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DIFFERENTIAL REGULATION OF SYNAPTIC PLASTICITY, MOOD AND 

REWARD BEHAVIOR BY CIRCADIAN GENES 

Puja K. Parekh, Ph.D. 

University of Pittsburgh, 2017 

Endogenously generated circadian rhythms allow living organisms to entrain to photic and non- 

photic cues in a changing environment. The master pacemaker region, the suprachiasmatic nucleus 

(SCN) coordinates the activity of several sub-oscillators throughout the brain and periphery to 

produce daily variation in physiology and activity patterns. However, SCN-autonomous rhythms 

also exist in mesocorticolimbic brain regions. The disruption of these rhythms at the molecular 

level can have dire consequences for physical and mental health. Clinical and preclinical studies 

provide a strong link between circadian gene perturbations and the development and progression 

of mood and substance abuse disorders including bipolar disorder (BD) and co-morbid addiction. 

While much is known about the inner workings of the SCN clock, the specific underlying 

mechanisms governing the regulation of mood and reward-related behavior by extra-SCN clock 

proteins are yet to be fully elucidated. 

Molecular rhythms are maintained by transcription factors, CLOCK and NPAS2, which 

are homologous in structure and function but differentially expressed throughout the brain. Genetic 

variants of both have been found to associate with neuropsychiatric illnesses in human populations. 

The expression profiles and uniquely regulated gene targets of these proteins however, may 

contribute to differences in their ability to modulate behavior. The work presented here focuses on 

how disruptions in CLOCK and NPAS2 alter mesolimbic excitatory neurotransmission and their 

effects on mood and reward-related behavior. We find that a mutation in CLOCK, which produces 

a dominant negative protein, and a behavioral phenotype in mice closely resembling human mania, 
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leads to a reduction in excitatory neurotransmission in the nucleus accumbens (NAc) a region 

critical for sensorimotor and limbic integration. These mice have also been characterized to be 

hyperhedonic with increased reward sensitivity. In contrast, a disruption in NPAS2 by viral- 

mediated knockdown, increases NAc excitatory synaptic transmission and incidentally decreases 

reward sensitivity in a cell-type specific manner. Electrophysiological, molecular, biochemical and 

behavioral studies contained within this dissertation aim to uncover the differential regulation of 

behavior by these core circadian proteins. The understanding of these mechanisms may help to 

inform targeted therapeutic strategies against BD and other disorders for which there is a strong 

circadian component. 
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PREFACE 

The past several years have marked a tremendous period of growth for me, intellectually, 

personally and professionally. With it have come the inevitable growing pains, the challenges 

faced with any undertaking of significant worth. However, the ultimate satisfaction of growth that 

can only be appreciated when taking stock is valuable beyond measure. For the opportunity to 

explore my interests, learn a considerable amount about the natural world and put an inquisitive 

mind to practice, I would like to express my gratitude to several individuals and organizations. 

Foremost are my mentors, Dr. Colleen McClung and Dr. Yanhua Huang, who have guided me 

through the technical aspects of the studies I describe in this dissertation, but who have also both 

taught me a great deal about how to approach the profession of a scientist, with its unique demands 

and responsibilities. Colleen has given me the freedom to ask questions and seek answers in my 

own style, forcing me to define what that style should be as I move forward in my career. Yanhua 

has given me unrestricted access to resources, undoubtedly the most valuable of which has been 

her expertise and sharp, analytical mind. I admire, respect, and hope to emulate both of my 

exemplary mentors. Additionally, I would like to thank both current and former members of my 

committee and especially my Chair, Dr. Bita Moghaddam. The valuable input from these 

individuals has enriched my learning experience and helped to focus my studies. For continued 

support and unparalleled training, I am proud to belong to the CNUP graduate program, the CNBC 

joint certificate program and the TNP. These organizations truly embody the spirit of the 

collaborative, innovative and thriving neuroscience community in Pittsburgh with their emphasis 

on fostering the potential of trainees. Lastly, I am indebted to countless peers whose camaraderie 
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and generosity have made a lasting impression on me. Sharing in our frustrations and fears has 

lessened their burden and likewise celebrating our accomplishments together has enhanced their 

meaning. As I look forward, I am comforted to know that my scientific colleagues will be the 

brilliant and unique individuals I have had the privilege to befriend here. 
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1.0 INTRODUCTION: THE MAMMALIAN CIRCADIAN CLOCK 

The rotation of the Earth on its axis creates a periodic shifting of light conditions, which has 

necessitated the evolution of a biological system to allow organisms to adaptively entrain to daily 

and seasonal cues. Circadian rhythms serve this purpose and are indispensible for maintaining 

proper physiological and behavioral responses to ensure survival (Milhiet et al, 2014). Biological 

rhythms are an ancient and highly conserved phenomenon and were first described in plants 

(Bunning, 1935; Chandrashekaran, 1998). Since then, countless species of invertebrate and 

vertebrate animals have been subjects of chronobiological studies. Mammals possess specialized 

melanopsin-containing retinal structures termed intrinsically photosensitive retinal ganglion cells 

(ipRGCs), which transmit light information from the environment via the retinohypothalamic tract 

to the master pacemaker region in the brain called the suprachiasmatic nucleus (SCN) (Hattar et 

al, 2006; Panda et al, 2003; Schmidt et al, 2011). The SCN, found in the anterior hypothalamus, 

is a highly coupled network of oscillators whose output synchronizes and coordinates the rhythmic 

activity of a number of subsidiary or “slave” oscillators throughout the brain and in peripheral 

tissues (Li et al, 2012; Quintero et al, 2003). In this way, daily molecular rhythms and activity 

patterns are set. While light is the most potent entraining cue or “zeitgeber,” from the German 

word “time keeper,” non-photic zeitgebers such as the availability of food or drugs of abuse can 

also act as signals around which animals consolidate their activity (Damiola et al, 2000). 
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At the molecular level, rhythms in gene and protein expression and activity exist in almost 

all cells in the body. Current estimates suggest that roughly 43% of the genome is rhythmic, the 

actual value may be higher as we continue to uncover cellular events under circadian or diurnal 

regulation (Zhang et al, 2014). The molecular basis of rhythm generation in mammals is a complex 

hierarchical series of interlocked transcriptional-translational feedback loops (TTFLs) with added 

regulatory control via kinase-dependent mechanisms (figure 1). Many homologous components of 

the molecular clock can be found in species as varied as Neurospora crassa, Drosophila 

melanogaster, rodents and humans (Mackey, 2007). Within the primary loop of the mammalian 

clock are the positive effectors, CLOCK (circadian locomotor output cycles kaput) and BMAL1 

(brain and muscle ARNT-like protein 1). 
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Figure 1. A series of transcriptional and translational feedback loops comprise the core molecular clock in 

mammals. At the heart of the clock are the transcription factors, CLOCK (or NPAS2) and BMAL1 which 

heterodimerize in the nucleus and bind to Enhancer Box (E-box) sequences in many genes to regulate their 

transcription. Targets include the Per and Cry genes. Over the course of 24 hours, PER and CRY proteins dimerize 

and shuttle back into the nucleus where CRY directly inhibits the CLOCK/NPAS2-BMAL1 complex, forming a 

negative feedback mechanism. Additionally, CLOCK/NPAS2 and BMAL1 also regulate the expression of nuclear 

hormone receptors, Rev-erbα and Rorα, which can repress or activate Bmal1 transcription. Other regulatory proteins 

act on the clock through phosphorylation, including Casein kinase 1 proteins and ubiquitination by Glycogen synthase 

kinase beta. Intracellular calcium signaling cascades can also act to regulate the activity of core circadian proteins 

through kinase-dependent pathways. CCGs – Clock controlled genes; P – phosphorylation; U – ubiquitination. From 

(Parekh et al., 2015). 
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These are bHLH-PAS domain-containing transcription factors that heterodimerize within the 

cytoplasm, enter the nucleus and bind to the canonical E-box sequence (CACGTG) in the promoter 

regions of Period (Per1, Per2 and Per3) and Cryptochrome (Cry1, and Cry2) genes. Together, 

these genes make up the negative limb of the core feedback loop. In the cytoplasm, CRY and PER 

proteins form hetero- and homodimers, translocate to the nucleus and inhibit the activity of 

CLOCK/NPAS2-BMAL1 (Ko and Takahashi, 2006; Lowrey and Takahashi, 2011; McDearmon 

et al, 2006; Meijer and Schwartz, 2003). Per and Cry transcript and protein levels decline over 

time as their degradation is induced by casein kinase 1δ (CK1δ) and CK1ε phosphorylation 

activity. This leads to a disinhibition of the CLOCK/NPAS2-BMAL1 complex, resetting the cycle. 

Ubiquitination by glycogen synthase kinase beta (GSK3β), a serine/threonine protein kinase, also 

plays a role in regulating the inhibition of the complex by PER/CRY. The timing of accumulation 

and degradation of these circadian proteins is critical to maintaining the period and amplitude of 

rhythms (Lee and Kim, 2014; Lee et al, 2011). Bmal1 expression is further regulated by a second, 

stabilizing loop feedback mechanism involving genes that encode the retinoic-acid-related orphan 

nuclear receptors REV-ERBα and RORα, which bind the ROR element in the Bmal1 promoter. 

ROR and REV-ERB proteins activate and repress expression of Bmal1, respectively, maintaining 

its robust rhythm in vivo (Preitner et al, 2002; Ripperger and Albrecht, 2012). 

The transcriptional activity of the CLOCK/NPAS2-BMAL1 heterodimer is conferred by 

CLOCK’s role as a histone acetyl transferase (HAT) (Doi et al, 2006). CLOCK HAT-dependent 

acetylation of histone H3 promotes transcription allowing for the “opening” of chromatin that is 

normally tightly condensed. This posttranslational modification of chromatin state provides access 

to the transcriptional machinery and thus the ability for the heterodimer to activate or repress 
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downstream genes involved in maintaining rhythms or other “clock-controlled genes” (CCGs) 

(Hardin and Yu, 2006). Importantly, the many CCGs that are targets of circadian transcriptional 

activation or repression are found in various regions throughout the central nervous system and 

periphery. A similar E-box-mediated transcriptional mechanism governs the regulation of these 

genes as well. Some of these genes have direct relevance in pathways important for normal and 

abnormal mood and reward-related behaviors in animals (McClung, 2007; Parekh and McClung, 

2015). 

1.1 CIRCADIAN RHYTHMS IN PSYCHIATRIC ILLNESS 

The de-synchronization of circadian rhythms appears to be both a symptom and a precipitating 

feature of some neuropsychiatric conditions. Normal “phase shifting” of the endogenous clock in 

response to changing environmental stimuli is an adaptive mechanism that allows organisms to 

flexibly entrain to new conditions. However, phase shifting processes can be inappropriately 

activated in a modern industrialized society where light availability is constant (Karatsoreos, 

2014). Dim light at night for instance, can offset normal circadian organization and contribute to 

depressed mood and reduced cognitive performance (Bedrosian and Nelson, 2013; Dunn et al, 

2010). Furthermore, scheduled activity that is misaligned with internal time such as trans- 

meridian travel or shift work can exacerbate the negative effects of circadian disruption (Cho et 

al, 2000; Katz et al, 2001; Scott et al, 1997). The “social jet lag hypothesis” suggests that the 

weekly disturbances in sleep-wake rhythms imposed by work or school obligations, particularly 

in adolescence, correlate with affective and substance abuse disorders (Hagenauer and Lee, 2012; 

Wittmann et al, 2006).  Consequently, sleep problems can cause individuals  to  self- 
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medicate through drug or alcohol abuse or to become depressed (Hasler and Clark, 2013; Hasler 

et al, 2015). Seasonal Affective Disorder (SAD), a condition in which individuals exhibit 

symptoms of depression during winter months occurs at a higher rate in populations living in 

temperate climates with seasonal variation in daylight hours (Lam and Levitan, 2000; 

Magnusson and Boivin, 2003). Compellingly, genome wide association studies (GWAS) link 

polymorphisms and other mutations in core circadian genes with predisposition towards SAD, 

major depression (MDD), addiction disorders and bipolar disorder (BD) which is characterized 

by spontaneous mood cycling through depressive, euthymic and manic phases (Benedetti et al, 

2008; Kovanen et al, 2013; Soria et al, 2010; Kovanen et al, 2010; Mansour et al, 2009). 

McCarthy and Welsh provide a detailed description of known circadian gene variants in humans 

associated with mood disorders (figure 3). Almost all core circadian genes are represented 

(McCarthy and Welsh, 2012; McCarthy et al, 2012). A genetic basis for chronotype (preference 

for morning or evening consolidation of activity) in humans has been suggested by a number of 

studies (Carpen et al, 2005, 2006; Katzenberg et al, 1998). Chronotype plays a role in mood and 

addiction disorders where “eveningness” is characteristic of bipolar patients many of whom 

display co-morbid substance abuse problems (Broms et al, 2014; Etain et al, 2014; Konttinen et 

al, 2014; Zhang et al, 2015). 
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Circadian rhythms in the use and sensitivity to several different classes of drugs have been 

observed as well (Broms et al, 2011; Danel et al, 2003; Gallerani et al, 2001; Kosobud et al, 

2007). Circadian gene variants and chronotype can also correlate with an abnormal response to 

reward (Hasler et al, 2012). A particular single nucleotide polymorphism (SNP) in the human 

Period gene, for instance, disrupts prefrontal reward responsivity and cortico-striatal activation 

following a rewarding stimulus (Forbes et al, 2012). These and other findings suggest an 

important role for circadian misalignment in the pathophysiology of mood and substance abuse 

disorders. 

Figure 2. Variants of core circadian genes strongly associate with mood disorders in humans. An enrichment of 

mood disorder associations among core clock genes indicates that Arntl (BMAL1), Clock, Cry1, Npas2, Nr1d1 (REV- 

ERBα), Per3 and Rorβ in particular are associated with aspects of bipolar disorder, onset of the disease, comorbidity 

with other psychiatric conditions or responsiveness to the main-line therapeutic agent, lithium. From (McCarthy and 

Welsh, 2012). 
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1.1.1 Central pathways involved in mood and reward regulation 

Decades of preclinical and clinical investigations into the mechanisms of neuropsychiatric illness 

highlight the central role of proper signaling in several key brain regions to maintain biochemical 

and neurophysiological balance within circuits. Reward circuitry is directly impinged upon by 

drugs of abuse and is also the main site of dysregulation in some mood disorders including BD 

(van Enkhuizen et al, 2015; Russo and Nestler, 2013). In the traditional view of the reward system, 

projections between certain regions are highlighted as critical to the expression and maintenance 

of proper reward sensitivity and behavioral response. Among these are dopaminergic (DA) and 

GABAergic (gamma-aminobutyric acid) projections from the ventral tegmental area (VTA) and 

substantia nigra (SN) to the nucleus accumbens (NAc) and dorsal striatum (Str) respectively 

(Koob and Volkow, 2010; Russo and Nestler, 2013). Dopamine, a monoaminergic 

neurotransmitter, is a highly complex signaling molecule, however, a key feature of the midbrain 

DA system is to confer incentive salience to environmental stimuli and promote motivational or 

goal-directed action. Its function in reinforcement learning forms the basis for a model to explain 

the unique value of drugs of abuse over natural reinforcers (Berridge and Robinson, 1998; Nestler, 

2005; Schultz, 2006; Schultz et al, 1997). Rapid pharmacokinetic effects of drugs on dopamine 

release may promote over-learning on drug-related stimuli or cues (Hyman, 2005). The VTA also 

sends afferent inputs to the prefrontal cortex (PFC), a major site of executive function and 

cognitive control over behavior, and in humans, abnormal dopaminergic signaling within the PFC 

has been correlated with a drug-addicted state (Ballard et al, 2011; Juarez and Han, 2016). 

The NAc is considered to be an integrator of sensorimotor and limbic information to gate 

emotional responses and drive appetitive and aversive behaviors (Goto and Grace, 2008; Richard 

et al, 2013). Its extensive afferent and efferent connections serve to underscore this function. 
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Chiefly, the NAc receives glutamatergic inputs from the PFC, amygdala (Amy) and hippocampus 

(Hipp) and provides GABAergic input to the VTA as well as the ventral pallidum (VP) (Britt et 

al, 2012; Tye, 2012). GABAergic medium spiny projection neurons (MSNs) serve as the output 

cells and make up approximately 90-95% of the NAc. Smaller populations of cholinergic and 

parvalbumin interneurons regulate the activity of the MSNs (Kauer and Malenka, 2007). Two 

major subclasses of MSNs predominantly express either dopamine 1-like (D1) or 2-like (D2) 

receptors (Le Moine and Bloch, 1995). These G-protein coupled receptors (GPCRs) differ in their 

intracellular signaling mechanisms in response to dopamine, effects on intrinsic excitability and 

synaptic transmission of MSNs, peptide expression and projection pathways (Lu et al, 1998). 

Generally, D1-containing MSNs belong to the striatonigral direct pathway while D2 MSNs 

comprise the striatopallidal indirect pathway. Activation of these distinct pathways has been shown 

to produce divergent effects on reward related behavior with direct pathway stimulation promoting 

reward value and seeking and indirect pathway activation attenuating reward-related behavioral 

responses (Baik, 2013; Gerfen et al, 1990; Kravitz et al, 2013; Smith et al, 2013). 

While direct projection targets of the SCN, including the medial pre-optic area (mPOA) 

and dorsomedial hypothalamic nucleus (DmH) are not central to the reward circuitry, they may 

modulate it through indirect neural connections (Mendoza and Challet, 2014). Orexinergic 

neurons in the DmH for instance encode information about arousal, energy balance and reward 

and project to the VTA (Aston-Jones et al, 2001, 2009). The dorsal raphe nuclei of the midbrain 

receive direct light input from the circadian visual system and also indirect input from the SCN 

and are the primary regions containing serotonin (5-HT) neurons in the brain (Ciarleglio et al, 

2011; Morin, 2013). Serotonergic neurotransmission is involved in the regulation of mood and a 

widely utilized class  of  antidepressants  targets  the  5-HT  re-uptake  mechanism (SSRIs) 
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(Anguelova et al, 2003; Lucas et al, 2007). Interestingly, this system is affected by photoperiod, 

where day length during development can alter firing properties of 5-HT neurons as well as 

extracellular levels of the neurotransmitter and norepinephrine. These light-induced changes 

further affect anxiety and depressive-like behavior (Green et al, 2015). The lateral habenula (LHb) 

in the midbrain also receives direct SCN input and has been shown to be an important inhibitor of 

DAergic activity in the VTA, thus exerting a more robust influence over mood and reward 

regulation (Bourdy and Barrot, 2012; Lecca et al, 2012). Each of these critical extra-SCN brain 

regions maintains rhythms and expresses circadian genes and proteins with clock and non-clock 

regulatory functions (Parekh and McClung, 2016). They therefore control mood and reward 

behavior through both circuit-level and molecular mechanisms. 

 

1.1.2 Bipolar disorder and the clock 
 
 
Mental illness and affective disorders in particular are a leading cause of disability worldwide 

according to the World Health Organization. The Diagnostic and Statistical Manual of Mental 

Disorders, Fifth Edition (DSM-5) defines bipolar I disorder as being characterized by at least one 

manic episode with ‘…abnormally and persistently elevated, expansive or irritable mood and 

abnormally and persistently increased activity or energy…” Manic episodes also present with 

certain hallmarks including a decreased need for sleep and increased goal-directed activity and 

high-risk behaviors. Individuals can experience major depressive episodes preceding or following 

manic episodes with periods of euthymic or normal mood in between (figure 3). The severity of 

mood disturbance is sufficient to produce marked impairments in individuals’ social or 

occupational functioning. The prevalence of the disorder among adults in the U.S. is estimated to 

be approximately 2.5% of the population and co-morbidity with other conditions including anxiety 
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and substance abuse disorders is common (DSM-V). Sleep disturbances as well as the general 

cyclic nature of mood states characterizing BD have led researchers to speculate about circadian 

abnormalities underlying the illness (McClung, 2013; Melo et al, 2016; Mendlewicz, 2009). 

Symptoms can be tied to seasonal variation and shifts in mood state can be precipitated by erratic 

changes in daily activity schedules (McClung, 2013). The mood-stabilizing effects of tightly 

regulating sleep/wake schedules further underscore the importance of the clock in BD (Wirz- 

Justice et al, 2005). Social Rhythm Therapy and chronotherapeutics represent novel strategies to 

combat rhythm misalignment in patients and lessen the severity of symptoms (Coogan and Thome, 

2011; Dallaspezia et al, 2015; Haynes et al, 2016; Henriksen et al, 2016). Additionally, traditional 

mood stabilizers such as the antipsychotic compounds, lithium and valproate, have been shown to 

increase circadian period in rodents and humans and to change expression profiles of circadian 

genes (Landgraf et al, 2016; Milhiet et al, 2014). Together, these abnormalities may serve as trait 

markers of susceptibility for BD. 
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Figure 3. Hallmarks of bipolar I disorder. Distinct phases illness episodes in BD must meet DSM-V criteria and be 

characterized by a number of symptoms that distinguish the disease from others such as generalized anxiety, unipolar 

depression, or pharmacological features of drug abuse. A manic episode persisting for at least one week followed by 

euthymic or dysthymic states, hypomania or mixed states must occur for a BD diagnosis. From Stahl’s Essential 

Psychopharmacology, 4thed. 

 
 

Numerous human genetic studies have identified positive associations between core 

circadian genes including Clock, Npas2, Bmal1, and Per3 with BD (Milhiet et al, 2014). A 

particular single-nucleotide polymorphism (SNP) in the 3’UTR of Clock (3111 T to C) is 

associated with a higher rate of bipolar episodes, as well as sleep disruption in bipolar patients 

(Benedetti et al, 2003, 2007). Recent work from our lab provides further evidence of functional 

consequences of the 3111T/C SNP. CLOCK-deficient mouse embryonic fibroblasts (MEFs) 

transfected with the human mutant construct showed altered expression, function and stability of 

Clock transcript (Ozburn et al, 2016). Additionally, haplotypes and SNPs in Bmal1 have been 

found to significantly associate with BD (Mansour et al, 2006). These and other studies suggest a 
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strong implication of the molecular clock in the underlying mechanisms contributing to the 

development and progression of BD. 

 

1.1.3 Circadian rhythms in addiction 
 
 
Addiction is a widespread public health issue with social and economic ramifications. Koob and 

Volkow (2010) review decades of clinical and pre-clinical studies showing that discrete aspects of 

mesocorticolimbic circuitry are engaged during binge drug use, withdrawal/negative affect, and 

relapse, encompassing all stages of the addiction cycle (Koob and Volkow, 2010). Drugs of abuse 

including alcohol, cocaine, methamphetamine, and opioids act directly on the dopamine system 

and other signaling pathways to promote seeking behavior. Generally, these substances elicit their 

effects by increasing dopamine release from the VTA to its target regions (Kauer and Malenka, 

2007). Drugs of abuse can alter rhythmicity of core clock genes and the activity of these genes can 

in turn affect the expression of proteins important for plasticity suggesting a bidirectional 

relationship between the circadian and reward systems (Falcon et al, 2013; Lynch et al, 2008; 

Ozburn et al, 2015). 

Addictive drugs are able to serve as zeitgebers and can reliably entrain anticipatory activity 

rhythms in animals when given regularly. This locomotor activity has been likened to the seeking 

behavior characteristic of drug addiction. For example, daily methamphetamine injections have 

been shown to entrain animals and induce anticipatory locomotor activity to the time of injection 

(Kosobud et al, 1998). Ethanol, cocaine, and nicotine are all able to induce this anticipatory 

behavior and alter behavioral rhythms (Gillman et al, 2010; Kosobud et al, 2007; White et al, 

2000). Diurnal variations in amphetamine-induced locomotor activity, conditioned place 

preference for amphetamine, and the expression of TH mRNA in the VTA and NAc have also 
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been observed (Webb et al, 2010). In rodents with SCN lesions methamphetamine in the drinking 

water restores activity rhythms in a robust manner (Masubuchi et al, 2000). Rewarding stimuli 

such as food or chocolate can entrain both behavioral and Per1 expression rhythms, which persist 

for several days in several brain regions (including dorsal medial hypothalamus, NAc, PFC, and 

the central amygdala) (Angeles-Castellanos et al, 2008). Therefore, both behavioral and 

molecular rhythms appear to be affected by rewarding stimuli, and especially potently by drugs of 

abuse. 

1.1.4 Circadian regulation of reward-related regions and dopaminergictransmission 

The role of circadian genes in the direct regulation of dopaminergic reward circuitry has been well 

established. Within mesolimbic nuclei, virtually all aspects of dopaminergic activity including 

neuronal firing patterns, neurotransmitter synthesis, release, degradation and postsynaptic actions 

are subject to circadian transcriptional influence and display diurnal variation (McClung, 2007). 

This regulation of signaling is important for reward-related behavior as all drugs of abuse exert 

their actions by impinging on dopaminergic circuitry and any disruption of this system may 

increase vulnerability to the rewarding properties of drugs (Kauer and Malenka, 2007). 

Additionally, diurnal variation in dopaminergic neuronal activity may underlie the diurnal 

variation in behavioral responses to drugs as previously described. While it has long been thought 

that VTA DA neurons do not have a diurnal rhythm in firing rate, a recent study suggests that this 

may not be the case as an intradiurnal rhythmic pattern of VTA DA neuronal activity has been 

measured in anesthetized rats (Domínguez-López et al, 2014). Furthermore, the rhythm in 

extracellular levels of DA appears to be governed by a rhythm in the expression and activity of the 

dopamine transporter (DAT) (Ferris et al, 2014). It is still unclear whether a strong link exists 
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between firing and extracellular release of DA however in behaving animals. More work is needed 

to concretely establish these mechanisms. 

Within the VTA, rhythms have been observed in the expression of DA receptors as well as 

tyrosine hydroxylase (TH) and monoamine oxidase (MAOA), the enzymes responsible for the 

synthesis and degradation of DA respectively (McClung et al, 2005; Hampp et al, 2008; McClung, 

2007; et al, 2007; Sleipness et al, 2008; Weber et al, 2004). There is also evidence to support the 

idea that these regulatory genes may be clock-controlled genes (CCGs), as they contain canonical 

E-box sites in their promoter regions and are bound by CLOCK and BMAL1 (Sleipness et al,

2007; Hampp et al, 2008). Moreover, diurnal variations in extracellular levels of the 

neurotransmitters, DA, glutamate and GABA have been described in the NAc (Castañeda et al, 

2004). Our lab has demonstrated that cholecystokinin (CCK), a peptide negatively associated with 

DA activity in vivo and implicated in anxiety and drug response, is also a direct gene target of 

CLOCK (Arey et al, 2014). In a recent study from our group, chromatin immunoprecipitation 

followed by deep sequencing (ChIP-seq) revealed a role for NPAS2 in directly regulating the 

expression of the dopamine D3 receptor subtype in the striatum of mice (Ozburn et al, 2015). This 

receptor is often found co-localized with D1Rs on striatal MSNs and is involved in mediating 

rewarding effects of cocaine (Sokoloff et al, 2001). 
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Figure 4. Elements of dopaminergic transmission are directly under circadian control. Within the VTA-NAc 

circuitry, clock genes regulate the transcription of several genes involved in the synthesis, uptake, transmission and 

degradation of dopamine, including tyrosine hydroxylase (TH), dopamine transporter (DAT), pre-synaptic dopamine 

type-2 receptor (D2R), dopamine type-3 receptor (D3R), monoamine oxidase A (MAOA), and cholecystokinin 

(CCK). Within the NAc, diurnal rhythms in levels of the neurotransmitters, dopamine, glutamate and GABA have 

been measured as well. The transcription of TH is repressed by the circadian transcription factor, CLOCK as well as 

the nuclear receptor, REV-ERBα, which bind to enhancer box (E-Box) and ROR response element (RRE) sites in the 

promoter region, respectively. From (Parekh and McClung, 2016). 

The lateral habenula (LHb) in the midbrain also receives direct SCN input and has been 

shown to be an important inhibitor of DAergic activity in the VTA, thus exerting a more robust 

influence over mood and reward regulation (Bourdy and Barrot, 2012; Guilding et al, 2010; Lecca 

et al, 2012). The neuronal activity of the LHb and medial habenula (MHb) shows rhythmic 

oscillation both in vitro and in vivo and firing rates of neurons in both of these regions are altered 

in response to retinal illumination in vivo. The LHb maintains endogenous molecular rhythms as 
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well with oscillations in Per2 gene and protein levels across the light/dark cycle. Temporal 

variation in electrophysiological properties in each of these neuronal populations is absent in mice 

lacking a functional intracellular molecular clock. These findings support the idea that intrinsic 

circadian signals can shape the contribution of habenular nuclei to affective and reward behavior 

(McCarthy and Welsh, 2012; Sakhi et al, 2014; Zhao and Rusak, 2005). Another reward-related 

region in the thalamus, the paraventricular nucleus (PVT), which sits at the midline and projects 

to many limbic structures including the NAc, also displays rhythms in activity. The PVT receives 

input from the SCN and the DmH and has been shown to play role in the anticipatory locomotor 

response to food. The firing rate of PVT neurons varies throughout the day with greatest activity 

seen during the animal’s active phase (Alamilla et al, 2015; Colavito et al, 2015; Kirouac, 2015; 

Kolaj et al, 2012). The influence of this small nucleus on reward sensitivity and drug seeking is 

beginning to be further elucidated (Dayas et al, 2008; Matzeu et al, 2014). Work from the Aston- 

Jones lab has provided insights into the circadian regulation of activity of noradrenergic neurons 

in the locus coeruleus (LC), a key mediator of wakefulness and behavioral arousal. Using single- 

unit recordings of LC neurons in anesthetized rats, they have demonstrated that the neurons fire 

significantly faster during the active phase compared with rest phases. Additionally, the diurnal 

rhythm of noradrenergic neuronal activity correlates with the rhythm of activation of DmH orexin 

neurons, which project preferentially to the LC (Gompf and Aston-Jones, 2008; González and 

Aston-Jones, 2006). These findings suggest that important aspects of neuronal activity throughout 

the brain are under circadian influence and that the rhythmic activity of mood and reward-related 

regions may be relevant for behavioral outcomes. 
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1.2 ANIMAL MODELS OF NEUROPSYCHIATRIC ILLNESS 
 
 
 
The value of animal models to understand mechanisms underlying disorders of the central nervous 

system cannot be overstated. From early plant and invertebrate models we have pieced together 

the mechanisms of the interlocked feedback loops behind circadian rhythm generation and 

maintenance (Mackey, 2007). Additionally, self-report measures in humans have been reliable in 

understanding how natural zeitgebers influence individual phase of entrainment or chronotype, a 

factor that has been linked to mood states and reward response (Horne and Ostberg, 1976). 

Technological advances can extend the functionality of questionnaire-based self-report 

measurements. The use of a smartphone app to monitor daily eating patterns in humans, for 

instance, has revealed a largely erratic rhythm, deviating from the commonly reported “3 meals a 

day” structure (Gill and Panda, 2015). This information has relevance for individual metabolic 

health and epidemiological issues regarding obesity. Furthermore, cells derived from human 

psychiatric patients have been a fruitful model of molecular changes in SCN and SCN-independent 

clocks. Reporters of rhythmic clock gene expression in patients’ cells show correlations with 

severity of  alcohol use  disorders and  predict lithium sensitivity in BD   (McCarthy et al, 2013a, 

2013b). Blood biomarkers, inducible pluripotent stem cells (iPSCs) and skin fibroblasts have all 

yielded a wealth of information about cellular abnormalities in disease state suggesting diagnostic 

potential (McCarthy and Welsh, 2012). 

Rodent models, however, are particularly useful in providing clues about how the 

biological clock system interacts with neurobiological systems relevant for psychiatric illness. 

Basic evidence for a role of the SCN clock in mood comes from lesion studies demonstrating an 

anti-depressant effect of bilateral SCN lesions in rats (Tataroglu et al, 2004). In an attempt to 
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model zeitgeber effects on behavior in rodents, a number of studies have utilized circadian 

misalignment paradigms. Long and short photoperiods, or light phases produce desynchrony of 

internal clocks to various degrees of severity (Craig and McDonald, 2008; Johnson et al, 2003). 

Chronic constant light or darkness can both lead to depression and anxiety-like behavior with 

constant light also dramatically dampening circadian patterns in the hormones, melatonin and 

corticosterone (Tapia-Osorio et al, 2013). Recently, a depressive-like phenotype including 

anhedonia, a loss of interest in once pleasurable activity, and sexual dysfunction has been 

described in rats undergoing exposure to a 22-hr light/dark cycle (LD22). This forced desynchrony 

of the central clock also altered levels and turnover of monoamines in the PFC (Ben-Hamo et al, 

2016). These findings expand upon earlier results indicating monoamine content and metabolism 

in the hippocampus and amygdala of mice are disrupted by constantly shifting light-dark cycles 

(Moriya et al, 2015). Other theories have been put forth suggesting that internal desynchronization 

or bifurcation of SCN rhythms in mammals might underlie rapid cycling manic-depressive 

disorders or mania (Kripke et al, 2015). Together, these and other important findings point to the 

variety of valuable techniques to probe the influence of the circadian system on affective and 

reward-related behavior. 

Building upon information gained from more crude lesion studies, Landgraf and colleagues 

have more recently shown that direct disruption of SCN circadian rhythms by viral-mediated 

knockdown of the core circadian gene, Bmal1, produces a behavioral phenotype including 

helplessness, behavioral despair and anxiety-like behavior (Landgraf et al, 2016). Rapid progress 

in forward genetic approaches has revolutionized the study of gene and environment contributions 

and interactions in disease susceptibility and progression. Sophisticated and precise mutations in 

clock genes allow for the systematic characterization of their roles in regulatingbehavior. 
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1.2.1    Genetic models of bipolar mania 
 
 
Several models of mania have been described to elucidate the pathophysiology of bipolar mania; 

Logan and McClung (2016) thoroughly review and evaluate these. Many of these models utilize 

genetically modified mice to target particular genes, proteins or pathways known to be important 

for mood and reward regulation. As with all animal models, it is not possible to capture the full 

spectrum of a complex human disorder in any one manipulation. However, aspects of these models 

represent face, construct or predictive validity (Logan and McClung, 2016). While the DSM-V 

distinguishes a manic episode from the behavioral effects of psychostimulant drug exposure, 

amphetamine-induced hyperactivity has long been considered a model of mania because of its 

responsiveness to acute anti-psychotic treatment (Gould et al, 2001; Young et al, 2011). 

Additionally, amphetamine produces reliable alterations in mesolimbic dopamine circuitry that 

resemble those seen in BD patients, particularly an elevation of extracellular dopamine (Cousins 

et al, 2009). 

