Task-Driven Programming Pedagogy
in the Digital Humanities

David J. Birnbaum@® and Alison Langmead

Abstract In this chapter, we advocate for a task-driven approach to teaching
computer programming to students of the digital humanities (DH). Our perspective
is grounded first in Birnbaum’s (2014) plenary address to the University of
Pittsburgh Faculty Senate (Birnbaum 2014), in which he argued that coding, like
writing, should be taught across the liberal arts curriculum in domain-appropriate
ways. This position argued that (1) coding is not an esoteric specialization to be
taught solely by computer scientists, and that (2) coding might be taught most
effectively in the context of different disciplines. Here, we present a method for
embedding Digital Humanities education, and more specifically programming
pedagogy, within the long-standing traditions of the Humanities and argue that this
approach works most effectively when new learners have access to context-specific
mentorship. Our second point of reference lies with oral-proficiency-oriented
(OP) foreign language pedagogy. Within an OP model, the ability to communicate
in a foreign language is a skill, and the primary goal for learners who seek to
acquire that skill is not an academic understanding of the grammar of a language,
but, instead, the ability to function successfully within realistic contextualized
human interactions. Seen from this perspective, computer-programming curricula
organized around the features of the programming language might be compared to
older grammar-and-translation foreign-language pedagogies. What we advocate
instead is that the ability to use a programming language (programming profi-
ciency) is best acquired in the context of performing contextualized,
discipline-conscious tasks that are meaningful to humanists, an approach that has
parallels to OP language learning.

Keywords Digital humanities - Computational humanities - Programming
pedagogy - Humanities pedagogy - Interdisciplinary - Computing education

D.J. Birnbaum (X)) - A. Langmead
University of Pittsburgh, Pittsburgh, PA, USA
e-mail: djbpitt@pitt.edu

A. Langmead
e-mail: adlangmead @pitt.edu

© Springer International Publishing AG 2017 63
S.B. Fee et al. (eds.), New Directions for Computing Education,
DOI 10.1007/978-3-319-54226-3_5


http://orcid.org/0000-0002-2867-7473
http://orcid.org/0000-0002-9159-9797

64 D.J. Birmbaum and A. Langmead

Introduction

Computer programming isn’t computer science. Computer programming is more like
writing. Everyone can learn to do it, and can be given the opportunity to learn to do it in
ways that are appropriate for their disciplines ... You don’t have to be an English com-
position professor to know how to write, and how to teach writing, in your discipline.
(Birnbaum 2014, p. 2)

Digital humanists perform humanities research, not computer science research and
not, except as a means to an end, software development. The Digital Humanities
(DH) path from conceiving a research question through identifying and applying
appropriate methods to interpreting the results will sound familiar to humanities
researchers because it is familiar: the DH toolkit may be new, but to the humanities
scholar and student, Digital Humanities is a way of doing humanities, not a way of
doing computing. In order to do our work, we select the most appropriate tools from
all of the resources at our disposal, from the written essay to data models to GIS to
tffidf. Traditional computer-science concerns like data structures and algorithms and
computational complexity may underlie some of what we do, but they are not
typically our primary objects of study.

We recognize that integrating digital tools into humanities training is not yet
widespread practice, but we also believe that this might result from a misconception
that digital tools are something foreign that we import from outside the humanities.
In fact, many of the programming tasks required to obtain research results in the
computational Digital Humanities can be met with training that is narrowly focused,
task-driven, and produced within the context of training in the humanities, espe-
cially when explicit DH mentorship is available. Humanities scholars without prior
technological training or expertise can, without explicit attention to or consideration
of many of the scientific issues that are fundamental to the discipline of computer
science, easily learn to use and write programs that yield meaningful insights into
their data.

Two types of Digital Humanities practice constitute our focus in this chapter: the
production of new knowledge through the application of computational tools to the
analysis of (not necessarily verbal) cultural texts, and the production, with the
assistance of computational tools and methods, of new resources for conducting
research. We do not mean to suggest that these constitute an exhaustive or exclusive
definition of the practice of Digital Humanities, but because the present volume
engages specifically with computing education and computing across the disci-
plines, the focus of our contribution is on computational Digital Humanities, that is,
on embedding computing in the humanities.

The Tool We Know

The tool that humanists have traditionally used both to process and to convey their
ideas and interpretations to their audience is the written essay. The written essay is a



Task-Driven Programming Pedagogy in the Digital Humanities 65

masterful tool. Whether in the form of an article or the form of the book, the
academic essay has successfully served the humanities for the length of its exis-
tence, and it is expected to continue to do so equally as elegantly for the foreseeable
future. The rhetorical design of a well-written essay allows an author to lead the
reader through a sometimes complex maze of thoughts, connections, and ideas in a
clear and organized fashion. The much-maligned five-paragraph essay model, with
its “Tell them what you are going to say, then say it, then tell them what you said”
motto, may be the most simplistic example of this tool, but it has the benefit of
being quickly understood by readers, most of whom will not only easily follow the
pattern of argumentation while reading, but also recognize the design for what it is,
having been taught the method themselves in school.

This is not to say that producing a traditional written essay is easy. It has a steep
learning curve and its own particular perils. From the panic of staring at a blank
page (or a blank screen) to managing digressions and asides without losing one’s
place to writing oneself into a rhetorical corner that is difficult to escape, the
challenges to writing successful analytical essays are omnipresent. Written argu-
mentation is a complex tool that takes skill and practice to master, and we are not
expected to master it quickly or all at once.

Our training in how to use this tool begins as soon as we learn to read and write,
that is to say, in elementary school. Slowly but surely, throughout K-12 education,
we learn the principles of writing grammatically correct sentences that can be put in
a particular order so that they might best convey to others the ideas that we have in
our heads. Before students reach college, they will have been exposed to—if not
mastered—the principles of effective analytic writing. They will then be expected to
practice this tool throughout college in different subject areas. Indeed, students will
take their ability to produce essays from their Japanese history classes to their
Russian fairy tales classes to their Renaissance art history classes, applying this tool
to each successive domain and using it to demonstrate and communicate what they
have learned of the subject.

From this vantage point, the introduction of the Digital Humanities only at the
university level seems greatly disadvantageous.' Having spent over a decade
learning to use the written essay, college-level students of the Digital Humanities
are expected to master not just one new tool, but an entire digital arsenal of
techniques in a few short years, and to do so at a time when it has traditionally been
expected that they would be using an already familiar, if not yet entirely mastered,
written rhetorical apparatus in order to ingest, process, and create increasingly
complex content. Introducing digital skills only at the graduate level further
exacerbates the situation, as these students are assumed already to have acquired a

'The twenty-first century has seen a welcome attention to teaching computational thinking from a
young age and in a way that is not explicitly coupled with the simultaneous teaching of pro-
gramming languages (e.g., Wing 2006). Computational thinking is obviously relevant to pro-
gramming, and our focus specifically on teaching the use of programming languages in a volume
about programming pedagogy should be understood as complementary to, rather than in dis-
agreement with, teaching computational thinking.



66 D.J. Bimbaum and A. Langmead

basic humanities education, and the focus of their graduate studies is supposed to be
on acquiring advanced content knowledge and producing original research results.
It has been our experience that asking graduate students to learn the techniques and
tools of the Digital Humanities feels as if we are asking them to start a new line of
inquiry from scratch at a time when they are under pressure to perform and
demonstrate mastery. The written essay is the entrenched foundation of the
humanities. Question its centrality, and students can feel lost, voicing their frus-
tration as “taking a step back” or “starting all over again.” So how might students
contextualize and repurpose their established skills as essay writers in a new
computational context?

