
 

Analysis of Power Consumption of the MQTT Protocol 

 

 

 

 

 

 

 

 

by 

Abhishek Viswanathan 

 Bachelor of Engineering – Electronics & Telecommunication, Mumbai University, 2015 

MS - Telecommunication, School of Information Sciences, University of Pittsburgh, 2017 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

School of Information Sciences, in partial fulfillment  

of the requirements for the degree of 

Master of Science Telecommunications 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2017 

 



 ii  

UNIVERSITY OF PITTSBURGH 

School of Information Sciences 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Abhishek Viswanathan 

 

 

 

It was defended on 

April 25, 2017 

and approved by 

Dr. David Tipper, PhD, Professor 

Dr. Mai Abdelhakim, PhD, Visiting Assistant Professor 

Thesis Advisor: Dr. Prashant Krishnamurthy, PhD, Associate Professor 

 

 



 iii  

Copyright © by Abhishek Viswanathan 

2017 



 iv 

 

With the exponential growth of the Internet of Things (IoT), there is a need to assess the different 

tradeoffs that exist in this realm of resource-constraints. Since it is touted as the protocol of IoT, 

it is imperative to explore MQTT in depth, analyzing the different conditions under which it 

might function favorably. Given the high importance of power in IoT devices, this thesis aims to 

shed light on some of the factors that might affect the power consumption and the different 

tradeoffs that exist when using the MQTT protocol.  

MQTT, or MQ Telemetry Transport, is an open source protocol that operates on the 

publish/subscribe model for constrained devices. It provides messaging transport on top of the 

Transmission Control Protocol (TCP) in environments where networks have low bandwidth and 

high latency.  

This thesis contains the results and inferences after varying the Quality of Service levels, 

Payload Sizes and implementing Authentication Mechanisms while using the MQTT protocol on 

a Raspberry Pi. It is hoped that the data from these experiments can be used to better predict the 

requirements of IoT systems. 

 

 

Analysis of Power Consumption of the MQTT Protocol 

 

Abhishek Viswanathan, MST 

University of Pittsburgh, 2017

 



 v 

TABLE  OF CONTENTS 

1.0 INTRODUCTION  ........................................................................................................ 1 

2.0 BACKGROUND  .......................................................................................................... 8 

2.1 IOT AND POWER  .............................................................................................. 8 

2.2 HARDWARE  ..................................................................................................... 10 

2.2.1 Raspberry Pi .................................................................................................. 10 

2.2.2 Power Measurement Devices ........................................................................ 13 

2.2.2.1 Belkin Conserve Insight Energy Use Monitor: F7C005Q ............... 14 

2.2.2.2 P3 P4400 Kill A Watt Electricity Usage Monitor ............................. 14 

2.2.2.3 DROK Pocket Digital Multimeter USB ............................................ 14 

2.3 PROTOCOLS .................................................................................................... 15 

2.3.1 MQTT  ............................................................................................................. 15 

2.3.1.1 Quality of Service (QoS) ..................................................................... 16 

2.3.1.2 KeepAlive ............................................................................................. 19 

2.3.1.3 Clean Session / Persistent Session ...................................................... 20 

2.3.1.4 Publishing and Subscribing to Topics ............................................... 20 

2.3.1.5 TLS ....................................................................................................... 22 

2.3.1.6 Authentication Mechanism ................................................................ 23 

2.4 TRADEOFF BETWEEN PERFORMANCE AND SECURIT Y IN IOT  .... 23 



 vi 

2.5 SOFTWARE ...................................................................................................... 25 

2.5.1 Raspbian Jessie .............................................................................................. 25 

2.5.2 Mosquitto ........................................................................................................ 25 

2.6 RELATED WORK  ............................................................................................ 25 

3.0 EXPERIMENT DESIGN  .......................................................................................... 29 

3.1 SETUP ................................................................................................................ 29 

3.2 LIMITATIONS  .................................................................................................. 31 

3.3 PARAMETERS VARIED ................................................................................. 32 

3.3.1 Quality of Service........................................................................................... 32 

3.3.2 Number of Publishers .................................................................................... 35 

3.3.3 Payload Size.................................................................................................... 36 

3.3.4 Authentication Mechanism ........................................................................... 36 

4.0 RESULTS, ANALYSIS & DISCUSSION ............................................................... 38 

4.1 RESULTS ........................................................................................................... 38 

4.1.1 Quality of Service........................................................................................... 38 

4.1.1.1 Scenario: 1 Subscriber, 1 Publisher for Different QoS Levels ....... 39 

4.1.1.2 Scenario: 1 Subscriber, 2 Publishers for Different QoS Levels ...... 41 

4.1.1.3 Scenario: 1 Subscriber, 3 Publishers For Different QoS Levels ..... 42 

4.1.1.4 Scenario: 1 Subscriber, 5 Publishers for Different QoS Levels ...... 43 

4.1.2 Average Number of Messages Received Per Minute .................................. 44 

4.1.3 Number of Publishers .................................................................................... 45 

4.1.4 Amount of Data Received by a Subscribing Client .................................... 47 

4.1.5 Average Energy Consumed Per Publisher .................................................. 48 



 vii  

4.1.6 Total Energy Consumed by Broker ............................................................. 49 

4.1.7 Payload Size.................................................................................................... 50 

4.1.8 Authentication Mechanism ........................................................................... 55 

4.2 ANALY SIS & DISCUSSION ........................................................................... 57 

5.0 CONCLUSION ........................................................................................................... 61 

APPENDIX .................................................................................................................................. 66 



 viii  

 LIST OF TABLES 

 

Table 1: Raspberry Pi 3 Model B Specifications .......................................................................... 11 

Table 2: Current Drawn by Raspberry Pi 3 Model B ................................................................... 12 



 ix 

LIST OF FIGURES 

 

Figure 1: IoT Layers ....................................................................................................................... 4 

Figure 2: Quality of Service Levels in MQTT .............................................................................. 17 

Figure 3: QoS 2 Flow .................................................................................................................... 19 

Figure 4: MQTT Publishing.......................................................................................................... 21 

Figure 5: MQTT Subscribe Flow .................................................................................................. 22 

Figure 6: Architecture of Experiment Setup ................................................................................. 30 

Figure 7: QoS-0 Communication Messages ................................................................................. 33 

Figure 8: QoS-1 Communication Messages ................................................................................. 34 

Figure 9: QoS-2 Communication Messages ................................................................................. 35 

Figure 10: Control Readings ......................................................................................................... 39 

Figure 11: QoS-0 Subscription ..................................................................................................... 40 

Figure 12: QoS-1 Subscription ..................................................................................................... 40 

Figure 13: QoS-2 Subscription ..................................................................................................... 40 

Figure 14: QoS Comparison for 1 Subscriber, 1 Publisher .......................................................... 41 

Figure 15: QoS Comparison for 1 Subscriber, 2 Publishers ......................................................... 42 

Figure 16: QoS Comparison for 1 Subscriber, 3 Publishers ......................................................... 43 

Figure 17: QoS Comparison for 1 Subscriber, 5 Publishers ......................................................... 44 



 x 

Figure 18: Average Number of Messages Per Minute.................................................................. 45 

Figure 19: QoS-0: Number of Publishers Comparison ................................................................. 46 

Figure 20: QoS-1: Number of Publishers Comparison ................................................................. 46 

Figure 21: QoS-2: Number of Publishers Comparison ................................................................. 47 

Figure 22: Data Received by Subscriber ...................................................................................... 48 

Figure 23: Average Energy Consumed Per Publisher .................................................................. 49 

Figure 24: Total Energy Consumed .............................................................................................. 50 

Figure 25: 1MB Payload Power .................................................................................................... 51 

Figure 26: 2MB Payload Power .................................................................................................... 51 

Figure 27: 5MB Payload Power .................................................................................................... 52 

Figure 28: 10MB Payload Power .................................................................................................. 52 

Figure 29: Variable Payload Power Comparison.......................................................................... 53 

Figure 30: Average Amount of Data Transferred in 1 Minute ..................................................... 54 

Figure 31: Average Data Transferred ........................................................................................... 54 

Figure 32: Power Consumption with/without Authentication Mechanism .................................. 56 

Figure 33: Data Transferred with/without Authentication Mechanism ........................................ 56



 1 

1.0  INTRODUCTION  

The MQTT protocol has been proclaimed as “the protocol” for the Internet of Things by the open 

standards body, OASIS [1] and a major technology company, IBM [2]. It has been touted as the 

lower power alternative to HTTP and other IoT protocols (Constrained Application Protocol - 

CoAP, Advanced Messaging Queueing Protocol - AMQP, etc.), but just how low-power is it? 

With a wide array of parameters to vary, how does MQTT perform in terms of power 

consumption, to meet different test environments? This thesis aims to answer some of those 

questions. 

Invented in 1999, this protocol was not intended to be the protocol for what we know 

today as the Internet of Things [3]. It was invented to create a protocol that provided minimal 

battery loss and used minimal bandwidth for connecting oil pipelines over a satellite connection. 

Its goals were to be an easy to implement protocol that provided Quality of Service Data 

Delivery and to be bandwidth efficient and data agnostic while maintaining continuous “session 

awareness”1. It also had to be lightweight and easy to implement. 

