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As one of the most common congenital cranio-facial defects, cleft lip/palate (CL/P) occurs 

in approximately one per 750 live births in the United States. Cleft lip and palate may not be life 

threatening but affects functions like feeding, speech, hearing, respiration, facial and 

dentoalverloar development, just to name a few. These problems can cause emotiona l, 

psychosocial, and educational difficulties. Cleft lip and palate require extensive treatment that 

require a team approach of many specialists, which costs patients, insurances and the county 

billions of dollars each year. 

The etiology of cleft lip/palate (CL/P) is complex and is believed to be the result of both genetics 

and environmental inputs. Studies have been done that implicate certain craniofacial phenotypes 

and variation in the craniofacial morphology as an etiological factor for cleft lip in embryonic mice 

and in humans. Wide faces are hypothesized to increase susceptibility to CL in both mice and 

humans. There are many studies done supporting the link between genetic variation and specific 

craniofacial phenotypes. We know now that genetically similar individuals vary in the specific 

trait, which means genetics alone cannot be the source of dysmorphology like CL and CP. Both 

mutations and environmental effects can change the phenotype of an individual.  Mutations can 
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affect the size, position, and maturation of different developmental processes and prominences that 

are important for proper development and function of the face.  

The Beetlejuice (Bj) mutants have compressed faces, compared to their wild type 

littermates. We observed a ~ 50% rate of cleft palate in Bj mutants. The purpose of this study was 

to investigate if Prickle1 differentially affects the craniofacial morphology of Beetlejuice mice.  
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    1.0 BACKGROUND 

        1.1 Mice Cranial Base 

 

Mammalian skull can be divided into three components: Calvarium which houses the brain, 

basicranium (base of the skull) and the face. These three components have different tissue origin 

and are formed differently.  Bones of the face are neural crest in origin (Jiang et al.,2002), bones 

of the vault are derived from both neuro-crest cell and mesoderm (Jiang et al.,2002), the bones of 

the basicranium are also derived from both neuro-crest cells and mesoderm. Bones of the 

Calvarium and face are formed by intramembranous bone formation while cranial base is formed 

by endochondral bone formation. Cranial base is first formed as a solid cartilage(chondrocranium) 

(McBratney-Owen et al., 2008) which later ossifies to form the bones of the base of the skull. This 

solid cartilage is formed by fusion of different cartilages and that is why different bones of the 

basicranium formed from these cartilages have different tissue origin (McBratney-Owen et al., 

2008) 

Basicranium grow by endochondral ossification of the synchondrosis. Mice basicranium 

has two synchondrosis: spheno-occipital synchondrosis and pre-sphenoidal synchondrosis. As 

stated earlier, the basicranium has both neural crest and mesoderm origin. The neural crest and 

mesoderm boundary lies between the cartilages that form the basioccipital and basisphenoid bones 



 2  
 

(Parsons et al.,2015). In general, the anterior cranial base is derived from neural crest whereas the 

posterior cranial base is from mesoderm (Noden DM, Trainor PA, 2005). 

 

 

 

Figure 1. Schematic of the ventral view of mouse cranial base.  
Anterior cranial base is derived from neural crest whereas the posterior cranial base is from mesoderm.bo, bassioccipital; bs, 
basisphenoid; ps, presphenoid; pss, pre-sphenoidal synchondrosis; sos, spheno-occipital synchondrosis. 
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Besides the differences describes above between the three parts of the skull, one other 

difference is in the control of growth of these three parts.  The growth and shape of the basicranium 

has been suggested to be under intrinsic control (since it is formed by endochondral bone 

formation) (Scott, 1958), growth and shape of the calvarium is regulated by brain expansion 

(Richtsmeier et al., 2006) while growth and shape of the face is believed to be controlled by growth 

hormones (M.J Waters; P.L Kaye,2002). 

