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ESSAYS IN THE ECONOMICS OF

EDUCATION AND EXPERIMENTAL

ECONOMICS

Gumilang Aryo Sahadewo, PhD

University of Pittsburgh, 2017

This dissertation consists of three studies in the economics of education and experimental

economics. In Chapter 1, I address a debate in the literature about the effects of measures of

school quality on labor market earnings. Using individual-level data, previous studies find no

effects of measures of school quality and a subsequent study argues that the result is driven

by the sample that includes mainly young individuals. I use recent NLSY79 Geocode data

that provides extended earnings observations including prime-age earnings. I find that the

percentage of teachers with a Master’s degree has a positive long-run effect on individuals’

earnings in the labor market. In Chapter 2, we examine the Dell Scholars Program which

provides a combination of financial support and individualized advising to selected students

throughout their postsecondary experience. We capitalize on an arbitrary cutoff in the

program’s algorithmic selection process and a regression-discontinuity analytic strategy. We

find that, at the margin of eligibility, being selected as a Dell Scholar has positive impacts

on later persistence and on-time bachelor’s degree completion. Finally, in Chapter 3, we

conduct a series of laboratory experiments to explore the effects of religion on prosocial risk

taking. We find that the religious message can induce prosocial risk taking only when doing

so help others of the same beliefs.
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1. SCHOOL QUALITY AND LABOR MARKET

EARNINGS: SOME NEW RESULTS ON AN OLD

DEBATE

1.1. INTRODUCTION

There is an open debate about the effects of measures of school quality on labor mar-

ket earnings. Betts (1995) investigates the direct effects of measures of public high-school

quality—teacher-student ratio, relative teacher salaries, and the percentage of teachers with

a Master’s degree—on individuals’ earnings between 1979 and 1990 using the 1979 National

Longitudinal Survey of Youth (NLSY79) data. He finds no direct effects of the measures

of school quality on individuals’ earnings. Card and Krueger (1996) argue that Betts’ sam-

ple is quite young as the average age of individuals in the sample is only 23.8 years old.

They claim that the effects of the measures of school quality on earnings are understated

among young individuals. Individuals who attended better-quality high schools might have

acquired a higher level of education and were absent from the labor market. Consequently,

Betts’ sample underrepresented individuals with potentially higher earnings in the labor

market.

This paper addresses this issue by analyzing the effects of measures of school quality on

earnings using more recent data from the NLSY79. The data provide extended earnings

observations which allow us to analyze the effects of measures of school quality when indi-

viduals were older and reduce the issue of selection into schooling considerably. Moreover,

the extended earning observations convey better information about individuals’ labor mar-
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ket potentials. I collect an unbalanced panel data using a public-version of the NLSY79

data, that includes earnings observations from 1979 to 2010, and the Geocode version of the

NLSY79 data. For comparability with Betts’ sample, I proceed in three steps. First, I repli-

cate Betts’ sample restriction procedure to approximate his 1979-1990 sample as closely as

possible. Second, I use the recent NLSY79 to obtain post-1990 data on earnings, the number

of weeks worked, and other individuals’ characteristics. Third, I conduct regression analysis

using Betts’ main specification to investigate the effects of measures of school quality on

earnings when individuals were older.

Even after closely following Betts’ sample restriction procedure, my sample has more in-

dividuals than Betts’ sample. Retrospective revisions of the NLSY79 data post-1990 explain

this difference. Nevertheless, I replicate Betts’ findings that the measures of school quality

do not affect individuals’ earnings in the analysis of the 1979-1990 sample. However, I find

that the percentage of teachers with a Master’s degree has a positive and significant effect

on individuals’ earnings when they were 40 or older. Moreover, the effects of the percentage

of teachers with a Master’s degree on individuals’ earnings are increasing over individuals’

life cycle. I find that the effect of the percentage of teachers with a Master’s degree is

concentrated among high school graduates. These results are not sensitive to additions of

important covariates such as parents’ education, family wealth, and individuals’ age-adjusted

AFQT scores. These findings are important as they suggest that selection into better quality

schools is not an issue. Overall, the findings in this paper support the claim that measures

of school quality affect earnings only after individuals were older.

Findings in this study are quite important as they reconcile two strands of studies in the

literature that fail to reach a consensus regarding the effects of school quality on earnings.

In one strand, researchers use measures of school quality observed at the state or aggre-

gate level, such as per-student expenditure, teacher-student ratio, and state average teacher

salary (Wachtel, 1976; Rizzuto and Wachtel, 1980; Card and Krueger, 1992b,a; Nechyba,

1990). There are two main advantages of using state or aggregate-level measures. First,

2



the measures average out endogenous measures of school quality. The endogeneity arises

because families select into different schools based on observable and, more importantly,

unobservable characteristics. Second, the measures average out errors (Card and Krueger,

1994, 1996). Overall, state-level studies find significant effects of measures of school quality

on earnings with elasticities ranging from 0.08 to 0.16.

The other strand of the literature investigates the effects on individual earnings of school-

level measures of school quality (Betts, 1995; Grogger, 1996; Betts, 2001; Strayer, 2002;

Tobias and Li, 2003).1 Betts (1995) argues that an analysis using school-level measures is

superior as it eliminates aggregation bias in studies using state or aggregate-level measures

of school quality.2 He then estimates the effects of measures of school quality, such as the

student-teacher ratio, the percentage of teachers with a Master’s degree, and the relative

teacher salaries, on individuals’ earnings. Using the 1979-1990 NLSY79, Betts collects a

sample of individuals aged 32 or younger for his estimations. Betts (1995) finds that the

measures of school quality at the school level do not affect individuals’ earnings. Strayer

(2002) who uses a similar sample from the NLSY79 also concludes that there is no effect of

the measures of school quality on earnings.

A study by Grogger (1996) analyzes whether the black-white wage gap trend could be

attributed to differences in school quality. Using the 1972 National Longitudinal Study

(NLS72) and the High School and Beyond (HSB) survey, Grogger (1996) estimates weak

relationships between the measures of school quality and individuals’ earnings. He finds

that the measures of school quality, such as student to teacher ratio, and term length were

not a good predictor of earnings. He does find that teacher education, measured by a

dummy variable that equals to one if individuals attended schools in which 30 percent or

1A related study in the literature is by Dearden et al. (2002) who investigate the effects of school-level
measures of school quality on earnings in the UK.

2Consider an estimation of school quality effects using state-level measures of school quality. This measure
captures variation of school quality between states. However, it does not capture variation within each state
which could be substantial. Thus, using state averages instead of school-level data eliminates the within-
state variation, which may lead to bias school quality effects. See Sellin (1990) for a detailed discussion on
aggregation bias.

3



more teachers have advanced degrees, has a significant effect on earnings for individuals in

the NLS72 sample. It is important to note that this result can be quite sensitive to changes

in the definition of the teacher education variable. He acknowledges that the sample was

relatively young. He re-estimates the effects of the measures of school quality when the

individuals in the NLS72 were about 32 years old. Still, he finds similar results.

Betts (1996) addresses Card and Krueger’s criticism by investigating the effects of the

measures of school quality on individuals’ earnings only after the individuals acquired a con-

siderable amount of on-the-job experience. Betts (1996) uses earnings of individuals aged

40-55 in the 1980 Census to predict NLSY79 individuals’ earnings when they were 40-55

years old. Betts concludes that the measures of school quality do not have significant effects

on individuals’ prime age earnings. This study has a couple of caveats. First, the 1980

Census is cross-sectional data, hence we can only observe one earnings observation for each

individual. One needs several different individuals to construct a series of earnings observa-

tions for ages 40-55. However, each individual has different observed as well as unobserved

characteristics, which may significantly affect measured earnings in different ways. Second,

the earnings obtained from the 1980 Census cannot capture the actual state of the economy

and technological progress, which significantly affect occupation-specific productivity and

earnings growth. Therefore, earnings data for a specific occupation in the 1980 Census are

not comparable to those post-1990.

This study is also related to a recent study by Chetty et al. (2011) who estimate the effects

of measures of school quality, more specifically classroom quality, on earnings. Chetty et al.

(2011) link the original STAR project data to administrative tax-returns data. They found

no significant impact of smaller class sizes on earnings. Nevertheless, their estimates suggest

that students who were taught by more experienced teachers earned higher than students

who were taught by less experienced teachers. Lastly, they estimate the effects of classroom

quality proxied by average test scores of a student’s classmates on earnings. They find a

significant effect of class quality on the individuals’ earnings in the labor market.

4



This study is also related to studies that investigate the effects of school quality on

earnings in developing countries and the effects of school quality on return to education

among immigrants. A study by Bedi and Edwards (2002) examines the effects of measures

of school quality—such as teacher training, school infrastructure, and measures of school

crowding—on earnings in Honduras using micro data. They find positive and significant

effects of the measures of school quality on individuals’ earnings. A study by Bratsberg

and Terrell (2002) investigates the effects of measures of school quality on US return to

education of immigrants. They find negative and significant effects of student-teacher ratio

on US return to education.

The rest of the chapter is organized as follows. In Section 1.2, I discuss Card and

Krueger’s criticism that the effects of measures of school quality on earnings are understated

among young individuals. In section 1.3, I discuss the NLSY79 dataset used in the regression

analyses. I also discuss in detail a replication of Betts’ (1995) sample selection procedures,

and I compare descriptive statistics of my sample to those in Betts (1995). Section 1.4

discusses the regression specifications and the estimation results. I state my conclusion in

section 1.5.

1.2. CARD AND KRUEGER’S CRITICISMS

Card and Krueger (1996) argue that the sample used in studies using school-level measures,

for instance Betts (1995) and Grogger (1996), is quite young. Betts (1995) uses the NLSY79

data and his sample include individuals who were 17 to 32 years old with an average age of

23. Grogger (1996) uses the NLS72 and the HSB data which include individuals who were

23-25 years old. Card and Krueger (1996) claim that a relatively young sample understates

the effects of the measures of school quality on earnings. In this section, I discuss two main

arguments that Card and Krueger use to support their claim.

First, earnings observations of young individuals may not convey a complete information

5



about individuals’ earnings potential in the labor market (Card and Krueger, 1996). Many

young individuals were not in the labor market because they attended school. Even if

they were in the labor market, many of them worked part time. I verify these arguments

by analyzing schooling and employment patterns among young individuals in the NLSY79

sample.

I identify in the NLSY79 individuals who attended school and those who worked. I also

identify whether individuals worked part or full-time jobs using cumulative hours worked.

Individuals worked part-time jobs if they worked less than 2080 hours while individuals

worked full-time jobs if they worked more than 2079 hours. As shown in Figure 1.1, there

was a considerable share of young individuals in the 1979-1990 sample who attended school.

Between 1979 and 1982, more than 10 percent of individuals aged 17 or older were enrolled

in school annually. I find that about 96 percent of individuals who attended school worked

part-time jobs. I also show that there was also a considerable share of young individuals who

worked part time in Betts’ sample. For example, more than 40 percent of the individuals

worked part time between 1979 and 1982.

Most of the young individuals were also at an early stage of their careers during which

young individuals might have spent quite amount of time for job trainings or might have had

a higher tendency to change job. An empirical study by Lynch (1992) shows that young male

individuals in the NLSY79 sample who took job trainings spent 34 to 74 weeks to attend job

trainings. Topel and Ward (1988) find that 80 percent of young individuals with a decade

of working experience changed jobs at least three times and that more than half of similar

young individuals changed jobs more than 6 times.

Second, OLS estimates of the effects of the measures of school quality are biased down-

ward due to a selection issue. We face this issue because we can only observe earnings for

individuals who worked part or full-time jobs. The intuition that the effects of the measures

of school quality are biased downward is straightforward. Individuals who attended schools

with lower measures of quality are less likely to enroll in a college and are more likely to

6



Figure 1.1: Schooling and Employment Pattern, 1979-1994. Source: Author’s calculation using the NLSY79.
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participate in the labor market. On the other hand, individuals who attended schools with

higher measures of quality are more likely to enroll in a college, worked part-time jobs, and

earned relatively lower earnings. Thus, the effects of the measures of school quality are

biased downward.

The discussions above suggest that many young individuals were enrolled in school or

worked part-time jobs. A logical follow-up inquiry is: are measures of school quality cor-

related with schooling and employment status among young individuals in the NLSY79

sample? I estimate a logit model to analyze the correlations between measures of school

quality and employment status of individual i at time t:

P (yit = 1 | Xit) = G (β0 + θQualityi + ΓXi) (1.1)

where y is either attending school (while working), working part-time jobs, or working full-

time job. The vector X includes individual-specific characteristics, family characteristics,

time dummies, and region dummies. I estimate the model using the 1979-1990 NLSY79

sample, which is comparable to Betts’ sample, and I cluster the standard errors at the

individual level. I report the results of the estimations in Table 1.1.

There is suggestive evidence that the measures of school quality are positively correlated

with workers’ decisions to attend school. In Column 1 of Table 1.1, we can observe that

the percentage of teacher with Master’s degree and the teacher-student ratio associated

with a higher probability of attending school. The correlation between the percentage of

teacher with Master’s degree and schooling decisions is in line with the main findings in

Strayer (2002). Using NLSY79 data, he shows that a higher percentage of teachers with a

Master’s degree is associated with a higher probability of college enrollment. However, the

correlations between these variables and schooling decisions are no longer significant when I

include additional covariates such as father’s education and AFQT test score into the model

specification (Column 4 of Table 1.1). This is due to a strong correlation between these

8



Table 1.1: Correlations between Measures of School Quality and Schooling Decisions

1: 1 if in school 2: 1 if working PT 3: 1 if working FT 4: 1 if in school 5: 1 if working PT 6: 1 if working FT

teacher with a Master’s 0.000392∗∗∗ 0.000307 -0.000264 0.0000713 0.000158 -0.000237
(0.000135) (0.000238) (0.000325) (0.000110) (0.000238) (0.000310)

teacher-student ratio 0.359∗∗ -1.027∗∗∗ 1.196∗∗∗ 0.203 -0.995∗∗∗ 1.160∗∗∗

(0.161) (0.348) (0.459) (0.136) (0.340) (0.428)

relative teacher salaries 0.00345 0.00190 0.000559 0.00148 0.000415 -0.00126
(0.00251) (0.00541) (0.00677) (0.00218) (0.00551) (0.00638)

Observations 14,859 15,589 15,589 14,859 15,589 15,589
Other Controls N N N Y Y Y
Cluster SE Individual Individual Individual Individual Individual Individual

Source: author’s calculation using the NLSY79.
Notes: standard errors are clustered at the individual level and are shown in the parentheses. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other regression
covariates not shown in the table are years of schooling, age, age-adjusted AFQT score, father’s education, family’s wealth in 1980, an SMSA dummy, a marriage dummy, region
dummies, year dummies, interaction between year and region dummies, and time dummies. The sample include individuals aged 17-32 years old.
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measures of school quality with AFQT score and father’s education.

In Column 2 and 3 of Table 1.1, we can observe that the teacher-student ratio is correlated

with the probability of working part and full-time jobs. A higher teacher-student ratio is

correlated with a lower likelihood of working part-time jobs but it is correlated with a higher

likelihood of working full-time jobs. The correlations persist even after I control for additional

covariates (Column 5 and 6 of Table 1.1).

In the next section, I test Card and Krueger’s claim that the measures of school quality

affects earnings when individuals were older. I proceed in two steps. First, I investigate the

effects of the measures of school quality when the individuals were 17-32 by replicating the

estimations in Betts (1995). I also re-estimate Betts’ model using clustered standard errors

to accommodate the fact that individuals’ unobserved characteristics are correlated across

time. I then investigate the effects of the measures of school quality on prime-age earnings

when the individuals were 40-50.

1.3. DATA

1.3.1 Sample Selection Procedures

The data for the analysis are obtained from the public version of the National Longitudinal

Survey of Youth (NLSY79) and the Geocode version of the NLSY79. The data provide a rep-

resentative sample of 12,686 young individuals and the data record individuals’ information

from 1979 to 2010. Annual interviews were conducted for these individuals through 1994

and biennial interviews were conducted in subsequent periods until 2010. The data provide

information regarding labor market behaviors and outcomes, education history, family back-

ground, and government participation program. Using the Geocode version of the NLYS79, I

obtain individuals’ states of residence from 1979 to 2010 and states of schools that individu-

als attended. I use these variables to calculate relative salaries of teachers with a B.A. degree
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and in the regression specification to control for state-specific shocks. More importantly, the

states of residence variable allows me to replicate Betts’ estimation. I list the key variables

used in the model specifications in Table A.1.

Using the NLSY79, I obtain the measures of school quality from a survey of high school

attended by NLSY respondents conducted in 1979. The survey reported many school char-

acteristics such as the number of students enrolled, the number of full-time teacher, the

teachers’ educational attainment, academic-related facilities, the curriculum and the school

activities. The main measures of school quality used in the typical regression analyses are

teacher-student ratio, the salaries of teachers with a B.A. degree, and the percentage of

teachers with a Master’s degree. I choose these measures for a direct comparability with the

main analyses in Betts (1995) and Betts (1996).3 I adjust the salaries of teachers with 1980

per-capita personal income in the state to calculate relative teacher salaries.4

I conduct a three-step sample restriction procedure to obtain the 1979-2010 sample.

First, I follow Betts’ sample selection procedure. Individuals with missing or declining years

of schooling between 1979-1990 are excluded from the sample. Individuals in the military

subsample, whose measures of school quality are not observed, those who did not attend

a public high school, male Hispanics, male Blacks, and females are also excluded from the

sample. Lastly, there were individuals who were not enrolled in a junior high school during

the 1979 high-school survey. They were either very young, were currently enrolled in a junior

high school at the time of survey, or did not attend a high school in 1979. I exclude these

individuals since we do not observe the measures of school quality. From these restriction

criteria, I obtain a sample of about 2,077 white-male individuals who attended public high

schools in 1979.

3Betts (1995) also analyses the effects of the number of student enrollment, the percentage of disad-
vantaged students, the percentage of students dropping out, library books per enrollee, the availability of
vocational curricula, the proportion of black students, and the percentage of teachers who had left in the
previous year for reasons other than death and retirement. He finds a positive and significant correlation be-
tween enrollment and earnings. He also finds negative effects on earnings of the percentage of disadvantaged
students and the percentage of students dropping out for individuals who did not complete high school.

4I obtain per-capita personal income data from Table SA1-3 in the BEA Regional Economic Accounts
website: https://www.bea.gov/regional/.
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Some individuals in this subsample have missing earnings and number of weeks worked

observations. Some individuals also reported zero earnings in the survey. In these cases, these

observation points, but not the individuals, are excluded from the sample. Some individuals

are also missing observations on marital status, residence in SMSA, and state of residence.

In these cases, I assume that individuals keep the same status as in the previous period and

impute the missing observations using values from previous period.

Lastly, observations of individuals who lived outside of United States in any given year

are also excluded from the sample. These restrictions reduce the 1979-1990 sample to an

unbalanced panel consisting of 1,568 individuals. In this sample, the average number of wage

observations per individuals is 10.2. For a comparison, the number of individuals in Betts’

sample was 1,134.

Table 1.2: A Summary of the Sample Restriction Procedure for the 1979-1990 Sample

Procedures
Betts (1995) This study

# of indiv. obs. # of indiv. obs.

initial 12,669 304,056

drop ind. missing education 8,744 209,856

drop ind. in military subsample 8,617 206,808

drop obs. beyond 1990 8,617 103,404

drop obs younger than 17 y.o. 8,617 97,513

drop obs. miss. earnings & weeks worked 6,749 68,182 8,470 74,096

keep white males 19,534 2,350 22,325

keep public school students 18,395 2,200 20,913

keep those in US states & DC 17,706 2,200 20,912

keep positive weekly earnings 16,417 2,200 20,841

elim. student teacher ratio of 6 16,406 2,199 20,813

keep those w/ school quality 11,314 1,568 14,955

Source: author’s calculation using the NLSY79.

Table 1.2 compares the number of individuals and observations in Betts’ 1979-1990 sam-

ple and those in this study. Ideally, I want to obtain a sample identical to that used in Betts

(1995). However, I obtain significantly a higher number of observations for the 1979-1990

sample. This difference is due to retrospective revisions or imputations by the surveyor to

recover information lost in the previous survey years. Specifically, the information in BLS
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website states: “from this information and other retrospective information, a longitudinal

record spanning from the date of, and to some extent the time preceding, the first inter-

view through the most current interview date can be constructed for each respondent. The

longitudinal record is maintained even for respondents who are not interviewed in interim

years. Each year’s questionnaire incorporates retrospective questions designed to recover as

completely as possible information lost (or incorrectly reported or recorded) during previous

survey years.”

Table 1.3: The Summary Statistics of the 1979-1990 Sample

Variable

This study

Betts (1995) Initial Sample Regression Sample

mean std.dev. mean std.dev. mean std.dev.

log of weekly earnings 5.5229 0.8292 5.4036 0.903 5.3804 0.8800

education completed 12.4360 2.1295 12.7941 2.2552 12.8655 2.0558

experience (weeks) 216.1386 161.6807 248.0426 154.2158 230.2812 140.8724

marital status 0.3337 0.4715 0.3798 0.4852 0.3604 0.4801

residence SMSA 0.6801 0.4664 0.6947 0.4606 0.7022 0.4573

teacher-student ratio 0.0559 0.0155 0.05587 0.0155 0.0564 0.0150

teacher with master’s 46.1171 22.7448 46.4558 22.8588 46.2022 23.0822

relative teacher salaries 0.85384 0.10262 1.2010 0.1589 1.1971 0.1654

# of Individuals n.a. 1,568 1,038

Source: author’s calculation using the NLSY79.