While these remain the goals of the protocol, its application is not limited to connecting 

oil pipelines anymore, and now, it is a major driving protocol of IoT services and devices. Before 

                                                 

1 If an edge-of-network device loses connectivity, all subscribed clients will be notified with the “Last Will 

and Testament” feature of the MQTT server so that any authorized client in the system can publish a new value back 

to the edge-of-network device, maintaining bidirectional connectivity. 



 2 

looking at the protocol in depth, it is important to put it into context and look at the bigger 

picture of IoT, its prevalence, importance and impact on our world today and in the future, to 

understand why the protocols that drive it must be examined with rigor. 

The seemingly sudden emergence of IoT has been many years in the making, as new 

technologies emerged and conditions become more favorable for enhanced connectivity.  

The multinational technology conglomerate, Cisco, points out the reason for the 

emergence of IoT technologies succinctly [4]. Since the cost and size of wireless radios has 

significantly dropped and IPv6 expanded the number of devices that could be assigned a global 

communication address, more devices began to be shipped with inbuilt Wi-Fi and cellular 

wireless connectivity. With improvements being made to battery technology, devices are also 

becoming more power-efficient and location agnostic. 

Predictions about the growth of IoT are plentiful, with almost every technological giant 

jumping onto the bandwagon to not miss out on the immense potential.  Cisco’s Internet of 

Things Group (IOTG) predicts that there will be over 50 billion connected devices by 2020. The 

American research and advisory firm, Gartner, Inc. forecasts that 8.4 billion connected things 

will be in use worldwide in 2017, up 31 percent from 2016, and will reach 20.4 billion by 2020. 

Total spending on endpoints and services related to IoT will reach almost $2 trillion in 2017 [5].  

With the industry growing at a rapid pace, there is an urgent need for risk assessments 

and a focus on the security and performance of IoT devices. The focus in digital security projects 

is moving toward detection and response. The increasing complexity of the environment requires 

a multifaceted approach to dealing with the security and performance of both individual devices 

as well as the system as a whole [6]. 



 3 

It is then imperative to break down IoT into its layers, to understand the security and 

performance requirements in each of them. 



 4 

 

 

Figure 1: IoT Layers 

 



 5 

We can refer to the Gartner IoT reference model [7], reproduced in Figure 1, to gain 

some clarity about the different functions of the various layers involved in the IoT architecture. 

Each layer highlights the major aspects through which data flows, to help us understand them. 

In the IoT ecosystem, it is very difficult to create an end-to-end model given the diversity 

of systems being designed and the presence of things that are basically loose-ends in most 

models. However, by defining the various functions of components in IoT and grouping them 

together, we can analyze the individual layers better and optimize them for use. 

Although a comprehensive end-to-end security and performance solution is ideal, this 

thesis focuses primarily on the communication layer of the IoT stack as depicted in Figure 1. The 

Communication Layer defines the communication protocols, network technologies and 

communications service providers (CSPs) necessary for the IoT system, along with the security 

protocols and mechanisms, if present. More specifically, this paper focuses on the MQTT 

protocol which is one of the data transfer protocols used commonly in IoT systems. MQTT is 

used in notifications for the social media platform, Facebook, for push-style messaging in low 

power mobile devices, monitoring and controlling SCADA equipment and a host of other real-

world applications. 

There are several issues concerning power consumption of IoT devices, considering a lot 

of Wireless Sensor Networks are deployed in remote locations where power is scarce and a lot of 

considerations need to be made to maximize the power efficiency of the devices. In this thesis, 

we will be examining the effect of the MQTT protocol on the power consumption of an IoT 

device. The experiments carried out are over a WiFi link; additional link-layer technologies like 

Bluetooth and Zigbee are out of the scope of this thesis, even though they are prevalent 

technologies that are used in IoT systems. A typical use-case of IoT systems is many sensors 



 6 

publishing data to a broker. In this thesis, we have tried to emulate the sensors using multiple 

instances on a Raspberry Pi that publish data to the broker, instead of using multiple, distinct 

sensors. By measuring the power consumed by a Raspberry Pi that is running the Mosquitto 

MQTT broker, we can observe the changes in the power consumption when the test conditions 

change. 

Thus, the real problem that this thesis aims to identify and elaborate is how the different 

parameters of the MQTT protocol affect the power consumption of a remotely placed Raspberry 

Pi based broker, and whether it can be quantified and analyzed.  

In Chapter 2, this thesis explores the current state of the IoT ecosystem and the need to 

research power consumption in IoT devices given the different tradeoffs that need to be 

examined for IoT systems to function efficiently. It also elaborates on the background of the 

devices that are used in the experimental setup as well as the protocol that is being examined, 

MQTT. This chapter elucidates the different parameters that can be varied when using the 

protocol and explores related work. 

In Chapter 3, the experimental setup is discussed. The reasons for picking the parameters 

that are varied are explained along with the results that are expected before performing the 

experiments. The limitations of the experiment design are also discussed in this chapter. 

Chapter 4 contains the results, analysis of the results and some discussion about the 

trends in power consumption of the MQTT Broker device that are observed after analysis. The 

different readings are put forth along with observations and comparisons.  

Chapter 5 concludes this thesis with a look at the findings from the experiments, the 

limitations of the results from them, and scope for further research in this sphere in the future.  



 7 

There are many different energy consumption issues that need to be addressed in the 

realm of IoT. The objective of this thesis is not to address all of them or to compare the different 

protocols, different transport technologies or different devices, but to observe the differences in 

the power consumed when different parameters of the MQTT protocol are varied. 



 8 

2.0  BACKGROUND  

2.1 IOT AND POWER  

Selecting a wireless network for an IoT device involves balancing many conflicting 

requirements, such as range, battery life, bandwidth, density (number of connected devices in an 

area), endpoint cost and operational cost. There is an important cluster of IOT networking 

devices that focuses on short-range, low-bandwidth, extended battery life, medium density 

devices, as in the case of smart homes or smart offices, that use star or mesh topologies. Some of 

these networks implement higher levels mechanisms, such as authentication and security.  

It has been predicted that low-power, short-range networks will dominate wireless IoT 

connectivity through 2025, far outnumbering connections using wide-area IoT networks [8]. 

The key difference between the internet and IoT is that IoT devices are typically much 

more constrained in their resources than conventional internet devices. They typically have less 

memory, less bandwidth, less processing power, less available energy and thus, must use less 

power. 

There are several ways in which IoT devices can be powered [9]: 

¶ AC or DC lines: Although these supply a seemingly infinite source of power to 

IoT devices, they also severely limit the mobility of these devices. For AC lines, 



 9 

an AC/DC converter will be required to power the device and these increase the 

costs of the system as well. 

¶ Energy Harvesting: In systems where it can be implemented successfully, energy 

harvesting is a good solution for powering IoT devices. However, it is often 

impractical because there is no consistent or reliable source of energy that can be 

used.  

¶ Battery: Although the eventual replacement of batteries as a power source for IoT 

devices makes them seem like an unattractive option, they provide the flexibility 

in placement as well as a stable power source for extended periods of time, if the 

battery is chosen correctly. Since most IoT devices that are deployed in the field 

typically draw minimal power, batteries are often chosen as the primary power 

source. After carefully selecting batteries based on their operating mode, 

temperature, self-discharge rate and its relation to the application of the IoT 

system, batteries can provide power to IoT devices for several years before they 

need to be replaced.   

For this reason, it is important to know how much power these devices consume for 

different test-cases. Although the choice of hardware, software, protocols and link-layer 

technologies can have a significant impact on the power consumed by the setup, we can observe 

general trends for a specific hardware, software and protocol working over a specific link-layer 

technology and extrapolate the results and findings to similar use-cases. This is what this thesis 

aims to do. 



 10 

2.2 HARDWARE  

2.2.1 Raspberry Pi 

With the advent of the digital age, it became necessary for more people across the world to have 

access to computers. Initially designed to teach computer science in schools in developing 

countries, the Raspberry Pi 2 has grown much larger than the company expected, finding 

applicability in Robotics, Teaching, Astronomy and the Internet of Things. 

The Raspberry Pi is a small, single-board computer, which has the capability to be used 

as a traditional computer with the right peripheral components. The Raspberry Pi, although built 

for other purposes, fits perfectly into the IoT ecosystem because of its low-cost, low-power and 

great potential for performing computing tasks and connectivity to various types of sensors. 

IoT hobbyists use the Raspberry Pi extensively for projects in building smart systems to 

automate tasks. Since it is lightweight, inexpensive, easy-to-use and capable of connecting to 

networks (Bluetooth, Wi-Fi, Ethernet), it is used to perform processing of data from sensors 

(among other things) and either store it or upload it the internet.  

For the experiments carried out in this thesis, the Raspberry Pi used is the Raspberry Pi 3 

Model B. The specifications are outlined in Table 1. 