One widely used mutant model of mania is the dopamine transporter knockdown mouse 

(DAT-KD). Neuroimaging evidence suggests altered DA neurotransmission in un-medicated BD 

patients may be a result of lowered DAT expression in the SN (Pinsonneault et al, 2011) and 

reduced DAT availability in striatal regions (Anand et al, 2011). The human Behavioral Pattern 

Monitor (BPM) is used to characterize hyperactivity and increased exploration in BD patients and 

has been modified by Young and colleagues to assess manic-like behavior in mice. They have 

found that DAT-KD mice show a similar BPM profile as well as high-reward risk-preference 

consistent with BD (Gould et al, 2001; Young et al, 2011b). Impulsivity as measured by the Iowa 

Gambling Task (IGT) is another hallmark of BD sufferers and a feature shared by DAT-KD mice 

performing a rodent version of the assay (van Enkhuizen et al, 2013). Therefore, findings using 
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this model suggest that impaired function of the dopamine transporter may lead to a 

hyperdopaminergic state that negatively impacts decision making and promotes risky, goal- 

directed and impulsive actions. 
 

Polymorphisms in the circadian gene, Clock, have been associated with manic features in 

BD (Benedetti et al, 2003; Serretti et al, 2003) and perhaps the most well characterized genetic 

mouse model of mania is the ClockΔ19 mutant mouse. A single nucleotide transversion leads to 

an excision of exon 19 in the Clock gene of these mice, producing a dominant negative protein that 

is capable of dimerization with BMAL1 and E-box binding but dysfunctional in transcriptional 

activity (King et al, 1997). Aspects of circadian rhythm disruption in mutants are similar to those 

seen in BD patients including reduced circadian amplitude and delayed phase (Rock et al, 2014; 

Vitaterna et al, 2006) as well as sleep disturbances (Naylor et al, 2000). In measures of affective 

behavior, Clock mutants exhibit increased locomotor activity in response to novelty, reduced 

anxiety-like and depression-like behavior, and increased intracranial self-stimulation (ICSS) at a 

lower threshold (Easton et al, 2003; McClung et al, 2005; Roybal et al, 2007). 

Clock can act as a negative regulator of drug reward. Our group has identified a key role 

for the Clock gene in mediating the effects of drugs of abuse. ClockΔ19 mice exhibit increased 

cocaine conditioned place preference (CPP), a measure of reward sensitivity, compared with 

wildtype (WT) littermates (McClung et al, 2005). Ozburn and colleagues further examined 

whether results from the conditioned reward study were relevant to cocaine intake using a 

clinically relevant operant intravenous cocaine self-administration paradigm (IVSA). They found 

that WT mice exhibit a diurnal variation in acquisition and maintenance of drug intake that is 

absent in ClockΔ19 mice. A greater percentage of Clock mutant mice acquired cocaine self- 

administration, regardless of time of day tested. Furthermore, mutant mice self-administered more 

cocaine than WT mice (Ozburn et al, 2012). Using fixed ratio (to assess sensitivity to reinforcing 
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properties of cocaine) and progressive ratio (to assess motivation for cocaine) schedules of 

reinforcement dose-response paradigms, they also found that cocaine is a more efficacious 

reinforcer in ClockΔ19 mice compared with WT littermates. Importantly, ClockΔ19 mice 

exhibited similar learning and readily acquired food self-administration (Ozburn et al, 2012). 

Clock∆19 mutants also show enhanced preference for the rewarding aspects of ethanol and sucrose 

and have an increase in dopaminergic activity in the VTA, which is normalized by chronic lithium 

treatment (McClung et al, 2005; Coque et al, 2011; Ozburn et al, 2013). Many of the mutant 

behavioral and physiological phenotypes are rescued by expressing functional CLOCK in the VTA 

or are recapitulated by reducing Clock expression in the VTA of WT mice via RNA interference, 

however this leads to a mixed-manic state (Mukherjee et al, 2010; Roybal et al, 2007). The key 

manic-like characteristics of Clock∆19 mutants are compared with symptoms of human bipolar 

mania in Table 1. 
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Table 1. The Clock∆19 mutant mouse as a model of bipolar mania. The behavioral phenotype of Clock∆19 mice 

closely resembles characteristics of human mania. 

 
 

 
 

Subcortical, striato-thalamic and prefrontal circuit dysfunction has also been described in 

BD (Strakowski et al, 2005). Imaging studies of BD patients have revealed a functional imbalance 

between hyperactive limbic areas and hypoactive cognitive areas, circuitry that is also important 

for the processing of rewarding stimuli (Lois et al, 2014; Edwards and Koob, 2010). The 

synchronization and coherence of neural activity across brain regions is thought to be important 

for normal anxiety-like behavior and cognitive functions (Dzirasa et al, 2010). In addition to 

abnormalities in dopaminergic signaling, ClockΔ19 mice also exhibit alterations in cortico-striatal 

signaling that are indicative of aberrant behavior. When exploring a novel environment, ClockΔ19 

mice, have been shown to have profound deficits in cross-frequency phase coupling of NAc delta 

(1-4Hz) and low gamma (30-55Hz) oscillations, which correlate with enhanced exploratory drive 

(Dzirasa et al, 2010). The entrainment of NAc neurons to afferent input has been theorized to 



 

depend upon the balance of synaptic weights.  Shifting of these weights can influence behavior 
 

(Wolf et al, 2005). Dopamine is known to modulate glutamatergic signaling within the NAc, 

providing a possible mechanistic avenue through which cortical-striatal circuitry could be impaired 

in Clock mutants and manic patients. The specific mechanisms contributing to circadian regulation 

of synaptic dysfunction in mesocorticolimbic areas remain poorly understood. Therefore, it will 

be important to systematically interrogate these systems, making use of appropriatemodels. 

 
 
 

1.3 DISSERTATION AIMS 
 
 
Studies contained within this dissertation focus on NAc excitatory signaling as potentially critical 

for ClockΔ19 manic-like behavior, and additionally seek to uncover the role of NPAS2 in 

glutamatergic transmission in the NAc as it relates to reward behavior. The central hypothesis of 

this study is that disrupted AMPAR-mediated synaptic transmission at NAc MSNs underlies 

reward-related behavioral abnormalities in Clock∆19 mice. Additionally, we hypothesize that 

NPAS2 regulates excitatory synaptic strength and reward sensitivity through cell-type specific 
 

mechanisms in the NAc. We test these hypotheses through the following experimental aims: 
 
 
 
Aim 1: Identify baseline changes in glutamatergic synaptic strength and intrinsic excitability of 

MSNs in Clock∆19 mice and the diurnal profile of GluA1 expression in the NAc. 

Aim 2: Manipulate AMPAR-mediated signaling in the NAc of Clock∆19 mice and assess the 

impact on mood and reward-related behavior. 

Aim 3: Determine the cell-type specific effects of NPAS2 knockdown on glutamatergic synaptic 

strength in WT MSNs as well as the conditioned reward response. 
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2.0 ALTERED GLUA1 FUNCTION AND ACCUMBAL SYNAPTIC PLASTICITY IN 

THE CLOCK∆19 MODEL OF BIPOLAR MANIA 

 
 
 
Parekh PK, Becker-Krail D, Sundaravelu P, Ishigaki S, Okado H, Sobue G, Huang YH, and 

McClung CA. (Under revision for Biological Psychiatry) 

 
 

Disruptions in circadian rhythms are associated with an increased risk for bipolar disorder (BD). 

Moreover, studies show that the circadian protein CLOCK is involved in regulating 

monoaminergic systems and mood-related behavior. However the molecular and synaptic 

mechanisms underlying this relationship remain poorly understood. Using ex vivo whole cell patch 

clamp electrophysiology in Clock∆19 mutant and wildtype (WT) mice we characterized alterations 

in excitatory synaptic transmission, strength and intrinsic excitability of nucleus accumbens (NAc) 

neurons. We performed protein crosslinking and Western blot analysis to examine surface and 

intracellular levels and rhythm of the glutamate receptor subunit, GLUA1, in the NAc. Viral- 

mediated overexpression of GluA1 in the NAc and behavioral assays were also used. Compared 

with WT mice, Clock∆19 mice display reduced AMPAR-mediated excitatory synaptic responses 

at NAc medium spiny neurons (MSNs) across the light/dark cycle. These alterations are likely 

postsynaptic as presynaptic release of glutamate onto MSNs is unaltered in mutants. Additionally, 

NAc surface protein levels and the rhythm of GLUA1 are decreased in Clock∆19 mice diurnally, 

consistent with reduced functional synaptic response. Furthermore, we observed a significantly  
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hyperpolarized resting membrane potential of Clock∆19 MSNs suggesting lowered intrinsic 

excitability. Lastly, overexpression of functional GluA1 in the NAc of mutants was able to 

normalize increased exploratory drive and reward sensitivity behavior. Together, our findings 

demonstrate that NAc excitatory signaling via GLUA1 expression is integral to the effects of Clock 

gene disruption on “manic-like” behaviors. 

 
 
 

2.1 INTRODUCTION 
 
 
Recently, BD has been re-conceptualized by some as a synaptic disorder where the functions of 

various postsynaptic proteins are altered in prefrontal and striatal regions, potentially producing 

circuit-level consequences affecting normal mood and reward response (Meador-Woodruff et al, 

2001; De Bartolomeis et al, 2014). Additionally, mood-stabilizing agents exert some of their 

effects by acting directly on elements of synaptic activity including glutamatergic transmission 

(De Bartolomeis et al, 2014; Du et al, 2004). Clock∆19 mice are hyperdopaminergic, displaying 

elevated ventral tegmental area (VTA) dopamine neuron activity and dopamine synthesis in the 

nucleus accumbens (NAc) (McClung et al, 2005; Spencer et al, 2012; Coque et al, 2011). 

Dopamine reliably modulates the activity of glutamate at MSN synapses via G-protein coupled 

receptor signaling, having implications for substance abuse and mood disorders (Nicola et al, 

2000; Beurrier and Malenka, 2002; Russo and Nestler, 2013). Moreover, PET studies of un- 

medicated BD patients indicate significantly lower striatal dopamine transporter (DAT) 

availability suggesting abnormal DA transmission and reward processing in this region (Anand et 

al, 2011). Along with decreased DAT transcript and protein levels in BD post-mortem cortical 

tissue and the correlation between DAT gene polymorphisms with predisposition to BD, there is 
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strong evidence to support the role of dopamine homeostatic dysregulation in the disorder 

(Greenwood et al, 2006; Rao et al, 2012).  Dopamine receptor density changes are somewhat 

inconsistent however glutamatergic abnormalities are more clearly seen in BD patients. Findings 

have reported reduced levels of ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4- 

isoxazoleproprionic acid (AMPAR) subunits in cortical areas of mood disorder subjects and 

reduced gene expression of the GluA1 subunit in striatal regions of BD patients (Beneyto and 

Meador-Woodruff, 2006). Additional proteins associated with the structural integrity of the post- 

synaptic density and proper trafficking of glutamate receptors to the membrane, including the 

scaffolding protein, PSD-95, and synapse-associated protein 102 (SAP102), have been found to 

be altered in post-mortem brains of BD patients (Sans et al, 2003; Kristiansen and Meador- 

Woodruff, 2005). These alterations may potentially lead to disruptions in excitatory signaling in 

mesocorticolimbic brain regions affecting mood and reward behavior. Additionally, 

polymorphisms in N-methyl-D-aspartate (NMDA) glutamate receptor genes correlate with 

susceptibility to BD (Mundo et al, 2003; Martucci et al, 2006). Given the importance of dopamine- 

glutamate interaction at postsynaptic sites for normal synaptic plasticity processes, it will be 

critical to follow up these findings with functional studies in disease models. 

The consequences of Clock disruption on network activity in mesocorticolimbic circuitry 

have been investigated in greater depth. In a previous study we reported reduced total NAc protein 

levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate 

receptor subunit, GLUA1, and phosphorylated GLUA1 (P-GLUA1 Ser845) as well as changes in 

MSN dendritic morphology in Clock∆19 mice. Furthermore, diminished cross-frequency phase 

coupling of neural oscillations within the NAc and coherence with cortico-limbic regions during 

exploration of a novel environment have also been described in mutants (Dzirasa et al, 2010). NAc 

phase coupling is dependent upon glutamatergic signaling and computational models suggest that 
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altered AMPAR and NMDAR function can shift synaptic weights, disrupting the ability of 

MSNs to entrain to afferent input (Wolf et al, 2005). It has been proposed that this imbalance 

within accumbal circuitry can alter functioning of downstream target regions within the networks 

that regulate goal-directed behavior (Dzirasa et al, 2010). Given the increased dopaminergic tone 

of Clock∆19 mice, we hypothesized that there would be adaptations in NAc microcircuitry 

indicative of plasticity. 

Here we sought to investigate the effects of Clock gene disruption on excitatory drive onto 

NAc MSNs as well as the expression and rhythm of accumbal GLUA1 protein and intrinsic 

excitability of MSNs. While rhythms in DA, glutamate and GABA neurotransmission have been 

demonstrated in the NAc (Castañeda et al, 2004), ex vivo electrophysiological studies of diurnal 

activity in excitatory synaptic function have largely been limited. We therefore conducted our 

physiological and biochemical measures across the light/dark cycle. Additionally, we examined 

whether manipulation of GluA1 in the NAc could normalize aspects of the “manic-like” behavioral 

profile in Clock∆19 mice. 

 
 
 

2.2 MATERIALS AND METHODS 
 
 

2.2.1 Animal use 
 
 
Clock∆19 mice were created by N-ethyl-N-nitrosurea (ENU) mutagenesis, resulting in a dominant- 

negative CLOCK protein deficient in transcriptional activity (King et al, 1997). Clock mutant 

(Clock/Clock) and wildtype (+/+) littermates on a BALB/cJ and C57BL/6J mixed background 

were bred from heterozygote (Clock∆19 /+) pairs and group housed. Animals used in this study 
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were maintained on a BALB/cJ background. Male and female mutant and WT mice (6-9wks) were 

used for electrophysiological experiments and male mice (8-12wks) were used for biochemical 

and behavioral experiments. The use of younger mice for ease of electrophysiological studies was 

justified, as hyperactivity in response to novelty, a key manic-like feature of Clock∆19 mice was 

apparent within this age range (data not shown). Mice were maintained on a 12:12h light/dark 

cycle (ZT 0 = lights on 7:00AM; ZT 12 = lights off 7:00PM) or a reverse 12h light cycle for dark 

phase experiments. For 24hr time-series experiments, mice were group housed in temperature- 

controlled, soundproof cabinets with light cycles precisely regulated. Food and water were 

available ad libitum. All animal use was conducted in accordance with the National Institute of 

Health guidelines for the care and use of laboratory animals and approved by the Institutional 

Animal Care and Use Committee of the University of Pittsburgh. 

2.2.2 NAc slice preparation 

Clock mutant and wildtype mice were anesthetized rapidly with isoflurane and decapitated. Brains 

were removed into ice-cold oxygenated (95% O2/5% CO2) modified aCSF containing (in mM): 

135 N-methyl-D-glucamine, 1 KCl, 1.2 KH2PO4, 1.5 MgCl2, 0.5 CaCl2, 70 choline bicarbonate, 

and 10 D-glucose; pH 7.4 adjusted with HCL. NAc-containing coronal slices (250µm) were 

sectioned with a vibratome (VT1200S; Leica, Wetzlar, Germany) and incubated for 30 minutes at 

37°C in oxygenated aCSF containing (in mM): 119 NaCl, 26 NaHCO3, 2.5 KCl, 1 NaH2PO4, 2.5 

CaCl2, 1.3 MgCl2, 11 D-glucose. Slices were kept at room temperature until recording then 

perfused with aCSF (30-32°C). 
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2.2.3 Whole-cell patch-clamp recordings 
 
 
Slices were viewed by differential interference contrast (DIC) optics (Leica) and accumbal regions 

were localized under low magnification. Recordings were made under visual guidance with 40x 

objective. Borosilicate glass pipettes (3-5MΩ) were filled with (in mM): 117 Cs-MeSO3, 20 

HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA-Cl, 2.5 Mg-ATP, 0.25 Na-GTP, 5 QX-314; pH 7.3 adjusted 

with CsOH. Cells were voltage clamped at -70mV. For miniature EPSC (mEPSC) and current 

clamp recordings, a solution containing (in mM): 119 K-MeSO4, 2 KCl, 1 MgCl2, 1 EGTA, 0.1 

CaCl2, 10 HEPES, 2 Mg-ATP, 0.4 Na-GTP; pH 7.3 adjusted with KOH, was used interchangeably 

with no measured differences. A constant-current isolated stimulator (DS3; Digitimer) was used 

to stimulate excitatory afferents with a monopolar electrode to record evoked currents (eEPSCs). 

Single or paired pulses were generated using Clampex software (Molecular Devices, Sunnyvale, 

CA). Stimulus intensity was adjusted to generate currents with amplitude between 50 and 500pA. 

Cells with run-up or run-down of more than 15% were excluded from analysis, as were 

electrophysiologically identified interneurons. Picrotoxin (50µM, Sigma Aldrich) was included in 

the external perfusion aCSF to block GABAA receptors. TTX (1µM, Tocris, Bristol, UK) was used 

for mEPSC recordings. For EPSC experiments, D-APV (50µM, R&D Systems, Minneapolis, MN) 

was bath applied to block NMDARs at +40mV. In some experiments, D-APV was not applied and 

the peak amplitude of AMPAR current was measured at -70mV and the NMDAR peak amplitude 

taken at 40mV, 35ms from the AMPAR peak. Series resistance for all recordings was monitored 

continuously. 

 
Cells with a change in series resistance beyond 20% were excluded from data analysis. 

 
Synaptic currents were recorded with a MultiClamp 700B amplifier (Molecular Devices). Signals 



 

were filtered at 2.6-3 kHz and amplified 10 times, then digitized at 20 kHz with a Digidata 1322A 

analog-to-digital converter (Molecular Devices). Miniature current recordings were analyzed 

using pClamp10 software (Molecular Devices) over a period of approximately 2.5 min during 

which 250-2500 events were collected. AMPAR/NMDAR ratios were determined by taking the 

average peak amplitude of EPSCs at 40mV in the absence or presence of D-APV (30 sweeps each) 

or at -70mV. For paired pulse experiments, a set of two pulses were delivered with an inter-pulse 

interval of 50-200ms and a minimum of 30 sweeps were recorded with the pulses delivered every 

10 seconds. For current clamp recordings, the resting membrane potential was adjusted after 

stabilization to -70mV with minimal current injection. A current step protocol from -200pA to 

+400pA (50pA increment) was applied for at least 5 runs to record evoked action potentials. 
 
 

2.2.4 Surface GLUA1 detection 
 
 
Experiments were performed using a modified version of a published protocol (Boudreau et al, 

2012). Single NAc tissue punches were rapidly micro-dissected using a stainless-steel stylet (1mm 

diameter) from 1 mm-thick coronal sections obtained from a mouse brain matrix. Punched tissue 

was consistently chopped with a surgical scalpel. NAc tissue was not pooled between mice. One 

hemisphere of tissue was immersed in ice-cold artificial CSF (aCSF) containing 2 mM 

Bis(sulfosuccinimidyl) suberate (BS3) (Pierce, Waltham, MA) and incubated for 30 min at 4°C on 

a rotator. Tissue from the other hemisphere was incubated in aCSF alone. The cross-linking 

reaction was quenched with 100 mM glycine in aCSF for 10 min at 4°C on a rotator. Samples were 

centrifuged for 2 min at 4°C. Supernatants were discarded and pellets washed once with aCSF. 

Samples were re-centrifuged, supernatants were discarded, and pellets were sonicated in ice-cold 

lysis buffer [0.1% NP-40 buffer in Tris-EDTA, pH 7.4, containing 1× protease inhibitor mixture 
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(Sigma-Aldrich, St. Louis, MO), 5 mm NaF, and 1× phosphatase inhibitor mixture (Sigma- 

Aldrich)]. Protein concentration was determined by DC assay (Bio-Rad, Hercules, CA) and 20 μg 

of protein was loaded on a 4–15% gradient Tris-HCl gel (Bio-Rad) and run at 100 V in 1X TGS 

buffer (Bio-Rad). Proteins were transferred onto PVDF membranes for 1.5 hrs at 500mA constant 

current in cold 1X TG buffer (Bio-Rad). Membranes were re-wet and blocked for 4hrs in Odyssey 

Blocking Buffer (LI-COR Biosciences, Lincoln, NE). They were further processed for GLUA1 

immunoblot analysis and probed with anti-mouse GAPDH (37kDa; 1:10000, Santa Cruz 

Biotechnology, Dallas, TX) and anti-rabbit GluA1 (106kDa; 1:500, Pierce). Following overnight 

primary incubation at 4°C, blots were incubated in fluorescent secondary antibodies including goat 

anti-rabbit 800 and goat anti-mouse 680 (1:400, LI-COR Biosciences). Blots were imaged using 

the LI-COR Odyssey system. Intensity of protein bands was normalized to GAPDH and surface 

protein levels were determined as the subtraction of the intracellular band intensity from the total 

band intensity (in arbitrary units). The surface-intracellular ratio was calculated from the obtained 

values. Rhythms and acrophase measures of GLUA1 expression were determined by multiple 

harmonic regression using CircWave v1.4 software available from circwave.org. Curves were fit 

to 2 sine waves and the center of gravity of each fitted waveform was used to determine acrophase. 

2.2.5 Viral gene transfer and stereotaxic surgery 

Stereotaxic surgery was performed as previously described (Ozburn & Falcon et al., 2015). 

Bilateral stereotaxic injections of 0.5µL of purified high titer AAV9 encoding GFP driven by the 

human synapsin promoter (control virus) or AAV9-hsyn-GluA1 were delivered into the NAc (from 

Bregma; angle 10°: AP +1.5mm, Lat. +1.5mm, DV -4.4mm). The efficiency of GluA1 

overexpression was confirmed by real-time RT-PCR from infected NAc tissue. Mice recovered 
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for 3 weeks allowing for full expression of the virus before behavioral testing. Following 

behavioral testing, the placement of viral injections was verified using immunohistochemical 

methods as described in the supplement. Use of AAV-Clock-shRNA virus has been previously 

described (Mukherjee et al, 2010). 

2.2.6 Immunohistochemistry 

Mice were perfused with 1x phosphate-buffered saline (PBS) followed by 4% paraformaldehyde 

in PBS (pH 7.4). Brains were post-fixed then transferred to 30% sucrose solution. Sections (30µm) 

were taken and processed for GFP and DAPI. Briefly, floating sections were rinsed 3 x with PBS 

to remove fixative then blocked for one hour in PBS containing 0.2% Triton-X and 5% Normal 

Donkey Serum (Jackson ImmunoResearch, West Grove, PA). Sections were incubated overnight 

at room temperature with a rabbit anti-GFP primary antibody (1:20,000; Abcam, Cambridge, UK) 

on a rotary shaker. The following day, sections were rinsed 3 x with in PBS and incubated with 

donkey anti-rabbit conjugated to a 488nm fluorophore (1:400; Invitrogen, Carlsbad, CA) for two 

hours at room temperature on a rotary shaker. Following a final wash in PBS, sections were 

mounted and coverslipped with DAPI mounting medium (Vector Labs, Burlingame, CA) and 

imaged at 4x magnification on a fluorescent microscope (Olympus, Center Valley,PA). 

2.2.7 Animal behavior 

Animals habituated to testing rooms for at least 30 minutes prior to behavioral testing. Animals 

were tested early in the light phase between ZT0-ZT4. To test locomotor response to novelty, mice 

were placed inside automated locomotor activity chambers equipped with infrared photobeams 
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(San Diego Instruments, San Diego, CA) to measure activity. Data were collected continuously 

for 90 minutes and analyzed in 5-minute time bins. Elevated Plus Maze (EPM) was performed in 

a dimly lit room (~15 Lux at each open arm). Mice were placed in the center of the maze and both 

the number of entries into the open and closed arms and the total time spent in the open arms (in 

seconds) were manually recorded over a 10-minute period. A biased protocol was used to assess 

cocaine conditioned place preference (CPP). On the pre-test day, mice were allowed to explore all 

chambers of the place-conditioning apparatus for 20 minutes to determine inherent bias. On 

conditioning days 1 and 3, mice were given a saline injection (i.p.) paired with the preferred 

chamber of the apparatus, and on days 2 and 4, they received a cocaine injection (5mg/kg; i.p.) 

paired with the non-preferred chamber. Conditioning sessions lasted 20 minutes. Following 

conditioning, on day 6, mice were tested again for time spent on either side of the apparatus and 

the CPP score was calculated by subtracting the pre-conditioning time spent in the cocaine-paired 

side from the time spent in the cocaine-paired side on the test day. Data from mice that spent a 

majority of time in the center of the apparatus were eliminated fromanalysis. 

2.2.8 Real-time Polymerase Chain Reaction 

Primers used for qPCR: GluA1 Fwd: 5’ – ACCCTCCATGTGATCGAAATG-3’; GluA1 Rev: 5’- 

GGTTCTATTCTGGACGCTTGAG-3’; Gapdh Fwd: 5’-CTTTGTCAAGCTCATTTCCTGG-3’; 

Gapdh Rev: 5’-TCTTGCTCAGTGTCCTTGC-3’. Micro-dissected NAc tissue punches were 

homogenized both mechanically and by QIAshredder homogenization spin-column (Qiagen, 

Hilden, Germany). Total RNA was isolated using the RNeasy Plus Micro Kit (Qiagen) as per 

manufacturer guidelines. gDNA was eliminated with the provided gDNA Eliminator column. 

RNA concentration and quality was determined using NanoDrop 2000 UV-Vis spectrophotometer 
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(Thermo Fisher Scientific, Waltham, MA). cDNA was synthesized from 100ng total RNA using 

SuperScript VILO Master Mix (Invitrogen). Relative gene expression was measured by qPCR with 

1ng of cDNA mixed with Power SYBR Green PCR Master Mix (Thermo Fisher Scientific) and 

primers listed above. Reactions were run in duplicate in an Applied Biosystems 7900HT Fast Real- 

time PCR System (Applied Biosystems, Foster City, CA). Relative gene expression was calculated 

using the comparative Ct (2^∆∆Ct) method (Landgraf et al, 2014) and normalized to each sample’s 

corresponding Gapdh mRNA levels. 

2.2.9 Data analysis 

Electrophysiological, biochemical and behavioral experiments were conducted blind to genotype. 

Significant differences were determined by Student’s t-Test, one-way ANOVA or two-way 

ANOVA followed by Bonferroni post hoc tests. P<0.05 is considered significant for all analyses. 

All data are presented as mean ± SEM. 

2.3 RESULTS 

2.3.1 Clock∆19 mice have reduced AMPAR-mediated synaptic transmission and strength 

at NAc MSNs throughout the light/dark cycle 

Our results indicate that there is a significant reduction in glutamatergic synaptic transmission in 

Clock mutant MSNs compared with WT across the L/D cycle as indicated by reduced amplitude 

of AMPAR-mediated miniature  excitatory  postsynaptic  currents  (mEPSCs)  (F(1,76) = 16.43, 
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P=0.0001 genotype effect). We found a significant main effect of phase in mEPSC amplitude as 

well indicating that perhaps this particular measure has diurnal variability (F(1,76) = 6.615, 

P=0.0121 phase effect) (figure 5c). 

Figure 5. Clock∆19 mutation modifies MSN AMPAR-mediated synaptic transmission across the light/dark 

cycle. (A) Recording sites within the NAc from slices collected during light and dark phases (WT – black; Clock∆19 

– red; ZT = Zeitgeber time; CPu = caudate putamen; NAcc = NAc core; NAcSh = NAc shell). (B) Representative

traces of mEPSCs recorded at -70mV in the presence of 1uM TTX. (C) Summary of mEPSC amplitude of mutant and 

WT MSNs at both phases (n = cells/animals; all data in bar graphs are presented as mean ± SEM). (D) Plot of 

cumulative probability of all mEPSC amplitudes across phases. *P < 0.05; **P < 0.01; ***P < 0.001 in this and all 

subsequent figures. 



37  

Many studies have shown that signaling in core and shell sub-regions of the NAc can mediate 

affective valence and motivational behavior in a distinct manner (Faure et al, 2010; Meredith et 

al, 2008). However, when we further analyzed our mEPSC amplitude data by regional location no 

significant difference in NAc core versus shell neurons was observed during the light (F(1,37) = 

9.205, P=0.0044 genotype effect; F(1,37) = 0.0001, P=0.9910 region effect) or the dark (F(1,34) = 

6.715 P=0.0140 genotype effect; F(1,34)= 0.0491, P=0.8259 subregion effect) (figure 6a-b). 

 
 
 
 
 

 
Figure 6. Clock∆19 MSNs show reduced glutamatergic transmission in both core and shell subregions of the 

NAc. (A) Summary of mEPSC amplitude of WT and mutant NAc core and shell MSNs during the light phase. (B) 

Amplitude of mEPSCs in core and shell subregions during the dark phase. 

 
 

When calculating AMPAR/NMDAR ratio of evoked EPSCs, a measure of excitatory 

synaptic strength, there was a significant reduction in A/N of MSNs in Clock∆19 mutants 

consistent across the L/D cycle (F(1,44) = 11.53, P=0.0015 genotype effect; F(1,44) = 0.1237, 

P=0.7267 phase effect) (figure 7b) and no change in the decay kinetics of the evoked NMDA 

current indicating that subunit stoichiometry of these receptors was not altered in mutants (F(1,39) 
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= 0.1936, P=0.6624 genotype effect; F(1,39) = 2.013, P=0.1639 phase effect). Additionally, we 

failed to observe an effect of genotype or phase on the CV analysis of NMDAR EPSCs relative to 

AMPAR EPSCs, a measure directly correlated with the proportion of silent synapses, which lack 

functional AMPARs (F(1,29) = 0.0944, P=0.7609 genotype effect; F(1,29) = 0.4760, P=0.4957 phase 

effect) (figure 7c-f). This result indicates that the reduced functionality of AMPAR-mediated 

activity at mutant MSNs likely does not occur through a complete silencing of synapses. 
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Figure. 7. AMPAR-mediated synaptic strength of MSNs is reduced by the Clock∆19 mutation. (A) 

Representative traces of evoked AMPAR and NMDAR-mediated EPSCs at 40mV. (B) Ratio of the peak amplitude 

of the AMPAR EPSC to the NMDAR EPSC for each group of MSNs. (C) Representative traces of NMDAR-mediated 

EPSCs in the light phase (WT- black, Clock∆19 – red) and dark phase (WT- dark grey, Clock∆19 – light grey) MSNs. 

(D) Summary of NMDAR EPSC decay kinetics. (E) Sample plot of AMPAR EPSC amplitudes at -70mV and
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NMDAR EPSCs at 40mV from light phase WT and mutant MSNs. (F) Summary of ratio of 1/CV2 NMDAR EPSCs 

to 1/CV2 AMPAR EPSCs from mutant and WT MSNs during both phases. 

2.3.2 Presynaptic release of glutamate onto NAc MSNs is unaltered in Clock mutants 

throughout the light/dark cycle 

We further analyzed the frequency of mEPSCs as a measure of quantal release probability of 

glutamate at NAc MSNs in mutant and WT slices. Here, we found no significant difference 

between groups or by diurnal phase (F(1,72)= 0.06752, P=0.7957 genotype effect; F(1, 72)= 0.04288, 

P=0.8365 phase effect) (fig 8a-b). Another standard measure of transmitter release probability at 

excitatory synapses is the paired pulse ratio (PPR), which is comprised of the peak amplitude of 

the 2nd of a series of evoked EPSCs to the 1st. The PPR is inversely related to release probability. 

We determined the PPR at three different inter-pulse intervals and observed no significant 

difference between mutant and WT groups during either diurnal phase (F(3, 25)= 0.1803, P=0.9088 

genotype effect; F(3, 25)= 9.531, P=0.0003 interval effect) (figure 8c-d). These results indicate that 

synapse number or presynaptic release of glutamate onto MSNs remain unchanged with Clock 

gene disruption and wildtype animals do not show diurnal variability in these measures. 
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Figure 8. Clock∆19 mutation does not alter the presynaptic release of glutamate onto NAc MSNs. (A) Frequency 

of AMPAR mEPSCs recorded from mutant and WT MSNs at light and dark phases. (B) Cumulative probability of 

inter-event intervals (IEI) of all recorded mEPSCs. (C) Sample traces of pairs of evoked AMPAR EPSCs at -70mV at 

varying inter-stimulus intervals. (D) Paired-pulse ratio (PPR) calculated as peak amplitude of the second EPSC to the 

first plotted across inter-stimulus interval. 