I present the summary statistics of Betts’ and my 1979-1990 samples in Table 1.3. I

find that the averages and standard deviations of most of the variables are close to those in

Betts (1995). There are a couple of noticeable differences. First, the average total number

of weeks worked in our sample is higher by about 32 weeks in average. Second, the average

relative salaries of teachers is also higher by 0.20 in our sample. I may have used different

adjustment variable as the link in Betts (1995) is no longer available. Hanushek (1986)

document measures of school quality such as the teacher-student ratio and the percentage of

teachers between 1960 and 1980. I find that the averages of these measures calculated from

the NLSY79 data are quite close to the ones documented in Hanushek (1986).

Second, I use the recent version of NLSY79 to obtain extended earnings observations
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between 1991 and 2010. Several variables have missing or declining values post 1990. I use

the following procedures to impute many missing values of the explanatory variables in the

subsequent observation periods. First, I assume that individuals did not enroll in school

after 30. This is a quite fair assumption as the data suggests that only about 2.23 percent of

individuals aged 30 or older were enrolled in school. These individuals were either enrolled

in a college or a graduate program. I then impute missing or declining years of schooling

of individuals aged 30 or older with values from the preceding period. Second, I exclude

observation periods with missing earnings and number of weeks worked in each period. I

obtain, in average, additional 10.6 periods of observations for each individual in the sample

between 1991-2010. The total number of individuals in the unbalanced panel is 1,568 with

26,802 observations.

1.3.2 Correlations between the Measures of School Quality

There are several variables in the NLSY79 that can be used to measure school quality. I focus

on the teacher-student ratio, the relative teacher salaries, and the percentage of teachers with

a Master’s degree which are commonly use as measures of school quality in the literature.

I also analyze the number of students enrolled, the percentage of economically disad-

vantaged students, the percentage of grade 10 students who dropped out, the percentage of

teacher who left the school, the percentage of black students, and the number of books per

student to gain a better understanding about the main measures of school quality. Heckman

et al. (1996) suggest that it is important to understand how different measures of school

quality are correlated with each other. They argue that it is possible for the measures of

school quality to be negatively correlated, for example, due to budget constraints.

I report pairwise correlation coefficients between the measures of school quality in Table

1.4. There is a positive correlation between the percentage of teachers with a Master’s degree

and the relative salaries of teachers with a BA degree. This finding suggests that, on average,

high schools who employed a higher percentage of teachers with a Master’s degree also paid
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higher salaries to teachers with a B.A. degree. Thus, high schools might have increased the

classroom size owing to limited budgets which leads to a negative correlation between the

relative salaries and the teacher-student ratio. Schools with a higher percentage of teachers

with a Master’s degree tend to have a larger enrollment which leads to a negative correlation

between the percentage of teachers with a Master’s degree and the teacher-student ratio.

The results suggest that a higher percentage of teachers with a Master’s degree seems to

be an indicator of a better school quality. For instance, the percentage of teachers with a

Master’s degree is negatively correlated with the percentage of disadvantaged students. It is

also negatively correlated with the percentage of grade 10 students who dropped out and the

percentage of teacher who left the school. Overall, the results show that the teacher-student

ratio, the relative teacher salaries, and the percentage of teachers with a Master’s degree

altogether do not indicate improvement in school quality. For this reason, I do not combine

the main measures of school quality into a single index.

In the next section, I estimate regression models for different age ranges to analyze the

effects of measures of school quality on earnings using the extended earning observations.

First, I focus on the teacher-student ratio, the relative teacher salaries, and the percentage

of teachers with a Master’s degree as the main measures of school quality. The extended

earning observations allow me to estimate the effects of the measures of school quality when

individuals were older. Specifically, I estimate the model in two age ranges: when the

individuals were 17-32 and when the individuals were 40 or older. These age ranges allow

me to compare estimation results with those in Betts (1995) and Betts (1996).

For each age range, I keep the same group of individuals to avoid a composition effect.

Thus, I exclude individuals from the sample if the individuals have no earnings observation

in one or any of the two age ranges. The total number of unique individuals with earning

observations in the two age ranges is 1,038. For a comparison, the number of individuals

observed in each age range is 1,568 and 1,038 respectively. Regressions with different group

of individuals yield similar results.
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Table 1.4: Correlation Coefficients of the Measures of School Quality

t-s ratio salaries master enrollment disadvantaged dropout teacher left blacks books

Teacher-student ratio 1

Relative teacher salaries -0.126 1

% of teachers with a Master’s -0.104 0.359 1

Total enrollment -0.427 0.205 0.341 1

% of disadvantaged 0.009 -0.183 -0.245 -0.187 1

% of dropout -0.025 0.007 -0.147 -0.024 0.254 1

% of teachers who left 0.219 -0.204 -0.272 -0.178 -0.016 -0.022 1

% of black students -0.095 0.014 0.036 0.168 0.285 0.100 -0.042 1

Library books per student 0.202 -0.151 -0.164 -0.262 0.126 0.053 0.192 -0.080 1

Source: author’s calculation using the NLSY79.
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1.4. ANALYSIS

1.4.1 The Effects of the Measures of School Quality on Earnings

The main objective of analysis in this section is to replicate Betts’ estimation and to in-

vestigate the effects on earnings of the measures of school quality when individuals were

older. I start by replicating Betts’ estimations using the 1979-1990 NLSY79 sample, in

which individuals were 17-32 years old. For the estimation, I use Betts’ model specification:

lnwit = α + ρSit + θQi + γEit + βXit + ǫit. (1.2)

where i indicates an individual in the sample at time t. As discussed in the previous section,

I estimate this model using the sample of individuals who are observed in the two age ranges.

Note that the data include earnings of individuals who worked. Thus, I acknowledge that

my analyses may be subject to the sample selection issues (Heckman, 1979; Vella, 1998).

The left-hand side variable is a log of weekly earnings however results are similar in

regressions with a log of hourly earnings. The regressors are the years of schooling (S),

the measures of school quality (Q), a quartic function of experience (E), and a vector of

control variables (X). The measure of labor market experience at a given period is the

sum of the number of weeks worked in previous periods. The control variables include 8

dummy variables for residences in the census regions, interaction terms between the census

region dummies and the years of schooling, a dummy variable for residence in SMSA, and

a dummy for the marital status, and year dummies. Betts (1995) uses heteroscedasticity-

robust standard errors estimators for pooled OLS regressions. However, the error terms ǫit

are likely to be correlated over time for a given individual owing to the structure of the data.

For this reason, I consider an additional baseline specification with standard errors clustered

at the individual level (Cameron and Miller, 2015).

I first estimate the model using the 1979-1990 sample to compare the results with Betts’. I
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report my estimates and Betts’ estimates in Table 1.5. I present Betts’ estimates in Column

1 and I present my estimates in Column 2 and Column 3. Betts’ estimates show that

measures of school quality have no effect on individuals’ earnings. My estimates in Column

2 show that the teacher-student ratio has a positive effect on individuals’ earnings. However,

the significance goes away once I cluster the standard errors at the individual level. In all

model specification, the percentage of teacher with a Master’s degree and the relative teacher

salaries have no effect on individuals’ earnings.

We can observe that the estimated standard errors are higher in the specification using the

clustered standard errors. This increase is expected in time-ordered earnings observations

as the error terms are positively correlated within individual level (Cameron and Miller,

2015). For this reason, I cluster the standard errors at the individual level in subsequent

specifications to control for the correlations of the error terms across time. I acknowledge

that the point estimates for the measures of school quality are different than those in Betts

(1995). These differences are not unexpected because the regression sample in Betts’ and

the sample in this study are different. Nevertheless, I obtain similar qualitative results with

Betts’ that the measures of school quality do not affect individuals’ earnings.

To analyze the effects of the measures of school quality on earnings when individuals

were older, I estimate Specification 1.2 at different age ranges: 17-32 and beyond 40. I

estimate the model using the same sample to avoid composition effects and I cluster the

standard errors at the individual level. I present the estimates for the two age ranges in

Column 3 and Column 5 of Table 1.5, respectively. The estimates in Column 3 of Table 1.5

show that no measures of school quality appear to be significantly different from zero when

individuals were 17-32. However, the estimates in Column 5 of Table 1.5 show that a higher

percentage of teachers with a Master’s degree leads to significantly higher earnings when

individuals were 40 or older. The point estimate suggests that a one standard-deviation

increase in the percentage teachers with a Master’s degree increases the prime-age earnings

by 0.07 standard deviation. For a comparison, a one standard-deviation increase in the years
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Table 1.5: The Estimated Effects of Measures of School Quality on Earnings

Betts (1995) Replication of Betts (1995) Extended Observations

1: 17-32 y.o. 2: 17-32 y.o. 3: 17-32 y.o. 4: 17-32 y.o. 5: 40+ y.o. 6: 40+ y.o.

Education 0.041*** 0.029*** 0.029 0.080 0.120*** 0.156**

(0.012) (0.012) (0.025) (0.056) (0.021) (0.072)

Teacher-student ratio 0.250 1.126** 1.126 1.149 2.051 2.112

(0.439) (0.525) (1.077) (1.085) (1.305) (1.317)

Relative teacher salaries -0.039 -0.065 -0.065 -0.031 -0.111 -0.078

(0.638) (0.046) (0.085) (0.095) (0.132) (0.138)

% of teachers with a Master’s 0.000 -0.000 -0.000 -0.000 0.00261*** 0.00257***

(0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

Education · teacher-student ratio -0.398 0.076

(0.440) (0.572)

Education · teacher salaries -0.032 -0.031

(0.034) (0.052)

Education · teachers with a Master’s -0.000 -0.000

(0.000) (0.000)

Observations 11,314 9,190 9,190 9,190 3,146 3,146

Adjusted R
2 0.313 0.377 0.377 0.377 0.225 0.225

Number of individuals 1,038 1,038 1,038 1,038 1,038 1,038

Standard errors robust robust cluster cluster cluster cluster

Source: author’s calculation using the NLSY79.
Notes: standard errors are clustered at the individual’s level and are shown in parentheses. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other regression
covariates not shown in the table are years of schooling, quartic function of experience, a dummy for marital status, a dummy for residence in SMSA, census region dummies,
interaction terms between education and the census region dummies, and time dummies.
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of schooling increases the prime-age earnings by 0.23 standard deviation.

I then analyze whether the marginal effects of the measures of school quality vary with

the years of schooling. Following Betts (1995), I include interaction terms between the years

of schooling and the measures of school quality:

lnwit = α + ρ̃Sit + θ̃Qi + δ̃Sit · Qi + γEit + βXit + ǫit. (1.3)

where S and Q are schooling and school quality variables centered at their means, respec-

tively. The centering of these variables allows us to interpret the estimated parameters con-

ditional on the averages of the interacted variables. For instance, the estimated parameters

θ̃ capture the marginal effects of the measures of school quality for individuals with average

years of schooling. This simple manipulation also allows us to compare these estimates with

estimates using model Specification 1.2.

I present the marginal effects of the measures of school quality on earnings conditional

on the average years of schooling in Column 4 and 6 Table 1.5. Note that the average years

of schooling is about 12.8 which implies that on average the individuals are high-school

graduates. There are no significant interaction effects between years of schooling and the

measures of school quality and the inclusion of the interaction terms does not improve the

fit of the model. Nevertheless, the result is similar to the one in the baseline model: the

percentage of teachers with a Master’s degree is significant only when individuals were older.

This result is consistent with findings in Wachtel (1976) who used district-level per-student

expenditure as a measure of school quality. He finds that the estimated parameter of the

per-student expenditure is larger when individuals were older.

I re-estimate Specification 1.3 using different sets of controls to investigate whether the

effects of the measures of school quality are consistent across specifications. For these es-

timations, I use the sample of individuals when they were 40 or older and I present the

results in Table 1.6. First, the parents’ level of education might be positively correlated with
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the measures of school quality. Individuals from better educated families may have lived

in districts that host good schools and may have been motivated to choose better quality

schools. Omitting parents’ education from the specification might biased estimated param-

eters of the measures of school quality upward. Column 2 and 3 in Table 1.6 show that the

estimated effect of a one percent increase in the percentage of teachers with a Master’s de-

gree drops from 0.26 percent to 0.20 percent after controlling for parents’ level of education.

Similarly, individuals of wealthier families might have lived in more affluent districts with

better public schools. Omitting family wealth may also biased the measures of school quality

upward. However, as shown in Column 4, the inclusion of the family wealth variable does not

change the estimated parameter of the percentage of teachers with a Master’s degree. This

should not be surprising because family wealth and parents’ level of education are strongly

correlated.

Individuals’ abilities might also bias the estimated parameters of the measures of school

quality since the more able individuals might have enrolled in better-quality schools. There-

fore, I use age-adjusted AFQT test score as a proxy of individuals’ ability. The estimated

parameter of the percentage of teachers with a Master’s degree is not sensitive to addition

of this variable. Lastly, the estimated parameters are not sensitive to addition of state fixed

effects or state by year fixed effects in the model specification. These sensitivity analyses

show that the effects of the percentage of teachers with a Master’s degree are quite robust.

So far, I focus on teacher-student ratio, relative teacher salaries, and percentage of teach-

ers with a Master’s degree as the main measures of school quality. However, as shown in

Section 1.3.2, these measures of school quality are correlated with other quality metrics such

as the percentage of black students, the percentage of economically disadvantaged students,

the percentage of teacher who left the school, the percentage of grade 10 dropouts, and

library books per students. I investigate whether the estimated effects of the main measures

of school quality are robust by augmenting Specification 1.2 with one quality metric at a

time. I present the results of the estimations in Table 1.7. We can observe that the esti-
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Table 1.6: The Estimated Effects of the Measures of School Quality on Earnings

1: 40+ y.o. 2: 40+ y.o. 3: 40+ y.o. 4: 40+ y.o. 5: 40+ y.o. 6: 40+ y.o. 7: 40+ y.o.

Teacher-student ratio 2.111 2.309 2.477∗ 2.468∗ 2.255 1.313 1.360
(1.318) (1.438) (1.457) (1.464) (1.438) (1.478) (1.495)

Relative teacher salaries -0.076 -0.025 -0.055 -0.052 -0.063 -0.098 -0.060
(0.138) (0.143) (0.145) (0.145) (0.145) (0.164) (0.164)

% of teachers with a Master’s 0.00257∗∗∗ 0.00186∗∗ 0.00195∗∗ 0.00195∗∗ 0.00194∗∗ 0.00224∗∗ 0.00220∗∗

(0.000922) (0.000942) (0.000957) (0.000963) (0.000979) (0.00104) (0.00108)

Observations 3,146 3,032 2,942 2,933 2,862 2,862 2,862

Adjusted R
2 0.225 0.226 0.229 0.230 0.233 0.256 0.247

Regional Control Region FE Region FE Region FE Region FE Region FE State FE StateXYear FE
Father’s education Y Y Y Y Y Y
Mother’s education Y Y Y Y Y
Family’s wealth in 1979 Y Y Y Y
AFQT score Y Y Y
Controls Y Y Y Y Y Y Y
Standard Errors Cluster Cluster Cluster Cluster Cluster Cluster Cluster

Source: author’s calculation using the NLSY79.
Notes: standard errors are clustered at the individual level and are shown in parentheses. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other regression
covariates not shown in the table are years of schooling, quartic function of experience, a dummy for marital status, a dummy for residence in SMSA, census region dummies,
interaction terms between education and the census region dummies, time dummies, state dummies, and interaction terms between state and time dummies. The AFQT score
is adjusted by the individuals’ age.
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mated coefficients of the percentage of teachers with a Master’s degree are not sensitive to

addition of other quality metrics. In all specifications, we reject the null that the percentage

of teachers with a Master’s degree does not affect individuals’ earnings. It is interesting to

note that the percentage of economically disadvantaged students has a negative effect on

individuals’ earnings and that the magnitude of its effect is similar to that of the percentage

of teachers with a Master’s degree.

1.4.2 The Effects of the Measures of School Quality Over the Life

Cycle

The results so far suggest that the effect of the percentage of teachers with a Master’s degree

is higher when individuals were older. Thus, the logical next step is to estimate the effects

of the measures of school quality over individuals’ life cycle. I estimate a model with an

interaction between schooling and age and an interaction between the percentage of teachers

with a Master’s degree and age:

lnwit = α + ρSit + θQi + βageit + θSit · ageit + δQi · ageit + γEit + βXit + ǫit. (1.4)

I report the results of the regressions in Table 1.8. I find a significant interaction effect

between schooling and age and a significant interaction effect the percentage of teachers

with a Master’s degree and age. These estimates suggest that the effect of schooling and the

effect of the percentage of teachers with a Master’s degree increases as individuals became

older. I find no interaction effect between age and the other measures of school quality.

This suggests that the teacher-student ratio and the relative salaries of teachers effects on

earnings are constant over individuals’ life cycles.

It is important to obtain the effects of the measures of school quality at a certain age

and to investigate whether the effects are significant or not. I proceed by calculating partial

effects of schooling and partial effects of the percentage of teachers with a Master’s degree
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Table 1.7: The Estimated Effects of the Measures of School Quality on Earnings

1: 17-32 y.o. 2: 40+ y.o. 3: 40+ y.o. 4: 40+ y.o. 5: 40+ y.o. 6: 40+ y.o. 7: 40+ y.o. 8: 40+ y.o.

Teacher-student ratio 0.176 0.906 0.767 0.829 0.852 0.841 0.841 0.664
(1.020) (1.201) (1.193) (1.211) (1.191) (1.193) (1.193) (1.205)

Relative teacher salaries 0.003 0.003 0.005 0.004 0.001 0.001 0.001 0.002
(0.013) (0.019) (0.018) (0.019) (0.019) (0.019) (0.019) (0.019)

% of teachers with a Master’s 0.000 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗ 0.002∗ 0.002∗ 0.002∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

% of black students -0.003∗ -0.003∗ -0.003 -0.003 -0.003 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

% of teachers who left -0.001 -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

% of disadvantaged students -0.002 -0.002 -0.002 -0.002∗

(0.001) (0.001) (0.001) (0.001)

% of grade 10 dropouts 0.000 0.000 0.000
(0.001) (0.001) (0.001)

Library books per student 0.002
(0.001)

Observations 10,250 3,640 3,640 3,640 3,640 3,640 3,640 3,640
Adjusted R-squared 0.364 0.217 0.219 0.219 0.220 0.220 0.220 0.220
Controls Y Y Y Y Y Y Y Y
Standard Errors Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster

Source: author’s calculation using the NLSY79.
Notes: the estimations use publicly available NLSY79 dataset. Standard errors are clustered at the individual level and are shown in parentheses. The signs *, **, *** indicates
significance at 10, 5, and 1 percent. Other regression covariates not shown in the table are years of schooling, quartic function of experience, a dummy for marital status,
a dummy for residence in SMSA, region dummies, interaction terms between education and the region dummies, and time dummies. The AFQT score is adjusted by the
individuals’ age.
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at each age point:

∂lnw

∂S
= ρ + θ · age

∂lnw

∂master
= θmaster + δmaster · age

(1.5)

and the corresponding standard errors and 95 percent confidence intervals. I plot the partial

effects of schooling and the percentage of teachers with a Master’s degree and their corre-

sponding confidence intervals in Figure 1.2. First, we can observe that the estimated partial

effects increases monotonically with age. The percentage of teachers with a Master’s degree

has no effects on earnings when individuals were below 30. However, the percentage of teach-

ers with a Master’s degree has positive and significant effects on earnings when individuals

were 30 or older. The pattern of the marginal effects of the percentage of teachers with a

Master’s degree is similar to the pattern of marginal effects of schooling. I also estimate

the effects of the teacher-student ratio on earnings over the life cycle of individuals. The

estimated marginal effects are positive when individuals were older however they are not sta-

tistically significant. The estimated marginal effects of relative teacher salaries on earnings

are close to zero.5

The fact that the percentage of teachers with a Master’s degree is significant for older

individuals is an important finding for the literature. A direct comparison for the results

in this study is the results in Betts (1996), who investigated the effects of the measures of

school quality on earnings at ages 40-55. Betts (1996) uses earnings of individuals aged 40-55

in the 1980 Census to predict NLSY79 individuals’ earnings when they are 40-55 years old.

In his study, the estimated parameter of the percentage of teachers with a Master’s degree

is negative although it is statistically not different to zero.

I argue that there are two explanations for the difference. First, the 1980 Census is

cross-sectional data, hence we can only observe one earning observation for each individual.