                                                 

2 https://www.raspberrypi.org/ 



 11 

 

Table 1: Raspberry Pi 3 Model B Specifications 

CPU  4× ARM Cortex-A53, 1.2GHz 

GPU  Broadcom VideoCore IV 

RAM  1GB LPDDR2 (900 MHz) 

Networking  10/100 Ethernet, 2.4GHz 802.11n wireless 

Bluetooth  Bluetooth 4.1 Classic, Bluetooth Low Energy 

 

Unlike the previous models, this model comes with inbuilt Bluetooth and WiFi 

capabilities. For this thesis, we will explore the usage of the MQTT protocol over WiFi. 

We remotely connect to the Raspberry Pi (wirelessly) over Secure Shell (SSH) to 

minimize the power lost through peripheral devices like monitors, keyboards and a mouse. The 

Raspberry Pi will act as a remote device: you can connect to it using a client on another machine. 

SSH is built into Linux distributions and Mac OS. For Windows and mobile devices, third-party 

SSH clients are available [10]. 

The Raspberry Pi 3 is powered by a +5.1V micro USB supply. The amount of current (in 

mA) that is used, depends on the application. A 2.5A power supply is sufficient for any 

applications that can run on the Raspberry Pi safely. Typically, the model B uses between 700-

1000mA depending on what peripherals are connected. The maximum current the Raspberry Pi 

can draw is 1 Amp. 

The power requirements of the Raspberry Pi increase as you make use of the various 

interfaces on the Raspberry Pi [11]. Table 2 compares the amount of power drawn in terms of the 



 12 

current in amps under different situations, released by the Raspberry Pi Foundation [12], and the 

values in Watt derived if the device uses 5V. 

 

Table 2: Current Drawn by Raspberry Pi 3 Model B 

    Pi3 B (Amps) Pi3 B (Watts) 

Boot Max 0.75 3.75 

 Avg 0.35 1.75 

Idle Avg 0.30 1.5 

Video playback 

(H.264) 

Max 0.55 2.75 

 Avg 0.33 1.65 

Stress Max 1.34 6.7 

 Avg 0.85 4.25 

 

The values in Table 2 were obtained under test conditions with the Raspberry Pi 

connected to an HDMI monitor, USB Keyboard and mouse, and connected to a WiFi access 

point. However, this does not provide any insight into how much power the Raspberry Pi will 

draw without any peripherals and when there is data being transferred over WiFi. In a typical IoT 

use-case, it is unlikely that each device will be connected to peripheral devices like an HDMI 

monitor, keyboard and mouse. Instead, one may expect a battery powered Raspberry Pi deployed 

potentially in remote areas. 

This thesis tries to discover how changes in the protocol (MQTT) parameters affect the 

power consumption of a Raspberry Pi running without being connected by wires to any 

peripheral devices, except a power supply or battery pack. 



 13 

2.2.2 Power Measurement Devices 

To ensure reasonably accurate power consumption measurements, the values of power are 

measured using 3 different measurement devices that are available commercially. Since the 

current and voltage to be measured are relatively small (compared to household appliances), 

these three devices have been considered to ensure that the readings are verified across multiple 

instruments. 



 14 

2.2.2.1 Belkin Conserve Insight Energy Use Monitor: F7C005Q 

This device enables users to find out how much energy is drawn from a wall socket. This 

monitor provides the user with instantaneous power (watts). It also projects monthly and yearly 

power usage, based on actual values if plugged in over a period of time.  

The continuous electrical rating is 15A/120V~/60Hz/1800W. 

2.2.2.2 P3 P4400 Kill A Watt Electricity Usage Monitor 

This device connects to a wall socket and allows users to plug in their devices to assess their 

power usage and efficiency by monitoring voltage, line frequency and power factor. It displays 

volts, amps and wattage within 0.2% accuracy. 

The continuous electrical rating is 15A/125V~/60Hz/1875W 

2.2.2.3 DROK Pocket Digital Multimeter USB 

This device connects to a USB port, and allows users to measure the instantaneous power, 

current (0.5% accuracy), voltage (0.3% accuracy) and capacitance of any device being powered 

through the USB port in this device. By averaging out instantaneous readings over a period of 

time, users can calculate the average power drawn.  

The continuous electrical rating is 3A/13V~/30W 

 



 15 

2.3 PROTOCOLS 

The protocols that are used in IoT (including MQTT), fit into the communication layer of the IoT 

stack, along with network technologies, communications service providers and in some cases, 

security mechanisms. 

Wireless sensor networks & IoT systems often have overlapping definitions. Research 

has also stated that Wireless Sensor Networks are one of the most important elements in the IoT 

paradigm and there has been a call for integration [13] of Wireless Sensor Networks into IoT.  

A typical Wireless Sensor Network consists of sensor nodes and gateways. The gateway 

receives data from the sensor nodes and then aggregates it and sends the data to a server or a 

broker [14]. This environment requires an energy and bandwidth efficient protocol that will 

effectively transfer data from a resource-constrained gateway to a server.  

M2M or Machine-to-machine systems have specialized requirements for data transfer 

like multicast support, low overhead and simplicity for constrained environments [15]. This is 

where protocols like MQTT and CoAP come into the ecosystem. The widespread and quick 

evolution of devices that are ‘smart’ and have back-end applications has created the need for 

these protocols that specifically serve an M2M communication system [16]. 

There has been a fair amount of research comparing the different protocols that are used 

in IoT. This is further elaborated in section 2.6 of this document. 

2.3.1 MQTT  

MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol that was 

designed as an extremely lightweight publish/subscribe messaging transport. It is extremely 



 16 

useful in applications where a connection with a device in a remote location is required. In these 

cases, the protocols themselves must have low overhead and must use limited bandwidth, thus 

consuming lower power than other protocols in their class.  

MQTT is a Client-Server publish/subscribe messaging transport protocol. MQTT is 

lightweight, open, simple, and designed to be easy to implement. The protocol runs over any 

protocol that provides ordered, lossless, bi-directional connections (mostly Transmission Control 

Protocol/Internet Protocol - TCP/IP). MQTT provides different Quality of Service levels for 

different use-cases, is data-agnostic, and provides a publish-subscribe architecture that allows for 

the decoupling of applications and provides multicasting of messages. Its most important feature 

is the low transport overhead it provides for efficient communication between devices. 

MQTT has been called the protocol for the Internet of Things due to its ability to be 

bandwidth and power efficient, although it has a lot of parameters that are variable, so the 

degrees to which it consumes power could be very different. This thesis aims to identify which 

factors play an important role in determining how much power is used by the protocol for 

standard applications. 

This section explores the different variable parameters that might have an impact on the 

power consumption of the device.  

2.3.1.1 Quality of Service (QoS) 

QoS is an important feature of MQTT since it simplifies communication in unreliable networks 

as the protocol is responsible for handling retransmissions and guarantees the delivery of a 

message regardless of the reliability of the underlying transport layer. 

It also allows for clients to choose the QoS they desire based on their application and 

network infrastructure. 



 17 

MQTT offers three different QoS levels [17]: 

¶ QoS 0 (At most once) 

¶ QoS 1 (At least once) 

¶ QoS 2 (Exactly once) 

 

 

Figure 2: Quality of Service Levels in MQTT 

 

Figure 2 shows a schematic of the way the various QoS levels works in MQTT [18]. 

It is important to note that the QoS level for publishing client to broker depends on the 

QoS that the client sets for a particular message. When the broker sends a message to a 

subscribing client, it is sent with the QoS level of the subscription made earlier by the client. 

Therefore, it is possible for a QoS level to be downgraded for clients that subscribe with a lower 

QoS. For the purposes of the experiments carried out for this thesis, the QoS levels of the 

subscribing clients and publishing clients are the same. 

QoS 0 



 18 

This level contains the least overhead and the protocol provides “best-effort” delivery. 

Messages are not acknowledged by the receiver and senders will not store and redeliver the 

messages. This level provides the same guarantees as that of the TCP protocol underneath it. It is 

the fastest mode of transfer. 

QoS 1 

This level ensures that the message is delivered at least once. If the sender does not 

receive an acknowledgement that the message has been received, the sender will set the DUP 

(duplicate) flag and repeatedly send the message until an acknowledgement is received. 

Since the message must be sent repeatedly to the receiver in case of a failed transmission, 

the message must be stored locally at the sender. The message is deleted once the sender receives 

the acknowledgement from the receiver that the message has been received.  

QoS 2 

This is the highest level of QoS that MQTT offers. It guarantees that each message is 

received exactly once by the receiver. It is the slowest QoS level, but also the most reliable.  

 



 19 

 

Figure 3: QoS 2 Flow 

This level of QoS is used when it is critical to the application that each message is 

received exactly once. This level is used when a duplicate delivery would hinder the application 

of the system itself. There is a lot of overhead involved in the message exchange, however, the 

overhead is the cost of reliable delivery. The communication process is shown in Figure 3.  

2.3.1.2 KeepAlive 

 

The KeepAlive functionality of MQTT checks that the connection between the broker and the 

client is open, during periods when the messages being transmitted between them are relatively 

infrequent. The KeepAlive functionality may initially seem unnecessary over a TCP connection, 

however, Andy Stanford-Clark, the inventor of MQTT explains: 

“Although TCP/IP in theory notifies you when a socket breaks, in practice, particularly 

on things like mobile and satellite links, which often “fake” TCP over the air and put headers 

back on at each end, it’s quite possible for a TCP session to “black hole”, i.e. it appears to be 

open still, but in fact is just dumping anything you write to it onto the floor [19].” 



