379.2 ± 25.8 g; OR: 366.4 ± 18.0 g. Following the final day self-

administration in Phase 1, all rats were fed HED for 2 weeks, and assigned to OP or OR, as 

described above. In Phase 2 (HED), the self-administration procedures were repeated. On day 1 

of Phase 2, body weights were OP: 550.1 ± 40.1 g; OR: 513.9 ± 49.2 g. Following the final day 

of Phase 2, all rats were returned to standard rodent chow, and Phase 3 (Chow) tested whether 

maintenance on HED was required for changes in self-administration. On day 1 of Phase 3, body 

weights were OP: 640.8 ± 60.3 g; OR: 575 ± 52.2 g. Final sample size following patency testing 

is as follows: OP, n=15; OR, n=10. 

In a separate experiment, selectively bred OP and OR rats fed chow or HED (n=8 per 

group) self-administered 60 µg/kg/infusion nicotine on an FR2 schedule of reinforcement, until 

rats reached stable behavior. Thereafter, schedule was increased to FR5, and dose was halved 

every 7 days to 3.75 µg/kg/infusion, and then saline. Final sample size following patency testing 

is as follows: OP chow, n=7; OP HED, n=5; OR chow, n=6; OR HED, n=4. Average body 

weights on the first day of self-administration were Prone chow: 493.4 ± 48.4 g; Prone HED: 

571.6 ± 49.1; Resistant chow: 456.9 ± 38.5; Resistant HED: 483.1 ± 27.4 g. 
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The impact of body weight on unit dose self-administration 

In the experiments above, as is typical in drug self-administration experiments, drug dose 

was adjusted to account daily changes in body weight. In contrast, in human smokers, each 

cigarette consumed per day is not corrected for body weight, and one cigarette is considered one 

unit of consumption or reinforcement. Therefore, to test whether body weight impacts self-

administration of unit dose nicotine (with one infusion as one unit), without adjusting dose by 

body weight, outbred OP and OR rats (n = 11 per group) self-administered unit dose nicotine, 

where the infusion duration was held constant based upon a 400 g rat (based on chow-fed rats of 

the same age). Rats initially responded for 24 µg/infusion, the equivalent of 60 µg/infusion for a 

400 g rat, on an FR2 schedule of reinforcement until stable behavior was reached. Thereafter, 

dose was halved every 5 days seven times, and then followed by saline. For consistency and easy 

comparison to other experiments, doses in this experiment will be reported as the comparable 

µg/kg/infusion based on a 400 g rat, referred to as “Unit Dose”. Final sample size following 

patency testing is as follows: OP, n=8; OR, n=10. Body weights on the first day of self-

administration were OP: 508.8 ± 18.0 g; OR: 448.0 ± 10.0 g. 

Locomotor activity and non-drug reinforced responding 

To test whether there are existing differences in locomotor behavior that may impact self-

administration behavior, outbred OP and OR rats (n = 13/group) were placed in a novel open 

field apparatus for 30 minutes and locomotor activity was measured. 
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A separate group of OP and OR rats (n = 12/group) learned to respond for mildly 

reinforcing visual stimulus (VS; 1-sec stimulus light cue and 60-sec offset of the houselight) 

presentations on an FR2 schedule of reinforcement.  

Statistics 

Statistical analyses were performed using SPSS. For clinical trial analyses, the two 

normal nicotine conditions (15.8 mg/g and usual brand) were combined and compared to four 

VLNC conditions (2.4 – 0.4 mg/g), as these conditions had similar effects on cigarettes smoked 

per day and nicotine exposure in the overall sample (Donny et al., 2015; Tidey et al., 2017). The 

5.2 mg/g condition was excluded from analyses because its effects on cigarettes smoked per day 

and nicotine exposure in the overall sample were mixed. Effects of BMI on outcome measures at 

baseline and interaction between BMI and cigarette nicotine content on outcome measures at 

post-randomization week 6 were analyzed by general linear model regression. Analyses from 

baseline adjusted for age, race, and gender. Post-randomization analyses adjusted for age, race, 

gender, and the variable of interest.  

In rat experiments, comparisons between phenotype, dose, and diet were analyzed by 

mixed-design and repeated measures ANOVA tests. In each experiment, an average of the 

infusions taken on last 2 or 3 self-administration sessions at each dose was used for statistical 

tests. Planned comparisons between drug groups within each phenotype were analyzed using 

one-way ANOVA. The data were Greenhouse-Geisser corrected where Mauchly’s Sphericity 

tests were significant. The α-level for all tests was set at 0.05. 
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6.3 RESULTS 

Human experiments 

Characteristics of participants by BMI are listed in Table 4. 
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Table 4. Characteristics of participants by BMI. 

Under & Normal Weight 

(BMI < 25) 

Overweight 

(BMI: 25 – 29.9) 

Obese 

(BMI > 30) 

Sample size (%) 252 (30.0) 243 (29.3) 335 (39.9) 

BMI 22.17 ± 1.93 (16.86 - 24.84) 27.23 ± 1.37 (25.06 -29.84) 36.46 ± 6.80 (30.00 - 81.73) 

Weight (kg) 65.99 ± 9.27 (40.6 - 88.9) 81.15 ± 8.77 (59.4 - 111.0) 104.16 ± 20.20 (65.9 - 177.3) 

Age 38.85 ± 14.86 (18-71) 42.53 ± 12.7 (18 - 68) 43.12 ± 11.77 (19 -74) 

Gender (%) 

Male 159 (63.1) 164 (67.5) 152 (45.4) 

Female 93 (36.9) 79 (32.5) 183 (54.6) 

Race (%) 

White 157 (62.3) 151 (62.1) 156 (46.6) 

Black/African 

American 
85 (33.7) 89 (36.6) 166 (49.6) 

American 

Indian/Alaskan Native 
10 (4.0) 7 (2.9) 20 (6.0) 

Asian 9 (3.6) 3 (1.2) 5 (1.5) 

Native Hawaiian/Pacific 

Islander 
2 (0.8) 4 (1.6) 3 (0.9) 

Other 7 (2.8) 7 (2.9) 15 (4.5) 
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Baseline: obese smokers smoke more cigarettes per day, but have lower nicotine exposure 

At baseline, obese smokers smoked significantly more cigarettes per day than normal 

weight smokers (p = 0.002; Figure 18a). As we hypothesize that body mass is a determinant of 

smoking behavior, cigarettes smoked per day as a function of body weight (kg) was analyzed. 