Functional Requirements for Getting Started on a DH
Problem

Students who find themselves in this position deserve our empathy; as newcomers
to Digital Humanities, they will have much to learn that might seem entirely alien
and alienating. In fact, what is new is often much more the digital context than the
actual research practice. After all, Digital Humanities is still humanities,” and,
“[llike writing, programming provides a way to think in and through a subject”
(Ramsay 2012, p. 229). Even if it does have its own particular difficulties and
pitfalls, the research process of performing Digital Humanities is not fundamentally
different from traditional approaches, and this can be emphasized to new entrants in
the field. If newcomers are fortunate enough to have a DH mentor—and we would
like to suggest that providing access to this type of guidance is absolutely critical to
the nourishment and growth of Digital Humanities—the mentor can guide them
through this process, pointing out what is authentically new and what is primarily a
reframing of traditional research methods within a new context.” Here is a sketch

"Dave Perry discusses alternative ways of engaging in Digital Humanities, and what unites those
perspectives is a contextualizing of digital humanists primarily as humanists who engage with
digital methods or materials, rather than as computer users who are interested in the humanities
(Perry 2012).

30ur discussion in this chapter presumes a DH mentor because we are writing about curriculum
and about pedagogy, but the DH mentor may be a teacher, a workshop facilitator, a professional
colleague, or a fellow learner. Not all would-be digital humanists have equal access to training and
education, and especially in contexts where one-on-one DH mentors may not be available, new
learners will find themselves welcome in online DH communities, such as the Digital Humanities
Questions and Answers Board of the Association for Computers and the Humanities (http://
digitalhumanities.org/answers/), which also runs an organized mentoring program (http://ach.org/
activities/mentoring/), or the TEI-L mailing list run by the Text Encoding Initiative (see http://
www.tei-c.org/Support/ for information about subscribing and searching the archives). For further
information about mentoring opportunities, see also Lisa Spiro’s “Opening up Digital Humanities
education” (Spiro 2012, esp. “Coaching,” pp. 353ff), which extends her earlier work (Spiro 2011).


http://digitalhumanities.org/answers/
http://digitalhumanities.org/answers/
http://ach.org/activities/mentoring/
http://ach.org/activities/mentoring/
http://www.tei-c.org/Support/
http://www.tei-c.org/Support/

Task-Driven Programming Pedagogy in the Digital Humanities 67

of the typical process of pursuing computationally inflected research in the
humanities*:

1. Have a humanities-based question that you would like to explore.

2. Be familiar with not only the scope, but also the types of evidence that are
available to you.

3. Be aware of one or more digital approaches that will be effective in helping you
explore your question. Select the approach that is best suited to the available
evidence.

4. Identify a digital tool that implements your preferred approach and that is

suitable for your needs, skills, and time commitment. If no suitable tool is

available, create one, which may mean first acquiring the skills to create one.”

Acquire the tool and install it onto a machine you know how to control.

6. Using an iterative approach, learn to use the tool well enough that you can apply
it effectively to your question.

7. Interpret your results thoughtfully, appropriately, and thoroughly.

e

Creating such a list has the unfortunate rhetorical effect of suggesting that its order
might somehow be dogmatic. This is not the case here, but we do wish to argue that
this particular order makes coherent sense, and our discussion below is organized
around it.

Step 1: Have a Humanities-Based Question

In any type of academic research, beginning with a question in mind is not nec-
essarily self-evident, nor is it always the best place to start. It has been our peda-
gogical experience, however, that humanists who are new to Digital Humanities
often have the greatest success by beginning with a research question. Trevor
Owens wrote an insightful piece in 2014 entitled “Where to Start? On Research
Questions in the Digital Humanities,” which briefly elucidates the intricate dance
between tools and questions that scholars, including digital humanists, perform in
practice (Owens 2014).° It has rarely been the case that research questions spring
fully formed from the scholarly brain, like Athena from the head of Zeus. As

“These steps have been honed through practice and iteration over the course of the past few years
in Alison Langmead’s pedagogical work teaching the Digital Humanities to graduate students in
both the School of Information Sciences and the Dietrich School of Arts and Sciences at the
University of Pittsburgh (Langmead 2015, 2016).
3See “Yes, you can build your own tools,” below.

SThis particular conversation about beginning with tools or questions was instigated by a Tweet
from Tom Scheinfeldt asking the community for advice for new DH’ers (Scheinfeldt 2014) and its
concomitant replies. Also relevant is Scheinfeldt’s contribution to the 2012 Debates in the Digital
Humanities volume (Scheinfeldt 2012).



68 D.J. Birnbaum and A. Langmead

humanities researchers, we work with the knowledge and tools we have, from the
archives to the essay, to craft our questions and our responses, and the questions
themselves frequently evolve as part of that process. Yet starting from a research
question can serve to contextualize and motivate the acquisition of technological
skills. As Simon Mahony and Elena Pierazzo write, “digital humanities teaching
needs to be relevant to the students’ studies or research interests” (Mahony and
Pierazzo 2012, p. 224).” In a DH context, research questions scope out a terrain and
give humanists an investigative center from which they can explore unfamiliar
digital pathways. They can serve as a touchstone to return to when the path ahead
seems unfamiliar.

On the other hand, as scholars become more familiar with the scope of digital
approaches that exist, playing around with the tools can then take on its own
importance. Perhaps the best-known paean to allowing research questions to grow
and change in response to non-directed play is Stephen Ramsay’s “The
Hermeneutics of Screwing Around; or What You Do with a Million Books,” which
asks “whether we are ready to accept surfing and stumbling—screwing around,
broadly understood—as a research methodology” (Ramsay 2010, p. 7).* Here,
Ramsay discusses the joys of search, but also the joys of browse, as scholars allow
themselves to consider alternatives and see where their tools might lead them that
they might not have visited otherwise. The focus of Ramsay’s essay is on the
exploration of existing reference resources (he contrasts traditional, organized
bibliographic searching to impetuously following serendipitous links in a web
browser, unconstrained by an original research question), but the context can be
adapted from discovering existing content in books or on the Web, without a
consistent, directed goal, to creating new exploratory views and visualizations with
analytical digital tools and programming languages, in this case without a consis-
tent, directed research question.

It is our experience that this exploration (or play) is most productive when
fluency (or, at least, operational comfort) with some digital approach has already
been achieved. For DH newcomers who have not yet developed this fluency, the
role of the DH mentor in the formulation of a research question may be important
for avoiding false starts and dead ends, whether the guidance provided is general
and limited, concentrating on perspectives and methods with broad application in
Digital Humanities, or domain specific, in situations where the mentor happens to
share a research interest with the learner. The process of creating an insightful
question in the humanities—with or without a digital inflection—is both chal-
lenging and of paramount importance.

7Emphasis added. We return to the crucial role of domain-relevance in “Task-driven programming
pedagogy,” below.

8See also Jentery Sayers’s work, which compares teaching code to teaching literature or language
(Sayers 2012, esp. pp. 289-91).



Task-Driven Programming Pedagogy in the Digital Humanities 69

Step 2: Be Familiar with the Scope and Types of Evidence
You Have Available

Step 2, or knowing what type of evidence you can bring to bear on your question,
does not deviate from the humanities research tradition either, although the digital
context does call scholars’ attention to both the content of the evidence that they can
use to make their arguments and its structure or format. Newcomers to Digital
Humanities may not know initially which types of evidence will be most productive
in a digital context, but the more they know about the data they have at their
disposal, the more effective their engagement with that data will be. DH mentors
can again be of great help at this stage, because they can facilitate a conversation
about the types of evidence that are best suited to digital approaches, and can help
the new DH scholar understand the time and expense involved in certain digiti-
zation processes—for example, the highly time- and labor-consuming task of
extracting fielded data from a narrative text.

Steps 3, 4, and 5: Identifying a Digital Approach
and Identifying and Acquiring a Digital Tool

Neither step 3 (being aware of your digital options) nor step 4 (selecting the most
promising of those options) needs to deviate from the process that a humanist might
use when producing a traditional written essay, outside the digital context.
Furthermore, all three of these steps, including step 5 (using your chosen digital
tool), could be considered identical to their non-digital counterparts if one simply
replaces “digital approach” with “rhetorical strategy” and “digital tool” with “essay
format.” However, at these steps, the learning curve for understanding that the
various digital approaches will require of a scholar is steeper than that of selecting a
rhetorical strategy, in part because a variety of rhetorical strategies have been
introduced to scholars throughout their educational careers in ways that digital
approaches have not, but also in part because digital approaches are not truly one
type of tool. The digital computer was touted as the universal machine for a
reason—it can process any idea that can be written as an algorithm. This has created
a vast domain of options in a context where different digital techniques require
vastly different sets of skills. For example, the scholar who wishes to implement
topic modeling will need a different set of learning experiences from the scholar
who wishes to use GIS to map some form of geographic change over time. Types of
digital methods differ more from one another than types of written essays—or, at
least, that will be the perception of a scholar who is new to digital technologies but
experienced in writing essays.