One needs different individuals to construct a series of earnings data for age 40-55. How-

5See Figure A.1 for the marginal effects of teacher-student ratio and Figure A.2 for the marginal effects
of relative teacher salaries.
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Figure 1.2: Partial Effects of the Years of Schooling and the Percentage of Teachers with a Master’s Degree by Age. Source:
author’s calculation using the NLYS79. Notes: standard errors are clustered at the individual’s level. The covariates used in
the estimation model are years of schooling, quartic function of experience, a dummy for marital status, a dummy for residence
in SMSA, census region dummies, interaction terms between education and the census region dummies, and time dummies.
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Table 1.8: The Effects of Schooling and the Measures of School Quality Over the Life Cycle

Measures of school quality 1: Model 1 2: Model 2 3: Model 3

Education -0.028** -0.080*** -0.107***

(0.013) (0.014) (0.021)

Teacher-student ratio -1.272 -1.276 -1.336

(2.048) (2.019) (2.062)

Relative teacher salaries 0.007 -0.003 -0.001

(0.031) (0.031) (0.031)

% of teachers with a Master’s -0.003** -0.003** -0.003**

(0.001) (0.001) (0.001)

Age 0.072*** 0.029*** 0.034***

(0.001) (0.003) (0.007)

Education · age 0.003*** 0.004*** 0.004***

(0.000) (0.000) (0.000)

Teacher-student ratio · age 0.065 0.064 0.059

(0.060) (0.063) (0.063)

Relative teacher salaries · age 0.000 0.000 0.000

(0.000) (0.000) (0.000)

% of teachers with a Master’s · age 0.0001*** 0.0001*** 0.0001***

(0.000) (0.000) (0.000)

Observations 17,240 16,366 16,366

Controls N Y Y

Region and time dummies N N Y

Source: author’s calculation using the NLSY79.
Notes: these estimations are produced using publicly observed dataset. standard errors are clustered at the individual’s level
and are shown in parentheses. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other regression covariates not
shown in the table are years of schooling, quartic function of experience, a dummy for marital status, a dummy for residence
in SMSA, region and time dummies.

ever, each individual has different observed as well as unobserved characteristics, which may

significantly affect earnings in different ways. Second, the earnings obtained from the 1980

Census cannot capture the actual state of the economy and technological progress, which sig-

nificantly affect occupation-specific earnings and earnings growth. Therefore, earnings data

for a specific occupation in the 1980 Census are not comparable to the post-1990 earnings
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data in the NLSY79.

Table 1.9: The Effects of the Measures of School Quality by Highest Years of Schooling
Completed

Sample: 17-32 years 1: HS dropout 2: HS graduate 3: Some College 4: 4Y College 5: Post-Graduate

Teacher-student ratio 0.512 0.0845 2.440 1.109 -2.381
(1.391) (1.507) (2.670) (2.379) (2.802)

Relative teacher salaries 0.0278 0.0212 0.00532 -0.00805 -0.0267
(0.0183) (0.0207) (0.0299) (0.0299) (0.0302)

% of teachers with a Master’s 0.00108 0.00123 -0.000221 0.00115 -0.00128
(0.000766) (0.000852) (0.00151) (0.00159) (0.00202)

Observations 5236 4595 2022 1669 1323
Controls Y Y Y Y Y
Standard Errors Cluster Cluster Cluster Cluster Cluster

Sample: 40+ years 1: HS dropout 2: HS graduate 3: Some College 4: 4Y College 5: Post-Graduate

Teacher-student ratio 1.312 0.816 0.192 -1.382 2.935
(1.520) (1.607) (2.713) (3.254) (4.382)

Relative teacher’s salary 0.0351 0.0173 0.0224 -0.00116 -0.0609∗

(0.0277) (0.0309) (0.0432) (0.0282) (0.0320)

% of teachers with a Master’s 0.00246∗∗ 0.00279∗∗ 0.00143 0.000519 0.00158
(0.00108) (0.00117) (0.00178) (0.00254) (0.00264)

Observations 1828 1623 744 565 503
Controls Y Y Y Y Y
Standard Errors Cluster Cluster Cluster Cluster Cluster

Source: author’s calculation using the NLSY79.
Notes: standard errors are clustered at the individual level and are shown in parentheses. The signs *, **, *** indicates
significance at 10, 5, and 1 percent. Other regression covariates not shown in the table are years of schooling, quartic function
of experience, a dummy for marital status, a dummy for residence in SMSA, census region dummies, interaction terms between
education and the census region dummies, and time dummies.

1.4.3 The Effects of the Measures of School Quality by Years of

Schooling Completed

The results so far show that the percentage of teachers with a Master’s degree indeed affect

earnings and the effects are stronger as individuals became older. In this section, I analyze

whether the effects of the measures of school quality differ by years of schooling completed.

I identify the highest years of schooling that each individual completed. I then estimate the

model in Specification 1.2 by highest years of schooling completed: less than high school,

high school, some college, four-year college, and post-graduate. For each schooling group, I

estimate the model using the sample when individuals were 17-32 years old and the sample
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when individuals were 40 years or older. Thus, for each schooling group, I have the same

group of individuals in both samples.

I report the results in Table 1.9. Consistent with the previous results, the measures of

school quality have no effects on earnings when individuals were young irrespective of the

schooling group. On the other hand, the percentage of teachers with a Master’s degree affect

earnings when individuals were older but only among individuals who did not finish high

school and individuals who completed high-school. This is an interesting finding because

individuals with at most a high school diploma attended high schools with relatively lower

share of teachers with a Master’s degree. The average percentage of teachers with a Master’s

degree for individuals with at most a high school degree is 42.8 percent while the average for

individuals with a 4-year college degree is 49.6 percent. This result suggests that attending

a better-quality school matters for individuals who did not attend college.

1.4.4 Does Return to Schooling Vary by Measures of School Qual-

ity?

I now investigate whether the marginal effects of the the return to schooling vary with

the measures of school quality. This analysis is important as the state-level studies in the

literature. For example, Card and Krueger (1992a) find that the measures of school quality

have significant relationships with the return to education. For this analysis, I categorize

each measure of school quality into quartiles and estimate Specification 1.2 for each quartile.

I estimate the model using the sample when individuals were 40 years or older. Table 1.10

presents the estimates of the return to schooling for each quartile of the measures of school

quality. The results show that individuals who attended schools with the lowest teacher-

student ratio or individuals who attended schools with the highest percentage of teachers

with a Master’s degree earned higher returns to schooling. One of the explanations is that

the percentage of teachers with a Master’s degree is negatively correlated with the teacher-

student ratio.
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Table 1.10: Return to Schooling by the Measures of School Quality

1: 1st Quartile 2: 2nd Quartile 3: 3rd Quartile 4: 4th Quartile

Return to schooling x 6.406∗∗ 9.614 4.288 0.434
Teacher-student ratio (3.233) (13.14) (6.927) (0.908)

Observations 749 778 814 805

Return to schooling x 0.182 0.0155 -0.0349 0.0219
Relative teacher salaries (0.117) (0.162) (0.218) (0.122)

Observations 792 832 772 750

Return to schooling x 0.158 0.0251 0.198 0.453∗∗

% of teachers with a Master’s (0.183) (0.182) (0.287) (0.194)

Observations 783 810 781 772

Controls Y Y Y Y
Standard Errors Cluster Cluster Cluster Cluster

Source: author’s calculation using the NLSY79.
Notes: standard errors are clustered at the individual level and are shown in parentheses. The signs *, **, *** indicates
significance at 10, 5, and 1 percent. Other regression covariates not shown in the table are years of schooling, quartic function
of experience, a dummy for marital status, a dummy for residence in SMSA, census region dummies, interaction terms between
education and the census region dummies, and time dummies.

1.5. CONCLUSION

There is an open debate in the literature that looks at the effects of the measures of school

quality on labor market earnings. Studies using state or aggregate-level measures of school

quality such as teacher-student ratio and relative teacher wage find positive effects on labor

market earnings. On the other hand, studies using school-level measures of school quality,

such as Betts (1995), find no effect of the measures of school quality on labor market earnings.

Card and Krueger (1996) argue that Betts’ results are driven by the use of a relatively young

sample. A follow-up paper by Betts (1996) addresses this criticism by using the 1980 Census

to predict prime-age earnings of individuals in the NLSY79 sample. He finds no significant

effects of the measures of school quality on earnings. While this study supports Betts (1995),

I argue that there are many drawbacks from the wage-matching method used in this study.

This study reopens this debate by analyzing the direct effects of the measures of school

quality on earnings when individuals were older. The more recent NLSY79 dataset provides

an opportunity to analyze the effects of the measures of school quality when individuals
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were 40 or older. Specifically, the dataset allows comparison of the effects of the measures

of school quality when individuals were young and when they were older. This analysis is

essential to address Card and Krueger’s claim that the use of a relatively young sample in

Betts (1995) understates the effects of the measures of school quality.

I find strong evidence that the measures of school quality affect earnings only when

individuals are 40 or older. The estimates are quite consistent across model specifications

even after controlling family characteristics and a measure of individuals’ ability. The point

estimates suggest that a one standard-deviation increase in the percentage of teachers with a

Master’s degree increases the prime-age earnings of those with the average years of schooling

by 0.06 to 0.07 standard deviation. I also find that the estimated effects of the percentage of

teachers with a Master’s degree is decreasing with the years of schooling, and it is significant

for individuals who completed high school or one-year college.

The results in this study have strong implications on the literature. First, the results

support Card and Krueger’s claim that the measures of school quality affect earnings only

after individuals are older. Second, the results in this study reconcile the findings between

studies that used state- and school-level data. Together with state-level studies, the results

in this study conclude that the measures of school quality affect individuals’ earnings in

labor market.
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2. MORE THAN DOLLARS FOR SCHOLARS: THE

IMPACTS OF THE DELL SCHOLARS PROGRAM

ON COLLEGE ACCESS, PERSISTENCE, AND

DEGREE ATTAINMENT

Co-authored with Lindsay C. Page, Benjamin L. Castle, and Stacy S. Kehoe

2.1. INTRODUCTION

Over the last several decades, a variety of organizations—from local college access programs

to the federal government—have invested hundreds of billions of dollars in programs and

policies to improve college outcomes for economically-disadvantaged youth. College enroll-

ment rates have increased substantially over this period. Yet, socioeconomic gaps in college

completion have actually widened. For example, while the share of young people in the top

income quartile earning bachelor’s degrees by age 25 increased from 36 to 54 percent between

the 1961-1964 and 1979-1982 birth cohorts, degree attainment by age 25 among students in

the lowest income quartile only increased from five to nine percent over the same time period

(Bailey and Dynarski, 2011).

An extensive body of rigorous empirical research demonstrates that a variety of col-

lege access efforts can generate substantial improvements in college entry for lower-income

populations.1 For example, researchers have found positive enrollment effects from need-

based grant programs administered by state and federal governments (Castleman and Long,

1Page and Scott-Clayton (2016) provides a comprehensive review of the literature.
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2016; Dynarski, 2003; Kane, 2003); merit scholarships that reward academic achievement in

high school (Dynarski, 2008; Scott-Clayton, 2011); college advising programs that provide

students with individualized support to complete college and financial aid applications (Av-

ery, 2013; Carrell and Sacerdote, 2013; Castleman and Goodman, 2016); and informational

campaigns that provide students with simplified information about college and financial aid,

reminders to complete important tasks, and access to advising when students need assistance

(Castleman and Page, 2014b,a, 2015; Castleman et al., 2014; Hoxby et al., 2013).

A series of recent studies have also demonstrated positive effects of financial, advising,

and informational interventions on college persistence and completion. Some of these inter-

ventions target students before they enter higher education. Bettinger et al. (2012) show

that providing low-income families with assistance completing the Free Application for Fed-

eral Student Aid (FAFSA) during the income tax preparation process leads to substantial

increases in the share of students that enroll and persist for at least two years in college. In

addition, financial aid efforts directed to students based on financial need (Castleman and

Long, 2016) and and on academic merit (e.g. Scott-Clayton, 2011) have improved rates of

bachelor’s degree attainment. Not all scholarship programs, however, demonstrate positive

long-term effects for students. For example, DesJardins and McCall (2014) find that while

the Gates Millenium Scholars program, which is awarded to high-achieving, low-income stu-

dents, led to modest increases in students’ GPA through junior year of college, it had no

impact on bachelor’s degree attainment.

Other programs provide outreach and support to students after they have begun col-

lege. Castleman and Page (2016) provide experimental evidence that targeted text-based

reminders about re-application for financial aid can improve first-to-second year persistence.

Other persistence interventions are more comprehensive. Inside Track, for example, is a

private company that contracts with colleges to provide students with coaching (primarily

delivered via phone) about issues and challenges that arise over the course of the academic

year. Freshmen who were randomly assigned to receive a one-on-one, sustained college coach-
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ing from Inside Track were 4 percentage points more likely to earn a degree than students

who did not receive this coaching—a 13 percent relative increase (Bettinger and Baker,

2014). More comprehensive still is the City University of New York’s Accelerated Study

in Associates Program (ASAP), which provides intensive structural advising and financial

support for selected community college students. Those who were randomly assigned to

participate in ASAP were 66 percent more likely to earn a degree within several years than

their peers who were not selected to participate (Scrivener and Weiss, 2013). Angrist et al.

(2014) examine the impact of scholarship support from the Susan Thompson Buffett Founda-

tion. Students selected as Buffett Scholars receive generous financial aid and, in some cases,

academic and social supports through on-campus learning communities at selected colleges

in Nebraska. Experimental evidence reveals that the program has sizable impacts on both

institutional choice and early college persistence. Recipients are substantially more likely to

matriculate in a four-year college and are more likely to persist into their sophomore year

of college. Finally, Clotfelter et al. (2016) find that the Carolina Covenant, which provides

low-income students admitted to the University of North Carolina at Chapel Hill with a full

cost of attendance scholarship and additional counseling and supports, led to improvements

in on-time bachelor’s degree attainment on the order of 8 percentage points.

We contribute to the growing but still nascent literature on the long-term effects of

interventions focused on college completion by investigating the impact of the Michael and

Susan Dell Foundation’s Dell Scholars Program. The Dell Scholars Program provides a

combination of financial support and individualized advising to scholarship recipients, both

as they enter college and throughout the duration of their postsecondary enrollment. Like

the Buffett program, the Dell approach is resource intensive; Dell Scholars are awarded

a one-time scholarship support of up to $20,000 in addition to the operating costs of the

program itself. This programmatic design is motivated by a theory of action that, in order

to meaningfully increase the share of lower-income students who earn a college degree, it is

necessary both to address financial constraints students face and to provide ongoing support
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for the academic, cultural and other challenges that students experience during their college

careers. Indeed, in a recent review on factors predicting college completion, Perna and

Jones (2013) identify three key aspects of the postsecondary experience: college financing,

academic achievement and social integration. Thus, providing a combination of financial

supports and other wrap-around supports that target the non-financial domains of student

success may be a more effective and efficient approach than offering either in isolation Page

and Scott-Clayton (2016).

We isolate the unique impact of the Dell Scholars Program on college completion by

capitalizing on an arbitrary cutoff in the selection process that determines which applicants

are selected as Dell Scholars. Using a regression discontinuity (RD) design, we find that

while being selected a Dell Scholar has no impact on initial college enrollment or early

college persistence, scholars at the margin of eligibility appear more likely to persist into the

third year of college and are significantly more likely to earn a bachelor’s degree on-time or

six years after high school graduation. Specifically, students just above the margin of scholar

selection are 6-9 percentage points more likely to earn a bachelor’s degree within four years

and 16 percentage points more likely to earn a bachelor’s degree within six years compared

to their counterparts who just missed being named a Dell Scholar. These impacts are sizable

and represent a nearly 22 percent or greater increase in both four- and six-year bachelor’s

attainment.

In addition to our impact analyses, we conduct a back-of-the-envelope cost-benefit anal-

ysis to assess whether these substantial increases in college completion are sufficient to merit

the intensive investment that the Dell Scholars Program makes in its recipients. Although

our calculations hinge on several assumptions, as we outline, they nevertheless suggest that

the investment in Dell Scholars has a positive rate of return. Given that those selected

as Dell Scholars are predominantly first-generation college students from low-income back-

grounds, our findings have important implications for efforts to expand college success in

the US. We structure the paper as follows. In Section 2.2 we describe the Dell Scholar’s
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program, including their application and selection procedure. In Section 2.3 and Section

2.4, we highlight the data and analytic strategies we bring to bear in our investigation. In

Section 2.5 we present our results, and in Section 2.6 we conclude.

2.2. DELL SCHOLARS PROGRAM

2.2.1 Description

The Dell Scholars Program is a unique college success initiative sponsored and administrated

by the Michael and Susan Dell Foundation. The program targets motivated low-income stu-

dents who have the potential to enroll and succeed in college. Students selected to be Dell

Scholars receive generous financial support towards the costs of higher education. This in-

cludes a total of up to $20,000 in scholarship funds, a laptop computer and textbook support.

We provide a back-of-the envelope calculation to show that the funds can save scholars sub-

stantial working time. We make a simplifying assumption that a scholar completes a bachelor

degree in four years and that a scholar would earn $10 an hour from working part time as a

college student. This implies that a scholar is able to forgo about 500 working hours every

year. This figure is quite substantial because students between the age of 20 and 25 in the

1979 National Longitudinal Survey of Youth data on average worked 700 hours a year.

Compared to other scholarship programs, the Dell effort is relatively unique in that it also

provides ongoing outreach, close monitoring, and assistance to scholars, even though they are

geographically dispersed to postsecondary institutions across the US. As the program mate-

rials explain, beyond formal scholarship funding, the program also provides: “. . . an ongoing

support and assistance to address all of the emotional, lifestyle, and financial challenges that

may prevent our scholars from completing college. These pressures range from dealing with

stress, to getting out of debt, to managing child care, and dealing with life circumstances as

they arise.”2

2Text provided by Oscar Sweeten Lopez, Portfolio Director for the Dell Scholars program, January 27,
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This ongoing support is actualized by requiring scholars to input postsecondary progress

information into a sophisticated data and communication portal that is closely monitored

by program staff. Scholars input information about key college success metrics including

academic performance, financial aid, and social integration.3 Scholars are required to report

information via the portal prior to postsecondary enrollment, at the end of fall and spring

semesters freshman year, and once annually after the first year of college. The portal is

designed to flag inputs associated with threats to college persistence and to immediately

trigger the process of providing individualized follow-up, support, and guidance. This data-

driven program model allows a small program staff to provide proactive, intensive social

support to scholars who are at risk of attrition at any point during their postsecondary

trajectory.

Since 2004, the program has selected and supported over 3,000 scholars. Currently,

it selects approximately 300 students as Dell scholars annually. Despite the small annual

cohort size, the Dell Scholars program is well known. Between 2009 and 2012, for example,

the program selected a total of 1,201 scholars from a pool of 23,600 applicants.

2.2.2 Scholar Application

Students apply to be Dell Scholars during their senior year of high school. To be eligible,

students must meet certain preliminary criteria. First, students must have participated

in one of several college readiness programs during the last two years of high school.4 In

addition, applicants must be graduating from an accredited high school, earn a minimum

2.4 grade point average (GPA), be financially eligible to receive a federal Pell grant in the

first year of college, and plan to enroll full time in a four-year college at an accredited higher

2016.
3In addition to this student self-reported information, students are required to submit documentation,

such as transcripts, which are used to verify the student-reported data.
4At the time of our writing, these programs included Alliance College-Ready Public Schools, AP Strate-

gies, Aspire, AVID, Bottom Line, Breakthrough Austin, College Forward, Cristo Rey Network, Fulfillment
Fund, GEAR UP, Genesys Works, Green Dot Public Schools, IDEA Academy, KIPP Academy/ KIPP
Through College(KTC), Mastery Charter Schools, Noble Charter, One Goal, Philadelphia Futures, Upward
Bound, Upward Bound - Math Science, YES Prep Public Schools, Uncommon Schools, and Uplift Education.
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education institution in the fall directly after high school graduation.

Qualified students complete an online application that gathers information about high

school grades, test scores, the college readiness program (CRP) in which the student par-

ticipated, college plans, home and work responsibilities, financial information, and home

environment. The online application form can be found on Dell Scholars Program website.5

Each year, eligible high school seniors can apply to the Dell Scholarship Program between

November 1 and January 15. After this date, the application is closed, and the selection

process begins.

2.2.3 Selection Process and Selection Algorithm

Scholar selection proceeds in two phases. The first phase is the selection of semifinalists from

among all qualified applicants, and the second phase is the selection of scholars from among

semifinalists. The Dell Scholars program assesses prospective scholars based on three main

criteria referred to as GPA: Grit, Potential, and Ambition. In each phase, the program scores

students numerically along three dimensions: academics, disadvantage, and responsibility.

These dimensions along with the eligibility criteria map directly onto the Grit-Potential-

Ambition framework. Participating in a college readiness program and having a plan to

enroll in a four-year college show an applicant’s ambition. The academic dimension, which

assesses academic achievements in high school, measures the applicant’s potential. The

final criterion, grit, is intended to target students who have overcome personal challenges

in their lives related to their families, schools or communities. This criterion is assessed

with the measures of disadvantage and student responsibility. Each of these dimensions

includes several sub-categories. For instance, the academic dimension consists of an academic

difficulty index, course count, and high school grade point average while the disadvantage

dimension consists of parents’ income, parents’ level of education, enrollment in state or

federal aid programs, and student living situation.

5See https://apply.dellscholars.org/Application/Print.
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The Dell Scholars Program utilizes scoring algorithms, one for each selection phase, to

compute overall scores. We refer to these as the semifinalist algorithm and the scholar

algorithm, respectively. The program uses the semifinalist algorithm to compute a final

application score for each student who starts an application. The semifinalist algorithm

consists of three sub-algorithms: a sub-category scoring algorithm, a calibration algorithm,

and a final score algorithm. The first algorithm identifies responses for each question in

a particular sub-category and computes the score for the sub-category. The calibration

algorithm standardized the sub-category scores and computes adjusted weights for each

sub-category. The final score algorithm use the adjusted weights and the standardized sub-

category scores to calculate the category score. The program then uses the category scores

and repeats the algorithms to compute the final application score.