Cigarettes smoked per day as a function of body weight, normal weight smokers consumed 

significantly more than overweight and normal weight smokers (p < 0.001; Figure 18b). This 

pattern was reflected in total nicotine equivalents (Figure 18c). There was a significant effect of 

BMI on total nicotine equivalents (p = 0.027). There was no significant impact of BMI status on 

nicotine metabolite ratio (p = 0.466; Figure 18d) or expired carbon monoxide (p = 0.713; Figure 

18e).  

There were no differences in nicotine dependence by BMI status, as measured using the 

WISDM (p = 0.546; Figure 19b) and the FTND (p = 0.570; Figure 19c) scales. There was no 

impact of BMI on ratings of craving, using the Questionnaire on Smoking Motives (p = 0.532; 

Figure 20a) or withdrawal, using the Minnesota Nicotine Withdrawal Scale (p = 0.760; Figure 

20b).  
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Figure 18. Smoking related behaviors by BMI at baseline, while smoking usual

brand cigarettes.  

Cigarettes smoked per day is significantly higher in obese smokers compared to normal weight 

smokers (a). As body weight may be a determinant of smoking behavior, cigarettes per day as a 

function of body weight was evaluated (b). Obese and overweight smokers consumed 

significantly fewer cigarettes per day as a function of body weight compared to normal weight 

smokers. This pattern was reflected in total nicotine equivalents, a urinary measure of nicotine 

exposure (c). There was a significant impact of BMI on total nicotine equivalents. There was no 

impact of BMI on nicotine metabolite ratio (d) or expired carbon monoxide (e). * indicates p < 

0.05, compared to normal weight smokers.  
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Figure 19. Measures of dependence by BMI at baseline, when smoking usual brand 

cigarettes.  

There was no impact of BMI on nicotine dependence, as measured by the Wisconsin Inventory 

of Smoking Dependence Motives (a; 37-item questionnaire, 11-77 scale) or the Fagerstrom Test 

for Nicotine Dependence, with the cigarettes per day item removed (b). 
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Figure 20. Measures of craving and withdrawal by BMI at baseline, when 

smoking usual brand cigarettes.  

There was no impact of BMI on nicotine craving, measured by the Questionnaire on Smoking 

Motives (a) or withdrawal, measured by the Minnesota Nicotine Withdrawal Scale (b). 
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VLNC cigarettes reduced cigarette consumption, exposure, and subjective measures of 

dependence and craving 

At week 6, cigarettes smoked per day was significantly reduced by VLNC use (p < 

0.001). There was no effect of BMI (p = 0.263), and a significant interaction (p = 0.032) on 

cigarettes smoked per day (Figure 21a). Within the VLNC cigarette group, obese smokers 

smoked significantly more cigarettes per day compared to normal weight smokers (p = 0.012). 

VLNC use significantly suppressed cigarettes smoked per day as a function of body weight (p < 

0.001). There was no significant effect of BMI (p = 0.210) and a significant interaction (p = 

0.030; Figure 21b). There was a significant reduction in TNE in the VLNC group (p < 0.001), 

but no significant effect of BMI (p = 0.333) or interaction (p = 0.271). There was a significant 

effect of cigarette nicotine content (ps < 0.001), but not BMI and no significant interaction on 

Measures of dependence, withdrawal, or craving. 
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 Figure 21. Smoking and nicotine exposure at week 6.  

VLNC cigarettes reduced cigarettes smoked per day (a), cigarettes smoked per day as a function 

of body weight (b), and nicotine exposure (c) across BMI groups.  
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Rat experiments 

Resistance to diet-induced obesity increases low dose nicotine self-administration 

Outbred OR rats took significantly more infusions compared to OP across a range of 

doses on an FR5 schedule of reinforcement (Figure 22a). There was a significant effect of dose 

(p < 0.001), phenotype (p = 0.041), and interaction (p = 0.022). OR rats took more infusions at 

all doses of nicotine compared to saline, within subject (ps < 0.001). In OP rats, the number of 

infusions taken at 1.875 µg/kg/infusion was not significantly higher than saline (p = 0.230). All 

other doses were self-administered at a higher rate compared to saline in OP rats (ps < 0.005). 

Active responses were significantly higher than inactive responses at all doses above saline for 

the OR group and above 3.75 μg/kg/infusion nicotine for the OP group. There were no 

differences between groups in inactive responding (ranging on average between 3 and 15 

responses, across doses). There were no differences between in nicotine consumption (mg) 

across doses.  

In a separate group of rats, OP rats took more infusions of nicotine on a PR schedule of 

reinforcement (Figure 22b). There was a significant effect of dose (p < 0.001), phenotype (p = 

0.047), but no interaction (p = 0.356). Post-hoc analyses demonstrated that OR rats responded 

significantly more for 15 μg/kg/infusion nicotine for the OP group. 
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Figure 22. Nicotine self-administration in obesity-prone and obesity-resistant rats 

fed HED. 

Obesity-resistant rats self-administered higher numbers of infusions on a fixed-ratio schedule of 

reinforcement (a). In a separate group of rats, obesity-resistant rats responded more for nicotine 

infusions on a progressive ratio schedule of reinforcement (b). * is p < 0.05 between phenotype 

groups at a specific nicotine dose.  
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Increased low dose nicotine self-administration in OR rats requires HED exposure 

HED consumption increased nicotine self-administration in OR, but not OP rats (Figure 

23). In outbred OP and OR rats naive to HED (Phase 1), there was no impact of phenotype on 

nicotine self-administration (p = 0.415; Figure 23a). Consumption of HED (Phase 2) increased 

self-administration in OR rats at 7.5 and 60 μg/kg/infusion nicotine, compared to OP rats (Figure 

23b), and within-subject to Phase 1 (p < 0.007). Self-administration in OR rats remained high 

following the removal of HED and replacement with chow (p = 0.027; Figure 23c). 
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 Figure 23. Enhanced nicotine self-administration in obesity-resistant rats requires 

HED exposure.  