70 D.J. Birnbaum and A. Langmead

It is especially in steps 3, 4, and 5 that the role of the DH mentor can come to the
fore. Since the decision space inherent in step 3 is extremely large, there is no
reason to assume that any given humanists will know what sorts of digital
approaches they might bring to bear on their questions, much less what precise tools
they will then need to know how to use—whether that be mySQL, Python, Excel,
or something else.” DH mentors are important at this juncture to offer ideas and
explanations, as well as—most critically—to steer scholars away from well-known
pitfalls, such as when the approach seems exciting at first, but the available data are
either lacking or inappropriate to it. DH mentors also need to balance the
pre-existing strengths and skills of the scholar with the training and time available
to progress from ideation to actualization of the research methodology.'®

Step 5, acquiring the tool and installing it on a machine that the researcher
controls, is a question not only of time and desire, but also often of financial
resources. Familiarity with command line interfaces is something that any DH
researcher with a laptop can acquire, but having access to a Linux machine fully
connected to the Internet is not merely a question of hard work and persistence.''
Many high-quality DH projects operate entirely with free (that is, no-cost) software,
but that is of little use to a newcomer who is baffled by the documentation (or
perhaps by the absence of documentation). This is another area where the DH
mentor can be of great assistance. Selecting approaches and tools that are within the
current logistical constraints is a critical component of DH research. Much frus-
tration and many abandoned projects can be avoided by matching what is desired in
the abstract to what is possible in the real world. We will say more about selecting
tools below, where we also contrast selecting tools with building your own.

“Two of the most extensive inventories of tools available to the Digital Humanist are Alan Liu’s
DH Toychest, http://dhresourcesforprojectbuilding.pbworks.com/w/page/69244319/Digital%
20Humanities%20Tools, and the DiRT Directory, http://dirtdirectory.org/. Together, these
resources list hundreds of tools among which humanists can browse and search, a quantity that can
feel overwhelming, especially to someone new to the field [and Liu’s Toychest even includes a
section entitled, “Other Tool Lists” (http://dhresourcesforprojectbuilding.pbworks.com/w/page/
69244319/Digital%20Humanities%20Tools#othertoollists), suggesting that the list could be
extended]. Hypertext was designed to allow for an infinitely extensible web of logical connections,
which means that it is well suited to representing the realm of interconnected lists of DH tools.

'Time constraints play an obvious special role in learning environments that are tied to an
academic calendar. In our courses, where students must progress from no prior technological
knowledge or experience to publishing a completed project on the Internet at the end of a single
fifteen-week semester, we often encourage proof-of-concept implementations. In situations where
the project as conceived would require data preparation at a scale that is not realistic within an
academic semester, reframing the goals as a proof-of-concept implementation allows the learners
to prioritize mastering new tools and skills while working with small, illustrative data, which they
may or may not then augment after the conclusion of the course.

"I'The availability of hardware and Internet connectivity is mediated economically, and not all
learners will have access to first-world resources. See http://go-dh.github.io/mincomp/ for infor-
mation about Minimal computing.


http://dhresourcesforprojectbuilding.pbworks.com/w/page/69244319/Digital%20Humanities%20Tools
http://dhresourcesforprojectbuilding.pbworks.com/w/page/69244319/Digital%20Humanities%20Tools
http://dirtdirectory.org/
http://dhresourcesforprojectbuilding.pbworks.com/w/page/69244319/Digital%20Humanities%20Tools%23othertoollists
http://dhresourcesforprojectbuilding.pbworks.com/w/page/69244319/Digital%20Humanities%20Tools%23othertoollists
http://go-dh.github.io/mincomp/

Task-Driven Programming Pedagogy in the Digital Humanities 71

Steps 6 and 7: Learning the Tool and Interpreting the Results

Steps 6 and 7 are, again, no different from traditional humanities methodologies.
Knowing your question, understanding your evidence, your preferred method-
ological approach, and the tool(s) you will use to perform your work is a responsible
way to undertake both digital and non-digital research projects. Acquiring the tools
and then taking the time to learn how to work with them in the context of your own
domain are equally important—and, for the humanist scholar, equally familiar—
steps on the path to creating effective, creative, thoughtful research. Learning how to
interpret the results (including the output of the tools you have used) in an attentive,
appropriate, and thorough manner is the work of the humanities itself. It is no
different from any other way of performing humanities research.'” Being a beginner
at an otherwise advanced stage of one’s education can be a frustrating experience;
what can help ameliorate the frustration is recognizing that even a novice in the D of
DH can draw on a substantial education and background in the H.

Yes, You Can Build Your Own Tools

As we argued earlier, computationally inflected research in the humanities, like
research in the humanities in general, typically seeks to engage with, explore, and
answer research questions. In some instances, the principal output of the research
may be an analytic report, while in others the result supports analytic inquiry by
others without foregrounding its own analysis. This second type of output is a
familiar paradigm in non-digital humanities scholarship, such as scholarly editions
of texts, where scholarly analysis on the part of the editor informs every stage of the
selection, transcription, evaluation, analysis, and presentation of primary material,
but where those scholarly interventions and interactions are embedded in a research
resource other than a narrative essay. Transplanted to a digital context, in a research
report we might ask and answer our own question using digital tools and methods
and present the results of that analysis in narrative form, while in a digital edition
our goal might be to create new resources that will enable others to explore and
query materials in ways that would not be possible without the use of digital
methods. In either case, the application of digital tools and methods is fundamental
to conducting or facilitating humanistic inquiry."?

12Stephen Ramsay and Geoffrey Rockwell explicitly compare the role of writing and coding
(which we understand broadly to include not only programming, but also markup) in the conduct
and performance of scholarship in their contribution to the 2012 Debates in the Digital Humanities
volume (Ramsay and Rockwell 2012, esp. the concluding paragraphs).

13As Matthew Kirschenbaum writes, “[clomputers should ... be understood as engines for creating
powerful and persuasive models of the world around us. The world around us (and inside us) is
something we in the humanities have been interested in for a very long time” (Kirschenbaum 2009,
p. B10).



72 D.J. Bimbaum and A. Langmead

So where do the tools of Digital Humanities come from? Much as we argued
earlier that scholarly inquiry is often most productive when it is motivated by an
initial research question (even if that question later changes in response to
serendipitous discoveries), our experience has been that innovative digital
humanities research is most likely to emerge when the research question also
precedes the identification and selection of tools. We fully recognize that gaining a
personally useful understanding of the universe of possible digital tools and
approaches is a difficult and time-consuming prospect. Moreover, selecting from
this large set of available options is no less difficult, especially for newcomers to the
field. It is this yawning domain of open opportunity that can feel daunting to
humanists whose methodological boundaries once seemed so clearly set. Having a
solid research question, as mentioned above, can be a touchstone, and DH mentors
can serve as critical guidance, even lifelines, in this process. However, we also
believe that the very practice of computer programming itself can empower
researchers to take control over this decision space, and training humanists to
construct narrowly focused, task-driven digital tools of their own provides a critical
pedagogical opportunity.