Students are then ranked on this final application score, and the top 900 students are

selected as semifinalists. Semifinalists are notified on February 1 and are then required to

provide additional application materials, including a high school transcript, a Student Aid

Report obtained after completing the Free Application for Federal Student Aid (FAFSA),

responses to additional short-answer questions, and a letter of recommendation before March

10. The semifinalists who complete these requirements are referred to as finalists and enter

the scholar selection process. Finalist applications are distributed among and reviewed by a

selection committee consisting of approximately 60 members. Each finalist’s full application

is reviewed and scored by two readers. The assignment process ensures that both readers

in the pair have zip codes different from the finalists they are reviewing. Each reader in

the pair individually reviews each assigned complete application, including recommendation

letters, and scores each item in the application.

At the end of March, the readers submit all application reviews. Super-readers, a subset

of readers with extensive experience in scoring applications, review and score applications

that need an additional evaluation because first two readers awarded scores that deviated

substantially from each other. Once all applications have been reviewed and scored, the
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Table 2.1: Categories and Corresponding Weights in the Scoring Algorithms

Category
Semifinalist Finalist

Algorithm Algorithm

Academics 0.28 0.34

Disadvantage index 0.28 0.34

Responsibility: home 0.18 0.16

Responsibility: work 0.18 0.16

Responsibility: community 0.08

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.

program uses the scholar algorithm to compute a final score for each finalist. The scholar

algorithm also consists of three sub-algorithms: a sub-category scoring algorithm, a calibra-

tion algorithm, and a final score algorithm. However, there are notable differences between

the semifinalist and finalist algorithms. First, the categories and the corresponding weights

are different, as summarized in Table 2.1. Second, the calibration algorithm in the scholar

selection process computes score adjustments before it standardizes each score. The cali-

bration routine in the finalist algorithm has this extra step because two selection committee

members review each application. Specifically, the algorithm adjusts a committee’s score for

a sub-category if the score difference with her partner lies outside of a specific computed

interval. The last difference is the computation of the final score. In the finalist algorithm,

a category score is included in the computation of the final score if the score lies within a

program-specified interval. Thus, the final score can include only one category score if the

other scores lie outside of the interval.

The program ranks the finalists based on the final scores, and the top 300 finalists are

selected as Dell Scholars. The program announces the selected Dell Scholars on April 10 of

each year.

2.2.4 Research Questions

Our main objective is to evaluate the impact of the Dell Scholars Program on immediate

college enrollment, persistence and completion. In addition, we investigate how these impacts
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vary by observable student characteristics, such as status as a would-be first-generation

college student. Our investigation is guided by the following research questions:

1. What is the impact of being selected as a Dell Scholar on college enrollment, persistence

and degree completion?

2. To what extent do these impacts vary by salient student-level characteristics?

3. Do the benefits of the Dell Scholars program justify the costs?

2.3. DATA

The selection process implies that there is a cohort-specific cutoff score that determines

whether a finalist was admitted as a Dell Scholar. Specifically, finalists whose score were

higher than the 301st ranked scholar were admitted as scholars. This process lends itself

perfectly to a regression discontinuity design for assessing the program’s impact. In this

section, we lay out the data and the analytic strategy for informing our research questions.

2.3.1 Data

Our data come from the Dell Scholar applicant records and the National Student Clearing-

house (NSC). The Dell Scholar applicant records provide comprehensive information about

each applicant from the high school graduating classes of 2009 through 2012. The applica-

tion data provide basic demographic information, such as gender, race and ethnicity, state

of residence, and parents’ education level and employment status. The data also include

indicators of students’ academic background, including standardized test scores, high school

achievement, participation in college readiness programs, and top three postsecondary in-

stitution preferences (as students apply to be Dell Scholars prior to being admitted to any

institutions to which they have applied).
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While optional and not factored into the scholar selection process, the large majority of

applicants took and reported scores for either the SAT or ACT test. We convert SAT test

scores (critical reading, math, and writing) to ACT composite test scores using the ACT-SAT

concordance table retrieved from the ACT website.6 Information on applicants’ high school

achievement includes overall high school GPA as well as information on courses taken and

course-level grades earned. Applicants also provide information about their responsibilities

at home, work, and in their community. Lastly, the application data provide measures of

applicants’ financial circumstances, including household income and enrollment in state or

federal aid programs.

In Table 2.2, we provide detailed counts of applicants across the 2009 through 2012

cohorts. Across these years, the program experienced a substantial growth in applications,

with the 2012 applicant cohort being 39 percent larger than that of 2009. Across all years,

selected semifinalists complete the finalist application process with a high rate of compliance.

On average, nearly 90 percent of the semifinalists submitted the required documents and

achieved finalist status for the selection of scholars each year. The final number of selected

scholars varies minimally from the target of 300 annually. Note that we are missing 3

applicants from the 2010 cohort whose final application scores were missing. We are also

missing 139 finalists from the 2011 cohort, one of whom is a scholar, due to an unknown

system issue. This explains the discrepancy in the number of selected scholars in 2011.

Table 2.2: Counts of Applicants Across Cohorts with Non-missing Algorithm Scores

Cohort Total Applicants Semifinalists Finalists Scholars

2009 4,912 775 643 300

2010 5,340 921 811 301

2011 6,533 900 760 299

2012 6,815 901 805 301

Total 23,600 3,497 3,019 1,201

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.

To examine students’ college-going outcomes, we use on college enrollment and college

6See http://www.act.org/aap/concordance/pdf/reference.pdf.
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outcome data from the National Student Clearinghouse (NSC), a non-profit organization

that maintains postsecondary enrollment records for approximately 96 percent of colleges

and universities in the US.7 The NSC data provide semester-level enrollment information at

the student level. These data allow us to observe whether and where students were enrolled

in college. Additionally, the data provide classifications related to students’ postsecondary

institutions such as whether they are public or private institutions and whether they are two

or four-year colleges. Finally, we are able to observe whether students progressed through

to degree completion. Taken together, data from the NSC provides a comprehensive set of

outcomes related to college enrollment, persistence and degree attainment.

In the NSC data, some applicants have overlapping enrollment records in a particular

semester. For instance, an applicant could be enrolled in both a 2 and 4-year institutions in

a particular semester. We implement decisions rules to clean the dataset from overlapping

enrollment records in the following order.

1. We drop any enrollment record if an applicant withdrew from college, has a leave of

absence status, or was deceased.

2. If a record indicates enrollment in a four-year college and the other record indicates

enrollment in a two-year college, we select the former record.

3. There are 8 enrollment status: full-time, three-quarter-time, half-time, less-than-half-

time enrollment. We select an enrollment record with a higher enrollment intensity.

4. If the enrollment records are equivalent in terms of intensity and the type of institution,

we select the record in which the institution matches with the institution in the previous

enrollment records.

5. All else equal, we select an enrollment record at random.

7The National Student Clearinghouse represents the best, comprehensive source of college enrollment
information for US students. Nevertheless, the overall coverage is imperfect and that coverage rates vary
across states (Dynarski et al., 2015).
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2.3.2 Construction of Outcome Variables

We use the cleaned NSC data to construct various college outcomes such as an immediate

4-year college enrollment, second-year persistence rate, third-year persistence rate, earning

a 4-year bachelor degree on time, and earning a 4-year bachelor degree in 6 years. We are

interested in the immediate enrollment in a four-year college because Dell Scholars Program

selects applicants who planned to enroll in a bachelor’s degree program in the fall directly

after high school graduation.

Table 2.3: Matching Rates Between the Dell Applicants Records and the NSC Data

Cohort
Dell Data NSC Data Percentage

Non Semifinalist Non Semifinalist Non Semifinalist

2009 4,137 775 3,902 748 94.32 96.52

2010 4,419 921 4,084 865 92.42 93.92

2011 5,633 900 5,204 834 92.38 92.67

2012 5,914 901 5,347 828 90.41 91.90

Cohort
Dell Data NSC Data Percentage

Non Scholar Non Scholar Non Scholar

2009 343 300 332 290 96.79 96.67

2010 510 301 475 289 93.14 96.01

2011 461 299 418 276 90.67 92.31

2012 504 301 469 279 93.06 92.69

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.

We could not match several Dell Scholars Program applicants to the NSC data. We

assume that these applicants did not attend college. Thus, we assign a value of zero to these

applicants’ outcome observations. In Table 2.3, we find that matching rates between the

Dell and the NSC data are quite high. More than 90 percent of the Dell Scholars Program

applicants and finalists are observed in the NSC data. The matching rates are quite close to

average coverage rates reported in Dynarski et al. (2015). We also find that matching rates

are quite balanced across statuses.

2.3.2.1 Immediate 4-Year College Enrollment Rate We apply the following decision

rules to generate immediate college enrollment rate:
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1. For each applicant in cohort t, we keep records of enrollment in the fall of year t.

2. We keep enrollment records if applicants were enrolled in a 4-year college.

3. We assign a value of 1 if applicants were immediately enrolled in a 4-year college after

high-school graduation and a value of 0 otherwise.

4. We compute the average value to obtain the immediate college enrollment rate.

2.3.2.2 Persistence Rate We apply the following decision rules to generate second-year

persistence rate:

1. For each applicant in cohort t, we keep records of enrollment in the fall and spring of

year t and in the fall of year t + 1.

2. We keep enrollment records if applicants were enrolled in a 4-year college.

3. We keep applicants who kept at least three enrollment records between the fall of year

t and the fall of year t + 1. Note that applicants who were enrolled in colleges with a

quarter system may have more than three enrollment records between the fall of year

t and the fall of year t + 1.

4. We assign a value of 1 if applicants persisted into the second year in a 4-year college

and a value of 0 otherwise.

5. We compute the average value to obtain the second-year persistence rate.

We use the same logic to generate the third persistence rate. We keep records of enrollment

in the fall- and spring-semester of year t and t + 1, and records of enrollment in the fall of

year t + 2. We keep applicants who kept at least five enrollment records between the fall of

year t and the fall of year t + 2. We assign a value of 1 if applicants persisted into the third

year in a 4-year college and a value of 0 otherwise.
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2.3.2.3 Bachelor Degree Completion Rate We apply the following decision rules to

generate on-time bachelor degree completion rate:

1. We keep applicants who graduated from a 4-year college with a bachelor degree. The

list of bachelor degrees that applicants earned include, but not limited to, Bachelor

of Arts (BA or AB), Bachelor of Science (BS), Bachelor of Science in Nursing (BSN),

Bachelor of Interdisciplinary Study (BIS), Bachelor of Business Administration (BBA),

Bachelor of Fine Arts (BFA), Bachelor of Music (BM), Bachelor of Architecture, Bach-

elor of Education, and Bachelor of Social Work (BSW).

2. We assign a value of 1 if applicants earned a bachelor degree within 48 months and a

value of 0 otherwise.

3. We compute the average value to obtain the bachelor degree completion rate.

We use a similar procedure to generate 6-year bachelor degree completion rate. We assign

a value of 1 to applicants who earned a bachelor degree within 72 months and a value 0

otherwise.

2.3.3 Sample Characteristics

In Table 2.4, we present descriptive statistics of applicants’ demographic characteristics, test

score performance, and financial aid eligibility, pooled across cohorts. In the first column

of Table 2.4, we present results overall, and in the remaining columns, we present results

disaggregated by applicant status (e.g., non-semifinalist, semifinalist, finalist, and scholar).

While not reported in the table, rates of missingness on student demographics are very low,

ranging from 0 to 4 percent across most items. Missingness was most prevalent for SAT/ACT

scores (nearly 16 percent), presumably for those students who either did not take a college

entrance test or simply opted not to report their scores in their application.8 About 3 percent

8Missingness for SAT/ACT scores is quite low among the finalists.
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of applicants are missing their parents’ education, with students less likely to report father’s

than mother’s education. This may be an indication of students living in a single-parent

(e.g., mother-headed) household.

Of applicants, 70 percent are female, three-quarters are either black or Hispanic, and

nearly sixty percent are would-be first-generation college goers. Applicants exhibit an average

ACT composite score of 20.15, which corresponds to approximately the 48th percentile of

performance among all test takers. Those ultimately selected as scholars are similar in terms

of gender and race but are even more likely to be first-generation college goers and have an

average ACT performance of about 22, corresponding to approximately the 62nd percentile

of the national distribution. Scholars also achieved a slightly higher high school GPA, on

average. Therefore, the scholar selection process favors those applicants who are higher

performing but from lesser means. As an additional indicator of this final point, while 75

percent of all applicants qualified for subsidized school meals, nearly all of eventual scholars

did so.

In Table 2.5, we list the set of college-going outcomes, such as immediate college enroll-

ment, college persistence, and college completion, the cohorts for which we examine these

outcomes, and the average values of these outcomes, disaggregated by applicant’s status. We

can observe that the proportion of scholars who persisted into the third year is 76 percent

while the proportion of non-scholars who persisted into the third year is only 61 percent.

The proportion of scholars who completed a bachelor degree on time is 34 percent higher

than the proportion of non-scholars who do so. Overall, this descriptive evidence reveals a

consistent pattern of better college-going outcomes among Dell Scholars compared to non-

scholar finalists as well as to the applicant pool overall. While being selected as a Dell

Scholar may be the driver of these differences, they may also be attributable to differences

in the characteristics of students ultimately selected as scholars, such as their higher levels

of prior academic achievement. Therefore, we turn to discussing our analytic strategy for

disentangling these possibilities in the next section.
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Table 2.4: Summary Statistics of All Applicants, Overall and by Applicant Status, 2009-2012

Variables All
Non- Semi-

Finalist
Non-

Scholar
Semifinalist finalist Scholar

Age 18.26 18.25 18.32 18.32 18.31 18.32

(0.49) (0.48) (0.53) (0.53) (0.52) (0.54)

Scaled GPA 0.85 0.84 0.89 0.90 0.88 0.92

(0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

ACT equivalent 20.15 19.93 21.38 21.49 20.92 22.33

(3.84) (3.78) (3.92) (3.90) (3.76) (3.95)

Female 0.70 0.69 0.71 0.71 0.71 0.71

Asian 0.10 0.09 0.15 0.16 0.15 0.17

Black 0.23 0.23 0.24 0.23 0.23 0.23

Caucasian 0.16 0.16 0.13 0.12 0.12 0.14

Hispanic 0.53 0.53 0.47 0.48 0.50 0.45

Other Ethnicity 0.04 0.04 0.04 0.04 0.04 0.04

Received lunch program 0.75 0.72 0.95 0.96 0.96 0.96

Received food stamp 0.24 0.19 0.53 0.53 0.54 0.53

Enrolled in WIC 0.09 0.08 0.17 0.18 0.19 0.16

Enrolled in TANF 0.03 0.02 0.08 0.09 0.08 0.09

Enrolled in LIHEAP 0.10 0.08 0.21 0.21 0.20 0.23

Enrolled in SSI 0.08 0.06 0.17 0.18 0.18 0.18

Enrolled in free housing 0.06 0.05 0.16 0.16 0.16 0.17

Enrolled in SSD 0.10 0.09 0.17 0.17 0.15 0.19

Enrolled in health insurance 0.28 0.25 0.44 0.46 0.45 0.48

Enrolled in Medicaid 0.20 0.17 0.42 0.42 0.42 0.41

Parent’s education, < HS 0.31 0.29 0.47 0.48 0.48 0.49

Parent’s education, HS 0.26 0.26 0.27 0.26 0.26 0.27

Parent’s education, some college 0.27 0.28 0.19 0.18 0.18 0.17

Parent’s education, college 0.13 0.14 0.06 0.06 0.07 0.06

Parent’s education, missing 0.03 0.03 0.02 0.02 0.01 0.02

Total Observations 23,600 20,103 3,497 3,019 1,818 1,201

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
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Table 2.5: Summary Statistics of Applicants’ Outcomes by Treatment Status

Variable Cohort
All Applicants Non-Semifinalists Semifinalists Finalists Non-Scholars Scholars

Mean N Mean N Mean N Mean N Mean N Mean N

Immediate enrollment 2009-2012 0.73 23,600 0.71 20,103 0.82 3,497 0.84 3,019 0.82 1,818 0.88 1,201

2nd year persistence rate 2009-2012 0.62 23,600 0.60 20,103 0.72 3,497 0.75 3,019 0.70 1,818 0.82 1,201

3rd year persistence rate 2009-2012 0.55 23,600 0.53 20,103 0.64 3,497 0.67 3,019 0.61 1,818 0.76 1,201

Bachelor’s degree on time 2009-2012 0.20 23,600 0.19 20,103 0.25 3,497 0.27 3,019 0.22 1,818 0.34 1,201

Bachelor’s degree in 6 years 2009-2010 0.49 10,252 0.47 8,556 0.58 1,696 0.60 1,454 0.53 853 0.70 601

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
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2.4. REGRESSION DISCONTINUITY DESIGN

2.4.1 Validity of the Regression Discontinuity Design

We take advantage of the Dell Scholars Program selection processes to identify the causal

impact of being selected as a scholar on college enrollment, persistence and completion

outcomes. We exploit the fact that the program uses well-specified rank thresholds for

the selection of scholars. Specifically, the program first ranks all applicants based on their

final application scores and selects the top 900 scoring applicants as semifinalists. Then,

among those semifinalists who complete the finalist application, the program scores and

ranks finalists and selects the top 300 scoring finalists as Dell Scholars, such that, in each

year, the score of the 300th ranked finalist is the relevant threshold for examining the effect

of being selected as a Dell Scholar.

These features allow us to use a regression discontinuity (RD) design to compare the

outcomes of finalists with scores just above and below their year-relevant scholar-selection

threshold. The students with scores just around the thresholds are comparable on many

dimensions, however the finalists with scores just above the relevant thresholds were selected

as the program’s scholars. Thus, we can rely on the comparison of students at the scholar-

selection margins to obtain unbiased estimates of the impacts of scholar selection.

For a regression discontinuity strategy to yield valid causal inference, several conditions

must be met (Schochet et al., 2010). First, the assignment rule must be clear and followed

with a high degree of fidelity. Second, the score utilized to determine scholar status, our

running variable, should be an ordinal measure with sufficient density on either side of the

cut off. Third, these scores should be utilized by the Dell Scholars program only for the

purpose of identifying scholar status, and therefore differences that we see at the relevant

margin cannot be attributable to other potential mechanisms. Finally, applicants must not

able to manipulate their own value of the running variable. Regarding this final point, it
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is highly implausible that applicants would have this ability. The scoring algorithms are

complex, are not publicly disclosed, and rely on multiple inputs. Further, manipulation

of one’s position relative to the cutoffs would require perfect information of the selection

processes as well as of the inputs associated with other applicants.

An additional, related potential threat to validity is rater manipulation, such that raters

are overly generous in scoring certain applications. While we cannot fully rule out the

potential of rater manipulation, we argue that it is unlikely to have an undue influence

on students’ final rank order especially local to the threshold for scholar selection. First,

each rater evaluates applications for only a small subset of all finalists. Second, the final

scores are a combination of rater evaluation scores and scores attributed to measures like

student GPA. In sum, raters are unlikely to know the marginal score that will be in the top

300 and are unlikely to be able to finely manipulate a student’s overall score around that

relevant margin. Finally, as noted in Section 2.2.3, raters are never assigned to review the

applications of students who reside in the same zip code. Therefore, it is unlikely that raters

have a personal connection with any of the students whose application materials they are

reviewing.

2.4.1.1 Fidelity of the Assignment Rule We provide evidence that the remaining

conditions are met in the context of the Dell Scholars program. In Figure 2.1, we illustrate

the relationship between scholar status and the final score, by year. In each year, the relevant

threshold is demarcated with a vertical dashed line. These figures provide evidence that the

selection rules and processes are followed with a very high – almost perfect – degree of fidelity.

Nevertheless, we do observe a few exceptions to the stated selection rules. We find a small

number of instances where finalists, whose scores are above the scholar threshold, were not

selected as scholars.

In Table 2.6, we report on the relevant threshold values for the identification of scholars

and report counts of the number of cases in which the selection rules were not strictly
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Figure 2.1: Relationship between Scholar Status and Final Score by Year. Source: The Dell Scholars Program database, Michael
and Susan Dell Foundation.
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followed, by year. These instances of non-compliance with the stated assignment rules are

explained by the fact that the Dell Scholar team reserves the right to manually disqualify

applicants after they initially have been selected as a scholar. There are four main reasons

for disqualification. First, an applicant may be disqualified if the applicant received a serious

disciplinary action in high school. The Dell Scholar Program has yet to disqualify a scholar

for this reason. Second, an applicant may be disqualified if the applicant’s essay did not

meet the minimum criteria or if the applicant used the same responses for all essays. Third,

an applicant may be disqualified if the applicant did not plan to attend a four-year college.

While it is permissible for scholars to begin their postsecondary education at a community

college, they must demonstrate a goal of completing a four-year degree. Lastly, an applicant

may be disqualified if the applicant inflated their high school grades. Specifically, the Dell

Scholar Program checks whether the self-reported grades matched with the official high-

school transcript. Despite these small discrepancies, collectively we have strong evidence in

support of an RD strategy for assessing programmatic impacts.