There were no differences in nicotine self-administration between obesity-prone and obesity-

resistant groups when fed chow, before exposure to HED (a). Maintenance on HED significantly 

increased nicotine self-administration in obesity-resistant rats only (b). Obesity-resistant rats had 

increased self-administration following removal of HED and maintenance on chow (c). * 

indicates p < 0.05 between groups at a specific nicotine dose.  
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The sample size in experiments using selectively bred rats is insufficient for statistical 

tests due to Power analyses, but the data are informative. Therefore, a descriptive analysis of data 

follows. Maintenance on HED increased self-administration in selectively-bred OR rats (Figure 

24). At 7.5 µg/kg/infusion nicotine, OR HED rats self-administered more infusions than OR 

chow rats at trend levels, as revealed by independent samples t-test (p  = 0.051). In selectively-

bred OR rats fed chow, self-administration was similar to OP groups. There was no impact of 

diet on nicotine self-administration in selectively bred OP rats. 
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 Figure 24. Nicotine self-administration across a range of doses in selectively bred 

obesity-prone and obesity-resistant rats.  

Low dose self-administration was enhanced in obesity-resistant rats fed HED, compared to all 

other groups. There was no impact of diet on obesity-prone rats, and there was no impact of 

phenotype on self-administration in chow fed rats.  
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Obesity increases nicotine self-administration as unit dose 

When nicotine infusions were not corrected for body weight, outbred OP rats self-

administered significantly more infusions than OR rats, across a range of doses. (Figure 25). 

There was a significant effect of dose (p < 0.001), but not phenotype (p = 0.132) or interaction (p 

= 0.213). Post-hoc analyses revealed that OP rats self-administered significantly more infusions 

at 60, 30, and 15 unit dose/infusion. There were no differences in nicotine consumption (mg)/kg 

body weight between groups.  
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 Figure 25. Nicotine self-administration in obesity-prone and –resistant rats as unit 

dose/infusion. 

Obesity-prone and –resistant rats fed HED responded for nicotine infusions, when infusion 

duration was based upon a 400 g rat, and was stable for the entire experiment. Obesity-prone 

self-administered more infusions than obesity-resistant. * indicates p < 0.05 between phenotype 

groups at a specific nicotine dose.  
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Obesity does not impact locomotor activity or VS responding. 

 There was no impact of phenotype on locomotor activity (p = 0.368; Figure 26a). 

There was no impact of phenotype on VS presentations earned (p = 0.536; Figure 26b). 
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Figure 26. Locomotor activity and non-drug reinforced responding in obesity-

prone and –resistant rats 

There was no impact of phenotype on locomotor behavior in a novel open field (a) or on 

responding for mildly reinforcing visual stimulus presentations (b).  



124 

6.4 DISCUSSION 

The implementation of product standards requiring substantial reductions of nicotine 

content in cigarettes is hypothesized to improve public health by reducing smoking and 

facilitating quitting (Benowitz et al., 2013; Donny et al., 2012; Hatsukami et al., 2013). Evidence 

suggests that smokers with obesity may be at risk for continued smoking following mandated 

reductions in nicotine content in cigarettes (Rupprecht et al., 2015a). The current investigation 

found that smokers with obesity smoke more cigarettes per day, but consume fewer cigarettes 

per day as a function of body mass. Nicotine exposure was low in obese smokers compared to 

normal weight smokers. Likewise, obesity-prone rats had higher levels of nicotine intake, but 

less nicotine intake when infusions were corrected as a function of body mass. Together, these 

data indicate that the consumption of nicotine, via cigarettes in human smokers or infusions in 

self-administering rats, is titrated dependent upon body weight. Reduction of nicotine content in 

cigarettes and nicotine dose resulted in reductions in nicotine consumption across obese and lean 

groups, suggesting that the reduction of nicotine content in cigarettes may be an effective 

strategy for reducing smoking across BMI groups. 

Obesity impacts drug distribution and pharmacokinetics. Nicotine is distributed primarily 

in lean mass and has very low affinity for adipose tissue (Hukkanen et al., 2005; Urakawa et al., 

1994). Total lean body mass is increased in obesity, although the percentage of lean mass per 

total body mass is reduced (Cheymol, 2000). The percentage of fat mass in obesity is increased. 

Therefore, obese individuals may require higher levels of nicotine consumption per lean body 
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mass, reflected as increased CPD (Figure 18a) and increased unit dose self-administration 

(Figure 25) in the present data, but lower nicotine consumption as a percentage of lean body 

mass, reflected as fewer CPD/kg (Figure 18b) and fewer nicotine infusions/kg (Figures 22-24). 

Large reductions in nicotine content or dose, containing ~ 15% of the nicotine content of control 

cigarettes or ~12% of nicotine dose to maintain high levels of self-administration behavior, 

resulted in reduced nicotine consumption independent of obesity status. It is likely that 

distribution of nicotine in lean mass at these reduced nicotine contents and doses is very low, and 

no longer acts to reinforce behavior. These data support nicotine reduction policy as an effective 

strategy for improving public health outcomes related to smoking.  