    1.2 CRANIOFACIAL MORPHOLOGY AND CLEFT LIP AND PALATE (CL/CP) 

 

Cleft lip and palate is of the most common congenital cranio-facial anomaly that occurs in 

approximately 1 per 750 live births in the United States (Bornstein et al., 1970). Clefts occur more 

frequently among Asians (about 1:400) and certain American Indians than Europeans or European 

descendants. Clefts are relatively less common among Africans and African Americans (about 

1:1500) (Slavkin HC, 1992). Cleft lip and palate may not be life threatening but affects functions 

like feeding, speech, hearing, respiration, facial and dentoalveolar development, just to name few. 

These problems can cause emotional, psychosocial, and educational difficulties. Cleft lip and 

palate require extensive treatment that require a team approach of many specialists, which costs 

patients, insurances and the county billions of dollars each year. 

A cleft lip if formed earlier in the embryonic life when maxillary prominence and medial 

and lateral nasal prominences fail to fuse during embryonic development (Kaufman & Bard, 1999). 
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Cleft palate is formed when the palatal shelves fail to fuse in the midline. We know that secondary 

palate formation starts as outgrowth from the maxillary prominence in the form of palatal shelves. 

In the beginning the palatal shelves grow vertically down along the side of the tongue. These 

palatal shelves then ascend above the tongue at the same time when the tongue lowers down at the 

floor of the mouth. Further growth of the palatal shelves brings them in close proximity to each 

other which leads to their final fusion in the middle. This whole process from beginning to the end 

is a well-coordinated process (Wenli et al., 2009). Any disturbances along this process, e.g., defects 

in palatal shelf growth, uncoordinated timing, and blocked fusion, can cause cleft palate (CP) 

(Ferguson MW, 1988; Christensen K, Juel K, Herskind AM, Murray JC., 2004). Cases of CL/P 

that occur without other craniofacial abnormalities are called non-syndromic CL/P. These cases 

make up about 70% of the CL/P cases (Dixon et al.,2011). The remaining cases are associated with 

different syndromes.   

The etiology of cleft lip with or without palate (CL/P) is complex and is believed to be the 

result of both genetics and environmental inputs (Murray JC, 2002; Gritli-Linde A, 2008). It is 

understood that the cleft affliction is produced early in the embryonic stage when nasal, maxillary, 

and mandible facial prominences develop. Developments in gene targeting technology using 

animal models have led to the identification of some genes associated with etiological factors 

(Dixon et al., 2011).  

Besides genes there are factors that have been strongly associated with CL/CP, like 

maternal smoking and alcohol use or use of anti-convulsant medications (Wyszynski DF, Duffy 

DL, Beatty TH, 1997; Shaw GM, Lammer EJ, Zhu H, Baker MW, Neri E, Finnell RH,2002). On 

the other hand, studies have been done that shows protective role of folic acid on CL/P (Boot et 

al., 2003; Briggs, 1976; Finnell et al., 2004). 
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Studies have been done that associate certain craniofacial phenotypes and variation in the 

craniofacial morphology as an etiological factor for cleft lip in embryonic mice (Trasler, 

1968; Juriloff & Trasler, 1976)  and in humans(Fraser & Pashayan, 1970; Hermann et al. 1999).   

In the study done by Fraser and Pashayan, they looked at the parents of children with CL, with or 

without CP, and compared them to a control group. They looked at 11 different dimensions of the 

head of these parents. They observed higher frequency of rectangular and trapezoid heads, less 

prominent maxilla and upper lip, higher interzygomatic and interocular chin measurements in the 

experiments group than the control.  The study done on A/J strain (with a spontaneous frequency 

of about 12% cleft lip) and the C57BL/6J strain (almost never has cleft lip), the medial nasal 

processes of A/J embryos were more prominent, more medially placed, and were less divergent 

than those of C57BL/6J (Trasler, 1968) 

In a study done by Dr. Seth Weinberg (Weinberg et al. 2009), 3 D surface imaging 

technology along with morphometric were used to evaluate the facial shape of unaffected parent 

from Cleft lip/palate families and compared them to a control group. In this study, they identified 

certain features associated with CL/P. Some of the feature that they noticed in the unaffected 

parents of cleft lip and palate were: loss of convexity of the face (because of retrusion of the 

nasolabial structures and protruded mandibles and forward projection of the orbital-nasal bridge) 

and reduction in height of middle and upper portions of the face. 