Table 2.6: Threshold Scores and Assignment of Scholars by Year

Cohort

Threshold Non-Scholars Non-Scholars Scholars Scholars

Scholars
Score with score with score with score with score

below above below above

threshold threshold threshold threshold

2009 505 343 0 0 300 300

2010 522 505 5 6 295 301

2011 518 457 4 4 295 299

2012 526 496 8 8 293 301

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.

We formally estimate the relationship between scholar status and assignment rule. We

use the following linear probability model for finalist i in cohort t:

SCHOLARit = β0 + β1ASSIGNit + β2SCOREit + β3 (ASSIGN · SCORE)it + ΓXit + εit,

(2.1)

where SCHOLAR is an indicator for selection as a Dell Scholar, ASSIGN is an indicator for
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a final score that is equal to or higher than the cohort-specific threshold, and SCORE is the

final score re-centered around the threshold. Note that under a perfect assignment rule, the

variables SCHOLAR and ASSIGN are equivalent for all students. The vector X comprises

control covariates including cohort dummies, interactions between cohort dummies and the

running variable, interactions between cohort dummies, the running variable, and the scholar

status, age, scaled GPA, ACT equivalent score, dummies for state of residence, a female

dummy, ethnicity dummies, parents’ adjusted gross income, dummies for parental education,

free or reduced-lunch eligibility, receipt of food stamps, receipt of federal health insurance,

receipt of Medicaid, an indicator for missingness of ACT, and an indicator for missingness of

food stamp receipt. Note that our specification allows the slope of the relationship between

the probability of being selected as a scholar and scores to vary above and below the cohort-

specific thresholds.

The parameter of the assignment indicator, β1, represents the difference in the probability

of being selected as a scholar between students who are just above and just below the year-

specific threshold. The parameter is equal to 1 if the assignment rule is followed perfectly.

We expect the parameter to be less than but close to 1 since the assignment rule was

followed with near perfect fidelity. Indeed, as shown in Column 1 of Table 2.7, we estimate

that a finalist with a score just above the threshold has a 0.955 higher probability of being

selected as a scholar. In the remaining columns, we present estimates associated with the

intermediate, the narrow, and the optimal bandwidths. Across columns, the results are very

similar in terms of both magnitude and statistical significance and are therefore not sensitive

to bandwidth selection. The results show that, albeit imperfection in the assignment rule,

there is a high-degree of fidelity. These results motivate our modeling strategy which we will

discuss in Section 2.4.2.

2.4.1.2 Continuity of the Running Variables We now test the validity of the RD

assumptions related to the continuity of the running variables across the relevant thresholds
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Table 2.7: Relationship between Scholar Status and Assignment Rule

1: Full sample 2: Intermediate 3: Narrow 4: Optimal

Assignment rule 0.955∗∗∗ 0.953∗∗∗ 0.947∗∗∗ 0.946∗∗∗

(0.010) (0.009) (0.011) (0.012)

Score 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

Score x assignment rule -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Observations 3019 2992 2299 1944

Adjusted R
2 0.95 0.96 0.95 0.95

Mean below threshold 0.03 0.02 0.02 0.02

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
Notes: Robust standard errors are in the parentheses and sample sizes are in brackets. The signs *, **, *** indicate significance
at 10%, 5%, and 1% level, respectively. Explanatory variables not shown in the table are the running variable, an interaction
between scholar status and the running variable, cohort dummies, interactions between cohort dummies and the running
variable, interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent
score, dummies for state of residence, a female dummy, ethnicity dummies, dummies for parental education, free or reduced-
lunch eligibility, receipt of food stamps, receipt of federal health insurance, receipt of Medicaid, an indicator for missingness of
ACT score, and an indicator for missingness of food stamp receipt.

and assess any evidence of manipulation of position around these thresholds. We utilize

the McCrary (2008) test to examine the continuity assumption of the running variables by

assessing the smoothness of the score densities across the relevant thresholds. The intuitive

purpose of this exercise is to test whether applicants were able to manipulate their assign-

ment. Graphically, we expect continuity in the density of the continuous assignment variable

around the threshold if applicants were not able to manipulate their assignment. Given the

complexity of the scoring algorithms utilized as well as the fact that semifinalist and scholar

selection thresholds are determined relative to each year’s pool of applicants (rather than

being an absolute, pre-determined threshold), we expect for the assumptions to be met.

In Figure 2.2, we illustrate the graphical presentation of the McCrary test for the finalists’

scores. In Panel A of Figure 2.2, we present results by year and in Panel B of Figure 2.2,

we present data pooled across the 2009 through 2014 cohorts. In each panel, we can observe

the continuity of the assignment variable. In Table 2.8, we provide summary statistics from

the McCrary tests. In all but one cohort and for results pooled across cohorts, the test fails

to reject the null hypothesis at the 5 percent significance level. The only instance where the

data failed to reject the null hypothesis is in the 2011 scholar selection. This result may be
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Figure 2.2: Graphical Representation of the McCrary Density Tests by Year for the Scholar
Selection. Source: The Dell Scholars Program database, Michael and Susan Dell Foundation.
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driven by the missing data of 138 finalists and 1 scholar in the 2011 finalist dataset.9

Table 2.8: Results of the McCrary Density Tests by Cohort

Cohort
Finalists

Mean S.E. t−statistics

2009 0.049 0.180 0.275

2010 -0.177 0.185 -0.954

2011 0.460 0.205 2.250

2012 0.128 0.156 0.822

2013 -0.320 0.173 -1.850

2014 -0.210 0.195 -1.073

2009-2014 (pooled) -0.019 0.076 -0.243

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.

As an additional check, we examine potential jumps in finalists’ characteristics at the

scholar selection thresholds. Finalists’ characteristics that we analyze include gender, age,

ACT equivalent score, high-school GPA, ethnicity, enrollment in lunch program, and first-

generation college student status. We conduct a graphical analysis before we fit regression

discontinuity models. First, we implement a bandwidth selector proposed in Calonico et al.

(2014a) to obtain an optimal bandwidth for each variable. We use the rdbwselect package

in STATA that implements this bandwidth selector (Calonico et al., 2014b). We specify

a local linear regression with a uniform kernel for the bandwidth selector because we fit

regression discontinuity models using OLS.10 Second, we use the rdplot package in STATA

which implements data-driven RD plots (Calonico et al., 2015).

We present the RD plots in Figure 2.3. The graphical analysis suggests no jumps around

the threshold for the gender, age, and ACT equivalent score variables. However, we can ob-

serve slight jumps for the remaining variables. To test whether these jumps are significantly

different from zero, we fit regression models. Specifically, we use a linear regression model

for finalist i in cohort t:

Cit = α0 + α1SCHOLARit + α2SCOREit + α3 (ASSIGN · SCORE)it + ΓXit + ǫit (2.2)

9We assess the sensitivity of our results to this cohort and find that results are, overall, not sensitive to
the inclusion or exclusion of the class of 2011 students for who score data are complete.

10See Lee and Lemieux (2010) and Imbens and Lemieux (2008) for further discussions.
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Figure 2.3: RD Plots of Finalists’ Characteristics. Source: The Dell Scholars Program database, Michael and Susan Dell
Foundation.
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where C represents a finalists’ characteristic. The variable SCHOLAR takes a value of 1

if the finalist received a Dell Scholarship. The variable ASSIGN takes a value of 1 if the

finalist’s final score is above the cohort-specific cutoff score. The running variable, SCORE,

is the centered finalist scores. Finally, the vector X includes the same set of covariates as

the ones in Specification 2.1. We exclude a variable from the vector X if the variable is used

as the left-hand side variable (C).

We present the regression results in Table 2.9. In no case did these analyses reveal that

the jumps around the selection cutoff are significantly different from zero. Collectively, the

results in this section do not point to evidence of manipulation of the running variables. We

conclude that the Dell Scholar selection rules generate a robust quasi-random assignment of

scholars local to the relevant selection thresholds.

Table 2.9: Relationship between Covariates and Scholar Status Using the Full Sample

Finalists’ characteristics 1 if Female Age
1 if Black 1 if White

or Hispanics or Asian

1 if Scholar -0.026 0.006 -0.001 -0.001

(0.023) (0.026) (0.004) (0.003)

Total observations 4,605 4,605 4,605 4,605

Finalists’ characteristics
ACT High-school 1 if lunch 1 if first-

equivalent GPA program generation

1 if Scholar 0.200 -0.016 0.003 0.012

(0.168) (0.018) (0.008) (0.020)

Total observations 4,605 4,605 4,605 4,605

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
Notes: Robust standard errors are in the parentheses and sample sizes are in brackets. The signs *, **, *** indicate significance
at 10%, 5%, and 1% level, respectively. Explanatory variables not shown in the table are the running variable, an interaction
between scholar status and the running variable, cohort dummies, interactions between cohort dummies and the running
variable, interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent
score, dummies for state of residence, a female dummy, ethnicity dummies, dummies for parental education, free or reduced-
lunch eligibility, receipt of food stamps, receipt of federal health insurance, receipt of Medicaid, an indicator for missingness of
ACT score, and an indicator for missingness of food stamp receipt

2.4.2 Model Specification

The modest infidelity to the selection processes suggests that we need to utilize a two-stage

instrumental variables (IV) or fuzzy RD approach (Jacob and Lefgren, 2004; Imbens and

Lemieux, 2008). Based on this approach, the assignment rule is an instrument for the scholar
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selection. However, we have shown that the assignment rule is almost a perfect predictor

of scholar selection. Therefore, we opt to use a reduced-form specification to estimate the

impact of being selected as a Dell Scholar on college-going outcomes.11 Specifically, we use

a linear probability model for finalist i in cohort t:

Yit = π0 + π1ASSIGNit + π2SCOREit + π3 (SCORE · ASSIGN)it + θXit + τit, (2.3)

where Y represents a particular outcome such as college enrollment, persistence, or bachelor

degree completion. The parameter π1 indicates the causal impact of being selected as a Dell

Scholar. We use the same set of covariates as the ones in Specification 2.1. We estimate

the parameters of the models using different bandwidths: the full sample, an intermediate

bandwidth of ±100 points, a narrow bandwidth of ±40 points, and an optimal bandwidth

around the threshold.12

In selecting the optimal bandwidth, we utilize a first-order polynomial, a uniform kernel,

and the bandwidth selector of Calonico et al. (2014a). The optimal bandwidth varies across

outcomes because of this process. For this reason, we choose the two additional bandwidths

of ±100 and ±40 points which are constant across outcomes. We estimate the impacts

of being selected as a Dell Scholar on different outcomes among students in the 2009-2012

cohorts to avoid composition effects. Note that the only students we are able to observe for

a full six year of college enrollment are students in the 2009-2010 cohorts. Therefore, we also

estimate the impacts among students in the 2009-2010 cohorts.

11We find that fuzzy RD estimates are quite identical to reduced-form estimates.
12Lee and Lemieux (2010) suggest estimation of linear regression model using different bandwidths as

opposed to estimation of linear regression model with different kernels.
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2.5. RESULTS

We present impacts of being Dell Scholars on the college-going outcomes in Table 2.10.13 We

estimate that students just below the threshold have a 0.85 probability of enrolling in college.

At the margin of selection, being selected as a Dell Scholar improves timely enrollment in

4-year institutions among scholars in the 2009-2010 cohorts. We estimate that being selected

as a Dell Scholar improves enrollment by about 9.8 percentage points. However, we find no

significant impact of being selected as a Dell Scholar on timely enrollment when we include

the 2011 and 2012 cohorts. The lack of impact with respect to college enrollment is not

necessarily surprising. As discussed above, all students who achieve finalist status in the

Dell Scholars application process are likely to be highly college intending, and students were

notified of their scholar status well after deciding where to apply and, for many, where to

attend. Even for these highly college-intending students, however, it is notable that a sizable

share is not successfully matriculating to college, potentially facing other barriers to timely

postsecondary enrollment (e.g. Castleman and Page, 2014b,a).

The generous financial support that Dell Scholars receive may substantially alleviate the

financial constraints that students and families experience in covering costs associated with

college attendance. These include academic costs, such as tuition, fees, and books, as well as

non-academic costs, such as child care. If the scholarship improves students’ ability to finance

college, semester over semester, then we may expect to see substantially higher persistence

among Dell Scholars. Second, through gathering data on scholars’ postsecondary experiences

and providing them with feedbacks and supports, as needed, the program may provide

students with the guideposts, encouragement, and direction that they need to be more

successful throughout their college careers. Improvements in outcomes such as persistence

as well as other success metrics such as college GPA, number of credits attempted, and

13We present the fuzzy RD estimates in Table B.1. The fuzzy RD estimates are quite identical to reduced-
form estimates.
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number of credits earned each semester would align with these mechanisms.

While we lack data for both scholars and applicants on academic performance in college,

we do utilize data from the National Student Clearinghouse to examine year-by-year persis-

tence outcomes through the first three years of college. We present these results in Table

2.10. Like immediate enrollment, we find no impact on second-year persistence at the margin

of being selected as a scholar. However, we find a strong and positive impact of being a Dell

Scholar on third-year persistence. We estimate that students just below the threshold have

a 0.67 probability of persisting to the third year while students who just meet the threshold

for scholar selection are 5-11 p.p. more likely to persist to the third year. The impact on

third-year persistence is even higher among scholars in the 2009-2010 cohort as those who

just meet the threshold for scholar selection are 7-18 p.p. more likely to persist to the third

year. We interpret these results as a strong evidence that the program has a positive impact

on postsecondary persistence, especially in the later years of college.

We also find positive and statistically significant impacts of being a Dell Scholar on

degree completion. Among the 2009-2012 cohorts, the estimated probability of obtaining a

bachelor’s degree within 4 years is about 0.29. This estimate suggests that about 43 percent

of finalists who persisted to the third year earned a bachelor’s degree within 4 years. Our

estimate suggests that students who just meet the threshold for scholar selection are about 6

p.p. more likely to complete a bachelor’s degree in 4 years. The estimated impacts are larger

among scholars in the 2009-2010 cohorts. Specifically, students who just meet the threshold

for scholar selection are 8-10 p.p. more likely to earn a bachelor degree on time, and 16 p.p.

more likely to earn a bachelor degree in 6 years.14 The impacts that we estimate are visually

apparent in Figure 2.4 which illustrates the impacts of being selected as a Dell Scholar on

immediate enrollment, third-year persistence, on-time BA attainment, and BA attainment

in 6 years, respectively.15

14We observe in the data that almost all students who earned a bachelor degree do so within 6 years.
15As suggested by Lee and Lemieux (2010), we estimate the model using different bandwidths around the

threshold. We present the results of estimations using different optimal bandwidths in Table B.2 for the
2009-2012 cohorts and in Table B.3 for the 2009-2010 cohorts. We find that the magnitudes of the effects
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Table 2.10: Impacts of Scholar Selection on College-Going Outcomes

2009-2012 Cohorts 2009-2010 Cohorts

Outcomes µ
Full Intermediate Narrow Optimal Range of

µ
Full Intermediate Narrow Optimal Range of

Sample (±100) (±40) Bandwidth Bandwidths Sample (±100) (±40) Bandwidth Bandwidths

1: Intermediate enrollment 0.853 0.015 0.022 0.023 0.014 44 0.850 0.032 0.037 0.064 0.098* 36

(0.022) (0.025) (0.037) (0.036) (0.031) (0.036) (0.054) (0.057)

[3,019] [2,585] [1,372] [1,482] [1,454] [1,245] [668] [602]

2: 2nd year persistence rate 0.752 0.023 0.036 0.032 0.025 44 0.751 0.034 0.054 0.072 0.103 38

(0.026) (0.030) (0.044) (0.043) (0.037) (0.043) (0.064) (0.067)

[3,019] [2,585] [1,372] [1,482] [1,454] [1,245] [668] [631]

3: 3rd year persistence rate 0.674 0.046* 0.060* 0.081* 0.110** 36 0.658 0.067* 0.090* 0.121* 0.184** 36

(0.028) (0.032) (0.048) (0.050) (0.040) (0.046) (0.069) (0.074)

[3,019] [2,585] [1,372] [1,240] [1,454] [1,245] [668] [602]

4: BA attainment, in 4 years 0.287 0.062** 0.056* 0.065 0.059 34 0.266 0.081** 0.096** 0.101 0.090 31

(0.028) (0.032) (0.051) (0.055) (0.041) (0.047) (0.075) (0.087)

[3,019] [2,585] [1,372] [1,176] [1,454] [1,245] [668] [530]

5: BA attainment, in 6 years 0.633 0.042 0.056 0.093 0.158* 30

(0.042) (0.048) (0.075) (0.090)

[1,454] [1,245] [668] [512]

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
Notes: Robust standard errors are in the parentheses and sample sizes are in brackets. The signs *, **, *** indicate significance at 10%, 5%, and 1% level, respectively.
Explanatory variables not shown in the table are the running variable, an interaction between scholar status and the running variable, cohort dummies, interactions between
cohort dummies and the running variable, interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent score, dummies
for state of residence, a female dummy, ethnicity dummies, dummies for parental education, parents’ income, free or reduced-lunch eligibility, receipt of food stamps, receipt
of federal health insurance, receipt of Medicaid, an indicator for missingness of ACT score, and an indicator for missingness of food stamp receipt. To obtain the optimal
bandwidth, we use a first-order polynomial, a uniform kernel, and bandwidth selector of Calonico et al. (2014a).
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Figure 2.4: Regression Discontinuity Plots of Scholar Selection and College-Going Outcomes. Source: The Dell Scholars Program
database, Michael and Susan Dell Foundation.
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As is typical in the context of RD analysis, we face a trade-off between statistical power

and estimating treatment effects local to the relevant thresholds (e.g. Ludwig and Miller,

2007). For instance, in Table 2.10, the magnitude of on-time degree completion effects is

quite consistent across the four different bandwidths while statistical significance differs in

some instances due to a loss of precision when restricting the sample. Nevertheless, we judge

these results collectively to provide compelling evidence regarding the substantial impact

of the Dell Scholar opportunity on college completion. Specifically, these impacts represent

about an 11 percent increase in third-year persistence and a nearly 22 percent increase in

on-time bachelor’s degree attainment.

Given these sizable impacts on postsecondary persistence and degree attainment, a key

question is what are the mechanisms by which the program is improving persistence and

college completion. One plausible explanation is that being selected as a Dell Scholar may

impact the type or “quality” of the institution in which students enroll. This may occur for

two reasons. Upon being selected as a Dell Scholar, students participate in in-take interviews

conducted prior to postsecondary matriculation. During this interview, the Dell Scholar

team provides feedbacks on college plans and, in some cases, counsels students about certain

postsecondary choices, such as planning to enroll in public institutions. The justification

here is that a public institution is likely to be a more financially viable option. Second, the

Dell Scholar award includes a sizable amount of grant-based financial aid that may enable

students to view a different set of postsecondary options as within reach financially. If

students are enrolling in “higher quality” institutions as a result of the Dell support, this

may translate to better college completion outcomes (Goodman et al., 2015; Hurwitz et al.,

2016; Howell and Pender, 2016)

We examine a set of indicators related to institutional quality and type. Related to qual-

ity, we specifically examined whether students at the margin of scholar selection initially

enrolled in institutions that differed in terms of institutional graduation rates and in terms

are not sensitive to changes in the optimal bandwidth.
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of instructional expenditure, given evidence from Hoxby et al. (2013) that instructional ex-

penditure correlates with other metrics of institutional quality. We also examine whether

students at the margin of the threshold for scholar selection initially enrolled in more com-

petitive institutions. Related to college type, we investigate the impact of being selected as

a Dell Scholar on whether they enrolled in public or private institutions. We present the RD

estimates for these outcomes in Table 2.11. It is important to note that about 15 percent of

the finalists have missing quality indicators because their institutions are not observed in the

integrated postsecondary education data system (IPEDS). Therefore, we investigate whether

there is a systematic relationship between being selected as a Dell Scholar and missingness.

As shown in Row 1 of Table 2.11, we find no evidence that missingness are correlated with

being selected as a Dell Scholar.

We find systematic evidence that students’ specific institutional choices change along the

quality dimensions as a result of being selected as Dell Scholars. We estimate that students

who just meet the threshold of scholar selection initially enrolled in school with significantly

higher instructional expenditure per full-time equivalent (PFTE) students. We also estimate

that students who just meet the threshold of scholar selection are 6-7 p.p. more likely to

enroll in either very, highly, or most competitive college. Overall, these results support our

view that being selected as a Dell Scholar induces students to choose better quality schools,

which in turn translates to higher persistence and completion rates.