Data from nicotine replacement therapy use in obese and non-obese subjects may provide 

additional evidence for titration of nicotine consumption by body weight. Transdermal nicotine 

patch is less effective in maintaining smoking quit rates in obesity (Lerman et al., 2004; Swan et 

al., 1997), primarily among overweight and obese women (Strong et al., 2015). Efficacy of 

transdermal nicotine patch as a cessation tool in obesity may be due to differences in nicotine 

pharmacokinetics. Peak nicotine concentrations were reduced in obese men vs. non-obese men 

following application of a transdermal nicotine patch (Prather et al., 1993). One study compared 

the efficacy of transdermal nicotine patch and nicotine nasal spray in promoting quitting in obese 

and non-obese smokers (Lerman et al., 2004). Nicotine nasal spray was more effective in 

promoting quitting in obese compared to non-obese smokers. Obese subjects self-administered 

significantly more nicotine nasal spray than non-obese subjects, indicating that titration of 

nicotine dose in obesity is more effective for nicotine replacement in obesity than transdermal 

nicotine patch (Lerman et al.). 
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Although smokers with obesity smoke significantly more cigarettes per day, there was no 

impact of BMI on measures of nicotine dependence, withdrawal, or craving. These results are 

further support for the notion that increased cigarette and nicotine consumption in obese subjects 

is due to titration of nicotine levels in the blood and brain, and not subjective factors.  

In the current experiments, it is difficult to distinguish between nicotine consumption and 

nicotine reward, as consumption was dependent upon body mass. One previous report has 

evaluated nicotine reward in obese humans and rats, using procedures that control for subject’s 

nicotine consumption (Blendy et al., 2005). Mice that became obese when fed a high fat diet did 

not exhibit a conditioned place preference, but mice fed a normal fat diet showed a nicotine 

conditioned place preference, which may indicate reduced nicotine reward in obesity or by high 

fat diet. Using a choice procedure in which obese and non-obese smokers were allowed to take 

16 puffs from a normal nicotine content or VLNC cigarette, obese smokers took significantly 

fewer puffs from the normal nicotine cigarette compared to non-obese smokers. If proportion of 

normal nicotine content choice is an effective measure of nicotine reward, it is likely that obese 

smokers have reduced nicotine reward. However, choice of normal nicotine content cigarettes 

was 48% by obese smokers, which may suggest that obese smokers were unable to discriminate 

between the two cigarettes.  It is possible that, in obese smokers, 8 total puffs of a normal 

nicotine content cigarette insufficient to reach blood and brain nicotine levels to detect nicotine. 

Likewise, a nicotine conditioned place preference may require a higher dose in obese mice, 

which was not tested. Regardless, data suggest that nicotine reward may be reduced in obesity 

(Blendy et al., 2005), but total body weight may have influenced outcomes.   
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Although VLNC cigarettes reduced smoking across BMI group, the average number of 

VLNC cigarettes smoked per day at week 6 in smokers with obesity was higher than normal 

weight smokers. This may indicate that obese smokers are more sensitive to non-nicotine aspects 

of smoking. This could include non-nicotine constituents in cigarettes that may modify use, such 

as chemicals that inhibit monoamine oxidase (Smith et al., 2016). Additionally, evidence 

suggests that conditioned reinforcement may be higher in obesity (Robinson et al., 2015; 

Vollbrecht et al., 2015), and suggests the possibility that obese smokers may be more sensitive to 

smoking-related cues. However, increased nicotine-related cue-seeking in obesity may be 

unlikely given that obesity-prone and obesity-resistant rats responded at similar levels for 

infusions of saline control delivered with previously nicotine-paired cues, whether infusions 

were delivered as a unit dose or dose/kg. Evaluation of the number of VLNC cigarettes smoked 

per day over a longer period to better evaluate extinction of smoking-related cues is warranted.  

An additional important observation in these data is that obesity-resistant rats fed chow 

self-administer similar levels as obesity-prone rats fed chow and HED. Therefore, there is likely 

some physiological or neurobiological change induced by HED specifically in rats resistant to 

obesity to increase nicotine self-administration, particularly at doses at the peak and descending 

limbs of the dose response curve, when infusion duration accounts for body weight. There are 

many published records of differences in physiological and neurobiological properties between 

obesity-prone and –resistant rats, though data suggests that most changes are exclusive to the 

obesity-prone individuals (Clegg et al., 2005; Irani et al., 2007; Irani et al., 2009; B. E. Levin, 

1990a, 1990b; Madsen et al., 2010; Robinson et al., 2015; Vollbrecht et al., 2015). An exception 

to this is that orexin receptor expression is elevated in selectively-bred obesity-resistant chow fed 

rats (Teske et al., 2013), although the impact of HED consumption on orexin receptor expression 
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in OR rats is unexplored. Orexin neurotransmission has been related to nicotine reinforcement 

and self-administration (Kenny, 2011). It is possible that differences in orexin neurotransmission 

at least in part explain the behavioral phenomenon in the present results. Future experiments 

should explore a mechanism underlying this behavioral phenomenon.  

In summary, nicotine consumption is titrated by an individual based upon body weight in 

human smokers and rats. Individuals with obesity consume significantly more units of nicotine 

(cigarettes in smokers and infusions in rats), but fewer units per kg of body weight. Large 

reductions of nicotine content or dose result in reductions in nicotine consumption independent 

of obesity. These results have important implications for understanding drug use in obesity, and 

for nicotine reduction policy.  
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7.0  GENERAL DISCUSSION 

Tobacco use, primarily through cigarette smoking, is the largest cause of preventable 

death worldwide. Despite the well-publicized health risks associated with smoking, 

approximately 19 percent of adults in the United States are smokers, and about half of these 

smokers are predicted to die prematurely due to tobacco-related illnesses (Centers for Disease et 

al., 2013). Epidemiological and empirical studies describe an inverse relationship between 

tobacco smoking or nicotine use and body weight (Audrain-McGovern et al., 2011; Jacobs et al., 

1981), and desired weight loss or maintenance of reduced body weight is commonly cited as a 

primary reason for smoking (Fulkerson et al., 2003). There is a negative correlation between the 

percentage of smokers and body mass index (BMI) among lean smokers, but this relationship is 

reversed among overweight, obese, and morbidly obese smokers (Chatkin et al., 2010). Thus, 

there is a U-shape curve associated with percentages of smokers and smoking status as a function 

of BMI. Furthermore, several other studies report that moderate smokers weigh less than non-

smokers, but heavy smokers (i.e., smoking at higher frequencies) are often obese (Chiolero et al., 