Study done by Parsons et al., 2015, found out that abnormalities of the cartilage of the 

basicranium will produce changes in adult mice face and Calvarium.  In this study, they took one 

type of transgenic mice strains whose endochondral bone development was intentionally under 

activated (they designated this group as UG) and took another type of transgenic mice whose 

endochondral bone development was intentionally over activated (they designated this group as 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571426/#b56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571426/#b56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571426/#b21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571426/#b12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571426/#b19
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OG). They have the unaffected littler mates as the control group. They examined the neonatal and 

adult skulls of these mice. They observed mean differences in the basicranium, Calvarium and 

faces of these three group of mice. The group that had the cartilage growth inhibited(UG) had 

shortened but widened basicranium, shortened faces and taller more dome shaped Calvarium than 

the control group. Such changes were not seen in the OG mice. They found significant correlation 

between the shape of the basicranium and shape of the face and calvarium. Since only the 

endochondral bone formation was affected in the two group, in theory there should have been no 

changes in the faces and Calvarium in these mice, as face and calvarium are not formed by 

endochondral bone formation. But they suggested that changes in the basicranium are correlated 

to the changes in face and calvarium. They called the changes in the length of the basicranium as 

“direct or genetic” effect and the changes in the width of the basicranium and face as “in direct or 

epigenetic effect”. According to them the width of the basicranium is affected by the shape of the 

basicranium and not by the endochondral bone formation.  

 Studies done by Young et al., 2007 and Parsons et al., 2008 suggested the possible 

involvement of morphological variation in the etiology of CL in mice. In these studies, they 

compared the 2D and 3D craniofacial morphology of mice that have high frequency of CL and CP 

to those that rarely get CL and CP. They found out the mice that have high frequency of CL and 

CP have higher phenotypic variability than the ones with no CL or CP.  
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1.3 MOUSE MODELS AND CRANIOFACIAL DYSMORPHOLOGIES 

 

Animal models, more specifically mouse models, that has craniofacial dysmorphologies 

like CL and CP have shown to be useful in the research of human genetic mutations that cause the 

same craniofacial dysmorphologies (Bornstein et al., 1970). Since earlier facial development and 

morphology of mice is very similar to that of human, this makes mice the perfect animal model 

for human palate formation and malformation. In addition, some mic models have who have 

dysmorphology like one CL and CP have the same genetic and clinical presentation (like 

incomplete penetrance, variable expression and frequent unilateral expression. A good example is 

the A/WySnJ mice. They are inbred strain that has a high frequency of cleft lip with or without 

palate concept (Halgrimmson et al., 2005). Like humans, they have incomplete penetrance and 

have variable and frequent unilateral expression of CL/P. This make these mice ideal model for 

studying human dysmorphology like CL and CP.  

 

 Most mouse models currently available for genetic research are inbred strains and 

genetically engineered mutants. During early embryonic stages, growth factors stimulate 

migration, patterning, and differentiation of the face. Global changes to these growth factors can 

influence the shape and width of the face. This is observed in the Beetlejuice (Bj) mouse line where 

the mice have compressed faces when compared to the wild type (Gibbs et al., 2016), serving as a 

model for cleft anomalies. 
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1.4 Beetlejuice mice and Prickle-1 gene 

 

For this study, we used the Beetlejuice mice. Beetlejuice mice have a missense mutation in 

Prickle1(Pk1). The Pk1 gene is part of noncanonical Wnt signaling (β-catenin not involved in the 

Noncanonical pathway) pathway, also known as   the planar cell polarity (PCP) signaling pathway. 

In addition to the apical basolateral polarity, epithelial cells have as additional axis of polarity 

called the epithelial planer cell polarity(PCP). So, PCP play a role in polarization of epithelia l 

cells, tissue formation by regulation of convergent-extension movements, and migration of neuro-

crest cells (Gibbs et al., 2016).  Mutations of Prickle1 in humans have been associated with familia l 

epilepsy and orofacial clefting (Tao et al., 2011). Prickle proteins were first discovered 

in Drosophila.  A single prickle protein has One PET and three LIM domains (Gubb et al., 1999). 