2.3.3 Membrane levels and rhythm of GLUA1 protein are reduced in the NAc of 

Clock∆19 mice 

In order to investigate the molecular basis for the deficiency in excitatory drive onto MSNs seen 

in Clock mutant accumbens, we measured the protein expression of the AMPAR subunit, GLUA1, 
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across the light/dark cycle. Previously, we have shown reduced total and phosphorylated protein 

levels of this particular subunit in mutant NAc during the day (Dzirasa et al, 2010). These results 

indicate a potential deficiency in the translation or trafficking of AMPARs that may underlie 

microcircuit-level and physiological dysfunction. Here we used BS3 crosslinking to isolate 

membrane-bound and intracellular fractions of GLUA1. The inherent smearing of crosslinking to 

detect multi-protein complexes made it difficult to resolve a clear multimer band and we therefore 

quantified the reduction of the monomer instead to calculate the amount of surface expressed 

GLUA1-containing AMPA receptors. We found a significant reduction in the surface/intracellular 

(S/I) ratio of GLUA1 normalized to GAPDH at ZT6 and ZT18 in mutant NAc which corresponded 

closely with our recording times (F(1, 20) = 17.67, P=0.0004 genotype effect; F(1, 20) = 0.8999, 

P=0.3541 phase effect) (figure 9). These results suggest that reduction in CLOCK protein function 

may affect the ability of GLUA1-containing AMPARs to be inserted into the membrane for 

proper excitatory signaling and this deficit appears during both the light and dark phases. 
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Figure 9. The surface/intracellular ratio of GLUA1 expression is significantly reduced in Clock∆19 NAc 

during the light and dark phases. Crosslinked and non-crosslinked NAc tissue from mutant and WT animals 

allowed for the quantification of total and intracellular protein levels of GLUA1. Surface protein levels were 

inferred by the subtraction of intracellular protein from total protein. Clock∆19 mice have significantly reduced S/I 

ratio of GLUA1 compared with WT littermates at ZT6 and ZT18. Representative bands are shown below. Band 

intensity was normalized to GAPDH and presented as arbitrary units. 
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Furthermore, we tested for a rhythm in GLUA1 total protein and S/I ratio in WT and mutant 

NAc. Our measurements at 6 time points across 24 hours allowed us to apply multiple harmonic 

regression to detect a significant diurnal rhythm in WT GLUA1, with a bimodal pattern peaking 

at the midpoint of the light and dark cycles (P < 0.0001). A rhythm with similar pattern was also 

detected in the S/I ratio in WT NAc (P < 0.001). In mutant accumbens however, we were unable 

to curve fit the total and surface GLUA1 data indicating a lack of significant rhythm (figure 10a- 

b). Additionally, when we analyzed whether Clock mutants have a shift in the expression pattern 

of GLUA1, we found that indeed the acrophase, or estimation of circadian phase corresponding to 

the peak of the rhythm, was significantly advanced in mutants for both the total protein and S/I 

ratio (P < 0.05) (figure 10c). These results suggest that a biochemical basis contributing to 

excitatory drive onto MSNs is profoundly affected by a lack of proper CLOCK proteinfunction. 
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Figure 10. A diurnal rhythm in GLUA1 expression in the NAc is abolished in ClockΔ19 mice. (A) The diurnal 

rhythm of total protein levels of GLUA1 across 6 time points, normalized to GAPDH expression in mutant and WT 

NAc tissue. A significant curve fit was found in WT but not in mutant data (bars below represent light and dark 

phases). (B) Rhythmic profile of the GLUA1 S/I ratio in WT and mutant across the light/dark cycle showing a loss of 

significant rhythm in mutant NAc. (C) Acrophase of diurnal expression rhythms of total GLUA1 and S/I ratio in 

mutant and WT accumbens. Acrophase measures were derived from the center of gravity of the fitted harmonic curves 

(+SEM). n = 5-9 mice for allgroups. 
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2.3.4 Clock mutant MSNs display subtle alterations in intrinsic membrane properties 
 
 
The functional output of MSNs is dependent upon the integration of synaptic inputs and the 

membrane excitability inherent to the cells. In order to assess the effects of the Clock∆19 mutation 

on MSN functional output, we examined various parameters related to the intrinsic membrane 

excitability of these cells. We first measured the evoked firing rate of MSNs in response to current 

injection steps ranging from 100-400pA. While we did not observe a significant difference in spike 

number between genotypes, interestingly, we saw a robust difference in excitability at the different 

phases with a highly increased firing rate during the dark cycle (figure 11a-b). When collapsing 

across genotype we detected significant differences by phase and current injection (F(3, 39)= 48.87, 

P < 0.0001 phase effect; F(6, 234) = 699.8, P < 0.0001 current effect). Relatively few studies have 

conducted diurnal ex vivo measurements of neuronal activity in extra-SCN regions; therefore, the 

presence of a variable intrinsic excitability profile of NAc MSNs is noteworthy. A number of 

potential mechanisms could underlie this variability, including Clock-regulated fluctuations in the 

activity of potassium conductances responsible for MSN bi-stable excitability (Shen et al, 2004; 

Vilchis et al, 2000; Wickens and Wilson, 1998). 
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Figure 11. Excitability of MSNs is unaltered by Clock∆19 mutation however diurnal variation exists in 

evoked firing rates. (A) Representative traces of action potential firing in response to current injection from 

mutant and WT MSNs during the light phase. (B) Input-output curve of spikes with varying current steps during 

both phases in both groups. 

 
 

We further analyzed several intrinsic membrane properties of MSNs in mutant and WT 

slices across the light/dark cycle, including the resting membrane potential (RMP) at break-in, 

the rheobase or minimum current needed to elicit   action potential (AP) generation, and the    AP 

threshold (Table 2). In these measures, we saw a significantly lower RMP of Clock mutant MSNs 

compared with WT during the light phase (t(27) = 2.218, P = 0.0352) and the dark phase (t(14) = 

2.756, P = 0.0155). This suggests that mutant MSNs may rest at a more hyperpolarized 

membrane potential at baseline and require greater stimulation to enter the “up-state”. We did not 

find a significant difference in the rheobase during the light phase (t(27) = 0.4907, P = 0.6267) or 

dark phase (t(15) = 0.4971, P = 0.6264). AP threshold was similar during the light phase (t(17) = 

0.9113, P = 0.3794) however was lower in mutant MSNs during the dark phase (t(14) = 2.322, P = 

0.0358). Together, these results suggest that a reduction in CLOCK protein function 
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does not affect the intrinsic membrane excitability of MSNs, however a lowered resting 

membrane potential may indicate a more subtle effect on excitability. 

 
 

Table 2. Intrinsic membrane properties of Clock mutant and WT MSNs during light and dark phases. 

Additional properties of membrane excitability of MSNs were examined in Clock∆19 and WT cells including resting 

membrane potential at break-in, (RMP), rheobase and action potential (AP) threshold. 

 
 

 
 

 
 
 
 
 
 

2.3.5 Overexpression of GluA1 in the NAc normalizes “manic-like” behavior in Clock∆19 

mice 

 

Finally, we sought to determine whether up-regulation of functional GluA1 expression in 

Clock∆19 NAc could rescue their abnormal exploratory drive and reward sensitivity. We injected 

AAV9-hsyn-GluA1 or AAV9-hsyn-GFP bilaterally into the accumbens of adult male mutant and 
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WT mice and allowed 3 weeks for recovery and full expression. Our manipulation resulted in a 

roughly 3-fold increase in GluA1 transcript levels as determined by qPCR (figure 12a-c) and a 

potentiation of MSN excitatory synapses as measured by AMPAR/NMDAR ratio (P = 0.0036) 

(figure 12d-e). 



50 

Figure 12. Functional up-regulation of GluA1 in the NAc of Clock∆19 mice. (A) Timeline of experimental 

procedures testing the effect of AAV9-hsyn-GluA1 or AAV9-hsyn-GFP expression on exploratory drive and 

conditioned reward behavior. (B) Bilateral localization of viral injections to the NAc (left) and GFP expression (right). 

(C) Accumbal GluA1 transcript levels following viral overexpression compared with GFP expression in Clock

mutants. (D) Representative traces of AMPAR EPSCs (at -70mV) and NMDAR EPSCs (at 40mV) in GFP-expressing 

(black) and GluA1-overexpressing cells (red). (E) AMPAR/NMDAR ratio of evoked EPSCs from virally-infected 

cells. LV- lateral ventricle; AC – anterior commissure; NAcc – nucleus accumbens core; NAcSh – nucleus accumbens 

shell. 
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Similar to lithium treatment (Roybal et al, 2007) overexpression of GluA1 in Clock mutant mice 

did not alter the failure to habituate to a novel environment that was seen in GFP-expressing mutant 

mice. As expected, WT control groups showed faster locomotor habituation in this assay (F(17, 816) 

= 83.17, P < 0.0001 time effect; F(3, 48)= 3.522, P = 0.0218 treatment effect) (figure 13a). However, 

comparable to previous studies, we saw that mutant mice expressing GFP had a significantly 

higher proportion of open arm entries compared with WT GFP-expressing mice in the elevated 

plus maze (F(1, 54) = 6.427, P = 0.0142 genotype effect) and similar to lithium treatment, several 

weeks of NAc-specific GluA1 overexpression in mutants resulted in a significant reduction in open 

arm entries compared with GFP expression (F(1, 54) = 0.9928, P = 0.3235 treatment effect; F(1, 54) = 

6.009, P = 0.0175 interaction; Bonferroni’s multiple comparison’s test: *P < 0.05, ***P < 0.001). 

Open arm entries were normalized to total crosses in the apparatus (figure 13c). Additionally, total 

time spent in the open arms of the EPM was decreased to near WT levels with GluA1 up-regulation 

in mutant NAc (F(1, 54)= 1.498, P = 0.2262 treatment effect; F(1, 54)= 7.989, P = 0.0066 interaction; 

Bonferroni’s multiple comparison’s test: **P < 0.01, ***P < 0.001). As expected, GFP expressing 

mutant mice displayed increased time in the open arms compared with WT controls (F(1, 54)= 8.057, 

P = 0.0064 genotype effect) (figure 13b). 
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Figure 13. Overexpression of GluA1 in the accumbens of Clock∆19 mice reverses elevated exploratory drive 

behavior. (A) Locomotor activity in a novel environment of mutant and WT animals. (B) Total time spent in the open 

arms of the EPM during 10 min of testing. (C) Percent open arm entries in the EPM normalized to total crosses. 

 
 
 
 
To determine whether GLUA1-mediated signaling is important for the effects of Clock gene 

disruption on behavioral measures associated with cocaine reward sensitivity, we performed 

cocaine conditioned place preference (CPP) (figure 14a). Using a dose of 5mg/kg cocaine, which 

has been shown to increase preference in Clock mutant mice compared with WT littermates 

(McClung et al, 2005), we demonstrated a reliably elevated CPP score in GFP-expressing mutants 
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compared with WT controls (F(1, 53)= 2.514, P = 01188 genotype effect; F(1, 53)= 1.817, P = 01834 

treatment effect; F(1, 53) = 22.78, P < 0.0001 interaction; Bonferroni’s multiple comparison’s test: 

*P < 0.05, ***P < 0.001). GluA1 overexpression in Clock mutants was able to normalize 

conditioned place preference to WT levels. Interestingly, we also observed a marked increase in 

place preference in WT mice with GluA1 up-regulation (figure 14b). 

 

 
Figure 14. Cocaine sensitivity is normalized following GluA1 up-regulation in Clock∆19. (A) Schematic of 3- 

chambered CPP testing apparatus and timeline of conditioning experiment. (B) Cocaine CPP scores of all experimental 

groups following a biased conditioningparadigm. 



54  

2.4 DISCUSSION 
 
 
The current study demonstrates that a disruption in CLOCK protein function produces 

significantly reduced excitatory drive onto medium spiny neurons of the nucleus accumbens. We 

found that both the amplitude of AMPAR-mediated spontaneous currents as well as the ratio of 

AMPAR/NMDAR evoked currents was decreased across the day. This deficit in glutamatergic 

transmission does not appear to occur through silent synapse generation. Adaptations at mutant 

MSN excitatory synapses are likely postsynaptic as we found no alterations in presynaptic release 

properties. Additionally, the Clock mutation abolished a normal bimodal rhythm in GLUA1 

protein expression and advanced the acrophase of the rhythm. In a previous study we reported a 

significant decrease in both total and phosphorylated GLUA1 protein levels in mutant NAc during 

the day with no changes in the expression of GLUA2, GLUN1, GLUN2A or GLUN2B subunits 

(Dzirasa et al, 2010). These results were suggestive of a potential deficit in the translation or 

trafficking of GLUA1-containing AMPARs to NAc synapses. Here we demonstrate that indeed, 

membrane-bound GLUA1 levels are lowered by Clock mutation and this adaptation persists across 

light and dark phases. Therefore, this suggests that functional impairments in glutamatergic 

transmission and strength of mutant MSNs are a result of reduced synaptic GLUA1-containing 

AMPARs. Increased activity of VTA dopamine neurons and elevated extracellular dopamine 

levels are likely an indirect cause for these abnormalities in Clock∆19 accumbens neurons. The 

modulatory function of dopamine on NAc glutamatergic activity is characterized in studies in 

which drugs of abuse act to elevate dopamine levels. Chronic cocaine administration, for instance, 

leads to an up-regulation of surface expressed GLUA1 (Boudreau and Wolf, 2005; Conrad et al, 

2008; Lüscher and Malenka, 2011). Importantly, the plastic changes induced by chronic cocaine 

are not recapitulated in our model of hyperdopaminergia, implying that the effects we observe are 
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likely a compensatory response to a state in which dopaminergic activity is continually elevated. 

Additionally, the manner in which cocaine and dopamine influence both synaptic and intrinsic 

properties of MSN activity through differential signaling mechanisms has been empirically and 

theoretically examined (Moyer et al, 2007; Mu et al, 2010). Modulatory effects of dopamine are 

thought to differ based upon the specific dopamine receptor expression of MSNs. One limitation 

of our study is that we were unable to determine the cellular identity of MSNs in Clock mutant 

slices. We have previously reported an imbalance in D1R and D2R-mediated signaling in the 

striatum of mutants whereby there is a shift towards increased expression and binding activity of 

D2Rs (Spencer et al, 2012). Therefore, it is possible that these changes are occurring more 

frequently in particular neuronal pathways (i.e. direct versus indirect). When we investigated the 

intrinsic excitability of mutant and WT MSNs we found that they had similar firing however MSN 

excitability was significantly elevated during the dark phase. Rhythmicity in a number of ionic 

mechanisms could underlie this interesting effect. Diurnal variations in resting membrane 

potential, calcium currents, potassium conductances and in vitro firing patterns have been reported 

in midline thalamic neurons. Activity of these neurons is also elevated during the night phase 

(Kolaj et al, 2012). 

As a critical site of integration of limbic and sensorimotor information for gating of salient 

stimuli, the accumbens is important for maintaining proper mood and reward responses. Clock∆19 

mice display abnormal anxiety and depressive-like behaviors and robustly elevated sensitivity to 

a variety of rewarding substances. Restoration of functional CLOCK in the VTA and treatment 

with dopamine depleting pharmacological agents are able to normalize many aspects of the mutant 

manic-like phenotype (Roybal et al, 2007; Sidor et al, 2015). Disruption of glutamate receptor 

expression in the striatum however,  has  also  been  linked  with  neuropsychiatric  illness and 



56  

increased dopaminergic transmission. Wiedholz and colleagues have characterized a number of 

impairments in GluA1 knockout mice relevant to symptoms of schizophrenia including 

hyperactivity and reduced striatal clearance of extracellular dopamine (Wiedholz et al, 2008). A 

number of other preclinical models describing perturbations in glutamatergic transmission have 

also been likened to features of clinical BD including GluN2A deletion and GluR6 subunit 

knockout (Boyce-Rustay and Holmes, 2006; Shaltiel et al, 2008). Here, we have demonstrated 

that restoring functional expression of GLUA1-containing AMPARs to the accumbens is sufficient 

to normalize the increased exploratory behavior in Clock mutants. It will be interesting in future 

studies to determine whether GLUA1 overexpression can normalize accumbal phase signaling 

deficits in mutants as well. Up-regulation of GLUA1 in the NAc also reduced cocaine reward 

sensitivity in mutants. Interestingly, we observed robust increase in preference in WT animals in 

which GLUA1 was overexpressed. This was a surprising result given that Bachtell and colleagues 

have demonstrated diminished sensitization and decreased cocaine seeking in extinction and 

reinstatement following overexpression of GluA1 in the accumbens of wildtype rats (Bachtell et 

al, 2008). However, the specific mode of up-regulation in these studies varied from our own, in 

which long-term overexpression may have altered accumbal network activity in a more 

pronounced manner. 

 
Interestingly, the physiological, behavioral and biochemical changes that we find in the 

nucleus accumbens of the Clock mutant mice do not seem to be due to direct transcriptional 

mechanisms in these neurons but rather are tied to dysfunctional circuit dynamics. We have 

previously reported that a viral-mediated knockdown of CLOCK in the NAc does not affect 

locomotor activity, anxiety-like behavior or cocaine CPP (Ozburn et al, 2015) and we find here 

that it does not alter the amplitude (F(2, 53) = 4.545, P = 0.0151 treatment effect, Bonferroni’s 
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multiple comparison’s test: *P < 0.05) and frequency of AMPAR-mediated mEPSCs in MSNs 

(F(2, 50)  = 0.7478, P = 0.4786 treatment effect) (figure 15a-b). 

 
 
 
 
 

 

Figure 15. Knockdown of Clock in the NAc of WT mice does not alter excitatory transmission. (A) Summary of 

mEPSC amplitude in MSNs expressing AAV-Clock-shRNA. Compared with WT and mutant MSNs (B) Frequency 

of mEPSCs from allgroups. 

 
 
 
 
Together, these results support a model whereby diminished CLOCK function increases 

dopaminergic activity and tone, altering excitatory drive onto MSNs, most likely as a 

compensatory mechanism. This may reduce the functional output of the accumbens in feedback 

dynamics onto the VTA or disinhibit other target regions leading to the elevation of mood, 

exploratory drive and reward-seeking behavior. 
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Figure 16. Proposed model of the effects of the Clock∆19 mutation on NAc MSN activity. CLOCK disruption 

leads to an elevation of dopamine synthesis and extracellular dopamine (DA) in the accumbens. Previous studies from 

our lab have revealed that Clock∆19 mice have altered striatal DA receptor expression and activity with a shift in the 

D1:D2 ratio favoring D2 signaling. We have now also demonstrated that GluA1-mediated AMPAR expression is 

reduced at MSN synapses, potentially affecting the output of these GABAergic neurons, which project back to the 

VTA as well as the ventral pallidum. Disinhibition of these targets may produce mood elevationand reward seeking. 

 
 
 
 

2.5 FUTURE DIRECTIONS 
 
 
While we have uncovered valuable information regarding specific deficits in nucleus accumbens 

excitatory signaling that may have important consequences for the functioning of this critical brain 

region in mania-like behavior, a few outstanding questions remain to be investigated further. 

Clock∆19 mutant mice represent a model of bipolar mania with face, construct and predictive 

validity and their circadian rhythm dysfunction resembles rhythm disturbances seen in bipolar 
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patients. This is further underscored by a recent discovery from our group that these mice undergo 

rapid diurnal mood cycling from a daytime manic-like state to a nighttime euthymic condition 

characterized by normal mood behavior (Sidor et al, 2015). Rhythms in the neural activity of VTA 

dopamine cells as well as the expression and promoter binding of tyrosine hydroxylase by CLOCK 

point to a strong basis for diurnal variability in reward-related mechanisms in the mesolimbic 

system, which are disrupted by a dysfunctional CLOCK. Importantly, reduction of dopamine 

synthesis by the TH inhibitor, AMPT, reversed manic-like behavior specifically in the daytime 

when DA activity was high in mutants (Sidor et al, 2015). Here we have found additional diurnal 

differences in glutamatergic receptor expression and function in the NAc of mutant animals and 

have shown that we can rescue behavior with a viral-mediated approach to restore glutamatergic 

function. However, we only conducted measurements of exploratory drive and reward sensitivity 

behavior during the light phase. Our results show that excitatory synaptic transmission at MSNs 

was similarly reduced during both diurnal phases in mutants, as was GluA1 surface protein 

expression and the resting membrane potential of MSNs. Therefore, it will be important to follow 

up our findings with behavioral measurements in the dark phase to try to better link these 

mechanistic changes. We are in the process of conducting these experiments and hope to provide 

a more comprehensive profile of the role of GluA1 in Clock∆19 manic-likebehavior. 

To understand the effects of CLOCK disruption on intrinsic excitability of MSNs, we 

measured a number of membrane properties and found that while the firing rate of MSNs was 

increased in the dark phase to a similar extent in both WT and mutants compared to the light phase, 

AP threshold was also slightly increased in mutant cells during the dark phase. In order to reconcile 

these results, it will be important to try to characterize the passive membrane properties of the 

neurons as well. An increase in input resistance or a change in the membrane capacitance could 
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explain the differential excitability of the neurons across the light/dark cycle. A decreased rheobase 

during the dark phase could be a result of increased input resistance. Because hyperpolarizing 

current steps were included in our current clamp protocol, input resistance can be calculated by 

measuring the amplitude of the membrane potential change from baseline divided by the absolute 

value of the current injection. Additionally, more subtle properties of the individual action 

potentials in the evoked spike trains could provide information about potential differences in ionic 

mechanisms underlying MSN excitability. Cocaine is known to decrease membrane excitability of 

NAc shell MSNs in part through the up-regulation of SK-type calcium-activated potassium 

channels (Mu et al, 2010). Measuring the medium and fast components of the after- 

hyperpolarization of spikes would enable us to determine whether these ion channels are 

differentially regulated in the hyperdopaminergic Clock mutants. 

Another important question that has arisen from our results is the extent to which GluA1 

overexpression affects synaptic transmission and strength in WT MSNs. We confirmed that the 

overexpression was able to potentiate excitatory synapses in Clock mutant MSNs suggesting that 

this is the mechanism by which it may restore normal behavior, however we did not perform the 

requisite measure in WTs. This would be especially important because an up-regulation of GluA1 

in WT NAc led to a pronounced increase in cocaine CPP compared with GFP expression. This 

was a surprising result as another study of GluA1 overexpression in the NAc of WT rats 

demonstrated a decrease in cocaine seeking, particularly during extinction and cocaine-induced 

reinstatement with no effect on acquisition of self-administration. The passive administration of 

cocaine in the CPP paradigm differs from the active motivation to self-administer, which is 

influenced by emotional factors as well as the pharmacological properties of the drug itself in 

promoting a behavioral reward response (Prus et al, 2009). A single manipulation is capable of 
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driving behavior in these two reward-related measures in opposing directions. NAc overexpression 

of the cAMP responsive element binding protein (CREB), for instance, reduces cocaine CPP but 

increases self-administration (Larson et al, 2011). It may be possible that while in mutant animals, 

GluA1 overexpression restores balance to MSN circuitry, an up-regulation of the protein in WT 

animals could further unbalance the circuit by elevating receptor expression to a non-physiological 

range. Furthermore, the specific complement of GluA1-containing AMPARs that are inserted into 

the membrane of MSN synapses following viral overexpression is unknown. AMPARs can exist 

as homomers of GluA1 subunits or heteromers with GluA1 and most commonly, GluA2 subunits. 

GluA2-lacking AMPARs have the unique property of being calcium-permeable (CP-AMPARs) 

and these particular receptors are dynamically altered during drug-induced synaptic plasticity in 

the accumbens (Conrad et al, 2008). We can test for the presence of GluA2-containing AMPARs 

by measuring evoked currents with local application of the CP-AMPAR selective antagonist, 

NASPM. If these receptors are present, a percentage of the synaptic response would be blocked 

by NASPM. Moreover, it is possible that the cocaine conditioning protocol, while acute (2 days 

of 5mg/kg i.p. injections), is able to alter CP-AMPAR expression in the accumbens of WT mice 

overexpressing GluA1. To test this, we could also record from infected MSNs after mice have 

been exposed to a similar cocaine regimen. 

Lastly, we hypothesize that the effects of the Clock∆19 mutation on glutamatergic function 

in the NAc are a compensatory mechanism indicative of homeostatic plasticity in response to a 

state of constitutively elevated dopaminergic tone. Given the increased levels of DA and DA 

metabolites measured in the NAc of Clock mutants and the fact that CLOCK knockdown in the 

NAc does not alter excitatory synaptic transmission or anxiety and reward-related behavior, we 

believe it is likely that the VTA-NAc projection is necessary for the physiological and behavioral 
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abnormalities seen in mutants. Because VTA DA projections also target the prefrontal cortex 

which sends a dense glutamatergic input the NAc, there is a possibility that activation of this circuit 

is preferentially contributing to manic-like behavior and plasticity at NAc MSNs. Optogenetic 

tools allow for the dissection of neural circuits thought to be involved in mood and reward 

processing in order to assess the exact contribution of each to behavior and physiology (Lenz et 

al, 2013). In order to definitively address the question of whether local transcriptional activity of 

CLOCK or indirect circuit-level alterations are more important for NAc plasticity, VTA terminals 

within the NAc could be selectively inhibited with opsins. Sidor and colleagues have demonstrated 

that chronic optic stimulation of VTA DA neurons produced a manic-like phenotype in TH::Cre 

mice that persisted for up to 2 weeks following the end of stimulation, we anticipate that chronic 

inhibition of the VTA-NAc pathway would reverse abnormal mood and reward behavior seen in 

mutants (Sidor et al, 2015). Optical inhibition has been shown to be capable of suppressing 

dopamine transients that result from actions at both DA cell bodies and terminals and which play 

a key role in the behavioral response to rewarding substances (McCutcheon et al, 2014). 

The results of our study are significant because they contribute to a growing body of new 

studies indicating the involvement of disrupted clock gene function in neuropsychiatric disorders 

including bipolar disorder. Our understanding of the consequences of defective clock genes on the 

synapse and circuit level within mesolimbic brain regions is quite limited. Continued research in 

this direction is therefore very important in order to establish causal mechanisms and inform 

therapeutic strategies. 
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3.0 CELL-TYPE SPECIFIC EFFECTS OF NPAS2 DISRUPTION ONACCUMBAL 

SYNAPTIC PLASTICITY AND COCAINE SENSITIVITY 

The core circadian gene, Npas2, has been associated with neuropsychiatric illnesses including 

bipolar disorder (BP) and is known to regulate the reward value of drugs of abuse. NPAS2 

expression is especially enriched in the forebrain including the nucleus accumbens (NAc), a region 

critical for reward processing and the generation of motivated behavior. Furthermore, its 

expression appears to be restricted primarily to D1R-containing “direct pathway” medium spiny 

neurons (MSNs). We have previously demonstrated that a down-regulation of NPAS2 in the NAc 

decreases the conditioned response to cocaine in mice. Here we sought to further investigate the 

underlying mechanisms of NPAS2 disruption on accumbal synaptic activity, structural plasticity 

and reward sensitivity in a cell-type specific manner. Viral-mediated knockdown of NPAS2 in the 

NAc resulted in an increase in excitatory drive onto MSNs. Preliminary results also suggest that 

NPAS2 reduction prevents the cocaine-induced up-regulation of spines on secondary dendrites of 

MSNs. Using Drd1a-tdTomato transgenic mice, we found that the synaptic adaptation was specific 

to D1 MSNs compared with D2 MSNs. Lastly, we validated and utilized a novel Cre-inducible 

shRNA virus for knockdown of NPAS2 specifically in D1 MSNs of Drd1a::Cre mice to 

demonstrate that direct pathway mechanisms are important for the effects of NPAS2 reduction on 

cocaine place preference. Together, our results suggest that NPAS2 plays a role in regulating D1 

MSN excitatory synapses and cocaine-reward related behavior. 
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3.1 INTRODUCTION 

Circadian rhythm disturbances have been linked to the development and progression of mood- 

related neuropsychiatric illnesses including bipolar disorder (BD) and major depressive disorder 

(MDD) (Edgar and McClung, 2013; Karatsoreos, 2014; McClung, 2013). Substance abuse is often

co-morbid with these diseases and presents a substantial societal and economic burden. Human 

genome-wide studies point to a strong association of circadian gene variants and single nucleotide 

polymorphisms (SNPs) with mood and addiction disorders (Logan et al, 2014; McCarthy and 

Welsh, 2012). Circadian gene perturbations can predispose individuals to substance abuse and 

addiction vulnerability can be further exacerbated by circadian rhythm disruption producing a 

negative bidirectional relationship (Parekh et al, 2015). At the molecular level, rhythms are 

maintained by a complex series of transcriptional-translational feedback loops with core and 

accessory elements (Ko and Takahashi, 2006; Mackey, 2007). The circadian bHLH-PAS domain 

transcription factor, NPAS2 (neuronal PAS domain protein 2), heterodimerizes with BMAL1 to 

regulate transcription of genes functioning both within and outside of the molecular clock (Zhou 

et al, 1997). Our group and others have identified direct clock-controlled genes involved in various 

aspects of dopaminergic transmission within the ventral tegmental area (VTA) to nucleus 

accumbens (NAc) circuitry, which is critical for reward processing (Arey et al, 2014; Hampp et 

al, 2008; Koob and Volkow, 2016; McClung et al, 2005; Ozburn et al, 2015). 

NPAS2 is structurally homologous to CLOCK with only a slight difference in the 

transactivational domain region (Reick et al, 2001). Within the suprachiasmatic nucleus (SCN), 

or master pacemaker region of the brain, NPAS2 is able to functionally compensate for CLOCK 

to maintain behavioral and physiological circadian rhythms (DeBruyne et al, 2007). Recent 
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evidence also demonstrates a role of NPAS2 in maintaining peripheral circadian oscillations in the 

absence of CLOCK (Landgraf et al, 2016). However, the expression profile of the two 

transcription factors within the brain varies, with CLOCK found more ubiquitously throughout 

and NPAS2 enriched in forebrain structures, particularly the NAc (Garcia et al, 2000). These 

varying patterns of expression may account for differences in the roles of the two proteins in 

behavioral regulation. NPAS2 has been shown to be critical for allowing mice to adaptively entrain 

to restricted feeding schedules and for maintaining feeding conditions (Dudley et al, 2003; Wu et 

al, 2010). NPAS2-deficient mice also exhibit deficits in the acquisition of cued and contextual fear 

memory (Garcia et al, 2000). Previous studies from our lab have uncovered opposing roles of 

CLOCK and NPAS2 in mediating drug reward sensitivity. Mice with a specific mutation in the 

Clock gene, Clock∆19 mice, display a robustly elevated behavioral response to cocaine measured 

by increased conditioned place preference (CPP), while Npas2 mutant mice show decreased 

preference at the same dose (McClung et al, 2005; Ozburn et al, 2015). Furthermore, viral- 

mediated shRNA knockdown of NPAS2 exclusively within the accumbens is able to reduce 

cocaine CPP highlighting its importance in this limbic region (Ozburn et al, 2015). Interestingly, 

knock down of CLOCK in the NAc had no effect on locomotor activity, exploratory drive or 

cocaine CPP (Ozburn et al, 2015). These studies serve to underscore the relevance of region- 

specific differences in the function of circadian proteins. They also highlight a unique role of 

accumbal NPAS2 in mediating reward. 

NAc medium spiny neurons (MSNs) receive glutamatergic input from a number of regions 

including the prefrontal cortex and amygdala as well as dopaminergic input from the VTA 

(Groenewegen et al, 1999). Addictive drugs, including cocaine, act to increase mesolimbic 

dopaminergic signaling, which can remodel NAc excitatory synapses  (Lüscher and  Malenka, 
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2011). The NAc consists predominantly of two main types of dopamine receptor subtype- 

containing MSNs D1+ and D2+ (Lu et al, 1998). Their projection pathways, further define these 

subpopulations with D1 MSNs comprising the “direct” pathway circuitry, promoting goal-directed 

behavior, and D2 MSNs the “indirect” pathway, generally inhibiting such behavior (Gerfen et al, 

1990; Lobo et al, 2010; Kravitz et al, 2013; Lee et al, 2016). Using fluorescence-activated cell 

sorting (FACS) and gene expression profiling, Ozburn and colleagues demonstrated that Npas2 is 

enriched in D1 MSNs of the striatum (Ozburn et al, 2015). Here we further determined how 

NPAS2 affects the expression of glutamatergic genes and excitatory synaptic transmission in the 

NAc. Additionally, using reporter mice, we investigated the effect of Npas2 disruption on 

excitatory drive onto D1 and D2 MSNs. Lastly, we’ve begun to explore the role of NPAS2 in 

structural plasticity of NAc MSNs in response to cocaine as well as reward sensitivity of mice with 

Npas2 knocked down specifically in D1 MSNs. 

3.2 MATERIALS AND METHODS 

3.2.1 Animal use. 

C57BL/6J (Jackson Laboratories) and heterozygous and homozygous Drd1a-tdTomato (Jackson 

Laboratories) mice were used for Npas2 knockdown and electrophysiological experiments. 

Recordings were made on mice aged 7-9wks. Adult Npas2 knockout mice were maintained on a 

C57BL/6J background backcrossed to N10. Homozygous animals and wildtype littermates were 

used for imaging experiments. Adult male Drd1a::Cre mice were used in cre-dependent knock- 

down and cocaine conditioned place preference experiments. Mice were maintained on a 12:12h 
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light/dark cycle (ZT 0 = lights on 7:00AM; ZT 12 = lights off 7:00PM). Food and water were 

available ad libitum. All animal use was conducted in accordance with the National Institute of 

Health guidelines for the care and use of laboratory animals and approved by the Institutional 

Animal Care and Use Committee of the University of Pittsburgh. 

3.2.2 Viral gene transfer and stereotaxic surgery. 

Stereotaxic surgery was performed as previously described (Ozburn et al, 2015). Bilateral 

stereotaxic injections of 1µL of purified high titer adeno-associated virus (AAV2) encoding Npas2 

shRNA or a scrambled sequence (control) tagged with GFP were delivered into the NAc (from 

Bregma; angle 10°: AP +1.5mm, Lat. +1.5mm, DV -4.4mm). Mice recovered for 3-4 weeks 

allowing for full expression of the virus prior to electrophysiological recording. A similar 

procedure was used to inject AAV2/2.H1lox.mCherry-ShRNA-Npas2 or AAV2-scramble virus 

for cocaine place preference testing. Following behavioral testing, the placement of viral injections 

was verified. Mice were perfused with ice-cold 1x phosphate-buffered saline (PBS) followed by 

4% paraformaldehyde in PBS (pH 7.4). Brains were post-fixed for at least 24 hours then transferred 

to a 30% sucrose solution. 30µm-thick tissue sections were mounted onto slides and coverslipped. 

mCherry signal was not enhanced with immunolabeling. Sections were imaged at 4x magnification 

using an Olympus fluorescence microscope. 

3.2.3 Quantitative real-time RT-PCR 

To measure the relative expression of glutamatergic genes from Npas2 shRNA and scrambled 

shRNA expressing mice, NAc tissue  collection,  RNA  extraction  and  cDNA  synthesis were 



68 

performed as described in (Ozburn et al, 2015). Following cDNA synthesis, quantitative real-time 

polymerase chain reaction (qPCR) was carried out. Primer sets used included: Gria1 Fwd: 5’- 

GTGAGCGTCGTCCTCTTC-3’, Gria1 Rev: 5’-GGTTGTCTGATCTCGTCCTT-3’; 

Gria2 Fwd: 5’-AGTGGGAGAAGTTTGTGTACC-3’, Gria2 Rev: 5’- 

TGATGCGTCTGAATTCCTGG-3’; Grin2a Fwd: 5’-GATTGACCTCGCTCTGCT-3’, Grin2a 

Rev: 5’-TCACCTCATTCTTCTCGTTG-3’; Grin2b Fwd: 5’-ACATGGCTGGAAGAGACG-3’, 

Grin2b          Rev:         5’-CATAGCCCGTAGAAGCAAA-3’;       Gapdh Fwd:         5’- 

CTTTGTCAAGCTCATTTCCTGG-3’;     Gapdh     Rev: 5’-TCTTGCTCAGTGTCCTTGC-3’. 

cDNA (1ng) was mixed with Power SYBR Green PCR Master Mix (Thermo Fisher Scientific) 

and primers listed above. Reactions were run in duplicate in an Applied Biosystems 7900HT Fast 

Real-time PCR System (Applied Biosystems, Foster City, CA). Relative gene expression was 

calculated using the comparative Ct (2^∆∆Ct) method (Landgraf et al, 2014) and normalized to 

each sample’s corresponding Gapdh mRNA levels. 

3.2.4 NAc slice preparation. 

C57BL/6J and Drd1a-tdTomato mice were anesthetized rapidly with isoflurane and decapitated. 

Brains were removed into ice-cold oxygenated (95% O2/5% CO2) modified aCSF containing (in 

mM): 135 N-methyl-D-glucamine, 1 KCl, 1.2 KH2PO4, 1.5 MgCl2, 0.5 CaCl2, 70 choline 

bicarbonate, and 10 D-glucose; pH 7.4 adjusted with HCL. NAc-containing coronal slices 

(200µm) were sectioned with a vibratome (VT1200S; Leica, Wetzlar, Germany) and incubated for 

30 minutes at 37°C in oxygenated aCSF containing (in mM): 119 NaCl, 26 NaHCO3, 2.5 KCl, 1 

NaH2PO4, 2.5 CaCl2, 1.3 MgCl2, 11 D-glucose. Slices were kept at room temperature until 

recording then perfused with aCSF (30-32°C). 
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3.2.5 Whole-cell patch clamp recording. 