2007a). Therefore, the relationship between nicotine and body weight requires attention, and was 

the focus of this dissertation. This general discussion reviews the results of the experiments in 

Chapters 2-6, and provides a more in depth discussion of potential mechanisms to explain the 

impact of self-administered nicotine on energy balance, as well as increased nicotine 

consumption in obesity.  
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Self-administered nicotine, even at doses that do not support high levels of nicotine-

taking behaviors, suppressed body weight gain independent of food intake. These data provide 

evidence that the dose response curve for body weight reduction by nicotine is shifted to the left 

compared to nicotine reinforcement. Therefore, it is possible that reductions of nicotine content 

in cigarettes may not reinforce smoking behavior, but could be effective for weight suppression, 

which may encourage weight-concerned smokers to continue to smoke. Low levels of daily 

nicotine intake suppressed body weight gain and decreased respiratory exchange ratio (RER), 

suggesting that self-administered nicotine shifts macronutrient utilization towards increased fat 

metabolism. These changes were not accompanied by changes in physical activity, food intake, 

or heat. These data offer support for increased fat utilization as the primary source of increased 

energy expenditure by self-administered nicotine, acting to suppress weight gain.  

A potential strategy to improve smoking-related public health outcomes posits that 

reducing the nicotine content in cigarettes below an addictive threshold would promote quitting 

in current smokers and prevent initiation of smoking (Benowitz et al., 1994; Donny et al., 2012). 

Evidence from rat self-administration experiments suggests that reduction of daily nicotine 

consumption results in weight gain independent of changes in food intake. Human smokers 

randomized to smoke very low nicotine content (VLNC) cigarettes and were compliant in 

smoking their investigational produce gained a significant amount of weight. This weight gain 

was the approximate level expected in completely abstinent smokers over a similar amount of 

time. It has been proposed that the health benefits of quitting smoking outweigh the post-

cessation weight gain. If VLNC cigarette use promotes quitting, the reduction of nicotine content 

in cigarettes should have an overall positive impact on public health, despite associated weight 

gain. 
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Most societies consume a “Westernized diet,” which is high in fat and sugar content. 

Some individuals consuming a Westernized diet are prone to diet-induced obesity, and others are 

resistant to the development of diet-induced obesity. Two separate experiments evaluated obese 

and lean individuals as it relates to nicotine-related behaviors. First, self-administered nicotine 

suppressed body weight gain in obesity-prone (OP) rats fed HED, but not obesity-resistant rats 

fed HED, suggesting that rats resistant to diet-induced obesity are also resistant to the effects of 

nicotine on weight suppression. Second, nicotine consumption per body mass is reduced in 

obesity, but nicotine unit (cigarettes per day or stable infusion duration) is increased in obese rats 

and humans. Potential mechanisms of action are explored below. 

7.1 METHODOLOGICAL CONSIDERATIONS AND OTHER FACTORS 

UNADDRESSED IN OUR MODEL 

Intravenous self-administration is often considered the gold standard test for abuse 

liability because of its clear face validity and because responding for the drug is a function of 

drug reinforcement (Henningfield et al., 2016). A nicotine reduction policy targets the 

reinforcing effects of nicotine, making self-administration an ideal model for understanding how 

nicotine reduction is likely to impact behavior and other health-related behaviors. As discussed 

in Chapter 2, there are clear advantages to the use of limited access self-administration 

procedures in the study of the impact of nicotine on energy balance. However, utilization of 

limited access nicotine self-administration in male rats has some limitations. A few of these 

limitations are discussed below. 
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Smokers experience increases in blood and brain nicotine levels throughout the day with 

each cigarette smoked. Limited access self-administration procedures cannot capture the cyclical 

rise and fall in nicotine blood and brain levels experienced in smokers. It is possible that this 

pattern of nicotine exposure impacts factors that influence energy balance. Experiments using 

23-h self-administration in male rats have demonstrated suppression in total 45mg pellets

consumed (Bunney et al., 2015), though it is unclear whether this is due to the pharmacological 

action of nicotine on food intake or a consequence of reduced body weight. A separate 

experiment showed that tolerance develops to the anorectic effects of self-administered nicotine 

(O'Dell et al., 2007).  

7.2 NICOTINE-INDUCED SUPPRESSION OF WEIGHT GAIN: POTENTIAL 

MECHANSISMS AND SITES OF ACTION 

Identification of a specific mechanism by which nicotine acts to suppress weight gain is 

made difficult by the complexity of nAChR expression and the impact of nicotine on nAChR 

function and expression. nAChRs are expressed on nearly every cell in the body, and the 

subunits that comprise nAChRs have diverse expression and functional properties in their 

interaction with nicotine (Changeux et al., 1984; Dani, 2015), and with varying affinity for 

nicotine (Dani & Heinemann 1996). Generally, chronic nicotine binding at nAChR results in 

activation and desensitization of the receptor. There is evidence for the expression of 

nonfunctional nAChR (Margiotta et al., 1987), and that low dose nicotine can cause 

desensitization without activation of nAChR (Dani et al., 1996). The interaction between 

nicotine and nAChR is complex and relies on many factors, which include the route, dose, and 
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chronicity of administration. These factors likely influence the impact of nicotine on energy 

balance (Zoli et al., 2012).  

The complexity of the interaction of nAChR with nicotine and the fact that contingent vs. 

non-contingent nicotine may differentially impact energy balance (Rupprecht et al., 2016) 

outcomes make it difficult to draw upon previously published work to inform the current 

findings. Given the available data, likely sites of action include brain, pituitary, sympathetic 

nervous system, and adipose tissue. This discussion of the action of nicotine in the body as it 

relates to energy balance is not comprehensive, but meant to supplement discussions in previous 

chapters. Although these potential sites of action are discussed separately, the likely possibility 

exists that activation is occurring in series or in parallel.  