Once we have identified a research question and an approach, if a tool exists that
is truly appropriate for our purposes, it would be foolish not to consider using it, but
if not, before we reject an otherwise exciting research question because nobody has
built the tool for us, we should consider building it ourselves. As Joris van Zundert
reminds us, at least with respect to some DH software:

[T]ool building is not a mere research-independent act to enable data processing. Rather, it
is the act of modeling humanities data and heuristics as an intrinsic aspect of research. Tool
and software development thus represent in part the capture and expression of interpreta-
tions about structure and properties of data, as well as interactions with that data. (van
Zundert 2012, pp. 165-186)"

From this perspective, creating tools, and not merely using them, can function as an
interpretive aspect of performing humanities research. One of the authors of this
chapter (AL) has had the recent experience of teaching introductory courses in the
Digital Humanities to graduate students in the Information Sciences as well as in
the Humanities, and her observations confirm our intuition that the humanists tend
to have an easier time forming a research question, while the information scientists
tend to have an easier time becoming familiar with the tools. From a teacher’s
perspective, then, beginning with a question may work best when you are teaching
humanists. Thinking about tools and their applications to the humanities, on the

"“In another essay, Joris van Zundert and Ronald Haentjens Dekker explore in more detail the
extent to which the creation of software tools (not digital editions or other end-result publications)
can be considered humanities scholarship. Their analysis of the question distinguishes enabling
and performative aspects of software, arguing that the latter embeds more scholarly assumptions
and decisions, and may therefore be seen as having a more scholarly nature (van Zundert and
Haentjens Dekker 2015).



Task-Driven Programming Pedagogy in the Digital Humanities 73

other hand, can be a great way to get information scientists to understand the
interpretive complexity of humanities data.'®

We have used the term “tool” to refer to pre-existing software packages, but
van Zundert’s observation encourages us to consider whether developing tools can
itself constitute humanities research, and not just a way of enabling us to conduct
research once the development has been completed. Andrea Laue, citing Karl Marx
and Lewis Mumford, offers the following insight:

Marx writes that the origin or impetus of movement is the essential difference between a
tool and a machine: with tools, movement originates in the laborer; with machines,
movement issues from the mechanism itself (1867: 409). Working in an environment with
machines requires education, that the body be trained to move along with the uniform and
relentless motion of the mechanism (1867: 408). Conversely, the tool allows the laborer
freedom of movement, an opportunity for motion independent of the mechanism. Working
from Marx, Mumford associates tools with flexibility and machines with specialization. The
essential difference, according to Mumford, is the degree of independence of operation. To
summarize, a man works with a tool as an extension of his own body (and perhaps his own
mind)'i 6in contrast, a machine employs a man as an extension of its own mechanism. (Laue
2004)

Laue’s formulation invites us to consider software products developed by others
that we may then employ not as tools, but as machines, insofar as they circumscribe
the flexibility and independence of the researcher. This type of limitation is most
obvious with respect to the actions we can perform, but, if we let them, black-box
tools can also restrict the research questions we are able to ask to the domain of
actions that others have chosen to facilitate for us.

Employing programming languages to build our own analytic tools, on the other
hand, is consistent with Laue’s (and Marx’s and Mumford’s) definition of tools as
enabling researchers to do whatever they want, instead of operating in an envi-
ronment where the preexisting software (or perhaps its developer) has defined (and
thus constrained) the terms of engagement. Moreover, knowing the process of
producing computer software can also allow humanists to work more effectively
within, and sometimes around, the initial user expectations for existing software
packages—that is to say, it can teach humanists both to create their own tools and to

SPerhaps surprisingly, although a programming or other technical or technological background
might be expected to (and often does) convey advantages in mastering new computational
methods, our students with a strong computer science or information science background have
sometimes also been the most resistant to learning new technologies, insisting on the greater ease
of using the tools and methods they have already mastered even when those may not be as
appropriate for their tasks as those we introduce in our courses. Assuming no difference in the
quality of the end product, it makes sense in a production environment to get the job done as
efficiently as possible, and avoiding a new learning curve is a sensible consideration. What
surprises us is the invocation of that argument in a classroom, where, after all, learning to do
something one does not already know how to do is largely the point of the educational enterprise.

1We are grateful to our colleague Aaron Brenner for bringing this citation to our attention.



74 D.J. Birmbaum and A. Langmead

hack others that are handed to them. We will continue to use the term fool in this
chapter in its vernacular meaning, that is, to refer to both software products and
computer programs that humanists develop themselves for their own research
purposes, but the distinction between machines and tools underlies our advocacy
for a digital competence for humanists that embraces programming, and not only
the use of existing software packages.

Languages and Humanities Research

Humanists who have never thought of learning a programming language might
consider that acquiring a reading knowledge of research languages—that is, human
languages used in scholarly publications in our fields even where those languages
are not themselves our primary object of study—has long been a required com-
ponent of professional training in many humanities disciplines. Nonetheless, there
is at least one reason that humanists who accept the acquisition of professional
reading competence in research languages as part of our basic training may have an
instinctive perception of learning a programming language as something alien. Just
as the use of the analytic essay has been embedded in our traditional training,
humanists learn to read human languages because it has been part of our education
and professional training, an education and training that typically will not have
prepared us to know how to acquire technical skills. At their most basic level,
though, research languages and programming languages are both skills humanists
may need to acquire in order to conduct basic humanities research about something
else. So how might humanists, deeply embedded in a training that is already replete
with requirements and traditions, nonetheless learn to create and work with their
own digital tools, that is, to write computer programs that enable new types of
humanities research?

One superficially appealing but ultimately unsatisfactory answer to this question
involves an appeal to collaboration, where the humanist formulates the research
agenda and a programmer builds the tools. We are supportive of collaboration (see
below), but it should not be our first recourse for at least three reasons. The first
reason is that a more accurate term for the preceding description would be com-
partmentalization, rather than collaboration, and it entails a risk that the humanist
will not learn much about how computation can serve humanistic research and the
programmer will not learn much about how humanists formulate and think about
research questions. The second reason is that, even under the best of circumstances
(intelligent, intellectually curious, and professionally generous colleagues), the risk
of missed opportunity is great because the humanist may not know what is possible
computationally and the programmer may not understand what is interesting to a
humanities scholar—that is, it may be that neither knows how to ask the questions
that would bridge the divide. The third reason 1is that this sort of



Task-Driven Programming Pedagogy in the Digital Humanities 75

compartmentalization reinforces the common and self-defeating assumption that
computation is fundamentally external to humanistic inquiry and humanistic ways
of thinking. All academic inquiry relies on tools and methods and methodologies,
and part of our professional preparation (not only in our graduate-student days, but
throughout our careers) involves learning to use those tools and methods and
methodologies to conduct our research. We already learn to approach cultural
objects from a variety of perspectives, some more intuitive and natural for us than
others, and engaging with cultural objects computationally is ultimately just another
perspective, and one that need not be regarded as so fundamentally alien to
humanistic methods that we must subcontract others to perform it for us. There are,
to be sure, times when we consult or collaborate with computational professionals,
just as we consult and collaborate with non-computational colleagues in traditional
but (for us) ancillary humanistic disciplines where the amount of knowledge
required is greater than we can acquire ourselves. But Ted Underwood encourages
us to consider the absurdity of outsourcing all of the computational work in
humanities research by turning the tables: “Expecting computer scientists to do all
the coding on a project can be like expecting English professors to do all the
spelling” (Underwood 2014, n.p.).

Our argument is not that every humanist needs to learn to code,'” but that
humanities scholars whose research would benefit from the use of digital methods
ought to be given access to more focused, domain-specific opportunities to acquire
the knowledge and skills needed to conduct that research. And if the research
agenda cannot be seen to completion entirely with existing software tools,
humanities scholars should be encouraged to build their own. This does not mean
that humanists should become experts in computer science, or even in computer
programming, any more than art historians who photograph paintings for use in
their research become scholars of photography or, for that matter, that humanists
who write scholarly articles become scholars of writing. Moreover, proficiency in
software creation enables more effective, authentic collaborations with software
programmers who are true, fluent masters of their domain. Coding across the dis-
ciplines is similar to writing across the disciplines, and just as no researcher would
say “I can’t write articles and books because I’'m not a word person,” no researcher
need say “I can’t write programs because I’'m not a computer person.” But if you
nonetheless think you are not a computer person because you have not had the
opportunity to learn programming the way you have been learning writing all your
life, how do you learn to code?