Slices were viewed by differential interference contrast (DIC) optics (Leica) and accumbal regions 

were localized under low magnification. Recordings were made under visual guidance with 40x 

objective. GFP and tdTomato expressing cells were visualized using filters for 488nm and 546nm 

light respectively. Borosilicate glass pipettes (3-5MΩ) were filled with (in mM): 117 Cs-MeSO3, 

20 HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA-Cl, 2.5 Mg-ATP, 0.25 Na-GTP, 5 QX-314; pH 7.3 

adjusted with CsOH. For miniature EPSC (mEPSC) intracellular solution contained (in mM): 119 

K-MeSO4, 2 KCl, 1 MgCl2, 1 EGTA, 0.1 CaCl2, 10 HEPES, 2 Mg-ATP, 0.4 Na-GTP; pH 7.3

adjusted with KOH. Cells were voltage clamped at -70mV. A constant-current isolated stimulator 

(DS3; Digitimer) was used to stimulate excitatory afferents with a monopolar electrode to record 

evoked currents (EPSCs). Picrotoxin (50µM, Sigma Aldrich) was included in the external 

perfusion aCSF to block GABAA receptors. TTX (1µM, Tocris, Bristol, UK) was used for mEPSC 

recordings to block action potential generation. For EPSC experiments, D-APV (50µM, R&D 

Systems, Minneapolis, MN) was bath applied to block NMDARs at 40mV. In some experiments, 

D-APV was not applied and the peak amplitude of AMPAR current was measured at -70mV and

the NMDAR EPSC peak amplitude taken at 40mV, 35ms from the AMPAR EPSC peak. 

Series resistance for all recordings was monitored continuously. Cells with a change in 

series resistance beyond 20% were excluded from data analysis, as were electrophysiologically 

identified interneurons. Synaptic currents were recorded with a MultiClamp 700B amplifier 

(Molecular Devices, Sunnyvale, CA). Signals were filtered at 2.6-3 kHz and amplified 10 times, 

then digitized at 20 kHz with a Digidata 1322A analog-to-digital converter (Molecular Devices). 
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Miniature current recordings were analyzed using pClamp10 software (Molecular Devices) over a 

period of approximately 2.5 min during which 250-2500 events were collected. 

3.2.6 Dendritic spine labeling and imaging. 

NAc MSN dendritic spines were labeled, imaged and analyzed as previously described (Graziane 

et al, 2016). Mice having undergone chronic (7 days) cocaine (20mg/kg; i.p.) injections were 

sacrificed for dendritic labeling 24 hr following the last injection. Animals were transcardially 

perfused (15ml/min) with 0.1M sodium phosphate buffer (PB) followed by 1.5% 

paraformaldehyde (PFA) in 0.1M PB. Brains were removed in to 1.5% PFA and allowed to post- 

fix for 1hr at room temperature. 100um-thick coronal slices containing the NAc were prepared in 

room temperature 1x phosphate buffered saline (PBS) using a vibratome. Slices were mounted 

onto slides and kept wet with PBS. DiI crystals (Invitrogen, Carlsbad, CA) were applied to the 

accumbens area of slices with a fine brush controlled by a micromanipulator. Slides were kept at 

4°C for 36-48hrs to allow crystals to diffuse into tissue and stain cells. Labeled sections were 

further fixed with 4% PFA for 1hr at room temperature, washed 2-3x with 1x PBS and cover- 

slipped with aqueous medium prolong (Invitrogen). 

DiI was excited with a Helium/Neon 559nm laser and spines were imaged using an 

Olympus confocal microscope. MSNs were scanned with a 60x oil-immersion objective and 

individual secondary or tertiary dendrites were zoomed into and scanned at 0.44um steps along 

the z-axis to capture the full profile. A two-dimensional projection image used for analysis was 

obtained for each dendrite by stacking all of the planes. Spine density analysis was performed with 

ImageJ software (NIH). Dendritic segments of 20um length were analyzed at least 5um from a 

branch point and 8-10 dendrites were sampled from each animal with 4-5 animals/group. 



71  

3.2.7 Generation and validation of Cre-inducible viruses 
 
 
Cre-inducible shRNA expression for cell-type specific knockdown of NPAS2 was achieved using 

a modified construct with an H1 polIII promoter driving a loxP flanked STOP cassette and stuffer 

DNA preventing transcription of Npas2 shRNA or a scrambled, non-functional sequence. The 

AAV backbone has been described previously (Arango-Lievano et al, 2014). Recombination of 

the loxP elements in transgenic animals expressing Cre-recombinase under the Drd1a receptor 

promoter (Drd1a::Cre mice), allows for the removal of the stuffer DNA and the transcription of 

the shRNA to achieve knockdown. 

 

3.2.8 Cocaine conditioned place preference. 
 
 
Cocaine place preference was assessed using a biased conditioning protocol. On the pre-test day, 

mice were allowed to explore all chambers of the apparatus for 20 minutes to determine inherent 

bias. On conditioning days 1 and 3, mice were injected with saline (i.p.) and paired with the 

preferred chamber of the apparatus, and on days 2 and 4, they received a cocaine injection (5mg/kg; 

i.p.) paired with the non-preferred chamber. Conditioning sessions lasted 20 minutes. Following 

conditioning, on day 6, mice were tested again for time spent on either side of the apparatus and 

the CPP score was calculated by subtracting the pre-conditioning time spent in the cocaine-paired 

side from the time spent in the cocaine-paired side on the test day. Data from mice that spent a 

majority of time in the center of the apparatus were eliminated from analysis. Locomotor activity 

was detected by infrared beam breaks and recorded using Med-PC software (Med Associates, Inc., 

Fairfax, VT). 
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3.2.9 Data analysis. 

Electrophysiological, imaging, gene expression and behavioral experiments were conducted blind 

to genotype and/or treatment. Significant differences were determined by Student’s t-Test, or two- 

way ANOVA followed by Bonferroni post hoc tests. P<0.05 is considered significant for all 

analyses. All data are presented as mean ± SEM. 

3.3 RESULTS 

3.3.1 Knockdown of NPAS2 within the NAc leads to an increase inglutamatergic 

transmission at MSNs. 

Our lab has previously shown that a knockdown of NPAS2 in the accumbens produces a decrease 

in reward sensitivity as measured by conditioned place preference for cocaine (CPP) (Ozburn et 

al, 2015). Changes in cocaine CPP have been correlated with alterations in excitatory transmission 

at NAc MSNs including the amplitude of miniature excitatory post-synaptic currents (mEPSCs) 

and the ratio of evoked AMPAR- and NMDAR-mediated EPSCs (Grueter et al, 2013). Here we 

found that compared with a scrambled control virus, NPAS2 shRNA-infected MSNs showed an 

increase in the amplitude of mEPSCs (t(20) = 2.713, P = 0.0134) and a trend-level increase in 

frequency of events (t(20) = 2.016, P = 0.0574) (figure 17c,d). Additionally, when analyzing the 

ratio of the average peak amplitude of AMPAR-mediated evoked currents to that of NMDAR 

EPSCs (AMPAR/NMDAR), a measure of synaptic strength independent of stimulus intensity or 

synapse number, we found a trend towards an increase with NPAS2 knockdown (t(13) = 1.795, P = 
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0.0960) (figure 17f). These results suggest that NPAS2 positively regulates accumbal MSN 

excitatory postsynaptic transmission and potentially presynaptic release, mechanisms by which it 

may modulate reward sensitivity. 
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Figure 17. Knockdown of NPAS2 in the NAc leads to an increase in excitatory transmission onto MSNs. (A) 

Bilateral targeting of AAV2-shRNA-Npas2 or AAV2-shRNA-scrambled to the NAc (left) and localization of GFP- 

tagged shRNA (right). (B) Representative traces of mEPSCs sampled from scramble and shRNA infected MSNs. (C) 

Summary of mEPSC amplitude in  cells  from both  treatment  groups.  (D)  Summary of mEPSC frequency. (E) 

Representative traces of AMPAR and NMDAR EPSCs from scramble treated (black) and NPAS2 knockdown (red) 

MSNs. (F) AMPA/NMDA ratio of evoked responses from both groups. n = cells/animals and *P<0.05 for this and all 

subsequent figures. 
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3.3.2 Effects of NPAS2 reduction on NAc glutamatergic geneexpression. 

Circadian transcription factors including CLOCK and NPAS2 directly regulate the activity of 

genes with non-clock functions in distinct brain regions. Chromatin immunoprecipitation followed 

by deep sequencing (ChIP-Seq) performed in a previous study from our lab (Ozburn et al, 2015) 

revealed the binding targets of CLOCK and NPAS2 in the striatum. Several genes related to 

glutamatergic transmission were among them. We tested the effect of Npas2 shRNA treatment, 

compared with scrambled control, on NAc glutamatergic gene expression. We found that 

knockdown produced an increase in expression of the main AMPAR subunit gene, Gria1 (GluA1) 

(t(10) = 2.23, P = 0.050) with strong trend-level significance (figure 18a). Knockdown of NPAS2 

did not significantly alter the expression of the AMPAR subunit gene, Gria2 (GluA2) (t(10) = 1.22, 

P = 0.2502) or the NMDAR subunit genes Grin2a (GluN2a) (t(10)= 0.574, P = 0.5785) and Grin2b 

(GluN2b) (t(4.38) = 0.940, P = 0.3960; Welch’s correction) (figure 18b-d). These findings suggest 

that while NPAS2 reduction does not appear to significantly affect the expression of several key 

glutamatergic genes in the NAc, perhaps its role as a negative regulator of excitatory transmission 

in the NAc may be mediated in part through a subtle alteration in transcription of the major 

AMPAR subunit, GluA1. 
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Figure 18. Knockdown of NPAS2 in the NAc does not significantly change AMPAR and NMDAR subunit gene 

expression. A) A strong trend towards an increase in levels of the GluA1 subunit gene, Gria1, was seen following 

NPAS2 reduction in the NAc. B-D) Relative gene expression of other glutamate receptor subunits, Gria2, Grin2a and 

Grin2b were not significantly altered by NPAS2 knockdown in NAc tissue. n = 3-4 mice/group. 

3.3.3 Increased excitatory synaptic transmission following NPAS2 knockdown is specific 

to D1 MSNs 

Given the restricted expression of NPAS2 to D1-containing MSNs of the striatum (Ozburn et al, 

2015), we utilized Drd1a-tdTomato BAC transgenic mice to identify D1 and non-D1, putatively 

D2, neurons (Shuen et al, 2008) for targeted recordings following Npas2 shRNA or scramble 

treatment. Cells co-expressing tdTomato and GFP signals were considered virally infected D1 

neurons while those that only expressed GFP signal were considered infected D2 neurons (figure 
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19a). We again measured glutamatergic transmission by analyzing the amplitude and frequency of 

AMPAR-mediated mEPSCs. Two-way ANOVA revealed a significant main effect of cell type on 

mEPSC amplitude (F(1,43)= 5.394, P = 0.0250 cell type effect; F(1,43)= 1.705, P = 0.1986 treatment 

effect; F(1,43) = 3.657, P = 0.0625 interaction). Bonferroni’s post-hoc analyses confirmed that 

mEPSC amplitude was significantly increased in D1 MSNs following NPAS2 knockdown 

compared with scramble treatment (P < 0.05) (figure 19b). We also found that NPAS2 reduction 

had a significant cell-type specific effect on the frequency of mEPSCs (F(1,43) = 4.234, P = 0.0457 

cell type effect; F(1,43)= 0.1265, P = 0.7239 treatment effect; F(1,43)= 4.265, P = 0.0450 interaction) 

(figure 19c). 

Consistent with the increase in AMPAR-mediated synaptic transmission, excitatory 

synaptic strength was exclusively increased in NPAS2-deficient D1 MSNs as measured by 

AMPAR/NMDAR ratio (F(1,18) = 4.275, P = 0.0534 cell type effect; F(1,18) = 10.34, P = 0.0048 

treatment effect; F(1,18) = 10.76, P = 0.0042 interaction) (figure 19d,e). Together, our findings 

indicate a specific and robust regulation of glutamatergic signaling in the population of D1- 

containing MSNs where NPAS2 expression is especially enriched. 
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Figure 19. Increased excitatory synaptic transmission following NPAS2 knockdown is specific to D1-containing 

MSNs. A) Drd1a-tdTomato reporter mice were used to visualize D1 and D2 MSNs in NAc slices treated with either 

AAV-Npas2-shRNA or AAV-Scrambled-shRNA virus. B) Summary of mEPSC amplitude in D1 and D2 neurons 

infected with shRNA or control virus. C) Frequency of miniature events in both groups and cell types. D) 

Representative traces of AMPAR (-70mV) and NMDAR (40mV) EPSCs from control (black) and Npas2 shRNA 

(red) infected D1 cells. E) Summary of AMPAR/NMDAR ratio of evoked curents from all groups. ***P < 0.001. 
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3.3.4 The role of NPAS2 in cocaine-induced MSN dendritic spinealterations 

Cocaine’s addictive potential lies in its ability to be a powerful mediator of structural and 

functional plasticity within the brain’s reward circuitry. Several studies have demonstrated a 

dynamic increase in the density of spines on dendrites in the NAc shell following cocaine exposure 

(Gipson et al, 2014; Robinson and Kolb, 2004; Russo et al, 2010). Chronic cocaine administration 

(7d, 15mg/kg, i.p.) also results in a significant up-regulation of Npas2 expression in the NAc as 

well as increased promoter binding of the Per genes, with no effect on Clock or Bmal1 levels or 

activity (Falcon et al, 2013). Therefore, we sought to determine whether NPAS2 is important for 

the alterations in MSN spine density mediated by cocaine. NPAS2 knockout (KO) mice and WT 

littermates (n = 4-5 animals/group) were given 7 days of cocaine (20mg/kg, i.p.). 24 hours after 

their last injection, animals were sacrificed for DiI labeling of MSN dendrites (figure 20a). Our 

preliminary results indicate that cocaine-treated NPAS2 KO mice showed a reduction in spine 

density on secondary dendrites of NAc shell MSNs compared with WT animals, however the data 

did not reach statistical significance (t(7)= 2.221, P = 0.0618) (figure 20b). The results of this pilot 

study are encouraging however in suggesting that NPAS2 may play a role in structural plasticity 

in the NAc and help explain the robust effect of the transcription factor in regulating the 

conditioned response to cocaine (Ozburn et al, 2015). We are following up with saline controls 

and increased sample size for all groups. 
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Figure 20. NPAS2 may be important for cocaine-induced changes in MSN structural plasticity. A) DiI dye 

labeling of MSNs allowed for the visualization of individual spines along secondary dendrites. Spine density was 

measured on 20µm segments at least 5µm from branch points off of primary dendrites. B) Spines per micrometer of 

dendrite were calculated for WT and NPAS2 KO MSNs following chronic cocaine administration. n = 8-10 

dendrites/animal; 4-5 animals/group. 
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3.3.5 D1-MSN-specific NPAS2 knockdown in the NAc reduces cocaine reward sensitivity 

Cell-type specific molecular mechanisms regulating cocaine reward have not been extensively 

studied, however, there is evidence for differential actions of another transcription factor, ∆fosB, 

in accumbal reward-related behaviors. Over-expression of ∆fosB specifically in D1 but not D2 

MSNs promotes behavioral responses to cocaine as measured by cocaine conditioned place 

preference (CPP) and locomotor sensitization (Grueter et al, 2013). In the CPP paradigm the 

conditioned stimulus is experimenter administered and preference is driven by sensitivity to the 

rewarding value of the drug (Prus et al, 2009). Using a novel Cre-inducible shRNA virus modified 

to selectively knockdown NPAS2 in D1 MSNs of Drd1a::Cre mice (or scrambled control) (figure 

21a), we used a biased CPP protocol to assess reward sensitivity (figure 21b). We found that 

cocaine preference was significantly reduced in mice following NPAS2 KD compared with control 

treated animals (t(20) = 2.451, P = 0.0236). These results suggest that the decrease in preference 

previously seen with indiscriminate NPAS2 knockdown (Ozburn et al, 2015) in the NAc may be 

mediated in part through direct pathway mechanisms. 
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Figure 21. Viral-mediated knockdown of NPAS2 specifically in D1 MSNs reduces cocaine place preference. A) 

Schematic of Cre-inducible Npas2 or scrambled shRNA constructs for cell-type specific reduction of NPAS2. B) 

timeline of viral injections, conditioning paradigm and histological verification. C) Representative micrograph of 

mCherry expression indicating presence and location of Cre-inducible shRNA virus within the NAc (left) and 20x 

image of virus expression within NAc cells (right). D) CPP score (test – pre-test time) for scramble and shRNA treated 

Drd1a::Cre mice. AC – anteriorcommissure. 
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3.4 DISCUSSION 

The results of the current study provide preliminary evidence for the role of NPAS2 in regulating 

reward-related behavior potentially via synaptic mechanisms in accumbal D1 direct pathway 

circuitry. While circadian gene variants associate strongly with psychiatric illness including co- 

morbid substance abuse, few studies have explored the regulatory function of these genes in 

mesolimbic regions and even fewer in specific circuits. We found that non-selective knockdown 

of NPAS2 in the NAc produced an overall increase in mEPSC amplitude indicative of either a 

higher density or conductance of postsynaptic AMPA receptors at individual synapses. A trend 

towards an increase in AMPAR/NMDAR ratio in a small number of cells further supports an 

increase in excitatory drive onto MSNs as a result of NPAS2 reduction. A strong trend towards an 

increase in the frequency of miniature currents at MSNs was also observed following NPAS2 

knockdown compared with scrambled control. This implies a potential elevation in presynaptic 

release probability of glutamate at existing sites or an increase in the number of functional synaptic 

sites. 

We hypothesized that the transcription of glutamate receptor subunit genes could be 

regulated by NPAS2, as previous ChIP-seq analysis revealed binding of the transcription factor to 

several of these genes. Using cDNA prepared from NAc tissue expressing either Npas2 shRNA or 

control virus, we performed real-time quantitative PCR assays to measure transcript levels of the 

genes, Gria1, Gria2, Grin2a and Grin2b, which encode AMPA and NMDA receptor subunits 

respectively. We only detected a strong trend-level increase in mRNA expression of Gria1 

(GluA1) with NPAS2 knockdown. This, however, is a major subunit of AMPARs, which mediate 

fast excitatory neurotransmission. Adaptations in the expression or function of receptors 

containing this subunit most likely underlie the functional synaptic changes  observed  in   our 
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electrophysiological recordings. ChIP-Seq results indicate NPAS2 binding within the Gria1 gene, 

however direct transcriptional regulation of the gene by NPAS2 would have to be verified by 

identifying binding at a canonical or noncanonical E-box sequence within the promoter region. 

While not significant, a pattern of decrease in levels of Gria2 with NPAS2 knockdown could 

indicate lowered expression of GluA2-containing calcium-impermeable AMPARs, however, this 

would have to be further tested with pharmacological methods. Collection of the whole NAc for 

gene expression measurements may be problematic if, as it has been previously shown, Npas2 

expression is largely restricted to a particular population of NAc neurons. However, these 

preliminary results point to at least one transcriptional mechanism that could underlie the function 

of NPAS2 as a negative regulator of excitatory synaptic transmission in the NAc, and should be 

expanded upon further. 

In a previous study from our group, Drd1a-tdTomato mice were used to isolate D1 MSNs 

from other cells of the NAc (mostly D2+ MSNs) via fluorescence activated cell sorting (FACS) 

followed by qPCR. Npas2 expression was found to be elevated approximately 80-fold in this 

population (Ozburn et al, 2015). Therefore, we were interested to find whether potentiation of 

excitatory synaptic transmission as a result of NPAS2 reduction would be specific to D1 cells. 

Here we found that in fact, D1 MSNs showed increased AMPAR mEPSC amplitude and frequency 

relative to control virus expression and compared with D2 cells. Additionally, the 

AMPAR/NMDAR ratio was significantly elevated exclusively in D1 cells. In our previous 

experiment, we saw a trend-level increase in this measure in NPAS2-deficient MSNs, possibly 

because we were sampling both D1 and D2 cells indiscriminately for recording. These results 

suggest that perhaps NPAS2 exerts influence on excitatory synaptic transmission and reward 

behavior in the NAc through adaptations in D1R-containing MSNs. 
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The interaction of NPAS2, NAc neuronal activity and modulation by cocaine is of 

particular interest to us. Cocaine is a highly reinforcing psychostimulant drug that is capable of re- 

wiring reward circuitry through dynamic regulation of intracellular signaling and plasticity-related 

mechanisms in NAc neurons. Cocaine and other drugs of abuse also alter the expression of 

circadian genes in reward circuits (Falcon et al, 2009, 2013; Lynch et al, 2008). We therefore 

sought to address the question of whether NPAS2 is involved in cocaine-induced structural 

alterations on MSN dendritic spines. Chronic cocaine exposure followed by short or long 

withdrawal can up-regulate the number of spines on secondary and tertiary dendrites of NAc shell 

MSNs (Graziane et al, 2016). In a pilot study we exposed WT and NPAS2 KO mice to one week 

of a high dose (20mg/kg) of cocaine and labeled MSNs with a lipophilic dye that filled dendrites 

and spines for full visualization. Our analysis in a small group of animals revealed a strong trend 

towards reduced spine density in KO mice compared with WT mice following cocaine treatment. 

While we are in the process of repeating this experiment with saline controls, we find that spine 

density in cocaine treated WT mice, as we have measured, is similar to that reported (Graziane et 

al, 2016). These preliminary findings are supportive of our hypothesis that NPAS2 may mediate 

structural plasticity within NAc circuitry whereby, inhibition of NPAS2 function can occlude 

cocaine-induced spine changes on MSN dendrites. One possible mechanism that could underlie 

the action of NPAS2 is its potential association with the transcription factor, nuclear factor kappa 

B (NfκB), an important mediator of reward behavior in the NAc. NfκB signaling is increased in 

the accumbens after chronic cocaine and inhibition of NfκB specifically in the NAc reduces the 

conditioned response to cocaine. Furthermore, NfκB inhibition also prevents the increase in 

dendritic spines after chronic cocaine (Russo et al, 2009). The circadian paralog of NPAS2, 

CLOCK, has recently been shown to positively regulate NfκB-mediated transcription (Spengler et 
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al, 2012), therefore, it is possible that NPAS2 may associate in a similar manner with this important 

transcription factor to regulate reward-related mechanisms. 

Tools to genetically target specific cell-types within the brain help to elucidate molecular 

mechanisms contributing to abnormal reward behavior. In this study, we employed a novel viral- 

mediated approach to selectively knockdown NPAS2 in D1-MSNs of the NAc. The Cre-dependent 

AAV backbone has been described (Arango-Lievano et al, 2014) and we have modified it for our 

use. We found that reducing NPAS2 expression only in D1 neurons was sufficient to decrease the 

expression of cocaine CPP, similar to the effect seen with non-specific knockdown in the NAc as 

well as Npas2 mutation (Ozburn et al, 2015). Together, our results begin to shed light on molecular 

and cellular mechanisms underlying the regulation of reward byNPAS2. 

3.5 FUTURE DIRECTIONS 

The preliminary findings here are part of a more comprehensive study aimed at understanding how 

the forebrain-enriched circadian transcription factor, NPAS2, modulates NAc neuronal activity at 

baseline and in response to cocaine. We find quite striking cell-type specific adaptations in 

glutamatergic transmission as a result of NPAS2 disruption in drug naïve animals, however, it will 

be important to investigate these mechanisms in animals exposed to cocaine which has been shown 

to specifically increase expression of Npas2 in the NAc (Falcon et al, 2013). We plan to follow up 

our experiments by recording miniature and evoked EPSCs in virus expressing Drd1a-tdTomato 

following chronic or acute cocaine administration. These experiments could reveal differential 

actions of NPAS2 at baseline compared with when the circuit undergoes adaptation by cocaine. 
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D1 and D2 excitatory signaling is altered by cocaine in varying manners, therefore we may find 

that NPAS2 function is more critical in mediating cocaine’s effects in one pathway over the other. 

Identifying the direct transcriptional targets of NPAS2 in the NAc is of great interest to us 

as we explore mechanisms of its action in this brain region. ChIP-Seq analysis has yielded a list 

of all sequences bound by NPAS2 in the striatum across the light/dark cycle. For added specificity, 

we are currently optimizing a protocol for the isolation of Npas2-containing or deficient D1 and 

D2 MSNs using fluorescence activated cell sorting (FACS) (figure 22). RNA extracted from the 

collected cell populations will be used for sequencing. Comparing the results of ChIP-Seq with 

RNA-Seq will allow us to determine genes both bound and directly regulated by NPAS2 in D1 

MSNs of the NAc. 
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Figure 22. FACS-RNAseq for the identification of gene targets regulated by NPAS2 in D1 and D2 MSNs. A) 

Schematic diagram of the flow cytometry method to sort and isolate populations of cells from suspension by 

fluorescent signals. B) Results from a single sort of NAc tissue pooled from 3 Drd1a-tdTomato mice expressing Npas2 

shRNA. Cells are differentiated by signal intensity and gates are set for collection. Numbers of live cell events detected 

for each population are shown at the right. RNA can be extracted fromthesesamples. 

Drd1a-tdTomato mice expressing GFP-tagged Npas2 shRNA or scrambled control viruses 

will be sacrificed and tissue dissociated as described (Lobo et al, 2006). Cells in suspension will 

be sorted into GFP+, tdTomato +, GFP-/tdTomato-, and GFP+/tdTomato+ populations. Cells are 

sorted into Trizol LS and RNA can be extracted and purified from these samples for RNA- 

sequencing. We have been successful in isolating these groups of MSNs from pooled NAc tissue 
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and have begun to optimize RNA extraction to meet the concentration and purity standards for 

sequencing.  From samples containing ~2000- ~5000 dual-labeled cells, we are able to harvest 

~200ng of total RNA. We are confident that this method will allow us to determine genes that 

are directly regulated by NPAS2 and that may influence direct and indirect pathway activity. 

Additionally, we plan to sample at multiple time points to map our results onto the ChIP-Seq 

data we have previously obtained. It is likely that genes involved in synaptic plasticity and 

dopaminergic and glutamatergic signaling in the NAc may be under circadian regulation by 

NPAS2. We have previously identified the dopamine D3 receptor as a direct and unique binding 

target of NPAS2 in the striatum. Furthermore, we can investigate how NPAS2 transcriptional 

activity changes in D1 and D2 cells as a result of cocaine exposure. 

Cocaine induced up-regulation of dendritic spines in the NAc appears to be specific to D1 

MSNs (Lee et al, 2006). We have attempted to identify D1 MSNs with NPAS2 knocked down 

for DiI labeling in order to determine whether cocaine-induced structural plasticity is only 

blocked by NPAS2 disruption in D1 neurons, however, we have faced some technical 

challenges. We were unable to isolate cells that both expressed shRNA virus and were dye 

labeled for analysis due to the necessity of sparse dye application to prevent oversaturation. It is 

thought that the incubation of cocaine craving is in part mediated by the generation of silent 

synapses in the NAc (synapses which contain very few functional AMPARs) (Huang et al, 2009; 

Lee et al, 2013). Morphologically, stubby or thin immature spines are associated with silent 

synapses (Holtmaat and Svoboda, 2009). Our analysis of spine density can be extended to 

include a characterization of spine morphology. Graziane and colleagues classified four types of 

spines found on MSN dendrites following chronic cocaine or morphine administration. The 

density of thin and filopodia-like  spines  was  increased  after  cocaine  compared  with saline 

treatment (Graziane et al, 2016). Moreover, chronic cocaine selectively induced silent synapses in 
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D1 MSNs, which were measured using electrophysiological methods (Graziane et al, 2016; 

Huang et al, 2009). Turning to electrophysiological characterization of silent synapses in Drd1a- 

tdTomato mice expressing shRNA or scramble virus may be the preferred option for addressing 

the question of whether NPAS2 is important for cocaine-induced alterations of MSN dendritic 

spines in D1 neurons specifically. 
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4.0 GENERAL DISCUSSION 

Through these studies, we set out to better understand how circadian genes and proteins regulate 

neural activity and consequently mood and reward-related behavior in extra-SCN brain regions. 

In particular, we focused on the nucleus accumbens as a critical integrator of signals encoding 

sensorimotor, emotional and motivational information to generate goal-directed actions. This 

complex structure serves as a hub of connections between forebrain and limbic regions. Bipolar 

disorder and substance abuse disorders, which are often comorbid, are associated with aberrant 

activity within mesolimbic circuitry. Circadian rhythm disruption on a behavioral or molecular 

level can be one of many symptoms or causal factors in the development or progression of these 

disorders. Mapping the cascade of molecular, circuit-level and network-level consequences of 

psychiatric disease-relevant genetic abnormalities is an overarching goal of our work. The hope is 

to be able to understand the precise ways in which systems are perturbed in order to restore balance 

where possible. 

For our first study, we utilized a validated genetic mouse model of bipolar mania with a 

circadian gene disruption to study how CLOCK regulates excitatory synaptic activity of NAc 

MSNs. We performed measurements across the light/dark cycle in order to capture a more 

comprehensive profile of neural activity in this brain region which has not be previously 

interrogated. We expected however, that we might uncover diurnal differences in synaptic 

transmission, receptor expression, and/or intrinsic excitability, as it is evident that circadian 
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fluctuations exist in structural morphology and functional plasticity in other brain regions. These 

variations have been described in invertebrate and vertebrate synapses including the expression of 

hippocampal long-term potentiation (LTP) and changes in dendritic branching, spinogenesis and 

even the size and distribution of synaptic vesicles (Wardlaw et al, 2014; Perez-Cruz et al, 2010; 

Ikeda et al, 2015; Jasinska et al, 2015). Circadian or diurnal activity-dependence of synaptic 

protein expression has also been shown. In the hippocampus, striatum and cortex, levels of the 

synaptic protein, Shank3, are influenced by circadian/melatonin rhythms and wheel-running 

activity (Sarowar et al, 2016). Rhythms in circulating hormones can also modify synaptic 

connections in a dynamic manner. Liston and colleagues have demonstrated that endogenous 

glucocorticoid oscillations modulate postsynaptic dendritic spine formation in the mouse cortex 

associated with skill learning (Liston et al, 2013). Excessive or abnormally high levels of 

glucocorticoids eliminated learning associated new spines and disrupted memories, indicating that 

these mechanisms may be part of the pathophysiology of stress-related disorders. Therefore, it is 

important to continue to investigate and consider diurnal or circadian variation on aspects of 

physiology, behavior, therapeutic efficacy and the activation or inactivation ofcircuits. 

The importance of cell-type and brain region specificity is further underscored by our 

results. Previous work from our lab has extensively characterized the role of CLOCK in the VTA 

for regulating aspects of dopaminergic neuronal activity and transmission, however, local 

disruption of CLOCK in the NAc does not significantly affect behavior or, as we have 

demonstrated here, excitatory drive onto MSNs. In contrast, the homologous circadian 

transcription factor, NPAS2 appears to exert its influence on plasticity and behavior predominantly 

in the NAc where it is highly expressed and perhaps specifically in D1R-containing MSNs. While 

CLOCK and NPAS2 have been thought to have overlapping function in the brain due to their high 

structural and functional similarity, we have characterized important differences in how   they 
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regulate neural activity and mood and reward-related behavior. Our findings are summarized 

below. 

Figure 23. Summary of the differential roles of CLOCK and NPAS2 in the regulation of neural activity and 

behavior. Findings from the studies presented here along with previous work from our lab serve to provide a more 

comprehensive understanding of the functions of CLOCK and NPAS2 within mesolimbic circuitry. 
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APPENDIX A 

ANTI-MANIC EFFICACY OF A NOVEL KV3 POTASSIUM CHANNEL MODULATOR 

Parekh PK*, Sidor, MM*, Gillman A, Bettelini L, Arban R, Alvaro GS, Zambello E, Mutanelli C, 

Huang Y, Large CH, and McClung CA. (Under revision for Neuropsychopharmacology). 

* denotes equal contribution.

Kv3.1 and Kv3.2 voltage-gated potassium channels are expressed on parvalbumin-positive 

GABAergic interneurons in corticolimbic brain regions and contribute to high frequency neural 

firing. The channels are also expressed on GABAergic neurons of the basal ganglia, substantia 

nigra, and ventral tegmental area (VTA) where they regulate firing patterns critical for movement 

control, reward, and motivation. Modulation of Kv3.1 and Kv3.2 channels may therefore have 

potential in the treatment of disorders in which these systems have been implicated, such as bipolar 

disorder. Following the recent development of a potassium channel modulator, AUT1 - an 

imidazolidinedione compound which increases currents mediated by Kv3.1 and Kv3.2 channels in 

recombinant systems - we report that the compound is able to reverse “manic-like” behavior in 

two mouse models: amphetamine-induced hyperactivity and ClockΔ19 mutants. AUT1 completely 

prevented amphetamine-induced hyperactivity in a dose-dependent manner, similar to the atypical 

antipsychotic, clozapine. Similar efficacy was observed in Kv3.2 knockout mice. In contrast, 
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AUT1 was unable to prevent amphetamine-induced hyperactivity in mice lacking Kv3.1 channels. 

Notably, Kv3.1 null mice displayed baseline hyperlocomotion, greater exploratory drive, and 

antidepressant-like behavior. In ClockΔ19 mice, AUT1 reversed hyperactivity. Furthermore, 

AUT1 application modulated firing frequency and action potential properties of ClockΔ19 VTA 

dopamine neurons potentially through network effects. Kv3.1 protein levels in the VTA of 

ClockΔ19 mice were significantly increased, suggesting a possible compensation for the increased 

dopaminergic activity in this brain region. Taken together, these results suggest that the modulation 

of Kv3.1 channels may provide a novel approach to the treatment of bipolar-mania. 

 
 
 

A.1 INTRODUCTION 
 
 
Treatment of bipolar mania is currently based on a mixture of serendipitously discovered drugs, 

including the antipsychotic drug olanzapine, anticonvulsants such as valproate and lamotrigine, 

and lithium (Beaulieu and Caron, 2008; Geddes and Miklowitz, 2013; Tohen and Vieta, 2009). 

With the possible exception of lithium, these drugs primarily treat the symptoms and not 

necessarily the underlying disease pathology. Furthermore, many pharmacological treatment 

options in use today are associated with significant safety and tolerability issues that ultimately 

limit their utility. There is a desperate need for novel approaches that target the primary 

pathophysiological mechanisms thought to underlie bipolardisorder. 