2.6. DISCUSSION

We find compelling evidence of strong and significant impacts on later persistence and sig-

nificant impacts on college completion. At the margin of being selected into the Dell Scholar

Program, scholars are 5-18 percentage points more likely to persist to the third year, 6-10

percentage points more likely to earn a bachelor’s degree on-time, and nearly 16 percentage

points more likely to do so within six years than they would have been absent the Dell
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Table 2.11: Impact of Scholar Selection on College Quality and College Type, 2009-2012
Cohorts

Outcomes µ
Full Intermediate Narrow Optimal Range of

Sample (±100) (±40) Bandwidth Bandwidths

1: 1 if missing quality indicators 0.150 0.020 -0.006 -0.006 -0.006 30

(0.023) (0.026) (0.041) (0.047)

[3,019] [2,585] [1,372] [1,049]

2: Institutional degree completion 24.42 1.002* 0.645 0.250 0.429 26

PFTE students (0.519) (0.586) (0.815) (0.942)

[3,019] [2,585] [1,159] [1,482]

3: Instructional expenditure PFTE $4,590 436.8* 609.8** 867.6** 550.8 36

students (265.3) (293.4) (433.3) (557.9)

[2,556] [2,202] [1,159] [770]

4: Barron’s category of very, 0.487 0.062** 0.073** 0.003 -0.047 34

highly, or most competitive college (0.030) (0.035) (0.054) (0.070)

[2,556] [2,202] [1,159] [770]

5: Enrollment in 4-year public 0.603 0.025 0.008 0.076 0.076 31

institution (0.032) (0.038) (0.059) (0.068)

[2,556] [2,202] [1,159] [921]

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation, and IPEDS Analytics: the Delta Cost Project
Database.
Notes: Robust standard errors are in the parentheses, sample size in brackets. The signs *, **, *** indicate significance at 10%,
5%, and 1% level, respectively. Explanatory variables not shown in the table are the running variable, an interaction between
scholar status and the running variable, cohort dummies, interactions between cohort dummies and the running variable,
interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent score,
dummies for state of residence, a female dummy, ethnicity dummies, dummies for parental education, free or reduced-lunch
eligibility, receipt of food stamps, receipt of federal health insurance, receipt of Medicaid, an indicator for missingness of ACT
score, and an indicator for missingness of food stamp receipt.

Scholar opportunity.

The magnitude of the degree effects are similar in structure to those observed by Scott-

Clayton (2011) in her examination of the West Virginia (WV) PROMISE program (this

paper also utilizes a regression discontinuity design with an academically-similar population

of students). Scott-Clayton concludes that the WV PROMISE program provided academic

achievement “guideposts” to students that helped to improve the quality of their postsec-

ondary enrollment. Students supported through the WV PROMISE earned more credits over

four years and achieved higher GPAs, for example, than their non-PROMISE counterparts,

due to the motivation of the structural requirements of the financial support. Although we

are not able to observe these “process” measures in the data to which we currently have ac-

cess, we hypothesize that the Dell opportunity may operate through improving the academic
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success of the Dell Scholars by combining generous financial support with both guideposts

for success and close monitoring, feedback and support to keep scholars on track for degree

attainment.

The impact that we observe on on-time bachelor’s degree attainment (6-10 percentage

points) is also of similar magnitude to that observed by Scott-Clayton at the margin of

PROMISE eligibility. In that only a third of the WV students qualified for a Pell Grant

compared to all of the Dell Scholar recipients, the magnitude of the Dell Scholars program

impact on on-time degree attainment is particularly remarkable. Further, different from the

WV PROMISE context, we observe that over a longer time horizon, the impact on degree

completion grows. Specifically, we estimate a 16 percentage point impact on attainment of

a bachelor’s degree within six years.

Given the positive impacts of the Dell Scholars Program on degree attainment, an impor-

tant question is whether the benefits associated with these increases in college completion

justify the costs of the program. Therefore, we provide a back-of-the envelope calculation re-

garding the relative costs and benefits of the program in the spirit of Deming (2009), Pallais

(2015), and Hurwitz et al. (2016). We consider about 1,000 students who were close to the

threshold and to whom the estimated impact would apply. Our estimate using the optimal

bandwidth suggests that 158 more students (or 15.8 percent) would earn a bachelor’s degree.

The total costs of the Dell Scholars Program for these students is $30 million or $30,000 per

student. This implies that the cost to induce one additional student to earn a bachelor’s

degree is about $189,837.

We now consider the benefits of the higher attainment of a bachelor’s degree. It is

estimated that in 2011 median full-time workers with a bachelor’s degree earned, on average,

$16,100 more in annual earnings and tax payments than full-time workers with only some

college (Baum et al., 2013). While this is an observed difference, Card (1999) reports that

causal estimates of the schooling effect earnings are often 20 to 40 percent larger. Assuming

a constant earnings differential between the two groups, the Dell Scholar Program would
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reap a net benefit after twelve years of post-college earning. Even if the earnings differential

between Dell Scholars recipients and finalists just below the threshold were smaller, given

that the latter group persisted through several years of college at more similar rates, the

program is still expected to have a positive rate of return, albeit over a long time horizon.

Of course, this simple calculation leaves aside many factors. For example, we might

consider this estimate conservative, in that we do not attempt to monetize the many other

types of benefits, both public and private, that accrue as a result of higher education (Baum

et al., 2013). Similarly, we do not adjust for an increase in earnings differentials over time.

While recognizing the many assumptions that we have made, these calculations nevertheless

suggest a positive rate of return for the Dell investment in their Dell Scholars program.

Some college access and persistence efforts focus on financial barriers to college success

by providing students with scholarship funds. Other efforts focus on additional outreach

and counseling to assist students in navigating the academic and behavioral challenges that

emerge in college. While evidence suggests that both types of efforts hold promise for improv-

ing the college-going outcomes of low-income and first-generation college-going students, it

may be that offering students a suite of supports across these domains may be more success-

ful than the sum of its parts. The ASAP program in New York City suggests this to be true

in the community college context. Our examination of the Dell Scholars program provides

further supporting evidence, primarily in the context of four-year colleges and universities.

As discussed above, there are several eligibility criteria that students must meet to ini-

tially apply and be selected as a Dell Scholar. Upon selection, there are several steps that

students must take in order to remain eligible. This includes regular reporting back to the

Dell Scholars team on academic progress as well as challenges that they are facing, be they

related to academics, physical health, mental health, college finances, or general life manage-

ment. By incorporating this reporting mechanism into their ongoing work with scholars, the

Dell Scholars team is able to track their students closely and triage additional team support

to students when needed.
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Our results indicate that this support, coupled with generous and flexible financial aid,

leads to improved rates later persistence, on-time and within six years of college completion.

Taken together, the results point to the Dell Scholar program supporting scholars to be

more efficient and effective in their postsecondary educational experiences. Although we are

not able to shed light on the specific mechanisms through which the program operating,

in subsequent work, we will turn to a rich investigation of the process through which the

Dell Scholars program helps students to persist and succeed in college through to degree

completion. This work will help to inform the college access and success community in

efforts to go beyond initial college enrollment to focus on ultimate degree attainment and to

understand the many facets of the college experience with which students may benefit from

increased structure, guidance and support.
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3. THE PRICE OF RELIGION: EXPERIMENTS IN

WILLINGNESS TO BEAR RISK FOR OTHERS IN

ISLAMIC COMMUNITIES

Co-authored with Sera Linardi, Rebecca B. Morton, Kai Ou, and Xiangdong Qin

3.1. INTRODUCTION

Leaders of social movements often appeal to religion.1 Participation in these movements

costs not only time but it also costs money and effort, such as pledging a donation, signing a

petition, or participating in a demonstration. Many times, individuals who join these move-

ments impose risks on themselves in order to achieve a prosocial outcome. For instance,

individuals join a disaster relief team to help disaster victims. The degree to which individu-

als are willing to take these risks in this context are different from one individual to another.

Some individuals are willing to take risks only when the costs imposed to themselves are

low. On the other hand, there are individuals who are willing to take risks even when the

costs imposed to themselves are high. In this study we ask whether using a religious precept

is an effective way to motivate individuals to take prosocial risks particularly when the costs

imposed to themselves are high?

This paper explores the effect of a religious message on prosocial risk-taking. We inves-

tigate this effect in the context of a question that is important in Islam but understudied

1This research is funded through the New York University Abu Dhabi Research Enhancement Fund. We
are grateful for comments and suggestions from participants of the Pitt Experimental Economics Seminar,
the 2015 ASREC Conference, and the 2015 New York University CESS Experimental Political Science
Conference.
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in the Western world: The Islamic prohibition against lending with interest. Specifically,

Islam prohibits lending with interest-based arrangements (IB) and promotes profit- and loss-

sharing arrangements (PLS).2 The main difference between PLS and IB arrangements is the

risk-sharing feature.3 A lender makes a relatively risk-free investment in an IB arrangement

since a borrower must pay back the loan and the interest whether he or she makes profits or

not. However, a lender shares the risk of financing in a PLS arrangement. A lender obtains

a return from investment only when the borrower makes profits, and makes a loss when the

borrower makes a loss.

In our experiment, lenders, who are randomly matched to borrowers, choose whether to

use a safer option in IB or a risky one in PLS. The lenders make decisions for two ranges

of interest rates, 0-30 percent and 30-60 percent. We randomize whether before making the

decision the lender receives a religious message on the Islamic prohibition against interest.

The religious message we use is a verse in the Qur’an. We use a direct quote because it

is quite common for leaders or organizations to cite Quranic verses during campaigns or

movements to promote prosocial concepts such as justice or equality.

We focus our investigation on the interest rate range of 30-60 percent which provides a

direct test of the effect of a religious message on the willingness to take risk to help others.

First, taking up PLS is risky but it is the more prosocial choice as it eases the borrower’s

burden. Specifically, the borrower’s expected payoffs under IB are strictly lower than the

borrower’s expected payoffs under PLS because under IB the borrower must pay back the

loan and the interest even in the event of a loss. Second, this range of interest rates is policy

relevant particularly in the microfinance context. A Consultative Group to Assist the Poor

(CGAP) report by Rosenberg et al. (2013) shows that the global median interest yield is

about 27 percent and that the interest yield can be as high as 70 percent.

We highlight two features of our experimental design. First, we develop a new method,

2There are two forms of PLS arrangements, Mudarabah and Musharakah. In this study, we focus on the
Mudarabah arrangement.

3See Dar and Presley (2000) and Farooq (2007) for a discussion of PLS arrangement.
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a bi-directional BDM, which allows us to investigate two prosocial behaviors. Lenders can

appear prosocial by choosing PLS when the cost to them in terms of lost payoff is low. We

label such lenders who are prosocial when costs to them are low as protecting myself. On

the other hand, lenders can be prosocial when the costs are high. We label lenders who

are prosocial when the costs are high as protecting others. Second, we provide the lenders

with a “mouse-lab” calculator, which allows us to trace a lender’s thought process. This

feature allows us to see whether the religious message changes the extent to which the lender

observes her own payoff or the borrower’s payoff, and whether the lender observes the payoff

of a successful or the payoff of an unsuccessful project.

Our study is large scale across two countries with quite distinct Muslim communities:

Yogyakarta (Indonesia) and Ningxia Hui Autonomous Region (China). We also conduct

experiments in Shanghai (China) to test whether the religious message is simply a message

about a societal norm or a message about religious precept. Overall, we examine 1,328

decisions made by 332 subjects who express a wide range of degrees of religiosity. The cross-

country setting allows us to investigate the differences in the effects of the religious message.

More importantly, the setting allows us to speak about the external validity of our results

and findings.

We find a higher proportion of protecting-other lenders in the message treatment. Specif-

ically, there is a higher proportion of lenders who choose the risky PLS for high interest rates

in the message treatment. Since lenders forgo relatively higher payoffs by choosing PLS for

high interest rates, the lenders’ expected gains are lower in the message treatment. We find

that the effect of the religious message on expected gains are stronger among the more reli-

gious lenders. Our analysis of lenders’ usages of the calculator show that the lenders in the

message treatment use the calculator as frequently as the lenders in the baseline treatment.

This result indicates that the lenders make conscious and informed choices to take risks for

the borrowers after observing the religious message.

The religious message may simply be a message about morality. We conduct additional
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sessions in Shanghai to test whether the religious message convey a religious precept or a

moral precept. From these sessions we find no difference between the take up rate of PLS

among the lenders in the message treatment and the take up rate of PLS among the lenders

in the baseline treatment. We conclude that the religious message is a message about a

religious precept.

Our experiments on the 0-30 percent interest rate allow us to investigate whether the

positive effects of the religious message is due to conformity or general altruism. In this

range, choice of IB benefits the borrowers if the interest rate is low. Lenders face a conflict

between choosing an option that conforms to the religious message and choosing an option

that benefits the borrowers. We find no significant effect of the religious message on choices,

which suggests that the effects is due to altruistic motives.

Our study complements findings that a religious priming motivates individuals to be

more prosocial (Shariff et al., 2016). Our study also complements previous studies about the

positive effects of religious priming on giving. Shariff and Norenzayan (2007), Sachs (2009),

and Lambarraa and Riener (2015) find that individuals who are primed give more. Condra

et al. (2017) finds that a direct use of a religious precept is significant among the religious.

Specifically, they find that a quote from the Qur’an brings back the intrinsic motivation to

donate from people whose intrinsic motivation had been crowded out. However, the design

of these studies do not capture an important aspect of a prosocial behavior where people

take risks to protect others.

The closest studies to ours in the prosocial literature are studies that investigate giving

in risky environments. Two studies by Krawczyk and Le Lec (2010) and Brock et al. (2013)

find lower amounts of transfer in a risky dictator game. A more recent paper by Exley (2016)

finds that risk associated with the impact of giving induces excuses not to give, particularly

when there is a trade-off between own payoff and recipient’s payoff.

Our study is also related to a previous survey and an experiment that investigate indi-

viduals’ choices between IB and PLS arrangements. El Massah and Al-Sayed (2013) study
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the relationship between risk aversion, credit experience, religion, and political views of

110 Egyptian subjects and hypothetical financing choices. After surveying subjects on the

variables of interest, they present all subjects first with a hypothetical interest-bearing ar-

rangement and ask whether they would accept that arrangement and then, afterwards, all

subjects are presented with a hypothetical PLS arrangement and asked the same question.

They find some evidence that subjects inexperienced with investments and higher degrees

of religiosity are more willing to hypothetically accept the PLS arrangement. El-Komi and

Croson (2013) conduct an experiment to test the compliance rate for IB and PLS arrange-

ments under information asymmetry and costly state verification. In their study, individuals

were assigned to either IB or PLS arrangement exogenously. They did not investigate choices

between financing arrangements.

Lastly, our study is related to a study that investigate the effects of religious priming on

risk-taking behavior Benjamin et al. (2016). They find that the religious priming induces

individuals to become less risk averse on a gambling task. Our study is also related to

surveys and experimental studies that investigate the relationship between risk attitudes and

religiosity. Miller and Hoffmann (1995), Noussair et al. (2013), and Dohmen et al. (2011)

find that more religious individuals are associated with a higher degree of risk aversion.

In the next section we describe the design of the experiment. In Section 3.3 we discuss

the behavioral predictions. We discuss the results and the robustness checks in Section 3.4

and Section 3.5, respectively. Lastly, we discuss our conclusion in Section 3.6.

3.2. EXPERIMENTAL DESIGN

In our experiment subjects are randomly assigned a role as either lenders or borrowers and

played an investment game. Lenders received an endowment of 30 points while the borrowers

received one of 20 points. Lenders were required to loan 10 points of their endowment

to the matched borrowers, and the borrowers paid the 10 points to the experimenter to
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complete a project. The borrowers received 20 points if the borrowers completed the project

successfully, but the borrowers only received 6 points if the borrowers completed the project

unsuccessfully.

The project consisted of answering a binary choice factual question such as “What is the

biggest Island in Indonesia: (A) Papua or (B) Kalimantan.” Such project does not require

subjects to exert effort and thus avoids issues of moral hazard. The questions used were a

combination of general knowledge questions, country-specific questions, and math questions.

In each country we conducted several pretest sessions involving different subjects from the

pool and selected questions such that the percentage of correct answers is approximately 67

percent.

The lender’s choice of lending arrangement determined the lender’s and the borrower’s

net payoffs. If the lender chose the IB arrangement, the borrower had to repay the loaned

10 points plus the interest, regardless of the outcome of the project. The borrower had to

use the 20-point endowment to repay the loan and the interest if the project is unsuccessful.

Given the expected success rate of 67 percent, the expected payoff of the lender was 10r

while the expected payoff of the borrower was 51
3

− 10r.

If the lenders chose the PLS arrangement, the lenders’ and the borrowers’ payoffs de-

pended upon the success of the project. If the project is successful, the borrower shared the

net profit (the 20-point gross profit minus the loaned 10 points) equally with the lender.4 If

the project is unsuccessful, the lenders only received 6 points while the borrowers received

nothing. The lender’s expected payoff was 2 points while the borrower’s expected payoff was

31
3
.

Figure 3.1 depicts the expected payoffs to a risk-neutral lender and borrower for interest

rates between 30-60 percent. We can observe from the figure that the lender’s expected payoff

under IB is always higher than the lender’s expected payoff under PLS. The difference in

the expected payoffs between the two arrangements increases linearly with interest rate.

4The profit share of 50 percent is common knowledge to both lenders and borrowers.
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Conversely, the borrower’s expected payoff under IB is always lower than the borrower’s

expected payoff under PLS, and the difference in the expected payoffs between the two

arrangements are decreasing with interest rate.

Figure 3.1: Expected Payoffs of Risk-Neutral Lenders and Borrowers. Source: Author’s
calculation.

We used a bi-directional Becker-DeGroot-Marschak (BDM, henceforth) procedure for

lenders’ decisions in the game. In the beginning of each round, the lender was informed the

range of interest rates and that the true interest rate is within that range. Although we focus

our investigation on the 30-60 percent range, we used both the 0-30 percent and the 30-60

percent ranges for four periods each, alternating between ranges. As illustrated in Figure

3.2, lenders made two decisions in each round. First, they chose a cutoff interest rate from

the range. For example, if the range was 30-60 percent, a lender might choose a cutoff of

40 percent. Second, the lenders chose whether to invest the 10 points using IB or PLS for

all interest rates equal to or above the cutoff interest rate. The lenders might choose IB for

all interest rates equal to or above 40 percent and thus PLS for all interest rate below 40
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percent. We label such choice as a switching to IB. The lenders might also choose PLS for

all interest rates equal to or above 40 percent. We label such choice as a switching to PLS.

Figure 3.2: User Interface for Lenders in the Baseline Sessions

It is important to note that a lender could choose any interest rate, including the end-

points, as a cutoff interest rate in the specified range of interest rates. If a lender switched to

IB at a cutoff interest rate of 30 percent, the lender chose to invest in IB for all interest rates

in the range. If a lender switched to IB at a cutoff interest rate of 60 percent, we assume
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the lender chose to invest in PLS for all interest rates in the 30-60 percent range. Similarly,

we assume a lender chose to invest in IB for all interest rates in the 30-60 percent range if

the lender switched to PLS at a cutoff interest rate of 60 percent.

We implement the bi-directional BDM for two main reasons. First, this design provides

the lenders some degree of freedom to choose the financing arrangements throughout the

range of interest rates. For example, the lenders can choose IB or PLS for all interest rates

in the range, or the lenders can choose IB (PLS) for some interest rates before switching to

PLS (IB). Second, this design accommodates different behavioral implications. A risk-averse

or a risk-neutral payoff-maximizing lender will choose IB for all interest rates in the 30-60

percent. A prosocial lender might choose to invest in PLS as the interest cost imposed on her

borrowers is quite large in this range. We discuss in detail two prosocial motives in Section

3.

Recall that lenders make financing decisions by either switching to IB or switching to

PLS at some cutoff interest rates for 4 rounds. The implication of this design is that there

is a possibility that lenders’ financing choices differ across rounds. Specifically, the direction

of switching may differ across rounds. For example, a lender might choose to switch to IB

at a particular cutoff interest rate in the first round and then the lender might choose to

switch to PLS in the following round. We identify lenders who made consistent choices across

rounds, particularly in the last two or three rounds. A lender was consistent in n rounds if

the switching directions were similar across the n rounds. We find that about 71 percent of

lenders made consistent choices for at least 3 rounds and about 80 percent of lenders made

consistent choice for at least 2 rounds.

We implement a between-subject design with a baseline treatment and a religious message

treatment. In the religious message treatment, the subjects were shown a Quranic text about

the prohibition of interest in lending: “And whatever you lay out as usury, so that it may

increase in the property of men, it shall not increase with Allah, and whatever you give in

charity, desiring Allah’s pleasure – it is these (persons) that shall get manifold,” quoted
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from Surat Ar-Rum verse 39. Figure 3.3 illustrates the user interface shown to lenders in

the message treatment.

Figure 3.3: User Interface for Lenders in the Religious Message Sessions

As shown in Figure 3.2 and Figure 3.3, we equip subjects with a “mouse-lab” calculator

to calculate the lender’s and the borrower’s payoffs under different success scenarios. To

use the calculator, a lender entered a specific interest rate and clicked one specific cell at a

time to reveal the payoffs. The two columns in the first row contains information about the

lender’s and the borrower’s payoffs when the project is successful, while the columns in the

second row contains information about pay offs when the project is unsuccessful. Each cell

reveals the payoffs under IB and PLS arrangement.

In each session one round was randomly chosen for payment after the lenders made

decisions for 8 rounds. Given the range of possible interest rates in the chosen round, a

market interest rate was randomly drawn. The lender’s decision in the chosen round and the

market interest rate determined the financing arrangement to be implemented. For example,

suppose that the chosen round was round 3, the chosen market interest rate is 50 percent,

and a lender switched to IB at a cutoff interest rate of 40 percent. Then, IB would be

implemented because the market interest rate is higher than the lender’s cutoff interest rate.
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Suppose that another lender in the session switched to PLS at a cutoff interest rate of 40

percent in the chosen round, then PLS would be implemented for that lender.

The randomly chosen round and the corresponding interest rate were written on a black-

board, and this written information were covered with dark-colored papers. These numbers

were revealed after all lenders finished making choices in round 8. Each borrower discovered

the financing arrangement that her matched lender has chosen for her given the randomly

chosen round and interest rate. Each borrower then completed a project. Both lenders and

borrowers know the outcome of the project, and thus their payoffs, only at the end of the

experiment.