 20 

The broker must disconnect any client which does not reply to a KeepAlive message 

(PINGREQ) or any other message in one and a half times of the KeepAlive interval that is 

chosen. Similarly, the client must close the connection if it does not receive a similar reply from 

the broker in that same time interval. The KeepAlive value is set by the client based on its own 

notions of its signal strength and stability of the connection. If the KeepAlive interval is set to 0, 

the entire KeepAlive mechanism is deactivated. 

2.3.1.3 Clean Session / Persistent Session 

A client has the ability to request a persistent session when it is first connecting to the broker. If 

the cleanSession flag is set to True, then the client does not have a persistent session and any 

information is lost when the client disconnects from the broker for any reason (even accidental). 

However, when the cleanSession flag is set to False, this means that the client has requested a 

Persistent session and queued messages are delivered to a client on reconnection. 

A persistent session is used when it is important for a client to receive all messages about 

a particular topic, even when it is offline. This is also useful in cases where clients have 

unreliable connections or limited resources.  

A clean session is used in cases where it is necessary that clients only receive messages 

when they are online or when clients are only publishing messages and not subscribing to any 

topics.  

2.3.1.4 Publishing and Subscribing to Topics 

MQTT is a publish/subscribe protocol that allows clients to publish data to certain topics and 

subscribers of those topics to receive that data every time it is published, via the broker. The 



 21 

broker is central to the protocol, handling all the published data and is responsible for 

transmitting the published data to all the subscribers. 

 

Figure 4: MQTT Publishing  

The Publishing process is shown in Figure 4 [20]. 

MQTT filters content based on topics, so any data that is sent from the client to the 

broker must contain a topic or topic-hierarchy that the broker then uses to transmit that data to 

the subscribed clients. A typical MQTT Publish packet contains information about Topic Name, 

QoS, Retain Flag, Payload and dupFlag. After the publishing client successfully delivers all this 

information, it is the responsibility of the broker to deliver this information to the subscribed 

clients.  

A client can subscribe to a topic, or a set of topics, by sending a message to the broker 

about with a unique packet identifier and a list of subscriptions. The packet identifier is a unique 

identifier between a broker and a client to identify a message in a flow of messages. The flow of 

subscribe messages is shown in Figure 5. 



 22 

 

Figure 5: MQTT  Subscribe Flow 

 

Once an MQTT Client informs the broker of its subscription to topic A, the MQTT 

broker acknowledges the subscription and when an MQTT client publishes some content to topic 

A, the broker then publishes that content to the initially subscribed MQTT client.  

The strain on a single broker (and subsequent power requirement) increases with the 

increase in the number of actively publishing/subscribing clients it is connected to. This thesis 

aims to find out the extent to which the power requirement increases. 

2.3.1.5 TLS 

By default, MQTT does not use encrypted communication since it relies on the underlying TCP 

architecture to provide encryption. However, it does provide for the option to use TLS for added 

security [21]. 

When using TLS with MQTT, it is called “secure-mqtt” and port 8883 is exclusively 

reserved for MQTT over TLS [22]. 

As with all security enhancements, TLS too comes with increased overhead and CPU 

usage. Techniques like Session Resumption can improve the performance of TLS. TLS Session 



 23 

Resumption allow clients to use an already negotiated TLS connection when reconnecting to a 

server to avoid the overhead of a full handshake again.  

2.3.1.6 Authentication Mechanism 

On the application level, the MQTT protocol provides a mechanism for a client to authenticate 

itself using a username and password. When the client first connects to a broker, it has the 

opportunity to send a username and password along with the CONNECT request.  

If the broker disallows anonymous connections and maintains a password list that it 

cross-references when clients attempt to connect to it, then it is necessary for the client to 

provide the username and password when seeking to connect with the broker, else the connection 

will be denied.  

2.4 TRADEOFF BETWEEN PERFORMANCE AND SECURIT Y IN IOT  

Ever since the advent of technology, performance and security have been at odds with each 

other, often competing for the same resources of services and devices. IoT is no different. If we 

take the example of wearables, a common use-case for IoT, there is an appalling lack of security 

built in and an indifferent attitude towards it from consumers. 

The multinational professional services network, PricewaterhouseCoopers, reports that 

more than 20 percent of U.S. adults already own at least one wearable, and that there will be 

approximately 50 billion new connected devices by 2020. Due to the apparent lack of concern, 

many consumers fail to realize that wearable technology opens new avenues for security and 



 24 

privacy invasions [23], with malicious entities collecting significant amounts of user data, 

sometimes without the user’s knowledge.  

Damien Mehers, a wearables developer who built the Evernote app for different devices 

has been quoted as saying, "Especially with the fitness [devices], if you read the license 

agreements, if people really realized what they are signing up for, they might be horrified at what 

they're allowing the companies to do with the data. I think there needs to be more clarity and 

perspective from the user [24].” 

The reason for this, is the convenience. A threat researcher at the American security 

software company, Symantec, Candid Wueest has indicated the reality that wearable device 

developers do not even think about how to approach the security issue when the developing 

process starts. The overall consensus is to get the device ready to be produced and then “sprinkle 

some security on top” in the end [25]. 

Therein lies the need for research on just how much we are trading off when it comes to 

performance of IoT devices. For both enterprise, as well as consumer-based solutions, metrics 

need to be available for the power consumption of these devices under different use-cases, so 

that companies and consumers alike can make smart choices about the levels of security, 

reliability and conditions that need to be emulated to achieve a certain threshold of performance 

and power consumption. While this is not accomplished in this thesis, one of the motivations for 

this work is to eventually consider tradeoffs between power consumption and security protocols 

for IoT.  



 25 

2.5 SOFTWARE 

2.5.1 Raspbian Jessie 

The Raspberry Pi Foundation’s official supported operating system is Raspbian. It comes pre-

installed with a lot of software like Python, Scratch, Java, Mathematica, etc.  

The Operating system is based on Debian and has been optimized for Raspberry Pi 

Hardware, hence making it the optimal OS for the experiments conducted for this thesis.  

2.5.2 Mosquitto 

Eclipse Mosquitto™ is an open source (EPL/EDL licensed) message broker that implements the 

MQTT protocol versions 3.1 and 3.1.1. [26] 

Along with the Paho Python library for the clients connecting to the broker, this will 

provide us with the necessary resources to carry out our experiments. 

 

2.6 RELATED WORK  

There has been a lot of research studying the performance and power consumption of IoT 

devices under different test conditions. 

There has been work comparing the different data transfer protocols that are used in IoT 

systems, of which MQTT is one. Yokotani and Sasaki [27] compare the network resource usage 



 26 

(required bandwidth and delay) of MQTT with HTTP on an IoT platform. Both the bandwidth 

and the delay are intrinsically related to the power consumed by the device, which is what this 

thesis aims to quantify. 

 Different ways of optimizing the power consumption of IoT devices over Wi-Fi has been 

researched by Thomas, McPherson, Paul & Irvine [28] where they first examine the feasibility of 

WiFi in IoT use-cases. They conclude that with low-powered processors, WiFi can practically be 

implemented in IoT systems and provides better range and security than 433MHz AM 

transmitters.  

 Since IoT devices are usually constrained in their power supply, it is important to know 

the correlation between different factors in the IoT stack and their effects on the power 

consumed by the devices, hence there has been work suggesting novel methods to reduce the 

power consumption while maintaining performance like reducing the packet size and using 

address clustering [29] and different models have been proposed to better understand which 

layers of the IoT stack affect the power consumption the most. Gray, Ayre, Hinton & Tucker [30] 

have shown that shared Wi-Fi access with Passive Optical Network (PON) backhaul is the 

overall most power efficient wireless access technology compared to Very-high-bit-rate digital 

subscriber line 2 (VDSL2) and Long-Term Evolution (LTE) for <1Mb/s data access rates. 

Martinez, Monton, Vilajosana & Prades [29] propose a model that takes a system-level 

perspective to account for all the energy expenditures: communications, acquisition and 

processing, focusing on the bigger picture. This thesis limits itself to examining the effects of 

just the communications layer, more specifically the MQTT protocol.  



 27 

Various works have analyzed the use of MQTT and compare it with other protocols like 

HTTPS [30], AMQP [31], Representational State Transfer – REST over HTTP [32], CoAP [1],  

[33] and Simple Text Oriented Message Protocol - STOMP [34].  

HTTPS seems less than ideal for an IoT use-case, because it cannot cater to some needs 

of an IoT environment like emitting information from one to many, listening for events 

whenever they may happen, distributing small packets of data in high volumes, pushing 

information over unreliable networks (as is the case with a lot of IoT applications), and 

scalability [35]. 

Advanced Message Queuing Protocol (AMQP) is sometimes considered an IoT protocol 

although it has its own use-case. It provides a rich set of messaging scenarios (as opposed to 

MQTT’s small and minimalist design) and can be called the asynchronous complement to HTTP. 

AMQP permits many forms of messaging including round-robin, store and forward, classic 

message queues, and different combinations that you can choose based on the application, while 

MQTT is limited to its publish-subscribe model. Cohn [31] explores the different scenarios in 

which either of these protocols might be applicable based on their architecture, but does not 

perform any experiments.  