Some, if not all, symptoms of bipolar mania may be caused by an imbalance in the reward 

and motor circuits of the mesolimbic system and basal ganglia (Caseras et al, 2013; Phillips and 

Swartz, 2014; Salvadore et al, 2010). Behavioral abnormalities similar to symptoms of bipolar 

mania can be induced in mice by interventions that alter activity of the nigrostriatal and mesolimbic 
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dopamine pathways. Two such approaches involve acute amphetamine administration (Lyon, 

1991; Martinowich et al, 2009) and genetic mutation of the Clock gene in mice (McClung  et al, 

2005; Mukherjee et al, 2010; Roybal et al, 2007b). Previous studies found that the Clock∆19 mice 

have an increase in dopamine cell firing and bursting in the ventral tegmental area (VTA), which 

appear to underlie many of their manic-like phenotypes, including hyperactivity (Coque et al, 

2011; McClung et al, 2005; Roybal et al, 2007b). Psychiatrists have used antipsychotic 

interventions to reduce the "over-activity" of the dopamine system by inhibiting post-synaptic 

dopamine receptors, but this approach necessarily leads to significant adverse effects. An 

alternative approach may be to consider the activity of GABAergic output neurons of the basal 

ganglia and mesolimbic system that control movement and reward. 

Kv3.1 channels have been implicated in the maintenance of high-frequency firing of 

GABA output neurons in the globus pallidus (Hernandez-Pineda et al, 1999) and substantia nigra 

(Ding et al, 2011), areas critical to maintaining inhibitory control over motor output. Although 

function of Kv3 channels in the mesolimbic system has not yet been demonstrated, distribution 

studies confirm the presence of Kv3.1 channels in the VTA and striatum (Lenz et al, 1994), so an 

analogous mechanism of control over reward and motivation could be proposed. Activation of 

Kv3.1 channels may help enhance the fast firing of GABAergic neurons in these systems to re- 

establish the balance of inhibitory control in patients with bipolar disorder without resorting to 

blockade of the dopamine system. To this end, we have investigated the efficacy of a novel class 

of drug that modulates Kv3.1 channels (Rosato-Siri et al, 2016) in two models of mania-like 

hyperactivity associated with imbalance of the mesolimbic system in mice: acute amphetamine 

treatment and the ClockΔ19 genetic mutation. 
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A.2 MATERIALS AND METHODS 
 
 
 

A.2.1 Animals. 
 
 
Male Clock∆19 mutant mice were created by N-ethyl-N-nitrosurea mutagenesis that produces a 

dominant-negative CLOCK protein defective in transcriptional activity (King et al, 1997) and were 

obtained from J. Takahashi (UT Southwestern). For all behavioral experiments using Clock∆19 

mutants, adult male mutants (Clock/Clock) were compared with wild-type (+/+) littermate controls 

(10-12wks), on a mixed BALBc x C57BL/6 background. Clock∆19 mice (4-6wks) were used for 

electrophysiological experiments. Kv3.1 null (Kv3.1 -/-) male mice (Ho et al, 1997) on a mixed 

C57BL/6 x 129 background were obtained from R. Joho (UT Southwestern) and het-het breeding 

was used to obtain both nulls and WT littermate controls; Kv3.2 null (Kv3.2 -/-) male mice were 

obtained from B. Rudy (New York University). CD1 outbred male mice (8-12wks) were purchased 

from Jackson labs. All mice were maintained on a 12/12-hr light dark cycle (lights on/off at 

7:00/19:00) with food and water provided ad libitum. Mice were housed 2-4 per cage. All animal 

use was conducted in accordance with the National Institute of Health guidelines and approved by 

the Institutional Animal Care and Use Committees of the University of Pittsburgh and UT 

Southwestern Medical Center. 

 

A.2.2 Drug Preparation. 
 
 
AUT1 (structure: (5R)-5-ethyl-3-(6-{[4-methyl-3-(methyloxy)phenyl]oxy}-3-pyridinyl)-2,4- 

imidazolidinedione; Autifony Therapeutics Limited, UK) was administered intraperitoneally (i.p.) 

or through oral gavage and prepared fresh in vehicle (AUT1-vehicle) consisting of 0.1% Tween20, 
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0.5% HPMC K15EP (Colorcon) and 12.5% Captisol in bacteriostatic saline. Freshly prepared 

AUT1 was administered 30 minutes prior to behavioral testing. D-amphetamine (2 mg/kg, i.p. or 

4 mg/kg, i.p.) and clozapine (3 mg/kg, i.p.) (Sigma, St. Louis, MO) were prepared fresh in saline. 

All drugs were dosed at 10ml/kg. Lithium chloride was dissolved in drinking water (600 mg/L) 

and made available for 10 days as published previously (Roybal et al, 2007a). This treatment has 

been shown to produce a stable serum concentration in the low therapeutic range for humans (0.41 

+ 0.06 mmol/L) with little to no adverse health consequence (Roybal et al, 2007a). 
 
 
 

A.2.3 Behavioral Assays. 
 
 
Mood-related behavioral assays were performed in a cohort of Kv3.1 null mice with at least one 

week between tests. Behavioral testing was conducted during the light cycle and mice were 

habituated to the environment for a minimum of 30 minutes. 

 
 
Locomotor Activity. Mice were individually placed in novel, unexplored automated locomotor 

activity chambers equipped with apparatus-embedded infrared photobeams (San Diego 

Instruments, San Diego, CA and Kinderscientific Smart Cage Rack System; field dimensions: 

9.5”x18.0”), which measured continuous horizontal locomotor activity for 60 min. Kv3.1 null 

mouse naïve locomotor behavior was assessed under red light conditions; all other locomotor 

behavior was measured under regular room lighting conditions. 

 
 
Elevated plus maze. The plus maze consisted of two plastic open arms perpendicular to two closed 

arms (arms: 30 x 5 cm). Mice were habituated to the testing room for 30 min and then placed into 

the center of the plus-maze facing a closed arm under dim lighting conditions. The time spent on 
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the closed and open arms, as well as the number of explorations of open and closed arms were 

determined by video tracking software, Ethovision 3.0 (Noldus, Leesburg, Virginia) over a 5- 

minute period. The apparatus was cleaned and dried between animals. 

 
 
Light/Dark Test. The dark/light apparatus consisted of a two-chambered box (25 cm x 26 cm for 

each side, Med Associates, St. Albans, Vermont). One side was kept dark while the light chamber 

had a fluorescent bulb placed horizontally across the top. Mice were initially habituated to the dark 

chamber for 2 min and then allowed free exploration of both light and dark chambers for an 

additional 10 minutes. The time spent in each chamber and total transitions were measured by Med 

Associates automated software. 

 
 
Forced Swim Test. Mice were tested in the one-day modified forced swim test. Mice were placed 

into a 4L Pyrex glass beaker filled with 3L of water (23-26 °C) where the time spent struggling 

during the last 4 minutes of a 6-minute test (first 2 minutes are habituation) was videotaped and 

later measured by a blinded observer. Immobility was defined as all cessation of movement except 

those required for flotation. 

 

A.2.4 VTA Slice preparation. 
 
 
Clock∆19 mutant mice were anesthetized rapidly with isoflurane inhalation and decapitated. 

Brains were removed into ice-cold oxygenated (95% O2/ 5% CO2) modified aCSF containing (in 

mM): 93 N-methyl-D-glucamine, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 D-Glucose, 

5 Sodium ascorbate, 2 Thiourea, 3 Sodium pyruvate, 10 MgSO4•7H2O, 0.5 CaCl2•2H2O; pH 7.3- 
 
7.4 adjusted with HCL; 300-310 mOsm.  VTA-containing horizontal slices (250µm) were 
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sectioned with a vibratome (VT1200S; Leica, Wetzlar, Germany) and incubated for 12 minutes at 

37°C in the same solution. Slices were then transferred to holding aCSF at room temperature until 

recording. Holding aCSF contained (in mM): 92 NaCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 

HEPES, 25 D-Glucose, 5 Sodium ascorbate, 2 Thiourea, 3 Sodium pyruvate, 2 MgSO4•7H2O, 2 
 
CaCl2•2H2O (pH 7.3-7.4; 300-310 mOsm). 

 
 
A.2.5   Whole-cell patch-clamp recordings. 

 
 
Slices were viewed by differential interference contrast (DIC) optics (Leica) and the VTA was 

localized medial to the optic tract. Recordings were made under visual guidance (40X objective). 

Slices were maintained at 30-32°C in oxygenated aCSF containing (in mM): 124 NaCl, 2.5 KCl, 

1.2 NaH2PO4, 24 NaHCO3, 5 HEPES, 13 D-Glucose, 2 MgSO4•7H2O, 2 CaCl2•2H2O (pH 7.3- 

7.4, 300-310 mOsm). Borosilicate glass pipettes (3-5MΩ) were filled with (in mM): 119 K- 

MeSO4, 2 KCl, 1 MgCl2, 1 EGTA, 0.1 CaCl2, 10 HEPES, 2 Mg-ATP, 0.4 Na-GTP (pH 7.3 adjusted 

with KOH; 285-295 mOsm). Giga-Ohm seal was achieved and spontaneous sodium currents 

recorded in cell-attached mode to differentiate dopamine and non-dopamine neurons (Johnson and 

North, 1992). Cells were voltage clamped at -65mV and a hyperpolarizing voltage step protocol 

was applied (0mV to -100mV) to detect the presence of “h” current for further identification of 

neurons (Margolis et al., 2006). For recordings, cells were current clamped and action potential 

(AP) firing was recorded in response to increasing current steps (-80pA to 200pA) in the presence 

of DMSO (0.1%) or 10µM AUT1 (dissolved in 0.1% DMSO; 30 + min. bath incubation), a dose 

previously confirmed to modulate Kv3.1 channels (Rosato-Siri et al., 2016). All recordings were 

made using a MultiClamp 700B amplifier (Molecular Devices, Sunnyvale, CA). Signals were 
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filtered at 2.6-3 kHz and amplified 10 times, then digitized at 20 kHz with a Digidata 1332A 

analog-to-digital converter (Molecular Devices). Spike counts were tallied manually to produce 

input-output relationships. Using pClamp 10 software (Molecular Devices). AP half-width and 

amplitude of the negative peak of the first derivative were determined for each of the middle 5 

APs in the train and averaged. Inter-event intervals were automatically determined and CV was 

calculated as the SD/mean. 

 

A.2.6 Immunohistochemistry. 
 
 
Free-floating tissue sections underwent antigen retrieval for 20 min at 80°C in 10 mM sodium 

citrate buffer pH 9 (pre-heated), followed by a 10 min cooling period at room temperature (RT) in 

the same buffer. Sections were permeabilized for 10 min at RT in 0.1 M phosphate buffered saline 

(PBS) + 0.1% Triton X-100, then washed (3 x 5 min) in 0.1 M PBS, and incubated for 60 min in 

0.1 M PBS + 1% H2O2 (30%) at RT. Sections were blocked with 1% blocking buffer (Component 

D, supplied by tyramide signal amplification kit) for 60 min at RT and then incubated at 4 °C for 

48 hours with rabbit anti-Kv3.1b (Sigma #P9732) diluted 1:500 in 1% blocking buffer. Following 

primary antibody incubation, sections were washed with 0.1 M PBS (3 x 5 min washes) and 

incubated at RT with a goat anti-rabbit HRP conjugated antibody prepared in 1% blocking buffer, 

followed by 3 x 10 min washes with 0.1 M PBS. For amplification of signal, sections were 

incubated for 10 min in freshly prepared tyramide working solution, consisting of diluted tyramide 

stock solution (1:100) in amplification buffer. Sections were washed for 3 x 10 min with 0.1 M 

PBS and mounted with Vectashield mounting medium for fluorescence (Vector Laboratories, 

Burlingame, CA). 
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A.2.7 Western Blotting. 
 
 
SDS-PAGE and Western blots: Mice were placed in a plexiglass restrainer and euthanized by 

microwave irradiation aimed at the head (5 kW, 1.2 s, Murimachi Kikai Co., Ltd. Tokyo, Japan). 

Both ventral tegmental (VTA) and nucleus accumbens (NAc) tissue was dissected from 1-2 mm 

slices with a 16-gauge tissue punch and immediately frozen on dry ice for later use. For protein 

extraction, tissue samples were homogenized by sonication on wet ice in a buffer containing 320 

mM sucrose, 5 mM HEPES, phosphatase inhibitor cocktail I and II (Sigma, St. Louis, MO), 

protease inhibitor (Sigma, St. Louis, MO), 5% SDS, and 50 mM NaF. Protein homogenate was 

spun at 12,000 RPM for 10 min at 4 °C and the supernatant carefully removed. DC assays (Biorad, 

Hercules, CA) were performed to quantitate protein levels. Aliquots of sample were combined in 

Laemmli SDS sample buffer (Bio-World, Dublin, OH), and heated at 65 °C for 20 min. Samples 

were loaded (VTA: 20 µg total protein per lane; NAc: 40 ug total protein per lane) and run on a 

pre-cast 4-15% Tris-glycine (TG) extended gel (Biorad, Hercules, CA) at 100V for 95 min in 1 x 

TGS buffer (Biorad, Hercules, CA). Proteins were transferred overnight at 4 °C onto Immobilon 

PVDF membranes (Millipore, Bedford, MA) at 30V in 1 x TG buffer. Membranes were re-wet 

briefly in a series of methanol, MilliQ water and 1 x PBS and blocked in Odyssey Blocking Buffer 

(LI-COR Biosciences, Lincoln, NE) for 1 hr at room temperature (RT). Membranes were 

incubated for 24 hrs at RT with the primary antibody, mKv3.1b (1:100, Abcam, UK #ab84823) 

and mouse anti-GAPDH (1:50,000, Fitzgerald, Acton, MA) diluted in blocking buffer + 0.2% 

Tween20. The following day, blots were washed in 1 x PBS + 0.1% Tween20 and incubated for 

1 hour at RT with infrared (IR) Dye 680 conjugated goat anti-mouse antibody (1:5000, LI-COR 

Biosciences, Lincoln, NE) diluted in 0.2% Tween20 + 0.02% SDS. Blots were washed in 1 x PBS 

+ 0.1% Tween20 with a final wash in 1 x PBS. Blots were scanned using the Odyssey Infrared 
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Imaging System (LI-COR Biosciences, Lincoln, NE) interfaced to a PC running Odyssey 2.1 

software for quantification. To control for potential discrepancies in loading concentration, values 

are expressed as a ratio to the corresponding GAPDH integrated intensity. Values that were +/-1.5 

standard deviations from the group mean were excluded from analyses. 

 

A.2.8 Pharmacokinetics. 
 
 
Blood aliquots were collected into micronic tubes (70 uL blood + 130 uL water with HEPES 0.1N), 

vortexed and stored at 4°C prior to the assay. Samples were vortexed and centrifuged at 3000rpm 

for 10 mins and diluted into 96 well plates for the assay (80μL water + 100μL supernatant). Brains 

were homogenized with 4.3 vol. di MeOH 50% and collected into tubes (200μL). Homogenates 

were then vortexed and centrifuged at 3000rpm for 10 minutes and the aliquots of the supernatant 

transferred to 96 well plates. High performance liquid chromatographic (HPLC) assays using mass 

spectrometric detection (LC-MS/MS with UV) for the determination of AUT1 were developed 

and validated to identify the compound in brain and blood matrices. 

 

A.2.9 Statistical Analysis. 
 
 
Data were analyzed using an unpaired Student’s t-test while comparisons of three or more group 

means were conducted using an analysis of variance (ANOVA) followed by a Bonferroni or 

Dunnett post-hoc test for multiple comparisons. Analyses over time were conducted using a two- 

way repeated measures-ANOVA followed by a Bonferroni post-hoc test to control for multiple 

comparisons. In some instances, interactions that reached significance or trended towards 

significance were followed up with post-hoc student’s t-tests and are indicated in the figure 



104  

legends. Analyses were conducted using the GraphPad Prism 5 statistical software for Windows. 

Data are presented as mean ± standard error of the mean (SEM) with a two-tailed p-value ≤ 0.05 

considered statistically significant. 

 
 
 

A.3 RESULTS 
 
 

A.3.1 AUT1 attenuates amphetamine-induced hyperactivity: importance of Kv3.1 

channels. 

 

The efficacy of AUT1 was first assessed in the amphetamine-induced hyperactivity model in the 

outbred CD1 mouse strain (figure 23). AUT1, administered 30 min prior to a single dose of 

amphetamine, was effective in preventing amphetamine-induced hyperactivity in a dose- 

dependent manner (figure 23a,c). One-way ANOVA revealed a significant difference between pre- 

treatment groups (F5,57 = 2.96, p = 0.02) Both 30 mg/kg and 60 mg/kg doses were effective in 

attenuating hyperactivity, whereas no significant effect was found with a 10 mg/kg AUT1 dose. 

Significant group differences were found in locomotor activity during the 60 minutes following 

amphetamine injection (F5,54 = 13.17, p < 0.0001) (figure 23c). Importantly, the higher (60 mg/kg) 

AUT1 dose was as effective as clozapine, an antipsychotic with demonstrated anti-manic efficacy, 

at preventing hyperactivity. 
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Figure 24. A Kv3.1 channel modulator (AUT1) prevents amphetamine-induced hyperactivity. (A) CD1 mice 

were pre-treated with AUT1 (10 mg/kg, 30 mg/kg or 60 mg/kg) or AUT1-vehicle 30 minutes prior to a single injection 

of 2 mg/kg amphetamine (indicated by red arrow). Locomotor behavior was assessed both before (B) and after (C) 

amphetamine injection. Clozapine was administered as a positive control. (A) Time course of locomotor activity 

following AUT1 administration at T=0min and after amphetamine injection at T=30min. (B) There was a significant 

difference in locomotor activity across pretreatment groups, with a specific reduction in locomotor activity within the 

clozapine group prior to amphetamine injection. Note that two vehicle groups are depicted to dissociate groups that 

subsequently received a second dose of a vehicle (vehicle group 1: vehicle + vehicle) vs. a dose of amphetamine 

(vehicle group 2: vehicle + amph). Importantly, AUT1 had no effect on locomotor activity prior to amphetamine 

injection. (C) As expected, amphetamine injection resulted in a significant increase in activity in vehicle pre-treated 

CD1 mice and in mice that were pre-treated with a low dose of AUT1 (10 mg/kg). Locomotor activity following 

amphetamine injection was significantly lower in mice that were pretreated with higher doses of AUT1 (30 mg/kg 

and 60mg/kg) relative to vehicle pre-treated mice, i.e. locomotor activity following amphetamine injection in AUT1 

pre-treated mice was not significantly different than mice who did not receive amphetamine (saline injection). The 

highest dose of AUT1 was as effective as clozapine pre-treatment at preventing amphetamine-induced hyperactivity 

(clozapine vs. vehicle + amph). Vehicle group = AUT1-vehicle pretreatment + saline injection. Vehicle + amph = 

AUT1-vehicle  pre-treatment  +  amphetamine.  Treatment  group  vs.  vehicle  ***p<0.001;  treatment  group  vs. 
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amphetamine: ##p<0.01, ###p<0.001. Amph = amphetamine. Red arrow indicates time of amphetamine 

administration. n=10/group. 

 
 
Pharmacokinetic analyses were conducted to measure the systemic exposure and brain penetration 

of differing doses of AUT1 (10, 30 and 60 mg/kg) in male CD1 mice at 30 min (blood 

concentration) and 90 minutes (blood and brain concentration measured following locomotor 

testing) post-administration (Table 4). Overall, brain penetration was high and consistent among 

the doses. The mean brain-to-blood concentration ratio for AUT1 was ca. 1.6. Importantly, 

sufficient brain penetration was observed at all doses tested and was concurrent with behavioral 

effects seen during efficacy testing. 

 
 

Table 3. Bioavailability of AUT1 with oral administration. 
 

 
 
 

To test the specificity of this effect to Kv3.1 channels, separate cohorts of Kv3.1 null mice 

and their WT littermates were administered three different doses of AUT1 (or vehicle) 30 min 

prior to a single injection of amphetamine or vehicle (figure 24). Both WT and Kv3.1 null mice 
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exhibited the expected increase in locomotor activity following a single amphetamine injection 

(figure 24b). WT mice, however, that received AUT1 prior to amphetamine, exhibited attenuation 

in amphetamine-induced hyperactivity with the effects most notable at the 60 mg/kg and 100 

mg/kg doses. Two-way ANOVA revealed a significant main effect of treatment on locomotor 

activity (F4,67 = 22.37, p < 0.0001) and a genotype x treatment interaction (F4,67 = 2.28, p = 0.07) 

(figure 24b). 
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Figure 25. AUT1 does not attenuate amphetamine-induced hyperactivity in Kv3.1 null mice and these mice 

exhibit manic-related behaviors. (A) Cohorts of mice were pre-treated with AUT1 (30 mg/kg, 60 mg/kg or 100 

mg/kg, i.p.) or AUT-vehicle prior to amphetamine injection (4 mg/kg, i.p.) at T=30min. Bonferroni post-hoc analyses 

revealed that wild-type (WT) mice decreased locomotor activity in response to AUT administration in a dose- 

dependent manner relative to vehicle-treated WT mice. In Kv3.1 null mice, only AUT1 at the highest dose of 100 

mg/kg significantly reduced activity relative to vehicle treated Kv3.1 mice. Note that two vehicle groups are depicted 

to dissociate groups that subsequently received a second dose of a vehicle (vehicle group 1: vehicle + vehicle) vs. a 

dose of amphetamine (vehicle group 2: vehicle + amph). (B) Bonferroni post-hoc analyses revealed that amphetamine 
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injection lead to a significant increase in locomotor activity in both vehicle pre-treated WT and Kv3.1 null mice and 

in mice pre-treated with the lower 30 mg/kg dose of AUT1. AUT1 administered at 60 mg/kg and 100 mg/kg, however, 

prevented amphetamine-induced hyperactivity in WT mice, leading to a significant reduction in locomotor behavior 

relative to vehicle pre-treated mice administered amphetamine (WT AUT1 vs. amph). In contrast, AUT1 was not 

effective at preventing amphetamine-induced hyperactivity in Kv3.1 null mice, with significant increases in 

locomotion observed following amphetamine injection at 30 mg/kg (Kv3.1 AUT1 vs. vehicle) and 60 mg/kg but not 

at 100 mg/kg. AUT1 vs. vehicle: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; AUT1 vs. vehicle + Amph: 

###p<0.001. Amph = amphetamine. n=6-10/group. (C) Kv3.1 null mice exhibited a significant increase in total 

locomotor activity over a 1-hour test in novel locomotor chambers. Anxiety-like behaviors were decreased in Kv3.1 

null mice as demonstrated by significant increases in (D) time spent exploring the open arms of the elevated plus maze 

(no difference in entries into open arm [E]) and in (F and G) time spent in, and transitions into, the light chamber of 

the light:dark test. (H) Furthermore, Kv3.1 mice exhibited a significant increase in time spent struggling in the forced 

swim test. WT vs. Kv3.1: *p<0.05, **p<0.01, ***p<0.001 n=8/genotype. 

 
 

At the highest dose of 100 mg/kg, AUT1 significantly decreased locomotor activity in both 

WT and Kv3.1 null mice prior to amphetamine injection, possibly indicating a non-specific 

sedative effect at this dose (figure 24a). AUT1, however, was not effective at reducing 

amphetamine-induced hyperactivity in mice lacking Kv3.1 channels, even at these high doses 

(figure 24b,), which argues against a purely sedative effect. This suggests that functional Kv3.1 

channels are required for the effects of AUT1 on amphetamine-induced hyperactivity. Notably, 

this was confirmed by repeating the experiment using Kv3.2 knock-out mice where AUT1 was as 

effective at preventing hyperactivity as in WT mice (F2,24 = 12.73, p = 0.0002) (figure 25). 

Collectively, this suggests that Kv3.1 channels (and not Kv3.2) are necessary for AUT1’s 

mechanism of action in this model. 



110  

 
 

Figure 26. AUT1 prevents amphetamine-induced hyperactivity in Kv3.2 KO mice. (A) Time course of locomotor 

activity in wild-type (WT) and Kv3.2 knock-out (KO) mice that received pre-treatment with AUT1 (60 mg/kg, p.o.) 

or vehicle at T=0min followed by an injection of amphetamine (2 mg/kg, i.p.) at T=30min (injection time indicated 

by red arrow). (B) There was no significant difference in locomotor activity following AUT1 administration prior to 

amphetamine injection. Note that two vehicle groups are depicted to dissociate groups that subsequently received a 

second dose of a vehicle (vehicle group 1: vehicle + vehicle) vs. a dose of amphetamine (vehicle group 2: vehicle + 

amph).  (C)  Two-way ANOVA revealed  a  significant  main effect  of treatment  on locomotor  activity following 
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amphetamine injection. Bonferroni post-hoc analyses confirmed that amphetamine led to a significant increase in 

activity in both WT and Kv3.2 vehicle pre-treated mice. AUT1 pre-treatment was effective at preventing 

amphetamine-induced hyperactivity in both WT and Kv3.2 mice, with no significant difference from vehicle pre- 

treated mice. Locomotor activity in AUT1 pre-treated mice was significantly lower than mice that received 

amphetamine injection alone. Treatment group vs. vehicle: *p<0.05; treatment group vs. amphetamine: #p<0.05. 

Amph = amphetamine. Red arrow indicates time of amphetamine administration. n=5/group. 

 
 

A.3.2 Kv3.1 null mice exhibit manic-likebehaviors. 
 
 
To further establish an association between Kv3.1 channels and mood-related behaviors, mice 

lacking Kv3.1 channels were tested in a behavioral battery to assess features of manic-like 

behavior including exploratory, anxiety- and depressive-like behaviors. Kv3.1 null mice exhibited 

a hyperactive phenotype during a 1-hr locomotor test (t12 = 3.55, p < 0.01) (figure 24c). Kv3.1 

null mice also exhibited an increase in exploration of the open arms of the elevated plus maze 

(figure 24d-e) and light chamber of the light-dark test (figure 24f-g), indicating an overall decrease 

in anxiety-like behaviors (time: t12 = 2.43, p = 0.032; transitions: t13 = 2.42, p = 0.031). In the 

forced swim test, Kv3.1 null mice exhibited antidepressant-like behavior as evidenced by 

increased time spent struggling relative to WT littermate controls (t14 = 5.11, p = 0.0002) (figure 

24h). 

 

A.3.3 Effects of AUT1 on hyperactivity in the ClockΔ19 mutant mouse model ofmania. 
 
 
The ability of AUT1 to attenuate hyperactivity was additionally tested in the well-validated 

ClockΔ19 mutant mouse model of mania (Roybal et al, 2007b). As expected, vehicle treated 

ClockΔ19 mice exhibited hyperactivity compared to WT littermate controls throughout the 

duration of locomotor testing (p < 0.01) (figure 26).  ClockΔ19 mutant mice that received acute 
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administration of AUT1, however, exhibited a reduction in locomotor activity at both a 30 mg/kg 

(F1,27 = 14.67, p = 0.0007, genotype effect; F1,27 = 6.11, p = 0.02, treatment effect) (figure 26a,b) 

and 60 mg/kg dose (figure 26c,d), with the higher 60 mg/kg dose completely reversing 

hyperactivity to WT levels with a significant main effect of treatment (F1,25 = 9.023, p = 0.006) 

and a trend for a main effect of genotype (F1,25 = 3.84, p = 0.062). Importantly, AUT1 did not 

impact locomotion in WT controls at these doses. 
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Figure 27. AUT1 reverses hyperactivity in the ClockΔ19 mutant mouse model of mania. (A, C) Time course of 

locomotor activity in wild-type (WT) and ClockΔ19 administered a (A, B) 30 mg/kg or (C, D) 60 mg/kg dose of AUT1 

or vehicle (AUT1-vehicle) at T=0min. (B). As expected, Bonferroni post-hoc analyses revealed that vehicle-treated 

ClockΔ19 mice exhibited a significant increase in locomotor activity relative to WT mice. ClockΔ19 mice 

administered 30 mg/kg AUT1 exhibited a significant reduction in locomotor activity compared with vehicle treatment. 

(D) The ability of AUT1 to reduce hyperactivity in ClockΔ19 mutants was additionally tested at a 60 mg/kg dose. 

Hyperactivity was seen in vehicle treated ClockΔ19 vs. WT and a complete reversal of this phenotype with 60 mg/kg 

AUT1 administration (ClockΔ19 AUT1 vs. vehicle). Genotype effects: *p<0.05, **p<0.01; treatment effects: 

#p<0.05, ##p<0.01. n=7-8/genotype. 
 
 
 
 

A.3.4 AUT1 differentially modulates ClockΔ19 VTA neuronalactivity. 

 
Given the effect of AUT1 in attenuating hyperactivity in ClockΔ19 mice, we focused on the VTA 

as a region of interest to further explore the underlying mechanism. In an ex vivo preparation, we 
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tested the ability of AUT1 to modulate firing and action potential (AP) properties of ClockΔ19 

dopamine and non-dopamine (putatively GABAergic) neurons (figure 27). The identity of cell 

types was confirmed by standard electrophysiological signatures including morphology, 

spontaneous firing rate and the presence of an HCN channel-mediated hyperpolarization-activated 

current (Ih) (figure 27a,b). As measured by whole-cell current clamp, AUT1 bath application 

(10µM) significantly decreased DA neuron AP firing compared with DMSO (0.1%) specifically 

at higher current injections (F(1,31)= 4.049, p = 0.0530 treatment effect; F(10, 310)= 392.5, p < 0.0001 

current effect; F(10, 310) = 2.994, p = 0.0013 interaction) (figure 27c). AUT1 appeared to increase 

the rate of firing in non-DA neurons, but this effect did not reach significance (F(1,10) = 0.5848, p 

= 0.4621 treatment effect; F(10, 100) = 179.3, p < 0.0001 current effect) (figure 27d). 
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Figure 28. The firing rate of ClockΔ19 VTA dopamine neurons is attenuated by AUT1. (A) Micrograph of VTA 

dopamine neurons in a brain slice from ClockΔ19 mutant mice. (B) DA neurons exhibit a characteristic Ih-mediated 

“sag” response to hyperpolarizing voltage steps and spontaneous activity in the range of 1-3Hz (left) while putative 

GABAergic neurons in the VTA lack Ihcurrent and fire at a rate higher than 20Hz (right). (C) AUT1 reduced the firing 

of DA neurons compared with DMSO specifically at higher current steps; n=14 DMSO, n=19 AUT1 (D) AUT1 

application did not significantly alter the firing of GABAergic cells in a small sample group; n=6 DMSO, n=6 AUT1. 

*p<0.05, **p<0.01. 



116  

Furthermore, we examined the effects of AUT1 application on several action potential properties 

of DA and non-DA neurons in ClockΔ19 VTA. We analyzed the half width, amplitude of the 

negative phase of the first derivative, coefficient of variation (CV) of the inter-event interval and 

amplitude of spikes at 100pA and 200pA current steps (figure 28a). Here we found that AP half 

width of ClockΔ19 mutant DA cells was significantly increased (F(1,27) = 6.306, p = 0.0183 

treatment effect; F(1,27)= 43.05, p < 0.0001 current effect) as was the CV (F(1, 26)= 7.520, p = 0.0109 

treatment effect; F(1,26) = 40.11, p < 0.0001 current effect). The first derivative was significantly 

reduced in the presence of AUT1 (F(1,27) = 6.602, p = 0.0160 treatment effect; F(1,27) = 46.98, p < 

0.0001 current effect). AP amplitude remained unchanged (F(1, 26) = 1.254, p = 0.2730 treatment 

effect; F(1, 26) = 66.24, p < 0.0001 current effect) (figure 28b-e). These data indicate that AUT1 

broadens individual APs, decreases the rate of repolarization and increases irregularity of APs 

within the spike train. 

When we recorded from putative GABAergic neurons, we did not find significant changes 

in AP half width (F(1,7) = 0.2994, p = 0.6013 treatment effect; F(1, 7) = 6.060, p = 0.0434 current 

effect), first derivative (F(1, 7)= 1.773, p = 0.2248 treatment effect; F(1,7)= 185.5, p < 0.0001 current 

effect) and amplitude (F(1, 7)= 0.3100, p = 0.5950 treatment effect; F(1, 7)= 23.30, p = 0.0019 current 

effect). However, AUT1 significantly decreased the CV at both current steps (F(1, 7) = 10.44, p = 

0.0144 treatment effect; F(1, 7) = 1.809, p = 0.2206 current effect) (figure 28f-i). Together, our 

results suggest that AUT1 may exert its effects on reducing ClockΔ19 hyperactivity through a 

subtle augmentation of GABAergic neuronal firing properties that may lead to an inhibition of DA 

neuronal firing and spike fidelity. 
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Figure 29. AUT1 modulates action potential properties of ClockΔ19 dopamine and GABAergic neurons. (A) 

Representative spike trains and individual action potentials from DMSO and AUT1 treated DA neurons. Middle APs 

were chosen for analysis of half width, first derivative negative phase amplitude, and spike amplitude. (B) Application 

of AUT1 increased the AP half width of DA neurons at 100pA and 200pA. (C) The first derivative of APs was 

significantly decreased by AUT1 at both 100pA and 200pA current steps. (D) AUT1 incubation increased the CV of 
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the inter-event interval. (E) Lastly, we did not identify an effect of AUT1 on the AP amplitude of DA neurons 

compared with DMSO. (F) Analysis of AP properties of GABAergic revealed no significant effect of AUT1 on AP 

half width. (G) Similarly, AUT1 incubation failed to alter the first derivative compared with DMSO. (H) ClockΔ19 

GABAergic neurons however responded to AUT1 application with a significant decrease in the CV of the inter-event 

interval at both current steps. (I) AP amplitude was unaffected by AUT1 incubation. *p<0.05, **p<0.01. 

 
 
 
 

A.3.5 Kv3.1 channels are targets of mood stabilizer treatment in ClockΔ19 mutantmice 
 
 
Immunohistochemistry confirmed the presence of Kv3.1b channels in various dopaminergic rich 

regions of the brain, including the caudate putamen (figure 29a), Islands of Calleja (figure 29b), 

VTA (figure 29c) and substantia nigra (figure 29d). Based on previous work demonstrating the 

importance of both the VTA and NAc to manic-related behaviors in ClockΔ19 mutant mice (Coque 

et al, 2011; Dzirasa et al, 2010; McClung et al, 2005; Mukherjee et al, 2010), we used Western 

blotting to quantitate levels of Kv3.1b protein (an alternative splice form of the Kv3.1 subunit) 

specifically in these mesolimbic brain regions. Analysis revealed an increase in Kv3.1b channel 

protein in the VTA of ClockΔ19 mutant mice compared to WT controls (p = 0.056) (figure 28e), 

with no differences in the NAc (figure 28f). Interestingly, lithium, which reverses manic-like 

behavior in ClockΔ19 mutant mice and restores normal dopaminergic activity (Roybal et al, 2007; 

Coque et al, 2011), also restored Kv3.1 protein to WT levels in the VTA (p < 0.05) with a trend 

for an interaction in the effect of lithium treatment on Kv3.1b protein in ClockΔ19 mice compared 

with WT littermate controls (F(1,18 )= 3.38, p = 0.08) (figure 29e). 
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Figure 30. Lithium restores abnormal Kv3.1b protein levels in a mouse model of mania. Kv3.1b immunopositive 

cells (green) were detected in various dopamine-rich areas of the brain including the (A) caudate putamen (CP), (B) 

Islands of Calleja, (C) ventral tegmental area (VTA), and (D) substantia nigra (SN). (E) Post-hoc analyses revealed 

an increase in Kv3.1b protein in the VTA of vehicle-treated ClockΔ19 mice that decreased to WT levels after 10 days 

of lithium treatment. (F) No significant genotype or treatment effects were found in the nucleus accumbens (NAc). 