The subjects participated in a training round before each subject was assigned a role.

During the training round, the subjects answered 4 hypothetical questions and learned to use

the calculator. Specifically, subjects answered two hypothetical questions about the lender’s

and the borrower’s payoff in the investment game. Subjects also answered two hypothetical

questions about how a lender’s choice and a randomly chosen market interest rate determines

the lender’s and the borrower’s payoffs.

We conducted a post-experiment survey to obtain quantitative measures of individuals’

characteristics, such as intrinsic religiosity, attitudes toward risky activities, family income,

and sociodemographic information. We used questions from the DOSPERT scale developed

by Blais and Weber (2006) to obtain a measure of individuals’ risk attitudes. We used the

religiosity of Islam scale (RoIS) developed by Jana-Masri and Priester (2007) to obtain a

measure of individuals’ religiosity. This Qur’an based survey include questions about beliefs

and practices, which are important to measure religiosity of Muslims. We also measure

religiosity using the centrality of religiosity scale (CRS-5) developed by Huber and Huber

(2012).

The timing of the post-experiment survey, particularly the religious survey, is purely a

design choice. A pre-experiment survey may introduce framing that may affect the subjects’

decisions in the main experiment. On the other hand, we acknowledge that the religious
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message may affect the lenders’ responses in the post-experiment survey. We find evidence

that, as we discuss in Section 4, survey responses are quite balanced across treatments.

3.3. BEHAVIORAL HYPOTHESIS

In the previous section we show that the lender’s expected payoff from IB is greater than

her expected payoff from PLS for all interest rates in the 30-60 percent range. Moreover, the

lender is always guaranteed a positive return from choosing IB. Thus, a payoff-maximizing

lender would always choose IB for all interest rates in the 30-60 percent range. Choosing

PLS is therefore the prosocial option. In this section we discuss two ways that a lender can

be prosocial and our behavioral hypothesis.

First, a lender can appear prosocial by choosing PLS when the costs to them in terms of

forgone payoff is low. For example is a lender who switches to IB at a cutoff interest rate of

45 percent. The lender protects her borrower from a loss but she does so when the forgone

payoff is relatively lower. This lender chooses IB that guarantees herself a certain payoff

when the cost is high. We label such lenders who are prosocial when costs to them are low

as protecting myself. On the other hand, lenders can be prosocial when the costs are high.

For example is a lender who switches to PLS at a cutoff interest rate of 40 percent. This

lender protects the borrower from a loss even though her forgone payoff is relatively large. We

label lenders who are prosocial when the costs are high as protecting others. We hypothesize

that the religious message makes lenders more prosocial by protecting their borrowers from

losses. In other words, we expect a lower proportion of lenders who switches to IB in the

message treatment.

Hypothesis 1: there is a smaller proportion of lenders who switched to IB

in the message treatment.

Recall that a lender selects the financing arrangement by either switching to IB or to

PLS and by choosing a cutoff interest rate. We now discuss our hypothesis regarding the
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effects of the message on the choice of the cutoff interest rate. We first discuss protecting-

other lenders who switch to PLS at particular cutoff interest rates. Figure 3.4 illustrates a

lender who chooses to switch to PLS for all interest rates equal to or above 42 percent. The

solid red line depicts the lender’s expected payoffs for each interest rate. The lender forgoes

sure payoffs for all interest rates equal to or above 42 percent for to protect her borrower.

Choosing a lower cutoff interest rate is a more altruistic action as the lender protects the

borrower for a larger interval. Thus, we hypothesize that the average cutoff interest rate is

lower in the message treatment:

Hypothesis 2: the cutoff interest rate for those who switched to PLS is lower

in the message treatment.

Figure 3.4: Lender’s and Borrower’s Expected Payoffs from Switching to PLS. Source: Au-
thor’s calculation.

Hypothesis 2 is counterintuitive to the established theory of altruism as it shows that

lenders help their borrowers when the cost imposed to himself is high. Andreoni and Miller
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(2002) shows that subjects are rational altruists as subjects are more altruistic when the

cost is relatively low. The main difference between our setting and theirs is that subjects’

counterparts do not face any risk that could harm them. We conjecture that knowing that

the counterpart is facing a risk that may harm her can alter the decision maker’s preference

for altruism despite a relatively high cost of being altruistic.

Lenders can also switch to IB at a cutoff interest rate. Figure 3.5 illustrates a lender who

switches to IB for all interest rates equal to or above 46 percent. We can observe that the

lender secures a certain and higher expected payoff when the forgone payoffs from choosing

PLS are high. A more altruistic choice for such lender is to choose a higher cutoff interest

rate. In other words, the lender covers a larger interest rate interval before protecting herself.

Thus, we hypothesize that average cutoff interest rate for those who switch to IB is higher

in the message treatment:

Hypothesis 3: the cutoff interest rate for those who switched to IB is higher

in the message treatment.

We construct a variable that summarizes a lender’s switching decision and choice of cutoff

interest rate. This variable, which we refer to as the lender’s expected gain, is the sum of

the lender’s expected payoff for each interest rate in the range. Thus, the expected gain

is a function of the switching decision and the chosen cutoff interest rate. Specifically, the

expected gain of a lender who switches to PLS at a cutoff interest rate r is then given by:

E
[
Y(l,u)

]
=

1

31

[
r−1∑

r=30

E [IB (r)] +
60∑

r=r

E [P LS (r)]

]
. (3.1)

while the expected gain of a lender who switches to IB at a cutoff interest rate r is given by:

E
[
Y(l,u)

]
=

1

31

[
r−1∑

r=30

E [P LS (r)] +
60∑

r=r

E [IB (r)]

]
(3.2)

The expected gain variable has two important properties. First, a lender’s expected gain
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Figure 3.5: Lender’s and Borrower’s Expected Payoffs from Switching to IB. Source: Author’s
calculation.

is the inverse of the borrower’s expected gain, providing a straightforward comparison. A

higher lender’s expected gain implies a lower borrower’s expected payoff. More importantly,

the variable highlights the tension that the lender faces when making a decision: a higher

gain for himself on the expense of the borrower’s gain, vice versa. Consider the graphs

in the first column of Figure 3.6. A lender guarantees himself the highest expected gain

by switching to IB for interest rates equal to and above 30 percent. This choice, however,

results in borrower’s lowest expected gain as shown on the second column.

Second, the value of the expected gain increases with the number of selfish financing

arrangements chosen. For example, consider a lender who switches to IB at a cutoff interest

rate of 45 percent and another lender who switches to IB at a cutoff interest rate of 30

percent. The graph in the first column of Figure 3.6 shows that the expected gain for the

second lender is higher than the one for the first lender. This property also shows that the
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Figure 3.6: Lender’s and Borrower’s Expected Gains Based on the Lender’s Choice. Source:
Author’s calculation. Notes: the dashed black line (dashed grey line) in the first column
indicates the lender’s expected payoff from choosing IB (PLS) for all interest rate equal or
higher than breakpoint interest rate.

expected gain of a lender who switches to IB at relatively high cutoff interest rate is lower

than the expected gain of a lender who switch to PLS at the same cutoff interest rate. As

shown in Figure 3.6, the expected gain from switching to IB is decreasing with interest rate

while the expected gain from switching to PLS is increasing with interest rate.

Hypotheses 2 and 3 imply a straightforward prediction on the lenders’ expected gains.

Specifically, the lenders’ expected gain is lower in the message treatment. Hypothesis 2

suggests that lenders who switch to PLS choose a lower cutoff interest rate. As shown in

Figure 3.6, this implies a lower expected gain. Hypothesis 3 suggests that lenders choose a

higher cutoff interest rate before switching to IB, which also implies a lower expected gain.

Hypothesis 1 also suggests a lower lenders’ expected gain in the message treatment owing to

a higher proportion of lenders who switch to PLS.

Hypothesis 4: the lenders in the message treatment earned lower expected
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gains.

3.4. RESULTS

We conducted our experiments at three different locations: 1) The Faculty of Economics

and Business Computer Lab, Universitas Gadjah Mada, Yogyakarta, Indonesia; 2) Ningxia

University, Ningxia Hui Autonomous Region, China; and 3) Vernon Smith Experimental

Laboratory, Shanghai Jiao Tong University, Shanghai, China. We ran 6 baseline and 6

treatment sessions in Indonesia and China and we ran 4 baseline and 4 treatment sessions

in Shanghai. In each session, there are on average 10 lenders and borrowers pairs.5

The principal treatments were programmed using z-Tree (Fischbacher, 2007). In each

session subjects participate and make decision anonymously. In each country the same

experimenter read the instructions in the beginning of each session to ensure that everyone

had common knowledge of the decision tasks. No form of communication is possible during

the experiment. On average, one session lasted for 90 minutes. Subjects in Indonesia receives

a Rp25,000 show-up payment and, on average, earn Rp112,500. Subjects in China receives

a RMB10 show-up payment and, on average, earn RMB65.

Table 3.1 reports the summary statistics for the baseline and the treatment session. The

majority of the lenders were female, which accounts for about 65 percent of the total lenders.

The subjects were about 20 years old and they have completed on average 2.7 years of college.

About 1 in every 4 lenders worked full or part time. Overall, the descriptive statistics suggest

that the demographic characteristics in the baseline and the treatment sessions are quite

balanced. We conducted a survey at the end of each experiment. The survey included

questions to obtain measures of intrinsic religiosity and attitudes toward risky activities.

One may be concern that the levels of religiosity were higher in the message treatment,

5We ran a couple of session in Indonesia with less than 10 lender-borrower pairs, therefore we ran other
sessions with 11 or 12 lender and borrower pairs. In China, We ran a session with 7 lender-borrower pairs,
therefore we ran an extra session with 3 lender-borrower pairs.
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since lenders might chose answers that justified their choices during the experiment. Table

3.1 show no evidence that the means of the religiosity were significantly different across

treatments.

Table 3.1: Summary Statistics of the Muslim Lenders

Variables
Baseline Message

Mean Std. Deviation Mean Std. Deviation

Gender, 1 if Male 0.38 0.49 0.33 0.47

Age 20.35 1.84 20.91** 1.91

College year completed 2.72 1.88 2.99 1.61

Work Full or Part Time 0.26 0.44 0.33 0.54

Risk Attitude scale 56.18 12.16 54.46 12.93

Risk Attitude scale, standardized 0.03 1.03 -0.03 0.97

Religiosity scale 0.65 0.16 0.67 0.16

Religiosity scale, standardized -0.06 1.02 0.06 0.98

Number of lenders 120 123

Source: authors’ calculations of the experimental data.
Notes: risk attitude and religiosity scales are standardized with mean 0 and variance 1 in each country. The signs *, **, ***
indicates significance of t-test at 10, 5, and 1 percent.

We test the first hypothesis that the religious message led to a lower proportion of lenders

who switched to IB. We regress the proportion of individuals who switched to IB on a message

dummy and two location dummies. We cluster the standard errors at the individual level

since each lender made a total of 4 decisions. Table 3.2 summarizes the effects of religious

message on the choice of investment arrangement. In Column A3 of Table 3.2, we can

observe that the the proportion of lenders who switched to IB is significantly lower by about

8 percentage points in the message treatment. We obtain similar result if we restrict the

sample to decisions in the last round.

Our data do not support hypotheses 2 and 3 that the religious message affects the cutoff

interest rate. As shown in Column B3 and Column C3 of Table 3.2 the differences in the

means of cutoff interest rate are not significantly different to zero. However, our data provide

a support of hypothesis 4 that the lenders’ expected gain is lower in the message treatment.

The difference in the lenders’ expected gains across the two treatments is about 0.132 point

as shown in Column A3 of Table 3.2. The lower expected gains in the message treatment
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Table 3.2: The Effects of the Religious Message on Choices and Expected Gains in Indonesia and Ningxia: Range 30-60 Percent

A: All Decisions B: Switching to IB C: Switching to PLS

1: Baseline 2: Message 3: Difference 1: Baseline 2: Message 3: Effect 1: Baseline 2: Message 3: Effect

Switch to IB 0.644 0.563 -0.081**

Expected gain 1.308 1.176 -0.132** 1.688 1.647 -0.041 0.623 0.569 -0.053

Breakpoint interest rate 43.194 43.732 0.538 40.778 39.679 -1.098

Total observations 480 492 972 309 277 277 171 215 386

Last Period

Switch to IB 0.667 0.528 -0.138**

Expected gain 1.394 1.206 -0.188** 1.756 1.773 0.016 0.669 0.570 -0.098

Breakpoint interest rate 42.112 41.738 -0.374 41.225 39.465 -1.759

Total observations 120 123 333 80 65 145 40 58 98

Source: authors’ calculations of the experimental data.
Notes: the critical values for a one-tailed test are: 1.290 (10 percent), 1.660 (5 percent), and 2.364 (1 percent). The signs *, *, *** indicates significance at 10, 5, and 1 percent
for one-tailed tests.
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is mainly driven by a lower proportion of lenders who switched to IB. The results thus far

show that the message motivated subjects to be more prosocial and, in particular, to protect

the borrowers from losses even though the costs are high.

We now discuss a model specification to investigate the effects of the religious message

on the lenders’ expected gains. Our main specification is:

Yis = βMessagei + ΓXi + ǫis (3.3)

where Yis indicates lender i’s expected gains in round s, Message is an indicator for the

message treatment, and the vector X includes three dummies for the rounds of play, a

dummy for gender, an indicator for experiments in China, years in college, age, and religiosity.

There is an established finding in the literature that religiosity and measures of risk attitude

are negatively correlated (Miller and Hoffmann, 1995; Noussair et al., 2013). Indeed, our

data suggest significant and negative correlation between religiosity and risk attitude scale.

The estimated religiosity parameter may be biased downward if we do not control for risk

attitude scale. Thus, we include a measure of risk-attitude as one of the control variables in

the estimation.

For ease of interpretation, we standardized the religiosity and the risk attitude scales by

country to have means of zero and a standard deviation of 1. We also estimate a specification

in which we allow the effects of the message to vary by religiosity. Specifically, we include

an interaction between the message indicator and the standardized religiosity measure. We

cluster the standard errors at the individual level in all of our specification. Table 3.3 reports

the results of the regression analysis.

In Column 1 of Table 3.3 we can observe that the lenders’ expected gains are on average

lower in the message treatment, while in Column 2 of Table 3.3 we can observe a negative

relationship between expected gains and the lenders’ religiosity. We also estimate a speci-

fication that includes an interaction between the message indicator and lenders’ religiosity
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Table 3.3: The Effects of Religious Message on Expected Gains: Range 30-60 Percent

1: Model 1 2: Model 2 3: Model 3 4: Model 4 5: Model 5

Message -0.132* -0.121* -0.125* -0.092 -0.105

(0.071) (0.070) (0.069) (0.069) (0.067)

Religiosity -0.071** 0.015 0.029 0.014

(0.034) (0.043) (0.042) (0.041)

Message · Religiosity -0.170*** -0.180*** -0.170***

(0.064) (0.064) (0.065)

Observations 972 972 972 972 972

Controls N N N Y Y

Country FE N N N N Y

Source: authors’ calculations of the experimental data.
Notes: standard errors are clustered at individual level. The signs *, *, ** indicates significance at 10, 5, and 1 percent. Other
regression covariates not shown in the table are dummies for rounds, a dummy for gender, a dummy for China, years in college,
age, and standardized religiosity score.

and we report the estimated parameters in Column 3 of Table 3.3. We conjecture that the

more religious lenders might be more responsive to the Islamic prohibition towards interest.

Indeed, the result in Column 3 of Table 3.3 shows that the effect of the message is stronger

among the more religious lenders. In Column 4 and Column 5 of Table 3.3 we augment

the specification with control covariates, such as the standardized risk-attitude scale, age,

gender, and years in college, and country fixed effects. The results show that the estimated

parameters are not sensitive to the inclusion of the covariates.

We depict the marginal effects of the religious message on lenders’ expected gains by

the level of religiosity in Figure 3.7. Recall that the religiosity scale is normalized within

each country to have a mean of 0 and standard deviation of 1. Thus, the figure shows that

the effects of religious message are significant among lenders with religiosity level above the

mean in each country.

We perform regressions using subsamples to investigate whether the results are sensitive

to changes in the regression sample. First, we perform regression analysis for lenders who

made consistent choices across rounds. We find that about 71 percent of the lenders was
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Figure 3.7: The Marginal Effects of Religious Message on Lenders’ Expected Gains. Source:
author’s calculation of the experimental data.

consistent in at least three rounds and about 80 percent of the lenders was consistent in at

least two rounds. The results in C.2 shows that the results are robust when we restrict the

sample to include only lenders who were consistent. Second, we perform regression analysis

to investigate the effect of the religious message in each round. Table C.1 shows that the

effect of religious message is stronger as the round progresses. The estimated parameter

for the interaction term between religious message and religiosity is significant starting in

rounds 3 & 4 and the absolute magnitude of the treatment parameter increases in the later

rounds.

3.4.1 Calculator Usage

We now turn to discuss the lenders’ calculator usages to understand the lenders’ thought

process. Recall that each lender could use the calculator to calculate and to reveal payoffs

in different scenario. For any interest rate in the range, a lender could calculate her payoffs
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or her borrower’s payoffs if the project is successful or unsuccessful. Table 3.4 reports the

summary statistics of the calculator usages. The number in a specific cell indicates, on

average, the number of times the lenders revealed payoffs for a particular scenario.6 The

results show that the lenders cared more about their own payoffs. On average, the lenders

revealed her payoffs twice as much as their borrower’s payoffs in all scenario. We test

whether the religious message affected calculator usages and we find no significant effect of

the religious message. This result indicates that the lenders in the message treatment used

the calculator as much as the lenders in the baseline treatment. This is an indication that

the lenders who observed the Quranic quote also made informed choices.

Table 3.4: Summary Statistics of Calculator Usage by the Lenders

Own: Successful Own: Unsuccessful Other: Successful Other: Unsuccessful Observations

Baseline 5.017 4.063 2.146 1.529 480

Message 4.967 3.986 2.128 1.671 492

Source: authors’ calculations of the experimental data.
Notes: we regress the calculator use on a message indicator and two location dummies to test the effects of the message on
calculator usage. The standard errors are clustered at individual level. The signs *, *, ** indicates significance at 10, 5, and 1
percent for two-tailed tests.

To further understand the lenders’ thought process, we now ask the following question:

do calculator usages influence the choice to switch to IB and thus the expected gains in the

baseline and the message treatment? To answer this question, we regress the lenders’ choices

to switch to IB and the lenders’ expected gains on the number of calculator clicks for all four

scenarios, an indicator for message treatment, its interaction with the number of calculator

clicks for each scenario, and other covariates. Table 3.5 reports the results of the regression

analysis.

We first discuss the results for the baseline treatment in Row 1 and Row 3. The results

show that the calculator usages influenced the choice to switch to IB and the expected gains.

In Column 1 and Column 4 we can observe that a higher number of clicks to reveal lenders’

successful payoff or borrower’s unsuccessful payoff is associated with a lower likelihood of

6For each lender, we record the number of times the lender reveals different scenario for every interest
rate. We sum the number of times the lender reveals the payoffs for a particular scenario. We then take the
average for a particular scenario across all lenders.
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switching to IB. The intuition of the result in Column 1 is the following. The lenders could

observe that the payoffs from IB and PLS do not differ that much if the project is successful.

For some interest rates, the payoff from PLS is even higher than the payoff from IB. This

might influence the lenders to choose PLS. The result in Column 4 suggests that the lenders’

observation of the borrowers’ payoff in an unsuccessful project motivated the lenders to

choose a prosocial action. In Column 2, on the other hand, a higher number of clicks to

reveal the lenders’ unsuccessful payoff or the borrowers’ successful payoff is associated with a

higher likelihood of switching to IB. This shows that, as lenders were more aware of the risks,

they were more likely to choose the option that guarantees a certain payoff. The correlation

between calculator usage and expected gains are analogous.7

Table 3.5: Correlation between Calculator Usage and Choices: Range 30-60 percent

Own Success Own Unsuccess Other Success Other Unsuccess

Switch to IB, Baseline -0.043∗∗ 0.052∗∗ 0.022 -0.046∗∗

(0.021) (0.022) (0.020) (0.023)

Switch to IB, Priming 0.023 -0.002 -0.008 -0.040∗

(0.019) (0.019) (0.019) (0.021)

Expected gains, Baseline -0.081∗∗ 0.078∗∗ 0.048 -0.058
(0.031) (0.031) (0.036) (0.038)

Expected gains, Priming 0.050 -0.040 -0.012 -0.038
(0.033) (0.035) (0.034) (0.039)

Observations 972 972 972 972
Controls Yes Yes Yes Yes

Source: authors’ calculations of the experimental data.
Notes: we use a linear probability model on the regression of the choice of IB on covariates. Standard errors are clustered at
individual level. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other regression covariates not shown in
the table are dummies for rounds, a dummy for gender, dummies for location, and a treatment dummy.

The results reported in Row 2 and Row 4 of Table 3.5 show that calculator usages are

not correlated with the lenders’ financing choices as well as the lenders’ expected gains in

the message treatment. This result seems to indicate that the higher proportion of prosocial

choices in the message treatment is mainly influenced by the religious message. The takeaway

from the analysis of the calculator usages is that the lenders made calculated and informed

7We perform similar analysis for each country. We find that the signs of the estimated parameters are
consistent across country.
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choices to take risks for the borrowers even after the lenders observed the religious message.