CoAP is an application layer protocol developed for resource-constrained devices, which 

most IoT devices are. The main difference between MQTT and CoAP is that CoAP uses 

Universal Resource Identifiers (URIs) instead of the topics that MQTT uses and CoAP also runs 

on top of UDP as opposed to MQTT which runs over TCP. Since UDP is unreliable, CoAP 

compensates by offering its own reliability mechanism in the way of ‘confirmable’ and ‘non-

confirmable’ messages. Thangavel, Ma, Valera, Tan & Tan [14] compare the performance of 

CoAP with MQTT, measuring factors like end-to-end delay and bandwidth consumption. They 



 28 

find that MQTT messages have lower delay than CoAP messages at lower packet loss rates and 

higher delay than CoAP messages at higher loss rates. They also find that when the message size 

is small and the loss rate is equal to or less than 25%, CoAP generates lower additional traffic 

than MQTT to ensure message reliability. They conclude that the performance of the different 

protocols depended on the different network conditions. Although delay and bandwidth 

consumption are linked to the power consumed, they have not explicitly made any conclusions 

about the difference between the protocols in terms of the power consumed by them for certain 

applications. 

STOMP is a simple and lightweight protocol that is text-based, but does not deal with 

queues or topics. It instead uses a “SEND” semantic with a destination string that other clients 

can then connect to. Piper [34] bills STOMP as simple and lightweight and offers interesting 

applications for STOMP in the IoT realm, but does not make a direct comparison to MQTT.  

Most of the studies use certain configurations of MQTT and tweaking the different 

parameters that MQTT offers, is often out of the scope of their research. This thesis aims to 

understand the different parameters that affect the power consumption of the MQTT protocol. 



 29 

3.0  EXPERIMENT DESIGN  

3.1 SETUP 

For the purposes of this experiment, we use two Raspberry Pi 3 Model B (RPi) with Raspbian 

Jessie OS installed. We further install Mosquitto to serve as the MQTT broker on the RPi and 

MQTT-Paho library to enable Python use in our experiments. The Paho Library is fully 

compatible with the Mosquitto broker and is used to enable the functionalities of the clients in 

the experiments. 

Figure 6 shows the experimental setup. RPi_A and RPi_B are both Raspberry Pi 3 Model 

B devices. The power measurement devices are explained in section 2.2.2 

RPi_A serves as the MQTT Broker device and multiple instances of RPi_B running Paho 

serve as the various clients. Both the Raspberry Pis are connected to 5V/2A power supplies. 

RPi_A is connected to the power-measuring devices (Belkin Conserve Insight Energy Use 

Monitor, P3 P4400 Kill A Watt Electricity Usage Monitor, DROK Pocket Digital Multimeter 

USB) subsequently for fixed time periods to get accurate readings. 



 30 

 

Figure 6: Architecture of Experiment Setup 

Both Raspberry Pis are also connected to a local Wi-Fi Protected Access 2 - WPA2 - 

Personal WiFi network(2.4GHz) and are placed with line of sight access to the Access Point. A 

control measurement is carried out with the Raspberry Pis connected to the power-measurement 

devices, immediately after they are booted, with no processes running, just the exchange of WiFi 

management information with the Access Point. This is to establish a baseline power 

consumption of the Raspberry Pi when it is idle. 

The setup executes as follows: 

1. The broker is started on RPi_A 

2. Client1 on RPi_B subscribes to a topic ‘topic’ with the broker 

3. Content is published via Paho from Client2 on RPi_B on the topic 

‘topic’ 



 31 

4. Content is transmitted to the Access Point, then to the broker on 

RPi_A 

5. Broker on RPi_A then sends out the content to all subscribers that are 

subscribed to ‘topic’ 

6. Content is sent from the broker to the Access point and then received 

by Client1 on RPi_B. 

Typically, clients on RPi_B will be individual devices, but for this test scenario, we are 

using the Raspberry Pi to emulate multiple clients. The power consumption of RPi_B is not 

being measured, so having multiple client instances running on RPi_B at the same time will not 

affect our results. 

For the purposes of our experiments, all the clients have the default KeepAlive time of 60 

seconds. They run Clean Sessions with no Session Resumption, no Last Will & Testament and 

no TLS implemented. 

All measurements are in Watts, as displayed on the power-measurement devices, which 

are connected to RPi_A, where the broker is running. 

3.2 LIMITATIONS  

The limitations of this experimental setup are in the form of hardware. It is difficult to procure 

hardware that measures the slight changes in power that occur in the Raspberry Pi. The devices 

used for power measurement are all commercially available power monitors whose primary 

application is to test the power consumption of household devices that typically operate at higher 

voltages drawing more current. 



 32 

Since we are using a Raspberry Pi to emulate all the clients that are connected to the 

network, it is possible that there are slight delays in processing the different simultaneous 

publish/subscribe requests, however, the Raspberry Pi features a quad-core 64-bit ARM cortex 

A53 clocked at 1.2GHz with 1GB of LPDDR2-900 SDRAM. This ensures that it can run 6 

clients simultaneously, with minimal latency defects.  

It should also be noted that the underlying WiFi network used in these experiments 

provided a stable connection and packet losses were not detected. A typical IoT environment 

often contains a lossy underlying network. 

Finally, this thesis is limited to exploring the power consumption of the device running 

the MQTT broker only. No other protocol is studied. 

 

3.3 PARAMETERS VARIED  

3.3.1 Quality of Service 

When conducting this set of experiments, Client1 on RPi_B is subscribed to the topic ‘topic’ 

with the broker on RPi_A with QoS level 0, 1 & 2. Client2 on RPi_B (and Client3, Client4, 

Client5 and Client6 in case of multiple publishers) runs a Python script publisher.py, constantly 

publishing messages of size 16 bytes to the topic ‘topic’ with QoS levels matching that of the 

subscriber. 



 33 

We ensure that the subscriber and publisher have the same QoS level, even though it is 

possible for the QoS level to get downgraded if the subscriber is subscribed to a topic with a 

lower QoS level than that with which the publisher has published its content.  

QoS 0: This is the level of Quality of Service with the least amount of transmissions as it 

is a fire and forget setting. Although the underlying transport is TCP/IP, no additional effort is 

made to transmit the message from publisher to broker or from the broker to subscriber. A 

PUBLISH message is transmitted and then the next message is sent. 

If the message is lost due to the network, it cannot be retrieved. 

We expect that the power consumed by the broker will be the least, or the data transferred 

will be the most when the publisher and subscriber are both using QoS level 0 (see Figure 7).  

 

 

Figure 7: QoS-0 Communication Messages 

QoS 1: This is the level of Quality of Service where the transmitting party receives an 

acknowledgement from the receiving party about its message. It is guaranteed with this QoS 

level that the message will be delivered at least once. If both the publishing and the subscribing 

client have set the QoS level to 1, the sender will store the message until it receives an 

acknowledgement from the receiver that the message has been received (see Figure 8).  



 34 

We expect that the power consumed by the broker will be intermediate, or the data 

transferred will be less than that when compared with QoS 0, due to the additional requirement 

of the broker to acknowledge every Published message. 

 

 

Figure 8: QoS-1 Communication Messages 

QoS 2: This is the highest level of Quality of Service that MQTT offers, where the 

receiver receives the message exactly once. It is both the safest and slowest QoS level [17]. The 

guarantee of the message being received exactly once comes at the cost of two flows from the 

client to the broker and two flows in the opposite direction, 4 times as many flows as QoS 0 and 

twice as many as QoS 1 (see Figure 9).  

For this reason, we expect that the power consumed by the broker will be the highest for 

this level of QoS, or the data transferred will be the least.  



 35 

 

Figure 9: QoS-2 Communication Messages 

3.3.2 Number of Publishers 

A typical use-case scenario for IoT is Wireless Sensor Networks, where many sensors are 

constantly publishing the data to the broker device. In real-world IoT deployments, there can be 

hundreds or even thousands of such sensors, but in those cases, the load is also balanced by 

multiple brokers. For the purposes of our experiment, we test the power consumption of the 

broker when 1, 2, 3 and 5 clients are publishing to it simultaneously, for the different Quality of 

Service levels. 

We expect the power consumed by the broker to be lowest for the case when there is 1 

subscriber and 1 publisher, and highest for the case when there are 5 publishers and 1 subscriber. 

If this is not the case, we expect the data received by the subscribing client to be the most in case 

of 1 subscriber and 1 publisher and the least when there are 5 publishers and 1 subscriber. This is 

because the broker must simultaneously handle 5 different clients publishing data to it at the 

same time and it must also relay that data to the subscribing client. 



 36 

3.3.3 Payload Size 

MQTT is a data-agnostic protocol and it the structure of payload is determined entirely by the 

user. Each message typically has a payload which contains the actual data to be transmitted in 

byte format [20]. In our case, we create files that are exactly 1MB, 2MB, 5MB and 10MB and 

measure the power consumption of the broker device and the data received at the subscriber 

when these files are repeatedly published with QoS 2.  The code used to publish these files to the 

broker can be found in the Appendix. 