Prickle-1Beetlejuice (Prickle1 Bj/Bj) is a missense mutation (p:C161F) in the first LIM domain of the 

Prickle 1 protein.  

All the Prickle1 Bj/Bj mutants develop a median cleft lip while only 46% develop a cleft 

palate associated with a cleft lip. For our study, we include Beetlejuice mice that had over CP 

(FIGURE: 2) 
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Unlike other Pk1 mutants, the Bj mutant survives to term. Bj mutants exhibit a wide 

spectrum of developmental anomalies that include congenital heart defects, skeletal and 

craniofacial anomalies, cochlea defects, and biliary ductal hypoplasia (Gibbs et al., 2016).  

 

 

 

 

 

 

 

 

 

Figure 2. Craniofacial dysmorphology in the Bj mic. 
A-C (top) control, D-F (bottom) Beetlejuice mutant mice. Arrow in D pointing to the short and domed shaped head, Arrow in E 
pointing to the midfacial cleft while arrow in F pointing to midfacial and palatal clefts in of the Beetlejuice mice   (Wan et al., 
submitted 2017) 
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 2.0 PURPOSE OF THIS STUDY 

The purpose of this study is to investigate the role of Prickle1 in determining the 

craniofacial morphology of Beetlejuice mice. We further hypothesized that these morphology 

changes make the Beetlejuice mice susceptible to CL and CP. 

Preliminary data has shown that Prickle1 Beetlejuice mutants have craniofac ia l 

morphology that is different from the wild types. Their head are shorter in the anterior-poster ior 

axis and expanded in the medial- lateral axis (Gibbs et al., 2016). Basioccipital has mesodermal 

origin while the rest of the bones (premaxilla, presphenoid and basisphenoid) and synchondros is 

have neural crest cell origin. Since PCP has been suggested to regulate directional migration of 

neural crest cells, we hypothesized that the anterior most region of the skull is affected in these 

mutant mice.      

 

 

 

 

 

 

 

 

 



 11  
 

 3.0 MATERIALS AND METHODS 

We examined the heads of Prickle1Bj/Bj and their wild type littermates after in situ 

hybridization at E 12.5, in both vertex (top of the head) and ventral view (inferior). We took 

micrographs of the prepared samples (both vertex and ventral), saved them and printed them on 

paper. We measured the length and width of head of both wild and mutant types.  

We also collected several neonates of the Prickle1 Bj/Bj and their wild type littermates at embryonic 

age (E17.5) and at post-natal day 0(P0). They were than stained with Alizarin red (pink) and Alcian 

blue for bone and cartilage respectively using standard protocols. Mandibles were cut out to look 

at the bones of the bones of basicranium(Fig 3). We included only Prickle1 Bj/Bj mutants that 

developed cleft palate for our study. 

We took micrographs of these prepared samples. Images were printed on paper and cranial base 

components were measured using a mm ruler.  

All data was recorded on excel spreadsheet. We plotted bar graphs to compare the length 

and width and ratios of width to length measurements between wild and mutant types.  
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Figure 3. Schematic representation of Bones of the cranial bones. 
bo, basioccipital; bs, basisphenoid; ps, presphenoid; sos, spheno-occipital synchondrosis; pss, presphenoid synchondrosis; 
v, vomer; pmx, premaxillary bones 
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To minimize any distortion of the images, all images were saved as “TIF” files. We used a 

mm ruler for all our measurements. Images were taken at different resolution of the microscope 

and all measurements were fist calibrated before the start of the data analysis. 

 

 

 

 

 

 

 

Figure 4.Ruler used in this study for measurements. 
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I measured the width of 3 bones in the cranial base and the length of four segments of the 

cranial base(Fig.5). Figure below represents the Length and width measurements of the cranial 

base that we measured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.Measurements made to compare the cranial base. 