"We use “code” here to refer to computational processing in programming languages, but also to
other computational interventions with cultural texts, such as the use of markup languages
(sometimes distinguished as “encoding”, with “coding” reserved for programming). We distin-
guish this type of coding from other uses of software, such as a word processor for editing text or
an image editor for editing graphics, by a conscious focus in coding on controlling the terms that
will govern machine interaction with and operation on the object of study.



76 D.J. Bimbaum and A. Langmead

Task-Driven Programming Pedagogy

The first step toward learning to code is to recognize that computer programming is
not computer science; it is more like writing.'® Everyone can learn to do it, and can
be given the opportunity to learn to do it in ways that are appropriate for their
disciplines. We offer humanists years of practice in learning to write; let us give
them the chance also to learn to code. The second step is to recognize that learning a
programming language is like learning a foreign language, except that it is much
easier."” A medieval Islamic historian of our acquaintance who works with volu-
minous textual sources spent ten years learning Classical Arabic so that he could
conduct his research. He spent just a few months learning to perform targeted tasks
in the Python programming language that make him a more effective and successful
historian. He is not a computer scientist, or even a specialist in Python; he is a
humanities scholar who learned to use a tool to conduct his humanities research.
The third step is to recognize that computer programming can be likened to
cooking. Not everyone can pull off a multicourse meal with a large guest list where
the hot food is still hot when served. But anyone can learn to cook, and being able
to cook gives you dietary options you would not have otherwise. Similarly, basic
mastery of a programming language that is plenty good enough to support real
research is within the grasp of any humanist.

In order to teach humanities scholars how to learn to use a programming lan-
guage, we look for inspiration to the transition in foreign language pedagogy from
the grammar and translation model that predominated half a century ago to the oral
proficiency model that is common today.?® The grammar and translation approach
is encyclopedic (it aims to teach the grammar of a language comprehensively and in
a way that is organized by grammatical topic) and knowledge based: students learn
a particular grammatical construction and they learn vocabulary, which they may
then practice in written translation or composition or in conversation. In this
knowledge-based model, the grammar and vocabulary of the language are the
objects of study. The oral proficiency approach, on the other hand, is task-based:
language learning is organized not by knowledge units (grammatical topics,
vocabulary items), but by communicative tasks, such as conversing about your
family, about your studies, about your hobbies, about current events, etc. Learners

"®This paragraph is based on David Birnbaum’s March 2014 address to the University of
Pittsburgh Faculty Senate (Birnbaum 2014).

"The observation that the experience of learning programming languages is similar to that of
learning human languages can be found in Janis Chinn’s and Gabrielle Kirilloff’s “Can humanities
undergrads learn to code?” (Chinn and Kirilloff 2012). The authors were undergraduate humanities
students and DH teaching assistants when they contributed this essay in January 2012 to Techne,
the former blog site of the National Institute for Technology in Liberal Education [NITLE].
*Information about oral proficiency as a perspective on and methodology in second language
acquisition and assessment is available at the University of Minnesota Center for Advanced
Research on Language Acquisition (CARLA), http://carla.umn.edu/assessment/MLPA/CoSA.html


http://carla.umn.edu/assessment/MLPA/CoSA.html

Task-Driven Programming Pedagogy in the Digital Humanities 77

acquire vocabulary and grammar, of course, but the learning is organized around
using the language in communicative contexts, rather than around knowing
grammatical or lexical facts. For full near-native mastery of a language one
eventually needs to acquire the grammatical knowledge and breadth of vocabulary
of an educated native speaker, but one can communicate in many meaningful
situations with less than full near-native mastery of a language. What is distinctive
about oral-proficiency-oriented language learning, then, is the focus on being able
to participate in communicative situations, rather than on learning facts about the
language.

Textbooks for learning programming languages (including teach-yourself books)
are often organized like reference grammars of human languages, with chapters like
“data types” (treating, one after another, strings and integers and doubles and floats
and lists and multidimensional arrays, etc.) or “control structures” (if-then-else, for,
while, until, etc.). And when we look at the top hits of an online search for a
combination of “syllabus” and “computer programming with ...” (filling in the name
of a programming language), many courses are organized in the same encyclopedic
way.”! But, just as in the case of the movement away from a grammatical focus in
language teaching to an oral-proficiency focus, there is another type of programming
textbook and another type of course: the task-based, proficiency-oriented one. Books
of this sort sometimes include the word “cookbook” in the title,”> and what char-
acterizes these books (and courses that follow the same model) is that they are
organized not around learning, say, all of the numeric data types and then all of the
non-numeric simple types and then all of the complex types, but around accom-
plishing specific coding tasks. Both types of textbooks include coding exercises, but
the difference in perspective is crucial: in an encyclopedic textbook or course, the
exercises exist in order to illustrate and practice specific features of the language, and
the task may be contrived to provide an opportunity to practice those features. In a
proficiency-oriented textbook or course, though, the exercises are—from the
beginning—about learning to get things done in the language, and in a course for
humanists, those tasks should be something that make sense in the context of
humanistic inquiry. As Clifford Anderson writes about a proposed textbook for
digital humanists, “the sample applications in this proposed textbook should center
on narrative documents and, for the most part, avoid mathematical examples. In
other words, if you plan to teach recursion, build an algorithm to validate palin-
dromes rather than solve the Fibonacci sequence” (2014, n.p.).

2ISee, for example, the textbook to accompany Princeton University’s “Introduction to
Programming in Python,” (Sedgewick et al. 2015). This material is described as “a textbook for a
first course in computer science for the next generation of scientists and engineers” on the
“booksite” found at http://introcs.cs.princeton.edu/python/home/. As may be appropriate for that
audience, the approach to teaching Python is organized around computer science concepts and
Python features, which it illustrates with examples and applications.

22See, for example, David Beazley and Brian Jones’s 2013 Python Cookbook (Beazley and Jones
2013).


http://introcs.cs.princeton.edu/python/home/

78 D.J. Birnbaum and A. Langmead

Insofar as validating palindromes is also not a task commonly needed in actual
DH research, we would go beyond Anderson and argue that teaching recursion
should not be a course goal for which we then seek out a humanities-friendly task.
The time to teach recursion is when you need it to perform a task that makes sense
in the context of a real DH research question. For example, the time to teach
recursion in an XSLT course might be the time students need to perform a task that
would require them, in a procedural programming language, to modify the value of
a variable.”> That is, the task should not be invented to illustrate the method (in this
case, recursion); rather, if the motivation is completing a natural humanities
research task, it encourages not only learning the method, but also remembering
why and where it is useful for digital humanists.

Encyclopedic textbooks play an important role in the study of human languages
in situations where the audience is linguists for whom the language itself is the
primary object of study, which is a different audience than people who want to learn
to communicate in a language. Similarly, encyclopedic textbooks of programming
languages make obvious good sense where the emphasis is as much on computation
and on the programming language itself as it is on performing specific tasks.
Furthermore, insofar as encyclopedic textbooks may include clear explanations,
they may nonetheless have value as reference manuals even for proficiency-oriented
learners. Our reservations are not about encyclopedic organization in general, but
about letting it serve as the structural core of an introductory syllabus. In the
computational methods courses we offer to undergraduate and graduate students,
we emphasize that learning to write programs and use digital methods in order to
conduct research in the humanities requires learning three broad, general things:

e Algorithmic thinking. Algorithmic thinking in a humanities context means
that, for example, if you want to find out which characters speak in which act of
a Shakespearean play, you can ask one question in a loop over the acts instead
of five separate but almost identical questions, one about each act (Birnbaum
2015). And it also means that if you want to create a word-frequency list for a
text, you need to recognize that task as consisting of small subtasks, such as
breaking the text into words, identifying the distinct words, counting the
occurrences of each distinct word, etc.”* Digital humanists may someday need
to know about big-O complexity and other foundations of algorithms as
understood in computer science, but what humanists need to acquire immedi-
ately about algorithms is the ability to distinguish what the human does better
than the computer from what the computer does better than the human, and the

ZXSLT is a declarative language that does not permit the redefinition of a variable. The use of
recursion as an alternative to iteration in XSLT is discussed and illustrated in Michael Kay’s XSLT
2.0 and XPath 2.0 (Kay 2008, pp. 992-1000).