7.2.1 Nicotine action at nAChR to suppress weight gain. 

It is assumed that the action of nicotine to suppress weight gain is due to activation of the 

nAChR. However, several experiments have shown that blockade of the nAChR using 

mecamylamine, a nAChR antagonist, fails to attenuate the impact of nicotine on weight gain 

(Aceto et al., 1986; Schechter et al., 1976). However, this form of pharmacological blockade is 

complicated by the fact that the half-life of nicotine outlasts the half-life of mecamylamine. 

Specific actions of nicotine, such as lipolysis, have shown to be blocked by mecamylamine when 

infused to a more local target (Andersson et al., 2001). This may suggest evidence for nicotine 

acting at nAChR at many levels to suppress weight gain. However, the possibility that nicotine 

acts independently of cholinergic signaling to suppress weight gain cannot be ruled out based on 

the currently available data.  
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The most widely expressed nAChR subtypes in the brain and body are α4β2 and α7 

(Gotti et al., 2007). Administration of sazetidine-A, a partial to full agonist with high affinity for 

α4β2 nAChR, suppresses weight gain (Hussmann et al., 2012). Cytisine is a partial agonist at 

α4β2 nAChR, and partial to full agonist at β4-containing and α7 nAChR. Non-contingent 

delivery of cytisine can act to suppress weight gain and food intake (Grebenstein et al., 2013; 

Mineur et al., 2011). A selective agonist at the α7 nAChR reduces food intake and weight gain in 

obesity (Marrero et al., 2010; McFadden et al., 2014). Although limited, these results suggest 

that nicotine does indeed act at nAChR to mediate energy balance.  

The time course of nicotine to act on systems that are likely in part responsible for the 

suppression of weight gain is discussed in Chapter 3. However, throughout the following 

subsections, it is important to keep in mind that the effects of nicotine on systems involved in 

weight regulation remain activated, or possibly become activated, after nicotine is cleared, and 

evidence does not support a role for nicotine metabolites acting to suppress weight gain (Riah et 

al., 1999).  

7.2.2 Brain nAChR in energy balance. 

Experimental studying the action of nicotine in the brain to modulate energy balance has 

focused on cell types within the hypothalamus and the brainstem. Nicotine may act at nAChR 

expressed on diverse cell types in the hypothalamus, including proopiomelanacortin (POMC), 

neuropeptide Y (NPY), Agouti-related peptide (AgRP), and orexin, to suppress food intake 

(Frankish et al., 1995; Li et al., 2000; Mineur et al., 2011). Reports have demonstrated both 

increased and decreased mRNA levels of these hypothalamic neuropeptides following nicotine 

exposure, it is difficult to attribute activation of one or more of these neuropeptides on the impact 
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of nicotine on energy balance, particularly when considering the cumulative effect of activation 

of all hypothalamic peptides. Nicotinic receptors are expressed in the brainstem, primarily 

localized to the nucleus tractus solitarius (NTS) and the A2 and C2/3 regions (Wada et al., 1989). 

Nicotine may act on these receptors to suppress meal size (Guan et al., 2004), which may be 

mediated by prolactin-releasing peptide (B. Sun et al., 2005), a hindbrain neuropeptide which 

suppresses meal size (Maniscalco et al., 2012).  

Mice chronically treated with nicotine have reduced body weight gain, where mice with 

knockout of cannabinoid receptor type 1 (CB1) fail to show this effect (Bura et al., 2010). 

Rimonabant, a CB1 inverse agonist, may mitigate post-cessation weight gain in smokers (Rigotti 

et al., 2009), despite serious psychological side effects of the drug. The interaction between 

nicotine and the endocannabinoid system to control weight regulation may occur at the neural 

level, although CB1 receptors are expressed throughout the body. 

7.2.3 Nicotine increasing pituitary hormone release 

Cigarette smoke and nicotine have been shown to have effects on the endocrine system. 

Pituitary hormone release, including adrenocorticotropin hormone (ACTH), growth hormone, 

and vasopressin, is stimulated by smoking normal nicotine content, but not low nicotine content 

cigarettes (Seyler et al., 1986), indicating that pituitary hormone release is due to nicotine. 

Growth hormone stimulates lipolysis in adipose tissue (Vijayakumar et al., 2010), and it is 

possible that increased lipolysis by nicotine is caused by the release of growth hormone.  
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7.2.4 Sympathetic activation by nicotine to regulate energy balance. 

Nicotinic receptors are the primary mediator of neurotransmission in sympathetic 

ganglia, and it makes sense that nicotine may act to increase sympathetic tone to target tissue to 

suppress weight gain. Experimenter- and self-administered nicotine differentially impact 

sympathetic output, as measured by catecholamines in plasma (Donny), indicating that self-

administered nicotine may not have an effect of sympathetic drive. However, it is conceivable 

that self-administered nicotine acts to increase sympathetic drive, increasing adrenergic signaling 

to more local regions. Smokers have increased norepinephrine in urine, which may be due to 

nicotine or smoke itself. Nicotine can increase sympathetic tone (Yoshia 1990; Haass & Kubler 

1997), but whether this contributes to weight regulation is unclear. Global pharmacologic 

blockade of sympathetic ganglia failed to suppress nicotine-induced weight gain suppression 

(unpublished results from our lab). These results are complicated by the half-life of drugs used 

for ganglionic blockade and potential side effects of chronic ganglionic blockade.  

7.2.5 The impact of nicotine on adipose tissue to regulate energy balance. 

As discussed in Chapter 3, nicotine has been shown to increase lipolysis in adipocyte 

culture, in explanted adipose tissue from nicotine-treated rats, and increase respiratory exchange 

ratio. These data indicate that nicotine increases fat utilization, which may lead to decreased 

weight gain. It is clear that nicotine impacts functions related to lipolysis, but there are no data 

casually linking increased lipolysis to suppression of weight gain by nicotine. The following 

paragraphs discuss previously published reports on the effect of nicotine on adipose tissue, and 

offer potential roles for those findings in the current data.  