 Eight cranial base linear measurements: Distal premaxillary bones (pmx) Maximum width of the preshenoid (ps), 
Maximum distance of the basisphenoid(bs), Maximum distance of the basioccipital (bo-w), total cranial base 
length(tcb), Length of the basioccipital (bo-l), anterior cranial base length(acb) 
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4.0 RESULTS 

4.1 Vertex view of the head at E12.5 

We examined the heads of two mutant and three wild type mice at E 12.5. We compared 

the morphology of the head of the wildtype to mutant type. We clearly observed differences in the 

morphology of the wild and mutant types. The proximal-distal dimension of the head of the mutant 

mice, compared to the wildtype, were shorter while expanded in the medio-lateral axis in the vertex 

view (figure 6).  

  

 

                                

 

 

 

 

 

 

 

 

  

                         

 

Figure 6. Vertex (top) view at E 12.5. A, wt at 12.5; B, mut at 12.5.  
The proximal-distal dimension of the head of the mutant mice, 
compared to the wild type, were shorter while expanded in the 

medio-lateral l axis 

 

Prickle +/+ 

B 

Prickle1
+/+

 Prickle1
Bj/Bj

 

A B 
A B 
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In order to quantify the changes that we observed, we took length and width measurements 

of the head of both wild type and mutant mice on the printed images of the vertex view. We noticed 

the lengths of the head of mutant mice were reduced while widths were increased in the mutant 

mice(Fig.7). We than took width to length ratio of our measurements and observed the ratios 

increased in the mutant mice(Fig.8) 
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Figure 7. This graph shows length and width of the skull in the vertex (from the top) view 

Early in development at E12.5, the BJ morphology is shortened in length.  

Figure 8. Graph showing width to length ratio at E 12.5(vertex view).  

Ratio is increased for mutants 



 17  
 

4.2 Ventral view of the head at E 12.5 

The change in length and width in the vertex view of the E12.5 was confirmed with the 

ventral view of the head of an additional four individuals at E12.5. The head of the Beetlejuice 

mice were shortened in the proximal-distal and expanded in the medio-lateral axis in the ventral 

view (figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Inferior (below) view at E 12.5. A, wt at E12.5; B, mut at E 12.5. 
 The proximal-distal dimension of the head of the mutant mice, compared to the wild type, 
were shorter while expanded in the medio-lateral axis 
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We took length and width measurements of the head of both wild type and mutant mice on 

the printed images of the ventral view also. We noticed the lengths of the head of mutant mice 

were reduced. The widths of the head were not much different at this view (Fig. 10) but when we 

took width to length ratio of our measurements, we observed the ratios increased in the mutant 

mice (figure 11) 
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Figure 10. Graph comparing length and width of mutant and wild type in the ventral view. 
 Early in development at E12.5, the BJ morphology is shortened. 
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4.3 Skeletal Preparation 

  To determine if these changes were just an intermediate stage, or if they had an affect on 

later development, we performed an experiment to test the width and length of the cranial base 

from skeletal preparation of the heads in  both wild-type and Beetlejuice mutants littermates just 

prior and after birth at 17.5, and P0.  

0.7
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0.74

0.76

0.78

0.8

0.82

0.84
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Width/length ratio Ventral  view wt. ave mut ave

Figure 11. Width to length ratio at E 12.5(inferior view). 
 Ratio is increased for mutants 
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Figure 12. Inferior view of Skeletal Preparation at P0 and E 17.5. 
 A, wt at 17.5; B, mut at 17.5; C, wt at 17.5; D, mut at 17.5; E, wt at P0 and F, mut at P0. 
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We took length and width measurments of the bones of the basicranim and find significant 

differences between the wild and mutant types. These differences are described in the following 

sections. 