24A humanist new to digital methods is likely to start by tokenizing on white space, whereupon the
appalling initial output quickly reveals the need to decide how to handle punctuation, contractions,
upper and lower case, etc. Overlooking those sorts of issues initially isn’t an error; it’s a natural
part of a strategy that closes in on a solution by starting with the obvious and letting specific
erroneous results guide the further development.



Task-Driven Programming Pedagogy in the Digital Humanities 79

ability to break large, vague tasks into small, specific tasks. This requires
learning to be explicit and precise in situations where humans may not otherwise
have to be,25 but it is not computer science.

e Looking stuff up. A proficiency-oriented approach to learning to code in a
world where a lot of information is encyclopedic means learning to do what
professional developers do, that is, to look stuff up, whether by treating the
encyclopedic textbook as a reference manual, through a well-formulated Google
query, or by engaging in targeted searching in on-line communities like
StackOverflow. Digital technologies change too quickly for it to be practical to
learn something comprehensively and then practice it for the rest of our careers.
Learning to perform computational Digital Humanities in a way that lets us get
our work done does not mean learning an entire programming language from a
textbook. It means learning how to break down a big task into small ones (the
algorithmic thinking part) and then learning how to look up how to do the small
ones. This lesson is as valid for creating your own tools as it is for learning how
to play in and around someone else’s.

e Incremental development and iteration. When humanists write scholarly
articles, some work from an outline, while others write an entire first draft and
then go back and revise. But nobody writes a computer program as an entire first
draft because when it breaks, as it inevitably will, finding the errors turns into a
guessing game. Working from a skeleton with stubs (corresponding to the small
tasks identified when thinking about the logic of the problem), and writing,
testing, and debugging incrementally is a new paradigm for many humanists, but
itis not hard to learn. If you do only one thing at a time and then test it, if it breaks
your code, you know where the error lies and you can fix it. There is a common
assumption among new learners that digital methods will work right away if you
just “do it correctly.” This is rarely, if ever, the case because, no matter how much
experience we have, we rarely, if ever, do it correctly the first time. Incremental
development and iteration are key to the computational Digital Humanities.

Teaching humanists to code can be tackled in the same way we approach our own
programming tasks: by focusing on algorithmic thinking, looking stuff up, and
robust, iterative, incremental development. As instructors and DH mentors, we
introduce our students to the methods and the sorts of tasks that digital humanists
have to complete, we guide them to the reference resources that we find most useful
in our own work, and we review their code and help them distinguish patterns from
anti-patterns. What we do not do is first teach them abstractions like numeric
datatypes or control structures and then give them non-contextualized (or even
contextualized) exercises for practice. Our teaching is like our own on-going
learning: it is organized around scaffolded goal-driven tasks that resemble what we
use in our own work.

ZFor example, a recipe that tells a human to scramble eggs doesn’t have to tell the human to break
the shells first, but a computer program that reads a file from a disk may have to open the file
explicitly first.



80 D.J. Birmbaum and A. Langmead

Examples Matter

Embedding this heuristic understanding of what it takes to code in the context of
research within the curriculum of the humanities itself is important for successful
DH pedagogy. For best effect, therefore, identifying tasks that humanists might need
to accomplish within the context of humanist inquiry is critical. As mentioned above,
the Fibonacci sequence is a fascinating mathematical pattern, but is not commonly
needed in the study of nineteenth-century photography, and confusion and alienation
can ensue when we ask humanists to learn a digital method within a completely
unfamiliar context. Examples of this struggle can easily be found in a number of the
pre-existing educational supports available now to DH learners and DH mentors,
including Lynda.com and YouTube videos. These resources are beneficial to DH
pedagogy, but they have the disadvantage of being directed towards an audience that
is largely assumed to be working within a business, rather than academic, context.
This choice is understandable from the point of view of, say, Lynda.com’s business
model, but for digital humanists the use of business examples can provide an
obstacle to effective learning, especially for newcomers to the field who are not
accustomed to abstracting programming (or computer science) principles away from
the particular situated examples being used in the demonstrations.

Training videos on data modeling provide an excellent case study of the impact
that the choice of examples can have on learners. Lynda.com’s “Relational
Database Design with FileMaker Pro” teaches this approach to organizing digital
information by using the common customer-orders-products paradigm, wherein
there are a number of customers who can place a number of orders, each order
being made up of a selection of products, any of which can be purchased in any
quantity (Ippolite 2015). This is unquestionably a prototypical use case for rela-
tional databases, and it affords the trainer the opportunity to explain the vast
majority of concepts entailed in designing such databases. Indeed, the course
“Relational Database Fundamentals,” which is slightly more tool-independent than
the FileMaker course, also focuses on business needs, using examples from the
fictitious Two Trees Olive Oil Company and the Explore California Tour Company.
Business contexts such as these force digital humanists to do quite a bit of trans-
lation work; after all, as a rule, humanists are not attempting to model customers,
orders, or products, and may even be as unfamiliar with this use case as they are
with the concept of one-to-many relationships.

YouTube’s tutorial videos use similar domains to explicate data modeling.
A number of approachable videos have been posted, most of which use business case
studies as examples. Gina Baldazzi has contributed an “Entity Relationship
Diagram (ERD) Training Video,” which has 362,000+ views, and uses a university
registrar’s database as its example (Baldazzi 2013). Indeed, registration is also a
common theme for database concept videos, perhaps because the one-to-many
relationship between a student and classes is crystal clear (Glasser 2011). But the
most memorable example of these eminently clear, but non-humanities-research-
related, contexts for relational database modeling problems belongs to Mr. B’s Code



Task-Driven Programming Pedagogy in the Digital Humanities 81

Academy lectures on normal forms ([Mr. B’s Code Academy] 2012). His on-the-fly
use of Excel to explain the problems at hand is helpful for new learners in many
ways, but his choice of a pizza delivery business as his example has led students in
the humanities to ask us, “What are the ‘pizza toppings’ again for my data model of
German Conceptual Art in the 1960s?2°

In the Lynda.com tutorial first mentioned, “Relational Database Design with
FileMaker Pro,” the trainer does, only briefly, switch to a slightly more
humanist-friendly example, that of modeling the appearances of actors in movies.
This example is well suited to discussing the perils of instantiating many-to-many
relationships, and affords the humanist a more welcoming entrée into these prin-
ciples (even if, in this case, a humanist may take issue with the simplicity of the
example). At this point in the trajectory of the practice of the Digital Humanities,
more pedagogical tools could certainly be created that treat authentic humanities
examples at their true level of complexity, allowing newcomers to the field not to
stumble over the intricacies of data taken from an unfamiliar domain. Of course,
each domain within the humanities might need its own examples—an art historian
does use dramatically different data from a scholar of Slavic languages—but this
might perhaps be addressed through “user active” tutorials.”” The best of these new
tools could be driven by user-chosen tasks, and would therefore naturally be
domain-specific.

A preference for examples drawn from DH research raises another issue that will
be familiar from foreign-language pedagogy: the challenge of using authentic
materials in the elementary classroom. Authentic examples of language as used by
real native speakers (that is, not made up by teachers to illustrate grammar or
vocabulary) may contain much that is new to the beginning learner, and the same is
true of real DH tasks. How can learners engage with authentic materials without
becoming overwhelmed? In foreign-language pedagogy it has become a cliché to
“simplify the task, rather than the text,” recognizing that learners can perform
real-world tasks with authentic materials without understanding every word.”® In
both language learning and DH contexts, this simplification is often implemented
through scaffolding, which is another way of describing the process of breaking a
large, vague, complex task into small, discrete tasks that can be addressed
individually.

*6The pizza-topping model was used explicitly in a DH context by the Text Encoding Initiative in
their TEI Pizza Chef (Text Encoding Initiative 1999).

2"Dan Colman, of the website Open Culture, defines user active tutorials as those where as “users
can...design projects of their own choosing” (2016, n.p.).