3.4.2 Cross-country differences

In our main experiment, we investigate the effect of religious message on the choice of

financing. We find that the lenders in the message treatment were more prosocial as they took

more risks to protect their borrowers from losses. We now analyze cross-country differences to

investigate how the message affected choices in each country. First, we discuss the summary

statistics of the lenders in each country which we report in Table C.3. We highlight several

important variations across countries. In Indonesia, the means of the risk attitude measure

is significantly lower in the message session, which can be explained by the relatively higher

number of female lenders.8 As expected, the mean of the religiosity measure in Indonesia is

the highest.

We now test the hypotheses for each country. We regress the variable of interest with

a treatment dummy and we cluster the standard errors at the individual level. Table 3.6

presents the results of the estimations. We find different patterns on the effects of the

message on choices. In Indonesia we find evidence that supports our first hypothesis that

there is a higher proportion of protecting-other lenders. The share of lenders who switched

to IB is significantly lower by about 10 percent in the message treatment. However, a lower

share of switching to IB in the message treatment does not correspond to a significantly

lower expected gain. This seems to be driven by a weakly lower cutoff interest rate among

lenders who switched to IB in the message treatment.

We observe a distinct effect of the religious message on choices in China. We find no

support of hypothesis 1 as the proportion of lenders who switched to IB across treatments

are not statistically different. However, in Row 2, we find evidence to support hypothesis 3.

The message seems to affect the choice of cutoff interest rate among the protecting-myself

lenders. Specifically, the lenders in the message treatment chose the risky PLS for a larger

8In a separate analysis, we find a significant negative correlation between risk attitude measure and being
female.
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Table 3.6: The Effects of Religious Message on Choice of IB in All Rounds: Range 30-60
percent

Indonesia Ningxia Shanghai

Baseline Message Effect Baseline Message Effect Baseline Message Effect

Switch to IB 0.62 0.53 -0.10* 0.71 0.68 -0.03 0.92 0.91 -0.01

Expected payoffs 1.15 1.03 -0.12 1.46 1.32 -0.13* 1.98 2.05 0.06

Total observations 240 252 492 240 240 480 160 160 320

Switching to IB

Breakpoint interest rate 46.82 47.74 1.29 43.1 45.28 2.18** 37.35 36.82 -0.52

Expected gains 1.35 1.25 -0.10 1.70 1.53 -0.17** 2.03 2.06 0.03

Total observations 151 134 285 170 162 332 147 145 292

Switching to PLS

Breakpoint interest rate 42.97 42.33 -0.64 44.54 44.17 -0.36 50.38 54.67 4.28

Expected gains 0.81 0.78 -0.03 0.88 0.89 0.01 1.45 1.89 0.44

Total observations 89 118 207 70 78 148 13 15 28

Source: authors’ calculations of the experimental data.
Notes: the critical values for a one-tailed test with 100 degree of freedom are: 1.290 (10 percent), 1.660 (5 percent), and 2.364
(1 percent). The signs *, *, *** indicates significance at 10, 5, and 1 percent for one-tailed tests.

interest rate interval before switching to IB. These choices led to significantly lower expected

gains in the message treatment as the lenders gave up some ranges that offer them certain

payoff.

3.4.3 Religion or morality?

A straightforward follow-up question about the findings so far is, does the message affects

behavior through the religious or moral precept? This is a quite challenging inquiry since the

practical answer would be through both, as religion and morality are essentially intertwined.

Nevertheless, we formally test this inquiry to gain a better understanding of the effect of the

religious message. Specifically, we replicate our experiment with 80 non-Muslim lenders in

Shanghai. About 95 percent of the lenders in the Shanghai sessions do not have a religion,

while the other lenders are either Catholics, Buddhists, or other undisclosed religion. If the

message works through religion, we expect to see no significant effect of the message among

the lenders in Shanghai.

In Table 3.6 we can compare the results from Muslim lenders in Ningxia and ones from

non-Muslim lenders in Shanghai. We can observe that most of the Shanghai lenders were
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quite selfish in comparison to the Ningxia lenders. First, more than 90 percent of the

Shanghai lenders chose to switch to IB even in the baseline treatment. Second, these lenders

switched to IB, on average, at a quite low cutoff interest rate. We find no effect of the

message on financing choice and expected gains. This finding provides a strong support that

the message works through religion.

3.4.4 Religion or general altruism?

Our last robustness check is to investigate the effects of the message on financing choice

for the 0-30 percent range. In Figure C.1, we graph the expected payoffs from IB and PLS

for each interest rate in this range. In this range IB is, in expectation, more beneficial for

the borrowers particularly when the interest rate lower than 20 percent. Therefore, the

religious message is not in line with an action that benefits the borrowers, which in this case

is choosing IB. Does the message work when there is an apparent conflict between what the

message commands and the action that benefits the others?

We test the effect of the message on choices for the 0-30 percent interest rate range. As

discussed in Section 3, lenders made financing decisions for the 0-30 percent range for four

rounds. In each round the lenders chose a cutoff interest rate and the lenders chose whether

they want to switch to IB or PLS for all interest rate equal or above the chosen cutoff interest

rate.

Table 3.7 summarizes the results for the 0-30 percent. First, we investigate the effects

of religious message on the proportion of lenders who switch to IB. In Column 3, we can

observe that the difference in the proportion across rounds is essentially zero. Among the

lenders who switched to IB, the average cutoff interest rate is about 14 percent, and it is

not significantly different across treatment. These choices imply that there is no significant

difference in expected gains across treatments. The results shows that the religious message

does not affect financing choice in the 0-30 percent range. This suggests that a religious

message can motivate prosocial behavior when what is prescribed by the message is in line

97



with being prosocial.

3.5. CONCLUSION

In this paper, we contribute to the literature by exploring the interaction between religion and

prosocial risk taking. We investigate this interaction in a context of the Islamic prohibition

against lending with interest. Although prohibited, many Muslims lend using interest-based

arrangement owing to the global use of interest. Islamic law prescribes PLS arrangements as

the alternative arrangement, through which lenders share the risk of investment. However,

the adoption of such arrangement is quite low in Muslim majority countries. We establish

an experiment in which the subjects were divided into lenders and borrowers. The lenders

chose among two available financing arrangements, which resemble the conventional IB ar-

rangement and the PLS arrangement. By choosing IB, a lender guarantees a certain and

a higher payoff to the lenders. On the other hand, a lender shares the risk of the project

with her borrower if the lender chooses PLS. To analyze the effect of religion on financing

choices, we make salient the Islamic prohibition against the conventional IB arrangement in

the message treatment.

Our analysis shows that in the message treatment there were more lenders who protected

their borrowers even though the costs in terms of forgone payoffs were high. Specifically,

a higher proportion of lenders switched to PLS at high interest rates in the message treat-

ment. By switching to PLS at high interest rates, the lenders’ forgo certain payoffs for high

interest rates and thus earned lower expected gains in the message treatment. We find that

the religious message effects vary with religiosity: the effects of the religious message were

stronger and significant among lenders with religiosity above the mean level. Our cross-

country analyses show that the effects of the message on taking up risks for the borrowers

are quite consistent across the country. Finally, our robustness checks show two important

insights about the effects of the message: the message works through the religion channel,
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Table 3.7: The Effects of Religious Message on Choice of IB in All Rounds: Range 0-30 Percent

A: All Decisions B: Switching to IB C: Switching to PLS

1: Baseline 2: Message 3: Effect 1: Baseline 2: Message 3: Effect 1: Baseline 2: Message 3: Effect

Switch to IB 0.517 0.510 -0.006

Expected gains 0.460 0.448 -0.012 1.688 1.647 -0.041 0.702 0.671 -0.031

Breakpoint interest rate 14.488 13.345 -0.742 13.013 12.568 -0.044

Total observations 480 492 972 248 251 499 232 241 473

Source: authors’ calculations of the experimental data.
Notes: the critical values for a one-tailed test with 100 degree of freedom are: 1.290 (10 percent), 1.660 (5 percent), and 2.364 (1 percent). The signs *, *, *** indicates
significance at 10, 5, and 1 percent for one-tailed tests.
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but not morality, and the message works when the choice prescribed by the message is the

altruistic choice.

We close by highlighting several implications of our findings. First, our results provide a

support to other experimental studies that find a positive relationship between religion and

prosociality. We also contribute to the literature by investigating the effects of religious mes-

sage on taking a risky prosocial action. Second, studies on giving find a negative relationship

between giving and the costs of giving. We find evidence that religious message induce a

higher proportion of subjects that help others even when the cost imposed to themselves is

high. A more careful analysis about the rationality of taking up risks to help others is a topic

of future research agenda. Third, our findings serve as evidence for IBF institutions that PLS

is an acceptable investment arrangement even when the opportunity cost of choosing PLS

is high. However, we believe that future works is necessary to address problems inherent in

PLS arrangement, such as agency problems. Nevertheless, PLS is an alternative investment

arrangement that microfinance institutions can offer. These institutions give lending to the

poor, who face relatively high lending interest rates in the informal market. For example, a

policy brief by Kneiding and Rosenberg (2008) shows that the global average of microcredit

interest rates is 35 percent.
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ADDITIONAL MATERIALS FOR FOR CHAPTER 1

Table A.1: Key Variables from the NLSY79

Variable Variable Title in NLSY79 Question Name

father’s education highest grade completed by

R’s father

HGC-FATHER

mother’s

education

highest grade completed by

R’s mother

HGC-MOTHER

AFQT test score AFQT percentile score,

revised 2006

AFQT-3

years of schooling highest grade completed as of

May 1 (revised)

HGCREV79-10

hours worked number of hours worked in

past calendar year

HRSWK-PCY

weeks worked number of weeks worked in

past calendar key

WKSWK-PCY

income total income from wages and

salary in past calender year

Q13-5, Q13-5_TRUNC,

Q13-5_TRUNC_REVISED

msa is R’s current residence in

SMSA?

SMSARES

total enrollment total enrollment in R’s school

in 10-1-79 - school survey

SCHSUR-17

number of

teachers

number of full-time

equivalent teachers in school

- school survey

SCHSUR-43

teacher with

Master’s

percentage of full-time

teachers with

Master’s/Doctor’s - school

survey

SCHSUR-44

teacher salary annual salary beginning

certified teacher with BA -

school survey

SCHSUR-46
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Figure A.1: Marginal Effects of Teacher-Student Ratio by Age. Source: author’s calculation using the NLYS79. Notes: standard
errors are clustered at the individual’s level. The covariates used in the estimation model are years of schooling, quartic function
of experience, a dummy for marital status, a dummy for residence in SMSA, census region dummies, interaction terms between
education and the census region dummies, and time dummies.
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Figure A.2: Marginal Effects of Teacher Salary by Age. Source: author’s calculation using the NLYS79. Notes: standard errors
are clustered at the individual’s level. The covariates used in the estimation model are years of schooling, quartic function of
experience, a dummy for marital status, a dummy for residence in SMSA, census region dummies, interaction terms between
education and the census region dummies, and time dummies.
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Table B.1: Impacts of Scholar Selection on College-Going Outcomes: Fuzzy RD Estimates

2009-2012 Cohorts 2009-2010 Cohorts

Outcomes µ
Full Intermediate Narrow Optimal Range of

µ
Full Intermediate Narrow Optimal Range of

Sample (±100) (±40) Bandwidth Bandwidths Sample (±100) (±40) Bandwidth Bandwidths

1: Intermediate enrollment 0.854 0.016 0.023 0.026 0.016 44 0.852 0.032 0.039 0.069 0.107* 36

(0.023) (0.026) (0.041) (0.039) (0.031) (0.036) (0.054) (0.059)

[3,019] [2,585] [1,372] [1,482] [1,454] [1,245] [668] [602]

2: 2nd year persistence rate 0.753 0.024 0.040 0.036 0.028 44 0.753 0.035 0.056 0.078 0.112 38

(0.026) (0.031) (0.049) (0.047) (0.036) (0.043) (0.064) (0.069)

[3,019] [2,585] [1,372] [1,482] [1,454] [1,245] [668] [631]

3: 3rd year persistence rate 0.677 0.048* 0.064* 0.092* 0.126** 36 0.661 0.068* 0.093** 0.132* 0.202*** 36

(0.028) (0.034) (0.053) (0.056) (0.039) (0.046) (0.071) (0.076)

[3,019] [2,585] [1,372] [1,240] [1,454] [1,245] [668] [602]

4: BA attainment, in 4 years 0.287 0.064** 0.060* 0.074 0.068 34 0.271 0.082** 0.099** 0.110 0.100 31

(0.029) (0.035) (0.056) (0.062) (0.040) (0.047) (0.077) (0.090)

[3,019] [2,585] [1,372] [1,176] [1,454] [1,245] [668] [530]

5: BA attainment, in 6 years 0.635 0.061 0.058 0.101 0.134 30

(0.041) (0.049) (0.077) (0.090)

[1,454] [1,245] [668] [512]

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
Notes: Robust standard errors are in the parentheses, sample size in brackets. The signs *, **, *** indicate significance at 10%, 5%, and 1% level, respectively. Explanatory
variables not shown in the table are the running variable, an interaction between scholar status and the running variable, cohort dummies, interactions between cohort dummies
and the running variable, interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent score, dummies for state of
residence, a female dummy, ethnicity dummies, dummies for parental education, parents’ income, free or reduced-lunch eligibility, receipt of food stamps, receipt of federal
health insurance, receipt of Medicaid, an indicator for missingness of ACT score, and an indicator for missingness of food stamp receipt. To obtain the optimal bandwidth, we
use a first-order polynomial, a uniform kernel, and bandwidth selector of Calonico et al. (2014a).
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Table B.2: Sensitivity Analyses of RD estimates Using Different Optimal Bandwidths, 2009-2012

2009-2012 Cohorts

Outcomes µ

Full Intermediate Narrow Optimal Optimal Optimal Optimal

Sample (±100) (±40) Bandwidth Bandwidth Bandwidth Bandwidth

(CCT, uniform) (CCT, triangular) (CCT, epanechnikov) (IK, uniform)

1: Intermediate enrollment 0.853 0.015 0.022 0.023 0.014 0.027 0.024 0.041

(0.022) (0.025) (0.037) (0.036) (0.032) (0.033) (0.039)

[3,019] [2,585] [1,372] [1,482] [1,765] [1,667] [1,240]

2: 2nd year persistence rate 0.752 0.023 0.036 0.032 0.025 0.033 0.042 0.052

(0.026) (0.030) (0.044) (0.043) (0.038) (0.040) (0.046)

[3,019] [2,585] [1,372] [1,482] [1,736] [1,512] [1,306]

3: 3rd year persistence rate 0.674 0.046* 0.060* 0.081* 0.110** 0.082* 0.081* 0.113**

(0.028) (0.032) (0.048) (0.050) (0.045) (0.047) (0.050)

[3,019] [2,585] [1,372] [1,240] [1,512] [1,425] [1,278]

4: BA attainment, in 4 years 0.287 0.062** 0.056* 0.065 0.059 0.038 0.068 0.052

(0.028) (0.032) (0.051) (0.055) (0.049) (0.051) (0.052)

[3,019] [2,585] [1,372] [1,176] [1,482] [1,392] [1,342]

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
Notes: Robust standard errors are in the parentheses and sample sizes are in brackets. The signs *, **, *** indicate significance at 10%, 5%, and 1% level, respectively.
Explanatory variables not shown in the table are the running variable, an interaction between scholar status and the running variable, cohort dummies, interactions between
cohort dummies and the running variable, interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent score, dummies
for state of residence, a female dummy, ethnicity dummies, dummies for parental education, parents’ income, free or reduced-lunch eligibility, receipt of food stamps, receipt
of federal health insurance, receipt of Medicaid, an indicator for missingness of ACT score, and an indicator for missingness of food stamp receipt. To obtain the optimal
bandwidth, we use a first-order polynomial, a uniform kernel, and bandwidth selector of Calonico et al. (2014a). The optimal bandwidth selector IK refers to that of Imbens
and Kalyanaraman (2012).
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Table B.3: Sensitivity Analyses of RD estimates Using Different Optimal Bandwidths, 2009-2010

Outcomes µ

Full Intermediate Narrow Optimal Optimal Optimal Optimal

Sample (±100) (±40) Bandwidth Bandwidth Bandwidth Bandwidth

(CCT, uniform) (CCT, triangular) (CCT, epanechnikov) (IK, uniform)

1: Intermediate enrollment 0.850 0.032 0.037 0.064 0.098* 0.059 0.051 0.098*

(0.031) (0.036) (0.054) (0.057) (0.052) (0.052) (0.057)

[1,454] [1,245] [668] [602] [736] [709] [602]

2: 2nd year persistence rate 0.751 0.034 0.054 0.072 0.103 0.067 0.075 0.067

(0.037) (0.043) (0.064) (0.067) (0.059) (0.060) (0.061)

[1,454] [1,245] [668] [631] [801] [765] [736]

3: 3rd year persistence rate 0.658 0.067* 0.090* 0.121* 0.184** 0.132** 0.132* 0.244***

(0.040) (0.046) (0.069) (0.074) (0.065) (0.067) (0.083)

[1,454] [1,245] [668] [602] [736] [709] [502]

4: BA attainment, in 4 years 0.266 0.081** 0.096** 0.101 0.090 0.094 0.101 0.098

(0.041) (0.047) (0.075) (0.087) (0.074) (0.075) (0.079)

[1,454] [1,245] [668] [530] [696] [668] [619]

5: BA attainment, in 6 years 0.633 0.042 0.056 0.093 0.158* 0.122* 0.093 0.087

(0.042) (0.048) (0.075) (0.090) (0.073) (0.075) (0.079)

[1,454] [1,245] [668] [512] [723] [677] [619]

Source: the Dell Scholars Program Database, Michael and Susan Dell Foundation.
Notes: Robust standard errors are in the parentheses and sample sizes are in brackets. The signs *, **, *** indicate significance at 10%, 5%, and 1% level, respectively.
Explanatory variables not shown in the table are the running variable, an interaction between scholar status and the running variable, cohort dummies, interactions between
cohort dummies and the running variable, interactions between cohort dummies, the running variable, and the scholar status, age, scaled GPA, ACT equivalent score, dummies
for state of residence, a female dummy, ethnicity dummies, dummies for parental education, parents’ income, free or reduced-lunch eligibility, receipt of food stamps, receipt
of federal health insurance, receipt of Medicaid, an indicator for missingness of ACT score, and an indicator for missingness of food stamp receipt. To obtain the optimal
bandwidth, we use a first-order polynomial, a uniform kernel, and bandwidth selector of Calonico et al. (2014a). The optimal bandwidth selector IK refers to that of Imbens
and Kalyanaraman (2012).

108



APPENDIX C

ADDITIONAL MATERIALS FOR CHAPTER 3

ADDITIONAL TABLES

Table C.1: The Effects of the Message on Expected Gains by Round: Range 30-60 Percent

1: Round 1 2: Round 2 3: Round 3 4: Round 4

Message -0.162* -0.114 -0.007 -0.151

(0.093) (0.096) (0.095) (0.105)

Religiosity 0.028 0.038 -0.021 0.009

(0.066) (0.070) (0.064) (0.072)

Message · Religiosity -0.097 -0.138 -0.214** -0.229**

(0.092) (0.098) (0.087) (0.098)

Observations 243 243 243 243

Controls Y Y Y Y

Country FE Y Y Y N

Source: author’s calculation using the experimental data.
Notes: standard errors are clustered at individual level. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other
regression covariates not shown in the table are dummies for rounds, a dummy for gender, a dummy for China, standardized
religiosity score, years in college, and standardized risk attitude score.
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Table C.2: The Effects of Religious Message on Expected Gains by Consistent Subjects

1: Criteria 1 2: Criteria 2 3: Criteria 3

Message -0.096 -0.109 -0.107

(0.086) (0.083) (0.076)

Religiosity 0.028 -0.001 -0.006
(0.060) (0.059) (0.049)

Message · Religiosity -0.133 -0.176** -0.178**

(0.084) (0.083) (0.073)

Observations 632 704 788

Controls Y Y Y

Country FE Y Y Y

Source: author’s calculation using the experimental data.
Notes: standard errors are clustered at individual level. The signs *, **, *** indicates significance at 10, 5, and 1 percent. Other
regression covariates not shown in the table are dummies for rounds, a dummy for gender, a dummy for China, standardized
religiosity score, years in college, and standardized risk attitude score.
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Table C.3: Summary Statistics of Muslim Lenders by Country

Variables
Indonesia China

Baseline Message Baseline Message

Gender, 1 if Male 0.48 0.32* 0.28 0.35

Age 21.30 21.30 19.40 20.50***

College year completed 3.22 3.22 2.22 2.75

Work Full or Part Time 0.23 0.27 0.28 0.38

Risk Attitude scale (Dospert) 56.21 50.76** 56.15 58.35

Religiosity scale 0.76 0.77 0.54 0.56

Observation 60 63 60 60

Source: author’s calculation using the experimental data.
Notes: the signs *, **, *** indicates significance at 10, 5, and 1 percent.
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ADDITIONAL FIGURES

Figure C.1: Lender’s and Borrower’s Expected Payoffs for Interest Rate Range of 0-30
Percent
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