ClockΔ19 water vs. lithium treatment: #p<0.05. n=5-6/genotype. 
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A.4 DISCUSSION 
 
 
The current study tested the efficacy of a novel modulator of Kv3-family voltage-gated potassium 

channels (AUT1) in two separate animal models associated with imbalance of the mesolimbic 

system: the amphetamine-induced hyperactivity model and the ClockΔ19 mutant mouse model of 

mania. Furthermore, Kv3.1 null mice were used to test for behavioral abnormalities in mice 

lacking Kv3.1 channels. Kv3.1 null mice were found to exhibit both increased exploratory drive 

and reduced depressive-like behaviors, combined with hyperactivity. A similar behavioral 

phenotype is present in the ClockΔ19 model of mania, though we have not yet determined if Kv3.1 

null mice share other features of mania including increases in the reward value for drugs of abuse, 

motivated behavior, and impulsivity. The current findings extend previous studies that have also 

shown similar behavioral abnormalities in Kv3.1 knockout mice, most notably hyperactivity 

(Espinosa et al, 2004; Joho et al, 2006). It should be noted that these mice also have highly 

disrupted daily activity rhythms (Kudo et al, 2011), with increased activity during the day (light 

cycle) and reduced sleep time, similar to that seen in ClockΔ19 mice and human manic patients 

(Espinosa et al, 2004; Joho et al, 2006; Naylor et al, 2000). 

In the amphetamine-induced hyperactivity model, we found that AUT1 successfully 

prevented hyperactivity in outbred mice. Importantly, AUT1 was unable to prevent amphetamine- 

induced hyperactivity in Kv3.1 null mice, demonstrating the importance of Kv3.1 channels to 

AUT1’s mechanism of action. Notably, this effect was specific to Kv3.1 channels, as AUT1 

successfully prevented hyperactivity in mice lacking Kv3.2 channels. Additionally, AUT1 also 

reversed hyperactivity in the ClockΔ19 mutant mouse model of mania, where we found 

background alterations in the expression of Kv3.1 channels in dopamine-rich mesolimbic regions. 

Specifically, Kv3.1b protein levels were increased in the VTA of ClockΔ19 mutant mice. Based 
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on the manic-like behavioral profile observed in mice lacking functional Kv3.1 channels, one 

might expect a decrease in Kv3 channels in the VTA of ClockΔ19 mutants. However, the increase 

might reflect a compensatory mechanism that attempts to normalize the increased VTA dopamine 

neural activity present in ClockΔ19 mutants (Coque et al, 2011; Roybal et al, 2007b). A similar 

compensatory effect has been proposed for the observed decrease in levels of glutamate-receptor 

1 (GLUA1) protein in the NAc of ClockΔ19 mutant mice (Dzirasa et al, 2010). It is also possible 

that these channels are not optimally functional in the Clock∆19 mice leading to an attempt at 

rescue through increased expression. Regardless of the directionality of the effect, the current 

results suggest an association between Kv3.1 channels and mania-related behaviors possibly 

through its action on dopaminergic neural activity. Indeed, given that previous studies have shown 

that Kv3.1 channels are present in dopaminergic-rich CNS regions and given that we found 

evidence of protein expression in various dopamine-rich areas, it is likely that Kv3.1 channels 

indirectly contribute to dopaminergic neural activity through modulation of GABAergic 

interneuron activity. With regards to the current findings, it should be noted that 30% of VTA 

neurons are GABAergic (Sesack and Grace, 2010). 

Rosato-Siri and colleagues have demonstrated AUT1-induced modulation of PV 

interneuron firing in the somatosensory cortex of mice when potassium channel activity is 

pharmacologically impaired (Rosato-Siri et al, 2016). Our results showed significant effects of 

AUT1 on the action potential characteristics of ClockΔ19 DA and putative GABAergic neurons 

in the VTA. The most robust effect of the drug was to reduce the CV of firing of GABAergic 

neurons. This effect may be associated with the reduced AP half-width and increased rate of 

repolarization that was observed following AUT1 application; these parameters showed only a 

trend towards reduction and increase, respectively.  However, AP half-width and rate of 
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repolarization prior to AUT1 application were already very short and fast, respectively, thus further 

positive modulation would be limited by other ion channels mechanisms. The combination of 

effects of AUT1 observed in GABAergic neurons is entirely consistent with Kv3.1 positive 

modulation. We suggest that observed effects of AUT1 on the AP characteristics of the recorded 

DA neurons may be secondary to alterations in the firing properties of the GABAergic neurons 

that synapse onto them. This would be consistent with the presence of Kv3.1 channels on 

GABAergic neurons, but not DA neurons (Kudo et al, 2011). However, we cannot exclude the 

possibility that the significant changes in DA cell AP characteristics seen with AUT1 might be due 

to action of the drug on other ion channels directly on the DA cells. 

Moreover, we found that the levels of Kv3.1 channel protein were normalized in the 

Clock∆19 mice in response to lithium, which is known to decrease dopaminergic activity in these 

animals (Coque et al, 2011). The decrease in Kv3.1 levels could occur as a response to 

normalization of dopamine levels, or it could be involved more directly in the actions of lithium 

on neural activity. A critical aspect of this study was the ability to compare concentrations of AUT1 

that were active in vivo with those concentrations that have been shown to modulate Kv3 channels. 

In vitro, concentrations in the range of 1–10 micromolar were found to modulate Kv3.1 and Kv3.2 

channels (Rosato-Siri et al, 2016). In the present study, we found that doses of 30 and 60 mg/kg 

of AUT1 produced significant effects on behavior in the mouse models tested. These oral doses 

were associated with free brain concentrations in the range of 1 – 2 micromolars over the time- 

course of behavioral testing. These concentrations are therefore consistent with effects mediated 

by Kv3 channels. 

A recent study confirmed the importance of Kv3.1 channels to additional psychiatric 

disorders. Kv3.1 channels were reduced in patients with schizophrenia and normalized with 
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antipsychotic treatment (Yanagi et al, 2014). Here, the authors focused on the importance of these 

channels located on cortical parvalbumin (PV) interneurons and the role of these neurons in 

maintenance of cortical gamma oscillations and synchrony (Sohal et al, 2009), which are disrupted 

in schizophrenia, bipolar disorder and in severe cases of unipolar depression (Uhlhaas et al, 2011). 

A direct role for Kv3.1 channels in the generation of thalamocortical gamma oscillations has been 

described in the Kv3.1 null mice (Joho et al, 1999), demonstrating a link between Kv3.1 channels 

and the maintenance of fast spiking neural activity required for gamma synchronization. Moreover, 

AUT1 was able to restore normal levels of activity of the PV-positive interneurons in the 

somatosensory cortex (Rosato-Siri et al, 2016). Thus, Kv3.1 channels may play a role in the 

development of different classes of psychiatric diseases. As novel medications for psychiatric 

diseases are greatly needed, we propose that compounds like AUT1, which directly target and 

modulate Kv3 channels, may be beneficial for the treatment of disorders associated with abnormal 

neural activity. In particular, this may prove to be a useful strategy for restoring dopaminergic 

function without the side effects associated with dopamine blockade. Further studies will be 

needed to understand the exact role these channels play in the development of psychiatric disease. 
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APPENDIX B 

REGULATION OF ANXIETY-LIKE BEHAVIOR AND GABAA RECEPTORS BY 
NPAS2 

Ozburn AR, Kern J, Parekh PK, Logan RW, Liu Z, Falcon E, Becker-Krail D, Purohit K, Edgar 

NM, Huang Y, and McClung CA. (Submitted to Biological Psychiatry) 

Abnormal circadian rhythms are strongly associated with several psychiatric disorders. NPAS2 is 

a core component of the molecular clock that acts as a transcription factor and is highly 

expressed in reward- and stress-related brain regions such as the nucleus accumbens (NAc). 

Variations in Npas2 are associated with seasonal affective disorder and major depressive 

disorder. However, the mechanisms by which NPAS2 is involved in mood-related behaviors is 

still unclear. We determined the effect of a chronic stress paradigm on NAc Npas2 expression, 

characterized the behavioral phenotype of mice with a null mutation in Npas2 and mice with 

reduced NAc Npas2 expression (via RNAi). Further, we identified and validated GABAA 

subunits as novel transcriptional targets of NPAS2, and assessed the effects of NAc Npas2 

knockdown on inhibitory neurotransmission. Chronic unpredictable mild stress significantly 

increased Npas2 expression in the NAc. Npas2 mutants exhibited decreased anxiety-like 

behaviors (in elevated plus maze, light/dark box, and open field assay) as compared 

with WT mice. NAc Npas2 knockdown was sufficient to reduce anxiety-like behaviors and alter 
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inhibitory neurotransmission (decrease mIPSC amplitude). Additionally, Npas2 mutants were 

resistant to the motor incoordinating effects of diazepam. Furthermore, we found that NPAS2 

binds to and regulates specific Gabra genes and Npas2 knockdown rendered MSNs insensitive to 

diazepam. We provide strong evidence that the circadian transcription factor, NPAS2, modulates 

anxiety-like behaviors and GABAA receptors using a combination of molecular and behavioral 

approaches. These findings suggest a mechanism by which stress increases NPAS2 dependent 

transcription of specific GABAA receptor subunits, thus altering the function of the receptors and 

ultimately inhibitoryneurotransmission. 

B.1 INTRODUCTION

Psychiatric disorders are among the most devastating diseases and rank among the top factors 

involved in loss of productivity, quality of life, and reduced life span. Clinical and pre-clinical 

studies provide strong evidence that circadian rhythms and the genes that make up the molecular 

clock play a key role in the expression of mood-related symptoms in psychiatric disorders 

(Karatsoreos, 2014; Landgraf et al, 2014; Logan et al, 2014; Falcon and McClung, 2009). In fact, 

nearly all psychiatric disorders involve some disruption to the normal sleep/wake cycle and this is 

often one of the criteria used for diagnosis (McClung, 2013). 

Circadian rhythms are regulated by a set of transcriptional/translational feedback loops that 

make up the molecular clock. The core feedback loop consists of transcription factors Circadian 

Locomotor Output Cycles Kaput (CLOCK), or Neuronal PAS Domain Protein 2 (NPAS2), and 

Brain and Muscle ARNT like Protein 1 (BMAL1) forming heterodimers, binding to E-box 

(CACGTG) sequences and positively regulating the transcription of Period (Per1, Per2, and Per3) 
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and Cryptochrome (Cry1 and Cry2) genes. PER and CRY proteins are phosphorylated by casein 

kinase epsilon 1 (CKE1), form homomers or heteromers, and translocate to the nucleus where they 

can inhibit CLOCK:BMAL1 or NPAS2:BMAL1- mediated transcription (Lowrey and Takahashi, 

2000; Mohawk and Takahashi, 2011; Wang et al, 2007). While the circadian genes that drive these 

molecular rhythms are found in the master pacemaker (the suprachiasmatic nucleus), elements of 

the molecular clock are expressed throughout the brain and periphery. 

Studies have revealed that circadian genes and rhythms significantly contribute to mood, 

anxiety and depression, as well as reward and motivation (Logan et al, 2014; McClung, 2013; 

Ozburn et al, 2012; Ozburn et al, 2015; Parekh et al, 2015; Spencer et al, 2013; Roybal et al, 2007; 

Ozburn et al, 2013). Abnormal rhythms are strongly associated with psychiatric diseases like 

seasonal affective disorder, bipolar disorder, major depression, and drug addiction (Hasler et al, 

2012; Li et al, 2013; McCarthy et al, 2013; McClung, 2011; Mukherjee et al, 2010; Salgado- 

Delgado et al, 2011). Increased agitation and anxiety are key symptoms commonly associated with 

these disorders, and are the focus of the studies presented here. Moreover, many of the therapies 

used to treat these disorders are known to modulate the circadian clock (Bunney and Bunney, 

2013). Additionally, single nucleotide polymorphisms (SNP) in a number of circadian genes have 

been associated with mood disorders (Benedetti et al, 2004; Desan et al, 2000; Kishi et al, 2008; 

Kripke et al, 2009; Lavebratt et al, 2010a-b; Nievergelt et al, 2006). SNPs in Npas2 are associated 

with seasonal affective disorder and major depressive disorder (Partonen et al, 2007; Soria et al, 

2010). However, the role of NPAS2 in these mood-related behaviors is unclear. 

Our present research focuses on identifying mechanisms by which the circadian gene, 

Npas2, regulates anxiety-like behaviors. Npas2 is highly expressed in reward- and stress-related 

brain regions such as the nucleus accumbens (NAc) (Garcia et al, 2000). The NAc, primarily 

composed of GABAergic medium spiny neurons (MSNs), is a significant point of convergence for 
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this circuitry where it receives dopaminergic input from the VTA, as well as glutamatergic inputs 

from a number of other brain regions (such as the pre-frontal cortex, amygdala, and hippocampus). 

Previously we found that NPAS2 expression in the NAc is localized specifically to dopamine 

receptor 1 (Drd1a) containing neurons of the so-called “direct” pathway (Ozburn et al, 2015). This 

circuit is thought to underlie positive or rewarding associations with salient events. We performed 

ChIP Seq (chromatin immunoprecipitation followed by deep sequencing) on striatal tissue to 

identify DNA sequences bound to NPAS2 and identified many novel gene targets, including 

GABAA alpha (1, 2, 3, 4 and 5), beta (1, 2, 3), gamma (1, 2,3), epsilon, and pi subunits (Ozburn et 

al, 2015). In the current studies, we determine how stress and anxiety alter Npas2 in the NAc and 

how Npas2 regulates anxiety-like behavior and inhibitory neurotransmission using a combination 

of qPCR, RNA interference, pharmacological, behavioral, and electrophysiological methods. We 

hypothesize that stress and anxiety alter NPAS2-dependent transcription of specific GABAergic 

subunits that selectively alter phasic inhibitory neurotransmission (perhaps specifically in Drd1a 

containing medium spiny neurons of the NAc). 

B.2 MATERIALS AND METHODS

B.2.1 Animal use. 

Npas2 (C57BL/6:129S6) mutant mice (Garcia et al, 2000) were tested as homozygotes. Wild type 

littermate controls were utilized as a control for this mutation. Male C57BL/6J mice (The Jackson 

Laboratory, Bar Harbor, Maine) were utilized for Npas2 knockdown, gene expression following 

unpredictable chronic mild stress, and ChIP studies. All mice were housed in a 12:12 light/dark 
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cycle (lights on at 7am, lights off at 7pm) with food and water ad libitum. All animal use was 

approved by the University of Texas Southwestern Medical Center, the University of Pittsburgh, 

and the Portland VA Medical Center Institutional Animal Care and Use Committees. 

B.2.2 Unpredictable Chronic Mild Stress (UCMS). 

Mice were group housed and exposed to six weeks of UCMS or control handling (N=36 mice per 

group). UCMS treated mice were subjected to a randomized schedule of 1-2 mild stressors per 

day, seven days per week. Stressors included forced bath (~4cm of water in a rat-sized cage for 15 

min), wet bedding, aversive smell (1h exposure to fox urine), dirty bedding (rotate mice into 

previously occupied “dirty” cages), tilt cages (45° tilt), restraint (50ml tube for 15 min), reduced 

cage space, no bedding, and bedding change (replaced soiled bedding with clean bedding). Two 

or three stressors were intermittently used simultaneously to contribute to the random nature of the 

paradigm. No light/dark manipulations were used. Fur rating and body weights were measured 

weekly to track the progression of the “UCMS syndrome”. Control animals were housed in the 

same room as the UCMS exposed animals and only handled for fur ratings and body weight 

measurements. To ensure UCMS treated mice exhibited increased anxiety-like behaviors 

associated with UCMS syndrome, mice were subjected to elevated plus maze and light/dark box 

testing (on two separate days) during the 5th week of UCMS, and thus did not receive randomized 

stressors on these days. Stressors were purposely conducted at random times throughout the day 

to avoid potential non-specific circadian effects of acute stressors. Immediately after 6 weeks of 

UCMS or control handling, mice were sacrificed by cervical dislocation and rapid decapitation 

every 4 hours over the next 24-hour period (6 time points). Whole brains were dissected and flash 

frozen on dry ice, sectioned on a cryostat at 200um, and NAc tissue was collected using a 1mm 
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core tissue puncher. 
 

B.2.3 Quantitative Real-time RT-PCR. 
 
 
For UCMS tissue: Total RNA was extracted using an RNeasy Micro Kit (Qiagen, Germantown, 

MD) and converted to cDNA using the Superscript III First Strand Synthesis Kit (Life 

Technologies, Grand Island, NY). cDNA was mixed with SYBR Green master mix (Applied 

Biosystems, ABI) and specific primers for Npas2 or Gapdh. Prior to the experiment primer sets 

were tested thoroughly to determine reaction efficiency, specificity, and the absence of primer- 

dimers [2]. Primer sequences for Npas2 were (forward) 5’-GACACTGGAGTCCAGACGCAA- 

3’ and (reverse) 5’-AATGTATACAGGGTGCGCCAAA-3’ and for Gapdh (forward) 5’- 

AACGACCCCTTCATTGAC-3’       and       (reverse)    5’-TCCACGACATACTCAGCAC-3’. 

Quantitative real-time RT-PCR reactions were assessed by SYBR green fluorescence signal 

(Power SYBR Green PCR Master Mix, Life Technologies) using a 7900HT Fast Real-Time PCR 

System (Applied Biosystems, Grand Island, NY). 

For Npas2 shRNA and Scramble shRNA transduced NAc tissue: Tissue was collected, 

RNA was isolated, and cDNA synthesis was performed as described (Ozburn et al, 2015). 

Following cDNA synthesis, multiplex polymerase chain reaction (PCR) was used to measure 

relative gene expression of multiple gamma-aminobutyric acid receptor (type A) subunits of 

interest (and housekeeping gene Gapdh) in the same sample. In brief, cDNA was mixed with 

SsoAdvanced™ Universal Probes Supermix (Bio-Rad Laboratories; Hercules, CA) and all five 

probes for genes of interest: Gapdh: Cy5.5 reporter, Cat# 10031237; Gabrg1: FAM reporter, Cat# 

10031228; Gabrg2: HEX reporter, Cat# 10031231; Gabra1: TEX 615, Cat# 10031234, and 

Gabra2: Cy5 reporter, Cat# 12001950. Reactions were carried out in a Bio-Rad CFX96 Touch™ 

Real-Time  PCR  Detection  System  using  the  Bio-Rad  CFX  Manager  3.1  software  (Bio-rad 
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s h 

Laboratories). Scan mode was set to ‘all channels’ to allow for detection of each of the five 

fluorophore reporters. For all reactions: Samples were run in duplicate and ΔCT values were 

determined by normalizing to the reference gene Gapdh. Relative expression values were 

calculated based on the following: ΔΔCT=(ΔCThighest value across groups – ΔCTsample) then relative 

expression ((2-ΔΔCT ample / 2-ΔΔCT ighest value across groups)*100) was calculated as described in (Landgraf 

et al, 2014). 

B.2.4 Behavioral Assays. 

Locomotor Response to Novelty: Mice were individually placed in a novel environment inside 

automated locomotor activity chambers equipped with infrared photobeams (San Diego 

Instruments, San Diego, CA) and measurements began immediately. Activity was continuously 

measured and the data was collected in 5-minute bins over a period of two hours. Distance traveled 

was measured. An initial exploratory bout of increased activity that decreases over the two-hour 

testing period is typically seen and represents habituation to the novel environment. 

Elevated Plus Maze: The maze consisted of two open arms and two arms with raised walls. The 

mice were placed into the center of the maze, and their movement and time spent in each arm was 

tracked using Noldus EthoVision video tracking software. Each test lasted ten minutes. Number 

of entries into the open and closed arms were measured, as well as time spent in the open arms. 

More time spent in the open arms, and more open arm entries are both indicative of reduced 

anxiety-like behavior. 

Light/Dark Box: A locomotor box was partitioned into a dark chamber and a light chamber. The 
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mice were placed into the dark chamber for 1min prior to beginning data collection. Recording 

began when the gates were opened and the number of beam breaks in both chambers were recorded 

over the course of 10 minutes. Latency to enter and time spent in the light side of the apparatus 

were measured. Reduced latency to enter the light portion of the apparatus indicates reduced 

anxiety-like behavior. 

Open Field: The open field arena consisted of a square plexiglass arena with a clear floor and solid 

black walls (61 x 61 cm). Mice were placed in the center of the open field and allowed to freely 

explore for 10 minutes. Anxiety-like behavior was assessed using the following: time spent in the 

center of the arena, distance traveled and velocity of movement in the center. Locomotor activity 

was measured by total distance traveled. Behaviors were recorded and scored using Ethovision 

XT. Increased time spent in the center and distance traveled in the center of the arena indicated 

reduced anxiety-like behavior. 

Accelerating Rotarod Assay: The rotarod test was performed to evaluate motor coordination. 

Npas2 knockout and WT mice (n=7/genotype) were placed on immobile cylinders, which ramped 

up from 0 to 45 rotations/min (IITC, USA). The timer was stopped when the mouse fell off the 

cylinder or did a whole turn with it. This procedure was repeated for four consecutive days. The 

first two days consisted of training on the accelerating rotarod. On the last two days, mice were 

injected with either saline or 3 mg/kg diazepam (in a counterbalanced manner) 30 minutes prior to 

rotarod testing. For each genotype, latency to fall was compared under diazepam and saline 

treatment conditions. A reduction in the latency to fall indicates sensitivity to the motor 

incoordinating effects of diazepam. 
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B.2.5 Stereotaxic surgery. 

Bilateral stereotaxic injections of 1 μl of purified high titer AAV2 encoding a scrambled sequence 

with no known target (scramble shRNA) or Npas2 shRNA was injected into the NAc (from 

bregma: angle 10°, AP +1.5 mm, Lat +1.5, DV -4.4). Mice recovered for 3-4 weeks in their home 

cage to allow for full viral expression before behavioral testing began. At the completion of 

behavioral testing, viral injection placement verification was carried out using 

immunohistochemical methods. 

B.2.6 Immunohistochemistry. 

Mice were deeply anesthetized with a mixture of ketamine (225mg/kg) and xylazine (22.5mg/kg) 

and transcardially perfused with phosphate buffered saline (PBS) and then 4% paraformaldehyde 

in PBS. The brains were incubated in 4% paraformaldehyde for 24 hours and then placed in 1X 

PBS-30% glycerol for an additional 24 hours. Tissue sections (30um) containing the NAc were 

obtained using a freezing microtome (Leica, Wetzlar, Germany). Immunofluorescence detection 

was carried out using a primary antibody for GFP (ab290, AbCam, Cambridge, MA) and a 

secondary anti-rabbit antibody conjugated with Alexa-488 (Molecular Probes, Carlsbad, CA) 

using standard procedures (Mukherjee et al., 2010, Ozburn et al., 2015). Brain sections were 

mounted onto glass slides using Vectashield mounting media with DAPI (H-1200, Vector Labs, 

Burlingame, CA) and observed with an epifluorescence microscope with a 10x objective. Data 

from mice were excluded from study if the viral infection spread was not localized to the NAc 

(with spillover to adjacent areas) or if there was a significantly disproportionate amount of 

infection between both hemispheres. 
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B.2.7 Chromatin Immunoprecipitation (ChIP). 

Chromatin immunoprecipitation was carried out as previously described (Ozburn et al, 2015). 

ChIP Seq was performed at 6 times of day and identified novel DNA binding targets of NPAS2. 

Here, we performed a separate ChIP experiment using an NPAS2 antibody (H20X, Santa Cruz 

Biotechnology, Santa Cruz, CA) to confirm findings that NPAS2 binds to several genes encoding 

subunits of the GABAA receptor. As a control, we also incubated samples with Anti-acetyl-Histone 

H3 (Upstate) or non-immune rabbit IgG (Upstate). PCR products were visualized and size verified 

using agarose gel electrophoresis. Primer sets used for PCR verification of ChIP Seq results 

include: Gabra1 Forward 5’ GCT CTA AAA GCT GGA GAG TAG CAC C, Reverse 5’ CCC 

AGT CCT TCT TTA TAG GCA CCG C; Gabra2 Forward 5’ TGG GAA GAT TGT AAC CCG 

TCC CCC, Reverse 5’ CCT GTC ATA GCC CTG TGA GCC ACC; Gabra4 Forward 5’ GCC 

CTG CTT CCA CAG CAA CAC AC, Reverse 5’ GCC AAA TAC CTG GCC TCA GCA GC; 

Gabra5 Forward 5’ CCC AGA CAA GCA AGG GCT GAC CC, Reverse 5’ AGC CCA AGG 

AGA GTC CAG ACT GAT T; Gabrb1 Forward 5’ ACT GCA CAG CAC AGT GAG AGA GAG 

T, Reverse 5’ ACA CAC ACA CTC ACA CAC ACA CAG A; Gabrb2 Forward 5’ ATC ACT 

GAC TGC TAG GAT GCG ACT, Reverse 5’ GAG TCC TAT TGC CCG ATG CAA GGC; 

Gabrb3 Forward 5’ GGG AGG AGA GTG TAT TGT CCT GGT, Reverse 5’ ACA GTG CTA 

ACG GAG CAG AGC CA; Gabre Forward 5’ GGG CTC TGA TTT CAT CTC TGG CTC, 

Reverse 5’ AAC CGG AGC CCC ATC CCC A; Gabrg1 (SET 1) Forward 5’ AAA AGG CAT 

GCA CAT GGT TGG GTG A, Reverse 5’ CCT CAG CTG CAT CCC TGA CCC TC; and Gabrg1 

(SET 2) Forward 5’ TCC CTC GGG AAC CCG ACT CTC A, Reverse 5’ TCA CAC CGG GTG 

GAT GCG GC. 
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B.2.8 NAc slice preparation and electrophysiological recordings. 

Three weeks after stereotaxic injection of AAV Npas2 or scramble shRNA into the NAc, mice 

were anesthetized with isoflurane and decapitated. Brains were removed into ice-cold oxygenated 

(95% O2/5% CO2) modified aCSF containing (in mM): 135 N-methyl-D-glucamine, 1 KCl, 1.2 

KH2PO4, 1.5 MgCl2, 0.5 CaCl2, 70 choline bicarbonate, and 10 D-glucose; pH 7.4 adjusted with 

HCL; pH 7.4 adjusted with HCl). Coronal slices (250 µm) containing the NAc were sectioned with 

a vibratome (VT1200S; Leica) and incubated for 30 minutes at 37°C in oxygenated aCSF 

containing (in mM): 119 NaCl, 26 NaHCO3, 2.5 KCl, 1 NaH2PO4, 2.5 CaCl2, 1.3 MgCl2, 11 D- 

glucose. Slices were kept at room temperature until recording at which point they were perfused 

with aCSF heated to 30-32°C. Whole-cell patch-clamp recordings of identified MSNs with viral 

expression (as indicated by GFP fluorescence) were made under visual guidance with 40x 

objective and DIC optics. Borosilicate glass pipettes (3-5 MΩ) were filled with (in mM): 15 Cs- 

MeSO3, 120 CsCl, 10 HEPES, 0.5 EGTA, 8 NaCl, 5 TEA-Cl, 2 Mg-ATP, 0.3 Na-GTP, 5 QX-314; 

290mOsm; pH 7.3 adjusted with CsOH. 

For miniature IPSC (mIPSC) and evoked IPSC experiments, D-APV (50 µM) and NBQX 

(5 µM) were included to block ionotropic glutamate receptors and TTX (1 µM) was used to prevent 

action potential generation in mIPSC recordings. Drugs were bath applied. Cells were voltage- 

clamped at -70 mV and held for at least 10 minutes prior to data collection. A constant-current 

isolated stimulator (DS3; Digitimer) was used to stimulate inhibitory afferents through a 

monopolar electrode at 0.1 Hz using 0.1 µs single pulses. After establishing a stable baseline of 

mIPSCs or IPSCs, 10 µM diazepam-containing aCSF was bath applied at a consistent flow rate 

over 10 minutes. Synaptic currents were recorded with a MultiClamp 700B amplifier (Molecular 
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Devices). Signals were filtered at 2.6-3 kHz and amplified 5-10 times, then digitized at 20 kHz 

with a Digidata 1322A analog-to-digital converter (Molecular Devices). Series resistance for all 

recordings was <20MΩ and was monitored continuously. Cells with a change in series resistance 

beyond 20% were excluded from data analysis. For mIPSC analysis, an event template was 

obtained by averaging at least 50 single events and used for template search with a threshold of 4. 

Events from each cell underwent visual inspections. Scoring was performed blind to treatment. 

The amplitude and frequency of miniature events were analyzed offline with Clampfit software 

(Molecular Devices). Peak amplitude of evoked IPSCs was measured and averaged across baseline 

and treatment conditions. All data is presented as Mean +/- S.E.M., with n representing the number 

of cells/animals. 

B.2.9 Data analysis. 

Two-way analysis of variance (ANOVA) was performed to analyze 1) Npas2 gene expression data 

after UCMS (treatment x time factors), 2) locomotor activity in response to a novel environment 

for NAc Npas2 shRNA and Scramble shRNA treated mice (viral treatment x time), and 3) 

electrophysiological measurements of mIPSC amplitude, mIPSC frequency, and IPSC decay time 

in NAc MSNs with Npas2 shRNA or Scramble shRNA treated mice (viral treatment x drug 

treatment). Student’s t-test (two tailed, unpaired) was performed to analyze data from anxiety-like 

behavioral testing (elevated plus maze, light/dark box, and open field assays) in WT or Npas2 

mutant mice, and NAc Npas2 shRNA or Scramble shRNA treated mice. Student’s t-test (two 

tailed, unpaired) was performed to analyze change in IPSC amplitude with diazepam treatment 

(percent change from baseline) in NAc Npas2 shRNA or Scramble shRNA treated mice. Data are 

presented as mean +/- SEM and p < 0.05 is considered statistically significant. 
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B.3 RESULTS

B.3.1 Npas2 expression is increased in the NAc in response to UCMS. 

We sought to determine whether expression of Npas2 changes in response to a paradigm known 

to alter mood-related behaviors, we employed a 6 week UCMS paradigm which in our hands 

reliably induces an increase in anxiety and depressive-like behavior (Logan et al, 2014). We found 

that UCMS resulted in a robust and significant increase in diurnal Npas2 expression in the NAc 

compared to control mice (figure 30; two way ANOVA, main effect of treatment group 

F(1,68)=163.45, p < 0001; main effect of time F(6,68)=2.94, p < 0.05), suggesting that NPAS2 

might be involved in the response to chronic stress. 
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Figure 31. Chronic unpredictable mild stress results in a robust and significant increase in diurnal NAc Npas2 

expression as compared with control mice. Two way ANOVA, main effect of treatment group F(1,68)=163.45, p < 

0001; main effect of time F(6,68)=2.94, p < 0.05). ZT=zeitgeber time, ZT0=lights on, ZT12=lights off. n=5- 

6/treatment/ZT. Bonferroni post-hoc * p < 0.05, ** p < 0.01, ***** p < 0.0001. 

B.3.2 Npas2 mutant mice have reduced anxiety-like behaviors and reduced sensitivity to 

diazepam. 

In order to determine if functional NPAS2 is important for anxiety-like behavior, we assayed 

Npas2 mutant mice and their wild-type littermates in a battery of behavioral tests. Compared with 

wild-type mice, Npas2 mutant mice exhibited reduced anxiety-like behavior as seen by the 

increased percent time spent in the open arms of the elevated plus maze (figure 31a, Student’s t- 

test, t=2.454, p < 0.05; with a trend for increased number of open arm entries, t=1.505, p=0.14), 
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reduced latency to explore the light side of the light/dark box (figure 31b, t=2.739, p < 0.05) and 

increased distance traveled in the center of the open field arena (figure 31c, t=2.822, p < 0.01). 

Additionally, we observed that WT, but not Npas2 mutant, mice are sensitive to the motor 

incoordinating effects of diazepam (3mg/kg; a GABAA receptor positive allosteric modulator) as 

determined by the rotorod test (Student’s t-test, WT saline vs diazepam t=3.134, p < 0.01; Npas2 

mutant saline vs diazepam t=0.3451, n/s). 

Figure 32. Npas2 mutant mice exhibit reduced anxiety-like behavior. A) Percent time spent in the open arms of 

the elevated plus maze (n=16-24/genotype; Student’s t-test, t=2.454, * p < 0.05). B) Latency to explore the light side 

of the light/dark box (n=16/genotype; Student’s t-test, t=2.739, * p < 0.05). C) Distance traveled in the center of the 

open field arena (n=12-25/genotype; Student’s t-test, t=2.822, * p < 0.05). D) Latency to fall on accelerating rotarod 

assay in response to saline or diazepam (n=7/treatment/genotype; Student’s t-test, WT saline vs diazepam t=3.134, ** 

p < 0.01; Npas2 mutant saline vs diazepam t=0.3451, n/s). 

B.3.3 NAc knockdown of Npas2 results in reduced anxiety-likebehaviors. 

Because Npas2 expression in the NAc is highly responsive to the anxiogenic paradigm, UCMS, 

and the NAc is an important site of neural integration for salient events, we determined if reducing 

Npas2 expression in the NAc via viral mediated RNAi (Npas2 knockdown) was sufficient for a 

reduction in anxiety-related behaviors.  We first assessed the effects of NAc specific Npas2 
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knockdown on locomotor response to a novel environment where analysis revealed a small, but 

significant treatment x time interaction (figure 32a, two-way ANOVA, F(23,805)=2.12, p < 0.01). 

As expected, there was a significant main effect of time (F(23,805)=63.61, p < 0.0001), indicative 

of locomotor habituation over the two hour testing period. These results reveal that NAc Npas2 

knockdown did not have the same effect over the times measured, suggestive of altered habituation 

over time. We note that the effect is modest, with increased exploration in response to the novel 

environment during the first 30 minutes of the assay, and reduced exploration in the last 10 minutes 

of the assay. NAc Npas2 shRNA treated mice exhibited reduced anxiety-like behavior (as 

compared with scramble shRNA treated mice) in several behavioral measures. Npas2 knockdown 

in the NAc resulted in a significant increase in the number of open arm entries (figure 32b, 

Student’s t-test, t=2.097, p < 0.05) in the elevated plus maze, with a trend towards a significant 

increase in time spent in the open arms (t=1.798, p = 0.08, data not shown). Npas2 knockdown in 

the NAc resulted in a reduced latency to explore the light side of the light/dark box (figure 32c, 

t=2.243, p < 0.05). The effects of NAc Npas2 knockdown were less robust on behaviors in the 

open field test. Npas2 knockdown resulted in a trend towards an increase in the distance traveled 

in the center of the open field arena that did not reach statistical significance (figure 32d, t=1.591, 

p = 0.12). 
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Figure 33. NAc Npas2 knockdown results in reduced anxiety-like behavior. A) locomotor response to a novel 

environment (two-way ANOVA, treatment x time interaction F(23,805)=2.12, p < 0.01; main effect of time 

(F(23,805)=63.61, p < 0.0001), B) number of open arm entries in elevated plus maze (Student’s t-test, t=2.097, p < 

0.05), C) latency to explore the light side of the light/dark box (Student’s t-test, t=2.243, p < 0.05), and D) amount of 

time spent in the center of the open field arena (Student’s t-test, t=1.591, p = 0.12). n=10-13/treatment. 