28For example, beginning language students may not be able to understand every word of the
listings of film screenings for a foreign city, but those students can typically read the same listings
that native speakers read and identify the name of the cinema and the screening times. Beginning
language students cannot read the web site at a foreign university as easily as the one at their own,
but in the case of many foreign languages they can use international vocabulary to identify courses
in which they might enroll without previously having learned the names of those subjects in the
new language.



82 D.J. Birnbaum and A. Langmead

Conclusions

Our advocacy for a humanities-oriented programming pedagogy for the computa-
tional Digital Humanities emerges first from the many ways in which the compu-
tational Digital Humanities resembles non-computational research methods with
which humanists are already familiar, and we propose exploiting that familiarity to
contextualize the new learning. In particular, some of our observations are inspired
by the lessons humanists have already learned about foreign-language pedagogy,
and specifically about proficiency-based learning and the use of authentic materials
even at a beginner level. Furthermore, to avoid the constraints and risks that come
with allowing the available tools—those produced by humanists and non-humanists
alike—to dictate the entire scholarly agenda, and because the act of programming
can be part of conducting research (and not just preparation for conducting
research), we consider it imperative to demystify programming and empower
humanists to write programs that will do exactly what they need, whether at the
basic or advanced level. Specifically:

The tool we know and the tool we are learning: Conducting digital research in the
humanities has much in common with conducting non-digital research in the humanities.
Instruction (by teachers and mentors) and acquisition (by learners) of digital methods in the
humanities can be facilitated by distinguishing the genuinely new from that which may be
unfamiliar, but which, upon closer inspection and consideration, turns out ultimately to
resemble non-digital methods of humanistic inquiry.

Yes, you can build your own tools: Conducting digital research in the humanities requires
learning to use digital tools. Researchers should start by identifying what they want to
accomplish, and if the tools they need do not exist, they should be given the skills and the
opportunity to learn to make them. In many cases, coding can be an actual part of
hermeneutic practice.

Task-driven programming pedagogy: Learning a programming language may be a new
experience for humanists, but learning something new in order to conduct our research is
familiar. Learning a programming language can be made more accessible through
task-driven instruction, with benefits comparable to those introduced by proficiency-
oriented curricula in foreign-language pedagogy.

Examples matter: Textbooks and video learning resources for digital tools and methods are
often based on examples drawn from the business world. Much as today’s foreign-language
pedagogy makes effective use of authentic texts even at a beginning level, programming
pedagogy for humanists can instead draw on genuine DH research needs as a way of
contextualizing the learning.

References

Anderson, C. B. (2014). On teaching XQuery to digital humanists. In Proceedings of Balisage:
The Markup Conference 2014, Washington, D.C. August 5-8, 2014, 13. doi:10.4242/
BalisageVoll3.Anderson01

Baldazzi, G. (2013, January 29). Entity relationship diagram (ERD) training video [Video File].
Retrieved from https://youtu.be/-fQ-bRIIhXc


http://dx.doi.org/10.4242/BalisageVol13.Anderson01
http://dx.doi.org/10.4242/BalisageVol13.Anderson01
https://youtu.be/-fQ-bRllhXc

Task-Driven Programming Pedagogy in the Digital Humanities 83

Beazley, D., & Jones, B. K. (2013) Python cookbook [ebook]. Sebastopol, CA: O’Reilly.
Retrieved from http://chimera.labs.oreilly.com/books/1230000000393/index.html

Birmmbaum, D. J. (2014). Faculty Senate plenary address. Presented at the Spring 2014 Meeting of
the University of Pittsburgh Faculty Senate, Pittsburgh, Pennsylvania. Retrieved from http:/
www.obdurodon.org/slides/2014-03-19_senate-plenary.pdf

Birnbaum, D. J. (2015, August 23). Thinking in algorithms. Retrieved from http://dh.obdurodon.
org/algorithms.xhtml

Chinn, J., & Kirilloft, G. (2012). Can humanities undergrads learn to code ? Retrieved from http://
dh.obdurodon.org/nitle.xhtml

Colman, D. (2016, March 7). Learn how to code for free: A DIY guide for learning HTML, Python,
Javascript & More [Web log post]. Retrieved from http://www.openculture.com/2016/03/
learn-how-to-code-for-free-a-diy-guide-for-learning-html-python-javascript-more.html

Glasser, M. [Prescott Computer Guy]. (2011, September 30). Relational database concepts [Video
File]. Retrieved from https://youtu.be/NvrpuBAMddw

Ippolite, C. (2015, May 12). Relational database design with FileMaker Pro [Video File]. Retrieved
from http://www.lynda.com/FileMaker-Pro-10-tutorials/Relational-Database-Design-with-File
Maker-Pro/83839-2.html

Kay, Michael. (2008). XSLT 2.0 and XPath 2.0 (2nd ed.). Indianapolis: Wiley.

Kirschenbaum, M. (2009, January 23). Hello worlds. The Chronicle Review, 55(20), B10.
Retrieved from http://chronicle.com/article/Hello-Worlds/5476

Langmead, A. (2015, August 13). Syllabus for the Ph.D. seminar, The Digital and the Humanities.
Fall Term 2015 [Web log post]. Retrieved from http://constellations.pitt.edu/entry/syllabus-
phd-seminar-digital-and-humanities-fall-term-2015

Langmead, A. (2016, July 25). Summer 2016 syllabus: “Digital Humanities,” MLIS Program,
University of Pittsburgh [Web log post]. Retrieved from http://constellations.pitt.edu/entry/
summer-2016-syllabus-digital-humanities-mlis-program-university-pittsburgh

Laue, A. (2004). How the computer works. In S. Schreibman, R. Siemens, & J. Unsworth (Eds.), A
companion to digital humanities (Chapter 13). Oxford: Blackwell. Retrieved from http://www.
digitalhumanities.org/companion/

Mahony, S., & Pierazzo, E. (2012). Teaching skills or teaching methodology? In B. D. Hirsch
(Ed.), Digital humanities pedagogy: Practices, principles, and politics (pp. 215-25).
Cambridge, UK: Open Book Publishers. doi:10.11647/0BP.0024

[Mr. B’s Code Academy]. (2012, November 25). Normalisation 3NF: Third normal form example
[Video File]. Retrieved from https://youtu.be/c7DXeY3allw

Owens, T. (2014, August 22). Where to start? On research questions in the digital humanities
[Web log post]. Retrieved from http://www.trevorowens.org/2014/08/where-to-start-on-
research-questions-in-the-digital-humanities/

Perry, D. (2012). The digital humanities or a digital humanism. In M. K. Gold & L. F. Klein (Eds.)
Debates in the digital humanities. Minneapolis: University of Minnesota Press. Retrieved from
http://dhdebates.gc.cuny.edu/debates/text/24

Ramsay, S. (2010). The hermeneutics of screwing around. Retrieved from https://web.archive.
org/web/20101105171751/http://www.playingwithhistory.com/wp-content/uploads/2010/04/
hermeneutics.pdf

Ramsay, S. (2012). Programming with humanists: Reflections on raising an army of
hacker-scholars in the digital humanities. In B. D. Hirsch (Ed.), Digital humanities pedagogy:
Practices, principles, and politics (pp. 227-39). Cambridge, UK: Open Book Publishers.
doi:10.11647/0BP.0024