 137 

It has been previously reported that large doses of subcutaneous nicotine increase brown 

adipose tissue (BAT) temperature and the mitochondrial uncoupling protein 1 (UCP1), indicating 

increased thermogenesis (de Morentin et al., 2012; Seoane-Collazo et al., 2014; Yoshida et al., 

1999). Although increased thermogenesis in BAT by nicotine has been reported many times, 

there is no link between nicotine increasing thermogenesis and weight regulation. One study 

reported increased BAT thermogenesis in rats treated chronically with nicotine, but no change in 

weight (Lupien et al., 1988). While a role for nAChR in sympathetic ganglia in thermoregulation 

is clear (M. Sun et al., 2007), evidence supporting increased BAT thermogenesis by nicotine to 

suppress weight gain remains unconvincing. In fact, unpublished data from our lab consistently 

revealed that self-administered nicotine significantly suppressed BAT temperature immediately 

following the session, and after many days of nicotine self-administration, there was no 

difference in BAT temperature. Previously published work investigating the effect of nicotine on 

BAT temperature and UPC1 used experimenter-administered nicotine. It is possible that 

contingency of nicotine administration impacts its effects on BAT, which could be directly 

related to the inability of self-administered nicotine to increase catecholamine (Donny et al., 

2000). 

Until recently, it was thought that only BAT was responsible for adaptive thermogenesis, 

but it has been established that there are depots of brown-like fat in white adipose tissue (WAT) 

with thermogenic properties (Dempersmier et al., 2015; Harms et al., 2013). Importantly, these 

brown-like cells or depots exist in rodents and humans (Ishibashi et al., 2010). White fat cells 

can be induced to become beige cells (i.e., brown-like fat cells in white fat depots), also called 

brite cells (brown in white), by certain stimuli, a process known as “browning.” Beige cells can 

be detected in WAT depots by measuring specific molecular signatures or by histological 



 138 

confirmation (de Jong et al., 2015; Dodd et al., 2015). Repeated subcutaneous injection of 

nicotine induces increased UCP1 in WAT and produces a brown-like multilocular phenotype 

(Yoshida et al., 1999). It is rare that a pharmacological treatment reduces body weight in the 

absence of an effect on food intake or activity. Further, browning of WAT increases energy 

expenditure (Dodd et al., 2015). 

7.3 THE INTERACTION BETWEEN NICOTINE AND BODY WEIGHT 

 

 There is a bidirectional relationship between nicotine and body weight: nicotine impacts 

weight regulation, and body weight influences nicotine consumption. The interaction between 

weight and nicotine is particularly interesting in obesity-resistant rats fed HED. Rats resistant to 

obesity fed HED are resistant to nicotine-induced suppression of weight gain and have elevated 

levels of low dose nicotine self-administration. Together, these data suggest that obesity-resistant 

rats are less sensitive to nicotine. Evidence presented in this dissertation (Chapters 5 and 6) 

suggests that this altered sensitivity to nicotine requires both the genetic predisposition for 

obesity-resistance and exposure to HED. Behavioral, neurobiological, and physiological 

differences between these phenotypes have been previously studied. However, the obesity-prone 

rats, both before and after HED exposure, have changed behavioral, physiological, and 

neurobiological changes compared to a chow-fed control. Consistently, the obesity-resistant rat 

functions similar to an outbred Sprague-Dawley chow-fed rat. Therefore, the majority of 

previous literature on this topic does not inform the data reported here. Several differences 

between obesity-prone and obesity-resistant rats that may inform the current data are discussed 
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below. This discussion is not meant to be comprehensive, but to highlight a few possibilities of 

differences between obesity-prone and –resistant rats that could account for the altered 

sensitivity to nicotine.   

Genome wide association (GWA) studies have demonstrated that genetic variation at 

CHRNA5-CHRNA3-CHRNB, which encodes nAChR, correlates with intensity of smoking. 

Studies have reported that increased T-allele copies, which is associated with higher levels of 

smoking, is inversely correlated with BMI (Freathy et al., 2011; Varga et al., 2013). There was 

no association between allelic copy and BMI in non-smokers. This suggests the possibility that a 

gene x environment interaction may contribute to weight suppression by nicotine, or that lower 

BMI results in increased intensity of smoking. The interaction between genetic variability in 

CHRNA5-CHRNA3-CHRNB with diet has not been explored. It is possible that HED has a 

differential impact on nAChR function and expression in obesity-prone and –resistant rats. This 

could lend support for decreased sensitivity to nicotine in obesity-resistant rats. Experimental 

investigation of this hypothesis is challenging, for the reasons listed above describing the 

complexity of nAChR and its interaction with nicotine.   

Alterations in WAT function have been shown to induce obesity-resistance in mice that 

would otherwise become obese when fed HED. For example, mice lacking acyl 

CoA:diacylglycerl acyltransferase 1 (DGAT1), an enzyme involved in triglyceride synthesis, are 

resistant to diet-induced obesity (H. C. Chen et al., 2003). Likewise, mice deficit in acylation-

stimulating protein (ASP), which stimulates triglyceride synthesis in adipose tissue, are resistant 

to diet-induced obesity (Xia et al., 2002). Additionally, beigeing of WAT can block diet-induced 

obesity (Dodd et al., 2015). These changes in WAT are associated with increased secretion of 

adipocyte-derived hormones, such as adiponectin. Cultured adipocytes incubated with nicotine 
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released adiponectin dose-dependently (R. H. Liu et al., 2004). Evidence suggests that 

adiponectin can act centrally to regulate behaviors, such as locotomotor activity (Miyatake et al., 

2015). Concentrations of plasma adiponectin may correlate with increased ratings of hedonic 

odorants (Trellakis et al., 2011). The link between adiponectin, weight regulation, and behavior 

in obesity-resistant rats is unclear, though it provides a potential mechanism through which these 

rats may have decreased sensitivity to nicotine. 