 

4.4 Length measurements 

We took four length measurements at the basicranium at E17.5 and P0. We observed that 

premaxillary length, total cranial base length and anterior cranial base length to be shorter in the 

PrickleBj/Bj mutants compared to the wild type littermates. We noticed that the length of 

basioccipital was not statistically significant between the genotypes.  
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Figure 13. The length of the neural crest derived cranial base is shorter in the mutants. 
A) Schematic of length measurement. B) Graph showing four length measurements of the basicranium at E12.5 and 
P0. pmx, tcb and acb are greater in wild type than the mutant type, while bo-l is the same between the two. pmx, 

distal premaxillary bones; tcb; total cranial base length; bo-l, length of basioccipital bone; acb, anterior cranial base 
length 
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4.5 Width measurements 

 

 

We measured width of three bones at the basicranium at E17.5 and at P0. There was a 

statistically significant difference in the width of Basisphenoid bs) between the two groups. There 

was no statistically significance in Basioccipital width(bo-w) of wild and mutant types.  There was 

a difference in width of the presphenoid but was not statistically significant.  

 

 

 

                             Figure 14.Graph showing width of three bones of the basicranium at E12.5 and P0. 

           A) Schematic of the cranial base and width measurements. B) Width of the three bones is greater in the mutant           
           than the wild type but only bs is statistically significant ps, Presphenoid; bs, basisphenoid; bo-w, length of  
           basioccipital.  

A 

B 
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We took percent ratio of mut bo-l/wt bo-l that was 102%, which mean these measurements 

were almost the same for the two groups. We took percent ratio of mut acb/wt acb, which was 81 

%, indicating a decrease in the length of G for the mutant type. We took percent ratio of mut tcb/wt 

tcb, we got a ratio higher (87%) than that for the mut acb/wt acb (81%). The percent ratio of mut 

bs/wt bs was 112%, indicating a much wider basisphenoid in the mutant type than the wild type. 

All of these measurements indicate that the changes are more pronounced in the anterior than the 

posterior region of the basicranium. 

  

Figure 15. Prickle1 Bj/Bj mutants have shorter cranial base length but the basisphenoid is wider, and the length of the basioccipital 

is not affected. The ratio of mutants to wildtype measurements is almost on at basioccipital , decreases to the lowest at anterior 
cranial base, increases at total cranial base and increases even more at basisphenoid 
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We used Stata software program to perform two sample t-tests to compare the mean 

lengths, width the basicranium of the wild and mutant types.  

   

Table 1: Lengths and widths of the bones of the basicranium 

Table 1: Lengths and widths of the bones of the basicranium 

Genotype pmx ps bs bo-w tcb bo-l acb 

Prickle1 +/+ 1.17125 
+/- 0.05268 

1.46466 
+/-0.30608 

   1.82 
+/-0.07621 

1.46733 
+/-0.07408 

6.203 
+/-0.17932 

1.463 
+/- 0.044 

4.732 
+/- 0.20184 

Prickle1 Bj/Bj 0.9795 
+/-0.110163 

1.57466 
+/-0.11677 

   2.03766 
+/- 0.01542 

1.5844 
+/- 0.08080 

5.4055 
+/-0.28082 

1.506 
+/- 0.044 

3.8665 
+/-0.19795 

p-value  P=0.0199* 0.5164 0.0003* 0.1268 0.0020* 0.5144 0.0003* 

Measurements are mean +/- sd; blue indicate significant. 

 

Over all, we saw statistically significant differences for the premaxillary bones, 

basisphenoid, total cranial base length, and anterior cranial base length. There were no statistica l ly 

significant differences for presphenoid, and width of the basioccipital. 
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 4.6 Ratio of width to length  

 

In order to delineate regional morphological changes, we took width to length ratios of the 

measurement and then compared these ratios between the wild and mutant types. We saw 

statistically significant differences for bs/tcb, bo-w/tcb, bo-l/tcb, and acb/tcb but not for pmx/tcb 

and ps/tcb. 

 We determined statistical significance using p<0.05. We also took ratio of bs and acb. All 

the width to length ratios were greater in the mutant type than in the wild type. bs/acb was greater 

than bs/acb, which signifies that the changes were mostly located to distal region of the skull.  
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Figure 16.Graph comparing width to Length ratios. 
We took the ratio of width to length to identify regional morphological changes. 