 
 
 
 

B.3.4 NPAS2 regulates expression of GABAA subunits. 
 
 
Altered GABAA subunit composition and possibly altered inhibitory synaptic transmission may 

occur with reductions in Npas2 because NPAS2 mutant mice have reduced diazepam sensitivity. 

NPAS2 is a transcription factor, and in a previous study we performed ChIP Seq on striatal tissue 

to identify DNA sequences bound to NPAS2 and identified many novel gene targets, including 

GABAA alpha (1, 2, 3, 4 and 5), beta (1, 2, 3), gamma (1, 2,3), epsilon, and pi subunits (Ozburn et 

al, 2015). Here we replicated these findings using ChIP followed by PCR, and we found that 
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indeed NPAS2 binds genes encoding the GABAA subunits alpha 1, 2, 4, and 5, beta 2 and 3, and 

gamma 1 (data not shown) 

We next wanted to determine whether NPAS2 mediates expression of GABAA subunits 

that mediate responses to diazepam, or that could indicate synaptic or extra-synaptic localization 

(Gabra1, Gabra2, Gabrg1, and Gabrg2). Following viral-mediated knockdown of Npas2 in the 

NAc, expression of GABAA subunits at two time points (ZT16 (lights off) and ZT4 (lights on)) 

were measured via qPCR. Interestingly, Npas2 knockdown significantly reduced Gabra1 

expression at both time points measured, suggesting NPAS2 mediates positive regulation of 

Gabra1 transcription (figure 33; two way ANOVA - main effect of knockdown, F((1,24)=4.81, p 

< 0.05). Gabra2 exhibited diurnal expression, but was not changed with knockdown (data not 

shown). Intriguingly, the effect of Npas2 knockdown on Gabrg1 expression had different effects 

depending on time of day, suggesting factors play a role in its transcriptional regulation (data not 

shown). Lastly, Gabrg2 expression was unaltered with Npas2 knockdown as expected since it was 

not identified via ChIP-Seq. We assayed for this gene to ascertain whether it exhibited diurnal 

variation, and to determine whether Npas2 knockdown resulted compensatory changes in 

expression of this subunit; data not shown). 
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Figure 34. Effect of Npas2 knockdown on diurnal expression of GABAa alpha 1 (Gabra1) subunit in the NAc. 

Two way ANOVA – significant knockdown x time of day (ZT) interaction, F(1,24)=4.81, p<0.05. 

B.3.5 Npas2 knockdown prevents diazepam-induced potentiation of IPSC amplitude in 

NAc MSNs 

In order to assess the effect of Npas2 knockdown on inhibitory synaptic activity of MSNs, we 

performed whole-cell patch-clamp recordings in NAc-containing brain slices. We recorded 

baseline inhibitory miniature currents (mIPSCs) from scramble shRNA and Npas2 shRNA 

infected cells to determine effects of knockdown on current amplitude and frequency (indicating 

alterations in postsynaptic and presynaptic mechanisms, respectively; representative trace shown 

in Figure 34a). Analysis of mIPSC amplitude revealed a significant main effect of viral treatment 

(figure 34b; two way ANOVA, F(1,46)=6.26, p<0.05) but no main effect of diazepam and no 

significant interaction. Analysis of mIPSC frequency revealed no significant shRNA treatment by 

diazepam interaction and no main effect of either shRNA or drug. These results suggest that Npas2 

knockdown in the NAc alters postsynaptic responses but not presynaptic release of GABA onto 
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MSNs (figure 34c). 

However, because we found that mice lacking a functional Npas2 gene display behavioral 

insensitivity to diazepam (figure 31d) and NPAS2 binds to genes encoding GABAA subunits 

important for pharmacological actions of diazepam, we tested whether this insensitivity could be 

identified at the cellular level. Therefore, we measured the peak amplitude of the evoked IPSC at 

baseline and following 10 minutes of diazepam bath application (10 µM) in both scramble shRNA 

and Npas2 shRNA treated MSNs. We found that diazepam application reliably increased the 

average IPSC peak amplitude in scramble control cells by approximately 20% while this increase 

in current amplitude was noticeably absent in Npas2 shRNA infected cells (figures 33d,e; 

Student’s t-test, t20=2.152, p < 0.05; n = 10 scrambled, n = 12 shRNA). Additionally, we measured 

the decay kinetics of IPSCs from both groups under baseline and diazepam conditions. We found 

that there is a significant main effect of diazepam to prolong the decay time of the GABAA 

receptor-mediated IPSCs (two way ANOVA, F(1,34)=4.90, p < 0.05). However, it does so to a 

similar extent in both scramble- and Npas2 shRNA treated cells (decay time constants for 

Scramble shRNA: baseline 13.8 +/- 1.7, diazepam 19.4 +/- 2.5; decay time constants for Npas2 

shRNA: baseline 16.8 +/- 3.4, diazepam 24.6 +/- 5.0; n = 10 baseline scrambled, n = 13 baseline 

shRNA, n = 7 diazepam scrambled, n = 12 diazepam shRNA), suggesting that the effects of Npas2 

knockdown are specific to the change in current amplitude bydiazepam. 
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Figure 35. Npas2 knockdown prevents diazepam-induced potentiation of IPSC amplitude in NAc MSNs. A) 

Representative traces of baseline mIPSCs from AAV-scramble shRNA and -Npas2 shRNA infected cells, B) mIPSC 

amplitude (two way ANOVA, F(1,46)=6.26, * p < 0.05), C) mIPSC frequency (n/s), D) peak amplitude of the evoked 

IPSC at baseline and following 10 minutes of diazepam bath application (10µM) in both scramble shRNA and Npas2 

shRNA treated MSNs (Student’s t-test, t=2.152, * p < 0.05), and E) representative traces of evoked IPSC at baseline 

and following 10 minutes of diazepam from AAV-scramble shRNA and -Npas2 shRNA infected cells. n = 

cells/animals. 
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B.4 DISCUSSION 
 
 
Circadian rhythms and the genes that make up the molecular clock play an important role in the 

expression of mood-related symptoms in psychiatric disorders. Here we link Npas2 to responses 

to stressful and anxiogenic stimuli, expression of anxiety-like behavior, regulation of specific 

GABAA subunit expression, and inhibitory neurotransmission in the nucleus accumbens in 

response to anxiolytic medication. 

Chronic unpredictable mild stress (UCMS) results in a robust increase in levels of Npas2 

expression in the NAc. To examine the effects of this stressful and anxiogenic paradigm on 

rhythmic circadian gene expression, tissue samples were collected over a 24 hour period. 

Individuals with mood disorders experience perturbations in a myriad of rhythmic processes, 

therefore, this result was surprising in that we had hypothesized that chronic stress would decrease 

or completely disrupt Npas2 gene expression rhythms. Interestingly, we found that UCMS 

treatment resulted in an approximate 4-hour phase delay in the peak expression of Npas2 and as 

indicated by the significant main effect of time which might contribute to the development of 

anxiety-like phenotype following UCMS. 

To determine if Npas2 is important for the expression of anxiety-like behaviors, we 

subjected mice lacking functional Npas2 to a battery of behavioral tests. Npas2 mutant mice 

exhibited decreased anxiety-like behaviors as compared with wild-type mice. Npas2 mutants 

exhibited an increased percent time in open arms of the elevated plus maze, reduced latency to 

explore the light side of the light/dark box, and an increase in the distance traveled in the center of 

the open field arena. Further, Npas2 mutant mice were resistant to the motor incoordinating effects 

of diazepam, suggesting these mice may have altered GABAA receptor subunit composition and 

reduced synaptic localization. This phenotype is the opposite of the Per1-/-/Per2-/- double mutant, 
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which exhibit increased anxiety-like behavior (Spencer et al, 2013). Because Per1 and Per2 

negatively regulate NPAS2/BMAL1 transcription, this further supports a role for NPAS2 in the 

regulation of anxiety-like behaviors. WT and Npas2 mutant mice were evaluated in tests of sucrose 

preference and locomotor response to novelty, with no differences observed (Ozburn et al, 2015). 

Although CLOCK and NPAS2 are homologous transcription factors, these mutants exhibit 

opposing reward-related phenotypes. Previously we found that Npas2 mutant mice exhibit reduced 

sensitivity to the rewarding effects of cocaine, whereas ClockΔ19 mutant mice exhibit increased 

sensitivity (Ozburn et al, 2015). Observed differences in sensitivity to the rewarding properties of 

cocaine in ClockΔ19 and Npas2 mutants are likely due to brain region (and cell-type) specific 

expression differences, as well as differences in transcriptional targets (Ozburn et al, 2012). For 

example, Npas2 is highly expressed in limbic and forebrain regions (Garcia et al, 2000). 

Furthermore, Npas2 expression has been shown to be specific to dopamine receptor 1 (D1) 

containing MSNs in the NAc, which are thought to underlie positive or rewarding associations 

with salient events (Ozburn et al, 2012). 

Selective knockdown of Npas2 in the NAc results in reduced anxiety-like behavior, similar 

to Npas2 mutant mice. AAV-mediated knockdown of Npas2 specifically in the NAc results in 

increased percent time in the open arms of the elevated plus maze, reduced latency to explore the 

light side of the light/dark box, and an increase in the velocity of movement in the center of the 

open field arena. NAc Npas2 knockdown also resulted in a small, but significant difference in 

locomotor response to novelty, where Npas2 shRNA treated mice exhibited an initial increased 

exploratory behavior that decreased more quickly (habituation) than scramble shRNA treated 

mice. Together, these findings suggest that knocking down NAc expression of Npas2 recapitulates 

the reduced anxiety-like behaviors seen in the Npas2 mutant mice. Previous reports, in conjunction 
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with the studies presented here, support a model whereby VTA Clock is important for negatively 

regulating reward and anxiety and NAc Npas2 is important for positively regulating reward and 

anxiety (Ozburn et al, 2012; Mukherjee et al, 2010; Coque et al, 2011; Sidor et al, 2015). 

We further examined genes that are under the transcriptional control of NPAS2 to 

identify a mechanism by which NPAS2 could positively regulate reward and anxiety. Using ChIP 

Seq, gene expression and behavioral assays, we found that the direct regulation of Dopamine 

receptor 3 (Drd3) by NPAS2 in the NAc is important for regulating reward (Ozburn et al, 2015. 

Genetic manipulation of Drd3 in mice has not yielded reports of consistent effects on anxiety-like 

behavior (Morago-Amaro et al, 2014; Steiner et al, 1997; Xing et al, 2013). These studies separate 

the role of NPAS2 regulation of Drd3 in reward from the role of NPAS2 in measures of anxiety- 

related behavior and suggest a separate mechanism by which these processes are regulated. Based 

on our current findings that Npas2 mutant mice are insensitive to diazepam, we explored the 

possibility that NPAS2 may act as a positive regulator for the transcription of GABAA subunits. 

We performed ChIP assays on striatal tissue to isolate DNA bound to NPAS2 and used this DNA 

as a template for PCR with primers targeting various GABAA subunit genes. We confirmed that 

NPAS2 binds genes encoding the GABAA subunits alpha 1, 2, 4, and 5, beta 2 and 3, and gamma 

1 and plays an important role in the positive regulation of the GABAA alpha 1 subunit. The binding 

site for diazepam requires the pentameric subunit composition of the GABAA receptor to contain 

two alpha subunits (1,2,3 or 5) in combination with two beta and one gamma subunit. Thus, the 

reduced sensitivity to diazepam in Npas2 mutant mice is likely mediated by a reduction in alpha 1 

subunit expression. GABAA alpha1 is thought to be important for the sedative effect of 

benzodiazepines, whereas alpha 2 and 3 confer the anxiolytic effects. This novel finding indicates 
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that chronic stress increases Npas2 and via NPAS2 mediated transcription of specific GABAA 

subunits, likely altering inhibitory neurotransmission in the NAc. 

Lastly, we tested the functional consequences of Npas2 knockdown on GABAergic 

neurotransmission in MSNs of the NAc using ex-vivo slice electrophysiology. We found that 

Npas2 shRNA infected cells had a reduction in mIPSC amplitude, but not frequency. This finding 

suggests that Npas2 knockdown may result in postsynaptic modification of MSNs resulting in 

decreased mIPSC amplitude, but does not affect presynaptic release of GABA onto MSNs. The 

lack of diazepam’s effect on this measure is not entirely surprising, as it is thought that the effects 

of diazepam are seen only with evoked IPSCs in this preparation. Further, we found that mice 

lacking Npas2 were insensitive to diazepam, and this insensitivity persists at the cellular level in 

Npas2 shRNA infected cells. Diazepam has been shown to potentiate GABAA-receptor mediated 

currents by binding specific subunit combinations of synaptic GABAA receptors and promoting 

the binding of GABA, which in turn increases total conductance of chloride. We found that 

diazepam application reliably increased the average IPSC peak amplitude in scramble control cells 

by approximately 20% while this increase in current amplitude was noticeably absent in Npas2 

shRNA infected cells. This result suggests that knockdown of Npas2 in NAc MSNs abolishes the 

cellular response to diazepam as measured by a change in inhibitory synaptic signaling. These 

results provide functional evidence for the regulation of GABAA receptor subunit expression by 

NPAS2. 

We propose that expression of the circadian transcription factor, Npas2, is important for 

stress responses and anxiety-related behaviors and regulates GABAergic inhibitory 

neurotransmission in MSNs of the NAc. Taken together, these findings support the existence of a 

homeostatic mechanism by which stress and anxiety increase NPAS2-dependent transcription of 
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specific GABAergic subunits that selectively alter phasic, synaptic inhibitory neurotransmission 

(perhaps specifically in Drd1a containing medium spiny neurons of the NAc). Future work will 

focus on testing the efficacy of pharmacotherapeutics (that target the molecular clock and/or its 

targets) in ameliorating these adaptations to improve our understanding of and treatments for 

anxiety-related disorders. 



150 

BIBLIOGRAPHY 

Alamilla J, Granados-Fuentes D, Aguilar-Roblero R (2015). The anterior Paraventricular 
Thalamus Modulates Neuronal Excitability in the Suprachiasmatic Nuclei of the Rat. The 
European journal of neuroscience doi:10.1111/ejn.13088. 

Anand A, Barkay G, Dzemidzic M, Albrecht D, Karne H, Zheng Q-HH, et al. (2011): Striatal 
dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord 13: 
406–13. 

Angeles-Castellanos M, Salgado-Delgado R, Rodríguez K, Buijs RM, Escobar C (2008). 
Expectancy for food or expectancy for chocolate reveals timing systems for metabolism 
and reward. Neuroscience 155: 297–307. 

Anguelova M, Benkelfat C, Turecki G (2003). A systematic review of association studies 
investigating genes coding for serotonin receptors and the serotonin transporter: II. Suicidal 
behavior. Mol Psychiatry 8: 646–53. 

Arango-Lievano M, et al. (2014). Cell-type specific expression of p11 controls cocaine reward. 
Biological Psychiatry. 76(10): 794-801. 

Arey RN, Enwright JF, Spencer SM, Falcon E, Ozburn AR, Ghose S, et al (2014). An important 
role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic- 
like behaviors. Mol Psychiatry 19: 342–50. 

Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001). A neural circuit for circadian regulation of 
arousal. Nat Neurosci 4: 732–8. 

Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009). Role of lateral hypothalamic 
orexin neurons in reward processing and addiction. Neuropharmacology 56 Suppl 1: 112– 
21. 

Bachtell RK, Choi K-HH, Simmons DL, Falcon E, Monteggia LM, Neve RL, Self DW (2008): 
Role of GluR1 expression in nucleus accumbens neurons in cocaine sensitization and 
cocaine-seeking behavior. Eur J Neurosci 27: 2229–40. 

Baik J-HH (2013). Dopamine signaling in reward-related behaviors. Front Neural Circuits 7: 152. 

Ballard IC, Murty VP, Carter RM, MacInnes JJ, Huettel SA, Adcock RA (2011). Dorsolateral 
prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J 
Neurosci 31: 10340–6. 

Beaulieu JM, Caron MG (2008). Looking at lithium: molecular moods and complex behaviour. 
Mol Interv 8(5): 230-241. 



151  

Bedrosian TA, Nelson RJ (2013). Influence of the modern light environment on mood. Mol 
Psychiatry 18: 751–7. 

 
Ben-Hamo M, Larson TA, Duge LS, Sikkema C, Wilkinson CW, Iglesia HO de la, et al (2016). 

Circadian Forced Desynchrony of the Master Clock Leads to Phenotypic Manifestation of 
Depression in Rats. eNeuro 3: 237-16. 

 
Benedetti F, et al. (2004). A single nucleotide polymorphism in glycogen synthase kinase 3-beta 

promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci 
Lett 355(1-2): 37-40. 

 
Benedetti F, Dallaspezia S, Colombo C, Pirovano A, Marino E, Smeraldi E (2008). A length 

polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. 
Neurosci Lett 445: 184–7. 

 
Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, et al (2007). Actimetric 

evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients 
affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet 144B: 631–5. 

 
Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, et al (2003). Influence of 

CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in 
bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B: 23–6. 

 
Beneyto M, Meador-Woodruff JH (2006). Lamina-specific abnormalities of AMPA receptor 

trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. 
Synapse 60: 585–598. 

 
Berridge KC, Robinson TE (1998). What is the role of dopamine in reward: hedonic impact, 

reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309–69. 
 
Beurrier C, Malenka RC (2002): Enhanced inhibition of synaptic transmission by dopamine in the 

nucleus accumbens during behavioral sensitization to cocaine. J Neurosci 22: 5817–22. 
 
Boudreau AC, Milovanovic M, Conrad KL, Nelson C, Ferrario CR, Wolf ME (2012): A protein 

cross-linking assay for measuring cell surface expression of glutamate receptor subunits in 
the rodent brain after in vivo treatments. Curr Protoc Neurosci Chapter 5: Unit5.30.1–19. 

 
Boudreau AC, Wolf ME (2005): Behavioral sensitization to cocaine is associated with increased 

AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25: 9144–51. 
 
Bourdy R, Barrot M (2012). A new control center for dopaminergic systems: pulling the VTA by 

the tail. Trends Neurosci 35: 681–90. 
 
Boyce-Rustay JM, Holmes A (2006): Genetic inactivation of the NMDA receptor NR2A subunit 

has anxiolytic- and antidepressant-like effects in mice. Neuropsychopharmacology 31: 
2405–14. 



152  

Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012). Synaptic and 
behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76: 
790–803. 

 
Broms U, Kaprio J, Hublin C, Partinen M, Madden PA, Koskenvuo M (2011). Evening types are 

more often current smokers and nicotine-dependent-a study of Finnish adult twins. 
Addiction 106: 170–7. 

 
Broms U, Pitkäniemi J, Bäckmand H, Heikkilä K, Koskenvuo M, Peltonen M, et al (2014). Long- 

term consistency of diurnal-type preferences among men. Chronobiol Int 31: 182–8. 
 
Bunney BG, Bunney WE (2013). Mechanisms of rapid antidepressant effects of sleep deprivation 

therapy: clock genes and circadian rhythms. Biol Psychiatry 73(12): 1164-71. 
 
Bunning E (1935). Zur kenntis der erblichen tagesperiodiztat bei den primarblattern von Phaseolus 

multiflorus. Jahrb. Wiss. Bot. 81: 411. 
 
Carlezon WA, Thomas MJ (2009): Biological substrates of reward and aversion: a nucleus 

accumbens activity hypothesis. Neuropharmacology 56 Suppl 1: 122–32. 
 
Carpen JD, Archer SN, Skene DJ, Smits M, Schantz M von (2005). A single-nucleotide 

polymorphism in the 5’-untranslated region of the hPER2 gene is associated with diurnal 
preference. J Sleep Res 14: 293–7. 

 
Carpen JD, Schantz M von, Smits M, Skene DJ, Archer SN (2006). A silent polymorphism in the 

PER1 gene associates with extreme diurnal preference in humans. J Hum Genet 51: 1122– 
5. 

 
Caseras X, Lawrence NS, Murphy K, Wise RG, Phillips ML (2013). Ventral striatum activity in 

response to reward: differences between bipolar I and II disorders. Am J Psychiatry 170(5): 
533-541. 

 
Castañeda TR, Prado BM de, Prieto D, Mora F (2004). Circadian rhythms of dopamine, glutamate 

and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. 
J Pineal Res 36: 177–85. 

Chandrashekaran MK (1998). Biological rhythms research: A personal account. J. Biosci. 23: 545. 

Cho K, Ennaceur  A,  Cole JC, Suh CK (2000). Chronic jet lag produces cognitive   deficits. J 
Neurosci 20: RC66. 

Ciarleglio CM, Resuehr HE, McMahon DG (2011). Interactions of the serotonin and circadian 
systems: nature and nurture in rhythms and blues. Neuroscience 197: 8–16. 

 
Coogan AN, Thome J (2011). Chronotherapeutics and psychiatry: setting the clock to relieve the 

symptoms. World J Biol Psychiatry 12 Suppl 1: 40–3. 



153  

Colavito V, Tesoriero C, Wirtu AT, Grassi-Zucconi G, Bentivoglio M (2015). Limbic thalamus 
and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a 
node in circadian timing and sleep/wake-regulatory networks. Neuroscience and 
biobehavioral reviews 54: 3–17. 

 
Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng L-JJ, Shaham Y, et al. (2008): Formation 

of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. 
Nature 454: 118–21. 

 
Coque L, Mukherjee S, Cao J-LL, Spencer S, Marvin M, Falcon E, et al. (2011): Specific role of 

VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but 
not depression-related behavior in the ClockΔ19 mouse model of mania. 
Neuropsychopharmacology 36: 1478–88. 

 
Cousins DA, Butts K, Young AH (2009). The role of dopamine in bipolar disorder. Bipolar Disord 

11: 787–806. 
 
Craig LA, McDonald RJ (2008). Chronic disruption of circadian rhythms impairs hippocampal 

memory in the rat. Brain Res Bull 76: 141–51. 
 
Dallaspezia S, Suzuki M, Benedetti F (2015). Chronobiological Therapy for Mood Disorders. Curr 

Psychiatry Rep 17: 95. 
 
Damiola F, Minh N Le, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000). Restricted 

feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in 
the suprachiasmatic nucleus. Genes Dev 14: 2950–61. 

 
Danel T, Jeanson R, Touitou Y (2003). Temporal pattern in consumption of the first drink of the 

day in alcohol-dependent persons. Chronobiol Int 20: 1093–102. 
 
Doi M, Hirayama J, Sassone-Corsi P (2006). Circadian regulator CLOCK is a histone 

acetyltransferase. Cell 125: 497–508. 
 
Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008). Stimuli linked to ethanol 

availability activate hypothalamic CART and orexin neurons in a reinstatement model of 
relapse. Biol Psychiatry 63: 152–7. 

 
De Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C (2014): The emerging role of 

dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder 
pathophysiology: Implications for treatment. J Psychopharmacol (Oxford) 28: 505–526. 

 
DeBruyne JP, Weaver DR, Reppert SM (2007). CLOCK and NPAS2 have overlapping roles in 

the suprachiasmatic circadian clock. Nat Neurosci 10: 543–5. 
 
Desan PH, et al. (2000). Genetic polymorphism at the CLOCK gene locus and major depression. 

Am J Med Genet 96(3): 418-21. 



154  

Ding S, Matta SG, Zhou FM (2011). Kv3-like potassium channels are required for sustained high- 
frequency firing in basal ganglia output neurons. J Neurophysiol 105(2): 554-570. 

 
Domínguez-López S, Howell RD, López-Canúl MG, Leyton M, Gobbi G (2014). 

Electrophysiological characterization of dopamine neuronal activity in the ventral 
tegmental area across the light-dark cycle. Synapse 68: 454–67. 

 
Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST, et al. (2004): Modulation of synaptic 

plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic 
expression. J Neurosci 24: 6578–89. 

 
Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, et al (2003). Altered patterns 

of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301: 379–83. 
 
Dunn H, Anderson MA, Hill PD (2010). Nighttime lighting in intensive care units. Crit Care Nurse 

30: 31–7. 
 
Dzirasa K, Coque L, Sidor MM, Kumar S, Dancy EA, Takahashi JS, et al. (2010): Lithium 

ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of 
mania. J Neurosci 30: 16314–23. 

 
Easton A, Arbuzova J, Turek FW (2003): The circadian Clock mutation increases exploratory 

activity and escape-seeking behavior. Genes Brain Behav 2: 11–9. 
 
Edgar  N,  McClung  CA  (2013).  Major  depressive  disorder:  a  loss  of  circadian synchrony? 

Bioessays 35: 940–4. 
 
Edwards S, Koob GF. (2010). Neurobiology of dysregulated motivational systems in drug 

addiction. Future Neurol  5: 393–401. 
 
Enkhuizen J van, Geyer MA, Young JW (2013). Differential effects of dopamine transporter 

inhibitors in the rodent Iowa gambling task: relevance to mania. Psychopharmacology 
(Berl) 225: 661–74. 

 
Enkhuizen J van, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, et al (2014). 

Reduced dopamine transporter functioning induces high-reward risk-preference consistent 
with bipolar disorder. Neuropsychopharmacology 39: 3112–22 

 
Enkhuizen J van, Geyer MA, Minassian A, Perry W, Henry BL, Young JW (2015). Investigating 

the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to 
models: Rodent and human studies. Neurosci Biobehav Rev 58: 4–18. 

 
Enkhuizen J van, Minassian A, Young JW (2013): Further evidence for ClockΔ19 mice as a model 

for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. 
Behav Brain Res 249: 44–54. 

 
Espinosa F, Marks G, Heintz N, Joho RH (2004). Increased motor drive and sleep loss in mice 

lacking Kv3-type potassium channels. Genes Brain Behav 3(2): 90-100. 



155  

Etain B, Jamain S, Milhiet V, Lajnef M, Boudebesse C, Dumaine A, et al (2014). Association 
between circadian genes, bipolar disorders and chronotypes. Chronobiol Int 31: 807–14. 

 
Falcon   E,   McClung   CA   (2009).   A   role   for   the   circadian   genes   in   drug addiction. 

Neuropharmacology 56 Suppl 1: 91-6. 
 
Falcon E, Ozburn A, Mukherjee S, Roybal K, McClung CA (2013). Differential regulation of the 

period genes in striatal regions following cocaine exposure. PLoS ONE 8: e66438. 
 
Faure A, Richard JM, Berridge KC (2010): Desire and dread from the nucleus accumbens: cortical 

glutamate and subcortical GABA differentially generate motivation and hedonic impact in 
the rat. PLoS ONE 5: e11223. 

 
Ferris MJ, España RA, Locke JL, Konstantopoulos JK, Rose JH, Chen R, et al (2014). Dopamine 

transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci 
USA 111: E2751–9. 

 
Forbes EE, Dahl RE, Almeida JR, Ferrell RE, Nimgaonkar VL, Mansour H, et al (2012). PER2 

rs2304672 polymorphism moderates circadian-relevant reward circuitry activity in 
adolescents. Biol Psychiatry 71: 451–7. 

 
Gallerani M, Manfredini R, Monte D Dal, Calò G, Brunaldi V, Simonato M (2001). Circadian 

differences in the individual sensitivity to opiate overdose. Crit Care Med 29: 96–101. 
 
Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M, et al (2000). Impaired cued and 

contextual memory in NPAS2-deficient mice. Science 288: 2226–30. 

Geddes JR, Miklowitz DJ (2013). Treatment of bipolar disorder. Lancet 381(9878): 1672-1682. 

Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. (1998): Role of the 
CLOCK protein in the mammalian circadian mechanism. Science 280: 1564–9. 

Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, et al (1990). D1 and D2 
dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. 
Science 250: 1429–32. 

 
Gill S, Panda S (2015). A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans 

that Can Be Modulated for Health Benefits. Cell Metab 22: 789–98. 
 
Gompf HS, Aston-Jones G (2008). Role of orexin input in the diurnal rhythm of locus coeruleus 

impulse activity. Brain research 1224: 43–52. 
 
Gillman AG, Kosobud AE, Timberlake W (2010). Effects of multiple daily nicotine 

administrations on pre- and post-nicotine circadian activity episodes in rats. Behav 
Neurosci 124: 520–31. 

 
Gipson CD, Kupchik YM, Kalivas PW (2014). Rapid, transient synaptic plasticity in addiction. 

Neuropharmacology 76 Pt B: 276–86. 



156  

González MMM, Aston-Jones G (2006). Circadian regulation of arousal: role of the noradrenergic 
locus coeruleus system and light exposure. Sleep 29: 1327–36. 

 
Goto Y, Grace AA (2008). Limbic and cortical information processing in the nucleus accumbens. 

Trends Neurosci 31: 552–8. 
 
Gould TJ, Keith RA, Bhat RV (2001). Differential sensitivity to lithium’s reversal of 

amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 
118: 95–105. 

 
Graziane NM, et al. (2016). Opposing mechanisms mediate morphine- and cocaine-induced 

generation of silent synapses. Nat Neurosci 19: 915-925. 
 
Green NH, Jackson CR, Iwamoto H, Tackenberg MC, McMahon DG (2015). Photoperiod 

programs dorsal raphe serotonergic neurons and affective behaviors. Curr Biol 25: 1389– 
94. 

 
Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006). Identification of additional variants within 

the human dopamine transporter gene provides further evidence for an association with 
bipolar disorder in two independent samples. Molecular psychiatry 11: 125–133, 115. 

 
Groenewegen HJ, Galis-de Graaf Y, Smeets WJ (1999). Integration and segregation of limbic 

cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem 
Neuroanat 16: 167–85. 

 
Grueter BA, Robison AJ, Neve RL, Nestler EJ, Malenka RC (2013). ∆FosB differentially 

modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci 
USA 110: 1923–8. 

 
Guilding  C,  Hughes  AT,  Piggins  HD  (2010).  Circadian  oscillators  in  the epithalamus. 

Neuroscience 169: 1630–9. 
 
Hagenauer MH, Lee TM (2012). The neuroendocrine control of the circadian system: adolescent 

chronotype. Front Neuroendocrinol 33: 211–29. 
 
Hampp G, Ripperger JAA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, et al (2008). Regulation 

of monoamine oxidase A by circadian-clock components implies clock influence on mood. 
Curr Biol 18: 678–83. 

Hardin PE, Yu W (2006). Circadian transcription: passing the HAT to CLOCK. Cell 125: 424–6. 

Hasler BP, et al. (2012). Circadian rhythms, sleep, and substance abuse. Sleep Med Rev 16(1): 67- 
81. 

Hasler BP, Clark DB (2013). Circadian misalignment, reward-related brain function, and 
adolescent alcohol involvement. Alcohol Clin Exp Res 37: 558–65. 



157  

Hasler BP, Dahl RE, Holm SM, Jakubcak JL, Ryan ND, Silk JS, et al (2012). Weekend-weekday 
advances in sleep timing are associated with altered reward-related brain function in 
healthy adolescents. Biol Psychol 91: 334–41. 

 
Hasler BP, Soehner AM, Clark DB (2015). Sleep and circadian contributions to adolescent alcohol 

use disorder. Alcohol 49: 377–87. 
 
Hattar S, Kumar M, Park A, Tong P, Tung J, Yau K-WW, et al (2006). Central projections of 

melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497: 326–49. 
 
Haynes PL, Gengler D, Kelly M (2016). Social Rhythm Therapies for Mood Disorders: an Update. 

Curr Psychiatry Rep 18: 75. 
 
Henriksen TE, Skrede S, Fasmer OB, Schoeyen H, Leskauskaite I, Bjørke-Bertheussen J, et al 

(2016). Blue-blocking glasses as additive treatment for mania: a randomized placebo- 
controlled trial. Bipolar Disord 18: 221–32. 

 
Hernandez-Pineda R, Chow A, Amarillo Y, Moreno H, Saganich M, Vega-Saenz de Miera EC, et 

al (1999). Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the 
delayed rectifier K+ current in projecting neurons from the globus pallidus. J Neurophysiol 
82(3): 1512-1528. 

 
Ho CS, Grange RW, Joho RH (1997). Pleiotropic effects of a disrupted K+ channel gene: reduced 

body weight, impaired motor skill and muscle contraction, but no seizures. Proc Natl Acad 
Sci U S A 94(4): 1533-1538. 

 
Holtmaat and Svoboda (2009). Experience-dependent structural synaptic plasticity in the 

mammalian brain. Nat Rev Neurosci. 10(9): 647-58. 
 
Horne JA, Ostberg O (1976). A self-assessment questionnaire to determine morningness- 

eveningness in human circadian rhythms. Int J Chronobiol 4: 97–110. 
 
Huang YH, et al. (2009). In vivo cocaine exposure generates silent synapses. Neuron. 63(1): 40-7. 

Hyman SE (2005). Addiction: a disease of learning and memory. Am J Psychiatry 162: 1414–22. 

Ikeda M, Hojo Y, Komatsuzaki Y, Okamoto M, Kato A, Takeda T et al. (2015). Hippocampal 
spine changes across the sleep-wake cycle: corticosterone and kinases. The Journal of 
endocrinology 226: M13–27. 

 
Jasinska M, Grzegorczyk A, Woznicka O, Jasek E, Kossut M, Barbacka-Surowiak G et al. (2015). 

Circadian rhythmicity of synapses in mouse somatosensory cortex. The European journal 
of neuroscience 

 
Johnson CH, Elliott JA, Foster R (2003). Entrainment of circadian programs. Chronobiol Int 20: 

741–74. 



158  

Johnson SW and North RA (1992). Two types of neurone in the rat ventral tegmental area and 
their synaptic inputs. J Physiol. 450(1): 455-468. 

 
Joho RH, Ho CS, Marks GA (1999). Increased gamma- and decreased delta-oscillations in a mouse 

deficient for a potassium channel expressed in fast-spiking interneurons. J Neurophysiol 
82(4): 1855-1864. 

 
Joho RH, Marks GA, Espinosa F (2006). Kv3 potassium channels control the duration of different 

arousal states by distinct stochastic and clock-like mechanisms. Eur J Neurosci 23(6): 
1567-1574. 

 
Juarez B, Han M-H (2016). Diversity of Dopaminergic Neural Circuits in Response to Drug 

Exposure. Neuropsychopharmacology 41: 2424–46. 
 
Karatsoreos IN (2014). Links between Circadian Rhythms and Psychiatric Disease. Front Behav 

Neurosci 8: 162. 
 