Changes in diet produce rapid changes in the gut microbiome (David et al., 2014; Walker 

et al., 2011), and gut microbes are thought to influence behavior (Dinan et al., 2017). HED 

suppresses total microbiome bacterial count, and increases the proportion of bacteroidales and 

clostridiales, independent of propensity for obesity development (de La Serre et al., 2010), 

though enterobacterioales were specifically increased in obesity-prone rats, suggesting that 

obesity-resistant rats fed HED have different gut microbiome profiles from obesity-prone HED 

and chow-fed. Although less studied, evidence suggests that smoking impacts the gut 

microbiome. Smokers have increased bacteroidal bacteria count (Benjamin et al., 2012). It is 

possible that changes in gut microbiome influence body weight regulation and nicotine 

reinforcement in obesity-resistant rats.  

There were no differences in nicotine metabolite ratio is obese and normal weight 

smokers, indicating that there are no differences in CYP2A6, the primary enzyme for nicotine 

metabolism. However, it is possible that differences in nicotine metabolism exist in obesity-

prone and –resistant rats. Increased levels of hepatic CYP enzymes were reported in obese mice 

induced by injection of monosodium glutamate (Tomankova et al., 2015) and the genetically 

obese Zucker rat (Irizar et al., 1995). Altered nicotine metabolism may account for changes in 
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obesity-prone and resistant rats. However, it is expected that levels of CYP enzymes would be 

increased in obesity-resistant rats to account for the reduced sensitivity. 

7.4 IMPLICATIONS FOR TOBACCO REGULATORY POLICY 

 Large reductions in nicotine content in cigarettes may reduce smoking and promote 

quitting, thereby improving public health outcomes. The data presented here have important 

implications for tobacco regulatory policy. First, weight gain is an expected outcome of reduced 

nicotine exposure. Should nicotine reduction indeed promote quitting, the weight gain associated 

with nicotine reduction will likely not offset the positive health gains from quitting or reducing 

smoking. Nicotine replacement therapies shown to mitigate post-cessation weight gain may 

prevent weight gain during or following nicotine reduction. An ongoing clinical trial is assessing 

smoking and other health outcomes in smokers randomized to smoke normal nicotine content or 

VLNC cigarettes, with or without patch, and weight gain in this sample should be evaluated. 

Post-cessation weight gain in the first month of abstinence predicts continued abstinence rather 

than relapse (Hall et al., 1986). Secondly, very low doses of nicotine in rats naïve to nicotine 

were effective to suppress weight gain. It is possible that weight-concerned naïve smokers may 

initiate VLNC smoking as a weight control method. However, given the rise of other tobacco 

product availability, such as electronic nicotine delivery systems, which are effective for weight 

suppression, this possibility seems unlikely. Finally, nicotine reduction will likely be an effective 

strategy to reduce smoking behavior in lean and obese smokers.  
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7.5 FUTURE DIRECTIONS 

The results of the experiments described within this dissertation improve our 

understanding of the complex relationship between nicotine and body weight. The work 

described here presents the opportunity for many more studies to more closely investigate the 

relationship between nicotine and body weight. Listed below is a non-comprehensive list of 

future research directions. 

 

1. Chapters 2 and 3 demonstrate that self-administered nicotine suppresses weight gain 

independent of food intake and suppresses RER, indicating increased fat utilization. As 

discussed above, the use of pharmacological blockade in the study of the impact of self-

administered nicotine on energy balance poses many problems. Therefore, a primary 

future direction in this area will be the use of mouse models. Self-administration in mice 

with specific deficits in nAChR in brain, fat, or other target tissue may be important 

moving forward. For example, mice with specific deficits of α7 nAChR in white adipose 

tissue may fail to show decreased RER and weight gain.  

2. The focus on male rats in the study of the impact of nicotine on body weight regualtion 

ignores two important populations: females and adolescents. Female smokers are more 

likely to be weight-concerned smokers and to use smoking as a weight regulation strategy 

(Fulkerson et al., 2003; Levine et al., 2001). Separating subjective motives for smoking and 

weight loss from the pharmacological actions of nicotine in human smokers is difficult. 

Some evidence in rats suggests that nicotine may potentiate weight loss in females 

compared to males, but other reports suggest that the no interaction with sex (L. L. 

Bellinger et al., 2005; Bishop et al., 2004; Blaha et al., 1998). A comparison of the impact of 
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nicotine self-administration on weight regulation in males and females is unexplored and 

is warranted. Adolescents represent another population that may be more likely to be 

weight-concerned smokers. A perception of overweightness in adolescents increases risk 

for smoking (Yoon et al., 2016). Rodent self-administration data suggest that there is no 

impact of nicotine on body weight in adolescence (Natividad et al., 2013). This experimental 

design allowed rats to self-administer nicotine for four consecutive days at a time, and it 

is possible that more chronic daily self-administration of nicotine would produce 

suppression of weight gain in adolescent rats, particularly as suppression of weight gain 

by nicotine in the current experiments was seen after at least 5 days of self-

administration. Unpublished data from our lab testing nicotine self-administration in 

adolescents for 16 consecutive days support the data from Natvidad et al, suggesting that 

adolescent rats may be resistant to nicotine suppression of weight gain.  

3. Chapter 5 demonstrated resistance to nicotine-induced weight suppression in obesity-

resistant rats. Changes in energy expenditure to explain these results are unknown. 

Measuring RER, activity, and heat production in these rats following self-administration 

would give important insights into these results. 

4. Exploring differences in nAChR in obesity-prone and –resistant rats is an important 

future direction. Characterizing nAChR expression density with autoradiography, as well 

as electrophysiological properties in response to specific nAChR agonists in slice may 

provide important insight into differences in nAChR function and expression in obesity-

prone and –resistant rats. For example, as α5-containing nAChR in the medial habenula 

regulate nicotine consumption (Fowler et al., 2011), and β2-containing nAChR in the 

ventral tegmental area mediate nicotine reinforcement (Picciotto et al., 1998), specific 
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changes in these receptors in these regions may give insight into the behavioral actions of 

nicotine in obesity-prone and resistant-rats.  
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