We use QoS 2 because when sending large chunks of data, we prefer that there be 

minimal retransmissions of the data. Additionally, we also do not want to transmit data 

unnecessarily and have the receiver receive more than one copy of the file since it is wasteful of 

the bandwidth and energy resources of our already constrained devices. 

We expect that as the payload size increases, the power consumed at the broker increases 

as well due to fragmentation of the packets. If this is not the case, we expect the data received at 

the subscriber to be the least when the payload is the largest. This is due to errors that occur 

when transmitting large files due to fragmentation and retransmissions. 

3.3.4 Authentication Mechanism 

MQTT allows for application level security, in the form of a username and password that a 

broker can implement for authenticating the clients that connect to it. The MQTT protocol 

provides for username and password fields in the initial CONNECT message that a subscriber 

sends to a broker when it is first connecting to it, to subscribe to topics. The username is a UTF-8 



 37 

encoded string and the password is binary data with each 65535 bytes max. It is possible to send 

just a username without a password. 

The experiment is conducted, publishing 1 MB files repeatedly at QoS level 1 at first 

without the authentication mechanism, and then with the authentication mechanism. 

We measure the power consumed by the broker device as well as the amount of data 

received at the subscriber. To test whether any difference between the two sets of readings is not 

caused just by the initial authentication, we also begin measurements for the same time period 

with a 20 second offset, so as to give the broker enough time to authenticate a client and 

commence the data transfer. The objective is to test whether the authentication mechanism has 

any long-term effects on the data rate or the power consumed after a client has been 

authenticated.  

 



 38 

4.0  RESULTS, ANALYSIS & DISCUSSION 

4.1 RESULTS 

4.1.1 Quality of Service 

First, the Quality of Service Levels are varied and the power consumed by RPi_A (MQTT 

broker) is measured for 10 minutes and sampled every 10 seconds, with a constant payload 

message – “Hello World”. The publishing and subscribing clients are separate instances, both 

running on RPi_B. Each experiment is repeated 10 times to establish repeatability under these 

test conditions. 

Initially, the power consumption is measured for 10 minutes on all 3 power-measurement 

devices, to obtain the baseline control reading. The only activity on the Raspberry Pi is the 

exchange of WiFi management messages with the Access Point. The measurements are shown in 

Figure 10. 



 39 

 

Figure 10: Control Readings 

It is worth noting that since the Drok Power-Meter is a USB meter, it measures less 

power than the other two devices, which plug directly into the wall-outlets. 

4.1.1.1 Scenario: 1 Subscriber, 1 Publisher for Different QoS Levels 

Thereafter, the subscriber and publisher codes are run on the respective instances on RPi_B after 

starting the Mosquitto broker on RPi_A to get the readings for QoS 0 (default) with 1 Subscriber 

and 1 Publisher. 

The code used in the experiments through the Paho-MQTT Python library can be found 

in the appendix. Figures 11-13 show the execution of the commands for the experiments in the 

SSH client, Putty, for the various QoS level subscriptions. 



 40 

 

Figure 11: QoS-0 Subscription 

 

Figure 12: QoS-1 Subscription 

 

Figure 13: QoS-2 Subscription 

Figure 14 compares the Average Power of the different QoS levels over a ten-minute 

period: 



 41 

 

Figure 14: QoS Comparison for 1 Subscriber, 1 Publisher 

Contrary to what we might expect, we see that the average power of QoS2 is lower than 

QoS0, even though the overhead is much higher in QoS2. This can be explained by the fact that 

fewer messages were actually published when QoS2 was implemented, as opposed to QoS0. 

4.1.1.2 Scenario: 1 Subscriber, 2 Publishers for  Different QoS Levels 

In Wireless Sensor Network environments, we often find multiple sensors trying to publish data 

to a central node (broker). MQTT is a protocol that is widely used in these networks, thus, it is 

worth investigating how much power is drawn when there are multiple publishers. 

Here, the 1 Subscriber and 2 Publishers are all instances on RPi_B, while the broker 

resides on RPi_A. 

Figure 15 compares the Average Power of the different QoS levels when there are 2 Publishers 

simultaneously publishing to the broker. 



 42 

 

Figure 15: QoS Comparison for 1 Subscriber, 2 Publishers 

4.1.1.3 Scenario: 1 Subscriber, 3 Publishers For Different QoS Levels 

Figure 16 compares the Average Power of the different QoS levels when there are 3 Publishers 

simultaneously publishing to the broker. 

 



 43 

 

Figure 16: QoS Comparison for 1 Subscriber, 3 Publishers 

4.1.1.4 Scenario: 1 Subscriber, 5 Publishers for  Different QoS Levels 

Figure 17 compares the Average Power of the different QoS levels when there are 5 Publishers 

simultaneously publishing to the broker. 

 



 44 

 

Figure 17: QoS Comparison for 1 Subscriber, 5 Publishers 

4.1.2 Average Number of Messages Received Per Minute 

If we consider the data received by the client that is subscribed to the topic, we can compute the 

average number of messages that it received for the different QoS levels. The confidence level 

over 10 runs indicates that although a trend is observed, mostly it may be hard to distinguish 

between the power consumption when using different QoS levels, as seen in Figure 18. 



 45 

 

Figure 18: Average Number of Messages Per Minute 

4.1.3 Number of Publishers 

In typical wireless sensor networks, there are multiple sensors that routinely send data to a 

central device. To emulate this environment, the number of publishers is varied, to test the 

capacity of the broker and the power it consumes, to handle the incoming publish-messages from 

the clients and subsequently transfer those messages to all the clients that are subscribed to the 

topic. Since the number of messages the broker might have to store and process simultaneously 

increases with an increase in publishers, the number of publishers is varied and the results are 

observed. Figures 19-21 illustrate the variations in the instantaneous power for different number 

of simultaneous publishers (1, 2, 3, 5) for QoS level 0 (see Figure 19), QoS level 1 (see Figure 

20)  and QoS level 2 (see Figure 21). 



 46 

 

Figure 19: QoS-0: Number of Publishers Comparison 

 

 

Figure 20: QoS-1: Number of Publishers Comparison 



 47 

 

Figure 21: QoS-2: Number of Publishers Comparison 

4.1.4 Amount of Data Received by a Subscribing Client 

We observe the effects of varying the Quality of Service as well as the number of publishers, 

while measuring the total data that has been received by a subscribing client in a given time 

period (10 minutes). Figure 22 shows the variation, along with the standard deviation in the 

readings for the number of 16 byte messages received by the subscribing client in the period of 

10 minutes. Due to the non-overlapping error-margins, we can say with confidence that there are 

observable trends in this case. 



 48 

 

Figure 22: Data Received by Subscriber 

 

4.1.5 Average Energy Consumed Per Publisher 

In the given time period of 10 minutes with messages being sent continuously at different QoS 

levels, for varying number of publishers, we can analyze the average energy consumed by each 

publisher in the system. We assume that the power stays constant for the 10 second sampling 

interval. This is an important consideration when a system designer must decide the number of 

sensors or things to be placed with regard to the power available. Figure 23 illustrates the 

variation in the average energy consumed by each publisher along with the standard deviations 

for the readings. It is worth noting that the error margins for the different readings do not overlap 

and trends can be observed. 



 49 

 

Figure 23: Average Energy Consumed Per Publisher 

4.1.6 Total Energy Consumed by Broker 

For the entire test period of 10 minutes, sampling the power every 10 seconds and assuming that 

the power stays constant for those 10 seconds, we obtain readings for the total energy consumed 

by the broker device in 10 minutes (see Figure 24).  



 50 

 

Figure 24: Total Energy Consumed 

4.1.7 Payload Size 

Next, we observe the effects of Payload size on the power consumed by the protocol/device. 

We create 4 files, test1MB, test2MB, test5MB and test10MB of 1MB, 2MB, 5MB and 

10MB respectively and publish it. For this particular application, we would prefer it if the file 

being published does not need to be re-published, and the subscribers are able to receive it as a 

whole. For this reason, we choose QoS=2, which ensures the file gets transferred exactly once.  

We also measure the data that is transferred to the subscribers in the 1 minute time frame 

that we measure the power. The fluctuation in power consumption is more frequent and 

noticeable in this part of the experiment, thus we choose a smaller time frame (1 minute), with 

smaller intervals (1 second). Figures 25-28 illustrate that the error margins in the experiments are 

non-trivial and although a trend is observed, it may be hard to distinguish between the power 

consumed by the broker when files of different sizes are being transmitted. 



 51 

 

Figure 25: 1MB Payload Power 

 

 

Figure 26: 2MB Payload Power 



 52 

 

Figure 27: 5MB Payload Power 

 

 

Figure 28: 10MB Payload Power 



 53 

Figure 29 shows the comparison of the instantaneous power for the different payloads 

and compares them, although the trends that are noticed are only for the average instantaneous 

power.  

 

 

Figure 29: Variable Payload Power Comparison 

The average amounts of data that were transferred in the given time frame (1 minute), 

using all the different payload sizes are shown in Figure 30.  



 54 

 

Figure 30: Average Amount of Data Transferred in 1 Minute 

We can also measure how much data is received by the client as a function of the power 

consumed by the broker (see Figure 31).  