A) Schematic of measurements. B) BJ Mutants’ width: length ratios ps/tcb, bs/tcb, bo-w/tcb, bo-l/tcb and bs/acb of the mutants 
basicranium are higher than the wild type while ratios acb/tcb and pmx/tcb are lower than the wild type.  
 

A 

B 
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Table 2: Width to length ratio of the bones of the basicranium 

Measurements are mean +/- sd; blue indicates statistically significant difference. 

 

. 

 

 

 

 

 

Table 2 summarizes the width to length ratios 

genotype pmx/tcb ps/tcb bs/tcb bo-w/tcb bo-l/tcb acb/tcb 

Prickle1+/+ 0.188926 
+/-0.008943 

0.177713 
+/-0.109111 

0.293341 
+/-0.006233 

0.178791 
+/-0.103389 

0.236155 
+/-0.012059 

0.76265 
+/-0.015807 

Prickle1Bj/Bj 0.18071 
+/-0.012635 

0.292402 
+/-0.029514 

0.378124 
+/-0.022496 

0.247246 
+/-0.111116 

0.278414 
+/-0.009029 

0.715403 
+/-0.010242 

p-value  0.3434  0.0853 0.0002* 0.0005* 0.0005* 0.0009* 
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5.0 DISCUSSION 

We noticed changes mainly in the anterior region, where the bones had the neural crest 

origin. No or very little changes in the posterior region. From the bones we looked at the 

basicranium: 

Basisphenoid is neural crest cell, and is wider,  

The PMX is neural crest cell and is shorter. 

 The only bone that has the mesodermal origin is the Basioccipital, and is the same between 

genotypes. I have found an association with wider anterior cranial (bones derived from the neural 

crest) and the development of cleft palate.  
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It was hard to measure the width of presphenoid (ps). We could not measure presphenoid 

width accurately for the all samples because of the palatal bones covering part of the presphenoid 

bone. Because of this, we had fewer measurements for presphenoid. 

There was a difference in basisphenoid width between the wildtype and mutant types and 

it was statistically significant. The presphenoid width and the ps/tcb ratio were higher in mutant 

than the wild type but they were not statistically significant, probably due to the above-mentioned 

reasons. 

In this study, we did find significant differences in the craniofacial morphology between the two 

groups. In our study, the mutation in Prickle1 changed the phenotypic appearance of these mice. 

The heads’ width of the mutant mice is increased because of the Prickle1 mutation. We know from 

Figure 17.Schematic of the ventral view of mouse cranial base. 

bo, basioccipital; bs, basisphenoid; Ps, presphenoid; sos, spheno-occipital synchondrosis; pss, presphenoid 
synchondrosis; v, vomer; pmx, premaxillary bones 

 



 31  
 

the embryology of lip and palate that the three-dimensional shaped structures (processes and 

palatal shelves) must meet each other for proper fusion. Increasing the distance between these 

structures (processes and palatal shelves) may shift over some of these mutants over the threshold 

of CL and CP.  

5.1 Plans for Future: 

In this study we only analyzed the cranial base of mutant mice with cleft palate and 

compared it to the cranial base of the wild type. To fully test our hypothesis we should also 

compare the cranial base of non-cleft mutants to the cleft mutants.  Further studies with increased 

sample size and histological sections of the head may be even more promising.  
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6.0 CONCLUSIONS 

We observed that at E12.5 the Beetlejuice mice have skull that are shorter in the proximal 

distal axis and expanded in the medio-lateral axis. We confirmed this at later stages and observed 

that only the anterior most region of the skull is affected in these mice. Therefore, the Beetlejuice 

mutation differently affects the development of the neural-crest derived cranial base. Our data 

found has found a correlation between the width of the head and the development of cleft palate. 

More research is needed to establish a firm link between change in morphology of head of the 

Beetlejuice mice and cleft lip and plate, but we suggest that the increase in width of the skull may 

predispose these mice to cleft lip and palate. If true, the change in the head morphology would 

every likely be a relevant etiological factor for cleft lip and palate formation in humans. 
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