Katz G, Durst R, Zislin Y, Barel Y, Knobler HY (2001). Psychiatric aspects of jet lag: review and 

hypothesis. Med Hypotheses 56: 20–3. 
 
Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, et al (1998). A CLOCK 

polymorphism associated with human diurnal preference. Sleep 21: 569–76. 

Kauer JA, Malenka RC (2007). Synaptic plasticity and addiction. Nat Rev Neurosci 8: 844–58. 

King DP, Vitaterna MH, Chang AM, Dove WF, Pinto LH, Turek FW, et al (1997). The Mouse 
Clock Mutation Behaves as an Antimorph and Maps Within the W(19H) Deletion, Distal 
of Kit. Genetics 146(3): 1049-1060. 

 
King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, et al. (1997): Positional 

cloning of the mouse circadian clock gene. Cell 89: 641–53. 
 
Kirouac GJ (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits 

that control behavior. Neuroscience and biobehavioral reviews 56: 315–29. 
 
Kishi T, et al. (2009). Association analysis of nuclear receptor Rev-erb alpha gene (NR1D1) with 

mood disorders in the Japanese population. Neurosci Res 62(4): 211-5. 
 
Kripke DF, et al. (2009). Circadian polymorphisms associated with affective disorders. J 

Circadian Rhythms 7: p. 2. 

Ko CH, Takahashi JS (2006). Molecular components of the mammalian circadian clock. Hum Mol 
Genet 15 Spec No 2: R271–7. 

 
Kolaj M, Zhang L, Rønnekleiv OK, Renaud LP (2012): Midline thalamic paraventricular nucleus 

neurons display diurnal variation in resting membrane potentials, conductances, and firing 
patterns in vitro. J Neurophysiol 107: 1835–44. 



159  

Konttinen H, Kronholm E, Partonen T, Kanerva N, Männistö S, Haukkala A (2014). Morningness- 
eveningness, depressive symptoms, and emotional eating: a population-based study. 
Chronobiol Int 31: 554–63. 

 
Koob GF, Volkow ND (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35: 217– 

38. 
 
Koob GF, Volkow ND (2016). Neurobiology of addiction: a neurocircuitry analysis. Lancet 

Psychiatry 3: 760–73. 
 
Kosobud AE, Gillman AG, Leffel JK, Pecoraro NC, Rebec GV, Timberlake W (2007). Drugs of 

abuse can entrain circadian rhythms. ScientificWorldJournal 7: 203–12. 
 
Kovanen L, Kaunisto M, Donner K, Saarikoski ST, Partonen T (2013). CRY2 genetic variants 

associate with dysthymia. PLoS ONE 8: e71450. 
 
Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lönnqvist J, et al (2010). Circadian 

clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol 
Alcohol 45: 303–11. 

 
Kravitz AV, Owen SF, Kreitzer AC (2013). Optogenetic identification of striatal projection neuron 

subtypes during in vivo recordings. Brain Res 1511: 21–32. 
 
Kripke DF, Elliott JA, Welsh DK, Youngstedt SD (2015). Photoperiodic and circadian bifurcation 

theories of depression and mania. F1000Res 4: 107. 
 
Kristiansen LV, Meador-Woodruff JH (2005). Abnormal striatal expression of transcripts 

encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major 
depression. Schizophr Res 78: 87–93. 

 
Kudo T, Loh DH, Kuljis D, Constance C, Colwell CS (2011). Fast delayed rectifier potassium 

current: critical for input and output of the circadian system. J Neurosci 31(8): 2746-2755. 
 
Lam RW, Levitan RD (2000). Pathophysiology of seasonal affective disorder: a review. J 

Psychiatry Neurosci 25: 469–80. 
 
Landgraf D, Joiner WJ, McCarthy MJ, Kiessling S, Barandas R, Young JW, et al (2016). The 

mood stabilizer valproic acid opposes the effects of dopamine on circadian rhythms. 
Neuropharmacology 107: 262–70. 

 
Landgraf D, Long JE, Proulx CD, Barandas R, Malinow R, Welsh DK (2016). Genetic Disruption 

of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral 
Despair, and Anxiety-like Behavior in Mice. Biol Psychiatry 80: 827–835. 

 
Landgraf D, McCarthy MJ, Welsh DK (2014). Circadian clock and stress interactions in the 

molecular biology of psychiatric disorders. Curr Psychiatry Rep 16(10): p. 483. 



160  

Landgraf D, McCarthy MJ, Welsh DK (2014). The role of the circadian clock in animal models of 
mood disorders. Behav Neurosci 128: 344–59. 

 
Landgraf D, Wang LL, Diemer T, Welsh DK (2016). NPAS2 Compensates for Loss of CLOCK 

in Peripheral Circadian Oscillators. PLoS Genet 12: e1005882. 
 
Larson EB, et al. (2011). Overexpression of CREB in the nucleus accumbens shell increases 

cocaine reinforcement in self-administering rats. J Neurosci 31: 16447-16457. 
 
Lavebratt C, et al. (2010). CRY2 is associated with depression. PLoS One 5(2): e9407. 

 
Lavebratt C, et al. (2010). PER2 variantion is associated with depression vulnerability. Am J Med 

Genet B Neuropsychiatr Genet 153B(2): 570-81. 
 
Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M (2012). Inhibitory inputs from rostromedial 

tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their 
responses to drugs of abuse. Neuropsychopharmacology 37: 1164–76. 

 
Lee BR, et al. (2013). Maturation of silent synapses in amygdala-accumbens projection contributes 

to incubation of cocaine craving. Nat Neurosci. 16(11): 1644-51. 
 
Lee KW, et al. (2006). Cocaine-induced dendritic spine formatin in D1 and D2 dopamine-receptor 

containing neurons in nucleus accumbens. Proc Natl Acad Sci U S A. 103(9): 3399-404. 
 
Lee E, Kim EY (2014). A role for timely nuclear translocation of clock repressor proteins in setting 

circadian clock speed. Exp Neurobiol 23: 191–9. 
 
Lee HM, Chen R, Kim H, Etchegaray J-PP, Weaver DR, Lee C (2011). The period of the circadian 

oscillator is primarily determined by the balance between casein kinase 1 and protein 
phosphatase 1. Proc Natl Acad Sci USA 108: 16451–6. 

 
Lee HJ, Weitz AJ, Bernal-Casas D, Duffy BA, Choy M, Kravitz AV, et al (2016). Activation of 

Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide 
Responses. Neuron 91: 412–24. 

 
Lenz JD, et al. (2013). Optogenetic insights into striatal function and behavior. Behavioural brain 

research. 255:44-54. 
 
Lenz S, Perney TM, Qin Y, Robbins E, Chesselet MF (1994). GABA-ergic interneurons of the 

striatum express the Shaw-like potassium channel Kv3.1. Synapse 18(1): 55-66. 
 
Li JZ, et al. (2013). Circadian patterns of gene expression in the human brain and disruption in 

major depressive disorder. Proc Natl Acad Sci U S A 110(24): 9950-5. 
 
Li J-DD, Hu W-PP, Zhou Q-YY (2012). The circadian output signals from the suprachiasmatic 

nuclei. Prog Brain Res 199: 119–27. 



161  

Lobo MK, et al. (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile 
and adult mouse brains. Nat Neurosci. 9(3): 443-52. 

 
Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al (2010). 

Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. 
Science 330: 385–90. 

 
Logan RW, McClung CA (2016). Animal models of bipolar mania: The past, present and future. 

Neuroscience 321: 163–88. 
 
Logan RW, Williams WP, McClung CA (2014): Circadian rhythms and addiction: mechanistic 

insights and future directions. Behav Neurosci 128: 387–412. 
 
Lois G, Linke J, Wessa M. (2014). Altered Functional Connectivity between Emotional and 

Cognitive Resting State Networks in Euthymic Bipolar I Disorder Patients. PLoS ONE 9: 
e107829. 

 
Lowrey PL, Takahashi JS (2011). Genetics of circadian rhythms in Mammalian model organisms. 

Adv Genet 74: 175–230. 
 
Lu XY, Ghasemzadeh MB, Kalivas PW (1998). Expression of D1 receptor, D2 receptor, substance 

P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. 
Neuroscience 82: 767–80. 

 
Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, et al (2007). Serotonin(4) (5- 

HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 
55: 712–25. 

 
Lüscher C, Malenka RC (2011): Drug-evoked synaptic plasticity in addiction: from molecular 

changes to circuit remodeling. Neuron 69: 650–63. 
 
Lynch WJ, Girgenti MJ, Breslin FJ, Newton SS, Taylor JR (2008). Gene profiling the response to 

repeated cocaine self-administration in dorsal striatum: a focus on circadian genes. Brain 
Res 1213: 166–77. 

 
Lyon M (1991). Animal Models for the Symptoms of Mania. In: Boulton A, Baker G, Martin- 

Iverson M (eds). Animal Models in Psychiatry, I. Humana Press. Vol 18, pp 197-244. 
 
Mackey SR  (2007). Biological Rhythms Workshop  IA: molecular basis of rhythms generation. 

Cold Spring Harb Symp Quant Biol 72: 7–19. 
 
Magnusson A, Boivin D (2003). Seasonal affective disorder: an overview. Chronobiol Int 20: 189– 

207. 
 
Mansour, et al. (2006). Association study of eight circadian gens with bipolar I disorder, 

schizoaffective disorder and schizophrenia. Genes, Brain, Behav. 5: 150. 



162  

Mansour HA, Talkowski ME, Wood J, Chowdari KV, McClain L, Prasad K, et al (2009). 
Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, 
and schizophrenia. Bipolar Disord 11: 701–10. 

 
Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006). The ventral tegmental area revisited: is 

there an electrophysiological marker for dopaminergic neurons? J Physiol. 577(3): 907- 
924. 

 
Martinowich K, Schloesser RJ, Manji HK (2009). Bipolar disorder: from genes to behavior 

pathways. J Clin Invest 119(4): 726-736. 
 
Martucci L, Wong AH, De Luca V, Likhodi O, Wong GW, King N et al. (2006). N-methyl-D- 

aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: 
Polymorphisms and mRNA levels. Schizophr Res 84: 214–221. 

 
Masubuchi S, Honma S, Abe H, Ishizaki K, Namihira M, Ikeda M, et al (2000). Clock genes 

outside the suprachiasmatic nucleus involved in manifestation of locomotor activity 
rhythm in rats. Eur J Neurosci 12: 4206–14. 

 
Matzeu A, Zamora-Martinez ER, Martin-Fardon R (2014). The paraventricular nucleus of the 

thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a 
pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking 
behavior. Front Behav Neurosci 8: 117. 

 
McCarthy MJ, et al. (2013). Genetic and clinical factors predict lithium's effects on PER2 gene 

expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 3: p. e318. 
 
McCarthy MJ, Fernandes M, Kranzler HR, Covault JM, Welsh DK (2013a). Circadian clock 

period inversely correlates with illness severity in cells from patients with alcohol use 
disorders. Alcohol Clin Exp Res 37: 1304–10. 

 
McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012). A survey of genomic studies 

supports association of circadian clock genes with bipolar disorder spectrum illnesses and 
lithium response. PLoS ONE 7: e32091. 

 
McCarthy MJ, Wei H, Marnoy Z, Darvish RM, McPhie DL, Cohen BM, et al (2013b). Genetic 

and clinical factors predict lithium’s effects on PER2 gene expression rhythms in cells from 
bipolar disorder patients. Transl Psychiatry 3: e318. 

 
McCarthy MJ, Welsh DK (2012). Cellular circadian clocks in mood disorders. J Biol Rhythms 27: 

339–52. 
 
McClung CA (2011). Circadian rhythms and mood regulation: insights from pre-clinical models. 

Eur Neuropsychopharmacol 21 Suppl 4: S683-93. 
 
McClung CA (2007). Circadian genes, rhythms and the biology of mood disorders. Pharmacol 

Ther 114: 222–32. 



163  

McClung CA (2013). How might circadian rhythms control mood? Let me count the ways... Biol 
Psychiatry 74: 242–9. 

 
McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, et al (2005). 

Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl 
Acad Sci USA 102: 9377–81. 

 
McCutcheon JE, et al. (2014). Optical suppression of drug-evoked phasic dopamine release. 

Frontiers in neural circuits. 8: 114. 
 
McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, et al (2006). Dissecting 

the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. 
Science 314: 1304–8. 

 
Meador-Woodruff JH, Hogg AJ, Smith RE (2001): Striatal ionotropic glutamate receptor 

expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res 
Bull 55: 631–40. 

 
Meijer JH, Schwartz WJ (2003). In search of the pathways for light-induced pacemaker resetting 

in the suprachiasmatic nucleus. J Biol Rhythms 18: 235–49. 
 
Melo MC, Garcia RF, Linhares Neto VB, Sá MB, Mesquita LM de, Araújo CF de, et al (2016). 

Sleep and circadian alterations in people at risk for bipolar disorder: A systematic review. 
J Psychiatr Res 83: 211–219. 

 
Mendlewicz J (2009). Disruption of the circadian timing systems: molecular mechanisms in mood 

disorders. CNS Drugs 23 Suppl 2: 15–26. 
 
Mendoza J, Challet E (2014). Circadian insights into dopamine mechanisms. Neuroscience 282: 

230–42. 
 
Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008): The structural basis for mapping 

behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 213: 17–27. 
 
Miklowitz DJ, Johnson SL (2006): The psychopathology and treatment of bipolar disorder. Annu 

Rev Clin Psychol 2: 199–235. 
 
Milhiet V, Boudebesse C, Bellivier F, Drouot X, Henry C, Leboyer M, et al (2014). Circadian 

abnormalities as markers of susceptibility in bipolar disorders. Front Biosci (Schol Ed) 6: 
120–37. 

 
Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus 

circadian oscillators. Trends Neurosci 34(7): 349-58. 
 
Moine C Le, Bloch B (1995). D1 and D2 dopamine receptor gene expression in the rat striatum: 

sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in 
distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355: 418– 
26. 



164  

Moraga-Amaro R, et al. (2014). Dopamine receptor D3 deficiency results in chronic ]] and anxiety. 
Behav Brain Res 274:186-93. 

 
Morin LP (2013). Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243: 4–20. 

 
Moriya S, Tahara Y, Sasaki H, Ishigooka J, Shibata S (2015). Phase-delay in the light-dark cycle 

impairs clock gene expression and levels of serotonin, norepinephrine, and their 
metabolites in the mouse hippocampus and amygdala. Sleep Med 16: 1352–9. 

 
Moyer JT, Wolf JA, Finkel LH (2007): Effects of dopaminergic modulation on the integrative 

properties of the ventral striatal medium spiny neuron. J Neurophysiol 98: 3731–48. 
 

Mu P, Moyer JT, Ishikawa M, Zhang Y, Panksepp J, Sorg BA, et al. (2010): Exposure to cocaine 
dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. 
J Neurosci 30: 3689–99. 

 
Mukherjee S, Coque L, Cao J-L, Kumar J, Chakravarty S, Asaithamby A, et al (2010). Knockdown 

of Clock in the Ventral Tegmental Area Through RNA Interference Results in a Mixed 
State of Mania and Depression-Like Behavior. Biological Psychiatry 68(6): 503-511. 

 
Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV et al. (2003). 

Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers 
susceptibility to bipolar disorder. Mol Psychiatry 8: 241–245. 

 
Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, et al (2000). The 

circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20(21): 8138- 
8143. 

 
Nestler EJ (2005). Is there a common molecular pathway for addiction? Nat Neurosci 8: 1445–9. 

 
Nicola SM, Surmeier J, Malenka RC (2000): Dopaminergic modulation of neuronal excitability in 

the striatum and nucleus accumbens. Annu Rev Neurosci 23: 185–215. 
 

Nievergelt CM, et al. (2006). Suggestive evidence for association of the circadian genes PERIOD3 
and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 141B(3): 
234-41. 

 
Ozburn AR, Falcon E, Mukherjee S, Gillman A, Arey R, Spencer S, McClung CA (2013): The 

role of clock in ethanol-related behaviors. Neuropsychopharmacology 38: 2393–400. 
 

Ozburn A, Falcon E, Twaddle A, Nugent A, Gillman A, Spencer S, et al Direct Regulation of 
Diurnal Drd3 Expression and Cocaine Reward by NPAS2. Biological Psychiatry 
doi:10.1016/j.biopsych.2014.07.030. 

 
Ozburn AR, Larson EB, Self DW, McClung CA (2012): Cocaine self-administration behaviors in 

ClockΔ19 mice. Psychopharmacology (Berl) 223: 169–77. 



165  

Ozburn AR, Purohit K, Parekh PK, Kaplan GN, Falcon E, Mukherjee S, et al (2016). Functional 
Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism. Front Psychiatry 
7: 67. 

 
Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, et al (2003). Melanopsin is 

required for non-image-forming photic responses in blind mice. Science 301: 525–7. 
 
Parekh PK, McClung CA (2015). Circadian Mechanisms Underlying Reward-Related 

Neurophysiology and Synaptic Plasticity. Front Psychiatry 6: 187. 
 
Parekh PK, Ozburn AR, McClung CA (2015). Circadian clock genes: effects on dopamine, reward 

and addiction. Alcohol 49: 341–9. 
 
Partonen T, et al. (2007). Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter 

depression. Ann Med 39(3): 229-38. 
 
Perez-Cruz C, Simon M, Flügge G, Fuchs E, Czéh B (2010). Diurnal rhythm and stress regulate 

dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex. 
Behavioural brain research 205: 406–413. 

 
Phillips ML, Swartz HA (2014). A Critical Appraisal of Neuroimaging Studies of Bipolar 

Disorder: Toward a New Conceptualization of Underlying Neural Circuitry and a Road 
Map for Future Research. Am J Psychiatry. 

 
Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, et al (2011). 

Dopamine transporter gene variant affecting expression in human brain is associated with 
bipolar disorder. Neuropsychopharmacology 36: 1644–55. 

 
Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al (2002). The 

orphan nuclear receptor REV-ERBalpha controls circadian transcription within the 
positive limb of the mammalian circadian oscillator. Cell 110: 251–60. 

 
Prus AJ, et al. (2009). Conditioned Place Preference. in Methods of Behavior Analysis in 

Neuroscience. (ed. J.J. Buccafusco) (Boca Raton, FL). 
 
Quintero JE, Kuhlman SJ, McMahon DG (2003). The biological clock nucleus: a multiphasic 

oscillator network regulated by light. J Neurosci 23: 8070–6. 
 
Rao JS, Kellom M, Reese EA, Rapoport SI, Kim H-WW (2012). Dysregulated glutamate and 

dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic 
patients. Journal of affective disorders 136: 63–71. 

 
Reick M, Garcia JA, Dudley C, McKnight SL (2001). NPAS2: an analog of clock operative in the 

mammalian forebrain. Science 293: 506–9. 
 
Reppert SM, Weaver DR (2002). Coordination of circadian timing in mammals. Nature 418: 935– 

41. 



166  

Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013). Mapping brain 
circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 
37: 1919–31. 

 
Ripperger JAA, Albrecht U (2012). REV-ERB-erating nuclear receptor functions in circadian 

metabolism and physiology. Cell Res 22: 1319–21. 
 
Robinson TE, Kolb B (2004). Structural plasticity associated with exposure to drugs of abuse. 

Neuropharmacology 47 Suppl 1: 33–46. 
 
Rock P, Goodwin G, Harmer C, Wulff K (2014). Daily rest-activity patterns in the bipolar 

phenotype: A controlled actigraphy study. Chronobiol Int 31: 290–6. 
 
Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, et al. (2007): Mania-like 

behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104: 6406–11. 
 
Russo SJ, et al. (2009) Nuclear factor kappa B signaling regulates neuronal morphology and 

cocaine reward. J Neurosci. 29(11): 3529-37. 
 
Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ (2010). The addicted 

synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends 
Neurosci 33: 267–76. 

 
Russo SJ, Nestler EJ (2013). The brain reward circuitry in mood disorders. Nat Rev Neurosci 14: 

609–25. 
 
Sakhi K, Belle MD, Gossan N, Delagrange P, Piggins HD (2014). Daily variation in the 

electrophysiological activity of mouse medial habenula neurones. J Physiol (Lond) 592: 
587–603. 

 
Salgado-Delgado R, et al. (2011). Disruption of circadian rhythms: a crucial factor in the etiology 

of depression. Depress Res Treat 2011: 839743. 
 
Salvadore G, Quiroz JA, Machado-Vieira R, Henter ID, Manji HK, Zarate CA, Jr. (2010). The 

neurobiology of the switch process in bipolar disorder: a review. J Clin Psychiatry 71(11): 
1488-1501. 

 
Sans N, Prybylowski K, Petralia RS, Chang K, Wang Y-XX, Racca C et al. (2003). NMDA 

receptor trafficking through an interaction between PDZ proteins and the exocyst complex. 
Nat Cell Biol  5: 520–530. 

 
Schmidt TM, Chen S-KK, Hattar S (2011). Intrinsically photosensitive retinal ganglion cells: many 

subtypes, diverse functions. Trends Neurosci 34: 572–80. 
 
Schultz W (2006). Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57: 

87–115. 



167  

Schultz W, Dayan P, Montague PR (1997). A neural substrate of prediction and reward. Science 
275: 1593–9. 

 
Scott AJ, Monk TH, Brink LL (1997). Shiftwork as a Risk Factor for Depression: A Pilot Study. 

Int J Occup Environ Health 3: S2–S9. 
 
Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, et al (2003). Genetic 

dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene 
polymorphism. Am J Med Genet B Neuropsychiatr Genet 121B: 35–8. 

 
Sesack   SR,   Grace   AA   (2010).   Cortico-Basal   Ganglia   reward   network: microcircuitry. 

Neuropsychopharmacology 35(1): 27-47. 
 
Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, et al. (2008): Evidence 

for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating 
behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13: 858–72. 

 
Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ (2004): Kv1.2-containing K+ 

channels regulate subthreshold excitability of striatal medium spiny neurons. J 
Neurophysiol 91: 1337–49. 

 
Shuen JA, Chen M, Gloss B, Calakos N (2008). Drd1a-tdTomato BAC transgenic mice for 

simultaneous visualization of medium spiny neurons in the direct and indirect pathways of 
the basal ganglia. J Neurosci 28: 2681–5. 

 
Sidor MM, Spencer SM, Dzirasa K, Parekh PK, Tye KM, Warden MR, et al. (2015): Daytime 

spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol Psychiatry 20: 
1406–19. 

 
Sleipness EP, Jansen HT, Schenk JO, Sorg BA (2008). Time-of-day differences in dopamine 

clearance in the rat medial prefrontal cortex and nucleus accumbens. Synapse 62: 877–85. 
 
Sleipness EP, Sorg BA, Jansen HT (2007). Diurnal differences in dopamine transporter and 

tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain 
Res 1129: 34–42. 

 
Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013). Cocaine-induced adaptations in D1 and D2 

accumbens projection neurons (a dichotomy not necessarily synonymous with direct and 
indirect pathways). Curr Opin Neurobiol 23: 546–52. 

 
Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009). Parvalbumin neurons and gamma rhythms 

enhance cortical circuit performance. Nature 459(7247): 698-702. 
 
Sokoloff P, Foll B Le, Perachon S, Bordet R, Ridray S, Schwartz JC (2001). The dopamine D3 

receptor and drug addiction. Neurotox Res 3: 433–41. 



168  

Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, et al (2010). 
Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are 
associated with unipolar major depression and CLOCK and VIP with bipolar disorder. 
Neuropsychopharmacology 35: 1279–89. 

 
Spencer S et al. (2013). Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate 

anxiety-related behavior. Eur J Neurosci 37(2): 242-50. 
 

Spencer S, Torres-Altoro MI, Falcon E, Arey R, Marvin M, Goldberg M, et al. (2012): A mutation 
in CLOCK leads to altered dopamine receptor function. J Neurochem 123: 124–34. 

 
Spengler ML et al. (2012). Core circadian protein CLOCK is a positive regulator of NF-kappaB- 

mediated transcription. Proc Natl Acad Sci U S A. 109(37): 2457-65. 
 

Steiner H, Fuchs S, Accili D (1997). D3 dopamine receptor-deficient mouse: evidence for reduced 
anxiety. Physiol Behav 63(1):137-41. 

 
Strakowski SM, et al. (2005). The functional neuroanatomy of bipolar disorder: a review of 

neuroimaging findings. Mol Psychiatry. 10: 105-116. 
 

Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C (2013). Disruption of 
circadian rhythms due to chronic constant light leads to depressive and anxiety-like 
behaviors in the rat. Behav Brain Res 252: 1–9. 

 
Tataroglu O, et al. (2004). Effect of lesioning the suprachiasmatic nuclei on behavioral despair in 

rats. Brain Res. 1001: 118. 
 

Tohen M, Vieta E (2009). Antipsychotic agents in the treatment of bipolar mania. Bipolar Disord 
11 Suppl 2: 45-54. 

 
Tye KM (2012). Glutamate inputs to the nucleus accumbens: does source matter? Neuron 76: 671– 

3. 
 

Uhlhaas PJ, Pipa G, Neuenschwander S, Wibral M, Singer W (2011). A new look at gamma? 
High- (>60 Hz) gamma-band activity in cortical networks: function, mechanisms and 
impairment. Prog Biophys Mol Biol 105(1-2): 14-28. 

 
Vilchis C, Bargas J, Ayala GX, Galván E, Galarraga E (2000): Ca2+ channels that activate Ca2+- 

dependent K+ currents in neostriatal neurons. Neuroscience 95: 745–52. 
 

Vitaterna MH, Ko CH, Chang A-MM, Buhr ED, Fruechte EM, Schook A, et al (2006). The mouse 
Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting 
stimuli and phase-response curve amplitude. Proc Natl Acad Sci USA 103: 9327–32. 

 
Wang H, et al. (2007). Casein kinase I epsilon gene transfer into the suprachiasmatic nucleus via 

electroporation lengthens circadian periods of tau mutant hamsters. Eur J Neurosci 25(11): 
3359-66. 



169  

Wardlaw SM, Phan TX, Saraf A, Chen X, Storm DR (2014). Genetic disruption of the core 
circadian clock impairs hippocampus-dependent memory. Learning & memory (Cold 
Spring Harbor, NY) 21: 417–423. 

 
Webb IC, Baltazar RM, Wang X, Pitchers KK, Coolen LM, Lehman MN (2010). Diurnal 

variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene 
expression in the male rat. Journal of biological rhythms 24: 465–76. 

 
Weber M, Lauterburg T, Tobler I, Burgunder J-MM (2004). Circadian patterns of neurotransmitter 

related gene expression in motor regions of the rat brain. Neurosci Lett 358: 17–20. 
 
White W, Feldon J, Heidbreder CA, White IM (2000). Effects of administering cocaine at the same 

versus varying times of day on circadian activity patterns and sensitization in rats. Behav 
Neurosci 114: 972–82. 

 
Wickens JR, Wilson CJ (1998): Regulation of action-potential firing in spiny neurons of the rat 

neostriatum in vivo. J Neurophysiol 79: 2358–64. 

Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson R-MM, Hefner K, et al. (2008): Mice 
lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and “schizophrenia- 
related” behaviors. Mol Psychiatry 13: 631–40. 

 
Wirz-Justice A, et al. (2005). Chronotherapeutics (light and wake therapy) in affective disorders. 

Psychol. Med 35:939. 
 
Wittmann M, Dinich J, Merrow M, Roenneberg T (2006). Social jetlag: misalignment of biological 

and social time. Chronobiol Int 23: 497–509. 
 
Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O’Donnell P, Finkel LH 

(2005): NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a 
computational model of the nucleus accumbens medium spiny projection neuron. J 
Neurosci 25: 9080–95. 

 
Wu X, Wiater MF, Ritter S (2010). NPAS2 deletion impairs responses to restricted feeding but 

not to metabolic challenges. Physiol Behav 99: 466–71. 
 
Xing B, et al. (2013). Effects of immobilization stress on emotional behaviors in dopamine D3 

receptor knockout mice. Behav Brain Res 243: 261-6. 
 
Yanagi M, Joho RH, Southcott SA, Shukla AA, Ghose S, Tamminga CA (2014). Kv3.1-containing 

K(+) channels are reduced in untreated schizophrenia and normalized with antipsychotic 
drugs. Mol Psychiatry 19(5): 573-579. 

 
Young JW, Enkhuizen J van, Winstanley CA, Geyer MA (2011a). Increased risk-taking behavior 

in dopamine transporter knockdown mice: further support for a mouse model of mania. J 
Psychopharmacol (Oxford) 25: 934–43. 



170  

Young JW, Henry BL, Geyer MA (2011b). Predictive animal models of mania: hits, misses and 
future directions. Br J Pharmacol 164: 1263–84 

 
Zhang L, Evans DS, Raheja UK, Stephens SH, Stiller JW, Reeves GM, et al (2015). Chronotype 

and seasonality: morningness is associated with lower seasonal mood and behavior changes 
in the Old Order Amish. J Affect Disord 174: 209–14. 

 
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014). A circadian gene 

expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci 
USA 111: 16219–24. 

 
Zhao H, Rusak B (2005). Circadian firing-rate rhythms and light responses of rat habenular 

nucleus neurons in vivo and in vitro. Neuroscience 132: 519–28. 
 
Zhou YD, Barnard M, Tian H, Li X, Ring HZ, Francke U, et al (1997). Molecular characterization 

of two mammalian bHLH-PAS domain proteins selectively expressed in the central 
nervous system. Proc Natl Acad Sci USA 94: 713–8. 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	PREFACE
	1.0 INTRODUCTION: THE MAMMALIAN CIRCADIAN CLOCK
	1.1 CIRCADIAN RHYTHMS IN PSYCHIATRIC ILLNESS
	1.1.1 Central pathways involved in mood and reward regulation
	1.1.2 Bipolar disorder and the clock
	1.1.3 Circadian rhythms in addiction
	1.1.4 Circadian regulation of reward-related regions and dopaminergictransmission
	1.2 ANIMAL MODELS OF NEUROPSYCHIATRIC ILLNESS
	1.2.1    Genetic models of bipolar mania
	1.3 DISSERTATION AIMS
	2.0 ALTERED GLUA1 FUNCTION AND ACCUMBAL SYNAPTIC PLASTICITY IN THE CLOCK19 MODEL OF BIPOLAR MANIA
	2.1 INTRODUCTION
	2.2 MATERIALS AND METHODS
	2.2.1 Animal use
	2.2.2 NAc slice preparation
	2.2.3 Whole-cell patch-clamp recordings
	2.2.4 Surface GLUA1 detection
	2.2.5 Viral gene transfer and stereotaxic surgery
	2.2.6 Immunohistochemistry
	2.2.7 Animal behavior
	2.2.8 Real-time Polymerase Chain Reaction
	2.2.9 Data analysis
	2.3 RESULTS
	2.3.1 Clock19 mice have reduced AMPAR-mediated synaptic transmission and strength at NAc MSNs throughout the light/dark cycle
	2.3.2 Presynaptic release of glutamate onto NAc MSNs is unaltered in Clockmutants throughout the light/dark cycle
	2.3.3 Membrane levels and rhythm of GLUA1 protein are reduced in the NAcof
	2.3.4 Clock mutant MSNs display subtle alterations in intrinsic membrane properties
	2.3.5 Overexpression of GluA1 in the NAc normalizes “manic-like” behavior in Clock19 mice
	2.4 DISCUSSION
	2.5 FUTURE DIRECTIONS
	3.0 CELL-TYPE SPECIFIC EFFECTS OF NPAS2 DISRUPTION ONACCUMBAL SYNAPTIC PLASTICITY AND COCAINE SENSITIVITY
	3.1 INTRODUCTION
	3.2 MATERIALS AND METHODS
	3.2.1 Animal use.
	3.2.2 Viral gene transfer and stereotaxic surgery.
	3.2.3 Quantitative real-time RT-PCR
	3.2.4 NAc slice preparation.
	3.2.5 Whole-cell patch clamp recording.
	3.2.6 Dendritic spine labeling and imaging.
	3.2.7 Generation and validation of Cre-inducible viruses
	3.2.8 Cocaine conditioned place preference.
	3.2.9 Data analysis.
	3.3 RESULTS
	3.3.1 Knockdown of NPAS2 within the NAc leads to an increase in glutamatergic transmission at MSNs
	3.3.2 Effects of NPAS2 reduction on NAc glutamatergic geneexpression.
	3.3.3 Increased excitatory synaptic transmission following NPAS2 knockdown is specific to D1 MSNs
	3.3.4 The role of NPAS2 in cocaine-induced MSN dendritic spinealterations
	3.3.5 D1-MSN-specific NPAS2 knockdown in the NAc reduces cocaine reward sensitivity
	3.4 DISCUSSION
	3.5 FUTURE DIRECTIONS
	4.0 GENERAL DISCUSSION
	APPENDIX A
	A.1 INTRODUCTION
	A.2 MATERIALS AND METHODS
	A.2.1 Animals.
	A.2.2 Drug Preparation.
	A.2.3 Behavioral Assays.
	A.2.4 VTA Slice preparation.
	A.2.5   Whole-cell patch-clamp recordings.
	A.2.6 Immunohistochemistry.
	A.2.7 Western Blotting.
	A.2.8 Pharmacokinetics.
	A.2.9 Statistical Analysis.
	A.3 RESULTS
	A.3.1 AUT1 attenuates amphetamine-induced hyperactivity: importance of Kv3.1 channels.
	A.3.2 Kv3.1 null mice exhibit manic-likebehaviors.
	A.3.3 Effects of AUT1 on hyperactivity in the ClockΔ19 mutant mouse model ofmania.
	A.3.4 AUT1 differentially modulates ClockΔ19 VTA neuronalactivity.
	A.3.5 Kv3.1 channels are targets of mood stabilizer treatment in ClockΔ19 mutantmice
	A.4 DISCUSSION
	APPENDIX B
	B.1 INTRODUCTION
	B.2 MATERIALS AND METHODS
	B.2.1 Animal use.
	B.2.2 Unpredictable Chronic Mild Stress (UCMS).
	B.2.3 Quantitative Real-time RT-PCR.
	B.2.4 Behavioral Assays.
	B.2.5 Stereotaxic surgery.
	B.2.6 Immunohistochemistry.
	B.2.7 Chromatin Immunoprecipitation (ChIP).
	B.2.8 NAc slice preparation and electrophysiological recordings.
	B.2.9 Data analysis.
	B.3 RESULTS
	B.3.1 Npas2 expression is increased in the NAc in response to UCMS.
	B.3.2 Npas2 mutant mice have reduced anxiety-like behaviors and reduced sensitivity to diazepam.
	B.3.3 NAc knockdown of Npas2 results in reduced anxiety-likebehaviors.
	B.3.4 NPAS2 regulates expression of GABAA subunits.
	B.3.5 Npas2 knockdown prevents diazepam-induced potentiation of IPSC amplitude in NAc MSNs
	B.4 DISCUSSION
	BIBLIOGRAPHY