 

 

Figure 31: Average Data Transferred 



 55 

4.1.8 Authentication Mechanism 

This experiment sets up an Authentication mechanism for clients before they connect to the 

broker, by cross-referencing the username and password with a local file. Initially, power 

consumption is measured for a simple publish/subscribe of a 1MB file with QoS=1, without the 

authentication mechanism. 

The power consumption is then measured once the authentication mechanism is in place. 

The measurement time is 2 minutes and the interval of measurement is 1 second. The 

results can be seen in Figure 32. 

To allow the broker to implement the authentication mechanism, the configuration file 

must be modified to disallow anonymous clients from connecting to the broker. The broker must 

also check if the login credentials used by the clients match those on the file as specified in the 

configuration file. The configuration file is amended as noted in the Appendix. 

The Publisher and Subscriber scripts are also amended to include the login credentials for 

when the authentication mechanism is used. These can also be found in the Appendix. 

 



 56 

 

Figure 32: Power Consumption with/without Authentication Mechanism 

The amount of data that is transmitted is also measured and the results are shown in 

Figure 33. 

 

 

Figure 33: Data Transferred with/without Authentication Mechanism 



 57 

4.2 ANALYSIS & DISCUSSIO N 

For the three different QoS Levels in cases with 1 Subscriber and 1 Publisher: 

¶ Average power consumed when the MQTT protocol is operating in QoS level 0 is higher 

than that of QoS2, even though the overhead in QoS2 is greater, but all three levels 

consume similar amounts of power. 

¶ However, this difference is explained by the fact that in the given time period, more data 

is transferred in the QoS0 level (34,348 messages) than in QoS2(22,715 messages). The 

additional overhead of QoS2 slows down the protocol and thus, does not allow it to 

publish as many messages as if it were operating in QoS0. 

¶ The reduced speed can be considered a tradeoff for reliability. Although in this 

experimental setup, no messages were lost, in cases where there are unreliable networks, 

QoS2 might work in delivering messages more reliably than QoS0. 

¶ Figure 27 shows us the difference in the average number of messages per minute for the 

different QoS levels and we can observe that given its low overhead and fewer messages 

to publish, QoS0 transfers the most number of messages per minute, followed by QoS1, 

which has an additional acknowledgement message. QoS2 has the least number of 

messages per minute due to the additional back and forth messaging between the broker 

and client for each message. 

When multiple publishers are introduced: 

¶ For all 3 QoS levels, more publishers connecting to the broker and publishing 

simultaneously, makes the broker draw more power. 



 58 

¶ This is most noticeable in the case of QoS2, which can be explained by the additional 

overhead of the handshake messages and the processing of simultaneous requests from 

different publishers. 

¶ Figure 31 clearly shows us the difference and trends in the number of messages received 

by the subscribing client for the different number of publishers, for the different QoS 

levels. As the number of publishers increases (from 1 to 5), the number of data received 

by the subscribing client also increases, for all QoS levels. This indicates that perhaps the 

processing power is not being utilized completely and it is possible that additional 

publishers will yield even more data received at the client. 

¶ We can also observe in Figure 31 that as we increase the QoS level, the number of 

messages reaching the subscriber in the given period of time, reduces. This can be 

explained by the additional messages for the higher QoS levels. 

¶ Figure 32 illustrates how for different QoS levels, the average energy consumed by each 

publisher (for each case of varying number of publishers) is approximately the same. 

However, when there are multiple publishers in the system, each of them can only use a 

fraction of the total power available. 

¶ In figure 33, for QoS 2, we can clearly see that the total energy consumed by the broker 

increases as the number of publishing clients increases. This is due to the fact that the 

broker has to service the extra clients, storing their messages when delivery is not 

possible, to attempt delivery at a later time. The broker operating at QoS2 must also 

handle simultaneous incoming published messages and at the same time also ensure that 

it is sending out those messages to clients that have subscribed to the topic.  

For the different Payload Sizes: 



 59 

¶ For a given period, when using QoS2, larger files (upto 10MB) offer higher power 

efficiency and data-transfer efficiency, rather than smaller files. 

¶ The power consumed by the broker in the case of continuous transfer of different sizes of 

files is about the same, on average, for the 4 different file sizes that were tested. 

¶ Figure 39 illustrates the amount of data transferred using the different file sizes as a 

function of the power that is consumed by the broker. Since our focus is the power 

consumption of the broker under different conditions, this metric allows us to pinpoint 

what decisions to make to optimize power usage, ie: use larger files (~10MB). We must 

note that this is not necessarily a trend, however, since a 5MB file shows poor power 

efficiency. 

For the implementation of the authentication mechanism in Mosquitto: 

¶ The amount of data that can be transferred in a given period of time is larger if we do not 

implement the authentication mechanism. Ie: the authentication mechanism slows down 

the transfer of data from publishers to subscribers, when using QoS1. This reinforces the 

notion that additional security mechanisms require additional time and resources from the 

protocol for their implementation and operation. 

¶ The average power consumed in a given time period is approximately the same, with and 

without the implementation of the authentication mechanism. It follows that the 

authentication mechanism utilizes the resources of time and overhead from the protocol 

rather than power, ie: the protocol uses the time and data it would have used in 

transferring the data had the additional security mechanism not been present, in 

implementing the authentication mechanism.  



 60 

¶ An additional set of measurements were taken 20 seconds after the transmissions began 

to observe if the authentication factor only played an initial role in determining the power 

consumption and vanished afterward. However, it was noted that there is no tangible 

difference between the delayed measurement and the original one, when using the 

authentication mechanism. 



 61 

5.0  CONCLUSION 

There are a number of directions for research in the sphere of IoT, considering the exponential 

growth of the industry. In the field of MQTT alone, there is scope for research in comparing 

MQTT to other protocols like CoAP, AMQP, HTTP, etc. Additionally, the security aspects of 

MQTT can be explored more in depth, with the implementation of TLS, with a secure certificate 

provisioning process. 

This thesis was limited in its scope on hardware and software. MQTT can be 

implemented on devices other than Raspberry Pis as well, like Arduino, ESP8266, etc. In terms 

of software, there are plenty of MQTT brokers available for use, Mosquitto is just one of them. 

Other brokers might display different power consumption statistics for different use-cases, based 

on how they handle the incoming load. 

In the future, it could be worth repeating the experiments using the broker as an ad-hoc 

WiFi device, thus allowing the clients to directly communicate with the broker, instead of 

through a WiFi access point. If the broker is configured properly, it could reduce the number of 

messages and the number of hops, possibly reducing the power consumed or increasing the 

throughput of the broker.  

This thesis highlights some of the factors that affect the power consumption of devices 

that use the MQTT protocol for IoT use-cases. It can be observed that an increased number of 

publishers being serviced by the same broker, impose more of a power and processing burden on 



 62 

the broker device. It can also be concluded in cases where clients use a higher level of Quality of 

Service, even if the power consumed is the same as in lower QoS levels, the amount of data that 

the protocol is able to transfer in stable networks is lower. In more lossy networks, the amount of 

data that is reliably transferred might be more, given the reliability of higher QoS levels.  

It is observed that for different payload sizes between 1MB and 10MB, for a given 

period, it is more prudent to transfer larger files, since the protocol offers higher rates of transfer 

for larger files. 

It is also noticeable that although the username and password authentication mechanism 

does not consume more power from the broker device, it slows down the transfer of data due to 

the additional overhead of authenticating clients. 

This is not an exhaustive list of all the factors in the MQTT protocol that affect the power 

consumption or performance of the device running the protocol and there is need for further 

research in the area.  



 63 

BIBLIOGRAPHY  

 

[1]  J. Jackson, "OASIS: MQTT to be the protocol for the Internet of Things," 2013. [Online]. Available: 

http://www.pcworld.com/article/2036500/oasis-mqtt-to-be-the-protocol-for-the-internet-of-things.html. 

[2]  R. Gupta, "5 Things to Know about MQTT - The Protocol for Internet of Things," 2014. [Online]. Available: 

https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_mqtt_t

he_protocol_for_internet_of_things?lang=en. 

[3]  HiveMQ, 2015. [Online]. Available: http://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt. 

[4]  Cisco, "An Introduction to the Internet of Things (IoT)," 2013. [Online]. Available: 

http://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf. 

[5]  Gartner, Inc., 2017. [Online]. Available: http://www.gartner.com/newsroom/id/3598917. 

[6]  Gartner, Inc., "Securing the Internet of Things," 2016.  

[7]  Gartner, Inc., "Architect Your Internet of Things System by Using the Gartner IoT Reference Model," 2017.  

[8]  Gartner, Inc., "Top 10 IoT Technologies for 2017 and 2018," 2016.  

[9]  B. Schweber, "Options for Powering Your Wireless IoT Device," 2016. [Online]. Available: 

https://www.digikey.com/en/articles/techzone/2016/apr/options-for-powering-your-wireless-iot-device. 