Ramsay, S., & Rockwell, G. (2012). Developing things: Notes toward an epistemology of building
in the digital humanities. In M. K. Gold & L. F. Klein (Eds.), Debates in the digital humanities.
Minneapolis: University of Minnesota Press. Retrieved from http://dhdebates.gc.cuny.edu/
debates/part/3


http://chimera.labs.oreilly.com/books/1230000000393/index.html
http://www.obdurodon.org/slides/2014-03-19_senate-plenary.pdf
http://www.obdurodon.org/slides/2014-03-19_senate-plenary.pdf
http://dh.obdurodon.org/algorithms.xhtml
http://dh.obdurodon.org/algorithms.xhtml
http://dh.obdurodon.org/nitle.xhtml
http://dh.obdurodon.org/nitle.xhtml
http://www.openculture.com/2016/03/learn-how-to-code-for-free-a-diy-guide-for-learning-html-python-javascript-more.html
http://www.openculture.com/2016/03/learn-how-to-code-for-free-a-diy-guide-for-learning-html-python-javascript-more.html
https://youtu.be/NvrpuBAMddw
http://www.lynda.com/FileMaker-Pro-10-tutorials/Relational-Database-Design-with-FileMaker-Pro/83839-2.html
http://www.lynda.com/FileMaker-Pro-10-tutorials/Relational-Database-Design-with-FileMaker-Pro/83839-2.html
http://chronicle.com/article/Hello-Worlds/5476
http://constellations.pitt.edu/entry/syllabus-phd-seminar-digital-and-humanities-fall-term-2015
http://constellations.pitt.edu/entry/syllabus-phd-seminar-digital-and-humanities-fall-term-2015
http://constellations.pitt.edu/entry/summer-2016-syllabus-digital-humanities-mlis-program-university-pittsburgh
http://constellations.pitt.edu/entry/summer-2016-syllabus-digital-humanities-mlis-program-university-pittsburgh
http://www.digitalhumanities.org/companion/
http://www.digitalhumanities.org/companion/
http://dx.doi.org/10.11647/OBP.0024
https://youtu.be/c7DXeY3aIJw
http://www.trevorowens.org/2014/08/where-to-start-on-research-questions-in-the-digital-humanities/
http://www.trevorowens.org/2014/08/where-to-start-on-research-questions-in-the-digital-humanities/
http://dhdebates.gc.cuny.edu/debates/text/24
https://web.archive.org/web/20101105171751/http://www.playingwithhistory.com/wp-content/uploads/2010/04/hermeneutics.pdf
https://web.archive.org/web/20101105171751/http://www.playingwithhistory.com/wp-content/uploads/2010/04/hermeneutics.pdf
https://web.archive.org/web/20101105171751/http://www.playingwithhistory.com/wp-content/uploads/2010/04/hermeneutics.pdf
http://dx.doi.org/10.11647/OBP.0024
http://dhdebates.gc.cuny.edu/debates/part/3
http://dhdebates.gc.cuny.edu/debates/part/3

84 D.J. Birnbaum and A. Langmead

Sayers, J. (2012). Tinker-centric pedagogy in literature and language classrooms. In L. McGrath
(Ed.), Collaborative approaches to the digital in English Studies (pp. 279-300). Retrieved
from http://ccdigitalpress.org/cad/Ch10_Sayers.pdf

Scheinfeldt, T. [@foundhistory]. (2014, August 8). I’ve been asked to compile a list of top 10
pieces of advice for new Dh’ers for a group of public humanities fellows. Suggestions?
[Tweet]. Retrieved from https://twitter.com/foundhistory/status/497763193612410880

Scheinfeldt, T. (2012). Where’s the beef? Does digital humanities have to answer questions?
In M. K. Gold & L. F. Klein (Eds.), Debates in the digital humanities. Minneapolis: University
of Minnesota Press. Retrieved from http://dhdebates.gc.cuny.edu/debates/text/18

Sedgewick, R., Wayne, K., & Dondero, R. (2015). Introduction to programming in Python: An
interdisciplinary approach. New York: Addison-Wesley. Retrieved from http://introcs.cs.
princeton.edu/python/home/

Spiro, L. (2011, October 14). Getting started in the digital humanities [Web log post]. Retrieved from
https://digitalscholarship.wordpress.com/2011/10/14/getting-started-in-the-digital-humanities/

Spiro, L. (2012). Opening up digital humanities education. In Brett D. Hirsch (Ed.), Digital
humanities pedagogy: Practices, principles, and politics (pp. 331-64). Cambridge, UK: Open
Book Publishers. doi:10.11647/OBP.0024

Text Encoding Initiative. (1999, October 8). TEI Pizza Chef. Retrieved from http://www.tei-c.org/
Vault/P4/pizza.html

Underwood, T. (2014, March 18). How much DH can we fit in a literature department? [Web log
post]. Retrieved from https://tedunderwood.com/category/dh-as-a-social-phenomenon/

van Zundert, J. J. (2012). If you build it, will we come? Large scale digital infrastructures as a dead
end for digital humanities. Historical Social Research—Historische Sozialforschung, 37(3),
165-186. Retrieved from http://nbn-resolving.de/urn:nbn:de:0168-ssoar-378903

van Zundert, J. J., & Haentjens Dekker, R. (2015, October 29). Code, scholarship, and criticism:
When is coding scholarshop and when is it not? Paper Presented at the Digital Humanities 2015:
Global Digital Humanities Conference, Sydney, Australia, June 29-July 3, 2015. Retrieved from
http://jorisvanzundert.net/wp-content/uploads/2016/02/CodeScholarshipCriticism.pdf

Wing, J. (2006, March). Computational thinking. Communications of the ACM, 49(3), 33-35.
Retrieved from https://www.cs.cmu.edu/ ~ 15110-s13/Wing06-ct.pdf

Author Biographies

David J. Birnbaum is Professor and Chair of the Department of Slavic Languages and Literatures
at the University of Pittsburgh. He has been involved in the study of electronic text technology
since the mid-1980s, has delivered presentations at a variety of electronic text technology
conferences, and has served on the board of the Association for Computers and the Humanities, the
editorial board of Markup Languages: Theory and Practice, and the Text Encoding Initiative
Technical Council. Much of his electronic text work intersects with his research in medieval Slavic
manuscript studies, but he also often writes about issues in the philosophy of markup. Since 2011
he has taught an undergraduate honors course entitled “Computational Methods in the
Humanities”, cross-listed in eight departments, where students learn, hands-on, to use XML and
web technologies to support research in the humanities.

Alison Langmead currently holds a joint faculty appointment at the University of Pittsburgh
between the Dietrich School of Arts and Sciences (DSAS) and the School of Information Sciences
(SIS). At DSAS, Langmead serves as the Director of the Visual Media Workshop (VMW), a
digital humanities lab focused on the investigation of material and visual culture—historical or
contemporary—in an environment that encourages technological experimentation. At SIS,
Langmead teaches courses on digital preservation and the digital humanities. In her research, she


http://ccdigitalpress.org/cad/Ch10_Sayers.pdf
https://twitter.com/foundhistory/status/497763193612410880
http://dhdebates.gc.cuny.edu/debates/text/18
http://introcs.cs.princeton.edu/python/home/
http://introcs.cs.princeton.edu/python/home/
https://digitalscholarship.wordpress.com/2011/10/14/getting-started-in-the-digital-humanities/
http://dx.doi.org/10.11647/OBP.0024
http://www.tei-c.org/Vault/P4/pizza.html
http://www.tei-c.org/Vault/P4/pizza.html
https://tedunderwood.com/category/dh-as-a-social-phenomenon/
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-378903
http://jorisvanzundert.net/wp-content/uploads/2016/02/CodeScholarshipCriticism.pdf
https://www.cs.cmu.edu/%7e15110-s13/Wing06-ct.pdf

Task-Driven Programming Pedagogy in the Digital Humanities 85

designs and produces digital humanities projects that investigate visuality and materiality as a
multivalent, interactive process. Langmead is the Principal Contact for the DHRX: Digital
Humanities at Pitt faculty research initiative, which represents a transdisciplinary network of
scholars at the University of Pittsburgh who use digital methods to study the ways in which
humans interact with their environments, whether social or cultural, natural or human-created.
Langmead holds a Ph.D. in medieval architectural history from Columbia University as well as an
MLIS from the University of California, Los Angeles.



	5 Task-Driven Programming Pedagogy in the Digital Humanities
	Abstract
	Introduction
	The Tool We Know

	Functional Requirements for Getting Started on a DH Problem
	Step 1: Have a Humanities-Based Question
	Step 2: Be Familiar with the Scope and Types of Evidence You Have Available
	Steps 3, 4, and 5: Identifying a Digital Approach and Identifying and Acquiring a Digital Tool
	Steps 6 and 7: Learning the Tool and Interpreting the Results

	Yes, You Can Build Your Own Tools
	Languages and Humanities Research
	Task-Driven Programming Pedagogy
	Examples Matter
	Conclusions
	References