[10]  Raspberry Pi, "SSH (Secure Shell)," [Online]. Available: 

https://www.raspberrypi.org/documentation/remote-access/ssh/README.md 

[11]  Raspberry Pi, "FAQS," [Online]. Available: https://www.raspberrypi.org/help/faqs/ 

[12]  C. Alcaraz, P. Najera, J. Lopez, R. Roman, "Wireless Sensor Networks and the Internet of Things: Do We 

Need a Complete Integration?," in 1st International Workshop on the Security of the Internet of Things, 

2010.  

[13]  Raspberry Pi, "Power Supply," [Online]. Available: 

https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md 



 64 

[14]  D. Thangavel, X. Ma, A. Valera, H. Tan, C. Tan, "Performance Evaluation of MQTT and CoAP via a Common 

Middleware," Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014.  

[15]  CoRE Working Group, "Constrained Application Protocol (CoAP)," 2013. [Online]. Available: 

https://tools.ietf.org/html/draft -ietf-core-coap-17#section-1. 

[16]  M. H. Elgazzar, "Perspectives on M2M Protocols," in IEEE Seventh International Conference on Intelligent 

Computing and Information Systems, 2015.  

[17]  HiveMQ, "MQTT Essentials Part 6: Quality of Service 0, 1 & 2," 2015. [Online]. Available: 

http://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels. 

[18]  R. Webb, "A Brief, but Practical Introduction to the MQTT Protocol and its Application to IoT," 2016. 

[Online]. Available: https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-

application-iot. 

[19]  "Why is the keep-alive needed? MQTT," 2014. [Online]. Available: 

https://groups.google.com/forum/#!topic/mqtt/zRqd8JbY4oM. 

[20]  HiveMQ, "MQTT Essentials Part 4: MQTT Publish, Subscribe & Unsubscribe," 2015. [Online]. Available: 

http://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe. 

[21]  HiveMQ, "MQTT Security Fundamentals: TLS / SSL," 2015. [Online]. Available: 

http://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl. 

[22]  IANA, "Service Name and Transport Protocol Port Number Registry," [Online]. Available: 

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml?search=8883#OASIS. 

[23]  T. Maddox, "Wearables open new avenues for security and privacy invasions," 2015. [Online]. Available: 

http://www.zdnet.com/article/wearables-open-new-avenues-for-security-and-privacy-invasions/. 

[24]  T. Maddox, "The scary truth about data security with wearables," 2014. [Online]. Available: 

http://www.techrepublic.com/article/the-scary-truth-about-data-security-with-wearables/. 

[25]  M. t. Napel, "Wearables and Quantified Self Demand Security-First Design," 2014. [Online]. Available: 

https://www.wired.com/insights/2014/10/wearables-security-first-design/. 

[26]  "MQTT," [Online]. Available: www.mqtt.org. 

[27]  Y. S. Tetsuya Yokotani, "Comparison with HTTP and MQTT on Required Network Resources for IoT," The 

2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), 

2016.  

[28]  D. Thomas, R. McPherson, G. Paul, J. Irvine, "Optimizing Power Consumption of Wi-Fi for IoT Devices," IEEE 

Consumer Electronics Magazine, 2016.  



 65 

 

[29]  C. Gray, R. Ayre, K. Hinton, R. Tucker, "Power consumption of IoT access network technologies," in IEEE 

International Conference on Communication Workshop (ICCW), 2015.  

[30]  S. D. Nicholas, "Power Profiling: HTTPS Long Polling vs. MQTT with SSL, on Android," [Online]. Available: 

http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https. 

[31]  R. Cohn, "A Comparison of AMQP and MQTT," 2012. [Online]. Available: https://lists.oasis-

open.org/archives/amqp/201202/msg00086/StormMQ_WhitePaper_-

_A_Comparison_of_AMQP_and_MQTT.pdf. 

[32]  J. Speed, "REST is for sleeping. MQTT is for Mobile," 2013. [Online]. Available: 

https://mobilebit.wordpress.com/2013/05/03/rest-is-for-sleeping-mqtt-is-for-mobile/. 

[33]  Alten Calsoft Labs, "Analyzing MQTT vs CoAP," 2016. [Online]. Available: 

http://www.altencalsoftlabs.com/blogs/2016/08/08/analyzing-mqtt-vs-coap/. 

[34]  A. Piper, "Choosing Your Messaging Protocol: AMQP, MQTT, or STOMP," 2013. [Online]. Available: 

https://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html. 

[35]  A. Dutta, "Why HTTP is not enough for the Internet of Things," 2013. [Online]. Available: 

https://www.ibm.com/developerworks/community/blogs/mobileblog/entry/why_http_is_not_enough_for

_the_internet_of_things?lang=en. 

[36]  M. D. Prieto, B. Martinez, M. Monton, I. V. Guillen, X. V. Guillen, J. A. Moreno, "Balancing Power 

Consumption in IoT Devices by Using Variable Packet Size," Complex, Intelligent and Software Intensive 

Systems (CISIS), 2014.  



 66 

APPENDIX 

Subscriber’s code in Python for different QoS levels – subscriber.py 

import paho.mqtt.client as mqtt 

def on_connect(mqttc, obj, flags, rc): 

    print("rc: "+str(rc)) 

def on_message(mqttc, obj, msg): 

    print(msg.topic+" "+str(msg.qos)+" "+str(msg.payload)) 

def on_publish(mqttc, obj, mid): 

    print("mid: "+str(mid)) 

def on_subscribe(mqttc, obj, mid, granted_qos): 

    print("Subscribed: "+str(mid)+" "+str(granted_qos)) 

def on_log(mqttc, obj, level, string): 

    print(string) 

mqttc = mqtt.Client() 

mqttc.on_message = on_message 

mqttc.on_connect = on_connect 

mqttc.on_publish = on_publish 

mqttc.on_subscribe = on_subscribe 

mqttc.on_log = on_log 



 67 

mqttc.connect("192.168.0.104", 1883, 60) 

mqttc.subscribe("topic", 0) #0 denotes the QoS level. We change it to 1 and 2 for 

subsequent parts of the experiment 

mqttc.loop_forever() 

 

Publisher’s code in Python for different QoS levels– publisher.py 

import paho.mqtt.publish as publish 

for i in range(500000): 

 publish.single("topic", "Hello World-"+str(i), hostname="192.168.0.104") 

Publisher’s code in Python for different file sizes – publisher.py 

import paho.mqtt.publish as publish 

f=open("test1MB") 

imagestring=f.read() 

byteArray = bytes(imagestring) 

for i in range(50000): 

 publish.single("topic", byteArray, hostname = "192.168.0.104", qos=2) 

 

Publisher’s code in Python, amended to use authentication – publisher.py 

import paho.mqtt.client as mqtt 

f=open("test1MB") 

imagestring=f.read() 

byteArray = bytes(imagestring) 

mqttc1=mqtt.Client() 



 68 

def on_connect(mqttc1, obj, flags, rc): 

    print("rc: "+str(rc)) 

def on_message(mqttc1, obj, msg): 

    print(msg.topic+" "+str(msg.qos)+" "+str(msg.payload)) 

def on_publish(mqttc1, obj, mid): 

    print("mid: "+str(mid)) 

def on_subscribe(mqttc1, obj, mid, granted_qos): 

    print("Subscribed: "+str(mid)+" "+str(granted_qos)) 

def on_log(mqttc1, obj, level, string): 

    print(string) 

mqttc1.on_message = on_message 

mqttc1.on_connect = on_connect 

mqttc1.on_publish = on_publish 

mqttc1.on_subscribe = on_subscribe 

mqttc1.username_pw_set('abhishek','abhishek') 

mqttc1.on_log = on_log 

mqttc1.connect("192.168.0.104", 1883, 60) 

for i in range(50000): 

 mqttc1.publish("topic", byteArray, qos=1) 

mqttc1.loop_forever() 

 

Subscriber’s code in Python, amended to use authentication – publisher.py 

import paho.mqtt.client as mqtt 



 69 

def on_connect(mqttc, obj, flags, rc): 

    print("rc: "+str(rc)) 

def on_message(mqttc, obj, msg): 

    print(msg.topic+" "+str(msg.qos)+" "+str(msg.payload)) 

def on_publish(mqttc, obj, mid): 

    print("mid: "+str(mid)) 

def on_subscribe(mqttc, obj, mid, granted_qos): 

    print("Subscribed: "+str(mid)+" "+str(granted_qos)) 

def on_log(mqttc, obj, level, string): 

    print(string) 

mqttc = mqtt.Client() 

mqttc.on_message = on_message 

mqttc.on_connect = on_connect 

mqttc.on_publish = on_publish 

mqttc.on_subscribe = on_subscribe 

mqttc.username_pw_set('abhishek','abhishek') 

mqttc.on_log = on_log 

mqttc.connect("192.168.0.104", 1883, 60) 

mqttc.subscribe("topic", 1) 

mqttc.loop_forever() 

 

Mosquitto’s configuration file, amended to use authentication – mosquitto.conf 

allow_anonymous false 



 70 

password_file /etc/mosquitto/pwfile 

pid_file /var/run/mosquitto.pid 

persistence true 

persistence_location /var/lib/mosquitto/ 

log_dest topic 

log_dest error 

log_type warning 

log_type notice 

log_type information 

connection_messages true 

log_timestamp true 

include_dir /etc/mosquitto/conf.d 

 

 

 

 

 




